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Abstract—Secure multiparty computation enables mutually
distrusting parties to compute a public function of their secret
inputs. One of the main approaches for designing MPC protocols
are garbled circuits whose core component is usually referred to
as a garbling scheme. In this work, we revisit the security of
Yao’s garbling scheme and provide a modular security proof
which composes the security of multiple layer garblings to prove
security of the full circuit garbling. We perform our security proof
in the style of state-separating proofs (ASIACRYPT 2018).

I. INTRODUCTION

Secure multiparty computation (MPC) allows mutually dis-
trusting parties P1, . . . , Pn to evaluate a public function f on
their secret inputs x1, . . . , xn and learn nothing but the result
y = f(x1, .., xn). In his seminal work [21], Yao proposed a
solution for the two-party case: Assume that f is represented
as a Boolean circuit C. P1 encodes or garbles the circuit C
into C̃ and their own input x1 into x̃1, and sends both, C̃ and
x̃1, to P2. The two parties then engage in a protocol to garble
P2’s input x2 into x̃2. P2 evaluates the garbled circuit C̃ on the
garbled inputs x̃1 and x̃2, decodes the result, and sends it to P1.
The garbling of a circuit uses an encryption scheme, and the
protocol is secure if the encryption scheme is indistinguishable
under chosen plaintext attacks (IND-CPA) and the parties are
semi-honest, i.e. follow the protocol description.

Despite Yao’s garbled circuits becoming one of the main
MPC design paradigms today, it took 20 years after its
inception before the first security proof for Yao’s original
construction was published by Lindell and Pinkas [18]. Bel-
lare, Hoang and Rogaway (BHR) [6] later abstracted Yao’s
garbled circuit construction to a general notion of garbling
schemes. A garbling scheme allows one party to garble a
circuit C and secret input x such that another party can
evaluate the garbled circuit and learn the result y = C(x) but
nothing (else) about the input. BHR moreover proved security
of the garbling scheme derived from Yao’s garbled circuits
construction, henceforth called Yao’s garbling scheme, in the
style of code-based game-playing [7].

Recently, Brzuska, Delignat-Lavaud, Fournet, Kohbrok and
Kohlweiss (BDFKK) [9] proposed state-separating proofs
(SSP), a generalization of code-based game-playing that al-
lows for more modularity in security proofs. SSPs propose to
structure the pseudocode of cryptographic games into stateful
code pieces (packages) that query each other via oracles.

A. Our contribution

In this work, we propose an easily verifiable version of the
security proof of Yao’s garbling scheme, including the sound-
ness of the reductions. Our work can be seen as the next step
towards understanding the security of Yao’s garbling scheme
which, inspired and empowered by SSPs, revisits existing
proofs and refines their structure where appropriate. Security
is proven with respect to BHR’s garbling scheme syntax and
security notion, expressed using SSPs. On a technical level,
our proof is guided by the following observations:

1) Modular security proof: In a nutshell, existing security
proofs of Yao’s garbling scheme consist of two steps: Garbling
scheme security is reduced to a proof-specific encryption
scheme security notion, which is in a next step reduced to
a standard assumption such as IND-CPA security. In this
work, we further break down the first step by separating
the reduction to encryption scheme security from arguments
about the circuit structure. For this purpose, we identify a
new intermediate security notion that sits right in the middle
between circuit garbling and encryption scheme security: the
security of garbling a gate. (For our own convenience, we
further assume that the circuit is layered and reason at the
level of layers, i.e. sets of gates, instead of individual gates.)

2) Composable security notions: Following BHR, a gar-
bling scheme is called selectively secure if the garbling of C
and x can be simulated given only C and the circuit evaluation
y := C(x), but without knowledge of the secret input x. Just
like a circuit can be described as composition of multiple
circuit layers, we ask now if circuit security can be described
as the composition of layer security. In the case of selective
security, this is unclear. In fact just syntactically, not even
the garbling scheme simulators can be composed: Consider a
circuit C := C2 ◦C1 for two subcircuits C1 and C2 and input
x to C, and assume that C1 and C2 can be garbled securely
with simulators S1 and S2. If we want to construct a simulator
S for C that is given only C and y = C(x) from S1 and S2,
we run into the problem that S needs to provide inputs for S1.
However, simulator S1 for C1 expects y1 = C1(x) as input
which neither S nor S2 can provide.1

1One can, rather inelegantly, bypass this problem with a dummy value for
y1 and argue that the joint composition of the simulators does not actually
depend on the value of y1.



In the case of Yao’s garbling scheme, however, we can refine
the security notion and show that security under the modified
notion implies selective security. The simulator in this new
notion is only given C and a garbling of y rather than y itself.
Going back to C := C2 ◦ C1, simulator S2 now simulates
the garbling of input y1 to circuit C2, and conveniently, can
provide S1 with the required garbling of y1. Not only can
simulators now be composed with each other, but the security
notion can be self-composed, meaning composing the security
notions for garbling multiple individual circuit layers Ci yields
a security notion for garbling circuit C.

3) Graph-based reductions: Finally, we write Yao’s gar-
bling scheme, our redefined syntax and security notion and
layer versions thereof in the modular SSP style, that splits
pseudo-code into multiple code packages which call one
another. As a result, we define our reductions directly as a
subset or rather subgraph of previously defined packages and
use mere associativity of algorithm composition to prove the
soundness of the reduction. Thus, our proof foregoes the need
to explicitly define reductions and prove their soundness.

B. Outline

Section II introduces garbling schemes. State-separating
proofs (SSPs) are introduced in Section III on the example
of encryption scheme security, and Section IV formulates
garbling schemes in terms of state-separated packages. In
Section V, Yao’s garbling scheme is introduced, and we state
security and outline the security proof which is then presented
in Sections VI, VII and VIII. Finally, Section IX discusses
conceptual insights and compares with related work.

II. GARBLING SCHEMES

A. Garbling schemes

Bellare, Hoang and Rogaway (BHR) [6] introduce the
notion of a garbling scheme as an abstraction of the primitive
underlying the garbled circuits approach.

Definition 1 (Garbling scheme [6]). A (circuit) garbling
scheme consists of 5 probabilistic, polynomial-time algorithms
gs = (gb, en, de, ev , gev) for circuit garbling, input encoding
and output decoding, circuit evaluation and garbled circuit
evaluation, respectively.

The circuit garbling algorithm gb outputs a garbled circuit
C̃ as well as input encoding information e and output decoding
information dinf. A garbling scheme is input projective if the
circuit garbling gb generates input encoding information e
that consists of two tokens per input bit, and input encoding
en selects for each input bit the corresponding token. We
assume the circuit evaluation algorithm ev to be fixed and
write C(x) instead of ev(C, x), and sometimes omit ev from
the description of a garbling scheme. Φ(C) is defined as the
information the circuit garbling leaks about a circuit C (e.g.
the circuit topology for Yao’s garbling scheme). For simplicity,
Φ(C) will be equal to C in this article.

PRVSIM0
gs,Φ,S

GARBLE(C, x)

(C̃, e, dinf)← gb(1λ, C)

x̃← en(e, x)

return (C̃, x̃, dinf)

PRVSIM1
gs,Φ,S

GARBLE(C, x)

y ← C(x)

(C̃, x̃, dinf)← S(1λ, y,Φ(C))

return (C̃, x̃, dinf)

Figure 1: Garbling scheme security games PRVSIMb
gs,Φ,S .

Definition 2 (Garbling scheme correctness [6]). Let λ ∈ N. A
garbling scheme gs = (gb, en, de, gev) is perfectly correct if
for all circuits C and inputs x,

Pr(C̃,e,dinf)←$gb(1λ,C)

[
C(x) = de(dinf, gev(C̃, en(e, x)))

]
= 1

Garbling scheme gs is statistically correct if the above equality
holds with overwhelming probability in λ.

BHR provide two equivalent security definitions for garbling
schemes, an indistinguishability-based and a simulation-based
definition. The latter follows the simulation paradigm: A real
execution of the garbling scheme on real circuit C and input x
is compared to a simulated (idealized) execution generated by
an algorithm—the simulator. The simulator only has access
to C and the result y = C(x), but not to the input x itself,
and thus, the ideal execution cannot leak more information
about x than the output value y. If both executions are
indistinguishable, then also the real execution does not leak
more information about x than y. Formally, we capture the two
executions via games PRVSIMb

gs,Φ,S for b ∈ {0, 1} (Figure 1)
and define security as indistinguishability between them.

Definition 3 (Garbling scheme security [6]). Let λ ∈ N. A
garbling scheme gs = (gb, en, de, gev) is secure wrt. leakage
function Φ if for all PPT adversaries A, there exists a PPT
simulator S such that the distinguishing advantage∣∣Pr[1←$ A → PRVSIM0

gs,Φ,S
]
− Pr

[
1←$ A → PRVSIM1

gs,Φ,S
]∣∣

of A interacting with PRVSIM0
gs,Φ,S and PRVSIM1

gs,Φ,S is
negligible in λ.

The above security notion is referred to as selective security
because the adversary needs to choose both circuit C and
input x simultaneously. In turn, the stronger notion of adaptive
security [5] allows the adversary to obtain a circuit garbling
and only then adaptively choose the input x. Adaptive security
is notoriously hard to achieve, see, e.g. [15] and references
therein. This work focuses on the simulation-based notion of
selective security presented in Def. 3.

B. Conventions

We encode the security parameter λ in unary 1λ and omit
it whenever it is clear from context. We make the simplifying
assumption that each circuit is layered. A layered circuit is a
circuit whose gates can be partitioned into layers 1, . . . , d such
that each wire connects gates in adjacent layers. Implications
of this choice will be discussed in Sections IX-A and IX-B.



III. STATE-SEPARATING PROOFS
AND ENCRYPTION SCHEME SECURITY

Security games such as PRVSIM0
gs,Φ,S described in the

previous section are not known to come with a natural way
of composition such as Universal Composability [10], [19].
However, Brzuska, Delignat-Lavaud, Fournet, Kohbrok, and
Kohlweiss (BDFKK [9]) observe that by splitting a game
into multiple parts while carefully preserving dependencies,
one can indeed achieve compositionality and modularity. This
section provides a brief overview over the key concepts of
their proposal, state-separating proofs (SSPs), on the example
of encryption scheme security.

A. Games

To understand SSPs, we first need to consider the notion of
a game. Following Bellare and Rogaway [7], a game is a set
of oracles operating on shared state.

Definition 4 (Game). A game G consists of a set of oracles
which operate on a shared state.

IND-CPA(se)b

SMP()

assert k = ⊥
k ←$ {0, 1}λ

return ()

ENC(m0,m1)

assert k ̸= ⊥
assert |m0| = |m1|
c←$ enc(k,mb)

return c

Figure 2: Games
IND-CPA(se)b.

To make this idea more concrete,
let se = (enc, dec) be a symmetric
encryption scheme (with uniform key
sampling as key generation), and con-
sider the standard notion for encryp-
tion scheme security, indistinguishabil-
ity under chosen plaintexts (IND-CPA).
In the IND-CPA game, an adversary
is given access to two oracles: A key
sampling oracle SMP that initializes
the key, and an encryption oracle ENC
that takes two messages as input and
returns an encryption of one of them,
cf. Fig. 2 for the definition of game
IND-CPA(se)b with b ∈ {0, 1}. Both
oracles are presented in pseudo-code notation. The notation
x← y means that the value of variable y is stored in variable
x, and x←$ S means that x is sampled uniformly at random
from S. Finally x ←$ algo(a) means that the randomized
algorithm algo is executed on argument a and the result is
stored in variable x. We use assertions for error handling

assert cond := if ¬cond then return error symbol

and assume that a system cannot be called anymore after
an assert was violated. However, the adversary will still
be allowed to produce an output. Depending on b, oracle
ENC either returns an encryption of the left (b = 0) or
the right (b = 1) message. The oracles SMP and ENC of
IND-CPA(se)b share state k, the encryption key. se is IND-
CPA secure if any efficient adversary who interacts with the
oracles of the IND-CPA(se)b cannot determine b much better
than with guessing probability.

B. Packages

The base object of SSPs are packages, a generalization
of games which not only provide oracles, but can also call

the oracles of other packages. The oracles are described in
pseudocode. Importantly, from the outside, a package’s state
can only be accessed through oracle calls.

Definition 5 (Package). A package M provides a set of oracles
[→ M] which operate on a shared state and make calls to a
set of oracles [M→], which we call the dependencies of M.

The term game refers then to the special case of a package
G which has no dependencies, that is [G→] = ∅. For
example, the games IND-CPA(se)b have [→ IND-CPA(se)b]
= {SMP,ENC} and [IND-CPA(se)b →] = ∅. The converse
of games are adversary packages which do not provide any
oracles and are thought of as the main procedure. An adversary
outputs a single bit upon termination.

Definition 6 (Adversary). An adversary package A is an
adversary if [→ A] = ∅.

C. Composition
We can compose two packages M and N sequentially along

matching oracle names and dependencies into a new package
M → N. Package composition is associative since the states
of the individual packages are separated from one other.
We represent the composition of packages by call graphs.
Boxes represent packages and arrows labeled by oracle names
represent oracles. We define security using the distinguishing
advantage of an adversary composed with two games.

Definition 7 (Advantage). Let G0 and G1 be two games
and let A be an adversary such that [A →] = [→ G0] =
[→ G1]. Then the distinguishing advantage of A, denoted
Adv(A;G0,G1), is defined as

Pr
[
1←$ A → G0

]
− Pr

[
1←$ A → G1

]
.

By convention, all packages in a package composition receive
the same security parameter, given implicitly, which is useful
to define probabilistic polynomial-time.

Definition 8 (PPT runtime). A package M with security param-
eter λ is probabilistic polynomial-time (PPT) if the following
holds: If for any query x to oracles of [M→] the length of the
answer is bounded by p(|x|) for some polynomial p, then:
• For any query y to oracles of [→ M], the runtime is upper

bounded by q(λ,N,L) for some polynomial q, where N
denotes the overall number of queries to oracles M and
L the length of the concatenation of the inputs of these
queries, encoded in binary, and

• for any query w to oracles of [→ M], the size of the answer
is upper bounded by r(|w|, λ) for some polynomial r.

In this PPT definition, the runtime of M may depend on the
size of the inputs by its callers, but not on the size of the
outputs of its callees. For adversaries (which do not have
a caller), we recover the standard PPT definition. Having
clarified advantage and runtime, we now define IND-CPA.

Definition 9 (IND-CPA security). A symmetric encryption
scheme se = (enc, dec) is IND-CPA if for all PPT A, advan-
tage Adv(A;IND-CPA0(se),IND-CPA1(se)) is negligible.



SMP 
ENC IND-CPA0A

Figure 3: Real
IND-CPA0(se) game.

We can compose an adversary A
with [A→] = {SMP,ENC} with
the real game IND-CPA(se)0. The
result A → IND-CPA(se)0 (cf.
Fig. 3) describes the real execution of the IND-CPA game.
The adversary A can interact with the game through calls to its
oracles and eventually terminates by outputting a bit. Next, we
turn to a code-equivalent modular version of the IND-CPA0

games. Two
SMP

KEY
ENC GET

ENCRYPTb

Figure 4: Modular IND-CPA
games mIND-CPA(se)b.

games G0 and G1 are code
equivalent, denoted G0 code≡ G1,
if for all adversaries A, the
advantage Adv(A;G0,G1) is 0.
The modular game consists of
a KEY package for key gener-
ation/storage and an ENCRYPTb package for encryption. We
denote the resulting new modular games as mIND-CPA(se)b

(cf. Fig. 4). The KEY package (cf. Fig.

KEY

SMP()

assert k = ⊥
k ←$ kgen

return ()

GET()

assert k ̸= ⊥
return k

ENCRYPTb

ENC(m0,m1)

k ← GET()

assert |m0| = |m1|
c←$ enc(k,mb)

return c

Figure 5: Oracles
of ENCRYPTb,
b ∈ {0, 1}, and
KEY.

5) provides oracles SMP for key sam-
pling and GET to retrieve a stored key.
Oracle ENC of packages ENCRYPTb

takes two messages m0 and m1, queries
the key stored in KEY and outputs an
encryption of mb. ENCRYPTb is state-
less while KEY has key k as state, and
the packages only share state via oracle
calls. A package M must not call its
own oracles, and the directed package
call graphs are acyclic. This restriction
enforces a functional call style, i.e. after
a caller M calls a callee N, the package N
might make further oracle calls to other
packages, but eventually returns control
to M. Acyclic call graphs contribute to a
meaningful PPT notion.
Notation. G(M) denotes a composed
package G which is parametrized by
package M, i.e. all of G is fixed except
for M. We write G(algo) for a pack-

age (composition) which depends on an algorithm algo, cf.
IND-CPAb(se).
Examples for code equivalence. By inlining the GET oracle
of KEY into the ENC oracle of ENCRYPTb and compar-
ing the resulting code, we can prove IND-CPA(se)0

code≡
mIND-CPA(se)0 and IND-CPA(se)1

code≡ mIND-CPA(se)1.

D. Reductions

We often bound the adversarial advantage between two
games G0

big , G1
big by the advantage of a related adversary

between two smaller games G0
sml, G

1
sml which capture security

of a primitive or a computational hardness assumption.

Lemma 1 (Perfect reduction lemma). Let G0
big , G1

big and
G0
sml, G

1
sml be two game pairs with [→ G0

big] = [→ G1
big] and

[→ G0
sml] = [→ G1

sml]. If we can define a reduction R with
[→ R] = [→ G0

big] and [R →] = [→ G0
sml] such that

G0
big

code≡ R → G0
sml and G1

big

code≡ R → G1
sml, (1)

then for all adversaries A,

Adv(A;G0
big,G

1
big) = Adv(B;G0

sml,G
1
sml) (2)

where B := A → R. We call R a perfect reduction.

Proof. Associativity of package composition yields:

Adv(A;G0
big,G

1
big)

= Pr
[
1←$ A → G0

big

]
− Pr

[
1←$ A → G1

big

]
= Pr

[
1←$ A → (R → G0

sml)
]
− Pr

[
1←$ A → (R → G1

sml)
]

= Pr
[
1←$ (A → R)→ G0

sml

]
− Pr

[
1←$ (A → R)→ G1

sml

]
= Adv(A → R;G0

sml,G
1
sml) = Adv(B;G0

sml,G
1
sml)

KEYS
ENC

GETBIT 
GETKEYSin

ENCb

SETBIT, GETAout

Figure 6: Games 2CPA(se)b.
Only ENC1 calls GETBIT.

The SSP style is particu-
larly useful for finding and
expressing perfect reduc-
tions. As an example, con-
sider the modified encryp-
tion scheme security notion
2CPA(se)b in Figure 6. In this IND-CPA variant with two
encryption keys Z(0) and Z(1), an adversary chooses one of
the keys to be corrupt, while security of encryptions under the
honest key is still guaranteed. The game consists of packages
KEYS and ENCb (cf. Fig. 7, capital letters denote sets and
maps: S, T (x).). KEYS stores both keys and provides oracles
SETBIT for choosing which key to corrupt and GETBIT
for retrieving this information, GETAout for retrieving the
adversary key and sampling both keys if they do not exist yet
and GETKEYSin that returns both keys if they exist. Package
ENCb provides an encryption oracle that encrypts one of two
messages. Importantly, oracle ENCb retrieves both keys via
GETKEYSin and computes which to use as encryption key.
The real (left) game always encrypts m0. The ideal (right)
game additionally retrieves the bit of the corrupt key via
GETBIT and encrypts m1 if the key is not corrupted. Jumping
ahead, KEYS will model the two keys associated with a circuit
wire in projective garbling schemes (cf. Section IV).

Using Lemma 1, we can now reduce an adversary A’s
distinguishing advantage for games 2CPA(se)b to the IND-
CPA security of the encryption scheme se .

Lemma 2. Let se be a symmetric encryption scheme. For
reduction Rcpa := RED (cf. Fig. 9), it holds that for any PPT
adversary A,

Adv(A;2CPA0(se),2CPA1(se))

≤ Adv(A → Rcpa;IND-CPA
0(se),IND-CPA1(se)).

Proof. RED samples and stores the corrupt key Z(z) and
answers all queries related to it, while queries regarding the
honest key are forwarded to the IND-CPA game. We prove

2CPAb(se)
code≡ RED→ IND-CPAb(se) for b ∈ {0, 1}. (3)



Oracle of ENCb

ENC(d,m0,m1)

Z in ← GETKEYSin()

assert |m0| = |m1|
c←$ enc(Z in(d),m0)

if b = 1

zin ← GETBIT()

if zin ̸= d then

c←$ enc(Z in(d),mb)

return c

Oracles of KEYS

SETBIT(z′)

assert z = ⊥
z ← z′

return ()

GETKEYSin()

assert flag

return Z

GETBIT()

assert z ̸= ⊥
return z

GETAout()

assert z ̸= ⊥
flag← 1

if Z = ⊥ then

Z(0)←$ {0, 1}λ

Z(1)←$ {0, 1}λ

return Z(z)

Figure 7: Oracles of double key packages KEYS and encryp-
tion packages ENC0, ENC1. Further oracles of KEYS will be
introduced in Fig. 18. Oracle GETBIT is only called by ENC1.

Lemma 2 now follows from Lemma 1 by observing that
with Gb

big := 2CPAb(se) and Gb
sml := IND-CPAb(se), (3)

corresponds to (1). It thus remains to prove (3). On a high-
level, the state of each game 2CPAb(se) consists of a bit z
and two key Z(0), Z(1), all of which are stored in KEYS.
In RED → IND-CPAb(se) (shown in Fig. 8), on the other
hand, the same state is split between RED and IND-CPAb(se):
RED stores z and Z(z), while IND-CPAb(se)’s state is k
(i.e. Z(1 − z)). Moreover the stateless oracle ENC behaves
identically in both games since encryption under the corrupt
key always yields an encryption of m0. We defer the formal
inlining argument of (3) to Appendix A.

SETBIT 
GETAout 
ENC

IND-CPAbSMP 
ENCRED

Figure 8: Games RED→ IND-CPAb(se).

E. Multi-instance assumptions

It is often convenient to consider multiple independent
instances of an assumption at the same time. In this case,
we add indices to package names and oracles to distinguish
the instances, for example to obtain a 2CPA security notion:

Definition 10 (2CPA security). A symmetric encryption
scheme se is 2-key IND-CPA-secure or 2CPA-secure if for
all PPT adversaries A, the advantage

Adv(A,2CPA0
1..n(se),2CPA

1
1..n(se))

is negligible, where 2CPAb
1..n(se) are n parallel copies of

2CPAb(se), disambiguated by index i.

Using the BDFKK multi-instance lemma, we can shows
that single-instance security of a game implies multi-instance
security of the same game. We here reproduce the lemma for
2CPAb(se) to obtain its multi-instance version 2CPAb

1..n(se).

RED

SETBIT(z′)

assert z = ⊥
z ← z′

return ()

GETAout()

assert z ̸= ⊥
flag← 1

if Z = ⊥ then

Z(z)←$ {0, 1}λ

SMP()

return Z(z)

ENC(d,m0,m1)

assert flag = 1

assert |m0| = |m1|
c←$ enc(Z(z),m0)

if z ̸= d then

c← ENC(m0,m1)

return c

Figure 9: Oracles of reduction package RED.

Lemma 3. ([9, Appendix B, Lemma 38]) There exists a PPT
reduction Rse such that for all PPT A, we have that

Adv(A;2CPA0
1..n(se),2CPA

1
1..n(se))

≤ n · Adv(A → Rse;2CPA
0(se),2CPA1(se)).

The following corollary combines the results of this section.

Corollary 1. Let R2cpa := Rse → Rcpa. For all PPT A, we
have that

Adv(A;2CPA0
1..n(se),2CPA

1
1..n(se))

≤ n · Adv(A → R2cpa;IND-CPA
0(se),IND-CPA1(se)).

IV. STATE-SEPARATED GARBLING SCHEMES

We now apply the SSP approach (Section III) to garbling
schemes and revisit their syntax, correctness and security.

A. Syntax and Correctness

Traditionally (including the SSP literature), cryptographic
constructions are viewed as a tuple of algorithms (or Turing
machines). Security and correctness are then described as
games which invoke the different algorithms. In turn, in this
work, we define the syntax of a garbling scheme as tuple of
packages (Definition 5). Recall from Def. 1 that BHR define
a garbling scheme as tuple of algorithms (gb, en, gev , de, ev),
where gb garbles a circuit C, en garbles an input x, gev
evaluates a garbled circuit on a garbled input, de provides
the output of the garbled circuit using decoding information
obtained from the garbled evaluation (Def. 2) and ev is a
simple circuit evaluation algorithm.

1) Circuit evaluation: We start with an SSP equivalent
of circuit evaluation ev , game CEVn,d. The game provides
oracles SETBIT for setting input bits, EVAL for evaluating a
layered circuit of depth d and width n, and GETBIT to obtain
the result. To evaluate a circuit C on input x of length n,
an adversary can query SETBIT n times with the individual
bits of x, then EVAL with input C, and then can obtain the
result by querying GETBIT n times. Taking advantage of the
fact that the composition of packages is again a package, we
define CEVn,d as composition of three packages: two BITS1..n

packages that model the input bits and output bits, respectively,
and a circuit evaluation package EVn,d which performs the
actual computation. BITS1..n is a simple package for storing
bits (Fig. 10b). Package EVn,d on the other hand is stateless
and provides an oracle that evaluates an input circuit C on the



GETBIT1..n

SETBIT1..n
EVn,d

BITS1..n

BITS1..n

SETBIT1..n

EVAL

GETBIT1..n

(a) Circuit evaluation game CEVn,d with EVn,d and BITS1..n.

EVn,d

EVAL(C)

assert width(C) = n

assert depth(C) = d

for j = 1..n do

z0,j ← GETBITj

for i = 1..d do

(ℓ, r,op)← C[i]

for j = 1..n do

(ℓ, r, op)← (ℓ(j), r(j),op(j))

zi,j ← op(zi-1,ℓ, zi-1,r)

for j = 1..d do

SETBITj(zd,j)

return ()

BITSj

SETBITj(z)

assert zj = ⊥
zj ← z

return ()

GETBITj

assert zj ̸= ⊥
return zj

(b) Code of packages EVn,d and BITSj .
Figure 10: Graph and code of circuit evaluation game CEVn,d.

bits stored in the top BITS1..n package, and stores the result
in bottom BITS1..n package.

Definition 11 (Circuit evaluation). Circuit evaluation game
CEVn,d for layered Boolean circuits of width n and depth d is
defined in Fig. 10 and has [→ CEVn,d] : SETBIT1..n, EVAL,
GETBIT1..n and [CEVn,d →] = ∅.

EKEYSj

SETKEYSj(Z)

assert Zj = ⊥
Zj ← Z

return ()

GETKEYSj
assert Zj ̸= ⊥
return Zj

ENj

SETBITj(z)

assert zj = ⊥
zj ← z

return ().

GETAj

assert zj ̸= ⊥
Z ← GETKEYSin

j

return Z(zj)

Figure 11: Code of EKEYSj and ENj .

2) Garbling
scheme syntax: We
capture the garbling
scheme syntax as
tuple of packages
GBn,d, EN1..n,
EKEYS, DEn, DINF,
GEVn,d and EVn,d,
corresponding to
the BHR algorithms
gb, en , de , gev , ev
plus some shared
state. Each package
captures the algorithm
of the same name, except for the two added packages that
store shared state between algorithms: EKEYS models input
encoding information e as pairs of keys and DINF models
output decoding information d. Since we only consider
projective garbling schemes, we fix packages EKEYS and
EN1..n to sample wire keys Z and choose one of them,
respectively (cf. Fig. 11). Hence, we define garbling schemes
as tuple (GBn,d,DEn,DINF,GEVn,d). The call graph (Fig. 12)
composes the packages such that the adversary can use them

EKEYS1..n

DINF
SETA1..n

GBL

GETDINF

EVAL
SETKEYS1..n

SETDINF
GBn,d

DEn
GETBIT1..n

SETBIT1..n

GEVn,d

GETKEYS1..nGETA1..n
ENnout

Figure 12: Real garbling scheme correctness game
GCORR(GBn,d,DEn,DINF,GEVn,d).

meaningfully: Garble a circuit and input, then evaluate the
garbled circuit on the garbled input and decode the result.

3) Correctness: Garbling scheme (GBn,d,DEn, DINF,
GEVn,d) is correct if the game GCORR(GBn,d, DEn, DINF,
GEVn,d) (Fig. 12) behaves as CEVn,d. Due to decryption
ambiguities, a negligible statistical gap might exist.

Definition 12 (Garbling Scheme). A family
gs = {(GBn,d,DEn,DINF,GEVn,d)}n,d∈N of package
tuples is a garbling scheme if for all n, d ∈ N the
games GCORR(GBn,d,DEn,DINF,GEVn,d) (Fig. 12) and
CEVn,d (Fig. 10) are statistically indistinguishable, i.e.,
Adv(A;GCORR(GBn,d,DEn,DINF,GEVn,d),CEVn,d) is
negligible for any adversary A, and

[→ GBn,d] : GBL [GBn,d →] : SETKEYS1..n,SETDINF,

[→ DEn] : SETA1..n,GETBIT [DEn →] : GETDINF,

[→ DINF] : SETDINF,GETDINF [DINF→] : ∅,
[→ GEVn,d] : EVAL [GEVn,d →] : GETAout

1..n,SETA1..n,GBL.

B. Security

MOD-PRVSIMb
n,d

GARBLE(C, x)

assert C̃ = ⊥
assert width(C) = n

assert depth(C) = d

for j = 1..n do

SETBITj(xj)

if b = 1 then EVAL(C)

C̃ ← GBL(C)

dinf← GETDINF

for j = 1..n do

x̃[j]← GETAout
j

return (C̃, x̃, dinf)

Figure 13: Code of
MOD-PRVSIMb

n,d.

We encode the garbling scheme
security games PRVSIMb

gs,Φ,S from
Section II-A in SSP for fixed leak-
age Φ(C) = C. The package
MOD-PRVSIMb

n,d (Fig. 13) models
the core of the game: It provides
the expected interface GARBLE to
the adversary and calls the garbling
scheme’s oracles in the intended or-
der. Upon a query with input C
and x from the adversary, GARBLE
stores x in another package via
SETBIT queries and then obtains
the circuit garbling, input encoding
and output decoding.

Real game PRVSIM0
n,d(GBn,d,

DINF) garbles as in the garbling
scheme (Fig. 14a). Ideal game
PRVSIM1

n,d(SIMn,d) is parametrized by package SIMn,d that
simulates the garbling, given access to the output of circuit
evaluation but not the input x itself (Fig. 14b). Security then
demands the existence of an efficient simulator SIMn,d such
that the real and ideal game are indistinguishable for every
efficient adversary.



Definition 13 (Garbling scheme security). Let gs =
{(GBn,d,DEn,DINF,GEVn,d)}n,d∈N be a garbling scheme. gs
is secure if for all n, d ∈ N there exists a PPT simulator
SIMn,d such that for all PPT adversaries A, the advantage

Adv(A;PRVSIM0
n,d(GBn,d,DINF),PRVSIM

1
n,d(SIMn,d))

is negligible. See Fig. 14 for the definitions of games
PRVSIM0

n,d(GBn,d,DINF) and PRVSIM1
n,d(SIMn,d).

Appendix E sketches the required modifications to prove
security of Yao’s garbling scheme for Φ(C) = topo(C).

V. YAO’S GARBLING SCHEME

After introducing a garbling scheme notion, we now turn
to Yao’s garbling scheme as concrete example. We present an
informal overview, state security and provide a proof overview.

A. Overview

Yao’s construction uses an IND-CPA secure symmetric
encryption scheme (kgen, enc, dec) where kgen outputs uni-
formly random bitstrings2.

1) Circuit garbling: Remember our assumption that circuits
are layered. To garble a circuit C of depth d with n inputs and
width n, Yao’s garbling scheme first chooses two uniformly
random bitstrings per gate storing them as Zi,j(0) and Zi,j(1),
respectively. Here, 0 and 1 is a bit associated with the key,
0 ≤ i ≤ d describes the depth of the gate and 0 ≤ j ≤ n
describes the index of the gate within a layer. For a gate gi,j
with operation opi,j , denote by Zi−1,ℓ, Zi−1,r the indices of
the gates which compute the left and right input to gi,j . Four
ciphertexts are computed by encrypting the output wire keys
under the input wire keys according to opi,j as follows:

c0 = encZi−1,r(0)(encZi−1,ℓ(0)(Zi,j(opi,j(0, 0)))),

c1 = encZi−1,r(1)(encZi−1,ℓ(0)(Zi,j(opi,j(0, 1)))),

c2 = encZi−1,r(0)(encZi−1,ℓ(1)(Zi,j(opi,j(1, 0)))),

c3 = encZi−1,r(1)(encZi−1,ℓ(1)(Zi,j(opi,j(1, 1)))).

The garbled gate g̃i,j consists of the ciphertexts c0, . . . , c3 ar-
ranged so that the computation order is hidden, and the garbled
circuit C̃ consists of the d ·n garbled gates (g̃i,j)1≤i≤d,1≤j≤n
and the output decoding information Zd,1,..,Zd,n.

2) Input encoding: For each bit xi of input x, Yao’s
garbling scheme returns the corresponding input wire key
on the ith input wire, i.e., the input encoding information is
Z0,1(x1),..,Z0,n(xn) for input x = x1||..||xn.

2The encryption scheme is assumed to satisfy further properties to achieve
correctness, which we omit here due to our focus on garbling scheme security.
In a nutshell, an adversary cannot generate a valid ciphertext from the
ciphertext space under a random but unknown key, and the encryption scheme
returns a special error symbol ⊥ if decryption fails due to the use of an
incorrect decryption key. See [18, Definition 2] for details.

EKEYS1..n

DINF

SETKEYS

SETDINF
GBn,d

GETDINF

SETBIT1..n 
GETAout

GBLGARBLE
MOD- 

PRVSIM0

ENn
GETKEYS1..n

1..n

1..n

(a) Real security game PRVSIM0
n,d(GBn,d,DINF).

BITS1..n

BITS1..n 
GETBIT1..n 

EVAL

SETBIT1..n

GETBIT1..n

SETBIT1..n

EVn,d

SIMn,d

GARBLE
GETDINF 
GETAout 
GBL

MOD- 
PRVSIM1

1..n

(b) Ideal security game PRVSIM1
n,d(SIMn,d).

Figure 14: Games PRVSIM0
n,d(GBn,d,DINF) and

PRVSIM1
n,d(SIMn,d).

3) Circuit evaluation: Given garbled circuit C̃ and encoded
input x̃, the garbled circuit is evaluated as follows: For each
gate g̃i,j , let ki−1,ℓ and ki−1,r be the wire keys corresponding
to left and right input wire (either obtained from x̃ or a
previous gate evaluation). Then attempt to decrypt each of the
four gate ciphertexts with ki−1,ℓ and ki−1,r. If the circuit was
garbled correctly, exactly one will decrypt to the desired output
wire key ki,j without error, except with negligible probability.

4) Output decoding: For each key kd,j , 1 ≤ j ≤ n, return
yd,j such that Zd,j(yd,j) = kd,j .

5) Security: To prove security, we will attach different
semantics to the wire keys. Real garbling uses 0/1 semantics,
i.e. each key is mapped to a bit. Intuitively, garbling scheme
security holds because an adversary will only ever learn one
key per wire, referred to as the active. If we manage to switch
completely from 0/1 key semantics to active/inactive, we can
simulate garbling without knowledge of the input. The reason
why the adversary learns one key per wire is as follows. For
each input wire to a gate, the adversary only knows one of the
two wire keys. Thus for each gate garbling, they can decrypt
exactly one out of the four ciphertexts. I.e., given two active
keys for the input wires, the adversary (only) learns the active
key for the output wire of a circuit. To see this, let us consider
the xor operation as an example, and let us say that for the
left input wire, the 0-key is active (known to the adversary)
and for the right input wire, also the 0-key is active. The 4
ciphertexts can be illustrated as follows:

The adversary only knows the blue key and thus can only
recover the blue key. This observation generalizes to arbitrary
operations, since there are four ways3 to combine left ac-

3active/active, active/inactive, inactive/active, inactive/inactive



tive/inactive and right active/inactive key so that the adversary
always only learns one ciphertext—there is only one ciphertext
which can be represented by two nested blue squares. The
adversary always learns the active output key, because if bℓ
and br are the active bits, then we encrypt Zj(op(bℓ, br) under
Z(bℓ) and Z(br)—which is the active key. Applying this
argument recursively yields the desired security statement.

B. Security
Following Section IV-A, the traditional version of

Yao’s garbling scheme can be defined as package tuples

gstdyao = {(GBtdyao,n,d,DEtdyao,n,DINFtdyao,GEVtdyao,n,d)}n,d∈N.
Since the behaviour of garbled evaluation package GEVtdyao,n,d
and output decoding package DEtdyao,n are conceptually
induced by the behaviour of the garbling package GBtdyao,n,d,
and since the security definition only depends on GBtdyao,n,d
and DINFtdyao, we omit the description of the former.
GBtdyao,n,d has a single oracle GBL, and DINFtdyao is similar
to EKEYS(cf. Fig. 15). To garble a circuit C, oracle GBL
first performs some input checks, then samples keys for all
wires, parses the circuit layer by layer, garbles each gate,
and eventually returns the garbled circuit C̃. We assume that
sets are encoded by ordering their elements in lexicographic
ordering to hide the order of ciphertexts comprising a garbled
gate. The remainder of this paper proves the security of Yao’s
garbling scheme as defined in Section IV-B:

Theorem 1 (Security of Yao’s garbling scheme). Let se be
the symmetric encryption scheme used within gstdyao. Then for
all n, d ∈ N, there exists a PPT simulator SIMtdyao,n,d and
reduction R such for all PPT adversaries A,

Adv(A;PRVSIM0
n,d(GBtdyao,n,d,DINFtdyao),

PRVSIM1
n,d(SIMtdyao,n,d))

≤ dn · Adv(A → R;IND-CPA0(se),IND-CPA1(se)).

Thus if se is IND-CPA secure, then gstdyao is secure.

Looking ahead, the strategy of simulator SIMtdyao,n,d (shown
for completeness in Fig. 15) will be to perform all com-
putations using the active/inactive semantics of wire keys.
Remember that a key is active if the evaluator will learn it.
The simulator’s strategy is thus consistent with any possible
input and hence does not require knowledge of the concrete
input chosen by the adversary, as long as decoding the garbled
output still yields the correct output C(x). The simulator starts
by sampling wire keys Si,j with active/inactive semantics for
all circuit wires. For each gate, SIMtdyao,n,d then computes
four ciphertexts: One is an encryption of the active output
wire key Si,j(0) under both active input wire keys Si-1,ℓ(0),
Si-1,r, the remaining ciphertexts encrypt 0λ under all other
input wire key combinations. The decoding information maps
active output wire keys Sd,j to the correct output bits, and the
garbled input consists of the active input wire keys S0,j .

C. Proof outline
The challenge will be to show that active/inactive semantics

during simulation are applied correctly throughout the circuit,

Oracle of GBtdyao,n,d

GBL(C)

for i = 0..d do

for j = 1..n do

Zi,j(0)←$ {0, 1}λ

Zi,j(1)←$ {0, 1}λ

for i = 1..d do

(ℓ, r,op)← C[i]

for j = 1..n do

(ℓ, r, op)← (ℓ(j), r(j),op(j))

g̃j ← ⊥
for (bℓ, br) ∈ {0, 1}2 do

bj ← op(bℓ, br)

kj ← Zi,j(bj)

cin ←$ enc(Zi,ℓ(bℓ), kj)

c←$ enc(Zi,r(br), cin)

g̃j ← g̃j ∪ c

C̃[i, j]← g̃j

for j = 1..n do

SETKEYSj(Z0,j)

SETDINF(Zd,1, . . . , Zd,n)

return C̃

Oracles of DINFtdyao

SETDINF(dinf)
dinf← dinf
return ()

GETDINF

return dinf

Oracles of SIMtdyao

GBL(C)

for i = 1..d do

for j = 1..n do

Si,j(0)←$ {0, 1}λ

Si,j(1)←$ {0, 1}λ

for i = 1..d do

(ℓ, r,op)← C[i]

for j = 1..n do

(ℓ, r, op)← (ℓ(j), r(j),op(j))

g̃j ← ⊥
for (dℓ, dr) ∈ {0, 1}2 :

ki−1,ℓ ← Si−1,ℓ(dℓ)

ki−1,r ← Si−1,r(dr)

if dℓ = dr = 0 :

ki,j ← Si,j(0)

else ki,j ← 0λ

cin ←$ enc(ki−1,r, ki,j)

c←$ enc(ki−1,ℓ, cin)

g̃j ← g̃j ∪ c

C̃j ← g̃j

C̃[i]← C̃1..n

return C̃

GETDINF

for j = 1..n do

zd,j ← GETBITj

Zd,j(zd,j)← Sd,j(0)

Zd,j(1− zd,j)← Sd,j(1)

dinf[j]← Zd,j

return dinf

GETAj

return S0,j(0)

Figure 15: Code of GBtdyao (top left), DINFtdyao (lower left)
and SIMtdyao (right).

and that the two garbling strategies are indistinguishable,
which is reduced to encryption scheme security. The argument
is broken down to the level of individual gates. We use
symmetric encryption security once for each gate in the circuit.
Afterwards, the proof connects the gate garbling arguments
and turns them into an argument about circuit garbling, and
relates them to the security statement. The proof introduces an
alternative representation of Yao’s garbling scheme, annotated
by index yao. Technically, the proof proceeds as follows.
Encryption scheme security (Section III): We introduced a

2-key multi-instance version of IND-CPA security and
reduced it to single-instance IND-CPA (Corollary 1).

Layer garbling security (Section VI): We define security
of Yao’s layer garbling and and reduce it to our 2-key
multi-instance IND-CPA security notion (Lemma 4).

Circuit garbling security (Section VII): We show that the
layer security notion self-composes and, via a hy-
brid argument, implies security of the circuit garbling



Oracle of MODGBn,i

GBLi(ℓ, r,op)

assert C̃[i] = ⊥
assert |ℓ|, |r|, |op| = n

for j = 1..n do

(ℓ, r, op)← (ℓ(j), r(j),op(j))

C̃[i]j ← GBLG(ℓ, r, op, j)

C̃[i]← C̃[i]1..n

return C̃[i]

Oracle of GATEn

GBLG(ℓ, r, op, j)

C̃j ← ⊥; Zout
j ← GETKEYSout

j

for (bℓ, br) ∈ {0, 1}2 :

bj ← op(bℓ, br)

k0
j ← Zout

j (bj)

c0in ← ENCℓ(bℓ, k
0
j , 0

λ)

c1in ← ENCℓ(bℓ, 0
λ, 0λ)

c← ENCr(br, c
0
in, c

1
in)

C̃j ← C̃j ∪ {c}
return C̃j

Oracle of SIMgate,n

GBLG(ℓ, r, op, j)

g̃j ← ⊥
EVALj(ℓ, r, op)

Sout
j (0)← GETAout

j

S in
r (0)← GETAin

r

S in
r (1)← GETINAin

r

S in
ℓ (0)← GETAin

ℓ

S in
ℓ (1)← GETINAin

ℓ

for (dℓ, dr) ∈ {0, 1}2 :

kin
ℓ ← S in

ℓ (dℓ)

kin
r ← S in

r (dr)

if dℓ = dr = 0 :

kout
j ← Sout

j (0)

else kout
j ← 0λ

cin ←$ enc(kin
r , k

out
j )

c←$ enc(kin
ℓ , cin)

g̃j ← g̃j ∪ c

return g̃j

Figure 16: Code of MODGBn,i, GATEn and SIMgate,n.

(Lemma 5). We here use a modular security notion for
circuit garbling which allows the adversary to garble the
input before garbling the circuit (Fig. 21).

Standard garbling scheme security (Section VIII): We
show that composable circuit security for Yao’s garbling
scheme implies PRVSIM-security of gstdyao.

VI. LAYER SECURITY

Consider a symmetric encryption scheme se with 2-key
IND-CPA security as defined in Section III. In this section,
we extend the encryption scheme to layer garbling for Yao’s
garbling scheme. We then define layer garbling security and
reduce it to 2-key IND-CPA security.

A. Yao’s layer garbling package GB0
yao,n,i

Remember that in order to garble a circuit layer, we need
to garble each gate, using encryption where the keys and
message for each ciphertext depend on the gate description.
The layer garbling package GB0

yao,n,i reflects this structure:
Each GB0

yao,n,i is composed of the packages MODGBn,i, GATEn

and ENC0
1...n (cf. Fig. 16 and 17). GATEn garbles a gate

and makes (simple) encryption queries to ENC0
1...n. We here

assume that se encrypts messages of length λ always to
ciphertext of the same length. MODGBn,i modularizes the
garbling of a layer and queries oracle GBLG of GATE for
each gate in the layer.

GETKEYSout
GATEnGBLGMODGBn,iGBLi

GETKEYSin
ENC1..n ENC01..n

1..n

1..n

Figure 17: Layer garbling package GB0
yao,n,i

Definition 14 (Yao’s Layer Garbling). Let n, i ∈ N. We define
the circuit layer garbling package GB0

yao,n,i as

GB0
yao,n,i := MODGBn,i → GATEn → ENC0

1...n

where Fig. 16 defines MODGBn,i and GATEn, Fig. 7 defines
ENC0

1...n and KEYS0
1...n, and Fig. 17 composes them.

B. Layer Garbling Security Definition

We define layer security as indistinguishability between two
games. The ideal game is parametrized by an (existentially
quantified) simulator GB1

yao,n,i and the real game uses layer
garbling package GB0

yao,n,i which specifies a layer garbling
scheme for layer i. To be able to define the ideal game, we
extend package KEYS (cf. Fig. 7) with further oracles and
provide a layer evaluation package LEVj as shown in Fig. 18.

LEVj

EVALj(ℓ, r, op)

zℓ ← GETBITℓ

zr ← GETBITr

zj ← op(zi−1,ℓ, zi−1,r)

SETBITj(zj)

KEYS

GETKEYSout

assert flag = 0

flag← 1

if Z = ⊥ then

Z(0)←$ {0, 1}λ

Z(1)←$ {0, 1}λ

return Z

GETAin

assert flag

return Z(z)

GETINAin

assert flag

return Z(1− z)

Figure 18: Oracles of LEVj , and additional oracles of KEYS.

Definition 15 (Layer Security). Let n, i ∈ N. Layer garbling
package GB0

yao,n,i is secure if there exists a PPT layer simu-
lator GB1

yao,n,i such that for all PPT adversaries B,

Adv(B;LSEC0
n(GB

0
yao,n,i),LSEC

1
n(GB

1
yao,n,i))

is negligible, where Fig. 19a defines LSEC0
n(GB

0
yao,n,i) and

Fig. 19b defines LSEC1
n(GB

1
yao,n,i).
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GETAout  
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1..n
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GByao,n,i
0

(a) Real layer sec. game
LSEC0

n(GB
0
yao,n,i).

GBLi

SETBIT 
GETAout

KEYS1..n

GETKEYSin
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SETBIT1..n
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GETAin 

GETINAin 

EVAL
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GByao,n,i
1

1..n

1..n

1..n

1..n
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(b) Ideal layer security game
LSEC1

n(GB
1
yao,n,i).

Figure 19: Layer security games.

Games LSECb
n(GB

b
yao,n,i), b ∈ {0, 1}, are layer version of the

selective security games PRVSIM0
n,d(GBtdyao,n,d, DINFtdyao)

and PRVSIM1
n,d(SIMtdyao,n,d), modified to be composable:

• The adversary inputs a single circuit layer to the game,
• the adversary’s query to the game is split into SETBIT,
GBL, GETAout and GETDINF queries,

• input/output keys and bits are stored in KEYS packages,
• the simulator gets the input keys via GETINAin and
GETAin queries from the top KEYS package and the
active output key via GETAout from the lower KEYS
package rather than sampling them itself.



Interestingly, the layer garbling security game even allows the
adversary to query GETA before GBL and thus obtain the
input garbling before choosing the circuit. This feature as well
as the aforementioned splitting of queries is useful for (self-
)composability to which we turn in Section VII.

C. Security Reduction to 2-key IND-CPA security

We now prove that security of GB0
yao,n,i reduces to 2-key

IND-CPA security of the underlying encryption scheme se .

Lemma 4 (Layer Security). Let n, i ∈ N. Let Ri
layer,n be the

reduction defined in Figure 20c, GByao,i as defined in Fig. 17
and GB1

yao,n,i as defined in Fig. 20f and 16. Then for all PPT
adversaries A,

Adv(A;LSEC0
n(GByao,n,i),LSEC

1
n(GB

1
yao,n,i))

= Adv(A → R1ilayer,n;2CPA
0
1..n(se),2CPA

1
1..n(se)).

Gate garbling simulator SIMgate,n (Fig. 16) works as follows:
Instead of garbling a gate based on the 0/1 semantics of
wire keys like the real GB0

yao,n,i, it uses their inactive/active
semantics. The simulator first retrieves all relevant wire keys
except for the inactive output wire key. The ciphertext con-
taining the active output key is computed honestly using the
left and right active input keys. The remaining ciphertexts are
generated by encrypting the all-zero key. Simulator GB1

yao,n,i :=
MODGBn,i → SIMgate,n extends this to layer garbling.

Proof of Lemma 4. Let A be an adversary. In order to apply
the perfect reduction lemma (Lemma 1), we prove two claims:

Claim 1 (Real Code Equivalence). Let n ∈ N. ∀1 ≤ i ≤ d,

LSEC0
n(GB

0
yao,n,i)

code≡ Ri
layer → 2CPA0

1..n(se),

where Ri
layer is defined in Figure 20c.

Claim 1 follows by graph equality of LSEC0
n(GB

0
yao,n,i)

(Fig. 20c) and Ri
layer,n → 2CPA0

1..n(se) (Fig. 20b).

Claim 2 (Ideal Code Equivalence). Let n ∈ N. ∀1 ≤ i ≤ d,

LSEC1
n(GB

1
yao,n,i)

code≡ Ri
layer,n → 2CPA1

1..n(se),

where Ri
layer,n is defined in Figure 20c.

Claim 2 will be proved in a moment. Applying the perfect
reduction lemma with Claims 1 and 2 concludes our proof.

Claim 2 is the technical heart of the proof in which the
semantics of keys used to garble a gate is switched: From 0/1
to active/inactive semantics, the latter being independent of
the input to the layer and hence a simulation.

Proof of Claim 2. In order to show code equivalence of
Ri

layer,n → IND-CPA1
1..n(se) and LSEC1

n(GB
1
yao,n,i), we de-

fine real and ideal gate garbling subgames GGATEn and
GGATEsim,n (Fig. 20d and Fig. 20e). If we show that

GGATEn
code≡ GGATEsim,n, (4)

then the layer garbling games in Fig. 20c and 20f are func-
tionally equivalent and we obtain Claim 2. The proof of
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Figure 20: Layer security games and hybrids for Lemma 4.

Equation 4 is an inlining argument that changes how gates
are garbled, see Appendix B for details. The argument first
inlines all packages, then changes the garbling of a gate
from using 0/1 semantics to the equivalent computation using
active/inactive semantics, and then factors out the relevant
packages again.

VII. CIRCUIT SECURITY

A. Yao’s circuit garbling package GByao,n,d

Circuit garbling extends layer garbling by composing layer
garbling packages and sharing state through KEYS:

Definition 16 (Yao’s Layer Garbling). Let n, d ∈ N. We define
the circuit garbling package GB0

yao,n,d as the composition
of layer garbling packages GB0

yao,1,n, . . . ,GB
0
yao,d,n with KEYS

packages as shown in Fig. 21a-21b.
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Figure 21: Fig. 21a-21b display game SEC0

n,d(GByao,n,d) and package GByao,n,d (orange) in different representations. Fig. 21c
defines SEC1

n,d(SIMyao,n,d) where SIMyao,n,d is the parallel composition of the GB1
yao,n,i packages (blue).

B. Circuit garbling security
Analogous to layer garbling security, we define circuit gar-

bling security as indistinguishability of two games: Real game
SEC0

n,d(GByao,n,d) in Fig. 21a-21b can be seen as composition
of multiple real layer security games LSEC0

n(GByao,i,d) that
overlap in their KEYS packages. Similarly, the composition
of multiple ideal layer security games LSEC1

n(SIMyao,n,i) in
Fig. 21c defines the ideal game SEC1

n,d(SIMyao,n,d).

Lemma 5 (Circuit Security). Let n, d ∈ N. Then, for each
1 ≤ i ≤ d, there exists a PPT reduction Ri

circ,n,d such that for
all PPT adversaries A,

Adv(A;SEC0
n,d(GByao,n,d),SEC

1
n,d(SIMyao,n,d))

≤
d∑

i=1

Adv(A → Ri
circ,n,d;LSEC

0
n(GB

0
yao,n,i),

LSEC1
n(SIMyao,n,i))

Proof of Lemma 5. We reduce circuit garbling security to
layer garbling security via a hybrid argument over the d layers
of the circuit. Real game SEC0

n,d(GByao,n,d) is hybrid 0, and
hybrid d is the ideal game SEC1

n,d(SIMyao,n,d). We start by
rewriting SEC0

n,d(GByao,n,d) and SEC1
n,d(SIMyao,n,d) as

SEC0
n,d(GByao,n,d)

code≡ R1
circ,n,d → LSEC0

n(GB
0
yao,1,n) (5)

SEC1
n,d(SIMyao,n,d)

code≡ Rd
circ,n,d → LSEC1

n(GB
1
yao,d,n), (6)

where Fig. 22b and Fig. 22e define the reductions R1
circ,n,d and

Rd
circ,n,d, respectively. Both equivalences hold by associativity

of package composition (cf. Fig. 22b and Fig. 22e).
Generalizing the reductions yields Ri

circ,n,d for all i ∈
{1, .., d} as in Fig. 22c. Then for any i ∈ {1, .., d-1}, we can
define the i-th hybrid in the following two equivalent ways:

Ri
circ,n,d → LSEC1

n(GB
1
yao,n,i)

code≡ Ri+1
circ,n,d → LSEC0

n(GB
0
yao,n,i+1) (7)

Fig. 22c and 22d show that the two games are indeed equiv-
alent. With Equations 5, 6 at hand, we can prove Lemma 5:

Adv(A;SEC0
n,d(GByao,n,d),SEC

1
n,d(SIMyao,n,d))

= Pr
[
1←$ A → SEC0

n,d(GByao,n,d)
]

− Pr
[
1←$ A → SEC1

n,d(SIMyao,n,d)
]

(5),(6)
= Pr

[
1←$ A → R1

circ,n,d → LSEC0
n(GB

0
yao,1,n)

]
− Pr

[
1←$ A → Rd

circ,n,d → LSEC1
n(GB

1
yao,d,n)

]
Applying a telescopic sum and (7) then yields

Pr
[
1←$ A → R1

circ,n,d → LSEC0
n(GB

0
yao,1,n)

]
+
( d−1∑
i=1

−Pr
[
1←$ A → Ri

circ,n,d → LSEC1
n(GB

1
yao,n,i)

]
+ Pr

[
1←$ A → Ri+1

circ,n,d → LSEC0
n(GB

0
yao,n,i+1)

])
− Pr

[
1←$ A → Rd

circ,n,d → LSEC1
n(GB

1
yao,d,n)

]
=

d∑
i=1

Pr
[
1←$ A → Ri

circ,n,d → LSEC0
n(GB

0
yao,n,i)

]
−

d∑
i=1

Pr
[
1←$ A → Ri

circ,n,d → LSEC1
n(GB

1
yao,n,i)

]
=

d∑
i=1

Adv(A → Ri
circ,n,d;LSEC

0
d(GB

0
yao,n,i),

LSEC1
n(SIMyao,n,i)).

Combining circuit and layer security with 2CPA security
(Lemma 5, 4 and Corollary 1) yields the following corollary.

Corollary 2. Let n, d ∈ N, and let Rhyb,n,d be the reduction
that samples i ←$ {1, .., d} and then executes Ri

circ,n,d →
Rlayer,ni → R2cpa. Then, for all PPT adversaries A

Adv(A;SEC0
n,d(GByao,n,d),SEC

1
n,d(SIMyao,n,d))

≤ n · d · Adv(A → Rhyb;IND-CPA
0(se),IND-CPA1(se)).

Proof. Let A be an adversary. Denote Ri
hyb,n,d := Ri

circ,n,d →
Rlayer,ni → R2cpa and note that the probability that Rhyb,n,d =
Ri

hyb,n,d is 1
d , and hence,
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Figure 22: Reductions for the hybrid argument for Lemma 5.



Adv(A;SEC0
n,d(GByao,n,d),SEC

1
n,d(SIMyao,n,d))

Lem. 5
≤

d∑
i=1

Adv(A → Ri
circ,n,d;LSEC

0
n(GByao,n,i),

LSEC1
n(SIMyao,n,i))

Lem. 4
≤

d∑
i=1

Adv(A → Ri
circ,n,d → Rlayer,ni ;2CPA

b
1..n(se))

Cor. 1
≤ n ·

d∑
i=1

Adv(A → Ri
hyb,n,d;IND-CPA

b(se))

= n · d ·
d∑

i=1

1

d
Adv(A → Ri

hyb,n,d;IND-CPA
b(se))

= n · d
d∑

i=1

Adv(A → Rhyb,n,d;IND-CPA
b(se))

VIII. ALIGNMENT WITH PRVSIMb
n,d

Oracle of MODn,d

GARBLE(C, x)

assert C̃ = ⊥
assert width(C) = n

assert depth(C) = d

for j = 1..n do

SETBITj(xj)

x̃[j]← GETAout
j

for i = 1..d do

(ℓ, r,op)← C[i]

C̃[i]← GBLi(ℓ, r,op)

for j = 1..n do

dinf[j]← GETKEYSin
j

return (C̃, x̃, dinf)

Figure 23: MODn,d.

To conclude our proof of
Theorem 1, it remains to re-
duce selective security of Yao’s
garbling scheme to its circuit
garbling security established in
the previous section. Towards
this goal, we define a reduc-
tion package MODn,d (Fig. 23)
and apply the perfect reduc-
tion lemma (Lemma 1) one last
time. MODn,d provides a single
GARBLE oracle and queries
the oracles of a circuit security
game in the right order to gar-
ble circuit C and input x.

Proof of Theorem 1. Consider
simulator SIMtdyao,n,d which
we have already seen in
Fig. 15. We show the following two claims and then apply
Lemma 1 with reduction MODn,d.

Claim 3 (Real game equivalence). For all n, d ∈ N,

PRVSIM0
n,d(GBtdyao,n,d,DINFtdyao)

code≡ MODn,d → SEC0
n,d(GByao,n,d)

Fig. 24 shows the two games. The claim follows directly after
inlining all packages, see Appendix C for details.

Claim 4 (Ideal game equivalence). For all n, d ∈ N,

PRVSIM1
n,d(SIMtdyao,n,d)

code≡ MODn,d → SEC1
n,d(SIMyao,n,d)

Fig. 25 shows the games. The claim follows directly after
inlining all packages. For details, see Appendix D.
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Figure 24: Real security games PRVSIM0

n,d(GBtdyao,n,d,
DINFtdyao) and MODn,d → SEC0

n,d(GByao,n,d).

Applying Lemma 1 with Claims 3 and 4 as well as
Corollary 2 guarantees now the existence of PPT reductions
Bn,d := A → MODn,d and Rn,d such that

Adv(A;PRVSIM0
n,d(GBtdyao,n,d,DINFtdyao),

PRVSIM1
n,d(SIMtdyao,n,d))

(3),(4)
= Adv(Bn,d;SEC0

n,d(GByao,n,d),SEC
1
n,d(SIMyao,n,d))

≤ d · n · Adv(Bn,d → Rn,d;IND-CPA
0(se),

IND-CPA1(se)).
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(b) MODn,d → SEC1
n,d(SIMyao,n,d), game SEC1

n,d(SIMyao,n,d) is
marked in grey.

Figure 25: Ideal security games PRVSIM1
n,d(SIMtdyao,n,d) and

MODn,d → SEC1
n,d(SIMyao,n,d)



IX. DISCUSSION

We now revisit our new security proof for Yao’s garbling
scheme to discuss insights and compare with existing proofs.

A. Definitions and proof style

We reduce BHR security of Yao’s garbling scheme to IND-
CPA security of the underlying encryption scheme. The main
focus of this work is the alternative representation of Yao’s
garbling scheme in the style of state-separating proofs (SSPs)
as well as an alternative representation of the security of Yao’s
garbling scheme, also in the style of SSPs. In SSP style, both
the scheme and the security notion are described as packages
that call each other and otherwise have strictly separated state.

1) Syntactic and local reasoning: Our proof relies almost
entirely on graph-based reductions (e.g., Fig. 22). Whenever
such syntactic reasoning was not possible, we proved code
equivalence for suitable subgames, and applied the perfect
reduction lemma (Lemma 1) to lift the equivalence result to
the more complex games. Composing these subgames with
all reduction layers, e.g. MODn,d → Rhyb,n,d → 2CPAb(se),
would then yield the typical proof presentation as sequence of
direct game hops between PRVSIM0

n,d(GBtdyao,n,d,DINFtdyao)
and PRVSIM1

n,d(SIMtdyao,n,d) of a more ”traditional” proof.
Our proof reduces the number of code equivalence steps to
a minimum: alignment of 2-key CPA with standard IND-
CPA (Lemma 2) and of circuit garbling security with BHR’s
selective security (Claims 3 and 4), and the wire key semantic
switch (Claim 2) for security of layer garbling.

2) Treating wire keys as their own unit: Wire keys are a
central concept in Yao’s garbling scheme, and each key is
used at least twice: Once as message when garbling a gate,
and (at least) once by the layer which uses them as encryption
keys. The garbling scheme moreover has the property of being
output projective, i.e. output decoding is the exact inverse of
input decoding. As a result, we can treat input encoding and
output decoding information as well as intermediate wire keys
uniformly. The SSP focus on state rather than algorithms thus
led us to place special emphasis on the modeling of keys: We
use a separate KEYS package which samples and stores keys
together with additional information. This uniformity provides
the flexibility to interpret such a package as representing input
encoding, the generation of output decoding information, or
intermediate wire keys during our proof, and hence allows the
self-composability of our layer security notion (used in the
proof of our hybrid argument, cf. Lemma 5). Interestingly, we
do not remove this additional information from KEYS again
until the relation with standard garbling scheme security, and
instead simply restrict the simulator’s access to it.

Implementations typically sample all wire keys in the begin-
ning, analogous to GBtdyao,n,d (Fig. 15), and before garbling the
actual circuit. Our game SEC0

n,d(GByao,n,d) could also adopt
that style by having a special INITSAMPLE query, but there
is no benefit to the proof in having such a query, and since
our focus is on the proof, our model of Yao’s garbling scheme
samples keys only at the point when they are needed.

3) Layer garbling security notion: As mentioned above,
modeling wire keys as KEYS package is useful to define a
security notion for layer garbling (and thus implicitly gate
garbling) in Section VI. Defining this notion allows us to
perform the main reduction argument to IND-CPA security
locally, at the level of a single circuit layer. Returning to the
discussion in Section I, the self-composability of layer garbling
security then means security of garbling circuit layers C1 and
C2 separately implies security of garbling the combined circuit
consisting of C1 and C2.

4) Circuit garbling security notion: By self-composition,
our layer garbling security notion induces a (Yao-specific)
circuit garbling security notion (cf. Section VII). We find this
security notion of independent interest since it expresses the
strong particular security properties of Yao’s garbling scheme:
It says that a garbling scheme is secure if for any circuit C
and input x, garbling can be simulated given only C and an
encoding of the output C(x) rather than C(x) itself.

On the technical level, our circuit garbling security notion
in Section VII differs from the selective security notion
introduced in Section IV in further conceptually interesting
ways. For the real game, the changes are as follows:
Merging input encoding & input key packages into KEYS

to unify the treatment of all wire keys and allow the
composition of real and ideal layer garbling security
games, which enables the hybrid argument in Section VII.

Factoring out key sampling into KEYS since all wire keys
throughout the garbling scheme are treated uniformly.

Splitting garbling interface The selective security game in-
terface is split into separate oracles for choosing an input,
obtaining an input encoding, garbling individual circuit
layers, and obtaining output decoding information.

Sampling input wire keys before output wire keys A dif-
ferent query order is enforced by MODn,d to ensure the
correct information flow needed for self-composition of
layer garbling: Inputs are garbled before the circuit, and
output decoding information is only available after that.

The two ideal games differ further as follows:
Merging inputs and input wire keys Circuit evaluation is

performed directly on the information stored in KEYS,
without separate BITS packages.

Simulation based on output encoding Since the garbling
interface is split, we can easily provide simulator
SIMyao,n,d with access to the active output keys instead
of active output bits.

B. Comparison with existing proofs

Our proof is the first proof of Yao’s garbling scheme to use
the state-separating proofs technique. In addition, we rely on
different intermediate assumptions that are expressed as local
security notions about circuit layers with local simulators, all
of which we discuss below.

1) Encryption security and hybrid strategy: All security
proofs follow a pattern: Garbling scheme security is first
reduced to an intermediate security notion capturing some
aspect of gate garbling and encryption security, which is in turn



reduced to a standard assumption such as IND-CPA security.
Where the proofs differ conceptually is in the intermediate
assumptions which in turn impact the details of their hybrids.

The first security proof of Yao’s garbling scheme by Lindell
and Pinkas [18] proposes to abstract the garbling of a gate as
double encryption security. An adversary inputs two message
tuples and is provided with double encryptions, computed
like when garbling a gate, as well as encryption oracles
corresponding to the inactive input wire keys of the gate.
The adversary is asked to distinguish encryptions of left from
encryptions of right messages. The hybrid argument ranges
then over all gates in the circuit.

BHR [6] shift the focus from the encryptions associated
with garbling a gate to (double) encryptions using a specific
wire key. In their dual-key cipher assumption, an adversary
is given access to an encryption oracle for a dual-key cipher
that encrypts under two keys, the challenge key and another
adversarially chosen key. The adversary is asked to distinguish
real encryptions from encryptions of random strings. The
hybrid argument ranges then over all wires in the circuit.

In our proof, we wanted to capture the best of both worlds:
Focusing on gate and layer security on the one hand allows to
stay close to the inherent modularity that real circuit garbling
has. Moreover, a core argument in the proof is the semantic
switch from 0/1 keys to active/inactive keys (Claim 2). The
latter is an argument about the specific way encryption is used
and not about the encryption scheme itself. On the other hand,
we want to be able to relate the security of encryption under
(inactive) wire keys to IND-CPA security. The result is a two-
step approach: First we introduce a layer security notion that
garbles a circuit layer and show security of garbling a circuit
via a sequence of hybrids ranging over all layers in the circuit
(Lemma 5). The use of a layer assumption can be seen as close
in spirit to Lindell and Pinkas. Layer security is then further
reduced to an encryption assumption with two keys (2-key
CPA). In this assumption, each encryption is only under one
of the keys, thus capturing the contribution of one wire to the
double encryption when garbling a gate, which is reminiscent
of the intention of BHR’s dual-key cipher. The application of
the BDFKK multi-instance lemma to obtain Corollary 1 then
implicitly contains another sequence of hybrids iterating over
all keys in the circuit layer, even though there are no explicit
gates or circuit wires at this point.

2) Layered circuits: Starting with the work of Hemenway et
al. [12], the assumption of layered circuits has been leveraged
successfully in the context of adaptive security of various
garbling schemes ([15], [14], [13], [16]). The additional circuit
structure is used to identify the sequence of hybrid games
during the security proof, however neither a layer security
notion nor layer simulation are considered explicitly.

Transforming an arbitrary circuit into a layered one incurs at
most a quadratic increase in size [20], though circuits in many
practical scenarios (e.g. AES) are naturally layered. Depending
on the concrete circuit to be garbled, the security loss incurred
by our proof is thus potentially larger than in previous selective
security proofs for Yao’s garbling scheme [18], [6], and hence

there seems to be a trade-off between proof modularity and
tightness of the security reduction. Our results can be mod-
ified to non-layered circuits by formulating appropriate gate
assumptions instead of layer assumptions, at the cost of losing
the convenient visual representation since we are not aware of
a general notation for the resulting package composition with
arbitrary dependencies between gate assumptions.

3) Local security and local simulation: We construct our
circuit garbling security notion as composition of layer gar-
bling security games, and hence a circuit simulator can be
a composition of local layer simulators. Ananth and Lom-
bardi [3] recently defined a local simulation property for
garbling schemes. This property can be seen as a subcircuit
(e.g. layer) garbling security notion that maintains some of
the state for garbling the rest of the circuit, e.g. wire keys
for the whole circuit. As a consequence, their local simulators
can be composed to obtain a circuit simulator which they do
to construct adaptively secure garbling schemes and garbling
schemes for Turing machines. Ananth and Lombardi outline
why Yao’s garbling scheme, when restricted to layered circuits,
has the local simulation property. The argument is derived
from the work of Hemenway et al. [12] on adaptive security
of a modification of Yao’s garbling scheme, which ultimately
follows the proof outline of Lindell and Pinkas [18]. In
particular, Ananth and Lombardi do not derive a security proof
of Yao’s garbling scheme from the local simulation property.
Their result can thus be interpreted as extracting a layer
security property from the Lindell and Pinkas proof, though
it differs from ours in that it cannot be composed directly to
yield circuit garbling security.

C. State-separating proofs

1) Impact on our proof: The SSP-style shaped our proof
and impacted its length. One core benefit of SSPs is the ability
to reason syntactically about game equivalences via graph-
based reductions, cf. the perfect reduction lemma (Lemma 1).
To use this feature, we developed a new modular description
of Yao’s garbling scheme that expresses the construction as
a graph of package dependencies. The packages and their
interplay are carefully chosen to simplify the presentation of
all subsequent arguments. We strove to state every argument
on the smallest subgame (and hence subgraph) possible and
reconnect with the large game through the perfect reduction
lemma. This is the most visible in our approach to reducing
selective security to our intermediate encryption scheme secu-
rity notion 2-key IND-CPA. While existing proofs perform the
equivalent proof step as one big reduction, we break it down
into multiple parts: It suffices to reduce layer garbling security
to encryption security (Lemma 4), then circuit garbling secu-
rity to layer garbling security (Lemma 5), until we can finally
reduce selective security to circuit garbling security to obtain
Thm. 1. The concept of packages helps particularly to express
the state sharing between gates in the form of wire keys which
ultimately made it possible to split the reduction to encryption
scheme security. The split reduces the complexity of each step



as well as the size of the game to reason about at a time, which
hopefully makes it easier to verify the individual steps.

2) Adapting SSP: We adapted several existing SSP strate-
gies to our setting. When self-composing a package in parallel,
BDFKK add indices to its name and oracles. To lighten nota-
tion, we omit the index when package and oracles are uniquely
identified by the call graph. KEY packages that store key
material are another standard SSP concept, introduced by BD-
FKK for sharing state between different protocols/primitives,
e.g., a KEM and a DEM or a key exchange protocol and a
secure channel. We adapt the concepts for keys shared between
different layers of the garbling scheme by adding semantic
information of the keys to our KEYS packages. Finally, our
work is the first to use simulators in an SSP context. Games
which are parameterized by simulators are convenient because
they offer flexibility. Our simulator is simply the code/package
composition which emerges after a sufficient number of game
transformations and has the correct oracles and dependencies.
In follow-up work, Brzuska, Delignat-Lavaud, Egger, Fournet,
Kohbrok and Kohlweiss [8] also use simulation-based security
for their definition of the TLS 1.3 key schedule.

D. Formal verification

Security of Yao’s garbling scheme has been formally ver-
ified: Li and Micciancio [17] provide a symbolic analysis
with computational soundness, a result that is incomparable
with our game hopping-style proof. Almeida, Barbosa, Barthe,
Dupressoir, Grégoire, Laporte, and Pereira [2] mechanized the
BHR proof for Yao’s garbling scheme in EasyCrypt [4], a
proof assistant for code-based game-playing proofs. Recent
works on mechanizing SSP-style proofs (SSProve [1], Dupres-
soir, Kohbrok and Oechsner [11]) as well as discussions with
the authors of [2] give us hope that also our structured code-
based proof can be mechanized. However, formal verification
is orthogonal to the scope of this paper, and we leave this
question as future work.
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soir, Benjamin Grégoire, Vincent Laporte, and Vitor Pereira. A fast and
verified software stack for secure function evaluation. ACM CCS 2017,
pages 1989–2006, 2017.

[3] Prabhanjan Ananth and Alex Lombardi. Succinct garbling schemes from
functional encryption through a local simulation paradigm. TCC 2018,
Part II, volume 11240 of LNCS, pages 455–472, 2018.
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APPENDIX

A. Proof of Lemma 2

The proof of Lemma 2 establishes that 2CPAb(se) is
functionally equivalent to → IND-CPAb(se) via inlining,
which is provided in Fig. 26. The left-most column contains
the packages KEYS and ENCb of the 2CPAb(se) game, while

https://static.siccegge.de/pdfs/BDEFKK22.pdf


Oracle of ENCb

ENC(d,m0,m1)

Z in ← GETKEYSin()

assert |m0| = |m1|
c←$ enc(Z in(d),m0)

if b = 1

zin ← GETBIT()

if zin ̸= d then

c←$ enc(Z in(d),mb)

return c

Oracles of KEYS

SETBIT(z′)

assert z = ⊥
z ← z′

return ()

GETAout()

assert z ̸= ⊥
flag← 1

if Z = ⊥ then

Z(0)←$ {0, 1}λ

Z(1)←$ {0, 1}λ

return Z(z)

GETBIT()

assert z ̸= ⊥
return z

GETKEYSin()

assert flag

return Z

GAMEb
2

ENC(d,m0,m1)

assert flag

assert |m0| = |m1|
c←$ enc(Z(d),m0)

if b = 1 then

assert z ̸= ⊥
if z ̸= d then

c←$ enc(Z(d),mb)

return c

SETBIT(z′)

assert z′ = ⊥
z ← z

return ()

GETAout()

assert z ̸= ⊥
flag← 1

if Z = ⊥ then

Z(0)←$ {0, 1}λ

Z(1)←$ {0, 1}λ

return Z(z)

GAMEb
3

ENC(d,m0,m1)

assert flag

assert |m0| = |m1|
c←$ enc(Z(d),m0)

if z ̸= d then

c←$ enc(Z(d),mb)

return c

SETBIT(z′)

assert z = ⊥
z ← z′

return ()

GETAout()

assert z ̸= ⊥
flag← 1

if Z = ⊥ then

Z(0)←$ {0, 1}λ

Z(1)←$ {0, 1}λ

return Z()

GAMEb
4

ENC(d,m0,m1)

assert flag

assert |m0| = |m1|
c←$ enc(Z(z),m0)

if z ̸= d then

assert k ̸= ⊥

c←$ enc(k,mb)

return c

SETBIT(z′)

assert z = ⊥
z ← z′

return ()

GETAout()

assert z ̸= ⊥
flag← 1

if Z = ⊥ then

Z(z)←$ {0, 1}λ

assert k = ⊥
k ←$ {0, 1}λ

return Z(z)

RED

ENC(d,m0,m1)

assert flag

assert |m0| = |m1|
c←$ enc(Z(z),m0)

if z ̸= d then

c← ENC(m0,m1)

return c

SETBIT(z′)

assert z = ⊥
z ← z′

return ()

GETAout()

assert z ̸= ⊥
flag← 1

if Z = ⊥ then

Z(z)←$ {0, 1}λ

SMP()

return Z(z)

Oracles of IND-CPAb(se)

SMP()

assert k = ⊥
k ←$ {0, 1}λ

return k

ENC(m0,m1)

assert k ̸= ⊥
assert |m0| = |m1|
c←$ enc(k,mb)

return c

Figure 26: Proof of Lemma 2: 2CPAb(se)
code≡ RED→ IND-CPAb(se)

the right-most column contains the package of RED and
IND-CPAb(se). Then, from the left-most column to GAMEb

2,
we use inlining to describe the 2CPAb(se) game as a single
package. That is, we merge the state of ENCb (originally no
state) KEYS (originally had state Z in and z) and inline the
GETKEYSin and GETBIT calls into the ENCb oracle while
renaming zin to z; GAMEb

2 continues to expose the SETBIT
and GETAout queries.

In turn, from the right-most column to GAMEb
4, we inline

the SMP and ENC calls of RED to IND-CPAb(se) into RED
and also merge their state. Note that the ENC oracle would
now contain the line assert |m0| = |m1| twice and we omit
this redundancy already in the inlining step.

From GAMEb
4 to GAMEb

3, we rename k to Z(z − 1) and
sample into Z(0) and Z(1) instead of Z(z) and Z(z − 1),
which does not affect behaviour since the sampling operations
are independent. Additionally, we omit the assert k ̸= ⊥
condition, since flag = 1 implies that GETAin was called
before, and it already sampled the keys. Moreover, before
the if -clause, GAMEb

3 encrypts using Z(d) instead of Z(z).
In the case that d ̸= z, this change does not affect the
output behaviour, since c is overwritten in the if -branch which
follows.

From GAMEb
2 to GAMEb

3, we remove assert z ̸= ⊥, because
it is redundant as flag = 1 already implies that assert z ̸=
⊥, since flag is set to 1 by GETAout which asserts that z ̸= ⊥.



Oracles of GGATEn

SETBITi(z)

return SETBITi(z)

GETAout
i

return GETAout
i

GBLG(ℓ, r, op, j)

g̃j ← ⊥

Zout
j ← GETKEYSout

j

for (bℓ, br) ∈ {0, 1}2 :

bj ← op(bℓ, br)

kj ← Zout
j (bj)

c0in ← ENCℓ(bℓ, kj , 0
λ)

c1in ← ENCℓ(bℓ, 0
λ, 0λ)

c←$ ENCr(br, c
1
in, c

1
in)

g̃j ← g̃j ∪ c

return g̃j

GETKEYSin
j

return GETKEYSin
j

Oracles of GGATEn

SETBITi(z)

return ()

GETAout
i

return GETAout
i

GBLG(ℓ, r, op, j)

g̃j ← ⊥
zin
ℓ ← GETBIT(ℓ)

zin
r ← GETBIT(r)

Zout
j ← GETKEYSout

j

Z in
ℓ ← GETKEYSin

ℓ

Z in
r ← GETKEYSin

r

for (bℓ, br) ∈ {0, 1}2 :

bj ← op(bℓ, br)

kout
j ← Zout

j (bj)

kin
ℓ ← Z in

ℓ (bℓ)

if zin
ℓ = bℓ :

c0in ←$ enc(kin
ℓ , k

out
j )

if zin
ℓ ̸= bℓ :

c0in ←$ enc(kin
ℓ , 0

λ)

c1in ←$ enc(kℓ, 0
λ)

kin
r ← Z in

r (br)

if zin
r = br :

c←$ enc(kin
r , c

0
in)

if zin
r ̸= br :

c←$ enc(kin
r , c

1
in)

g̃j ← g̃j ∪ c

return g̃j

GETKEYSin
j

return GETKEYSin
j

Oracles of GGATEn

SETBITi(z)

assert zin
i = ⊥

zin
i ← z

return ()

GETAout
i

assert zin
i ̸= ⊥

flag
in
i ← 1

if Z in
i = ⊥ :

Z in
i (0)←$ {0, 1}λ

Z in
i (1)←$ {0, 1}λ

return Z in
i (z

in
i )

GBLG(ℓ, r, op, j)

g̃j ← ⊥
assert zin

ℓ ̸= ⊥
assert zin

r ̸= ⊥

flag
out
j ← 1

if Zout
j = ⊥ :

Zout
j (0)←$ {0, 1}λ

Zout
j (1)←$ {0, 1}λ

assert flag
in
ℓ = 1

assert flag
in
r = 1

for (bℓ, br) ∈ {0, 1}2 :

kin
ℓ ← Z in

ℓ (bℓ)

kin
r ← Z in

r (br)

if bℓ = zin
ℓ ∧ br = zin

r :

bj ← op(bℓ, br)

kout
j ← Zout

j (bj)

else kout
j ← 0λ

cin ←$ enc(kin
ℓ , k

out
j )

c←$ enc(kin
r , cin)

g̃j ← g̃j ∪ c

return g̃j

GETKEYSin
j

assert flag
out
j = 1

assert Zout
j ̸= ⊥

return Zout
j

Oracles of GGATEn

SETBITi(z)

assert zin
i = ⊥

zin
i ← z

return ()

GETAout
i

assert zin
i ̸= ⊥

flag
in
i ← 1

if Z in
i = ⊥ :

Z in
i (0)←$ {0, 1}λ

Z in
i (1)←$ {0, 1}λ

return Z in
i (z

in
i )

GBLG(ℓ, r, op, j)

g̃j ← ⊥
assert zin

ℓ ̸= ⊥
assert zin

r ̸= ⊥

flagout
j ← 1

if Zout
j = ⊥ :

Zout
j (0)←$ {0, 1}λ

Zout
j (1)←$ {0, 1}λ

assert flag
in
r = 1

assert flag
in
ℓ = 1

for (bℓ ⊕ zin
ℓ , br ⊕ zin

r )

∈ {0, 1}2 :

kin
ℓ ← Z in

ℓ (bℓ)

kin
r ← Z in

r (br)

if bℓ ⊕ zin
ℓ = br ⊕ zin

r = 0 :

bj ← op(bℓ, br)

kout
j ← Zout

j (bj)

else kout
j ← 0λ

cin ←$ enc(kin
ℓ , k

out
j )

c←$ enc(kin
r , cin)

g̃j ← g̃j ∪ c

return g̃j

GETKEYSin
j

assert flag
out
j = 1

assert Zout
j ̸= ⊥

return Zout
j

Oracles of GGATEsim,n

SETBITi(z)

assert zin
i = ⊥

zin
i ← z

return ()

GETAout
i

assert zin
i ̸= ⊥

flag
in
i ← 1

if Z in
i = ⊥ :

Z in
i (0)←$ {0, 1}λ

Z in
i (1)←$ {0, 1}λ

return Z in
i (z

in
i )

GBLG(ℓ, r, op, j)

g̃j ← ⊥
assert zin

ℓ ̸= ⊥
assert zin

r ̸= ⊥
zout
j ← op(zin

ℓ , z
in
r )

assert zout
j ̸= ⊥

flag
out
j ← 1

if Zout
j = ⊥ :

Zout
j (0)←$ {0, 1}λ

Zout
j (1)←$ {0, 1}λ

Sout
j (0)← Zout

j (zin
j )

assert flag
in
r = 1

S in
r (0)← Z in

r (z
in
r )

assert flag
in
r = 1

S in
r (1)← Z in

r (1⊕ zin
r )

assert flag
in
ℓ = 1

S in
ℓ (0)← Z in

ℓ (z
in
ℓ )

assert flag
in
ℓ = 1

S in
ℓ (1)← Z in

ℓ (1⊕ zin
ℓ )

for (dℓ, dr) ∈ {0, 1}2 :

kin
ℓ ← S in

ℓ (dℓ)

kin
r ← S in

r (dr)

if dℓ = dr = 0 :

kout
j ← Sout

j (0)

else kout
j ← 0λ

cin ←$ enc(kin
r , k

out
j )

c←$ enc(kin
ℓ , cin)

g̃j ← g̃j ∪ c

return g̃j

GETKEYSin
j

assert flag
out
j = 1

assert Zout
j ̸= ⊥

return Zout
j

Oracles of GGATEsim,n

SETBITi(z)

return SETBITi(z)

GETAout
i

return GETAout
i

GBLG(ℓ, r, op, j)

g̃j ← ⊥
EVALj(ℓ, r, op)

Sout
j (0)← GETAout

j

S in
r (0)← GETAin

r

S in
r (1)← GETINAin

r

S in
ℓ (0)← GETAin

ℓ

S in
ℓ (1)← GETINAin

ℓ

for (dℓ, dr) ∈ {0, 1}2 :

kin
ℓ ← S in

ℓ (dℓ)

kin
r ← S in

r (dr)

if dℓ = dr = 0 :

kout
j ← Sout

j (0)

else kout
j ← 0λ

cin ←$ enc(kin
r , k

out
j )

c←$ enc(kin
ℓ , cin)

g̃j ← g̃j ∪ c

return g̃j

GETKEYSin
j

return GETKEYSin
j

Figure 27: Inlining for code-equivalence of GGATEn and GGATEsim,n in proof of Claim 2.

Moreover, we remove the additional condition in the if -branch
that b = 1—this condition is unnecessary, since if b = 0,
the operations c ←$ enc(Z(d),mb) and c ←$ enc(Z(d),m0)
produce the same output distribution.

B. Proof of Claim 2

Proof of Claim 2, continued. It remains to prove Equation 4:
GGATEn

code≡ GGATEsim,n. The equivalence follows from an
inlining argument shown in Fig. 27. The second column is
obtained from the first by inlining ENC1

1..n and rearranging

code, and similarly for the third column and inlining KEYS.
The next step is where the wire key semantic is switched: To
garble a gate, oracle GBLG in the third column loops over all
combinations of bit pairs (bℓ, br). To get to the forth column,
we apply the bijection (bℓ, br) 7→ (bℓ⊕zin

ℓ , br⊕zin
r ) that maps

bit values to active/inactive status to their corresponding, as
indicated by zin

ℓ and zin
r . Further rearranging the code yields

the fifth column, and factoring out EV and KEYS yields the
last column.



G1
real

GARBLE(C, x)

assert C̃ = ⊥
assert width(C) = n

assert depth(C) = d

for j = 1..n do

SETBITj(xj)

C̃ ← GBL(C)

dinf← GETDINF

for j = 1..n do

x̃[j]← GETAout
j

return (C̃, x̃, dinf)

G2
real

GARBLE(C, x)

assert C̃ = ⊥
assert width(C) = n

assert depth(C) = d

for j = 1..n do

SETBITj(xj)

for i = 0..d do

for j = 1..n do

Zi,j(0)←$ {0, 1}λ

Zi,j(1)←$ {0, 1}λ

for i = 1..d do

(ℓ, r,op)← C[i]

for j = 1..n do

(ℓ, r, op)← (ℓ(j), r(j),op(j))

g̃j ← ⊥
for (bℓ, br) ∈ {0, 1}2 do

bj ← op(bℓ, br)

kj ← Zi,j(bj)

cin ←$ enc(Zi−1,ℓ(bℓ), kj)

c←$ enc(Zi−1,r(br), cin)

g̃j ← g̃j ∪ c

C̃[i, j]← g̃j

for j = 1..n do

SETKEYSj(Z0,j)

SETDINF(Zd,1, . . . , Zd,n)

dinf← GETDINF

for j = 1..n do

x̃[j]← GETAout
j

return (C̃, x̃, dinf)

G3
real

GARBLE(C, x)

assert C̃ = ⊥
assert width(C) = n

assert depth(C) = d

for j = 1..n do

assert zj = ⊥
zj ← xj

for i = 0..d do

for j = 1..n do

Zi,j(0)←$ {0, 1}λ

Zi,j(1)←$ {0, 1}λ

for i = 1..d do

(ℓ, r,op)← C[i]

for j = 1..n do

(ℓ, r, op)← (ℓ(j), r(j),op(j))

g̃j ← ⊥
for (bℓ, br) ∈ {0, 1}2 do

bj ← op(bℓ, br)

kj ← Zi,j(bj)

cin ←$ enc(Zi−1,ℓ(bℓ), kj)

c←$ enc(Zi−1,r(br), cin)

g̃j ← g̃j ∪ c

C̃[i, j]← g̃j

dinf← (Zd,1, . . . , Zd,n)

for j = 1..n do

assert zj ̸= ⊥
x̃[j]← Z0,j(zj)

return (C̃, x̃, dinf)

G4
real

GARBLE(C, x)

assert C̃ = ⊥
assert width(C) = n

assert depth(C) = d

for j = 1..n do

assert z0,j = ⊥
z0,j ← xj

Z0,j(0)←$ {0, 1}λ

Z0,j(1)←$ {0, 1}λ

x̃[j]← Z0,j(z0,j)

for i = 1..d do

(ℓ, r,op)← C[i]

for j = 1..n do

(ℓ, r, op)← (ℓ(j), r(j),op(j))

C̃j ← ⊥
Zi,j(0)←$ {0, 1}λ

Zi,j(1)←$ {0, 1}λ

for (bℓ, br) ∈ {0, 1}2 :

bj ← op(bℓ, br)

k0
j ← Zi,j(bj)

c0in ←$enc(Zi−1,ℓ(bℓ), k
0
j )

c1in ←$enc(Zi−1,ℓ(bℓ), 0
λ)

c←$enc(Zi−1,r(br), c
0
in)

C̃j ← C̃j ∪ {c}
C̃[i]← C̃1..n

for j = 1..n do

dinf[j]← Zd,j

return (C̃, x̃, dinf)

G5
real

GARBLE(C, x)

assert C̃ = ⊥
assert width(C) = n

assert depth(C) = d

for j = 1..n do

SETBITj(xj)

x̃[j]← GETAout
j

for i = 1..d do

(ℓ, r,op)← C[i]

assert C̃[i] = ⊥
for j = 1..n do

(ℓ, r, op)←
(ℓ(j), r(j),op(j))

C̃j ← GBLG(ℓ, r, op, j)

C̃[i]← C̃1..n

for j = 1..n do

dinf[j]← GETKEYSin
j

return (C̃, x̃, dinf)

G6
real

GARBLE(C, x)

assert C̃ = ⊥
assert width(C) = n

assert depth(C) = d

for j = 1..n do

SETBITj(xj)

x̃[j]← GETAout
j

for i = 1..d do

(ℓ, r,op)← C[i]

C̃[i]← GBLi(ℓ, r,op)

for j = 1..n do

dinf[j]← GETKEYSin
j

return (C̃, x̃, dinf)

Figure 28: Proof of Claim 3.

C. Proof of Claim 3

The claim follows from an inlining argument
shown in Fig. 28. Starting from G1

real :=
PRVSIM0

n,d(GBtdyao,n,d,DINFtdyao,n), we first inline packages
EN1..n and GBtdyao,n,d to obtain G2

real. Further inlining
EKEYS1..n and DINFtdyao,n yields game G3

real. To obtain G4
real,

we split the wire key sampling. Input wire key sampling
remains while all other wire keys are sampled on demand
inside the encryption loop. Factoring out KEYS and GATE
packages and further MODGBn,i yields games G5

real and
G6

real := MODn,d → SEC0
n,d(GByao,n,d).

D. Proof of Claim 4

The claim follows from an inlining argument that is
shown in Fig. 29 and 30. Starting from game G1

ideal :=
PRVSIM1

n,d(SIMtdyao,n,d) in the first column, we first inline
packages EVn,d, BITS, and SIMtdyao,n,d to obtain G2

ideal. Game
G3

ideal is the result of moving the sampling all of wire keys
except for input wire keys into the gate garbling loop, and
moving the input garbling code into the loop where the input
wire keys are sampled. Combining the first two loops ranging
over j = 1..n yields game G4

ideal. Game G5
ideal introduces Zi,j

in addition of Si,j as well as a more complicated way of
computing Si,j to highlight the computation of Si,j(0) and
Si,j(1) as active and inactive wire keys. Finally, we factor out

KEYS (game G5
ideal), LEV (game G6

ideal) and GByao,n,d (game
G7

ideal) to obtain G8
ideal := MODn,d → SEC1

n,d(SIMyao,n,d).

E. Security Proof for Leakage Φ(C) = topo(C)

In this work, we restricted ourselves to proving selective se-
curity of Yao’s garbling scheme with respect to a simulator that
is given the circuit C to be garbled. The observant reader might
have noticed though that our simulator SIMtdyao,n,d in Fig. 15
does not actually use the concrete gate operations of the
circuit, but only its topology. Indeed, Yao’s garbling scheme is
known to provide security in this stronger sense [6]. The goal
of this work was to present a simplified security proof, hence
the simplification in terms of leakage function. Nevertheless,
our proof can be modified as follows to achieve security
with respect to leakage function Φ(C) = topo(C): Garbling
scheme security (Def. 13) can be defined using an ideal
game PRVSIM1

n,d(SIMn,d) where package MOD-PRVSIM1
n,d

queries the simulator SIMn,d’s GBL oracle with topo(C)
instead of C. That is, package MOD-PRVSIM1

n,d removes the
operation information for each gate, leaving only the circuit
topology. All that remains is to adapt the proof of Claim 4 in
Appendix D: Since the layer simulators GB1

yao,n,i do not use the
concrete gate operation either to produce the simulated output,
the gate operations can simply be removed in an additional
game hop.



G1
ideal

GARBLE(C, x)

assert C̃ = ⊥
assert width(C) = n

assert depth(C) = d

for j = 1..n do

SETBITj(xj)

EVALj(C)

C̃ ← GBL(C)

dinf← GETDINF

for j = 1..n do

x̃[j]← GETAout
j

return (C̃, x̃, dinf)

G2
ideal

GARBLE(C, x)

assert C̃ = ⊥
assert width(C) = n

assert depth(C) = d

for j = 1..n do

assert z0,j = ⊥
z0,j ← xj

assert width(C) = n

assert depth(C) = d

for i = 1..d do

(ℓ, r,op)← C[i]

for j = 1..n do

zi,j ← op(zi−1,ℓ, zi−1,r)

for i = 1..d do

for j = 1..n do

Si,j(0)←$ {0, 1}λ

Si,j(1)←$ {0, 1}λ

for i = 1..d do

(ℓ, r,op)← C[i]

for j = 1..n do

(ℓ, r, op)← (ℓ(j), r(j),op(j))

g̃j ← ⊥

for (dℓ, dr) ∈ {0, 1}2 :

ki−1,ℓ ← Si−1,ℓ(dℓ)

ki−1,r ← Si−1,r(dr)

if dℓ = dr = 0 :

ki,j ← Si,j(0)

else ki,j ← 0λ

cin ←$ enc(ki−1,r, ki,j)

c←$ enc(ki−1,ℓ, cin)

g̃j ← g̃j ∪ c

C̃j ← g̃j

C̃[i]← C̃1..n

for j = 1..n do

Zd,j(zd,j)← Sd,j(0)

Zd,j(1− zd,j)← Sd,j(1)

dinf[j]← Zd,j

for j = 1..n do

x̃[j]← S0,j(0)

return (C̃, x̃, dinf)

G3
ideal

GARBLE(C, x)

assert C̃ = ⊥
assert width(C) = n

assert depth(C) = d

for j = 1..n do

assert z0,j = ⊥
z0,j ← xj

for i = 1..d do

(ℓ, r,op)← C[i]

for j = 1..n do

zi,j ← op(zi−1,ℓ, zi−1,r)

for j = 1..n do

S0,j(0)←$ {0, 1}λ

S0,j(1)←$ {0, 1}λ

x̃[j]← S0,j(0)

for i = 1..d do

(ℓ, r,op)← C[i]

for j = 1..n do

(ℓ, r, op)← (ℓ(j), r(j),op(j))

g̃j ← ⊥
Si,j(0)←$ {0, 1}λ

Si,j(1)←$ {0, 1}λ

for (dℓ, dr) ∈ {0, 1}2 :

ki−1,ℓ ← Si−1,ℓ(dℓ)

ki−1,r ← Si−1,r(dr)

if dℓ = dr = 0 :

ki,j ← Si,j(0)

else ki,j ← 0λ

cin ←$ enc(ki−1,r, ki,j)

c←$ enc(ki−1,ℓ, cin)

g̃j ← g̃j ∪ c

C̃j ← g̃j

C̃[i]← C̃1..n

for j = 1..n do

Zd,j(zd,j)← Sd,j(0)

Zd,j(1− zd,j)← Sd,j(1)

dinf[j]← Zd,j

return (C̃, x̃, dinf)

Figure 29: Proof of Claim 4.



G4
ideal

GARBLE(C, x)

assert C̃ = ⊥
assert width(C) = n

assert depth(C) = d

for j = 1..n do

assert z0,j = ⊥
z0,j ← xj

flag0,j ← 1

S0,j(0)←$ {0, 1}λ

S0,j(1)←$ {0, 1}λ

x̃[j]← S0,j(0)

for i = 1..d do

(ℓ, r,op)← C[i]

for j = 1..n do

(ℓ, r, op)← (ℓ(j), r(j),op(j))

g̃j ← ⊥

zi,j ← op(zi−1,ℓ, zi−1,r)

Si,j(0)←$ {0, 1}λ

Si,j(1)←$ {0, 1}λ

for (dℓ, dr) ∈ {0, 1}2 :

ki−1,ℓ ← Si−1,ℓ(dℓ)

ki−1,r ← Si−1,r(dr)

if dℓ = dr = 0 :

ki,j ← Si,j(0)

else ki,j ← 0λ

cin ←$ enc(ki−1,r, ki,j)

c←$ enc(ki−1,ℓ, cin)

g̃j ← g̃j ∪ c

C̃j ← g̃j

C̃[i]← C̃1..n

for j = 1..n do

Zd,j(zd,j)← Sd,j(0)

Zd,j(1− zd,j)← Sd,j(1)

dinf[j]← Zd,j

return (C̃, x̃, dinf)

G5
ideal

GARBLE(C, x)

assert C̃ = ⊥
assert width(C) = n

assert depth(C) = d

for j = 1..n do

assert z0,j = ⊥
z0,j ← xj

flag0,j ← 1

Z0,j(0)←$ {0, 1}λ

Z0,j(1)←$ {0, 1}λ

x̃[j]← Z(z0,j)

for i = 1..d do

(ℓ, r,op)← C[i]

for j = 1..n do

(ℓ, r, op)← (ℓ(j), r(j),op(j))

g̃j ← ⊥

zi,j ← op(zi−1,ℓ, zi−1,r)

Zi,j(0)←$ {0, 1}λ

Zi,j(1)←$ {0, 1}λ

Si,j(0)← Zi,j(zi,j)

Si−1,r(0)← Zi−1,r(zi−1,r)

Si−1,r(1)← Zi−1,r(1− zi−1,r)

Si−1,ℓ(0)← Zi−1,r(zi−1,ℓ)

Si−1,ℓ(1)← Zi−1,r(1− zi−1,ℓ)

for (dℓ, dr) ∈ {0, 1}2 :

ki−1,ℓ ← Si−1,ℓ(dℓ)

ki−1,r ← Si−1,r(dr)

if dℓ = dr = 0 :

ki,j ← Si,j(0)

else ki,j ← 0λ

cin ←$ enc(ki−1,r, ki,j)

c←$ enc(ki−1,ℓ, cin)

g̃j ← g̃j ∪ c

C̃j ← g̃j

C̃[i]← C̃1..n

for j = 1..n do

dinf[j]← Zd,j

return (C̃, x̃, dinf)

G6
ideal

GARBLE(C, x)

assert C̃ = ⊥
assert width(C) = n

assert depth(C) = d

for j = 1..n do

SETBIT0,j(xj)

x̃[j]← GETAout
0,j

for i = 1..d do

(ℓ, r,op)← C[i]

for j = 1..n do

(ℓ, r, op)← (ℓ(j), r(j),op(j))

g̃j ← ⊥
zi−1,ℓ ← GETBITi−1,ℓ

zi−1,r ← GETBITi−1,r

zi,j ← op(zi−1,ℓ, zi−1,r)

SETBITi,j(zi,j)

Si,j(0)← GETAout
i,j

Si−1,r(0)← GETAin
i−1,r

Si−1,r(1)← GETINAin
i−1,r

Si−1,ℓ(0)← GETAin
i−1,ℓ

Si−1,ℓ(1)← GETINAin
i−1,ℓ

for (dℓ, dr) ∈ {0, 1}2 :

ki−1,ℓ ← Si−1,ℓ(dℓ)

ki−1,r ← Si−1,r(dr)

if dℓ = dr = 0 :

kout
i,j ← Si,j(0)

else kout
i,j ← 0λ

cin ←$ enc(ki−1,r, ki,j)

c←$ enc(ki−1,ℓ, cin)

g̃j ← g̃j ∪ c

C̃j ← g̃j

C̃[i]← C̃1..n

for j = 1..n do

dinf[j]← GETKEYSin
d,j

return (C̃, x̃, dinf)

G7
ideal

GARBLE(C, x)

assert C̃ = ⊥
assert width(C) = n

assert depth(C) = d

for j = 1..n do

SETBIT0,j(xj)

x̃[j]← GETAout
0,j

for i = 1..d do

(ℓ, r,op)← C[i]

assert C̃[i] = ⊥
assert |ℓ|, |r|, |op| = n

for j = 1..n do

(ℓ, r, op)← (ℓ(j), r(j),op(j))

g̃j ← ⊥
EVALi,j(ℓ, r, op)

Sout
i,j(0)← GETAout

i,j

S in
i−1,r(0)← GETAin

i−1,r

S in
i−1,r(1)← GETINAin

i−1,r

S in
i−1,ℓ(0)← GETAin

i−1,ℓ

S in
i−1,ℓ(1)← GETINAin

i−1,ℓ

for (dℓ, dr) ∈ {0, 1}2 :

ki−1,ℓ ← S in
i−1,ℓ(dℓ)

ki−1,r ← S in
i−1,r(dr)

if dℓ = dr = 0 :

ki,j ← Sout
i,j(0)

else ki,j ← 0λ

cin ←$ enc(ki−1,r, ki−1,j)

c←$ enc(ki−1,ℓ, cin)

g̃j ← g̃j ∪ c

C̃j ← g̃j

C̃[i]← C̃1..n

for j = 1..n do

dinf[j]← GETKEYSin
d,j

return (C̃, x̃, dinf)

G8
ideal

GARBLE(C, x)

assert C̃ = ⊥
assert width(C) = n

assert depth(C) = d

for j = 1..n do

SETBITj(xj)

x̃[j]← GETAout
j

for i = 1..d do

(ℓ, r,op)← C[i]

C̃[i]← GBLi(ℓ, r,op)

for j = 1..n do

dinf[j]← GETKEYSin
j

return (C̃, x̃, dinf)

Figure 30: Proof of Claim 4, continued.
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