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Abstract. This paper introduces Otti, a general-purpose com-
piler for (zk)SNARKS that provides support for numerical op-
timization problems. Otti produces efficient arithmetizations
of programs that contain optimization problems including
linear programming (LP), semi-definite programming (SDP),
and a broad class of stochastic gradient descent (SGD) in-
stances. Numerical optimization is a fundamental algorithmic
building block: applications include scheduling and resource
allocation tasks, approximations to NP-hard problems, and
training of neural networks. Otti takes as input arbitrary pro-
grams written in a subset of C that contain optimization prob-
lems specified via an easy-to-use API. Otti then automatically
produces rank-1 constraint satisfiability (R1CS) instances that
express a succinct transformation of those programs. Correct
execution of the transformed program implies the optimal-
ity of the solution to the original optimization problem. Our
evaluation on real benchmarks shows that Otti, instantiated
with the Spartan proof system, can prove the optimality of
solutions in zero-knowledge in as little as 100 ms—over 4
orders of magnitude faster than existing approaches.

1 Introduction

Optimization problems are pervasive in science, government,
business, and academia. Convex optimization in the form
of linear programming (LP) and semidefinite programming
(SDP) is widespread, and the rise of deep learning has put
particular emphasis on stochastic gradient descent (SGD).
Example applications include resource allocation problems,
approximation of NP-hard problems, training of machine
learning models, and others. Efficiently producing solutions
to these problems is the subject of intensive study. However,
there is much less focus on providing transparency about the
nature of the solution process or the quality of the resulting an-
swer. Today, a solver (e.g., a government agency like FEMA)
publishes the purported optimal solution to an optimization
problem (e.g., the optimal allocation of medications to shel-
ters) and asks clients (parties interested or affected by the
result) to trust the solution. While clients could in principle
rederive the optimal solution on their own, in many applica-
tions the inputs to the optimization problem are sensitive and
cannot be shared (for example, due to security clearances,
personal identifiable information, or business secrets). This
complicates accountability and transparency.

Existing systems for zero-knowledge succinct non-
interactive arguments of knowledge (zkSNARKSs) [13-15,
17, 18, 25-27, 37, 39, 47, 53, 62, 64, 69, 72, 74] offer an
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attractive way to bring accountability and transparency into
an otherwise opaque process. Assuming that the inputs can
be made available in the form of cryptographic commitments
by some means, the solver can generate a cryptographic proof
that convinces clients that the solution is optimal without re-
vealing the sensitive inputs. Concrete examples of where this
situation might be applicable include:

* A school commits to secret admissions criteria. Students
submit application materials (test scores, etc.) and the
school then proves, in zero-knowledge, that admissions
were the optimal solution to the optimization problem.

A hospital commits to a donor list. The hospital then
proves in zero-knowledge to a prospective donor, who is a
partner of someone in need of an organ (but not a match),
that if they donate their kidney their partner can receive a
compatible organ (this is called a kidney chain [12]).

An automobile company commits to a data set. The com-
pany proves to regulators safety properties about the data
in zero-knowledge (that it has adequate sample diversity,
light conditions, etc.). Then, the automobile company can
prove (again in zero-knowledge) that the ML model incor-
porated in a car was trained with the committed data.

The above examples are predicated on existing zkSNARKS
being able to describe facts about optimization problems.
Unfortunately, existing mechanisms for expressing optimiza-
tion problems in a format amenable for zkSNARKSs (e.g.,
arithmetic or boolean circuits, rank-1 constraint satisfiability
systems) result in prohibitive costs. As a concrete example,
representing an LP instance with 3 variables and 3 linear
equations using a state-of-the-art compiler for SNARKSs [51]
results in over 1 million multiplication gates. Worse yet, we
are unable to compile much larger instances due to the radical
blow up in the number of constraints and the high memory
burden this places on the compiler. This massive expressivity
cost comes from a few sources: (1) the need to support ran-
dom memory accesses; (2) the need for fixed point or double
precision to approximate real numbers; (3) the need to up-
per bound the number of loop iterations required to find an
optimal solution for any possible inputs; and (4) the need to
express the complex logic of the solver.

To address these issues, we introduce Otti, a compiler for
zkSNARKSs that takes as input programs written in C that
include optimization instances and outputs rank-1 constraint
satisfiability instances (R1CS) for these programs that are suc-
cinct and efficient to prove and verify. Otti works as follows:



Exploit nondeterministic checkers. Otti uses the observa-
tion that for a prover to convince a verifier that it knows the
output of some program, the prover does not actually need to
run the program at all, much less prove that it ran the program
correctly. Instead, the prover just needs to prove that the out-
put of the program is correct. For example, the prover does not
need to prove that a list was sorted with Quicksort, but simply
that the list is in sorted order. Therefore, in such examples the
prover can prove to the verifier that a purported output of the
program is correct—this is equivalent to running the program
and obtaining the solution. A nondeterministic checker is a
special program that does this: the nondeterministic checker
is derived from the original program and takes the solution
to the original program as a nondeterministic input (how the
prover gets this solution is irrelevant). The prover then con-
firms that the solution is correct (i.e., passes the checker) and
proves this fact to the verifier, via a zZkSNARK.

Build nondeterministic checkers from certificates. Otti
uses the certificates of optimality which are available for
many optimization problems [46] to build nondeterministic
checkers. Validating these certificates is equivalent to verify-
ing that the solution to the optimization problem is optimal.
Crucially, the nondeterministic checkers produced by this
approach are radically more efficient than the original pro-
grams: they reduce (and often eliminate) the need for random
memory accesses, eliminate the need to upper bound loop
iterations, and avoid representing the logic of the solver itself.

Probabilistic certificates of optimality. Many important
classes of optimization problems (e.g., instances where SGD
is used) lack deterministic certificates of optimality. In these
cases, Otti introduces the notion of probabilistic certificates
of optimality (PCO). PCOs have the same benefits as standard
certificates but have a small soundness error. We show how to
apply PCOs to some instances of SGD to construct efficient
nondeterministic checkers. Our approach here is guided by a
new conjecture that asserts that whenever there is a rapid con-
vergence result for SGD, one can extract a PCO and therefore
also a nondeterministic checker.

Automatic generation of checkers. Otti takes as input C
programs extended with an API for optimization problems
(e.g., Otti’s API for LP is inspired by Google’s Glop linear
solver [6]). Otti then automatically extracts and compiles
the nondeterministic checker for the optimization program
defined with this API. This allows developers to be oblivious
to the notions of certificates of optimality, since their theory
can be quite complex for problems beyond LP.

Leverage numerical optimization solvers. Otti leverages
existing fast numerical solvers (e.g., Ipsolve [7]) to find the
solution to the underlying optimization problems in the pro-
vided C programs (and our API) and supply these solutions
to the nondeterministic checkers that Otti generates.

We have implemented a prototype of Otti on top of the

CirC SNARK compiler [51] and have compiled a variety of
real-world benchmarks typically used within the optimiza-
tion community to measure the performance of commercial
solvers. Otti can generate proofs for the R1CS corresponding
to these benchmarks using the Spartan zkSNARK [62] in
times ranging from 100 ms to 19 sec (for thousands to around
seven million constraints). On average, proof generation for
LP and SDP is 30-40x more expensive than finding the so-
lutions themselves using existing solvers. For SGD, proof
generation is on average 80x more expensive, and up to two
orders of magnitude more expensive for the worst performing
dataset. This constitutes a significant improvement over prior
work which produces R1CS statements that take over 4 orders
of magnitude longer to prove for LP statements and cannot
compile any of the SDP or SGD problems.

2 Background

In this section we briefly review zero-knowledge succinct
non-interactive argument of knowledge (zkSNARKS), give
background on how computations in zkSNARKSs are typically
represented, and then discuss the notion of nondeterminis-
tic checkers. Note that this paper does not introduce a new
zkSNARK, nor does it make any changes to existing ones.
Instead, Otti’s contributions are on representing numerical
optimization problems in a way that is more efficient for ex-
isting zZkSNARKSs. We therefore only discuss the properties
of zkSNARKSs rather than the details of how they work.

2.1 zkSNARKSs

A zkSNARK is a cryptographic protocol that allows a prover
to convince a verifier that it has knowledge of a satisfying wit-
ness to an NP statement — without revealing any information
beyond what is implied by the validity of the statement. A
common choice for zZkSNARKS is to target the NP complete
problem of rank-1 constraint satisfiability (R1CS) since any
nondeterministic random access machine running in a fixed
number of times steps can be transformed into an R1CS in-
stance. We discuss R1CS in the next section, but informally,
zkSNARKSs have the following properties:

1. Succinct: The size of the proof and its verification should
be sublinear (ideally polylog) in the size of the statement.

2. Non-interactive: No interaction is required between the
prover and verifier besides the transferring of any verifier
inputs and the computation’s output and proof.

3. Argument of knowledge: The prover must convince the
verifier that it knows a witness that satisfies the R1CS
instance. This argument is complete and sound.

* Completeness: An honest prover who knows a witness
that satisfies the R1CS instance can always generate a
proof that convinces the verifier of this fact.

* Computational Soundness: A malicious prover cannot
fool the verifier into accepting an invalid proof, except
with negligible probability.



4. Zero-knowledge: The proof reveals no information to
the verifier beyond the fact that the prover knows a wit-
ness that satisfies the R1CS instance.

2.2 Rank-1 constraint satisfiability

An RICS instance is a tuple (F, A, B, C,io, m), where F is a
finite field, io is the public input and output of the instance,
A, B, C € F™*™ are square matrices, and m > |io| + 1. This
instance is satisfiable if and only if there exists a witness
w € Fm=liol=1 that makes up a solution vector z = (io, 1,w)
such that (A-Z) o (B-Z) = (C-Z), where - is the matrix-vector
product and o is the Hadamard product. The entry of z fixed
at 1 enables the encoding of constants.

Since matrix entries can be used to encode both addition
and multiplication gates over [F, RICS generalizes arithmetic
circuit satisfiability. As we show in the next section, one can
“compile” a program written in a high level language like C
into R1CS, such that the R1CS instance is satisfiable if and
only if the output of the RICS instance (part of io) is the result
of correctly evaluating the program on the public inputs.

2.3 Compiling programs to R1CS

Given a program written in a high-level language like
C, how does one convert it to R1CS? There are many
“frontend” arithmetizing compilers [15, 16, 23, 27, 33, 41—
43, 51, 63, 66, 68, 71] written to handle this conversion and
even optimize the generated satisfiability instance (i.e., mini-
mize the number of constraints). Over time, these compilers
have added support for an increasing number of programming
language features like control flow, random-access memory
(RAM), bounded loops, algebraic datatypes, and more. Addi-
tionally, some compilers can optimize R1CS representations
using classical compilation techniques like constant folding
or loop flattening and new methods like range proofs.
Let’s take for example the following C program:

int foo(int a) ({
int prod = 1;
int i;
for(i = 0; i < 3; i++) {
prod *=a;
}
prod +=1i;
int r = 30 / prod;
return r;

This program, foo, takes an integer a as input. A compiler
may start by unrolling the bounded loop into a sequence of as-
signments. This operation introduces versioning for variables,
denoted by a subscript, a form otherwise known as single-
static assignment (SSA) [58]. SSA allows the expression of
mutable computations into immutable equations between ver-

sions of variables. The result may look like:

prodo =1, ip =0

prod = prody X a, i1 =1
prod, = prod; X a, i =2
prods = prod> X a, i3 =3
prods = prods + i3

r =30/prods

For the sake of simplicity we will omit the transformation
between the C int type and the elements in R1CS which are
in the finite field IF,.. In this particular example we will treat
them the same. The values of prody, iy, i1, i», i3 are actually
constants, so R1CS compilers can use standard techniques
like constant propagation and algebraic identities to eliminate
unnecessary constraints. The resulting constraints are:

prod, =a X a
prods = prody X a
prods = prods + 3
r = 30/prods

With the exception of r = 30/prody, these equations can
be represented in the form of matrices (A-7)o (B-Z) = (C-2),
as we discuss in Section 2.5. To make r = 30/prod, fit our
desired form, we can leverage Fermat’s little theorem. Since
¥~ 2. x=x""!'=1 (mod p), we can give the expression:

inv = (prods)’~*

r =30 X inv

This allows us to represent inv in log(p) R1CS constraints.
However, there is a cheaper way to express the inverse if one
leverages the non-determinism supported by R1CS.

2.4 The benefits of non-determinism

We review the notion of a nondeterministic checker, which we
will employ as a drop-in replacement for a computation that
is not efficiently represented in R1CS. Rather than expressing
a computation directly, we imagine we are given the result of
the computation and merely check that this result is correct.
This transformation makes sense when checking a solution is
more efficient (concretely) than computing it.

Some basic nondeterministic checkers appear in existing
SNARK compilers under the term exogenous computations.
They are used for expressing things like bit decomposition
(crucial for performing bitwise operations) [65], matrix mul-
tiplication [70, 75], RAM and remote storage via hash func-
tions [23], among other generic and simple constructs. In Otti,
we go a step further and take advantage of the full expres-
sivity and power of nondeterministic checkers by extracting
the important properties of optimization programs and check-
ing these properties. To fully characterize nondeterministic
checkers, we give a formal definition below.



Nondeterministic checkers. A partial function from set X
to set Y is a function from a subset of X to Y. A total predicate
is a total function with a codomain of {0, 1}. The relation
between a computation C and a nondeterministic check V' can
be represented as a partial function C(X) — Y and a total
predicate V : X x Y — {0,1}, such thatVx € X and y €
Y, C(x) =y & V(x,y) = 1. Conversely, both termination
and non-termination with C(x) # y correspond to V(x,y) = 0.
The equivalence above implies the existence of a trivial V for
any C which simply recomputes C:

1 ifClx) =y,
0 otherwise

V(x,y) = {

Unlike the trivial VV, for many computations it is actually
possible to get a considerable improvement in resource use
between computing C versus V, either in asymptotic terms
or in absolute terms. We demonstrate the benefits of non-
determinism with the example from the previous section. We
define C(x) = 30/x and its nondeterministic check as:

1 ifx xy=30,
0 otherwise

V(x,y) == {

We can prove that C(x) = y < V(x,y) = 1 always holds,
including the case where x = 0, since V(0, y) can never be 1,
as that would imply Jy such that 0 x y = 30, a contradiction.
We use this nondeterministic check to replace the equation
r = 30/prodys from the last example with a free variable r
and the equation r x prods = 30. This single multiplication
is one R1CS constraint, a considerable improvement from the
log(p) constraints generated by Fermat’s little theorem.

2.5 Matrix representation

We now discuss how to turn our equations into the matrix
format described in Section 2.2, and which serves as the input
to many zZkSNARKSs. We first reformat the equations, so each
corresponds to one row of the matrices:

a X a = prod,
prod, X a = prods
r X (prods +3) = 30

We can see that prods = prods + 3 gets “wrapped into” a
multiplication constraint. For this reason, addition and multi-
plication by a constant are basically free in RICS. Multiplica-
tions of two variables are a single constraint.

The solution vector 7 will be of the form (io,1,w) =
(a,r, 1, prod,, prods), where a is the public input, 1 is used to
encode constants, and the tuple (prod,, prods, r) is the witness.
We create the corresponding R1CS matrices A, B, C:

10000 10000 00010
00010):-Z0|110000)-Z=(00001])-Z
01000 00301 003000

A vector 7 = (3,1, 1,9,27) satisfies this RICS instance.

3 Numerical optimization problems

Otti’s focus is on producing efficient R1CS for numerical op-
timization problems. Optimization problems aim to minimize
or maximize an objective function f: R* — R by choosing
the best available inputs according to some set of constraints,
{gi} and {h;}. We are concerned primarily with convex opti-
mization problems, where the objective function is a convex
function and the feasible region of inputs is convex. Optimiza-
tion problems are described by a standard form:

maximize f(x)
subject to g;(x) <
hi(x)

0
0

Standard convex optimization problems that have efficient
solvers include problems where the objective and constraints
fit the frameworks of linear programming (LP) and semidef-
inite programming (SDP). More generally, a wide class of
convex problems can be efficiently solved using variants of
gradient descent; this is a generic framework that requires
smoothness hypotheses on the objective function but does
not make assumptions about the form of f, {g;}, and {A;}.
Gradient descent is very general and does not in fact require
convexity, only enough smoothness in the objective function
to calculate and numerically approximate gradient vectors.

3.1 Applications

Optimization problems are ubiquitous and there are many
applications critical to business, government, and academia.
Some real-world examples that Otti can handle are as follows.

* Product mix: Optimize the mix of different types of trans-
portation (e.g., bus, plane) to minimize travel time to some
destination. This can be phrased as an LP problem.

* Stocks or marketing: Determine the allocation of money to
stocks or ad campaigns to maximize return or clicks over
a 2 year period. This can be phrased as an LP problem.

* Scheduling: Find the optimal schedule to run tasks in a
real-time system subject to a variety of time and space
constraints. This can be phrased as an LP problem.

* Matrix completion: Suppose a 2D picture is given that
has a lot of missing pixels. A technique known as matrix
completion can be used to find values for these pixels that
minimizes an important metric (nuclear norm). This can
be phrased as an SDP problem.

¢ Circuit manufacturing: Find the minimum amount of area
needed in a resistor-capacitor (RC) circuit to support a
given signal propagation delay. Similarly, find the mini-
mum power dissipation of an RC circuit subject to a given
propagation delay. These can be phrased as SDP problems.

* Machine learning: Gradient descent is widely used to train
the parameters for machine learning models, including
neural networks, SVMs, and logistic regression.



3.2 Challenges

Expressing existing optimization problems in R1CS is diffi-
cult to do efficiently owing to the demanding features required
by optimization solvers. As a concrete example, consider the
Simplex algorithm for solving LP instances, which is by far
the simplest among the solvers we surveyed. Below we high-
light the major sources of complexity and overhead, which
materialize in some form in all existing optimization solvers.

Loops. Simplex uses unbounded while loops; exiting out of
some loops is dependent on a variable known only at run-
time. For example: while (lowest >= 0); where lowest
is either a public input or a value provided by the prover
exogenously (§2.4). To compile such data-dependent loops
into R1CS, a compiler must choose some large upper bound
and compile that many iterations, regardless of how many are
actually needed for a given instance.

RAM. Simplex performs random memory accesses. This
commonly occurs with arrays—in Simplex, the statement if
(tableau[pivot_row] [pivot_col]l > 0); has the vari-
ables pivot_row and pivot_col, which are not known until
runtime. A compiler must therefore have a way to express
random access memory. Prior compilers do this with the use
of Merkle hash trees [23], hash sets [63], accumulators [52],
or sorting networks [15, 68]. In all cases, these technique
increase the size of the R1CS instance by orders of magnitude
over computations that perform no random accesses.

Real numbers. Simplex uses real numbers. Since these num-
bers must be represented as field elements in R1CS, an appro-
priate encoding must be represented as well. This means extra
constraints for handling arithmetic operations, boolean opera-
tions, and casting. This can make a single variable assignment
like double a = b * c; into hundreds of constraints.

Missing features. SNARK compilers support only a subset
of the functionality of traditional languages. Meanwhile, pro-
duction solvers use vectorized instructions, GPU extensions,
and external libraries. A developer who wishes to use SNARK
compilers is forced to write their code in the accepted subset
of the language, and lose the efficiency of existing solvers.

4 Opverview of Otti

Otti responds to the aforementioned challenges with the fol-
lowing idea: instead of compiling an unoptimized solver that
lacks many features, Otti continues to use a state-of-the-art
optimization solver and instead compiles into R1CS a nonde-
terministic checker that confirms the optimality of the solution
produced by the solver. Crucially, we show how to automat-
ically derive this checker, and how to avoid RAM accesses
and unbounded loops so that it is efficient.

In the next sections we discuss Otti’s components. Fig-
ure 1 gives an overview of the high-level workflow. We start
with a numerical optimization instance that represents a real-
world problem. Otti asks developers to write the optimization
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FIGURE 1—High-level workflow of Otti.

problem using a simple API. For example, Otti’s LP API is
inspired by Google’s glop [6]. In addition, we have imple-
mented parsers for the most common file formats used to
specify these problems: for LP, Otti can parse MPS files [3];
for SDP, Otti can parse SDPA files [35]; for SGD, Otti can
parse PMLB files [50, 57]. Unlike the first two, SGD is so
general that there is no standard file format available but Otti
could easily be extended to support other formats. A key bene-
fit of supporting these file formats is that Otti can run existing
benchmarks without modification.

Once the optimization problem has been parsed or speci-
fied in C with our API, Otti exploits the notion of certificates
of optimality and infeasibility (detailed in Section 5) to auto-
matically construct a nondeterministic checker, which verifies
the optimality of a purported solution to the problem instance.

Otti then compiles the nondeterministic checker to R1CS
using a heavily modified version of the CirC SNARK com-
piler [51]. Otti also compiles the original optimization in-
stance (given in the C code) to a format that is compatible
with an existing numerical solver. For example, for LP, Otti
compiles the original optimization instance so that it can be
consumed by 1psolve. In short, Otti produces 2 outputs: (i)
RI1CS of the nondeterministic checker for the optimization
problem; (ii) a fully instantiated solver that the prover can use
to solve the problem (once all inputs are known) and obtain
the witness for the R1CS instance. Note that if the program
has code besides the optimization instance (e.g., code that
generates inputs to or consumes the outputs of the optimiza-
tion instance), Otti generates R1CS for those operations as
well and uses an SMT solver to find the satisfying assignment
for those constraints (similarly to CirC).

At the end of compilation and solving, Otti outputs a zkln-
terface [10] file (which is nowadays a standard data format
for R1CS and witnesses). Otti can then use any of the (many)
zkSNARK implementations that currently support this data
format to produce commitments to the witness and the corre-
sponding proofs. Otti uses Spartan [62], which is open source,
has a fast prover, and does not need a trusted setup; but Otti
can also use any of the others.



5 Optimization certificates

We begin by explaining the certificates for the LP and SDP
convex optimization frameworks. These problems can be
transformed from the primal formulation to the dual formula-
tion, which is also a convex optimization problem.

We describe the primal problem’s optimal solution by vec-
tor x, the dual problem’s optimal solution by vector y, and
define the notion of weak duality as: fp(y) > fp(x). Here,
fp and fp are the objective functions for the primal and dual
problems, which produce a single maximum or minimum,
respectively. (Note that one can also formulate the primal as
a min problem and the dual as a max problem and then invert
the duality inequality.) The difference between the optimal
dual and primal solutions, fp(y) — fp(X), is referred to as the
duality gap. Strong duality occurs when the duality gap is O.

Strong duality is a powerful condition because it provides
a certificate of optimality: given a solution to the primal and a
solution to the dual, we can check to see if the duality gap is
0. If so, then the solution is optimal [46].

For SGD problems, we cannot use duality to generate cer-
tificates. Instead, in Section 5.3 we introduce an entirely new
type of certificate that exploits the fact that in many cases
of interest there are bounds on the behavior of the stochas-
tic estimates of the gradient of the objective function near
the optimal point. By leveraging these bounds, we can craft
probabilistic certificates of optimality: if the certificate check
passes, then the solution is optimal with high probability.

Preview: How Otti exploits Certificates of Optimality.
Otti’s insight is to leverage certificates of optimality to avoid
representing the solver’s logic while still allowing the prover
to prove that the solution to an optimization problem is op-
timal. This is done as follows. For LP and SDP, the prover
finds the primal and dual solutions to the optimization prob-
lem using existing numerical solvers. The prover then proves
that the primal solution is a feasible solution to the primal
problem (that the point falls inside the feasible region), that
the dual solution is a feasible solution to the dual problem,
and that the duality gap is zero. For SGD, the prover finds the
optimal point z using an existing solver and then proves that at
7 the gradient estimates Vfi(z) (or a representative sampling
of them) have some property (e.g., are close to zero).

Generating proofs of these facts is significantly cheaper
than proving the execution of the solver itself because they:
(1) do not require RAM, (2) do not require loops, so there is
no need to upper bound loop bounds, and (3) do not require
as many expensive arithmetic operations over real values. In
other words, they illustrate the power of nondeterministic
checkers (§2.4), whereby verifying a key property of the
solution () is cheaper and yet equally as convincing to a
verifier as running the computation itself (C).

Below we discuss the theory behind this approach in more
detail and give examples with code snippets in Section 6.

5.1 Linear Programming

Linear programming (LP) is a class of convex optimization
problems where the objective and constraint functions are
linear. LP problems have a primal form:

find a vector x that maximizes ¢’ x
subjectto Ax < b
x>0

The corresponding dual is:

find a vector y that minimizes b’y
subject to ATy > ¢
y=>0

Here x and y are the solution vectors, and the vectors ¢ and
b can be thought of as objective functions for the primal and
dual problems, respectively; A is a matrix that describes the
constraints for feasible solutions.

The certificate of optimality for LP is as follows:

1. Primal feasibility Ax<b
x>0

2. Dual feasibility Ay >c
yz

3. Strong duality b’y =c’x

There are many other representations, as it is easy to con-
vert between minimization and maximization problems by
multiplying the objective function by —1, or transforming
inequality constraints to equality constraints with slack vari-
ables. In any case, the duality theorems still apply.

What does Otti do? Given an instance of an LP problem
(specified in an MPS file or using our API), Otti automat-
ically derives the corresponding dual problem. Then, Otti
derives the checks for the certificate of optimality (primal
feasibility, dual correctness, strong duality). Finally, Otti com-
piles these checks into R1CS. In our implementation, the
prover uses lpsolve to find the optimal solution to the pri-
mal (x) and dual (y) formulations, and then assigns x and y
to nondeterministic variables in the R1CS instance, proving
its satisfiability. By the strong duality theorem, satisfiability
of these checks implies that x is the optimal solution.

5.2 Semidefinite Programming

LP is only sufficient for problems where the objective func-
tion is linear and all of the constraints can be specified as
linear equalities or inequalities. When graphed visually, the
constraints of an LP program produce a feasible region in
the shape of a convex polytope; that is, the sides are flat.
Semidefinite programming (SDP) can be used to solve a more
general class of convex optimization problems. In fact, every



LP problem can be formulated as an SDP problem, although
this would be inefficient to do in practice. SDP can also ac-
commodate non-linear problems. The feasible region may be
described by the intersection of a convex cone and an affine
space (rather than only a polytope).

SDP problems can be written in standard form:

find a matrix X that maximizes C e X
subjecttoVi=1,...,m, A; @ X = b;
X>0

X is the solution n-by-n matrix, and the C and A;’s are con-
stant symmetric matrices with the same dimensions. We
use “X > 0” to denote that X must be a symmetric and
positive semidefinite matrix. We use “C e X to denote
>im1 2j—1 Cyj - Xj. In this way, C can be thought of as the
objective function, while each of the A;’s represents one of m
constraints. The b;’s are real scalars that make up a vector b,
of length m. The corresponding dual problem is:

find a vector y and matrix § that minimizes b’y

subject to ZyiA,- +5=C
i=1
S=0

Here, the y;’s are variable real numbers that make up a vector
y, of length m. S is another variable n X n matrix that is
required to be symmetric and positive semidefinite.

The certificate looks as follows:

1. Primal feasibility of X Vi, A; e X = b;

X>=0

2. Dual feasibility of (y, S) Z viAi+8=C
i=1

S>=0

3. Strong duality CeX=Db'yorSeX=0

Unlike LP, we cannot assert that the primal or dual problem
will always obtain their optima or that there will be no duality
gap. Hence, for there to be a valid certificate of optimality for
SDP, we require that the instance be strictly feasibile: a com-
mon optimal value exists if both the primal and dual problems
have feasible solutions inside the semidefinite cone [34].

What does Otti do? Otti expects an SDP problem instance
specified in the SDPA format or using our API. Otti’s deriva-
tion of the check is more involved than in LP. We first describe
what Otti checks, then how an SDP instance is solved, and
finally what happens when the instance is not strictly feasible.

Otti starts by deriving the nondeterministic checker for the
certificate of optimality given above. One tricky part of the
check is making sure that X and S are positive semidefinite.
We use this fact to help us devise an efficient check: a matrix

X is positive semidefinite if and only if it factors as LLT,
where L is a real lower triangular matrix, with non-negative
diagonal entries. This factoring is known as the Cholesky
decomposition [48]. Otti creates nondeterministic variables
for the lower triangular matrix part of both decompositions,
X; and S;, and the prover supplies these values exogenously.
The nondeterministic checker that Otti derives then confirms
that these matrices are lower triangular and indeed make up
a Cholesky decomposition of each matrix (e.g., X; - X! =
X). Non-negative diagonal entries of X; and S, are used to
confirmthat X = Oand S > 0.

Solving SDP instances. To solve SDP, Otti uses the
CSDP [19] library, which implements the interior point al-
gorithm [40]. This does not require the separate derivation
of the dual problem by Otti, as CSDP derives that on its own.
A drawback of SDP is that it is usually not possible to solve
an SDP problem exactly. But CSDP terminates with a small
duality gap (near 0) and its termination criteria is configurable.
In our implementation, we configure CSDP so that the duality
gap is equal to the precision level of our fixed-point imple-
mentation, and therefore, effectively O in that representation.

In order to satisfy strict feasibility, Otti requires the prover
to specify an initial positive definite feasible (though not
optimal) solution Xj. (A positive definite matrix is similar to a
positive semidefinite matrix, except the diagonal entries of its
Cholesky decomposition must be completely positive, rather
than non-negative.) This can be leveraged by Otti (during
solving) to obtain a feasible starting solution to the primal
and dual problems [34]. There are many ways the prover
can find such a point: it may be obvious from the problem
instance, or it may be found with the short-step path-following
method, the infeasible-interior-point method (where you start
with any point), or by relaxing/modifying the SDP instance
in some way so that a feasible point is more obvious [55]. As
an example of an easy-to-derive initial point, imagine that
the optimization problem aims to minimize the amount of
time it takes to ship computer parts across the nation, given
constraints on what different suppliers can produce in a given
unit of time, where they can ship, and how fast they can ship
their products. The initial point could be that one supplier
produces and ships all products, and other suppliers produce
and ship none. This is not the optimal solution (since it does
not minimize the amount of time it takes to ship parts across
the nation), but it may be a feasible one.

What happens if the instance is not strictly feasible?
What can a prover do in the case that an SDP instance is
not strictly feasible to convince the verifier of this fact? A
straightforward option is for the prover to simply tell the veri-
fier that the solution is not solvable (with no proof). After all,
this would mean that a malicious prover can, at worst, deny
service by claiming an instance is not solvable, but cannot
violate soundness by convincing the verifier that a suboptimal
solution is indeed optimal.



If the above is not acceptable, Otti also has a mechanism
for the prover to generate a proof of infeasibility for the SDP
instance, as a proof of the statement

(EIZ',AL' e Xy # bi) VXy#0

We use >~ to denote positive definiteness. The above check
proves infeasibility with respect to a particular starting point
Xo [34]. This means that a solver will not be able to derive an
appropriate feasible solution to the primal and dual problems
from Xy, and therefore, strict feasibility is not satisfied. Of
course, since the prover is the one who generates Xy, a mali-
cious prover could once again deny service by passing a bad
Xo. A workaround is for the verifier to specify a set of initial
values for X as part of the public inputs, and for the prover to
prove that the solution is infeasible with respect to all of them.
How the verifier gets these points is application-specific; this
is easy in the context of verifiable outsourced computation
but more difficult in the zero-knowledge case. We find that
for several applications we surveyed, knowing the general
SDP constraints—even without necessarily knowing all of the
entries in all matrices—could allow a verifier to craft various
starting points.

Most of the infeasibility check is similar to the check for op-
timality. One of the conditions for infeasibility is that X, 0.
A single nonpositive eigenvalue is enough to confirm this
condition. The prover calculates this eigenvalue and corre-
sponding eigenvector and assigns them to nondeterministic
variables in X; and S;. Otti then checks that this eigenval-
ue/eigenvector pair is valid for the provided Xj.

Finally, when the SDP instance is a small part of a larger
program (rather than being the entire program), Otti allows the
developer to specify (and the prover to prove) the disjunction
of the above two cases: either the solution is optimal, in which
case use the optimal value in the rest of the program, or the
instance is infeasible in which case use some default value—
without revealing to the verifier which branch was taken.

5.3 Stochastic gradient descent

For problems that do not necessarily fit the framework for
either linear or semidefinite programming, a general-purpose
approach is to use gradient descent. As long as the loss func-
tion f is adequately smooth, one can search for local optima
by following a path determined by the gradient Vf, which is
defined over the entire data set. Specifically, one starts at a
point xo, sets x; = xo — €Vf(xp) for stepsize €, and repeats.
This is a very general procedure, but there is no guarantee
that for a given loss function the gradient path will lead to
a global optimum. Nonetheless, both theoretical work and
empirical validation have shown that for examples of interest
it is possible to find satisfactory optima.

It is often prohibitive to compute the gradient of the loss
function f, so a standard approach is to use stochastic gradient
descent (SGD). SGD iteratively takes steps in the direction of
estimates Vf; that are based on a randomly selected sample i

of the data set. These estimates are much cheaper to compute
and are assumed to be an unbiased approximation of the
gradient of the loss function. That is:

E(Vf) = Vf

Although it is not obvious that such a procedure should con-
verge, a number of recent results show that stochastic gradient
descent rapidly converges, especially when used in connec-
tion with adaptive stepsize algorithms [21, 22, 30, 49, 67, 73].
We show that the hypotheses for these convergence re-
sults provide sufficient control on the loss function to de-
rive certificates for Otti to use. For example, Vaswani-Bach-
Schmidt [67] study growth conditions on f that guarantee
rapid convergence for SGD, even in non-convex settings.
Notably, the strong growth condition, which is satisfied by
perceptrons (a type of linear classifiers) and also often by
overparametrized neural networks, stipulates that:

E(|IVAII?) < E([VFIP).

In this case, a local optimum for the loss function f is a
stationary point for Vf and thus is a stationary point for all
of the f;. So a deterministic certificate that a point is optimal
can be obtained by checking that ||Vf;|| = 0 for each i.

To reduce costs further, one can construct a probabilistic
certificate by asking the prover to commit to the purported
solution, and then prove that ||Vf;|| = 0 for a random fraction
of the samples. This relaxation allows a malicious prover
to violate soundness with probability that depends on the
number of samples tested; even then, when the prover violates
soundness, the purported solution is suboptimal but must still
be close to the optimal solution since the stochastic gradients
are unbiased estimators.

Although the strong growth condition is a fairly stringent
hypothesis, we believe that essentially any situation in which
SGD converges fast enough to be useful in practice will give
rise to a probabilistic certificate. For example, other con-
vergence hypotheses for SGD (e.g., see [73]) are explicitly
probabilistic: convergence for SGD can be shown to be rapid
if with high probability:

IVA@P > el — x|

for a suitable constant o, where x* is the optimal x-value.
In these cases, Otti can extract a probabilistic certificate in
which there is soundness error that depends on the constant
a;. More generally, we put forth the following conjecture:

Conjecture 1. From the hypotheses of any theorem that guar-
antees rapid convergence of stochastic gradient descent one
can extract a probabilistic certificate of optimality.

That is, whenever we expect SGD to converge quickly, Otti
can produce a certificate. One justification for this conjecture
is that any assumption that implies SGD converges fast means



that at the optimal point, most of the time, the stochastic
gradients cannot take you too far away. In future work, we
plan to prove the above conjecture. In this paper, we focus
on the strong growth condition in the situation when the loss
function can be written as a sum

) = fil),
i=1

where f; is a smooth function. A wide variety of ML algo-
rithms have this form, where f; encodes the contribution to the
loss function for a particular training example. The stochastic
gradients are then simply Vf;.

What does Otti do? As in the LP and SDP cases, the prover
in Otti compiles a certificate of optimality for a given SGD
instance to RICS. Under the strong growth condition on the
loss function f, the certificate for a purported optimal point z
looks as follows:

Vi, Vfi(z) = 0.

As discussed above, the strong growth condition guarantees
that if z is in fact a local optimum of f, i.e., that Vf(z) = 0,
then the certificate is valid. On the other hand, the condition
that the stochastic gradients Vf;(z) are unbiased estimators
of Vf(z) implies that if z is not a local optimum and so
Vf(z) # 0, then it cannot be the case that a certificate exists.

The size of the certificate is proportional to the number of
data points used. However, the check of the certificate is sub-
stantially more efficient than actually performing stochastic
gradient descent: for a linear classifier example with 10° data
points, convergence requires roughly 50 descent iterations
each of which loops through the subgradients for all of the
points. In contrast, our certificate requires a single pass. In
larger examples and when the stepsize is not tuned properly,
the number of such iterations can easily be in the thousands.

Concrete loss functions. The procedure we have described
above is very general, but in our experiments we focus on
the particular case of loss-functions associated to perceptrons
(linear classifiers). Here Otti’s optimality check for SGD takes
advantage of the property of the “hinge” loss function

flx) = Z max(0, 1 —y; - (w,x;))
and the “square hinge” loss function

flix) = Zmax(O, 11—y (w,x))?

where (-,-) denotes inner product. These functions sat-
isfy the strong growth condition for separable data. These
functions have subgradients that are most easily expressed
piecewise, with one part in the y; - (w,x;) < 1 case and one
which is always 0 when y; - (w,x;) >= 1. The second defines
a region where the gradient of the loss function can be O si-
multaneously for all data-points; in other words w is optimal

#include "fxpt.h"
int main() {

fp64 X0
X1

__exist(),
__exist();

_LP_maximize (

3.0 " X0 + 4.0 * X1, // objective
X0 + 2.0 * X1 <= 14.0,

3.0 X0 — 1.0 " X1 >= 0.0,

X0 — 1.0 * XI <= 2.0,

X0 >= 0.0,

X1 >= 0.0

FIGURE 2—Provided code for primal formulation of LP instance.
LP variables can either be constants, variables computed previously
in the program, or nondeterministic variables provided exogenously
by the prover for values previously committed.

when Vi, 1 — y; - (w,x;) = 0. This is precisely the optimality
check we encode in Otti’s proof of SGD training.

6 Otti’s transformations

This section gives an example of how Otti takes an opti-
mization problem, transforms it, and then compiles it into
RICS. We use a toy LP example for simplicity, but a similar
process exists for SDP and SGD, which we elaborate on in
Appendix A.

Below is the LP problem in its primal form.

find x that maximizes (3 4) - X

1 2 14
subjectto | =3 1 x< 10
1 -1 2

x>0

This is what the developer formulates after it converts
some real-world problem into an optimization problem. The
developer then writes down this formulation using Otti’s C
API for LP or uses the MPS file format.

The resulting C program is given in Figure 2. It includes
fxpt.h which is our fixed point library. The __exist(-)
intrinsic tells Otti that this is a nondeterministic variable that
should be provided by the prover and is not known at compile
time or by the verifier. The __LP_maximize (-) intrinsic tells
Otti that this is an LP problem on nondetermnistic variables
X0 and X1. What Otti does next is fully automated.

First, Otti computes the dual formulation of the problem:

find y that minimizes (14 0 2) -y

. 1 -3 1 3
subject to <2 1 _l>-y2(4>

y=0



fp64 YO
Y1
Y2

__exist(),
__exist(),
__exist();

__LP_minimize (
140 * YO + 2.0 * Y2, // objective
YO + 3.0 * Y1l + Y2 >= 3.0,

2.0 * Y0 - 1.0 * Yl — 1.0 * Y2 >= 4.0,
Y0 >= 0.0,
Yl <= 0.0
Y2 >= 0.0

FIGURE 3—Automatically generated code for dual formulation
corresponding to the LP instance given in Figure 2.

int check = __check(
// primal is satisfied

X0 + 2.0 * X1 <= 14.0,

3.0 * X0 — 1.0 * X1 >= 0.0,
X0 - 1.0 * X1 <= 2.0,

X0 >= 0.0,

X1 >= 0.0,

// dual is satisfied

YO + 3.0 * YI + Y2 >= 3.0,
2.0 Y0 — 1.0 " Y]l — 1.0 " Y2 >= 4.0,
YO >= 0.0,

Yl <= 0.0,

Y2 >= 0.0,

// strong duality holds

3.0 * X0 + 4.0 * X1 14.0 * YO + 2.0 * Y2

)

FIGURE 4—Automatically generated nondeterministic checker for
LP instance given in Figure 2.

Specifically, Otti generates the C code snippet given in
Figure 3. Then, Otti generates the condition for strong duality.
In mathematical terms, it is the following assertion:

Strong Duality (14 0 2) -y = (3 4) - X

Given the primal, the dual, and the strong duality condition,
Otti generates a nondeterministic checker that verifies the
certificate of optimality for this problem instance. Recall
that the certificate of optimality asserts that: (1) the primal
solution is satisfiable, (2) the dual solution is satisfiable, and
(3) strong duality holds. Figure 4 gives the C code for the
nondeterministic checker generated by Otti.

The LP nondeterministic checker defined over nondeter-
ministic variables X0, X1, Y0, Y1, Y2 is the code that Otti ac-
tually compiles to RICS. Everything else is not compiled to
RICS. Instead, the primal and dual code shown earlier is used
by Otti to find the values for these nondeterministic inputs by
invoking 1psolve with the corresponding parameters. This
helps the prover generate the witness it needs. Minimization
problems for LP are computed similarly.
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7 Implementation

Otti is built on top of CirC [51], which is a compiler that can
translate a subset of C (and other high-level languages) to
existentially quantified circuits. CirC supports a few different
output formats, including the one we use, R1CS. CirC uses a
typed version of SMT-LIB [8] as its intermediate representa-
tion and the Z3 SMT solver [29] for evaluating terms of the
program, error checking and optimizations, such as equation
elimination. CirC is more than a compiler; it is also a solver
that a zZkSNARK prover can call to obtain the witness for
a RICS instance. CirC takes in inputs to the program and
evaluates the compiled R1CS with those inputs using Z3. Otti
uses CirC as a compiler extended in a variety of ways, and
also as a solver extended with LP, SDP, and SGD solvers.
For output and proofs, Otti produces files in the zkInter-
face binary format [10], which is a recent standard for spec-
ifying R1CS in a portable manner. Any zkSNARK system
that supports zkInterface, including libsnark [2], bulletproofs
[24], and bellman [1], can process Otti proofs. We modified
the open source implementation of the Spartan zkSNARK
library [9] to support zkInterface files as input and to sup-
port arbitrary R1CS instances (the original implementation
supported only instances with power-of-two-sized matrices).
Spartan does not need a trusted setup and, at the time of im-
plementation, had the fastest open-sourced zZkSNARK prover.

Rational numbers. CirC does not have support for any sort
of rational number representation beyond integers. We add
support for rational numbers in the form of a fixed-point num-
ber representation. This type has 32 bits of precision before
and after the point. We write our fixed-point as a typedef in
C: typedef double fp64;. This type definition needs to
be declared and used in place of double or float inside
of any user program that deals with rational numbers. Users
can simply include £xpt . h, a header file which contains this
type definition and the function F_EQUAL, which compares
the equality of two fixed-points within a certain epsilon. This
epsilon can also be set within this file, if desired.

When Otti compiles C programs it treats fixed-point types
as a double that is cast as a new FixedPoint type. The double
behavior is true to the IEEE 754 standard. When being cast,
the number is truncated to fit into the 32 bit precision after
the point, as other C types are. For all other operations, this
FixedPoint type is treated as a large integer; the number x is
stored as 2°2-x. During multiplication and division, FixedPoint
types are cast up to a 96-bit number to avoid overflow. Users
should be aware that precision is inevitably lost after repeated
multiplications and divisions, as in any FixedPoint format.

Versions of CirC and how Otti uses each. CirC’s origi-
nal implementation [5] was in Haskell; Otti extends this im-
plementation with support for zkInterface and rational num-
bers as explained above, and incorporates solvers for LP and
SDP. A drawback of this Haskell implementation is that it
requires significant memory and time for compiling C pro-



grams into R1CS, and Otti inherits these inefficiencies. More
recently [11], CirC has been ported to Rust and is signifi-
cantly more resource efficient. We extend this Rust version
to support our SGD certificates (we were unable to compile
these certificates with the Haskell version since it exhausted
our test machine’s memory resources), and are in the process
of porting LP and SDP to this new version as well.

8 Evaluation

This section answers our animating question: is the use of
nondeterministic checkers and numerical optimization certifi-
cates of optimality and infeasibility an effective technique at
reducing the cost of expressing these computations in R1CS.
Our results suggest this is indeed the case.

Test suites. For LP, we use a subset of the netlib LP/data
model library [4, 36]. These benchmarks are inspired by real-
world applications on resource allocation, finance, and gov-
ernment. They are standard in evaluating the correctness and
performance of LP solvers. Figure 5 lists these benchmarks,
the number of variables and linear constraints, the resulting
number of RICS produced by Otti, and the size of proofs
produced by Spartan.

For SDP, we use SDPLIB [20], which is a set of problems
for benchmarking existing SDP solvers. These problems come
from applications like truss topology design, control systems
engineering, and combinatorial optimization problems. We
choose initial points for the feasible problems the same way
the CSDP solver does [19]. We evaluate infeasible instances in
Appendix B. Figure 8 lists these benchmarks, the number of
variables, the size of the semidefinite matrices, the resulting
number of R1CS produced by Otti, and the size of proofs
produced by Spartan.

For SGD, we use binary classification problems from the
Penn ML Benchmarks (PMLB) dataset [50, 57]. This set of
benchmarks is curated specifically for evaluating supervised
ML algorithms, and comes from a variety of applications. The
datasets we use either have binary classes and are linearly
separable, or are datasets that have multiple classes but can be
projected onto two linearly separable classes. Figure 12 lists
these benchmarks, the number of datapoints and features in
them, the resulting number of R1CS produced by Otti, and the
size of proofs produced by Spartan. Unless otherwise stated,
we check the stochastic estimate of all data points (rather than
a fraction of them), so there is no additional soundness error.

Experimental setup. We perform all of our measurements
on a server with 40 Intel Xeon E5-2660 v3 CPUs (2.60GHz)
and 200 GB DDR4 memory. Due to the extremely slow com-
pletion time of using existing compilers and proof systems
on our problem instances, it was impossible to run a baseline
for even small tests from the benchmark suites we chose. The
largest instance which we could run with prior work has 5
LP variables and for that, Otti is 5 orders of magnitude faster.
Our baselines are instead existing LP, SDP, and SGD solvers
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afiro 28 32 36,811 19.82
sc50a 51 48 54,066 19.82
sc50b 51 48 55,085 19.82
adlittle 57 97 180,747 29.33
sc105 106 103 113,282 20.51
scagr7 130 140 229,061 29.33
israel 175 142 511,156 47.02
agg 489 163 1,069,523 47.71
sc205 206 203 220,520 29.33
brandy 221 229 815,356 47.02
beaconfd 174 262 1,149,169 47.71
agg2 517 302 1,887,762 47.71
agg3 517 302 1,891,690 47.71
lotfi 154 308 326,102 30.01
scorpion 389 358 731,137 47.02
sctapl 301 408 414,101 47.71
scfxml 331 457 965,504 47.02
bandm 306 472 1,093,340 47.02
scagr25 472 500 823,136 47.71
degen2 445 534 626,407 47.71
scsdl 78 760 1,034,359 47.02
fffff800 525 854 1,479,725 47.71
scfxm?2 661 914 1,932,500 47.02
scrs8 491 1,169 1,601,971 47.71
bnll 644 1,175 2,324,544 81.10
scsd6 148 1,350 1,845,814 47.71
modszk 1 688 1,620 1,805,821 47.71
scsd8 398 2,750 3,607,188 81.10

FIGURE 5—Number of LP equations, variables, R1CS constraints,
and proof sizes generated for the LP benchmarks.

which provide no proofs. Our results are therefore overhead
over unverifiable solvers, rather than speedup over prior work.

Our experimental procedure follows a 4-step process: (1)
Compile: we compile each benchmark using Otti to get the
corresponding R1CS. (2) Solve: we supply the public and the
(prover’s) private inputs to Otti, which engages Otti’s numeri-
cal solver, and which produces the satisfying assignment to
the R1CS instance. (3) Export: we export the R1CS instance,
inputs, and witness in zkinterface’s binary format (§7). (4)
Prove and verify: the zkinterface files are then consumed by
Spartan. Finally, we measure the number of constraints for
the resulting R1CS, the size of the zkSNARK proof, and the
execution time of the prover and verifier.

Prover and Verifier runtime. We measure the running time
of the following components and aggregate those for each
benchmark to get the end-to-end runtime. We exclude compi-
lation time, as this is done once for each problem instance.
* Solver runtime: time for the numerical solver to determine
the optimal solution to the optimization problem.
* Prover runtime: time it takes the Spartan prover to generate
a zkSNARK proof given an R1CS instance and witness.
* Verifier runtime: time it takes the Spartan verifier to check
the proof for a given R1CS instance.
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FIGURE 7—Overhead of Otti over baseline for LP benchmarks.

8.1 Linear programming

In this section we evaluate the effectiveness of Otti’s auto-
mated certificates of optimality for LP problems in order to
produce smaller RICS instances. We use 1p_solve v5.5 to
solve the LP problems (both for the baseline and in Otti).

RI1CS and proof sizes. Figure 5 reports the name of the
different benchmarks we consider, the number of LP variables
and linear equations, the size of the R1CS instance produced
by Otti, and the proof sizes produced by Spartan for the
different LP instances, which are all well below 100 KB. We
find that the number of R1CS constraints cannot be predicted
solely from the number of variables or equations; it also
depends on the complexity of each equation, as some can
be defined over tens or hundreds of variables, while others
defined over a single variable.

Otti compiles instances with thousands of LP variables and
hundreds of equations. For comparison, CirC is unable to
handle more than 5 LP variables and 4 equations on our test
machine due to the excessive amount of memory required.
Even then, CirC produces more R1CS constraints for that tiny
instance than Otti does for the largest instance in Figure 5.

Runtime. Figure 6 shows that Otti can solve and generate
proofs for optimization problems within hundreds of millisec-
onds for small problems like afiro (which is one of the 13
benchmark problems from the Systems Optimization Labo-
ratory at Stanford) to a few seconds for large problems like
modszk1 (which is a multi-sector economic planning model).
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As we expect, the cost is dominated by Spartan’s prover gen-
erating a proof given the R1CS instance and witness—solving
the primal and dual optimization problems to get the witness
is only a fraction of the cost (it is the same as the baseline).
Verifying the proof is relatively cheap (in all cases less than 1
second), but not constant, since Spartan’s verifier performs
O(+/n) operations, where n is the size of the R1CS instance.

We now turn our attention to the relative overhead of Otti’s
prover over a baseline that generates no proofs and need not
solve both the primal and dual problems. Figure 7 depicts the
performance of Otti’s prover normalized by said baseline. In
all cases, we find that Otti introduces significant costs; Otti’s
prover is on average 40x more expensive than the baseline.
Nevertheless, this constitutes a significant achievement, given
that for proof systems with succinct proofs and no trusted
setup, the applications that prior works evaluate are smaller
examples with overheads of at least 3 orders of magnitude.
For example, Hyrax [69] and Libra [72] evaluate the multipli-
cation of two matrices, and observe 3 to 4 orders of magnitude
overhead for the prover compared to native execution (that
generates no proof). Similarly for the generation of Merkle
tree proofs. Aurora [14] and Fractal [26] operate on synthetic
R1CS instances but also report overheads of 3 orders of mag-
nitude. In contrast, Otti operates on real benchmarks used by
the optimization community with modest overhead.



S
) & & @
& B & &
. )
S & &° §°
&3 & S S
& 3 S &
Dataset ) S < <
truss1 6 13 3,007,933 79.20
hinf1 13 14 4,703,942 79.88
hinf2 13 16 6,536,398 79.88
hinf3 13 16 6,536,398 79.88
hinf4 13 16 6,536,398 79.88
hinf5 13 16 6,536,398 79.88
hinf6 13 16 6,536,398 79.88
hinf7 13 16 6,536,398 79.88
hinf8 13 16 6,536,398 79.88
hinf9 13 16 6,536,398 79.88
controll 21 15 6,968,254 79.88

FIGURE 8—Number of equations, size (n) of the SDP n X n matrix
variables, number of R1CS constraints, and proof sizes generated
for SDP benchmarks.

8.2 Semidefinite programming

Similarly to the LP description above, we measure the ef-
fectiveness of Otti’s automated certificates of optimality, but
this time for SDP problems. We use CSDP v6.2.0 to solve
SDP problems in Otti and as a baseline. We talk about fea-
sible problems in this section; for a discussion of infeasible
instances, see Appendix B.

Instance sizes. Figure 8 gives the results of compiling the
SDP benchmarks with Otti. The number of R1CS constraints
is significantly larger than in LP for small SDP instances due
to (1) the higher complexity of the SDP nondeterministic
checker; (2) the fact that Otti compiles both the feasible and
infeasible branches (if one does not need such disjunction
proofs, the costs are lower than what we report); and (3) each
SDP “variable” is actually an n x n matrix, making the instance
size somewhat deceiving. For example, an SDP matrix of
size 16 actually has 256 variables per matrix. When this
number grows above 300, our current prototype is unable to
compile SDP checks; we are working on porting our prototype
to CirC’s new Rust codebase [11] which is more efficient.
Nevertheless, this constitutes a significant improvement over
prior work since we are unable to compile any of the SDP
problems with any existing open sourced compiler.

Runtime. Otti uses CSDP to measure the solver runtimes
for feasible SDP instances. The nature of its interior point
algorithm means that the primal and dual problems are solved
in tandem and cannot be divided into two separate solving
times, as in LP. We also use CSDP’s initsoln method to find
a good heuristic starting point.

Figure 9 shows the results. Otti takes more time on SDP
problems than LP, spending a few seconds to solve and gener-
ate each proof. However, the overhead relative to the baseline,
given in Figure 10, is similar to the LP experiments: Otti’s
prover is on average 30 x more expensive than the baseline. In
any case, generating proofs dominates the runtime, while ver-
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FIGURE 10—Overhead of Otti over baseline for SDP benchmarks.

ification is cheap—Iess than a second. The set of hinf prob-
lems (from control systems engineering) demonstrates that
while equivalent instance size generally causes similar run-
time, this is not always the case. For example, hinf2’s prov-
ing time is 3 seconds longer than other problems of the same
size. This is due to Spartan’s implementation currently us-
ing a variable-time multiscalar multiplication function (from
curve25519-dalek), and hence time can vary depending on the
instance parameters and witness. Switching to a constant-time
implementation of multiscalar multiplication would avoid this
behavior (a potential side channel).

8.3 Stochastic Gradient Descent

Finally we evaluate the effectiveness of Otti on SGD, with the
training of a linear binary classifier (i.e., a perceptron). We
generate certificates of optimality as described in Section 5.3.
We use scikit-learn [54], to train the SGD classifier and
get the optimal fitted plane; the associated certificate is then
checked by Otti.

Instance sizes. Figure 12 reports the name of the different
classification datasets, their sizes, the resulting number of
RICS constraints produced by Otti, and the size of proofs.
In contrast to the LP and SDP datasets, since the certificate
involves a gradient condition for every one of the input points,
the resulting R1CS instances are significantly larger. The
largest dataset we test is the clean?2 dataset, which consists
of 6,598 datapoints and 168 features. Otti compiles a non-
deterministic checker for the corresponding certificate of op-
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Dataset Nid ¥ Dad ]
confidence* 72 3 13,027 14.08
haberman 306 3 60,237 19.36
iris* 150 4 4,730  11.47
new_thyroid* 215 5 25,810 14.75
krkopt™* 28056 6 399,555  29.31
diabetes 768 8 212,501  28.64
glass™ 205 9 7,571 11.47
labor 57 16 22,763  14.75
letter™ 20000 16 374,655 29.31
lymphography* 148 18 31,823 1475
collins* 485 23 31,733 14.75
allbp™ 3772 29 103,451  20.03
dermatology™ 366 34 55,877  19.36
kddcup* 494020 41 198,840 28.64
molecular_biology_promoters 106 57 41,343 19.36
mfeat_karhunen™ 2000 64 162,352  28.64
analcatdata_authorship* 841 70 231,455 28.64
cleanl 476 168 3,473,740  79.20
cleanlt 476 168 2,262,837  79.20
clean2t 6598 168 6,773,944  79.88
GE1000f 1600 1000 571,558 4592

FIGURE 12—Number of data points and features (for each data
point), as well as the number of R1CS constraints generated by Otti
and proof sizes generated by Spartan for the PMLB datasets. We
use * to denote datasets with more than 2 classes that we projected
onto 2 classes. We use T to denote datasets for which Otti generates
a nondeterministic checker that only checks the stochastic gradient
of half of the points (i.e., a probabilistic certificate). GE1000 is short
for GAMETES_Epistasis_2_Way_1000atts_0.4H_EDM_1.

timality, and the result is 9,448,632 R1CS constraints. We
are unable to run Spartan to prove that the prover knows a
witness for this nondeterministic checker since it pushes past
the memory limit of our machine. Instead, we choose to com-
pile a probabilistic certificate of optimality for this dataset by
having the verifier check half of the data points instead of all.
For clean2, this results in 6,773,944 R1CS constraints, for
which we are able to generate and verify proofs.

Using a probabilistic certificate introduces additional
soundness error. For example, if a dataset consists of n input
data points, and a malicious prover produces a suboptimal
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solution for which the stochastic gradient of all but ¢ of those
data points is 0, then the verifier, checking k of the n data
points uniformly at random, can detect the prover’s misbehav-
ior with probability 1 — (";Z) /().

While this detection probability can be low when £ is small,
it also means that the solution should be close to optimal;
analyzing the exact distance is something that we plan to for-
malize in future work. Furthermore, other SGD convergence
assumptions (e.g., [73]) are probabilistic and we believe that
deriving certificates from these assumptions do not require
the verifier to check a condition on all data points.

Runtime. Figure 11 shows that Otti can solve and generate
proofs for training a binary classifier on real datasets, with
reasonable performance. As we expect, the cost is dominated
by Spartan’s proof generation given the large R1CS instances
and witnesses. Training on the dataset is particularly fast and
can take advantage of hardware acceleration. Verifying the
proof is relatively cheap, on the order of seconds.

Now, let us consider the relative overhead of Otti’s prover
over a baseline that generates no proofs and only implements
the training. We find that Otti has variable overhead, ranging
from 1 to 2 orders of magnitude. Figure 13 depicts the perfor-
mance of Otti’s prover normalized by said baseline. Despite
this overhead, we believe this is the first work to generate
zkSNARK proofs of training a classifier on a real dataset.

8.4 Otti’s impact on solving, proving, or verifying time

Otti’s goal is to produce an R1CS instance for a nondetermin-
istic checker whose correct execution implies the optimality
of the underlying optimization instance. As a result, Otti does
not impact the performance of the underlying solvers in any
way. Otti impacts the performance of zZkSNARKSs only in
the sense that it produces the R1CS instance, but it uses the
zkSNARK as a black box. Indeed our contribution is to make
the R1CS instance as small as possible. Note that if Otti uses a
different solver or zZkSNARK, Otti would inherit their proper-
ties. For example, if we use the Groth16 [39] implementation
in 1ibsnark [2] instead of Spartan, the proof sizes would be
constant but their generation would be slower and one would
need to accommodate a trusted setup.
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FIGURE 13—Overhead of Otti’s prover (proof and solve) for training and proving a perceptron using SGD versus a baseline that lacks proofs.

9 Related work

The idea of using strong duality to verify the output of LP
programs has also been explored in the past [28, 38]. For
example, Goemans et al. [38] define doubly-efficient pseudo-
deterministic proofs, where a polynomial time prover solves
a problem and aids a polynomial time verifier in verifying
that the solution is correct. One of their examples includes
LP programs. Unlike Otti, their results are purely theoretical;
they prove that an efficient pseudo-deterministic interactive
proof exists for LP. Analogously to our LP certificate, they
use strong duality to verify that they find the optimal solution.

Hoogh et al. [28] similarly use LP certificates of duality to
achieve verifiable LP, but they do so in the context of semi-
honest MPC, and their evaluation tests smaller instances. For
example, their largest instance has around 200 variables and
equations and takes over 20 hours to complete. In contrast,
Otti uses LP certificates to produce small zZkSNARK instances,
runs on real problems, and achieves practical performance:
an LP instance with 398 equations and 2,750 variables takes
under 6 seconds.

To our knowledge, Otti is the first system to leverage cer-
tificates for SDP to generate faster proofs, as well as auto-
matically extracting these certificates from standard problem
formulations and file formats. Finally, Otti introduces de-
terministic and probabilistic certificates for SGD under the
strong growth assumption and posits the existence of many
more under convergence hypotheses.

Our use of the SGD certificate to prove the training of a per-
ceptron is related to the larger area of using zero-knowledge
proofs in ML. Most work in this area produces proofs of in-
ference [31, 45, 70], or uses proofs to establish that inputs in
federated learning fall in an acceptable range [59-61]. Proofs
of training (which is what Otti’s SGD evaluation tackles),
are harder to generate and verify. DIZK [71] requires tens of
machines to prove the training of a small and simple linear
regression model. VeriML [75], on the other hand, generates
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proofs for a wider class of models but only proves that a hand-
ful of randomly-selected training iterations (rather than the
full training) are correct; this limits the guarantees it provides.
To our knowledge, Otti is the only system to be able to prove
the full training of a realistic ML model on real datasets.

10 Discussion

Otti is the first compiler for zkSNARKS that supports opti-
mization problems of a realistic size. The overhead of Otti,
while still high, is in many cases sufficiently small so as to be
practical for actual usage. Moreover, the evaluation compar-
ison is a stringent one—we are comparing to native solvers
running highly optimized floating point algorithms.

Nonetheless, there are many avenues for improvement.
For one thing, it would be useful to expand the universe of
optimization problems that Otti can support. For instance, our
SDP protocol assumes the conditions that guarantee strong
duality hold. Instead, we could draw inspiration from works
that introduce certificates for convex optimization problems
from Farkas’s lemma and theorems of alternatives [44, 46, 56].
As another example, the cases of SGD we consider require
strong hypotheses such as the strong growth condition. While
the strong growth condition applies to examples of interest, it
is also too stringent to accommodate other natural examples.
Notably, classification problems that are not linearly separable
do not satisfy it. Further work to understand the weakest
possible hypotheses that still result in usable probabilistic
certificates is needed.

More generally, Otti’s approach of aggressively using non-
deterministic checkers to reduce proof size will be of broad ap-
plicability in the design of efficient compilers for zZkSNARKS.
Nondeterministic checkers have been used before: prior com-
pilers [23, 27, 41-43, 63, 64, 66] apply them primarily for
avoiding certain arithmetic operations (as in the example of
Section 2.3), transformation between representations (e.g.,
boolean to arithmetic), expressing or transferring state across
proof instances [23, 27, 32, 41], or expressing threads and



concurrency [63]. However, one of the lessons of Otti is that
these techniques should be more widely used.

Finally, a pressing issue when using nondeterministic
checkers is the question of correctness. We assumed that a
solution was optimal if it passed the nondeterministic checker.
However, how does one know whether the nondeterministic
checker generated by Otti is itself correct (i.e., bug free)?
Developing a formal methods framework for proving the cor-
rectness of the program transformations is a crucial missing
piece in this ecosystem (along with formally verified compil-
ers, though some preliminary efforts exist [33]).

11 Conclusion

This paper introduces Otti, a compiler for zkSNARKSs that
supports optimization problems. Otti allows the programmer
to simply specify the problem and derives a proof that a par-
ticular output is optimal. The key idea behind Otti is the use
of nondeterministic checkers and certificates of optimality
to verify the purported optimal point rather than verifying
the correct execution of the optimization algorithm. This re-
sults in a radical reduction in the size of the R1CS encodings
produced. Our experimental evaluation confirms that Otti
provides the first ZkSNARK proofs that are practical for opti-
mization and ML training problems with real datasets.
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Appendix A SDP and SGD transformations
A.1 Semidefinite programming

We now discuss Otti’s operation on SDP problems. Below is
an example given in its primal form.

—0.9915 0.6539 —0.6403
minimize | 0.6539  0.9379 —0.1421 | ¢ X
—0.6403 —0.1421 0.3080
0.3518 —0.3833 0.3136
subjectto | —0.3834 0.8570 —0.5891 | e X = 3.9889
03136 —0.5891 0.9714
—0.4945 -0.6208 0.2038
—0.6208 0.2158 —0.0972 | e X = —1.0823
0.2038 —0.0972 —-0.4218
X>0
1.7803  —0.0036  0.7281
initial X, = | —0.0036  1.2237  —0.0536
0.7281 —0.0536  1.8439

We use the __SDP(-) intrinsic to indicate that this is an
SDP problem and take input. We only need the primal for-
mulation in the SDP instance, as the solver we use solves the
dual problem at the same time.

The developer may get an SDP problem from an SDPA
file, or may generate it themselves. The developer should then
use Otti to generate the C code for the primal problem, as
seen in Figure 14, and the check_sdp function, as seen in
Figure 15. This check will be different for SDP instances for
different size matrices (n) and different numbers of optimality
constraints (m).

The parameters to the checker include whether the instance
is feasible (a boolean), the original parts of the problem (C,
A, b), the primal and dual solutions (X, or X, y), and the
supporting witness variables (X;,, Sy) described in Section 5.2.
As in LP, this nondeterministic checker is the only code Otti
actually compiles to R1CS.

A.2  Gradient Descent
We now give an example of a SGD problem formulation.
-1 1)

classification (—] -1 1

157.0 1.0 0.69
268.0 10.0 2.40
dataset | 209.0 2.0 1.10
134.0 0.1 0.10
21.0 0.1 0.10

The above are a few data points from the PMLB lupus
dataset [50, 57]. Otti can take as input any file from the PMLB
dataset (including the Lupus one described above) and gen-
erate the required C code and nondeterministic checker. Otti
can of course be extended to parse any binary classification
dataset the user would like. The generated Otti input file and
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#include "fxpt.h"
int main() {
fp64 X0 = __exist(),
X8 = __exist(),
YO = __exist(),
Y1l = __exist(),
XLO = __exist(),
XL8 = __exist(),
SLO = __exist(),
SL8 = __exist();
int feasible = __exist();
__SDP(
3, 2, // n, m
// C
—-0.9915, 0.6539, —0.6403,
0.6539, 0.9379, —0.1421,
—0.6403, —0.1421, 0.3080,
// X_0
1.7803, —0.0036, 0.7281,
—-0.0036, 1.2237, —0.0536,
0.7281, —0.0536, 1.8439
// A_O
0.3518, —0.3833, 0.3136,
—0.3834, 0.8570, —0.5891,
0.3136, —0.5891, 0.9714,
// A_1
—0.4945, —0.6208, 0.2038,
—0.6208, 0.2158, —0.0972,

0.2038, —0.0972, —0.4218,
3.9889, —1.0823 // b
)
return __check(check_sdp( <parameter list:
feasible , C, A, b, X, y, XL, SL> ));

FIGURE 14—Automatically generated code for SDP instance.

nondeterministic checker for the above small example is given
Figure 16.

Appendix B SDP infeasibility evaluation

We can detect proofs of infeasibility for SDP instances, as
discussed in Section 5.2. Recall that Otti uses disjunction
proofs (either the prover found the optimal solution or the
instance with provided starting points was infeasible), so
the R1CS representation (list in figure 8) remains the same
whether or not the instance is satisfiable since both sides of
the disjunction must be included anyway.

In addition to our “feasible” evaluation in the main paper,
we evaluate each problem instance on the opposite side of the
disjunction. To simulate infeasible instances, we pick a bad Xy
at random from outside the feasible region. In Figure 17, we
show the SDP benchmarks for these infeasible instances (next
to our feasible data, for comparison). We denote a problem
instance with a feasible starting point by "<name>", and
it’s infeasible starting point counterpart by "<name>*". The
difference in timings are mostly attributed to two factors.



int check_sdp( <parameter list> ){ #include "fxpt.h"

int solved = feasible;
fp64 dot_b0 = (a0_0"x0)+(a0_1*x1)+...+(a0_8"x8); int grad_check (
fp64 dot_bl = (al_0"x0)+(al_1*x1)+...+(al_8*x8); int int wO, int wl, int w2,
if (feasible) { fp64 x0, fp64 x1, fp64 x2,
// satisfied constraints int y) {
solved = solved && F_EQUAL(dot_b0,b0); return y* (w0 * x0 + wl * x1 + w2 * x2) >= 1;
solved = solved && F_EQUAL(dot_bl ,bl); }
// s
fp64 sO = cO0—((a0_0*y0)+(al_0*yl)); int main() {
int WO, W1, W2 = __exist();
fp64 s8 = c8—((a0_8*y0)+(al_8*yl)); __SGD_train(2, 5,
fp64 gap = (s0*x0) + (s1*x1) + ... + (s8%x8); 157.0, 1.0, 0.69, 268.0, 10.0,
// strong duality 2.40, 209.0, 2.0, 1.10, 134.0,
solved = solved && (F_EQUAL(gap,0.0)); 0.1, 0.1, 21.0, 0.1, 0.1,
// lower triangular for XL 1, -1, 1, =1, 1);
solved = solved && (F_EQUAL(xI1,0.0)); return __check(
solved = solved && (F_EQUAL(x12,0.0)); // Check point 1
solved = solved && (F_EQUAL(x15,0.0)); grad_check (WO,W1,W2,157.0,1.0,0.69,1),
// lower triangular for SL // Check point 2
solved = solved && (F_EQUAL(sll ,0.0)); grad_check (WO,W1,W2,268.0,10.0,2.40,—1),
solved = solved && (F_EQUAL(s12,0.0)); // Check point 3
solved = solved && (F_EQUAL(s15,0.0)); grad_check (WO,W1,W2,209.0,2.0,1.10,1),
// Cholesky decomposition for X (XL*XL~T=X) // Check point 4
fp64 xr0 = x10; // XR = XL-°T grad_check (WO,W1,W2,134.0,0.1,0.1,-1),
// Check point 5
fp64 xr8 = xI8; grad_check (WO,W1,W2,21.0,0.1,0.1,1));
fp64 xm0 = (x10*xr0)+(x11*xr3)+(x12*xr6); )
fp64 xm8 = (x16*xr2)+(x17*xr5)+(x18*xr8); . L
solved = solved && (F_EQUAL(X0,xm0)): FIGURE 16—Automatically generated nondeterministic checker for
o SGD instance
solved = solved && (F_EQUAL(x8,xm8));
// Cholesky decomposition for S
fp64 sr0 = s10; First, the solving time for infeasible instances is near 0. This
solved = solved & (FEQUAL(sS .sm8)): is because before Qttl runs the solver, it pt’erforms agulck
}oelse | check that X is feasible. If this check doesn’t pass (as in the
// unsatisfied constraints case of our infeasible instances), then an infeasibility proof is
solved = solved Il !F_EQUAL(dot_b0,b0); produced and CSDP never runs. Second, Spartan’s multi scalar
solved = solved |l !FEQUAL(dot_bl,bl); multiplication not being constant time and different witnesses
// X_0 not positive definite . . ) .
fp64 10_0 = (s10*x10); yleld dlfferentprovmg times.

fp64 10_1 = (s10*x13);

fp64 10_2 = (sl0*x16);

fp64 r0_0 = (x0*x10)+(x1*x13)+(x2*x16);

fp64 r0_1 = (x3*x10)+(x4"x13)+(x5"x16);

fp64 r0_2 = (x6"x10)+(x7"x13)+(x8*x16);

solved = solved |l (F_EQUAL(10_0,r0_0) &&
F_EQUAL(10_1,r0_1) && F_EQUAL(10_2,r0_2)
&& (s10<0.01));

}

return solved;

FIGURE 15—Automatically generated check for SDP function for
sizen =3 and m = 2.
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Completion time (s)
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FIGURE 17—Runtime attribution of SDP benchmarks in Otti. Labels with an asterisk (*) represent infeasible instances.
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