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Abstract. The field of post-quantum cryptography aims to develop and
analyze algorithms that can withstand classical and quantum cryptanal-
ysis. The NIST PQC standardization process, now in its third round,
specifies ease of protection against side-channel analysis as an important
selection criterion. In this work, we develop and validate a masked hard-
ware implementation of Saber key encapsulation mechanism, a third-
round NIST PQC finalist. We first design a baseline lightweight hardware
architecture of Saber and then apply side-channel countermeasures. Our
protected hardware implementation is significantly faster than previously
reported protected software and software/hardware co-design implemen-
tations. Additionally, applying side-channel countermeasures to our base-
line design incurs approximately 2.9x and 1.4x penalty in terms of the
number of LUTs and latency, respectively, in modern FPGAs.
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1 Introduction

The accelerating development of post-quantum computing threatens the security
of our current public-key infrastructure, based on traditional public-key cryp-
tosystems, such as RSA and Elliptic Curve Cryptography (ECC). This threat
motivates Post-Quantum Cryptography (PQC) research and development, aim-
ing to produce and analyze algorithms that can withstand quantum and classical
attacks and, at the same time, run on traditional computing platforms. The NIST
PQC standardization process, currently in its third round, aims to coordinate
the development and analysis of PQC algorithms to eventually select a few of
them as new American Federal Information Processing Standards (FIPS).
Side-channel analysis (SCA), including Differential Power Analysis (DPA) [12],
is a significant threat to the successful deployment of cryptographic solutions.
Lightweight applications with limited or no physical security are even more sus-
ceptible to such attacks since adversaries can easily collect side-channel informa-
tion. Consequently, the NIST PQC standardization process specifies ease of pro-
tection against side-channel attacks as a desirable feature of candidates. Among
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the most urgent tasks in the evaluation process is developing SCA-resistant im-
plementations of third-round finalists and assessing their comparative cost of
protection against SCA. All the range of target platforms from pure software to
full hardware and hybrid platforms need consideration since leakage patterns dif-
fer from one platform to another. For example, architectural leakage stemming
from processor architecture can affect the software, while glitches, dependent
on basic combinational and sequential circuit building blocks, affect hardware
implementations.

NIST has selected Saber, a lattice-based key encapsulation mechanism (KEM)
as a third-round finalist in July 2020. Previous works on applying SCA coun-
termeasures to Saber concentrated on software [4] and software/hardware co-
design [8].

In this work, we develop and evaluate SCA-resistant full hardware imple-
mentations of Saber. Our hardware design is significantly faster compared to
previously reported SW, and SW/HW masked implementations of Saber. Addi-
tionally, our masked design uses approximately 2.9x more lookup tables (LUTS)
while incurring 1.4x performance penalty compared to the unprotected baseline
design when implemented in Xilinx Artix-7 FPGAs. Our results show the possi-
bility of producing efficient masked hardware implementations of Saber that are
significantly faster than SW and SW/HW designs.

2 Previous Work

PQC algorithm side-channel resistance is an active research field with several
open problems. Developing efficient countermeasures suitable for PQC algo-
rithms and assessing the comparative cost of protection are critical for a fair
comparison of NIST PQC third-round candidates. The community has made
progress towards these goals, but many open questions remain.

In [16], Reparaz et al. proposed a masked implementation for ring-Learning-
With-Errors (ring-LWE). The main idea is to split the secret polynomial s into
two shares sg and s; such that s = sg + s;. Multiplying the shared version
of s by an unshared polynomial is a linear operation so, it can be done on
each share separately. The result of the polynomial multiplication is fed to a
custom threshold decoder. The decoder uses a masked lookup table. However,
to simplify the function calculated by the table, the authors use a set of rules
to reduce the number of inputs to the lookup table. The main disadvantage
of this decoder is that it increases the decryption failure rate and has a large
performance overhead due to the need to repeatedly check the set of rules. The
hardware crypto-processor reported in [16] is 20% larger and requires 2.6 x more
cycles to perform decryption compared to the unprotected design.

Many real-wold applications require the use of schemes that resists chosen-
ciphertext attacks (CCA) and adaptive chosen-ciphertext attacks (CCA2). Oder
et al. investigated masked implementations for CCA2-secured ring-LWE schemes
in [15]. The authors developed a unit (MDecode) that receives the arithmetically
shared polynomial coefficients, converts them to Boolean sharing, and outputs
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the decoded version. However, their design requires 5.7 x more clock cycles com-
pared to the unprotected implementation.

A first-order SCA resistant software implementation of Saber was introduced
by Beirendonck et al. in [4], building on work started by Verhulst [19]. The
reported overhead of this work is 2.52x in terms of clock cycles compared to the
unprotected software. This low overhead is due to Saber’s power-of-two moduli
and the reliance on rounding for noise generation. A significant contribution of
this work is a unit that performs logical shifting on arithmetic shares, based on
arithmetic-to-Boolean algorithms by Coron and Debraiz [6l 7). Their binomial
sampler is based on the bit-sliced masked binomial sampler by Schneider et
al. [17].

In April 2021, Fritzmann et al. reported a masked SW/HW co-design that
supports Saber and Kyber [8]. Their design is based on an open-source RISC-V
implementation, in which they added accelerators and instruction-set extensions
for PQC algorithms. The accelerators reported are used to speed up hashing, bi-
nomial sampling, polynomial multiplication, Arithmetic-to-Boolean (A2B), and
Boolean-to-Arithmetic (B2A) operations. The authors report a 2.63x perfor-
mance overhead for Saber compared to unprotected implementations.

3 Background

3.1 Saber

Saber is a lattice-based KEM that depends on the hardness of the Module Learn-
ing With Rounding (MLWR) problem [18]. KEMs use a public and private key
pair to generate and securely exchange keys between communication parties.
Specifically, Alice generates a key pair, keeps the private key, and distributes the
public key. Bob provides Alice’s public key to the encapsulation algorithm to
generate a secrete key K and ciphertext c. The ciphertext can now be transmit-
ted to Alice. Alice feeds her private key and the ciphertext to the decapsulation
algorithm to generate the secret key K.

We concentrate on the SCA protection of the CCA-Secure decapsula-
tion algorithm, Saber.KEM.Decaps, since it uses the long-term private key.
The Saber.KEM.Decaps algorithm is based on the CPA-secure algorithms
Saber. PKE.Enc and Saber.PKE.Dec. These algorithms are shown in Algo-
rithms for reference. Detailed specification can be found at [18].

Saber uses power-of-two moduli, and the primary operation performed is
polynomial multiplication. Other significant operations include hashing, an ex-
tendable output function, and Binomial sampling.

3.2 Masking

In this work, we utilize masking as an SCA countermeasure. Masking is a well-
researched countermeasure that provides a basis for constructing provably secure
systems provided that certain assumptions hold. In general, two components
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Algorithm 1 Saber.PKE.Enc [18]

Require: (pk:= (seeda,b), m € Ra;1)

Ensure: c:= (¢m, b’)

A = gen(seeda) € R

s’ = /BM(RéM?T)

b = ((A"s' + h) mod q) > (eq — €) € R}

v = b7 (s’ mod p) € R,

em = (V' + b1 — 2" Ymmod p) > (¢; — er) € Rr

Algorithm 2 Saber.PKE.Dec [1§]
Require: (s, c:= (¢m,b’))
Ensure: m’
1: v=b%"(s mod p) € R,
2: m' = ((v—2°" Ty, + h2) mod p) > (e, — 1) € Ra

Algorithm 3 Saber. KEM.Decaps [18]
Require: (sk:= (z, pkh, pk, s),c)
Ensure: K

1: m' = Saber.PKE.Dec(s, c)

2: (r', K'Y = G(pkh, m)

3: ¢’ = Saber.PKE.Enc(pk, m’; 1)
4: if ¢ = ¢ then

5. K =H(K,c)
6
7
8

: else
K =%H(zc)
: end if

define a masking scheme: 1) the method used to split the data into shares, 2)
the method used to perform computations on these shares.

For example, in Boolean masking, each sensitive variable z is split into n
shares xg, z1, . .., T,—1 such that @ x; = z. A commonly used way to achieve this
is by generating n — 1 random masks mq, m1, ..., Mmy_o, setting xo = mg, 1 =
Mi,...,Tp_g = Mpy_o, and computing x,_1 = O My B my B -+ B My_o.
On the other hand, in arithmetic masking, a variable a is split into n shares
ag,al,... a,_1 such that " a; mod ¢ = a. This can be achieved by generating
n — 1 random masks mg, m1,...,Mmuy_o, setting ag = mo, a1 = M1,...,0,_o2 =
My —2, and computing a,_1 = (& —mg — m; — mp_2) mod q.

The computation on the shares should be performed such that all interme-
diate values are statistically independent of the unshared sensitive variables.

Masking linear functions is trivial. The same function is duplicated, with
each instance taking one share of each input variable and producing one share
of each output variable. Non-linear functions require much more care to make
sure the implementation is correct and secure.
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3.3 Domain Oriented Masking

Domain Oriented Masking (DOM) [11], introduced by Gross et al., provides
security against SCA attacks in the presence of glitches. It also allows building
circuits that can be synthesized for an arbitrary protection order. Similar to
classical Boolean masking, variables are split into shares. For example, «x is split
into xg and x7 such that x = 2o @ x1.

DOM uses the concept of share domains, where every share of each variable
is associated with a domain. For example, zg and 3o can be associated with
Domain0.

In DOM, calculations are done so that data in different domains are kept
independent of each other. In case data from two domains must be combined,
steps are taken to preserve this independence. Linear functions are trivial to
calculate since they require shares from each domain to be used separately. In
non-linear functions, however, shares from different domains must be mixed.

4 Methodology

To study the impact of applying SCA countermeasures on the hardware im-
plementations of Saber, we start by developing a baseline lightweight hardware
implementation. This allows us to reuse components from the unprotected de-
sign, enabling meaningful comparison and evaluation of the cost of protection. At
the same time, some components remain unchanged in the protected implemen-
tations. We choose a lightweight (LW) implementation because LW applications
are especially vulnerable to SCA attacks. In many cases, LW applications have
limited or no physical security, allowing easy collection of side-channel informa-
tion by adversaries. We utilize the Register-Transfer-Level (RTL) methodology
to construct our hardware. RTL provides granular control over operations, which
simplifies countermeasure application. Additionally, hardware implementations
provide performance and power efficiency, which are helpful in many applica-
tions. We primarily use VHDL for hardware description, except for the SHA-3
core, which is written using Chisel.

The baseline Saber implementation is then protected against DPA using
masking countermeasures, adapting protection schemes to hardware when nec-
essary. Furthermore, we design flexible hardware that has performance and area
trade-offs. Doing that results in a highly configurable implementation that can
be adapted to a wide range of applications.

The security of our design has been experimentally verified using the Test
Vector Leakage Assessment methodology [9]. Finally, we benchmark our design
on widely used state-of-the-art FPGA devices to quantify the resource utilization
and performance to evaluate the effect of applying the countermeasures on Saber.
The results are compared to masked software and software/hardware co-design
implementations of Saber.
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5 Baseline Lightweight Saber Implementation

The datapath of our hardware implementation of Saber, capable of performing
encapsulation and decapsulation, is shown in Figure [I} The figure omits con-
trol signals for clarity. The design uses a FIFO-based interface with one input
port and one output port. This interface facilitates connecting the design as an
accelerator to processors using similar interfaces such as AXI stream [2]. We
use memory to store all data, including keys. We choose a memory width of 16
bits to read/write one polynomial coefficient in one clock cycle since the largest
coefficient size is 13 bits, and our lightweight units for polynomial arithmetic
receive/produce at most one coefficient per clock cycle. All data kept in memory
is in byte-string format. This approach allows data to be kept in a compact,
memory-saving form. We utilize width converters to perform unpacking byte-
strings into polynomials before feeding them into arithmetic units and packing
the resulting polynomials into byte-strings before memory write-back on the
fly. The central control unit implements the sequencing of operations needed to
perform encapsulation and decapsulation. The user of the core uses pre-defined
opcodes to select one of the two operations.

Data flow from memory to arithmetic units and back to memory, or from
memory to SHA3/Sampling units and back to memory. Combining this simple
data flow and utilizing width converters simplify our control logic since width
converters adjust the width of data with minimal control signals from the central
controller, and the simple data flow minimizes control signals to the datapath.

The general operation of the core is as follows: the core pulls input data
via the din port and interprets the first word as an opcode to select between
encapsulation or decapsulation. If encapsulation was selected, the core loads
the public key and the random message from the input port and computes
the ciphertext and the secret key. If the operation specified in the opcode is
decapsulation, the core loads the public key, the private key, and the ciphertext
and computes the secret key. In both cases, the dout port is used to output
results. Below, we discuss the significant units used in the design in detail.

5.1 Polynomial Arithmetic Units

One of the most intensively used operations in Saber and other lattice-based
algorithms is polynomial multiplication. Our design goal is to minimize resource
utilization of this operation, which comes at the expense of clock cycles.

We developed a flexible schoolbook multiplier and accumulation unit Poly-
MAC with a configurable rolling factor ROLL, which can be set at synthesis
time. We define a multiplier with ROLL = 1 as a multiplier capable of per-
forming n coefficient multiplications simultaneously. Here, n is the number of
coefficients in a polynomial which is equal to 256 in Saber. Our multiplier multi-
plies n/ ROLL coefficients in one clock cycle, and it needs n- ROLL clock cycles
to perform the multiplication of two polynomials. Furthermore, it needs roughly
2n clock cycles for input and output. This configuration allows us to have a
performance-area trade-off yielding a highly flexible design.
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Fig. 1. Lightweight Saber Datapath

The PolyMAC unit is shown in Figure 2] and it operates as follows. The mul-
tiplier receives the first polynomial poly! via the di port and stores it internally
in a two-dimensional circular input buffer as shown in the left part of Figure
The coeflicients of poly! are organized into columns that can rotate from left to
right. PolyMAC then receives the second polynomial poly2 one coefficient at a
time via the di port and multiplies it by all coefficients of poly1. To do the mul-
tiplication by all coefficients of polyl, the right-most column of the input buffer
is multiplied by the current poly2 coefficient, and the result is stored in the left-
most columns of the 2D circular output buffer (shown to the right of the MAC
units). The columns of the input and output buffer rotate until all coefficients of
poly! have been multiplied. The multiplier then pulls the next coefficient of poly2
until all coefficients are consumed. The result of the polynomial multiplication
is stored internally, and the multiplier is ready to output the result or accept
another two polynomials to multiply and accumulate to the previous result. This
is useful to implement vector-by-vector multiplication. After any multiplication,
the result can be cleared using a control signal.
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(N % &q) bits s——

{eq) bits ———»

Fig. 2. Configurable Schoolbook Polynomial Multiplier. Input circular buffer high-
lighted in green and output circular buffer highlighted in blue

The other polynomial arithmetic operation in Saber is polynomial subtrac-
tion. This operation is much less time-intensive and has a small effect on the
overall execution time of the algorithm. To implement this operation, we devel-
oped the PolySub unit shown in Figure[3] PolySub instantiates a single subtractor
capable of subtracting two coefficients at a time. This unit is purely combina-
tional. However, we use control signals for handshaking to make sure that the
unit consumes two coefficients from the source before providing the correspond-
ing coefficient of the result at the output. Constants hy and hy are added using
a simple adder at the output of the PolyMAC unit, capable of adding two coef-
ficients together in one clock cycle.

5.2 SHAS3 Unit

We have developed a flexible SHA-3 unit that can be configured to process a
configurable number of state slices to provide performance/area trade-off. Addi-
tionally, the IO width of the module is configurable. The core user can select be-
tween SHA3-256, SHA3-512, and SHAKE128 functions using a command word.
All of these functions are required by Saber. This core has been written in Chisel
to exploit its capability to generate highly configurable hardware.
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5.3 CBD Sampler

Saber. KEM.Decaps uses Centered Binomial Distribution (CBD) to sample the
polynomial vector s. To generate one binomial sample, our sampler takes two
{¢/2 bit-wide uniform samples x and y and calculates the CBD sample as HW (z)—
HW ((y), where HW(.) is the Hamming weight function. Figure[4]shows the sam-
pler unit. It receives 64 bits of uniform randomness generated by SHA-3 and
converts it into eight binomial samples in two clock cycles.

5.4 Width Converter Unit

Saber uses many polynomial coefficient sizes. For example, Saber uses polyno-
mials with coefficient sizes of eq, ep, and €T, which are equal to 13, 10, and
4 bits, respectively. To avoid designing separate packing and unpacking units
for each size, we developed a flexible width converter with arbitrary input and
output width. This unit is essentially an asymmetric FIFO. In Figure [I} width
converters are labeled conv(WI,W0), where WI and WO are the input width
and output width (in bits), respectively.

Figure [5] shows the internal structure of this unit. We use asymmetric RAM
to briefly store the input data and allow it to be read via the output port.
Control logic is needed to keep track of pointers to locations for the next read
and write and the number of bits stored in the width converter. Utilizing such a
unit simplifies data packing and unpacking since the central controller delegates
this task to the width converters and only enables the proper width converters
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Fig. 4. CBD Sampler

for the current transaction. At the inputs of polynomial arithmetic units, we
instantiated width converters to convert from memory width to the coefficient
sizes processed by the unit. At the output, we instantiate width converters to
pack the data into the memory words on the fly.

5.5 Other Units

The ciphertext verification is done using a comparator that compares two mem-
ory locations in two clock cycles. If the contents of the two locations are not
equal, we set a flag to indicate the inequality. Regardless of the comparison out-
come, we go through all the ciphertext ¢ and the re-encryption ciphertext ¢
to ensure that our implementation runs in constant time, which is necessary to
resist timing attacks. The left-shift operations, which are used for rounding, are
free in hardware.

6 Masked Saber Implementation

Contrary to encapsulation, the decapsulation process utilizes the long-term pri-
vate key, which makes it vulnerable to side-channel analysis. We implement
a masked full hardware implementation of Saber. KEM.Decaps based on our
lightweight hardware design. We adapt general ideas presented in for hard-
ware. The data flow of our masked Saber. KEM.Decaps is shown in Figure[6] All
operations that are dependent on the private key are highlighted in grey. SCA
attacks could target any intermediate value processed in these units.
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Polynomial multiplication of an unshared polynomial by a shared polynomial
is a linear operation when utilizing arithmetic masking. Hence, multiplication
can be done by performing it for each share separately.

Figure [7] depicts the datapath of our masked Saber design. We highlight
operations that can be done separately for each of the two shares in green and
blue. Hashing using SHA-3, CBD sampling, and rounding include non-linear
operations, and both shares mix at some stage in these operations. We highlight
these units in red. Eventually, these units produce two shares of data that can
be safely consumed in destination domains. In Figure [7] data generally flows
from the two memories inward through linear polynomial arithmetic units, then
through non-linear rounding units in the center of the figure, and back to main
memories. Also, data can flow from the memories to the SHA-3/Sampling units
in the middle of the figure and back to memory.

The linear units in the masked design are the same units used in the baseline
design. We duplicated these units for each of the two shares. However, non-linear
units were re-implemented. We perform constant addition of h; and ho constants
to one of the shares only.

In the following subsections, we describe the hardware implementation of the
primary units of the protected design in detail.

6.1 Polynomial Arithmetic Units

Polynomial multiplication is done using the approach used previously by Reparaz
et al. in [16]. Since polynomial multiplication is linear for arithmetic masking,
secret polynomials are split into two arithmetic shares (coefficient-wise). For a
polynomial s, two polynomials sy and s; are generated such that s = sg + s7.
Now, multiplication of the shared version of s by another unshared polynomial
w is performed as w*so+w*s;. Polynomial addition/subtraction of an unshared
polynomial is performed on only one share.
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6.2 SHAS3 Unit

We utilize Domain-Oriented Masking (DOM) [11] to develop a first-order pro-
tected implementation of our SHA3 core based on [3]. As the input of the Keccak
core comes from a uniformly random distribution, we can use uncorrelated state
bits to provide for the randomness required for the non-linear x operation [3].

6.3 CBD Sampler

As shown in Figure[6] the CBD sampler in Saber must be protected against SCA.
This sampler should securely compute a CBD sample as the difference between
the Hamming weights of two uniform samples x and y as discussed previously.

The masked sampler takes Boolean shares from SHAKE as input. However,
the subsequent operations (i.e., polynomial multiplication) use arithmetic shares.

We implemented a masked CBD sampler per Algorithm [4] which was in-
troduced by Schneider et al. [17]. x and y are two p-bit numbers in Boolean
sharing representation. The output A is an arithmetic sharing representation of
HW(z) — HW (y), i.e., >, A; = HW(z) — HW (y). This task is accomplished
by converting one bit at a time of x and y from Boolean to arithmetic repre-
sentation. The generated arithmetic shares are added to compute the Hamming
weight of = and y, and finally, a subtraction is performed to compute the bino-
mial sample.

We utilized Goubin’s method [10] for Boolean-to-Arithmetic conversion B2A.
In this conversion, * = x, @ r is converted to arithmetic masking in the form
x=A+r mod 2% where K > 1. In this method, the share r is kept as is and
A is calculated from the Boolean shares and a random value ~ as follows:

A=[@'®)-1er s o req)—(rey) (1)

Goubin’s B2A conversion is efficient and lightweight. Additionally, it works
a power-of-two modulus, which makes it suitable for Saber. We used synchro-
nization registers to prevent mixing intermediates that depend on both Boolean
shares in our hardware implementation.

The SW/HW design in [8] uses B2A and A2B conversion algorithms from [5].
Both algorithms utilize secure addition over Boolean shares. This enables them to
use the same adder to accelerate both operations. In our case, since the sampler
is a standalone module, we chose to use Goubin’s method since it is suitable for
our lightweight design.

Figure [8] depicts our hardware implementation of the CBD sampler. In this
figure, we omit control signals and randomness distribution for simplicity. The
sampler can work on NS (number of samples) CBD samples at a time. We
instantiate N.S B2A converters to convert bits from x and a similar number of
converters to convert bits from y. The converted shares are then accumulated
into registers A0_1 to AO_NS and Al1_1 to A1_NS. Eventually, these samples
are sent to the output using parallel-in-serial-out (PISO).
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Algorithm 4 SecSamplerl
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D.vi=y
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1: (Ai)lgign ~—0

2: fori=0to u—1do

3: (Ai)lgign ~—0
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5:  C+« B2A((y >>iA1))
6: A<+ A+B modg
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6.4 Masked Logical Shifting

In Saber, noise is introduced into MLWR samples by truncating LSB bits. This
operation is free in unprotected hardware. However, in the masked implemen-
tation of Saber, this is not as straightforward. This is because the input to this
operation consists of arithmetic shares produced by polynomial arithmetic units.
However, the logical shift is a Boolean operation. The most straightforward so-
lution to this issue is applying A2B conversion, performing the logic shift on
Boolean shares, and using B2A conversion to convert the shares back to arith-
metic shares. Many algorithms for B2A and A2B conversion exist. Goubin’s B2A
conversion [10] is efficient. However, the A2B algorithm proposed in [10] is not
as efficient. Coron proposed a table-based method for A2B conversion that can
be more efficient than Goubin’s method in some cases [6]. A bug in Coron’s A2B
algorithm was later fixed by Debraiz in [7].

Since the LSB bits are discarded in Saber, it is not efficient to perform all the
calculations to convert them into Boolean. The authors of [4] exploited this fact
to produce an efficient masked logic shift unit based on 6] and [7]. The authors
call this algorithm A2A since it accepts and produces arithmetic shares. This
algorithm, adapted from [4] is listed in Algorithm

The A2A logical shift algorithm accepts (A4, R) such that + = A+ R
mod s™*"* and returns (A, R) such that 2 >> (n-k) = A+ R mod 2™,
which is the shifted version of = in arithmetic shares. The shifts in Saber are
>>9,>> 6 and >> 3. Our hardware implementation of the A2A algorithm is
shown in Figure [)] We use registers to store the values of the algorithm inter-
mediates. Since the algorithm requires various synchronization stages, we use
registers to stop glitch propagation in hardware. We adopt the (m,n, k) values
used in [4]. Specifically we set (m,n, k) = (1,3,3),(4,2,3) and (10, 1, 3) for the
>> 9,>> 6 and >> 3 shifts, respectively. The operation of this module is as
follows: first, the module is initialized and it pre-computes the value I and the
table T. The hardware to compute this step is not shown in Figure [0 for simplic-
ity. Once the module is initialized, it can accept the shares (4, R), and return
the shifted version in arithmetic shares via the Aout and Rout ports.

7 Leakage Assessment

We performed a non-specific fixed-vs-random Test Vector Leakage Assessment
(TVLA) [9] to test the first-order leakage of the design. We instantiated the
design-under-test (DUT) in the NewAE CW305 target board, which is an Artix-
7-based board. The DUT power consumption is measured at the output of the
CW305’s onboard amplifier, which amplifies the voltage drop across the onboard
0.1 §2 resistor. The DUT was clocked at 12.5 MHz, and a USB3-based oscilloscope
(Picoscope 5000) was used to collect traces at a sampling rate of 125 MS/s, and 8-
bit sample resolution. We utilized the Flexible Opensource workBench fOr Side-
channel analysis (FOBOS) [1] platform to control test-vector communication
and trace capture from the oscilloscope. The fixed test vectors are formed by
generating fresh sharing of a fixed private key, and the random test vectors are
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mod (2071

=

Aocut Rout

All buses are m + nk bits unless explicitly specified and € = m + (n — 1)k

Fig. 9. A2A logical shift unit

generated using a completely random private key. In both cases, the rest of the
test vector consists of fixed ciphertext and public key.

To validate our experimental setup, we performed a TVLA test with the
PRNG output set to zero. This disables the countermeasures since they depend
on randomness generated from the PRNG. The result of this test is shown in
Figure As expected, significant leakage is detected. This can be observed
even at 2,000 traces.

To test the protected version, we enabled the PRNG to activate the counter-
measures. The TVLA result after analyzing 100,000 traces is shown in Figure
The right-most spike is related to comparing the hash of the input ciphertext
and the ciphertext generated by the re-encryption process. This leakage does not
provide any useful side-channel information to an attacker, as discussed in .
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Algorithm 5 A2A Logical Shift

Require: (A, R) such that z = A+ R mod 2™t"* T r 5
Ensure: (A, R) such that £ >> (n-k) = A+ R mod 2™
/*Let A= (Ah”Al),R = (Rh,Rl) where Al,Rl the k£ LSB bitS.*/

LI« 3" 2% .y mod 2m*mFk
20 P« Y 2" r mod 2tk
3: A« A— P mod 2mt™k
4: A A—T mod 2m+n*
5. fori=0ton—1do
6: A<+ A+ R mod gmt(n—i)k
7. Ay« Ap +T[A] mod 2mt(nmimhk
8: A+ Ah
9: R+ Rp
10: end for
10
g °
)
2
_5 1
-10 I

) 100000 700000

Fig.10. TVLA result with PRNG disabled (2,000 traces)

10

54

e ————

-5

t-value

-10

o 100000 700000

Fig. 11. TVLA Result with PRNG enabled (100,000 traces)
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All other points in the TVLA result are below the threshold, indicating that our
countermeasures are effective.

Although the protected version shows significant leakage reduction, it can
still be vulnerable to fault attacks as well as profiling and deep learning-based
attacks such as |14} [13]. We leave protection against these attacks for future
work.

8 Results and Comparison

To quantify the cost and performance of our baseline and masked Saber designs,
we benchmark them on Xilinx Artix-7 FPGA. Resource utilization in terms of
lookup tables (LUTSs), flip-flops (FFs), and the number of DSP units is provided.
We also provide latency information in clock cycles, maximum frequency, and
encapsulation and decapsulation time. These information are shown in Tables [T]
and 2

Saber-r8 refers to our baseline design with PolyM AC rolling factor, ROLL,
set to 8, so it can perform n/8 = 32 coefficient multiplications in one clock cycle.
This is the variant that we report in Tables [I] and [2} Saber-r8 has a low area
footprint and requires only 6,713 LUTs and 32 DSPs. On the other hand, Saber-
r8-masked, the corresponding masked design, uses 19,299 LUTs and 64 DSPs.
That is 2.9 x more LUTs and exactly 2 x more DSP units compared to the
baseline unprotected variant. Since our baseline design has a small footprint, we
decided to duplicate the logic and process shares simultaneously in the masked
design. Another option is to use the same hardware resources and process the
shares sequentially at the expense of latency. The protected design needs twice
as many DSP units because it uses two PolyM AC' units, the only unit that uses
DSPs.

Our masked design performs decapsulation in 576 ps, assuming keys are
already loaded. This is 1.36 x the baseline unprotected variant.

To evaluate how our designs compare to previously reported masked imple-
mentations of Saber on various platforms, we summarize all results in Table
and

In [4], the authors report a masked software implementation of
Saber.KEM.Decaps and benchmarking results on STM32F407-DISCOVERY
board featuring an ARM Cortex-M4 processor. The decapsulation time reported
is 2,833,348 clock cycles, 2.52x more than the unprotected decapsulation. For
software implementations, it is usual to report cycle count. Execution time can
be calculated after knowing the processor clock speed. However, in hardware, the
critical path of the design influences the final results, so reporting cycle count
and the maximum frequency is helpful. Assuming that the masked software de-
capsulation in [4] runs at 168MHz, which is the clock frequency used in the
STM32F407-DISCOVERY board, protected decapsulation will take 16,865 us.
In this case, our hardware implementation can provide a speedup of 29x.

The SW/HW design reported in [8] is based on an open-source RISC-V imple-
mentation augmented with accelerators and instruction-set extensions that can
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support Saber and Kyber. The accelerators are used to speed up hashing, bi-
nomial sampling, polynomial multiplication, Arithmetic-to-Boolean (A2B), and
Boolean-to-Arithmetic (B2A) operations. The authors report 2.63x performance
overhead for Saber decapsulation compared to unprotected implementations. In
Table [2] we list resource utilization of this SW/HW design. It uses block RAM
(BRAMSs) while our design does not. However, our designs use more DSP units.
In terms of decapsulation time, the protected SW/HW design needs 15,398 us
when run at the reported maximum frequency of 58.8 MHz. Consequently, our
full hardware design, Saber-r8-masked, provides a speedup of 26x.

A breakdown of component area (in LUTSs) for Saber-r8 and Saber-r8-masked
is depicted in Figure[I2] The combinations of SHA3, PolyMAC, and main mem-
ory utilize 88% and 61% for baseline and masked variants, respectively. Width
converters that perform packing and unpacking occupy around 7% and 5% in
the baseline and masked variants, respectively. In Saber-r8, other components
include CBD sampler, PolySub, control logic, and other units. These units ac-
count for only 4.7%. On the other hand, in Saber-r8-masked, the CBD sampler
requires 21% of the LUTSs, and other components need 13%. This breakdown
shows that further area improvements of both masked and baseline variants will
benefit from more area-efficient SHA3 and polynomial multiplication units. A
smaller CBD sampler will improve resource utilization of the masked variant.

B PolyMAC W PolyMAC
m SHA3

W SHA3 Main Memory

Main Memory W Width Converters

u Other

® Width Converters CBD Sampler

W Other

(a) Baseline Saber-r8 (b) Masked Saber-r8

Fig. 12. Resource Utilization per Unit

9 Conclusions and Future Work

In this work, we report an SCA-resistant hardware implementation of Saber.
We have started with a baseline lightweight hardware design and applied side-
channel countermeasures to resist DPA attacks. Our masked hardware imple-
mentation offers 29x and 26 x speedup over previously reported protected soft-
ware and software/hardware co-design implementations, respectively. Also, our
design occupies around 2.9x the number of LUTs and requires 1.4x the la-
tency compared to our baseline design when benchmarked on modern FPGAs.
Interesting future work includes investigating resistance against fault and deep
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Table 1. Comparison between masked Saber implementations in the literature and
designs in this work. Notation: U - unprotected, P - protected.

Type Platform Protection|Freq
MHz
This Work|HW FPGA-Artix7 U 125
125
125
168
168
62.5
62.5
58.8

4] SW ARM Cortex-M4

8] SW/HW |RISC-V+ Acc.

T cTg

Table 2. Comparison between resource utilization and latency of masked Saber imple-
mentations in the literature and in this work. Notation: U - unprotected, P - protected.

Protection Resource Utilization Latency
LUTs FFs Slices DSPs BRAMs|Operation Cycles us ratio
This Work U 6,713 7,363 2,631 32 0|Encaps 46,705 373.1 -
Decaps 52,758 422.1 1.00
P 19,299 21,977 7,036 64 0|Decaps 72,005 576.0 1.36
] U - - - - -|Decaps 1,123,280 6,686.2 1.00
P Decaps 2,833,348 16,865.2 2.52
8] U 20,697 11,833 6,852 13 36.5|Encaps 308,430 4,934.9 -
Decaps 347,323 5,557.2 1.00
P 29,889 17,152 9,641 13 52.5|Decaps 905,395 15,397.9 2.77

learning-based attacks. Reducing resource utilization and improving the perfor-
mance of hardware implementations of Saber and other finalists in the NIST
PQC standardization process will also be helpful.
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