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Abstract—Many solutions have been proposed to improve man-
ual contact tracing for infectious diseases through automation.
Privacy is crucial for the deployment of such a system as it
greatly influences adoption. Approaches for digital contact trac-
ing like Google Apple Exposure Notification (GAEN) protect the
privacy of users by decentralizing risk scoring. But GAEN leaks
information about diagnosed users as ephemeral pseudonyms
are broadcast to everyone. To combat deanonymisation based
on the time of encounter while providing extensive risk scoring
functionality we propose to use a private set intersection (PSI)
protocol based on garbled circuits. Using oblivious programmable
pseudo random functions PSI (OPPRF-PSI) , we implement our
solution CERTAIN which leaks no information to querying users
other than one risk score for each of the last 14 days representing
their risk of infection. We implement payload inclusion for
OPPRF-PSI and evaluate the efficiency and performance of
different risk scoring mechanisms on an Android device.

Index Terms—Digital Contact Tracing, Private Set Intersec-
tion, OPPRF-PSI, Risk Scoring

I. INTRODUCTION

Covid-19 has influenced our daily lives since it reached
the scope of a global pandemic in the beginning of 2020. To
lower the number of infections in the population several con-
trolling measures such as quarantine, social distancing, mask
mandates, regional lockdowns and contact tracing have been
employed. The latter aims at identifying possible infection
chains through tracing individuals who have been in contact
with a diagnosed patient. Manual contact tracing efforts are
difficult to maintain with the large amounts of new cases.
Therefore digital contact tracing (DCT) systems are being
employed to support manual efforts by crowd-sourcing the
task. For this purpose, mobile apps are used to identify close
contacts with other app users and notify their bearers about
their risk of exposure. To be effective, such an app has to
register proximity events in a reliable way, provide the user
with a realistic exposure risk estimation and has to be widely
used. In most regions participation is voluntary. Therefore,
secure solutions with good privacy protection are needed
to ensure acceptance and adoption. Modern cryptographic
protocols from the field of secure multi-party computation
(MPC) can help to develop a privacy-preserving DCT app with
minimal risk of leaking information about the participants.

In this paper, we develop a system for DCT called
CERTAIN which uses the circuit-based protocol of Pinkas et
al. [1] for private set intersection (PSI) based on oblivious
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programmable pseudo-random functions (OPPRF). Our con-
tributions are:
o Designing and evaluating an approach to DCT using
OPPRF-PSI with an Android app
o Implementing an extension for OPPRF-PSI which allows
the inclusion of payload from client and server
e Designing complex risk scoring for DCT using circuit-
PSI with payload
o Evaluation of OPPRF-PSI for unbalanced sets with pa-
rameters aligned to the context of DCT

We test a variety of circuits that align with existing DCT risk
scoring functionalities. The system was evaluated in regards to
communication, runtime and energy efficiency in the context
of DCT for different networks.

In Section II, we introduce relevant related work on DCT.
Next, Section III describes the OPPRF protocol and our sys-
tem, as well as adjustments that had to be made to realize risk
scoring for DCT. Nuances of the implementation are explained
in Section IV. The evaluation is presented in Section V,
followed by a discussion in Section VI. We conclude in
Section VIIL.

II. RELATED WORK

Contact tracing aims at identifying people who have been
infected with a monitored disease by analyzing who has
been in contact with a diagnosed person. If new cases are
discovered and isolated fast enough, the spread of the disease
can be limited. As Covid-19 is a quickly spreading, airborne
disease with pandemic scale, crowd-sourced contact tracing
has become increasingly relevant since the start of 2020 [2].
Evaluations based on observations, for example [3] conducted
by Wymant et al. focusing on England and Wales, have
found that these DCT apps had a positive impact on the
course of the pandemic. DCT relies on modern technology
to detect which people had been in each others presence for
a significant amount of time so that a transmission is likely
if either person turn out to be infected later. Smartphones are
a convenient tool to this end as many people continuously
carry their device on them and keep them turned on. The
various technologies available in off-the-shelf smartphones can
be used to detect relevant encounters. During the last year,
Bluetooth Low Energy (BLE) has emerged as most practical
technology for this purpose [2].

DCT approaches using BLE rely on users exchanging
ephemeral pseudonyms (EPs) over BLE with others close by
to register encounters. The most widespread example is the



Google Apple Exposure Notification (GAEN) framework [4].
It provides the foundation on which many national DCT
applications, such as the German Corona-Warn-App [5], are
built upon. In GAEN, EPs are derived from a daily key. Newly
diagnosed users upload their recent daily key to the server of
the local health authority (HA) from where they are distributed
to all users. Users will check locally if they have recently
recorded any of the EPs that can be derived from the daily
keys published by the HA. They are warned through the app
if in doing so an encounter with an infected person is detected.
Similar to manual contact tracing efforts, the risk of infection
for encounters with infected users is estimated. In GAEN, so-
called exposure scores are calculated according to duration and
closeness of the encounter with the infected person, as well
as their infectiousness.

In a system like GAEN where EPs of diagnosed users
are published and risk scoring is conducted locally, a ma-
licious user who received a warning can deanonymize the
corresponding infected individual by remembering who they
have been in contact with during the time of the encounter.
One approach to solve this issue could be to ensure that a
warning is delivered but no information is leaked about the
time of the encounter. While this is possible, such a system is
prone to attackers that attempt to deliver false warning [2]. To
ensure that users only receive legitimate warnings but do not
learn more about the infected person who caused the warning,
cryptographic approaches can be used.

MPC allows two parties to evaluate a joint function y;, yo =
f(x1,29) over the inputs of the participants. The inputs
remain secret from the other participant and each party ¢ only
learns the final result y;. Any function f that is solvable in
polynomial time can be represented as an MPC protocol [6,
Chapter 22.2]. One way to realize MPC protocols are Yao’s
garbled circuits [6]. Here, one side creates a circuit from
the function to be calculated and send it to the other party,
which evaluates the circuit. Evaluation requires oblivious
communication between both parties. Approaches to DCT that
use MPC mostly use PSI. In these systems, the HA’s server
stores past EPs of diagnosed individuals. Users individually
contact the HA’s server to derive their risk and use recorded
EPs for their query.

Both sides input their data to the secured communication.
The user will learn their risk of infection, but they will not
learn information about the server data set. Berke et al. [7] use
Diffie-Hellman PSI to determine the size of the intersection.
The approach of Demirag et al. [8] provides the querying
user with the size of the intersection. Trieu et al. [9] use
a form of Diffie-Hellman PSI optimized for asymmetric set
sizes. The Catalic system proposed for DCT by Duong et
al. [10] reduces the PSI load on querying client devices by
shifting computation to servers that do not have to be trusted.
In one of our earlier works [11], we used binary search on
an oblivious RAM for DCT. Unlike the approach proposed in
this paper, these systems do not compute a risk score but only
return the intersection to the user, which results in privacy
issues similar to GAEN, or the cardinality of the intersection,

which are difficult to interpret.

III. DCT witH OPPRF-PSI

In the following we describe the attacker model and explain
how CERTAIN uses circuit-based PSI to implement complex
risk scoring for DCT.

A. Attacker Model

In the context of MPC there are two types of attackers
who can participate in a protocol. A semi-honest adversary is
interested in learning as much as possible during the compu-
tation about secret data of the other party while still following
the protocol. A malicious adversary might deviate from the
protocol and try to pass incorrect data to the computation.

To understand the security requirements for the system in
general, we also discuss several threats to DCT. Evil users
of an DCT system might try to generate false alarms to
convince other users that they are at risk. They can also
try to deanonymize diagnosed users, meaning users that are
verified Covid-19 cases. Another objective of an evil user can
be attacking the availability of the system and thereby blocking
the distribution of warnings, i. e., a denial of service (DoS). An
evil user can behave either like a semi-honest or a malicious
adversary during the computation. The health authority (HA)
is a government branch responsible for handling the pandemic.
It conducts tests and manages contact tracing efforts. Thus,
the HA is interested in identifying and quarantining infected
patients. An overambitious HA can try to deanonymize people
at risk. As a government entity it might also have an interest
in creating a database not only containing epidemiologically
relevant data but all information about users it can gather. Such
a database could later be used by other governmental bodies
such as law enforcement. We assume the HA has no interest
in breaking contact tracing by providing false information. An
eavesdropper will try to identify users participating in the
system. They are capable of observing the network traffic
and/or collecting BLE beacons. Eavesdroppers can be net-
work providers or entities with a number of widely deployed
Bluetooth scanners, such as billboard companies. Additionally,
by observing metadata like message sizes or frequencies, this
attacker can try to derive infection statuses of users.

B. System Design

To participate in DCT, users download an app to their
smartphone which regularly emits BLE advertisements. These
advertisements contain an EP which is changed every 15 mins.
The app also collects EPs of other users in the vicinity.
To determine a distance to a sender, the signal strength is
recorded. If a user tests positive for Covid-19, they pass their
used EPs of the last 14 days to the HA. To warn users
who have come into close contact with diagnosed users and
are likely to have been infected, individual risk levels are
computed daily. For each of the last 14 days, the user initiates a
MPC computation with the server of the HA to calculate a risk
score using OPPRF-PSI. For each computation the user inputs
the EPs they recorded for that day while the server inputs



the relevant EPs of diagnosed users. After the computation,
the user will receive a set of risk scores. If the calculated
risk for a day does not exceed a certain threshold, no risk is
indicated. Otherwise, the actual risk score is revealed. Using
these scores, the users can decide themselves if they need to
follow the HA’s directions and get tested. Since we assume this
system is voluntary, reporting users who are at risk of being
infected seems counterproductive. Therefore, risk scores are
not revealed to the HA.

C. Circuit-Based PSI

In the following, we will first explain the used PSI protocol
in general and then describe the function of an OPPRF.

1) PSI Protocol: The protocol we use for PSI is called
OPPRF-PSI and designed by Pinkas et al. [12]. Unlike non-
circuit PSI protocols, which are often more efficient, it allows
to compute arbitrary functions on the output of the intersection
without revealing intermediate results and additional informa-
tion. Compared to other circuit-based PSI protocols like [13]-
[15], it is the first to provide linear circuit complexity and a
runtime of O(n).

For OPPRF-PSI, the server uses simple hashing to place
their element set Y in [ bins. The client uses cuckoo hash-
ing [16] with the same hash functions on their set X to create
a distinct match from elements to bins. The number of bins
is selected so that no stash is required during cuckoo hashing.
The protocol uses a batched OPPRF sub-protocol to determine
if a client’s element occurs in the corresponding server side
bin. This requires only one comparison. To this end, the server
samples a set of target values t* = ¢;---{g from a random
distribution. Both sides then invoke a batch-OPPRF using the
hashing bins of both sides and the servers target values. This
protocol phase returns a vector y* of size § to the client which
has the following property. If an element located in the client’s
bin j is contained in the server set, the value at the vector’s
position j is equal to the server’s target value ;, otherwise it
is zero. Since communication is masked, the client can not tell
target values from zeros. In the next step, both sides compute
a circuit with a MPC protocol inputting X, y* and t*. The
circuit compares for each position j if y7 is equal to ¢ with an
AND gate. For this purpose only ~ bits are required to ensure
fast runtime and a low false positive rate. Using all elements
from X for which this test was successful the desired function
f (e.g. a risk scoring function) is computed obliviously. The
result is then revealed to the client.

2) OPPRF: As mentioned above the OPPRF takes hashing
bins from both sides and returns a vector y* to the client.
To explain OPPRE, we first need to introduce pseudo-random
Sfunctions (PRF). We write them as Fprp(k,q). For a ran-
domly chosen key k£ and an arbitrary input g, the PRF outputs
values which are indistinguishable from random elements in
the function range. A PRF can be implemented as MPC
protocol and is then called oblivious PRF.

An extension of normal PRF are programmable PRF
(PPRF). On a certain “programmed” set of inputs X the PPRF
outputs “programmed” values T, where |X| = |T'| and each

t € T is uniformly distributed. When constructing the PPRF
a hint is generated in form of a polynomial that maps each
programmed input value £ € X to the XOR combination of
Fprr(k,z) and its target value ¢. To answer a query ¢, the
hint is evaluated. If the PPRF was programmed at position
x = ¢ then the query returns the corresponding target value .

An oblivious PPRF (OPPRF) provides the functionality
of a PPRF as two-party MPC protocol. Instead of a PRF
an oblivious PRF is required. To improve performance, an
OPPRF can be batched by running a number of 5 OPPRF
instances on different parts of the input. The hints for all 3
instances can be combined into one.

D. Payload Inclusion

Payload data is private data associated with an element
used by either side for calculating the intersection. Payload
is used to compute functionalities for the intersection. To be
able to include payload data, some additional implementation
is needed. For payload inputs from the client, the adjustment
is straightforward. The circuit has to be extended with input
wires where the client inputs each element’s payload. The
result of (y* A t*) is combined by an additional AND gate
with the client’s payload. More work is required, when there
is payload data originating from the server. In [12], Pinkas et
al. explain the problem and give instructions on how to extend
the basic protocol to allow the server to input payload data.
They did not implement or evaluate this part themselves.

In the basic protocol without any payload the server maps
multiple elements to each bin and the OPPRF assigns the same
target value to all elements within a bin. If the circuit now
detects a match between two bins of client and server it is
impossible to infer which of the elements in the servers’s bin
had matched. To make this possible, the protocol requires two
invocations of the batch-OPPRF. The first invocation is the
same as in the original protocol. The second invocation is
for identifying which payload of the elements that the server
had mapped to a bin is related to the match with the client’s
element. As before, the client has input set X and the server
has input set Y. Let U(xz) and V(y) denote the payloads
associated with z € X and y € Y respectively and let X
be bin j of the client and Y} of the server respectively.

The server chooses the target values such that the elements
in each set T} are not equal. Specifically, the client inputs its
bins (like in the first OPPRF). The server samples #1,- - , 15
uniformly and inputs its own bins Y7,--- ,Yg and T7,--- ,T}g
where T} (i) = t; ® V(Y;(i)) and @ is the bitwise exclusive-
OR operator. The batch-OPPRF outputs the result vector g to
the client. Now, the circuit computes for index j the following:

o The client inputs X, y7, 7 and U(X). The server inputs
tj and tj.

o The circuit compares y to t;.

o If they are equal the servers payload has to be recon-
structed. If X; is the i-th item in server’s bin Y}, then
the value received by the client is 75 = t; ® V (Y;(4)).
Thus, V(Y;(i)) = 55 @ t;.



o Next, a sub-circuit computes the desired function f on
X, U(X;) and V(Y;(7)).

This payload inclusion adaption of the basic protocol results
in the same asymptotic complexity. The circuit, which now
handles payloads, computes the same number of comparisons
as the basic circuit [12]. The actual duration of the OPPRF
phase doubles since it is invoked twice on the same amount
of bins.

E. Risk Scoring Circuits

Risk scoring is the calculation of an exposure score which
reflects the risk of infection based on proximity events with
diagnosed individuals. The first version of the GAEN API risk
scoring approach [17] multiplies risk values for infectiousness
4, duration r4, days since exposure rp and attenuation r, per
EP e from the set of pseudonyms of infected users D.

GAEN
RS’UI = E Teyi Ted  Te,D " Te,a
e€D

In the second version, changes in distance between users were
also considered [17]. Here, duration at an attenuation range
j € AR is multiplied with a corresponding weight w;. The
sum over all ranges is multiplied with a weight representing
the infectiousness of the contact r; and a value representing
the reliability of the testing method 74.5;. GAEN defines four
different attenuation ranges for immediate, near, medium and
other encounters. GAEN leaves the task of defining exact dB
values to the developers building upon its APIL

GAEN § : 2 :
RSU2 = ( w;j - ’re,j,d) *Te,i " Tetest

e€D jEAR

Similarly, the mechanism of DP-3T [18] multiplies exposure at
three different attenuation ranges with static weights and then
calculates a sum to determine the user’s risk. The attenuation
ranges are given by the thresholds 50dB and 55dB.

RSDP3T — Z( Z wj - re,j,d)

ecD jEAR

These examples show that both summation and multiplication
are relevant for complex risk scoring.

We evaluate several functionalities for risk scoring using
OPPREF-PSI. The most simple mechanism calculates the sum
of payload values provided by the client which belong to
an element that appeared in the intersection. We call this
functionality AS. The payload can be for example the number
of minutes 7. 4 the user was exposed to a certain EP e. The
circuit would then calculate the numbers of minutes for a day
that the user was in contact with diagnosed individuals.

The next step is to allow both sides to provide payload used
for summation. This circuit is called AB.

Our complex risk scoring allows to multiply payload values
belonging to the same intersection element and then calculates
the sum over all partial results. We call this circuit ABM. It
allows the HA to provide information about the infectiousness
for a specific EP. If the client uses payloada(e) = Teq - Te,a
and the server inputs payloadp(e) = Te,; - Te,p as payload

for each element e of their sets, a scoring model similar to
the GAEN API v1 can be achieved. To produce full GAEN
or DP-3T risk scoring which takes into account different
attenuation levels, extra work by the client is required. For
each recorded EP e it has to compute the following sum:

payload s (e) = Z W Te,jd (1)
JEAR

The overhead for this computation is minimal, as it can be
calculated 15 min after the EP was first received. For DP-3T
risk scoring the server does not need to include any data. For
GAEN v2 the server has to include payloadp(€) = 7ei*Te test-

We additionally evaluate a set of circuits, where a risk score
is only revealed to the user if it exceeds a certain threshold. We
apply this functionality to the three circuits described above,
giving us the circuits AST, ABST and ABMT.

IV. IMPLEMENTATION AND PARAMETERS

To realize CERTAIN, we used a re-implementation of
the OPPRF-PSI protocol [19]. It relies on the ABY frame-
work [20] for circuit implementation. Using the Android
Native Development Kit [21] we ported the OPPRF-PSI to
Android by cross-compiling all dependencies. We improved
the protocol to allow payload inclusion and implemented an
Android app to conduct experiments.

A. Parameter Selection

For the implementation and evaluation, it is important to
estimate the size of server and client set. DP-3T [18] assumes
the number of diagnosed users who upload their data per day
to be 2,000. The authors of Epione [9] use 5,000 daily cases
for their evaluations. During the height of the pandemic in
December 2020, 34,000 new daily cases were registered in
Germany by the responsible authority [22]. It can also be
assumed, that only a fraction of diagnosed people will have the
app installed and will in case of an infection provide their EPs
to the HA. In Germany, the Corona-Warn-App which builds
on GAEN has been downloaded 28,3 million times as of June
2021 [5]. This is a dissemination of about 34,1%. Around
5,000 new cases per day who upload their data are considered
for our system, which leaves room for greater outbreaks or a
larger user base.

Various approaches to DCT use different durations for how
long the same EP is advertised [2]. We assume that the
infectious period is 14 days and EPs change every 15 mins. To
be able to provide the user with per-day risk scores, the server
set is split into 14 separate sets so risk scores can be computed
for each of the corresponding days separately. Therefore, the
server set size is set to ny = 2'° which corresponds to 5461
daily cases. There are also some practical limits to the server
set size. The implementation uses Lagrange interpolation in
a prime field based on the Mersenne prime 26! — 1. This
allows for operations like multiplication of field elements to
be an order of magnitude faster, but it limits the field elements
to be < 61 bit long. Subsequently, the maximum amount of
input elements is limited to n = 22° when requiring statistical



security of o = 40 and keeping the same protocol parameters
as in the balanced set case of Pinkas et al. [12]. By adjusting
the number of bins and batching parameters of the OPPRF
phase we can allow the server set to be bigger. For the client
we used n; = 210, ag using a smaller set is irrelevant since
the number of bins for client and server are influenced by
maximal bin size on the server side.

B. Complexity

The OPPRF-PSI protocol has a linear asymptotic communi-
cation overhead in the number of elements. It has a complexity
of O(in) gates, where n is the number of input elements
and [ their bit-length. The effect unbalanced sets have on
the protocol complexity has not been discussed in [12], but
each protocol phase is affected. Hashing complexities for
client and server are asymmetric in this case. Due to the
high difference in set size between server and client and
restrictions on the maximal bin size, the number of bins 3
has to be scaled by a factor p. This results in a unbalanced
set complexity of O(l- p- 3 -ny) for the basic PSI circuit. For
circuits, where both sides provide payload, the complexity is
at O(l-p-f-ny+mny-Jd) gates as payload inputs from the
server with bit-length ¢ are included. For the OPPRF phase
the server has to interpolate O(K - ngy) given K the number
of hash functions used for cuckoo and simple hashing. The
amount of data that is required to transfer the hint generated
by the OPPRF for unbalanced sets is in O(K - nz - 7). In
the balanced setting Pinkas et al. noted that hints were just
responsible for 3 % of the overall communication. As the
data required for hint communication is in O(ny) and the
basic circuit is in O(nq), this had to be re-evaluated for the
unbalanced case. Also the impact of the OPPRF phase is
doubled for circuits where the server also provides payload.
The changes for asymptotic complexities suggest a substantial
impact that a great increase of ny might have. To be able to
discuss concrete performance of the protocol in an unbalanced
setting, we conduct evaluations with real experiments.

C. Optimizations

The OPPRF-PSI library code as well as some of its depen-
dencies make use of x86 instruction set extensions like Stream-
ing SIMD (Single Instruction Multiple Data) Extensions (SSE)
and its successors as well as common crypto extensions.
Modern ARM CPUs widely used in mobile devices have
their own 64-128bit SIMD instruction set called NEON. It is
available since ARM Architecture, Version 7 (ARMv7) [23].
The x86 and NEON intrinsic functions are different and
there is no one-to-one correspondence between them [23].
Nevertheless, projects like sse2neon [24] offer translations
from SSE to ARM NEON intrinsics. As we were not able to
port parts of the library and protocol source files to use NEON,
the intrinsics are disabled for the Android library port.

V. EVALUATION

The key goal of this evaluation is to collect data from
experiments to find out how well CERTAIN performs. This is

mostly a question of efficiency. The metrics used to evaluate
the app were runtime, communication as well as CPU usage
and energy consumption on a smartphone. The evaluation
has to cover different scenarios for parameters like network
environment and circuit functionality. The impact of different
protocol phases is also of interest.

For the experiments a Lenovo Thinkpad T480s with an Intel
Core i5-8250U (4 Cores at 1.60-3.40 GHz) and 16 GB of
RAM is used as the server. The client is an OnePlus 5 with
Android 9, a Qualcomm Snapdragon 835 Octa-core processor,
6 GB of RAM and a 3,300 mAh battery. The app is compiled
with target SDK version 28 as arm64-v8a ABI (Application
Binary Interface) to match the requirements of the evaluation
hardware.

A. Network Setup

Three different network environments are evaluated using
the network emulator NetEm [25] to add additional delay,
packet loss and rate limiting on the server’s network interface.
In the baseline LAN environment server and mobile phone
are connected to the same local network via Ethernet and
5 GHz WiFi. It has no packet loss, an RTT of 2.49 £0.19 s,
460.1 £+ 46.8 MBit/s downstream and 488.87 4+ 70.3 MBit/s
upstream. The WAN environment setup represents the case
that the mobile phone communicates with a remote server via
a stable high-bandwidth connection. Here, packet loss is set to
0.01%, RTT is 40.14 0.7 s, downsteam is 17.5 &+ 3.8 MBit/s
and upstream is 17.9 + 4.1 MBit/s. The RTT and throughput
values are aligned to the test setup of Kolesnikov et al. [26].
The LTE environment simulates the situation where the mobile
phone is connected to a mobile network and communicates
to a distant server over a heavily asymmetric connection.
Packet loss is also set to 0.01%, RTT is 50.61 &+ 1.65 s,
the connection from server to client has 13.6 £ 2.8 MBit/s
while the opposite direction has 3.8 + 2.0 MBit/s. RTT and
throughput values and their standard deviation are measured
with the ABY benchmarking tool and iperf3 [27] over at least
20 test runs per data point.

B. Results Data and Communication

As Figure 1 shows, complex risk scoring functionality
heavily impacts both runtime and communicated data. Sum-
mation of payload provided by the client does not differ
from a circuit that does not perform any functionality on top
of PSI (see Figure 1, Analytics). When the the server also
provides payload, runtime sharply increases and the amount
of data sent doubles. For the most complex variant of risk
scoring following DP-3T or GAEN, multiplications need to
be added. We can see that while runtime only rises slightly
from ABM/ABMT to ABS/ABST, the amount of data to be sent
increases drastically. For the functionalities ABM/ABMT the
client is also required to send and receive more data. As we
see in Figure 2 runtime for this circuit is heavily impacted by
the asymmetric LTE connection. Revealing results only when
a certain threshold value is surpassed has negligible influence
on communication and runtime for any of the circuits.
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Figure 1. Time and data consumption for different risk scoring functions

for calculating the risk score for one day. Runtimes and communication data
for all different circuits with nq = 210 and ny = 219 and 2 bit payloads.
Runtime means measured with 20 runs each in the LAN setting. Error bars
show the standard deviation.

Standard deviations for the runtime are small within the
LAN network. This stability in measurements is caused by a
small RTT, high throughput and almost non-existent packet
loss rate in the LAN network. This changes for the WAN and
LTE networks as visualized by the larger error bars. Additional
experiments have shown that not emulating additional packet
loss does result in a small standard deviation even for the LTE
environment. In general, the runtime increases from LAN to
WAN to LTE. The small differences of less than 8 s between
the networks do not change for the first two circuits. This
shows that including payload from only the client has no
impact on runtime across all networks. Once payload from
the server is included, the differences between the networks
get slightly bigger (10-20 s). We also conducted experiments
with different server set sizes ny = 2% for « € {10,...,21}
and nq = 2'0 in the LAN. Both duration as well as the amount
of transmitted data grow exponentially.
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Figure 2. Duration of different functionalities for risk scoring in different
networks.

C. Results Energy and CPU Usage

Energy consumption is measured using the Battery Histo-
rian tool from Google [28], which is available since Android
5 (Lollipop). With this tool CPU time and estimated battery
consumption can be tracked for an app. The means and
standard deviations are displayed in Table I.

Table 1
MEANS AND STANDARD DEVIATION FOR ESTIMATED POWER USAGE AND
CPU TIME MEASURED OVER 20 RUNS WITH n; = 210 AND no = 219,

Circuit Analytics AST ABT ABMT
Est. Power Usage (%) | 0.031£0.002 | 0.034 £0.005 | 0.071 +£0.003 | 0.215 & 0.005
CPU Time (ms) 3507 £ 54 3442 £ 93 4753 £ 74 7960 £ 93

The estimates for power usage are given as percentage of the
battery charge capacity (3,300 mAh) that the app consumed
during the execution. The ABMT circuit reaches 0.21% of
power usage while the others are between 0.03% and 0.07%.
The increased circuit complexity causes a three-fold increase
of energy consumption.

The Battery Historian tool also provides an estimate for
the power use due to CPU usage. This is reported as 0.00%
for all runs even though Table I shows that an app execution
takes between 3 s to 8 s of CPU time. This value is the sum
of the CPU user time and system time. The CPU system time
always amounts to less than 30% of the user time. It is unclear
whether WiFi energy consumption is accurately accounted for
in the estimated power usage for the app. System-level WiFi is
responsible for less then 0.03% of energy consumption during
app executions.

D. Results for Different Payload Lengths

To evaluate the impact of different payload lengths, exper-
iments were conducted with § € {2,3,4} bit payload for an
ABMT circuit. Changing from 2 bit to 3 bit, requires the client
to send an additional 31.5 KB of data and receive additional
31.2 KB. Comparing payload of size 4 bit with the baseline
gives additional 65.0 KB send and 64.5 KB received. The
increase of runtime is minor with a around 60 ms from 2 bit
to 4 bit payload.

VI. DISCUSSION
A. Unbalanced Sets

The original protocol design for OPPRF-PSI was only
managing balanced sets. While it was easy to increase server
set size without directly increasing the number of bins, the
protocol parameters had to be adjusted to uphold the security
guarantees and implementation restrictions. The implementa-
tion decision of using the Mersenne-prime field and the failure
probability for collisions enforced a maximum bit-length of
intermediate values. This affected the batch-OPPRF in a way
that bigger hint polynomials had to be used. A hint size
limit of 1024 related to interpolation performance enforced the
batch-OPPREF to split them into more and smaller polynomials.
This grows more and more inefficient, both computation and
communication-wise. In evaluations of Pinkas et al. for the
case of balanced sets the transport of polynomials required less



than 3% of the total communication data [12]. This changes
drastically in the unbalanced set case. In our measurements,
polynomials are responsible for more than 60% of protocol
communication for the less advanced circuits. For more com-
plex circuits this number decreases due to the increasing circuit
size.

B. Efficiency

To get the total communication data and execution times
required for 14-day risk scoring, the OPPRF-PSI evaluation
results from Figure 1 have to be multiplied by 14. To decrease
runtime, parallelization can be leveraged. Communication for
executing OPPRF-PSI 14 times a day can be up to multiple
gigabytes and are therefore too high for an DCT system
which has to be efficiently scalable. One method to improve
efficiency could be reducing the infectious period to 10 days,
as used for example by DP-3T. Communication would be
decreased by almost 30%, as only 10 OPPRF-PSI would be
executed each day.

By handling input-independent communication, e.g. from
the circuit setup phase, differently and reducing the infectious
period, the communication values are less impractical, but still
reach above 1 GB of data. As the more complex circuits are a
main contributor to communication, OPPRF-PSI can be used
efficiently for DCT at least in a scenario with 5000 uploads
per day, if advanced risk scoring functionality is not applied.
Another optimization option would be to outsource the client’s
circuit computation to a set of untrusted independent servers
as described by Duong et al. [10]. As these outsourcing
servers and the HA’s server would be in a LAN or WAN
setting performance would greatly improve. Also the amount
of data communicated by the client would decrease to O(nq)
independent of the computed risk scoring function.

C. Risk Scoring Payloads

To produce risk scoring following GAEN v2, the client
can pre-compute a risk value according to the duration-at-
attenuation for each EP following Equation 1 and input this
value using only a few payload bits. As we have seen in the
experiments, increasing payload size has only little impact on
the runtime. For each additional bit of payload length more
data has to be communicated, resulting in a constant overhead
of about 62.7-64.75 KB per bit up for relevant sizes assuming
linear growth. In case of 16-bit payloads, another 906,5 KB
of data would have to be communicated between client and
server. For an even more fine-grained risk scoring approach
EP specific attenuation values could be used as payload.

D. Privacy and Security

1) OPPRF-PSI: The OPPRF-PSI protocol protects against
a semi-honest attacker as described in Section III-A. This
means that if the attacker follows the protocol, no private
information is leaked. A malicious attacker on the other hand
might try to deviate from the protocol to either learn private
information or break the functionality of the protocol. To
defend against a malicious attacker, all parts of the risk scoring

functionality have to be secured. In the publication of OPPRF-
PSI [12] no maliciously-secure design was proposed. But
the authors noted that modern circuit-PSI protocols based on
cuckoo hashing have to rely on the correct hashing of the
parties. It is inherently hard to extend protocols based on
cuckoo hashing to obtain security against malicious adver-
saries. This is because the placement of items depends on the
exact composition of the input set, and therefore a malicious
party might learn the placement used by the other party
[29]. Since OPPRF-PSI only applies cuckoo hashing on the
client side, this risk only exists in case of a malicious server.
In [30] PaXoS is used, a new data structure for malicious-
secure Cuckoo hashing to avoid information leakage. This data
structure is not applicable to OPPRF-PSI. The simple hashing
into bins could be made more secure with an Encode-Commit
scheme as proposed in [29].

Several techniques exist to secure MPC protocols for the
circuit phase against a malicious adversary. Among those
techniques are cut-and-choose, committed OT, authenticated
secret sharing, zero knowledge proofs and authenticated gar-
bling [31]. All of these measures heavily impact performance.

The only circuit-based PSI protocol that can be easily
secured against malicious adversaries is the SCS protocol [32]
by using an additional circuit of size O(n) [12].

As we see, a fully malicious-secure OPPRF-PSI is hard or
even impossible to construct due to the use of cuckoo hash-
ing and absence of malicious-secure sub-protocols. Switching
out some sub-protocols with their malicious-secure variants
induces heavy performance penalties. Neither a semi-honest,
nor a malicious-secure OPPRF-PSI protocol is secure against
crafted input sets of either party. Such simple attacks can be
made infeasible using mitigation tactics such as rate limiting,
threshold circuit functionalities or even device attestation.

2) CERTAIN: Let us now take a look at CERTAIN as a
whole. An evil user might be interested to find out which
of the collected EPs belong to infected people. In the semi-
honest setting, no EPs of the infected people and no informa-
tion about the time of encounter are leaked by CERTAIN.
This is due to the fact that only aggregated risk scores
are returned to the client. Additionally, inputs of client and
server are protected from the other side by MPC. Combined,
this mitigates deanonymisation attacks based on the time of
encounter (which are possible for example in GAEN). To gain
access to the server’s set of EPs the evil user has to act
as malicious adversary during PSI (see Section VI-D1). To
ensure that users do not behave like a malicious adversary,
app attestation mechanism can be used which prove integrity
of the application. To stop evil users from repeatedly querying
the server with different subsets of their data, a threshold
function, which only releases the true risk value if it exceeds
a certain level, is also applied. This measure can be combined
with limiting a user’s number of queries per day. An evil user
might try to issue false warnings. To defend against this attack
a token mechanism of DP-3T can be employed to ensure users
can only provide data to the server for PSI if they are verified
as infected [18].



An evil HA that is semi-honest does not learn if a querying
user is at risk or who they interacted with due to the fact that
an MPC protocol is used. To ensure that the HA does not
behave maliciously, trusted computing and remote attestation
mechanisms can be used. This allows audits to ensure that the
server runs the correct software.

An eavesdropper listening on network traffic can learn who
uploaded data to the servers of the HA and identify diagnosed
users. As mitigation, data collection can be either distributed
to testing centers or all users randomly initiate dummy data
uploads to the server. Another way the eavesdropper can learn
who is infected or who has recently been fully vaccinated is
when a user stops computing risk scores daily. As a result,
even if a user is diagnosed they should continue to query the
server. Attacks on BLE such as relay or replay of EPs are
the same as for GAEN and other BLE-based DCT approaches
(see [2]).

VII. CONCLUSION

In this work we present our approach CERTAIN for digital
contact tracing based on OPPRF-PSI. We implemented support
for server and client-side payload which is then used to realize
complex functions for risk scoring similar to the mechanisms
of DP-3T and GAEN. We evaluated the protocol for unbal-
anced set sizes on an Android device. The selected parameters
represent a realistic pandemic situation. It was shown that
while computation load and energy usage on the client devices
is small the amount of data to be communicated has a heavy
impact especially on asymmetric networks. Outsourcing client
computation to a set of untrusted as proposed by Duong et al.
can solve this issue.
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