
Non-interactive Distributional Indistinguishability (NIDI)
and Non-Malleable Commitments

Dakshita Khurana∗

Abstract

We introduce non-interactive distributionally indistinguishable arguments (NIDI) to address a
significant weakness of NIWI proofs: namely, the lack of meaningful secrecy when proving
statements about NP languages with unique witnesses.

NIDI arguments allow a prover P to send a single message to verifier V , given which V
obtains a sample d from a (secret) distribution D, together with a proof of membership of d in
an NP language L. The soundness guarantee is that if the sample d obtained by the verifier
V is not in L, then V outputs ⊥. The privacy guarantee is that secrets about the distribution
remain hidden: for every pair of distributions D0 and D1 of instance-witness pairs in L such
that instances sampled according to D0 or D1 are (sufficiently) hard-to-distinguish, a NIDI that
outputs instances according to D0 with proofs of membership in L is indistinguishable from
one that outputs instances according to D1 with proofs of membership in L.

• We build NIDI arguments for sufficiently hard-to-distinguish distributions assuming sub-
exponential indistinguishability obfuscation and sub-exponential one-way functions.

• We demonstrate preliminary applications of NIDI and of our techniques to obtaining
the first (relaxed) non-interactive constructions in the plain model, from well-founded
assumptions, of:

– Commit-and-prove that provably hides the committed message
– CCA-secure commitments against non-uniform adversaries.

The commit phase of our commitment schemes consists of a single message from the
committer to the receiver, followed by a randomized output by the receiver (that need
not necessarily be returned to the committer).

∗Email: dakshita@illinois.edu. University of Illinois, Urbana-Champaign. Work done in part during a visit
to the Simons institute, Berkeley. This material is based upon work supported in part by DARPA under Contract No.
HR001120C0024. Any opinions, findings and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the United States Government or DARPA.

1

Contents

1 Introduction 3
1.1 Our Results . 5
1.2 Additional Related Work . 8

2 Technical Overview 9
2.1 Commit-and-Prove Arguments . 9
2.2 Non-Interactive Distributional Indistinguishability . 13
2.3 Application: CCA Commitments . 13

3 Preliminaries 17
3.1 One-Way Puzzles . 18
3.2 Indistinguishability Obfuscation . 20

4 Non-Interactive Distributionally Indistinguishable (NIDI) Arguments 20
4.1 Definitions . 20
4.2 Construction and Analysis . 21

5 Commit-and-Prove 32

6 CCA Commitments from Indistinguishability Obfuscation 34
6.1 Definitions . 34
6.2 Tag Amplification: Construction and Analysis . 36

2

1 Introduction

Can one non-interactively commit to a plaintext and prove that it satisfies a predicate
(e.g., the plaintext is larger than 0) while also ensuring that the plaintext is hidden?

More generally, can a prover send a statement to a verifier and demonstrate that the state-
ment is true without revealing secrets about it? An interactive solution to this problem can be
obtained via the use of zero-knowledge proofs. These were first introduced in an influential work
of Goldwasser, Micali and Rackoff [GMR89], and it was subsequently shown that all languages
in NP admit interactive ZK proofs [GMW91]. An interactive proof is said to be zero-knowledge
if there exist a simulator that can simulate the behavior of any verifier, without having access to
the prover, in such a way that its output is indistinguishable from the output of the verifier after
having interacted with an honest prover.

Understanding the round complexity of zero knowledge has been an important problem. In
particular, zero-knowledge arguments for languages outside BPP, and without any trusted setup,
are known to require at least three messages of interaction [GO94]. This leads to a natural question:
what meaningful relaxations of zero-knowledge are achievable non-interactively and without setup?

Existing Relaxations of Zero-Knowledge. Towards addressing this question, several relaxations
of zero-knowledge have been studied over the years.

• Weak Zero-Knowledge [DNRS03] relaxes zero-knowledge by switching the order of quan-
tifiers. Specficially, weak zero-knowledge requires that for every verifier and every distin-
guisher, there exists a distinguisher-dependent simulator that fools this specific pair1.

Weak zero-knowledge is known to require at least two messages [GO94].

• Witness Hiding [FS90] loosely guarantees that a malicious verifier cannot recover a witness
from a proof unless the witness can be efficiently computed from the statement alone.

• Strong Witness Indistinguishability (Strong WI) [Gol01] requires that for two indistin-
guishable statement distributions D0,D1, a proof (or argument) for statement d0 ← D0 must
be indistinguishable from a proof (or argument) for statement d1 ← D1.

• Witness indistinguishability (WI) [FS90] ensures that proofs of the same statement generated
using different witnesses are indistinguishable. WI does not hold for statements sampled
from different distributions, or statements that have a unique witness associated with them.

Two-message variants of weak zero-knowledge, witness hiding and strong WI have been ob-
tained by [Pas03, JKKR17, BGI+17, DK18, BKP19]. But so far, the only relaxation known to be
achievable non-interactively from well-studied assumptions, is witness indistinguishability. Non-
interactive witness indistinguishable proofs (NIWIs) have been obtained by [BOV07, GOS12, BP15]
under various assumptions. While NIWIs are quite natural and are useful as a building blocks in
some applications, they are often quite limited. In (common) scenarios like committing to a secret
message and proving a predicate about it – where statements being proven often have unique
witnesses – the witness indistinguishability guarantee is meaningless.

1There are several variants of this definition strengthening/weakening different aspects [DNRS03, CLP15].

3

Commit-and-Prove. In a “commit-and-prove” protocol, a prover commits to (or encrypts) one or
more messages, and would like to prove that the secret message(s) satisfy a predicate.

A simplification of the most basic privacy guarantee required in these applications is the fol-
lowing: for every pair of messages (m0,m1) that satisfy a (polynomial-time computable) predicate
φ (i.e. φ(m0) = φ(m1) = 1), the following two distributions must be computationally indistin-
guishable: (

c0 = Com(m0; r),Πc0∈Lφ
)

and
(
c1 = Com(m1; r),Πc1∈Lφ

)
where Com denotes a perfectly binding commitment (or encryption), and Πc∈Lφ denotes a proof
of the statement c ∈ Lφ where

Lφ = {c : ∃(m, r) such that (c = Com(m; r)) ∧ (φ(m) = 1)}.

In other words, any distributions c0 = Com(m0; r) and c1 = Com(m1; r) that are computationally
indistinguishable, must remain indistinguishable even given proofs of membership in Lφ. Here φ
is any efficiently computable predicate of the message, eg., φ(m) = 1 if and only if m > 10.

The Insufficiency of NIWIs. Because the statements in question clearly have unique witnesses,
using NIWIs to generate the proof Πc∈Lφ does not guarantee that the secret message remains
hidden. We note that the notion of strong witness indistinguishability would suffice, but whether
strong WI can be achieved non-interactively remains an important open problem.

All known constructions [Pas03, JKKR17, BGI+17, DK18, BKP19] of two-message strong WI
arguments follow variants of the common FLS [FLS99] paradigm. Here, the prover provides a WI
proof that:

“Either x ∈ L or the prover knows some trapdoor”.

The trapdoor is designed to be hard for a (cheating) prover to compute, but easy for a sim-
ulator. Security is argued by having the simulator extract the secret trapdoor in polynomial or
superpolynomial time, and use this trapdoor to generate the proof, instead of relying on a witness
for x.

In settings where the verifier can send (at least) one message to the prover, the verifier’s mes-
sage can be used to set up a trapdoor, eg., by sampling f(z) for a one-way permutation f and
random trapdoor z [Pas03]. The trapdoor z can be obtained by a simulator non-uniformly or
in superpolynomial time (or even in polynomial time via specialized recent techniques [JKKR17,
DK18, BKP19]).

Establishing Trapdoors in the Non-Interactive Setting. In the non-interactive setting, since the
verifier does not send any message to the prover, it becomes much more challenging to establish a
trapdoor of the form described above, that is easy for a simulator to compute but not for a cheating
prover.

Nevertheless, there have been exciting prior attempts. In particular, Barak and Pass [BP04] ob-
tain variants of one-message zero-knowledge with nonuniform simulation and soundness against
uniform provers. They rely on problems that are hard for uniform algorithms (eg., keyless collision-
resistant hash functions) to set up a trapdoor that no uniform prover can obtain. Bitansky and

4

Lin [BL18] propose a clever extension of this to the non-uniform setting by relying on prob-
lems that are hard for algorithms with a polynomial amount of non-uniformity. Assuming key-
less collision-resistant hash functions with security against non-uniform adversaries, they ob-
tain one-message zero-knowledge with superpolynomial simulation and weak soundness against
non-uniform provers. They guarantee that the number of false statements a polynomial-time non-
uniform prover can convince the verifier to accept is not much larger than its non-uniform advice.

In summary, known constructions of meaningful non-interactive secrecy-preserving arguments
either (1) are not adequately sound and rely on non-standard hardness assumptions, or (2) do not
provide meaningful secrecy, especially when considering statements with unique witnesses.

Bottlenecked Applications. The lack of non-interactive secrecy-preserving proofs for statements
with unique witnesses has led to the need for non-standard assumptions in additional applications
besides the example commit-and-prove scenario described above.

A prominent example are non-interactive non-malleable commitments: for which the only known
constructions [PPV08, LPS17, BL18, KK19, GKLW20] either achieve non-standard forms of secu-
rity or rely on relatively less standard assumptions like keyless collision resistant hashing with
security against non-uniform adversaries. Eliminating non-standard assumptions appears to re-
quire appropriate non-interactive secrecy-preserving arguments, which were so far not known
under well-founded assumptions. In the following section, we outline our contributions that aim
to remedy this situation.

1.1 Our Results

We introduce and construct non-interactive distributional indistinguishable (NIDI) arguments
without trusted setup from well-founded assumptions. These help overcome some of the draw-
backs of existing non-interactive arguments, and enable applications like non-interactive commit-
and-prove without trusted setup.

Non-Interactive Distributionally Indistinguishable (NIDI) Arguments. NIDI arguments en-
able a prover P with input a secret efficiently sampleable distribution D to send a single message (a
“sampler”) to verifier V . Given this sampler, V can obtain a sample d from the (secret) distribution
D together with a proof of membership of the sampled instance d in a (public) NP language L. Specifically,
after checking such a proof, the verifier either outputs ⊥ or a sample d.2

In more detail, the prover algorithm P obtains input a security parameter, the description of a
(secret) distribution D, and a public NP language L, and generates P(1κ,D,L) → π. The verifier
V on input sampler π and the language L computes V(1κ, π,L)→ d or ⊥.

• The soundness guarantee is that V does not output d 6∈ L (except with negligible proba-
bility). In other words, if the sample d obtained by V is not in L, then the proof allows
the verifier to detect this fact, and V outputs ⊥ (except with negligible probability over the
randomness of V).

2Jumping ahead, in our construction, a prover message will take the form of a program, to which the verifier will
make a (randomized) query. In response, the program will output a sample d and a proof of membership of d ∈ L.

5

• The secrecy guarantee is that secrets in the distribution remain hidden from a malicious
verifier: i.e., for every pair of (sufficiently) hard-to-distinguish distributions D0 ≈ D1 where
Supp(D0) ∪ Supp(D1) ∈ L,

P(1κ,D0,L) ≈ P(1κ,D1,L)

Equivalently, a NIDI that outputs samples from D0 with proofs of membership in L is indis-
tinguishable from one that outputs samples from D1 with proofs of membership in L.

NIDI arguments bear a peripheral resemblance to, and are implied by (non-interactive) strong
witness indistinguishable arguments, by simply having the prover on input D sample d← D and
attach a strong WI proof of membership of d ∈ L. In particular, the secrecy guarantee of NIDI is
similar in spirit to that of strong witness indistinguishable arguments. However, we do not know
if non-interactive strong WI arguments exist under standard assumptions.

We note that the syntax/completeness properties of NIDI are different from strong WI: in the
case of a strong WI proof system, the prover samples d ← D and attaches a proof that d ∈ L. On
the other hand, in the case of NIDI, the prover sends a “sampler” to V , and the sample d (together
with a proof) are obtained by V from this sampler. Therefore, while an honest prover knows the
distribution D, it may not know the exact value d that was sampled by a (randomized) V .

Non-Interactive Distributionally Indistinguishable (NIDI) Arguments from Sub-exponential
Indistinguishability Obfuscation. We rely on sub-exponential indistinguishability obfuscation
and other standard assumptions to obtain NIDI arguments that satisfy the secrecy guarantee de-
scribed above as long as the pair of distributions (D0,D1) are superpolynomially indistinguishable.

Theorem 1.1. (Informal) Assuming sub-exponentially secure indistinguishability obfuscation and one-
way functions, there exists a constant c ≥ 1 such that for every pair of distributions D0,D1 that cannot be
distinguished with advantage better than 2−ω(log

c κ) by any polynomial-sized adversary, NIDI arguments
exist.

Application 1: Non-interactive Commit-and-Prove. A commit-and-prove argument is a proto-
col between a committer C and receiverR. In the commit phase, the committer sends to the verifier
a message that allows it to commit to a value m ∈ {0, 1}κ. It also proves that the committed value
m satisfies a (public) efficiently computable predicate φ. Given the prover’s message, the receiver
outputs ⊥, or a string c. Later, C and R possibly engage in another decommit phase, at the end of
whichR outputs ⊥ or m ∈ {0, 1}κ. The soundness and secrecy guarantees are as expected:

• Soundness requires that if the verifier outputs a string c that is not ⊥, then there does not
exist an opening m′ of c such that m′ does not satisfy φ.

• Secrecy guarantees that the message m is hidden, i.e. for all pairs of (equal-sized) messages
(m0,m1) that satisfy the predicate φ, C(1k,m0, φ) ≈ C(1k,m1, φ).

We obtain commit-and-prove satisfying the properties described above, that satisfies a relaxed
notion of non-interactivity – that we refer to as relaxed non-interactive commit-and-prove.

In our construction, the commitment phase consists of a committer sending the receiver a
string (representing a program), but the actual commitment transcript is finalized only after the

6

receiver produces an output (based on a randomized query to this program). While the commit-
ment transcript is a deterministic function of the committer’s message and the receiver’s random-
ness, the receiver randomness/receiver query may or may not have to be known to the committer
before or during the decommitment phase. If this randomness needs to be made explicit, then the
commitment needs an extra message from the receiver. If it is not necessary to make the receiver
randomness explicit, it becomes possible to achieve a truly non-interactive protocol.

For example, in two-party settings where one player establishes a secret trapdoor for use in
a larger protocol, the extra message from the receiver may either be unnecessary (since it is not
needed for decommitment) or could be clubbed together with other receiver messages. At the
same time, there could be multi-party settings where the committer and receiver must agree to an
entire commitment transcript before the protocol can proceed. For example, on a blockchain, one
may want to commit to the value of a transaction and prove that the committed value is positive.
Applying our non-interactive commit-and-prove naıvely to such a setting, without an explicit
receiver message, could allow a malicious committer to trick different verifiers into recording
different transactions (although each to a positive value).

Theorem 1.2. (Informal) Assuming sub-exponentially secure indistinguishability obfuscation and one-
way functions, there exist relaxed non-interactive commit-and-prove arguments in the plain model.

Application 2: Non-interactive Non-malleable (CCA) Commitments. Very roughly, non-malleability
prevents an adversary from modifying a commitment com(m) to generate a commitment com(m′)
to a value m′ that is related to the original m. This is equivalent (assuming the existence of
signatures/one-way functions) to a tag-based notion where the commit algorithm obtains an ad-
ditional input, a tag ∈ {0, 1}κ, and where the adversary is restricted to using a tag, or identity, that
is different from the tag used to generate the honest commitment.

We consider a strong form of non-malleability for non-interactive commitments: CCA secu-
rity [CLP10]. Namely, we build commitments that hide the committed value even from an adver-
sary which has access to an oracle that computes decommitments of arbitrary commitment strings
that the adversary sends to this oracle, as long as they are different from the challenge string.

Theorem 1.3. (Informal) Relaxed non-interactive CCA commitments for 2κ tags exist assuming sub-
exponentially secure indistinguishability obfuscation and one-way functions, and quasi-polynomially se-
cure “base” CCA commitments for (log log log κ) tags.

In fact, we prove a stronger theorem where we only need the base commitments to satisfy
a weaker property, namely same-tag CCA security w.r.t. extraction. We note that commitments
for log log log κ tags satisfying this weaker property can be based on either (1) sub-exponential
time-lock puzzles [LPS17] (which can be based on sub-exponential indistinguishability obfusca-
tion and the existence of sub-exponentially hard non-parallelizable languages [BGJ+16]), or (2)
sub-exponential hardness of discrete log and sub-exponential quantum hardness of LWE [KK19].

Just like the setting of commit-and-prove, the underlying “committed value” is defined as
a function of the (non-interactive) message from the committer, and the receiver’s randomness.
However, again like the case of commit-and-prove, the receiver can remain silent throughout,
thereby leading to a truly non-interactive protocol. In this setting, the CCA commitment guaran-
tees that the value underlying a mauled commitment is independent of the honestly committed
message, with overwhelming probability over the randomness of an honest receiver. Therefore
this appears to achieve the conceptual objective of completely non-interactive CCA commitments.

7

This notion would suffice for classic applications of non-malleable commitments like coin-
flipping and auctions, with a non-interactive committer message and without the need for any
additional messages from the receiver. An auction would be implemented by having all parties
commit to their inputs using the CCA commitment, with just a single (broadcast) message from
the committer. In the next round (opening), all committers reveal all the input and randomness they
used to generate their entire obfuscated program. These openings are accepted only if the honest
committer strategy applied to the opened input and randomness results in the same obfuscated
program that the committer sent; otherwise the protocol aborts. If the protocol does not abort,
then the result of the protocol is computed on these opened values.

Finally, we remark that recent exciting progress [Agr19, JLMS19, AJL+19, AP20, GJLS20, GP20,
BDGM20a] has led to constructions of indistinguishability obfuscation from simpler assumptions,
including in [GP20, BDGM20b, WW20] that obtain sub-exponentially secure iO from simple-to-
state (circular security) assumptions on LWE-based cryptosystems. Notably, the breakthrough
work of [JLS20] obtains (sub-exponential) iO from the following sub-exponential well-founded
assumptions: SXDH, LWE, (a variant of) LPN and boolean PRGs in NC0. This helps instanti-
ate indistinguishability obfuscation used in our approach based on sub-exponential well-founded
assumptions.

1.2 Additional Related Work

Relaxations of Zero-Knowledge. Subsequent to the introduction of weak zero-knowledge [DNRS03],
three-message weak ZK and witness hiding were constructed in [BP12] from assumptions related
to point obfuscation with auxiliary inputs, that are now considered implausible due to [BM14,
BST16]. Chung et al. [CLP15] proved equivalence between different variants of weak zero-
knowledge. Next, [JKKR17] constructed distributional weak-zero-knowledge and witness-hiding
protocols for a restricted class of non-adaptive verifiers who choose their messages obliviously
of the proven statement. They obtained protocols in three messages from standard assumptions,
and in two messages from standard, but super-polynomial, assumptions. More recently, [BKP19]
obtained two-message weak-zero knowledge (which implies witness hiding and strong WI) in the
standard model via a new simulation technique, and concurrently [DK18] obtained two-message
witness hiding from new assumptions. Even more recently, [KZ20] gave best-possible/universal
and non-uniform witness hiding arguments, as well as witness hiding proofs under assumptions
on the non-existence of weak forms of witness encryption for certain languages. We note that wit-
ness hiding arguments provide a weaker one-wayness guarantee, and are insufficient to achieve,
e.g., commit-and-prove with message hiding as discussed in the example in the introduction.

Zero knowledge arguments with simulators that run in super-polynomial time are known in
two messages from standard, but super-polynomial, assumptions [Pas03, BGI+17]. One-message
ZK with super-polynomial simulation can be obtained against uniform provers, assuming uni-
form collision-resistant keyless hash functions [BP04], or against non-uniform verifiers, but with
weak soundness, assuming multi-collision-resistant keyless hash functions [BL18]. As discussed
earlier, these proofs satisfy weak notions of soundness against non-uniform provers (allowing
non-uniform provers to cheat on certain instances). While useful in some settings as illustrated
in [BL18], this may be undesirable in others.

8

Non-Malleable Commitments. Minimizing the round complexity of non-malleable commit-
ments has been an important research goal in cryptography. Prior work, namely [DDN91, Bar02,
PR05, PR08, LPV, PPV08, LP09, Wee10, PW10, LP, Goy11, GLOV12, GRRV14, GPR16, COSV17,
COSV16] culminated in three round non-malleable commitments from standard polynomial-time
assumptions [GR19, Khu17] and two round commitments from sub-exponential assumptions like
time-lock puzzles [LPS17] and sub-exponential DDH/LWE/QR/NR [KS17].

However, achieving non-interactive non-malleable commitments from well-found assump-
tions has been particularly challenging. In the non-interactive setting, Pandey, Pass and Vaikun-
tanathan [PPV08] first gave constructions of non-malleable commitments based on a strong non-
falsifiable assumption (“adaptive” one-way functions). Recently Bitansky and Lin [BL18] obtained
constructions of non-interactive non-malleable commitments from sub-exponential time-lock puz-
zles and keyless hash functions with (variants of) collision resistance against non-uniform adver-
saries. Additionally Kalai and Khurana [KK19] obtained constructions satisfying a weaker notion
of non-malleability w.r.t. ‘replacement’ (essentially allowing selective-abort attacks) from well-
studied assumptions including sub-exponential NIWIs, discrete log and the quantum hardness of
LWE. Very recently Garg et. al. [GKLW20] improved upon [BL18], eliminating the need for NIWIs
and making black-box use of cryptography. Despite this substantial progress, prior to this work,
there were no known constructions of non-interactive (or relaxed non-interactive) non-malleable
commitments from well-founded assumptions.

2 Technical Overview

We now walk the reader through our construction and offer additional insight into the notion of
a NIDI. Our aim will be to find a meaningful privacy guarantee that is achievable non-interactively,
and applicable widely. A “commit-and-prove” protocol as described in the introduction will serve
as a canonical example of the type of applications that we would like to enable.

2.1 Commit-and-Prove Arguments

Outline: Compressing Interactive Commit-and-Prove via Obfuscation. Our first stab at con-
structing non-interactive commit-and-prove with meaningful secrecy is as follows: let us try to
compress an interactive commit-and-prove protocol to a non-interactive one, as follows.

Let (ICP.P, ICP.V) denote the (honest) prover and verifier circuits for an appropriate interactive
n-round commit-and-prove protocol ICP. The prover in the non-interactive system simply outputs
obfuscations of the next-message functions of ICP.P , one obfuscation for each round. The prover’s
next-message function ICP.Pj for round j ∈ [n] of ICP depends on its inputs m,φ (i.e. the secret
message and predicate), and randomness r – all of which are hardwired in the obfuscated circuits.
This function on input the transcript through round (j − 1), produces as output the next message.
The prover must output, for every round j ∈ [n], the obfuscated circuit

Cj = Obf (ICP.Pj(m,φ, r, ·)) .

Given (C1, . . . , Cn), V queries these circuits by employing ICP.V’s strategy, as if it were interacting
with ICP.P , feeding them the current transcript and obtaining the next message. Finally, it accepts
if ICP.V would have accepted.

9

But obfuscating the next message function in this manner leads to new vulnerabilities that do
not necessarily arise in the interactive setting. Unlike queries to an actual prover, an adversarial
verifier can query obfuscated programs (C1, . . . , Cn) out of order, and may even query them many
times, amounting to “resetting” attacks [CGGM00]. Thus one would generally need to rely on re-
settably zero-knowledge protocols that satisfy security in the presence of resetting attacks [CGGM00].

Second, we note that general-purpose obfuscators satisfying the most natural notion of secu-
rity (virtual-black-box) cannot exist [BGI+12]. We would therefore like to base security of the com-
pressed protocol on the weaker notion of indistinguishability obfuscation, for which we know con-
structions under plausible assumptions (most recently due to [GP20, BDGM20b, WW20, JLS20]).

Basing Security on Indistinguishability Obfuscation. Recall that we would like the compressed
commit-and-prove argument to hide the committed m. This means that for every pair of values
m0,m1 that satisfy a predicate φ, obfuscated next-message circuits that commit to m0 and gener-
ate a proof of m0 satisfying φ, should be indistinguishable from obfuscated circuits that generate
a similar commit-and-prove argument for m1.

Before going into further detail, we point out that the general paradigm of using obfuscation
to compress interactive protocols has been explored in prior work, (eg., MPC protocols were com-
pressed via obfuscating the next-message function in [GGHR14, DHRW16, AJN+16]). However
in these works, the set of allowable or meaningful inputs to the program are small in number and
are fixed apriori. This makes it possible to hardwire a few meaningful paths in the obfuscated
programs and use such paths to argue security.

In our setting, the obfuscated next-message function must remain functional for (nearly) all
verifier inputs. Because of this, our strategy to prove indistinguishability will iterate over all pos-
sible verifier inputs. To make this easier, we will begin by fixing a specific two-message interactive
protocol, that will then be compressed to a non-interactive protocol via obfuscation.

Fixing an Interactive Protocol. To begin with, the interactive protocol that we rely on will be the
following two-message protocols due to Pass [Pas03].

• The interactive verifier ICP.V samples a random α and outputs f(α), where f denotes a one-
way function with “efficiently recognizable range” : where it is easy to efficiently check given
y if there exists α such that f(α) = y (eg., this is true whenever f is a one-way permutation).

• Next, the prover ICP.P generates a commitment c to m by means of any perfectly binding
non-interactive commitment, and also a non-interactive commitment c′ to 0. In addition, it
sends a NIWI asserting that:

“
(
c is a commitment to m such that φ(m) = 1

)
OR

(
c′ is a commitment to α such that f(α) = y

)
.”

To argue that this interactive protocol hides the value m, one can rely on a simulator that ex-
tracts α given y in superpolynomial time, and uses the second trapdoor statement to generate the
NIWI. This makes it possible to rely on the hiding property of the non-interactive commitment
and replace c with a commitment to a different message.

10

Arguing Security of the Compressed Commit-and-Prove System. Plugging this two-message
argument into the template described above yields the following commit-and-prove protocol:

The non-interactive prover simply obfuscates a circuit that on input an arbitrary string y com-
putes c, c′ as commitments to m and 0 respectively, and as described above a NIWI asserting that:

“
(
c is a commitment to m such that φ(m) = 1

)
OR

(
c′ is a commitment to α such that f(α) = y

)
.”

Arguing secrecy of the non-interactive protocol is somewhat more involved as one cannot hope
to directly emulate the proof of secrecy of the interactive protocol. In particular, ideally one would
like to replace the obfuscated circuit with a different one that has the superpolynomial simulator’s
code hardwired into it. In the next hybrid step one could hope to switch the commitment string
c to commit to a different value. But this does not immediately work because of the inefficiency
introduced by the simulator. In fact, even if we started out with a resettably-secure protocol with
a polynomial simulator, it is completely unclear how to replace the next-message circuit with one
that generates simulated proofs, unless the simulator is straight-line and black-box. Unfortunately
straight-line black-box simulators cannot exist in the plain model without trusted setup, so we ex-
plore a different route as described below. In what follows, we will outline a concrete construction
by building on the ideas and pitfalls discussed above.

Towards a Concrete Construction. The commit-and-prove algorithm C(1k,m, φ) samples a ran-
dom key K for a puncturable PRF, and then outputs an indistinguishability obfuscation P̃ of the
program P described in Figure 1.

Hardwired: Puncturable PRF Key K, Message m, Predicate φ.

Input: Query y ∈ {0, 1}κ.

1. If y 6∈ Range(f), output ⊥. Otherwise, continue.

2. Set (r1, r2, r3) = PRF(K, y).

3. Set c = com(m; r1) and c′ = com(0κ; r2).

4. Let e be a NIWI, computed with randomness r3, asserting that

“
(
c is a commitment to m such that φ(m) = 1

)
OR

(
c′ is a commitment to α such that f(α) = y

)
.”

5. Output (c, c′, e).

Figure 1: Program P .

The receiver on input the obfuscated program P̃ samples random α, sets y = f(α) and queries
the program on y to obtain output some (c, c′, e). It parses e as a NIWI and outputs ⊥ if the NIWI
does not verify, otherwise outputs c.

11

Message Hiding. Recall that we would like to establish that for all pairs of (equal-sized) mes-
sages (m0,m1) such that φ(m0) = φ(m1) = 1, C(1κ,m0, φ) ≈ C(1κ,m1, φ).

We will prove this by iterating over exponentially many hybrids, corresponding to all possible
inputs to the obfuscated program. The jth intermediate hybrid Hybridj for j ∈ [0, 2κ] will obfuscate
a program P (j) that is identical to P except the following. On all inputs y such that y < j, P (j) sets
c = com(m1), and on all inputs y such that y ≥ j, sets c = com(m0). When defined this way, note
that Hybrid0 ≡ C(1κ,m0, φ) and Hybrid2κ ≡ C(1κ,m1, φ).

Let us now argue that for all j ∈ [0, 2κ − 1], Hybridj ≈ Hybridj+1. Note that the only difference
between the two hybrids is the difference in behavior of programs P (j) and P (j+1) on input y = j.
While P (j) on input y = j outputs com(m0), P (j+1) on input y = j outputs com(m1).

We rely on standard iO techniques to show that Hybridj and Hybridj+1 are indistinguishable.
This is done by first puncturing the key K on input y = j, then hardwiring uniform randomness
corresponding to input j, and then relying on the hiding of the commitments c and c′, as well as
the witness indistinguishability of NIWI.

Since there are O(2κ) hybrids, denoting (an upper bound on) the adversary’s distinguishing
advantage between any consecutive pair Hybridj and Hybridj+1 by µ, the overall advantage be-
tween C(1κ,m0, φ) and C(1κ,m1, φ) can grow toO(2κ) ·µ, which is not negligible unless µ = negl(κ)

O(2κ) .
Therefore, we ensure that µ is small enough by relying on subexponential assumptions. Specif-

ically, we will assume the PRF, non-interactive commitment, and iO allow adversarial advantage
to be at most negl(2k

ε
) for some arbitrary small 0 < ε < 1 when executed with security parameter

k. By setting k = κ1/ε, we will achieve the desired small µ.

Proving Soundness: A Subtle Malleability Problem. Recall also that we would like to ensure
soundness, meaning that a malicious prover, by sending an arbitrary obfuscated program P̃ to a
verifier, should not be able to convince such a verifier to output a string c for which the underlying
value m does not satisfy predicate φ.

Note that this is only possible if the verifier’s query to P̃ results in output (c, c′) and a NIWI e
for which verification accepts, and which asserts that:

“
(
c is a commitment to m such that φ(m) = 1

)
OR

(
c′ is a commitment to α such that f(α) = y

)
.”

By soundness of the NIWI, if the verifier outputs c such that the underlying value m does not
satisfy φ(m) = 1, then (w.h.p.) it must be the case that

c′ is a commitment to α such that f(α) = y.

To rule out this possibility, we would like to argue that it is impossible for a committer to efficiently
compute com(α) given y = f(α). A natural way to achieve this is via complexity leveraging:
we could try setting the parameter of the commitment to be relatively small so that it is easy to
extract the value α from commitment string c′ in time T . At the same time, we could require
f to be uninvertible in time T . This would ensure that any committer that efficiently computes
com(α) given y = f(α), would necessarily be contradicting uninvertibility of f against adversaries
running in time T .

But this leads to a circularity: recall that we set the size of y to be κ bits, and for our hybrid
argument to go through, we needed com to use a security parameter k = κ1/ε for the commitment

12

scheme com, such that the commitment scheme can be broken in time T = 2k. But because the size
of y is κ bits, f cannot be more than 2κ � T -secure. Therefore, our setting of parameters for the
proof of secrecy directly contradicts the parameters needed for the proof of soundness described
above.

To get around this issue, we replace the commitment scheme used to generate the commitment
c′ in our construction, with a perfectly correct public-key encryption scheme.

Specifically, the commit-and-prove protcol outputs a public key pk in addition to the obfus-
cated program. And instead of generating c′ as a commitment to 0, c′ is generated as an encryption
of 0, with respect to pk. This enables a non-uniform proof of soundness.

Specifically, given (pk, P̃) if the verifier outputs c such that the underlying value m does not
satisfy φ(m) = 1, then (w.h.p.) it must be the case that

c′ is an encryption (w.r.t. pk) of α such that f(α) = y.

Now given pk, our reduction/proof of soundness will non-uniformly obtain the corresponding sk.
Next, given any prover that on input y outputs c′ as an encryption of f−1(y), this reduction will
be able to use sk to decrypt c′ and recover α. This will yield a contradiction to the uninvertibility
of f , and therefore help us obtain a proof of soundness. We note that a similar technique was used
in [BS20] to achieve soundness in the context of post-quantum interactive ZK arguments.

2.2 Non-Interactive Distributional Indistinguishability

The reader may have already observed that the technique discussed so far is more general: it
need not be limited to commit-and-prove, and may be used to prove arbitrary statements about
(indistinguishable) distributions.

We distill out a general formulation of this technique into what we call a NIDI argument.
The construction of our NIDI argument follows an outline identical to that of our commit-and-
prove system. Namely, the prover algorithm P(1κ,D,L) is given a secret efficiently sampleable
distribution D and public language L with corresponding relation RL. It outputs a public key
pk and an indistinguishability obfuscation of a program P ′ that is very similar to the program P
discussed above. The key difference is that the commitment c to value m in the functionality of
the program P is replaced by a general sample d from distribution D. This program is described
in Figure 2. Secrecy and soundness of this program follow identically to the commit-and-prove
argument.

2.3 Application: CCA Commitments

These techniques also yield (relaxed) non-interactive non-malleable commmitments: in fact, we
achieve a strong form of non-malleability, i.e. CCA security.

We model CCA commitments as being associated with identities or tags, where the CCA
adversary gets access to a decommitment oracle for all tags/identities different from its own.
All non-malleable commitment schemes assign “tags” (or identities) to parties, and require non-
malleability to hold whenever the adversary is trying to generate a commitment CCACom

T̃
w.r.t.

a tag T̃ that is different from the honest tag T . Existing constructions of non-interactive non-
malleable commitments (1) develop a scheme for a small (constant) number of tags, and then (2)
recursively apply tag amplification, discussed below, several times until a scheme supporting (2λ)

13

Hardwired: Puncturable PRF Key K, Distribution D, Language L, Public key pk.

Input: Query y ∈ {0, 1}κ.

1. If y 6∈ Range(f), output ⊥. Otherwise, continue.

2. Set (r1, r2, r3) = PRF(K, y).

3. Set d = D(r1) and c′ = Encpk(0
κ; r2).

4. Let e be a NIWI, computed with randomness r3, asserting that

“
(
d = D(r) for some D and r such thatRL(d,D, r) = 1

)
OR

(
c′ is an encryption w.r.t. pk, of α such that f(α) = y

)
.”

5. Output (d, c′, e).

Figure 2: Program P ′.

tags is achieved – which corresponds to supporting every possible λ-bit identity that a participant
can assume.

Outline of Existing Tag Amplification Techniques. Non-interactive CCA commitments that
support a small space of tags can be bootstrapped into commitments for a larger space of tags
by executing (a round optimized variant of) a tag encoding scheme first suggested by [DDN91].

Given a large tag T (in [2n]) where n ≤ poly(λ), first encode T into n small tags t1, t2, . . . tn each
in [2n], by setting each ti = (i||Ti) where Ti denotes the ith bit of T . This encoding ensures that for
any different large tags T 6= T̃ , there exists at least one index i such that t̃i 6∈ {t1, t2, . . . tn}, where
(t̃1, t̃2, . . . t̃n) is an encoding of T̃ . Note that when T ∈ [2n], each of the small tags t will only be as
large as 2n. Now starting with a CCA commitment ’ComSmall’ for tags in [2n], a scheme CCACom
for tags in [2n] can be obtained as follows:

To commit to a message m w.r.t. a tag T , set

CCAComT (m) =
(
{ci = ComSmallti(m)}i∈[n],Π

)
, where

Π is (an appropriate variant of a) zero-knowledge argument certifying that:

“All n commitments ci are to the same message.”

Analysis. Suppose the adversary used large tag T̃ = (t̃1, . . . , t̃n) and the honest party used tag
T = (t1, . . . , tn). By the property of the encoding, for any two large tags T 6= T̃ , there exists
at least one index i such that t̃i 6∈ {t1, t2, . . . tn}, where (t1, t2, . . . tn) and (t̃1, t̃2, . . . t̃n) refer to
encodings of T and T̃ respectively. This means (due to non-malleability of ComSmall) that the
message committed by the adversary using tag t̃i must be independent of the honest committer’s
input. By the soundness of ZK, the message committed by the adversary using each (small) tag

14

t̃1, . . . t̃n is identical, so independence of the one committed using t̃i implies independence of them
all. Loosely, it then suffices to argue that a message corresponding to any tag t̃i is generated
independently of the honest committer’s message.

In some more detail, for the CCA attacker’s jth oracle decommitment query, we will focus
on the index ij such that the tag t̃ij 6∈ {t11, t12, . . . t1n}. In the real interaction, by soundness of the
ZK argument, the value committed by the attacker is identical to the value committed using t̃ij .
This makes it possible to rely on CCA security of the value committed using t̃ij . We note that
this method will need rely on a ZK argument that is secure against adversaries running in time T ,
where T is the time required to brute-force break the CCA commitment with t̃i,j . This is because
we will want to argue that the value committed using tag t̃ij remains unchanged even when the
challenge commitment is generated by simulating the underlying ZK argument.

Once the ZK argument in the challenge commitment is simulated, it becomes possible to switch
all components of the challenge commitment one by one, while arguing CCA security w.r.t. the
value committed by the adversary via tag t̃ij . This follows because of CCA security of the under-
lying commitment scheme for small tags.

The Zero-Knowledge Bottleneck. Unfortunately, this process makes cricital use of the zero-
knowledge argument. Recall that ZK requires more than 2 rounds of interaction, which becomes
to a problem in the non-interactive setting. Existing methods to overcome this problem without
interaction rely on special (weak) types of ZK – thus requiring non-standard assumptions like
keyless collision resistance against non-uniform adversaries [BL18], or achieving only weak forms
of security [LPS17, KK19, GKLW20]. In [LPS17, BL18], NIWIs are combined with a trapdoor state-
ment to enable weak forms of NIZKs without setup: against uniform provers assuming keyless
collision-resistant hash functions in [LPS17], and a weak form of soundness against non-uniform
provers under the non-standard assumption of keyless collision-resistant hash against non-uniform
adversaries in [BL18]. In addition [KK19] use NIWIs without trapdoors, but only achieve weaker
forms of non-malleability (that is, w.r.t. replacement). Even more recently, [GKLW20] replace NI-
WIs with hinting PRGs and remove the need for non-black-box use of cryptography. However,
they also rely on keyless hash functions to set up “trapdoors” for equivocal commitments, thereby
achieving only uniform security. In summary, due to the need for (variants of) non-interactive ZK,
all known constructions achieving the standard notion of non-malleability w.r.t. commitment (or
the stronger notion of CCA security) without trusted setup and against non-uniform adversaries
end up having to rely on non-standard assumptions.

In fact by now, CCA commitments – only for constant (and slightly super-constant) tags – are
known based on relatively mild assumptions, whereas tag amplification requires stronger assump-
tions. We now briefly describe the schemes with slightly super-constant tags and their underlying
assumptions for completeness, before going back to discussing the tag amplification bottleneck.

Base Schemes. Three recent works [LPS17, BL18, KK19] build non-interactive “base” schemes:
i.e. non-malleable commitments for a tag/identity space of size c log log κ for a specific constant
c > 0, based on various hardness assumptions. This is achieved by relying on families of assump-
tions, each of which is harder than the other along some axis of hardness.

Lin, Pass and Soni [LPS17] assume a sub-exponential variant of the hardness of time-lock puz-
zles. Bitansky and Lin [BL18] show that base commitments can also rely on sub-exponentially hard
one-way functions that admit a strong form of hardness amplification (the assumption is stronger

15

than what is currently known to be provable by known results on hardness amplification). Sub-
sequently, Kalai and Khurana [KK19] showed that one can assume classically sub-exponentially
hard but quantum easy one-way functions (which can be based, e.g., on sub-exponential hard-
ness of DDH), and sub-exponentially quantum hard one-way functions (which can be based, e.g.,
on sub-exponential quantum hardness of LWE). As discussed above, we would like to enable an
alternative tag amplification process.

Commit-and-Prove. Going back to the tag amplification process outlined above, one may ob-
serve that the type of statement being proved via ZK fits well into the “non-interactive commit-
and-prove” paradigm. In particular, one may hope that it would suffice to replace the ZK argu-
ment Π with (an appropriate) commit-and-prove – which allows a committer to generate n com-
mitments w.r.t. n different small tags, and give a (privacy-preserving) proof that all n strings com-
mit to the same message. As such, by carefully relying on our non-interactive commit-and-prove
discussed in Section 2.1, it seems like one should be able to achieve generic tag amplification.

In fact, our construction is roughly as expected at this point. The committer C on input a mes-
sage m and tag T encoded as {t1, . . . , tn}3, outputs a public key pk, together with an obfuscation
of the program PCCA described in Figure 3.

Hardwired: Puncturable PRF Key K, Message m, Tags t1, . . . , tn, Public key pk.

Input: Query y ∈ {0, 1}κ.

1. If y 6∈ Range(f), output ⊥. Otherwise, continue.

2. Set (r1, r2, . . . , rn+2) = PRF(K, y).

3. Set ci = ComSmall(m; ri) for all i ∈ [n].

4. Set c′ = encpk(0
κ; rn+1).

5. Let e be a NIWI, computed with randomness rn+2, asserting that

“(There exist m and {ri}i∈[n] s.t. ∀i ∈ [n], ci = ComSmall(m; ri))
OR

(
c′ is an encryption w.r.t. pk, of α such that f(α) = y

)
.”

6. Output ({ci}i∈[n], c′, e).

Figure 3: Program PCCA.

The proof of security of the resulting CCA commitment for large tags relies on a delicate in-
terplay of parameters between the CCA commitment and the zero-knowledge argument. Specif-
ically, recall that the tag amplification method sketched out earlier requires the simulation-based
security of zero-knowledge to be “higher” than the time needed to brute-force extract the com-
mitted value from the underlying CCA commitment for small tags. In our setting, this translates

3In the main technical body, we use a somewhat more optimal encoding scheme due to [KS17], but we ignore this
optimization for the purposes of this overview.

16

to carefully fine-tuning parameters so that the NIWI, PRF and public key encryption scheme are
all secure against T -size adversaries, where T is the time needed to break (via brute-force) the
underlying CCA commitment for small tags. This requirement for fine-tuned parameters requires
us to “open the black-box” and give a monolithic proof of security. By contrast, our (regular)
commit-and-prove system makes black-box use of the NIDI abstraction.

A Final Subtle Issue. We now point out one additional subtlety that we glossed over the in the
overview so far. Existing base schemes [LPS17, BL18, KK19] (for O(log log κ) tags) are only secure
in a setting where the adversary is restricted to using the same tag in all its queries to the CCA
decommitment oracle4. Before performing our tag amplification process, we will need to remove
this “same-tag” restriction.

We rely on a technique proposed by [GKLW20] to eliminate this restriction. A CCA commit-
ment scheme without the same-tag restriction, for tags in [n] where n ≤ poly(κ), can be obtained
from a CCA commitment with the same tag restriction, via the following process: To commit w.r.t.
tag t ∈ [n], send commitments w.r.t. all tags in [n] that are not equal to t. In more detail,

CCAComt(m) = ({CCACom-same-tagi(m)}i∈[n]\{t},Π),

where Π is (an appropriate variant of a) ZK argument certifying that

“All n− 1 commitments ci are to the same message.”

Let us assume that the adversary’s challenge commitment has tag t∗. This means that the chal-
lenge commitment does not contain the underlying commitment CCACom-same-tag w.r.t. tag t∗, and
on the other hand, all of the adversary’s oracle decommitment queries will contain CCACom-same-tag
w.r.t. tag t∗. This means that all decommitment queries that the adversary makes contain a com-
mitment w.r.t. tag t∗ that does not appear in the challenge commitment. This leads to an identical
situation as the setting of tag amplification, and a very similar construction (and proof) helps
bootstrap same-tag schemes for n ≤ poly(κ) tags to those that do not have such a requirement.

In summary, our final CCA commitment is obtained by first bootstrapping “base” same-tag
commitment schemes for small tags to remove the same-tag requirement, and then bootstrapping
the resulting small tag commitment via the tag amplification process outlined above.

Organization. The rest of this paper is organized as follows. In Section 3 we set up notation and
define building blocks. In Section 4 we define and construct NIDIs, in Section 5, we use NIDIs in a
black-box way to obtain commit-and-prove, and finally in Section 6 we build CCA commitments.

3 Preliminaries

We rely on the standard notions of Turing machines and Boolean circuits.

• A polynomial-size circuit family C is a sequence of circuits C = {Cκ}κ∈N, such that each
circuit Cκ is of polynomial size κO(1) and has κO(1) input and output bits. We also consider
probabilistic circuits that may toss random coins.

4In fact, the scheme in [LPS17] only satisfies a weaker notion of CCA security called same-tag CCA security w.r.t.
extraction. In Section 6, we show how our compiler also applies to this weaker notion of security.

17

• We model any efficient adversary as a family of polynomial-size circuits. For an adversary
A corresponding to a family of polynomial-size circuits {Aκ}κ∈N, we omit the subscript κ,
when it is clear from the context.

• A function f : N→ R is negl(n) if f(n) = n−ω(1).

• For random variablesX,Y , we writeX ≈T (κ) Y if for all poly(κ)-sized circuitsA, there exists
a negligible function µ such that for all κ,∣∣Pr[A(X) = 1]− Pr[A(Y) = 1]

∣∣ ≤ µ(T (κ)).

• When we say that a primitive is T (κ)-secure, unless otherwise stated, we mean that poly(T (κ))-
sized adversaries do not have advantage better than negl(T (κ)) in breaking the primitive’s
security. When we say that a primitive is sub-exponentially secure, we mean that there exists
a constant ε > 0 such that the primitive is T (κ) = 2λ

ε
secure.

• We will use d← D to denote a random sample from distribution D. This will sometimes be
denoted equivalently as d = D(r) for r ← {0, 1}∗. Similarly, we will consider randomized
algorithms that obtain inputs, and toss coins. We will use notation t ← T (m) to denote the
output of randomized algorithm T on input m. Sometimes we will make the randomness of
T explicit, in which case we will use notation t = T (m; r) for r ← {0, 1}∗.

3.1 One-Way Puzzles

A one-way puzzle is a generalization of a one-way function. While inverting a one-way function
requires finding x such that f(x) = y, “inverting” the puzzle consists of finding a hard-to-compute
solution/secret that need not necessarily correspond to the entirety of the inverse x. In more detail,
we say that a puzzle consists of two algorithms with the following syntax,

• Puzzle.Gen(1κ) → (x, y) is a randomized algorithm that outputs a puzzle y ∈ {0, 1}κ, to-
gether with an implicit description of a set X of solutions to y.

• Puzzle.Check(1κ, z, y)→ {0, 1} returns 0 or 1. Informally, this algorithm returns 1 if and only
if z is in the solution set X corresponding to puzzle y.

Definition 3.1 (One-Way Puzzles). We will say that a puzzle (Puzzle.Gen,Puzzle.Check) is correct
if for every κ ∈ N, every (X, y) ∈ Supp(Puzzle.Gen(1κ)), every z ∈ X , Puzzle.Check(1κ, z, y) = 1.

We say that a puzzle is sub-exponentially one-way if there exists a constant ε > 0 such that for
every (non-uniform) poly(2κ

ε
)-sized adversary A,

Pr
(x,y)←Puzzle.Gen(1κ)

z←A(y)

[Puzzle.Check(1κ, z, y) = 1] = negl(2κ
ε
)

A one-way puzzle is a puzzle that satisfies the correctness and one-wayness properties de-
scribed above.

In what follows, we define a property called verifiability that allows one to efficiently check
whether a puzzle y has at least one solution.

18

Definition 3.2 (Verifiable One-Way Puzzles). We say that a one-way puzzle is verifiable if there
exists an algorithm Puzzle.Ver(1κ, y) that on input any y ∈ {0, 1}∗ outputs 1 if and only if there
exist z ∈ {0, 1}∗ such that Puzzle.Check(1κ, z, y) = 1.

Any one-way permutation is also a one-way puzzle, with a trivial verification algorithm. In
what follows, following [BP15, BPW16] we sketch how a (subexponentially secure) verifiable one-
way puzzle can be obtained based on any (subexponentially secure) one-way function family and
any (subexponentially secure) obfuscation scheme.

Imported Theorem 3.1. [BP15, BPW16] Assuming the existence of any (subexponentially secure) one-
way function family {fκ}κ∈N : {0, 1}n(κ) → {0, 1}κ and any (subexponentially secure) indistinguishabil-
ity obfuscation scheme, there exist (subexponentially secure) verifiable one-way puzzles satisfying Defini-
tion 3.2.

Proof. (Sketch) Following [BP15] we note that a keyed family of one-way permutations with a key
generation algorithm KeyGen(1κ) → K ∈ {0, 1}κ and a function FK : DK → DK , where each
key K defines a domain DK ⊆ {0, 1}κ, where it is possible to sample (pseudo)random elements
in DK , and where membership in DK can be tested efficiently, suffice. Such (sub-exponentially
hard to invert) one-way permutations can be obtained from (sub-exponential) indistinguishability
obfuscation and one-way functions following [BPW16].

• Puzzle.Gen(1κ) samples K ← KeyGen(1κ), x (pseudo)randomly from DK and outputs y =
(K,FK(x)), x.

• Puzzle.Check(1κ, z, y) parses y = (K, y′) and outputs 1 if either

– z was an inverse of y, that is y′ = FK(z), or

– y was not in the domain DK , or

– Fk(z) 6∈ DK or z = (x0, x1) such that Fk(x0) = Fk(x1).

• Puzzle.Ver(1κ) is a trivial algorithm that outputs 1 on any input of size κ.

Correctness and verifiability follow by noting that for any y = (K, y′),

• Either K is a valid key for a permutation and y′ ∈ DK , in which case there always exists an
inverse z of y′ under FK , or

• K is a valid key for a permutation over domain DK and y′ 6∈ DK , which can be efficiently
checked, or

• K corresponds to a function FK that is not a permutation over its domain DK , in which case
there either exists z such that FK(z) 6∈ DK or there exists z = (x0, x1) such that FK(x0) =
FK(x1).

This means that for every y = (K, y′) there exists z such that Puzzle.Check(1κ, z, y) = 1.

19

3.2 Indistinguishability Obfuscation

The notion of indistinguishability obfuscation (iO) [BGI+12] guarantees that the obfuscation of
two circuits are computationally indistinguishable as long as they both are equivalent circuits, i.e.,
the output of both the circuits are the same on every input. Formally,

Definition 3.3 (Indistinguishability Obfuscator (iO) for Circuits). A uniform PPT algorithm iO is
called an indistinguishability obfuscator for a circuit family {Cκ}κ∈N, where Cκ consists of circuits
C of the form C : {0, 1}n → {0, 1}with n = n(κ), if the following holds:

• Perfect Correctness: For every κ ∈ N, every C ∈ Cκ, every input x ∈ {0, 1}n, we have that

Pr
[
C ′(x) = C(x) : C ′ ← iO(1κ, C)

]
= 1

• Indistinguishability: For all pairs of circuits C0, C1 ∈ Cκ such that C0(x) = C1(x) for all
inputs x ∈ {0, 1}n and |C0| = |C1|, we have:

iO(κ,C0) ≈κ iO(κ,C1)

• Polynomial Slowdown: For every κ ∈ N, everyC ∈ Cκ, we have that |iO(1κ, C)| = poly(κ,C).

Definition 3.4 (Sub-exponentially Secure Indistinguishability Obfuscator (iO) for Circuits). This is
defined identically to the previous definition except the indistinguishability condition is modified
to the following: There exists a constant ε > 0 such that for all pairs of circuits C0, C1 ∈ Cκ such
thatC0(x) = C1(x) for all inputs x ∈ {0, 1}n and |C0| = |C1|, we have that for every poly(2κ

ε
)-sized

adversary A,
|Pr[A(iO(κ,C0)) = 1]− Pr[iO(κ,C1) = 1]| ≤ negl(2κ

ε
)

4 Non-Interactive Distributionally Indistinguishable (NIDI) Arguments

In this section, we define and construct NIDI arguments. As discussed earlier, NIDI arguments
enable a proverP with input a secret efficiently sampleable distributionD to send a single message (a
“sampler”) to verifier V . Given this sampler, V can obtain a sample d from the (secret) distribution
D together with a proof of membership of the sampled instance d in a (public) NP language L. Specifically,
after checking such a proof, the verifier either outputs ⊥ or a sample d from the distribution.

4.1 Definitions

Let D denote a sampling circuit that on input uniform randomness outputs samples from a distri-
bution (X ,W) over instance-witness pairs,

In a NIDI, the prover algorithm P obtains input a security parameter, a sampling circuit D , a
public NP language L, and generates P(1κ,D,L) → π. The verifier V on input sampler π and the
language L computes V(1κ, π,L) → d or ⊥. We formally define this primitive below. We begin
with the most natural definition, which we unfortunately do not achieve in this work, and leave
as an interesting open question for future work. Next, we provide a more relaxed definition which
we do achieve.

20

Definition 4.1 (Non-Interactive Distributionally-Indistinguishable (NIDI) Arguments). A pair of
PPT algorithms is (P,V) is a non-interactive distributionally-indistinguishable (NIDI) argument
for NP language Lwith associated relation RL if the non-interactive algorithms P and V5 satisfy:

• Completeness: For every distribution (X ,W) over instance-witness pairs in RL that can be
sampled by a poly(κ)-size circuit D,(

V(1κ, π,L) : π ∈ Supp (P(1κ,D,L))
)
∈ Supp(X).

• Soundness: For every ensemble of polynomial-length strings π = {πκ}κ∈N there exists a
negligible function µ(·) such that:

Pr
x←V(1κ,π,L)

[(
x 6= ⊥

)
∧
(
x 6∈ L

)]
≤ µ(κ)

• Distributional Indistinguishability: For every pair of distributions (X0,W0) and (X1,W1)
over instance-witness pairs in RL that can be sampled by poly(κ)-size circuits D0 and D1

respectively, if X0 ≈κ X1, then

P(1κ,D0,L) ≈κ P(1κ,D1,L)

Definition 4.2 (NIDI Arguments for T (κ)-Hard Distributions). Let T (κ) denote a time bound.
A pair of PPT algorithms (P,V) is a non-interactive distributionally-indistinguishable (NIDI) ar-
gument for T (κ)-hard distributions and NP language L with associated relation RL if the non-
interactive algorithms P and V satisfy the completeness and soundness properties from Definition
4.1, and additionally satisfy:

• Distributional Indistinguishability for T (κ)-Hard Distributions: For every pair of dis-
tributions (X0,W0) and (X1,W1) over instance-witness pairs in RL that can be sampled by
poly(κ)-size circuits D0 and D1 respectively, if X0 ≈T (κ) X1, then

P(1κ,D0,L) ≈κ P(1κ,D1,L)

4.2 Construction and Analysis

In this section, we construct NIDIs and prove the following theorem.

Theorem 4.1. Assuming the existence of sub-exponentially secure indistinguishability obfuscation and
sub-exponentially secure one-way functions, there exists a constant c > 1 s.t. for T (κ) = 2(log κ)

c there
exist NIDI arguments for T (κ)-Hard Distributions satisfying Definition 4.2.

To prove Theorem 4.1, we show that there exist NIDI arguments for T (κ)-hard distributions,
where log T = (log κ)c, and c > 1 is some constant. Our construction depends on T , and is
described below. Looking ahead, we point out that the constant c will be related to the exact sub-
exponential security (i.e. related to the constant ε where we assume 2k

ε
security of the primitive

with security parameter k) of the cryptographic primitives used in the construction.

5Since we define a NIDI for L, it is not necessary to explicitly send L as input to P and V but we nevertheless write
it this way for clarity.

21

Construction 4.1. Let ε > 0 be an arbitrarily small constant such that:

• There exists a sub-exponentially secure one-way puzzle ensemble {fk′ : {0, 1}poly(k′) → {0, 1}k′}k′∈N
These can be based on sub-exponential indistinguishability obfuscation and one-way func-
tions (Section 3). We require that for large enough security parameter k′, the corresponding
puzzle can be solved with probability at most negl(2k

′ε
) by circuits of size poly(2k

′ε
).

• There exists a perfectly correct, sub-exponentially secure public-key encryption scheme PKE =
PKE.KeyGen(1k),PKE.Enc(1k, pk, x; r),PKE.Dec(1k, sk, c). We require that for large enough
security parameter k, the advantage of every poly(2k

ε
)-size adversary in the IND-CPA game

is negl(2k
ε
).

• There exists a sub-exponentially secure indistinguishability obfuscation scheme (iO.Obf, iO.Eval).
We require that for large enough security parameter k, the advantage of every poly(2k

ε
)-size

adversary in the obfuscation security game is negl(2k
ε
).

• There exists a sub-exponentially secure puncturable PRF. We require that for large enough
security parameter k, the advantage of every poly(2k

ε
)-size adversary in the puncturable

PRF indistinguishability game is negl(2k
ε
).

• There exist sub-exponentially secure NIWI = (NIWI.Prove(1k, x, w),NIWI.Verify(1k, x, π)) proofs
with statistical sub-exponential soundness. We require that for large enough security param-
eter k, the advantage of every poly(2k

ε
)-size adversary in the NIWI indistinguishability game

is negl(2k
ε
).

We note that the required public-key encryption scheme can be based on sub-exponential
indistinguishability obfuscation and sub-exponential one-way functions following [SW14]. The
required puncturable PRF is known to be implied by sub-exponential one-way functions (see
eg., [SW14]) and the required NIWIs can also be based on sub-exponential iO and sub-exponential
verifiable one-way puzzles [BP15].

Now, set c = 1
ε . We construct our non-interactive distributionally-indistinguishable (NIDI)

argument below, where lettingRL denote the relation corresponding to NP language Lwe define

LNIWI =
{

(pk, dx, cm, y) : ∃(dw, s, sk) s.t.
(
(dx, dw) ∈ RL

)∨
(
(pk, sk)← KeyGen(1k, s) ∧ Puzzle.Check(y,Decsk(cm)) = 1

)}
• The prove algorithm P(1κ,D,L) does the following:

– Set k = (log κ)c
2
, k′ = (log κ)c.

– Sample s← {0, 1}k and set (pk, sk)← KeyGen(1k, s).

– Sample K ← {0, 1}k, R← {0, 1}k.

– Generate program Ppk,K,D,L defined in Figure 4.

– Compute P̃ = iO.Obf(Ppk,K,D,L;R).

– Output (pk, P̃).

• The verify algorithm V(1κ, π,L) on input a proof π = (pk, P̃) does the following:

22

Hardwired: Public key pk, Puncturable PRF Key K, Distribution D, Language L.

Input: Query y ∈ {0, 1}k
′
.

1. If Puzzle.Ver(y) 6= 1, output ⊥. Otherwise, continue.

2. Set (r1, r2, r3) = PRF(K, y).

3. Set (dx, dw) = D(r1).

4. Set cm = Encpk(0
k′ ; r2).

5. Set x = (pk, dx, cm, y), w = (dw, 0
2k).

Then compute e = NIWI.P(1k, x, w,LNIWI; r3).

6. Output (x, e).

Figure 4: Program Ppk,K,D,L.

– Sample (x, y) = Puzzle.Gen(1k
′
).

– Compute out = iO.Eval(P̃ , y). Parse out = (x, e) and parse x = (pk, d, cm, y).

– If NIWI.V(1k, x, e,LNIWI) rejects, output ⊥ and stop.

– Else output d.

Lemma 4.1. Construction 4.1 satisfies completeness according to Definition 4.1.

Proof. The proof follows by observing that due to perfect correctness of iO, V(π,L) for π = (pk, P̃)

obtains (x, e) from P̃ , where x = (pk, d, c, y). By perfect correctness of NIWI, V will output d with
probability 1. Recall that (d, ·) = D(r1) by construction, and therefore d ∈ Supp(X).

Lemma 4.2. Under the assumptions in Theorem 4.1, construction 4.1 satisfies soundness according to
Definition 4.1.

Proof. Suppose there exists a poly(κ)-sized (non-uniform) prover P∗ that outputs string π∗ ∈
{0, 1}∗, and suppose there exists a polynomial p(·) such that:

Pr
[(
V(1κ, π,L) 6= ⊥

)
∧
(
V(1κ, π,L) 6∈ L

)∣∣∣π ← P∗] ≥ 1

p(κ)

Then, we construct a non-uniform adversary A∗ that contradicts one-wayness of the puzzle f . A∗

obtains non-uniformly a purported NIDI proof π∗ for language L, where π∗ = (pk∗, P̃), and also
non-uniformly obtains the secret key sk∗ for pk∗ (if one exists). Otherwise, it sets sk∗ to 0k.

Next, A∗ obtains a string y and does the following:

• Compute out = iO.Eval(P̃ , y). Parse out = (x∗, e∗) and parse x∗ = (pk∗, d∗, c∗, y).

• Output z = Decsk∗(c
∗).

23

Now by assumption,

Pr
[(
V(1κ, π,L) 6= ⊥

)
∧
(
V(1κ, π,L) 6∈ L

)∣∣∣π ← P∗] ≥ 1

p(κ)

which by our construction implies that

Pr
[(
NIWI.V(x∗, e∗,LNIWI) accepts

)
∧
(
V(1κ, π,L) 6∈ L

)∣∣∣π ← P∗] ≥ 1

p(κ)
(1)

By (statistical) soundness of the NIWI, with probability 1 − negl(κ) over the NIWI verifier’s ran-
domness, NIWI.V(x∗, e∗,LNIWI) accepts iff x∗ ∈ LNIWI, or equivalently for x∗ = (pk∗, d∗, c∗, y∗),

∃(r∗, s∗, sk∗) s.t.
(

(d∗, r∗) ∈ RL
)∨(

(pk∗, sk∗)← KeyGen(s∗)∧Puzzle.Check(y, (Decsk∗(c
∗))) = 1

)
(2)

Combining equations (1) and (2),

Pr

[(
∃(r∗, s∗, sk∗) s.t.

(
(d∗, r∗) ∈ RL

)∨(
(pk∗, sk∗)← KeyGen(s∗)∧

Puzzle.Check(y, (Decsk∗(c
∗))) = 1

))∧(
V(1κ, π,L) 6∈ L

)]
≥ 1

p(κ)
− negl(κ) =

1

2p(κ)

By noting that d∗ 6∈ L implies that there does not exist r∗ such that
(
(d∗, r∗) ∈ RL

)
, we have:

Pr

[(
∃(r∗, s∗, sk∗) s. t. (pk∗, sk∗)← KeyGen(s∗) ∧ Puzzle.Check(y, (Decsk∗(c

∗))) = 1
)∧(

d∗ 6∈ L
)]
≥ 1

2p(κ)

which in particular implies that for (pk∗, P̃) and corresponding sk∗ set non-uniformly by A,

Pr

[(
∃(r∗, s∗, sk∗) s. t. (pk∗, sk∗)← KeyGen(s∗) ∧ Puzzle.Check(y, (Decsk∗(c

∗))) = 1
)]
≥ 1

p(κ)
=

1

2p(2k′
ε
)

which implies that with probability at least 1
2p(2k′

ε
)
, the output of A∗(y), which is z = Decsk∗(c

∗)

as discussed above, is such that Puzzle.Check(y, (Decsk∗(c
∗)) = 1.

Therefore A∗(y) runs in time poly(κ) = poly(2k
′ε

) and contradicts one-wayness of the puzzle,
as desired. This completes the proof.

Lemma 4.3. Under the assumptions in Theorem 4.1, Construction 4.1 satisfies distributional indistin-
guishability for T (κ)-hard distributions per Definition 4.2.

Proof. We prove the following (stronger) statement: there is a large enough constant c > 1 such
that for every languageL, every poly(κ)-sampleable pair of distributions (D0,D1) such that Supp(D0)∪
Supp(D1) ⊆ L and D0 ≈2log κc D1,

P(1κ,D0,L) ≈2log κc P(1κ,D1,L)

We will in fact set c = 1
ε as above, where we recall that 0 < ε < 1 is a constant such that the

underlying cryptographic primitives are assumed to satisfy sub-exponential 2k
ε

security.

24

To prove this lemma, we define a sequence of (2k
′
+1) hybrids, (Hybrid0,Hybrid1, . . . ,Hybrid2k′)

such that Hybrid0 ≡ P(1κ,D0,L) and Hybrid2k′ ≡ P(1κ,D1,L).

For each i ∈ [0, 2k
′
], the distribution Hybridi depends on (1k

′
,D0,D1,L, ε) and is defined as follows:

• Sample s← {0, 1}k and set (pk, sk)← KeyGen(s).

• Sample K ← {0, 1}k, R← {0, 1}k.

• Generate program P ipk,K,D,L defined in Figure 5.

• Compute P̃ = iO.Obf(P ipk,K,D,L;R).

• Output (pk, P̃).

Hardwired: Public key pk, Index i ∈ [2κ], Puncturable PRF Key K, Distributions (D0,D1),
Language L.

Input: Query y ∈ {0, 1}k
′
.

1. If Puzzle.Ver(y) 6= 1, output ⊥. Otherwise, continue.

2. Set (r1, r2, r3) = PRF(K, y).

3. If y < i, set d = D1(r1).

4. If y ≥ i, set d = D0(r1).

5. Set c = Encpk(0
k′ ; r2).

6. Set x = (pk, d, c, y), w = (r1, 0
2k). Then compute e = NIWI.P(x,w,LNIWI; r3).

7. Output (x, e).

Figure 5: Program P ipk,K,D,L.

We now prove that for every i ∈ [1, 2k
′
] and every (non-uniform) poly(2k

ε
)-sized distinguisher

D there exists a negligible function µ(·) such that:∣∣∣Pr[D(Hybridi) = 1]− Pr[D(Hybridi+1) = 1]
∣∣∣ = µ(2k

ε
)

We also note that when Puzzle.Ver(i) 6= 1, the programs P ipk,K,D,L and P i+1
pk,K,D,L are functionally

equivalent. Therefore by security of iO with security parameter k, we have that for every poly(2k
ε
)-

sized distinguisher D there exists a negligible function µ(·) such that:∣∣∣Pr[D(Hybridi) = 1]− Pr[D(Hybridi+1) = 1]
∣∣∣ = µ(2k

ε
)

25

When Puzzle.Ver(i) = 1, we prove the claim by considering a sequence of additional sub-
hybrids between Hybridi and Hybridi+1 called (Hybridi,1, . . . ,Hybridi,10) where:

Hybridi,1 ≡ Hybridi and Hybridi,10 ≡ Hybridi+1

• Hybridi,1 ≡ Hybridi.

• Hybridi,2 depends on (1κ,D0,D1,L, ε) and is defined as follows: (we underline the difference
between Hybridi,1 and Hybridi,2)

– Sample s← {0, 1}k and set (pk, sk)← KeyGen(s).

– Sample K ← {0, 1}k, R← {0, 1}k.

– Set (r∗1, r
∗
2, r
∗
3) = PRF(K, i).

– Set d∗ = D0(r
∗
1) and c∗ = Encpk(0

κ; r∗2).

– Set x∗ = (pk, d∗, c∗, i), w∗ = (r∗1, 0
2k). Then compute e∗ = NIWI.P(1k, x∗, w∗,LNIWI; r

∗
3).

– Generate program P̃ ipk,K,D,L,(x∗,e∗) defined in Figure 6.

– Compute P̃ = iO.Obf(P̃ ipk,K,D,L,(x∗,e∗);R).

– Output (pk, P̃).

Hardwired: Public key pk, Index i ∈ [2κ], Punctured PRF Key K{i}, (x∗, e∗), Distributions
(D0,D1), Language L.

Input: Query y ∈ {0, 1}k
′
.

1. If Puzzle.Ver(y) 6= 1, output ⊥. Otherwise, continue.

2. If y = i, output (x∗, e∗) and stop.

3. Compute (r1, r2, r3) = PRF(K, y).

4. If y < i, set d = D1(r1).

5. If y ≥ i, set d = D0(r1).

6. Set c = Encpk(0
k′ ; r2).

7. Set x = (pk, d, c, y), w = (r1, 0
2k). Then compute e = NIWI.P(1k, x, w,LNIWI; r3).

8. Output (x, e).

Figure 6: Program P̃ ipk,K,D,L,(x∗,e∗).

Claim 4.1. For every poly(2k
ε
)-sized distinguisher D there exists a negligible function µ1(·) such

that: ∣∣∣Pr[D(Hybridi,1) = 1]− Pr[D(Hybridi,2) = 1]
∣∣∣ = µ1(2

kε)

26

Proof. Note that the programs P ipk,K,D,L and P̃ ipk,K,D,L,(x∗,e∗) have identical functionality.
Therefore, by sub-exponential security of indistinguishability obfuscation (with security pa-
rameter k), for every i ∈ [1, 2k

′
] and every (non-uniform) poly(2k

ε
)-sized distinguisher D

there exists a negligible function µ1(·) such that:∣∣∣Pr[D(Hybridi,1) = 1]− Pr[D(Hybridi,2) = 1]
∣∣∣ = µ1(2

kε)

• Hybridi,3 is identical to Hybridi,2 except that (r∗1, r
∗
2, r
∗
3)← {0, 1}κ+2k.

Claim 4.2. For every poly(2k
ε
)-sized distinguisher D there exists a negligible function µ2(·) such

that: ∣∣∣Pr[D(Hybridi,2) = 1]− Pr[D(Hybridi,3) = 1]
∣∣∣ = µ2(2

kε)

Proof. By sub-exponential security of the puncturable PRF (with security parameter k), we
have directly that for every i ∈ [1, 2k

′
] and every (non-uniform) poly(2k

ε
)-sized distinguisher

D there exists a negligible function µ2(·) such that:∣∣∣Pr[D(Hybridi,2) = 1]− Pr[D(Hybridi,3) = 1]
∣∣∣ = µ2(2

kε)

• Hybridi,4 is defined as follows: (we underline the difference between Hybridi,3 and Hybridi,4)

– Sample s← {0, 1}k and set (pk, sk)← KeyGen(s).

– Sample K ← {0, 1}k, R← {0, 1}k.

– Set (r∗1, r
∗
2, r
∗
3)← {0, 1}κ+2k.

– Compute (in time poly(2k
′
) = poly(2k

ε
)) a solution s∗1 such that Puzzle.Check(s∗1, i) = 1.

– Set d∗ = D0(r
∗
1) and c∗ = Encpk(s

∗
1; r
∗
2).

– Set x∗ = (pk, d∗, c∗, i), w∗ = (r∗1, 0
2k). Then compute e∗ = NIWI.P(1k, x∗, w∗,LNIWI; r

∗
3).

– Generate program P̃ ipk,K,D,L,(x∗,e∗) defined in Figure 6.

– Compute P̃ = iO.Obf(P̃ ipk,K,D,L,(x∗,e∗);R).

– Output (pk, P̃).

Claim 4.3. For every poly(2k
ε
)-sized distinguisher D there exists a negligible function µ3(·) such

that: ∣∣∣Pr[D(Hybridi,3) = 1]− Pr[D(Hybridi,4) = 1]
∣∣∣ = µ3(2

kε)

Proof. We will prove this claim based on the sub-exponential IND-CPA security of the en-
cryption scheme against non-uniform adversaries. Towards a contradiction, suppose there
exists a distinguisher D and a polynomial p(·) such that∣∣∣Pr[D(Hybridi,3) = 1]− Pr[D(Hybridi,4) = 1]

∣∣∣ ≥ 1

p(2kε)

27

Then there exists an adversary D′ that computes s∗1 = f−1(i) by brute-force listing all possible
solutions to the one-way puzzle in time poly(2k

′
) = poly(2k

ε
), then begins the experiment.

It obtains c∗ from the CPA challenger as either Encpk(0
k′ ; r∗2) or Encpk(s

∗
1; r
∗
2) It completes

the rest of the experiment according to Hybridi,3 except setting c∗ according to the ciphertext
obtained from the external challenger. It then mirrors the output of D given the resulting
distribution, which implies that∣∣∣Pr[D′(Encpk(0

κ; r∗2)) = 1]− Pr[D′(Encpk(s
∗
1; r
∗
2)) = 1]

∣∣∣ ≥ 1

p(2kε)

which gives a contradiction, as desired. Therefore, by sub-exponential IND-CPA security of
the encryption scheme (with security parameter k), for every i ∈ [1, 2κ] and every (non-
uniform) poly(k)-sized distinguisher D there exists a negligible function µ3(·) such that:∣∣∣Pr[D(Hybridi,3) = 1]− Pr[D(Hybridi,4) = 1]

∣∣∣ = µ3(2
kε)

• Hybridi,5 is defined as follows: (we underline the difference between Hybridi,4 and Hybridi,5)

– Set k = κ
1
ε .

– Sample s← {0, 1}k and set (pk, sk)← KeyGen(s).

– Sample K ← {0, 1}k, R← {0, 1}k.

– Set (r∗1, r
∗
2, r
∗
3)← {0, 1}κ+2k.

– Compute (in time poly(2k
ε
)) a solution s∗1 such that Puzzle.Check(s∗1, i) = 1.

– Set d∗ = D0(r
∗
1) and c∗ = Encpk(s

∗
1; r
∗
2).

– Set x∗ = (pk, d∗, c∗, i), w∗ = (0κ, s, sk). Then compute e∗ = NIWI.P(1k, x∗, w∗,LNIWI; r
∗
3).

– Generate program P̃ ipk,K,D,L,(x∗,e∗) defined in Figure 6.

– Compute P̃ = iO.Obf(P̃ ipk,K,D,L,(x∗,e∗);R).

– Output (pk, P̃).

Claim 4.4. For every poly(2k
ε
)-sized distinguisher D there exists a negligible function µ4(·) such

that: ∣∣∣Pr[D(Hybridi,4) = 1]− Pr[D(Hybridi,5) = 1]
∣∣∣ = µ4(2

kε)

Proof. We will prove this claim based on the sub-exponential witness indistinguishability of
the NIWI against non-uniform adversaries. Towards a contradiction, suppose there exists a
distinguisher D and a polynomial p(·) such that∣∣∣Pr[D(Hybridi,4) = 1]− Pr[D(Hybridi,5) = 1]

∣∣∣ ≥ 1

p(2kε)

Then there exists an adversary D′ that computes s∗1 = f−1(i) by brute-force listing all possible
solutions to the one-way puzzle in time poly(2k

′
) = poly(2k

ε
), then begins the experiment

28

It obtains e∗ from the NIWI challenger either using witness w∗ = (r∗1, 0
2k) as in Hybridi,4,

or using witness w∗ = (0κ, s, sk) as in Hybridi,5. It completes the rest of the experiment
according to Hybridi,4 except setting e∗ according to the NIWI obtained from the external
challenger. It then mirrors the output of D given the resulting distribution, which implies
that ∣∣∣Pr[D′(w∗ = (r∗1, 0

2k)) = 1]− Pr[D′(w∗ = (0κ, s, sk)) = 1]
∣∣∣ ≥ 1

p(2kε)

which gives a contradiction, as desired. Therefore, by sub-exponential security of the NIWI
(with security parameter k), for every i ∈ [1, 2κ] and every (non-uniform) poly(2k

ε
)-sized

distinguisher D there exists a negligible function µ4(·) such that:∣∣∣Pr[D(Hybridi,4) = 1]− Pr[D(Hybridi,5) = 1]
∣∣∣ ≤ µ4(2kε)

• Hybridi,6 is defined as follows: (we underline the difference between Hybridi,5 and Hybridi,6)

– Sample s← {0, 1}k and set (pk, sk)← KeyGen(s).

– Sample K ← {0, 1}k, R← {0, 1}k.

– Set (r∗1, r
∗
2, r
∗
3)← {0, 1}κ+2k.

– Compute (in time poly(2k
ε
)) a solution s∗1 such that Puzzle.Check(s∗1, i) = 1.

– Set d∗ = D1(r
∗
1) and c∗ = Encpk(s

∗
1; r
∗
2).

– Set x∗ = (pk, d∗, c∗, i),w∗ = (0κ, s, sk). Then compute e∗ = NIWI.P(1k, x∗, w∗,LNIWI; r
∗
3).

– Generate program P̃ ipk,K,D,L,(x∗,e∗) defined in Figure 6.

– Compute P̃ = iO.Obf(P̃ ipk,K,D,L,(x∗,e∗);R).

– Output (pk, P̃).

Claim 4.5. For every poly(2k
ε
)-sized distinguisher D there exists a negligible function µ5(·) such

that: ∣∣∣Pr[D(Hybridi,5) = 1]− Pr[D(Hybridi,6) = 1]
∣∣∣ = µ5(2

kε)

Proof. We will prove this claim based on 2log κ
c

= 2k
ε
-hardness of (D0,D1) against non-

uniform adversaries. Towards a contradiction, suppose there exists a distinguisher D and
a polynomial p(·) such that∣∣∣Pr[D(Hybridi,5) = 1]− Pr[D(Hybridi,6) = 1]

∣∣∣ ≥ 1

p(2kε)

Then there exists an adversary D′ that computes s∗1 = f−1(i) by brute-force listing all possible
solutions to the one-way puzzle in time poly(2k

′
) = poly(2k

ε
), then begins the experiment. It

obtains d∗ from an external challenger sampled either as D0(r
∗) as in Hybridi,5, or as D1(r

∗)
as in Hybridi,6. It completes the rest of the experiment according to Hybridi,5 except setting d∗

29

according to the sample obtained from the external challenger. It then mirrors the output of
D given the resulting distribution, which implies that∣∣∣Pr[D′(d∗ = D0(r

∗)) = 1]− Pr[D′(d∗ = D1(r
∗)) = 1]

∣∣∣ ≥ 1

p(2kε)
=

1

p(2(log κ)c)

which gives a contradiction to the 2(log κ)
c

-hardness of (D0,D1), as desired.

• Hybridi,7 is defined as follows: (we underline the difference between Hybridi,6 and Hybridi,7)

– Sample s← {0, 1}k and set (pk, sk)← KeyGen(s).

– Sample K ← {0, 1}k, R← {0, 1}k.

– Set (r∗1, r
∗
2, r
∗
3)← {0, 1}κ+2k.

– Compute (in time poly(2k
ε
)) a solution s∗1 such that Puzzle.Check(s∗1, i) = 1.

– Set d∗ = D1(r
∗
1) and c∗ = Encpk(s

∗
1; r
∗
2).

– Set x∗ = (pk, d∗, c∗, i), w∗ = (r∗1, 0
2k). Then compute e∗ = NIWI.P(1k, x∗, w∗,LNIWI; r

∗
3).

– Generate program P̃ ipk,K,D,L,(x∗,e∗) defined in Figure 6.

– Compute P̃ = iO.Obf(P̃ ipk,K,D,L,(x∗,e∗);R).

– Output (pk, P̃).

Claim 4.6. For every poly(2k
ε
)-sized distinguisher D there exists a negligible function µ6(·) such

that: ∣∣∣Pr[D(Hybridi,6) = 1]− Pr[D(Hybridi,7) = 1]
∣∣∣ = µ6(2

kε)

Proof. By sub-exponential witness indistinguishability of the NIWI (and following an iden-
tical argument to that of the indistinguishability between Hybridi,4 and Hybridi,5), for every
poly(2k

ε
)-sized distinguisher D there exists a negligible function µ6(·) such that:∣∣∣Pr[D(Hybridi,6) = 1]− Pr[D(Hybridi,7) = 1]

∣∣∣ ≤ µ6(2kε)

• Hybridi,8 is defined as follows: (we underline the difference between Hybridi,7 and Hybridi,8)

– Sample s← {0, 1}k and set (pk, sk)← KeyGen(s).

– Sample K ← {0, 1}k, R← {0, 1}k.

– Set (r∗1, r
∗
2, r
∗
3)← {0, 1}κ+2k.

– Compute (in time poly(2k
ε
)) a solution s∗1 such that Puzzle.Check(s∗1, i) = 1.

– Set d∗ = D1(r
∗
1) and c∗ = Encpk(0

k′ ; r∗2).

– Set x∗ = (pk, d∗, c∗, i), w∗ = (r∗1, 0
2k). Then compute e∗ = NIWI.P(1k, x∗, w∗,LNIWI; r

∗
3).

– Generate program P̃ ipk,K,D,L,(x∗,e∗) defined in Figure 6.

30

– Compute P̃ = iO.Obf(P̃ ipk,K,D,L,(x∗,e∗);R).

– Output (pk, P̃).

Claim 4.7. For every poly(2k
ε
)-sized distinguisher D there exists a negligible function µ7(·) such

that: ∣∣∣Pr[D(Hybridi,7) = 1]− Pr[D(Hybridi,8) = 1]
∣∣∣ = µ7(2

kε)

Proof. By sub-exponential IND-CPA security of the encryption scheme (and following an
identical argument to that of the indistinguishability between Hybridi,3 and Hybridi,4), for
every poly(k)-sized distinguisher D there exists a negligible function µ7(·) such that:∣∣∣Pr[D(Hybridi,7) = 1]− Pr[D(Hybridi,8) = 1]

∣∣∣ ≤ µ7(2kε)

• Hybridi,9 is identical to Hybridi,8 except that (r∗1, r
∗
2, r
∗
3) = PRF(K, i).

Claim 4.8. For every poly(2k
ε
)-sized distinguisher D there exists a negligible function µ8(·) such

that: ∣∣∣Pr[D(Hybridi,8) = 1]− Pr[D(Hybridi,9) = 1]
∣∣∣ = µ8(2

kε)

Proof. By sub-exponential security of the puncturable PRF (with security parameter k), we
have that for every poly(k)-sized distinguisher D there exists a negligible function µ8(·) such
that: ∣∣∣Pr[D(Hybridi,8) = 1]− Pr[D(Hybridi,9) = 1]

∣∣∣ ≤ µ8(2kε)
• Hybridi,10 ≡ Hybridi.

Claim 4.9. For every poly(2k
ε
)-sized distinguisher D there exists a negligible function µ9(·) such

that: ∣∣∣Pr[D(Hybridi,9) = 1]− Pr[D(Hybridi,10) = 1]
∣∣∣ = µ9(2

kε)

Proof. Note that now the programs P ipk,K,D,L and P̃ ipk,K,D,L,(x∗,e∗) have identical functional-
ity. Therefore, by sub-exponential security of indistinguishability obfuscation (with security
parameter k), for every poly(k)-sized distinguisher D there exists a negligible function µ9(·)
such that: ∣∣∣Pr[D(Hybridi,9) = 1]− Pr[D(Hybridi,10) = 1]

∣∣∣ ≤ µ9(2kε)
By combining all the above claims, we have that for every i ∈ [1, 2k

′
] and every poly(2k

ε
)-sized

distinguisher D there exists a negligible function µ(·) such that:∣∣∣Pr[D(Hybridi) = 1]− Pr[D(Hybridi+1) = 1]
∣∣∣ ≤ µ(2k

ε
)

31

Moreover, recall that log κ = kε
2
. We have that for every (non-uniform) poly(κ)-sized adversaryA,∣∣∣Pr[A(Hybrid0) = 1]− Pr[A(Hybrid2κ) = 1]

∣∣∣ ≤ 2k
′ · µ(2k

ε
) = 2k

ε · µ(2k
ε
) = negl(2k

ε
) = negl(2log κ

c

)

which proves the lemma, as desired.

5 Commit-and-Prove

A (relaxed) non-interactive commit-and-prove argument is a protocol between a committer C and
receiverR. In the commit phase, C sendsR a single message to commit to a valuem ∈ {0, 1}κ. The
transcript of the commitment is finalized as a function of the receiver’s randomness and the com-
mitter’s message, although the receiver does not need to return this randomness to the committer.
It also proves that m satisfies some public predicate φ, in other words it proves that φ(m) = 1. Af-
ter receiving the committer’s message, R either outputs ⊥ (denoting that the commitment phase
was rejected) or outputs a commitment string c.

Later, the parties C and R possibly engage in another decommit phase, at the end of which R
outputs ⊥ or m ∈ {0, 1}κ.

Definition 5.1 (Non-Interactive Commit-and-Prove). A pair of PPT algorithms (C,R) where R =
(R1,R2) is a non-interactive commit-and-prove argument if it satisfies the following.

• Completeness: For every φ and every m ∈ {0, 1}κ such that φ(m) = 1,

Pr

[
m← R2(1

κ, c, cert, st) ∧
φ(m) = 1

∣∣∣∣ (π, st)← C(1κ,m, φ)
(c, cert)← R1(1

κ, π, φ)

]
= 1.

• Soundness: For every poly(κ)-sized (non-uniform) committer C∗ there exists a negligible
function µ(·) such that for large enough κ ∈ N,

Pr

 ∃(m∗, st∗) s.t. (m∗ 6= ⊥) ∧
m∗ ← R2(1

κ, c, cert, st∗) ∧
φ(m∗) 6= 1

∣∣∣∣∣∣ π ← C
∗

(c, cert)← R1(1
κ, π, φ)

 ≤ µ(κ).

• Computational Hiding: For every language L, every pair of messages (m0,m1) such that
φ(m0) = φ(m1) = 1,

C(1κ,m0, φ) ≈κ C(1κ,m1, φ)

Construction 5.1. Let ε > 0 be a constant such that:

• There exists a non-interactive perfectly binding commitment Com that satisfies hiding against
2κ

ε
-time (non-uniform) adversaries, and

• There exists a NIDI argument for 2κ
ε
-hard distributions that satisfies Definition 4.1.

We define
Lφ =

{
c : ∃(m, r) s.t. c = Com(m; r) ∧ φ(m) = 1

}
32

• The commit algorithm C(1κ,m, φ) does the following:

– Define distribution Dm(r) = Com(m; r).
– Output π = P(1κ,Dm,Lφ) computed using uniform randomness rC .
– Set st = (m, rC).

• The receiver algorithmR1(1
κ, π, φ) does the following.

– Sample randomness rR.
– Obtain y ← V(1κ, π,Lφ; rR).
– Output (y, rR).

• The receiver algorithmR2(1
κ, c, cert, st∗) does the following:

– Parse st∗ = (m∗, r∗C) and cert = rR.
– Compute π∗ = P(1κ,Dm∗ ,Lφ; r∗C).
– If V(1κ, π∗,Lφ; rR) = (c, ·), output m∗.
– Otherwise, output ⊥.

Lemma 5.1. Construction 5.1 satisfies completeness according to Definition 5.1.

Proof. The proof follows by the perfect correctness of NIDI.

Lemma 5.2. Construction 5.1 satisfies soundness according to Definition 5.1.

Proof. We prove that this lemma follows by the soundness of the NIDI according to Definition 4.2
and the perfect binding property of Com. Towards a contradiction, suppose there exists a poly(κ)-
sized (non-uniform) committer C∗ for which there exists a polynomial p(·) such that for infinitely
many κ ∈ N,

Pr

 ∃(m∗, st∗) s.t. (m∗ 6= ⊥) ∧
m∗ ← R2(1

κ, c, cert, st∗) ∧
φ(m∗) 6= 1

∣∣∣∣∣∣ π ← C
∗

(c, cert)← R1(1
κ, π, φ)

 ≥ 1

p(κ)
.

Fix any string π, and let (c, cert)← R1(1
κ, π, φ).

• By construction, for any st∗ parsed as (m∗, r∗C),R2(1
κ, c, cert, st∗) outputs m∗ 6= ⊥ if and only

if for π∗ = P(1κ,Dm∗ ,Lφ; r∗C), V(1κ, π∗,Lφ; cert) = (c, ·).

By perfect completeness of NIDI, this implies thatR2(1
κ, c, cert, st∗) outputs some m∗ 6= ⊥ if

and only if there exists r∗C such that c = Com(m∗; r∗C).

• Next by the perfect binding of Com, for every string c, there exists at most one message m∗

and randomness r∗C such that c = Com(m∗; r∗C). Then φ(m∗) 6= 1 ⇐⇒ c 6∈ Lφ.

Taken together, this implies that

Pr
[(
R(1κ, π,Lφ) 6= ⊥

)
∧
(
R(1κ, π,Lφ) 6∈ L

)∣∣∣π ← C∗] ≥ 1

p(κ)
,

which contradicts the soundness of NIDI, as desired.

33

Lemma 5.3. Construction 5.1 satisfies computational hiding according to Definition 4.2.

Proof. This lemma follows almost immediately from the distributional indistinguishability of NIDI.
Specifically, for language L = Lφ, for any pair of messages m0,m1 such that φ(m0) = φ(m1) =

1, define poly(κ)-sampleable distributions (Dm0 ,Dm1) whereDmb consists of instance-witness pairs
(x,w) for x = (Com(mb; r)) , w = ((mb, r)).

By definition of Lφ, Supp(D0) ∪ Supp(D0) ⊆ Lφ. Moreover by 2κ
ε
-hardness of Com, we have

that Com(m0; r) ≈2κε Com(m1; r), Therefore, distributional indistinguishability of NIDI according
to Definition 4.2 implies that: P(1κ,Dm0 ,Lφ) ≈κ P(1κ,Dm1 ,Lφ) or equivalently, C(1κ,m0, φ) ≈κ
C(1κ,m1, φ), as desired.

6 CCA Commitments from Indistinguishability Obfuscation

6.1 Definitions

We now define CCA secure commitments, parts of some definitions are taken from [GKLW20].
This is a scheme where a commitment to message m under tag tag and randomness r is created as
CCACom(tag,m; r)→ com. For all tag0, tag1, r0, r1 andm0 6= m1 we have that CCACom(tag0,m0; r0) 6=
CCACom(tag1,m1; r1).

Chosen commitment security, first defined in [CLP10], allows an adversary to give a challenge
tag tag∗ along with messages m0,m1 and receive a challenge commitment com∗ to either m0 or m1

from the experiment. The adversary must then guess the message that was committed to with the
aid of oracle access to an (inefficient) value function CCAVal where CCAVal(com) will return m if
CCACom(tag,m; r)→ com for some r. The adversary is allowed oracle access to CCAVal(·) for any
tag 6= tag∗.

A CCA secure commitment is parameterized by a tag space of size N = N(κ) where tags are
in [1, N]. It consists of three algorithms:

CCACom(1κ, tag,m; rC , rR)→ com is a randomized process between committer C and receiverR
that takes as input the security parameter κ, tag ∈ [N], a message m ∈ {0, 1}∗ and outputs a
commitment com, including the tag tag. We denote the random coins of the committer and
receiver explicitly as rC and rR respectively.

CCAVal(com) → m ∪ ⊥ is an algorithm that takes in a commitment com and outputs either a
message m ∈ {0, 1}∗ or a reject symbol ⊥.

Definition 6.1. A non-interactive CCA commitment is a tagged commitment as described above
that involves a single message from the committer to the receiver, and that satisfies the following
correctness, efficiency and security properties.

• Correctness/Binding. For all m ∈ {0, 1}∗, tag ∈ [N] and rC , rR we have that

CCAVal(CCACom(1κ, tag,m; rC , rR)) = m.

Moreover,

Pr
c←〈C∗,R(rR)〉

[6 ∃(m, rC , tag) s.t. c = CCACom(1κ, tag,m; rC , rR) ∧ CCAVal(c) 6= ⊥] = negl(κ)

where the probability is over the randomness of the receiver.

34

• Efficiency. CCACom runs in time poly(|m|, κ), while CCAVal runs in time poly(|m|, 2κ).

• Security. We now define a CCA game between a challenger and an adversary. The game is
parameterized by a security parameter κ. First, we require that for any string c for which
there do not exist m ∈ {0, 1}∗, r, tag ∈ [N] such that c = CCACom(1κ, tag,m; r), CCAVal(c)
outputs ⊥.

1. The adversary sends a “challenge tag” tag∗ ∈ [N].

2. The adversary makes repeated commitment queries com. If com.tag = tag∗ the chal-
lenger responds with ⊥. Otherwise it responds as

CCAVal(com).

3. For some p, the adversary sends two messages m0,m1 ∈ {0, 1}p.
4. The challenger flips a coin b ∈ {0, 1} and sends com∗ = CCACom(tag∗,mb; r) for ran-

domly chosen r.

5. The adversary makes repeated commitment queries again, denoted by com. If com.tag =
tag∗ the challenger responds with ⊥. Otherwise it responds as

CCAVal(com).

6. The adversary finally outputs a guess b′.

We require that for any polynomial-sized adversary A there exists a negligible function µ(·)
such that the adversary’s advantage in the game, defined to be Pr[b′ = b]− 1

2 , is µ(κ).

We will assume that the message underlying any commitment generated with security pa-
rameter 1κ can be retrieved with probability 1 by an algorithm running in time q(2κ) for some
polynomial function q. We will refer to this as a trivial implementation of the CCAVal function.

Definition 6.2. A commitment scheme (CCACom,CCAVal) is said to be “same tag” CCA secure
if for any poly-time non-uniform adversary A such that all commitment queries submitted by A
are on the same tag, there exists a negligible function negl(·) such that A’s advantage in the above
game with Step 1 removed is negl(κ).

Definition 6.3. A commitment scheme (CCACom,CCAVal) is said to be “same tag” CCA secure
w.r.t. extraction if for any poly-time non-uniform adversary A such that all commitment queries
submitted by A are on the same tag, there exists a negligible function negl(·) such that A’s advan-
tage in a modified version of the above game with Step 1 removed is negl(κ).

The only modification is that the correctness/binding property is relaxed to remove the second
requirement, and is defined as: for all m ∈ {0, 1}∗, tag ∈ [N] and rC , rR we have that

CCAVal(CCACom(1κ, tag,m; rC , rR)) = m.

35

6.2 Tag Amplification: Construction and Analysis

In this section, we prove the following theorem.

Theorem 6.1. Assume the existence of sub-exponentially secure indistinguishability obfuscation, sub-
exponentially secure one-way functions and quasi-polynomially (i.e. 2log κ

c
-secure for some large enough

c > 1) secure same-tag CCA commitments w.r.t. extraction (Definition 6.3) for tags in [log log log κ]. Then
there exist CCA commitments (Definition 6.1) for tags in 2κ.

We prove this theorem in two parts. In the first, we build a compiler that amplifies same-tag
CCA commitments w.r.t. extraction for tags in [t] to CCA commitments for tags in [t]. In the
second we build a tag amplification compiler that amplifies CCA commitments for tags in [t/2]

for t ≤ poly(κ) to CCA commitments for tags in [T] where T =

(
t
t/2

)
. Applying this compiler 4

times to a CCA commitments for tags in [log log log κ] yields the statement of the theorem.

From same-tag CCA commitments w.r.t. extraction for tags in [t] for t ≤ poly(κ) to CCA commit-
ments for tags in [t]. We prove the following theorem.

Lemma 6.1. Assume the existence of 2k
ε-secure indistinguishability obfuscation and one-way functions,

and 2(log k
c) secure same-tag CCA commitments w.r.t. extraction for tags in [t] where t ≤ poly(κ), satis-

fying Definition 6.2 and where cε > 1. Then there exist 2(log k
cε)-secure CCA commitments for tags in [t]

satisfying Definition 6.1.

Combining this lemma with (quasi-polynomially secure) same-tag base schemes, eg., those
due to [KK19], yields CCA commitments for small tags from sub-exponential indistinguishability
obfuscation, sub-exponential quantum-hard non-interactive commitments, and sub-exponential
non-interactive commitments in BQP. Alternatively, on combining with the base scheme of [LPS17],
we obtain CCA commitments for small tags from sub-exponential indistinguishability obfuscation
and the [LPS17] variant of the (subexponential) time-lock puzzle assumption.

In what follows, let ε > 0 and c > 1 be constants such that εc ≥ 1 and:

• The same-tag CCA commitment w.r.t. extraction for small tags and security parameter κ is
2(log κ)

c

secure and has a value algorithm CCAVal that runs in time at most poly(2κ) on valid
commitments.

• There exists a subexponentially secure verifiable one-way puzzle f such that for large enough se-
curity parameter k, the corresponding puzzle can be solved with probability at most negl(2k

ε
)

by machines of size 2k
ε
.

• There exists a perfectly correct, sub-exponentially secure public-key encryption scheme with
key generation, encryption and decryption algorithms (KeyGen,Enc,Dec) that for security
parameter 1k satisfies 2k

ε
- IND-CPA security against (non-uniform) adversaries.

• There exists a sub-exponentially secure indistinguishability obfuscation scheme (iO.Obf, iO.Eval)
that for security parameter 1k satisfies 2k

ε
- security against (non-uniform) adversaries.

• There exists a sub-exponentially secure puncturable PRF that for security parameter 1k satisfies
2k

ε
- security against (non-uniform) adversaries.

36

• There exist sub-exponentially statistically sound and sub-exponentially computationally wit-
ness indistinguishable NIWIs that for security parameter 1k satisfy 2k

ε
-security against (non-

uniform) adversaries.

Our compiler is described formally below, where lettingRL denote the relation corresponding
to NP language Lwe define language

LNIWI =
{
{(ci, si)}i∈[t−1], (pk, enc, y) : ∃(M, r1, . . . , rt, s, sk) s.t.

(
∀i ∈ [t− 1], ci = ComSamesi(M ; ri)

)
∨(

(pk, sk)← KeyGen(s) ∧ Puzzle.Check(y, f(Decsk(c)))
)}

where si denotes a tag in [t], and ComSame denotes the commit algorithm for an underlying CCA
commitment with tags in [t].

Construction 6.1. We now describe the CCACom and CCAVal algorithms for the scheme without
the same tag restriction. We note that just like our commit-and-prove system described in the
previous section, the commit phase ends after the receiver has queries the committer’s program
on a random input. The output of the commit phase is the output of such a receiver.

On input security parameter κ, we will set parameters of our building blocks as follows. Our
verifiable one-way puzzle will have security parameter kf set to (log κ)c. The CCA commitment
for same tags will have security parameter set to κ. Note that this implies (by assumption) that
CCAVal runs in time poly(2κ). Finally, all other primitives including iO, the puncturable PRF and
the PKE scheme will have security parameter set to k = κ

1
ε .

The CCACom Algorithm: CCACom(1κ,m, tag) does the following.

• Let (s1, . . . st−1) = [t] \ {tag}.

• The committer C(1κ,M, tag) does the following:

– Set k = κ
1
ε and kf = (log κ)c.

– Sample s← {0, 1}k and set (pk, sk)← KeyGen(s).

– Sample K ← {0, 1}k and R← {0, 1}k.

– Generate program Ppk,K,M,tag defined in Figure 7.

– Compute P̃ = iO(Ppk,K,M,tag;R).

– Output c = (tag, pk, P̃).

• The receiver R on input a commitment c = (tag, pk, P̃) runs a randomized algorithm that
does the following.

– Sample v ← {0, 1}κ and set y = f(v).

– Compute out = iO.Eval(P̃ , y). Parse out = (x, e), x = (d, pk, enc, y) and d = {ci}i∈[t−1].
– Set x′ = {(ci, si)}i∈[t−1], (pk, enc, y). If NIWI.V(1k, x′, e,LNIWI) rejects, output⊥ and stop.

– Else output v, and for each i ∈ [t− 1], execute the receiver algorithm ComSame.R(ci).
If any of these (t) algorithms output ⊥, then output ⊥ and stop.

37

– At the end of this process, the receiver either outputs ⊥ or (y, τ1, . . . , τt) where τi de-
notes the (non-⊥) outcome of ComSame.R(ci)

6.

The CCAVal Algorithm: The CCAVal algorithm obtains as input a commitment string parsed
as ⊥ or (τ1, . . . , τt−1), generated as the output of the commit phase above, and does the following.

• On input a commitment string, if ⊥, output ⊥. Otherwise parse the string as (τ1, . . . , τt−1)
and execute ComSame.CCAVal(τ1).

Hardwired: Public key pk, Puncturable PRF Key K, message M ∈ {0, 1}p, small tags
(s1, . . . st) corresponding to tag.

Input: Query y ∈ {0, 1}kf .

1. If Puzzle.Ver(y) 6= 1, output ⊥. Otherwise, continue.

2. Set r = (r1||r2|| . . . ||rt+1) = PRF(K, y).

3. For i ∈ [t− 1], set ci = ComSamesi(M ; ri). Set d = {ci}i∈[t−1].

4. Set enc = Encpk(0
κ; rt).

5. Set x = d, (pk, enc, y), w = (M, r1, . . . , rt−1, 0
2k).

6. Compute e = NIWI.P(1k, x, w,LNIWI; rt+1) and output (x, e).

Figure 7: Program PK,M,tag

It is easy to see that the running time of CCAVal remains poly(|m|, 2κ). The correctness/binding
property follows based on soundness of the NIWI and the weak correctness/binding properties of
the same-tag commitment w.r.t. extraction. Any adversary that (with non-negligible probability)
produces a commitment c for which the NIWI verifies but where the underlying commitments are
not well-formed, can be used to break the one-way puzzle identically to Section 5.

We now prove the following lemma, which implies Theorem 6.1.

Lemma 6.2. Construction 6.1 satisfies 2(log κ)
cε

-CCA security according to Definition 6.1 for tags in [t].

Proof. To prove the lemma, we define a sequence of (2kf + 1) hybrid distributions,
(Hybrid0,Hybrid1, . . . ,Hybrid2kf) and prove 2k

ε
-indistinguishability between them all.

For each j ∈ [0, 2κ], the distribution Hybridj is defined as follows:

1. The adversary sends a “challenge tag” tag∗ ∈ [N]. Compute (s∗1, . . . s
∗
t−1) for tag∗.

2. The adversary makes repeated commitment queries where it sends an obfuscated progam
com. If com.tag = tag∗ the challenger responds with ⊥.

Otherwise compute (y, τ1, . . . , τt)← R(com) and (s1, . . . st) for tag as described above. Com-
pute ι ∈ [t] such that sι 6∈ {s∗1, . . . , s∗t−1} and output

y,ComSame.CCAVal(τι).
6Note that for the base scheme, R simply outputs the string it obtained from the committer.

38

3. The adversary sends two messages m0,m1 ∈ {0, 1}p.

4. The challenger sends com∗ = CCACom(j)(tag∗,m0,m1; r) for randomly chosen r, for the
CCACom(j) algorithm described below.

5. The adversary makes repeated commitment queries again, denoted by com. If com.tag =
tag∗ the challenger responds with ⊥.

Otherwise compute (y, τ1, . . . , τt) ← R(com) and (s1, . . . st−1) for tag as described above.
Compute ι ∈ [t] such that sι 6∈ {s∗1, . . . , s∗t−1} and output

y,ComSame.CCAVal(τι).

(Note that sι this will equal the tag tag∗ by construction.)

6. The adversary finally outputs its view.

For every j ∈ [0, 2kf], CCACom(j)(tag∗,m0,m1; r) is identical to CCACom(tag∗,mb; r) except that
the challenger generates P̃ = iO(P

(j)
pk,K,m0,m1,tag∗

;R), for the program P
(j)
pk,K,m0,m1,tag∗

described in
Figure 8.

Hardwired: Public key pk, Puncturable PRF Key K, messages m0,m1 ∈ {0, 1}p, small tags
(s∗1, . . . s

∗
t−1) corresponding to tag∗.

Input: Query y ∈ {0, 1}kf .

1. If Puzzle.Ver(y) 6= 1, output ⊥. Otherwise, continue.

2. Set r = (r1||r2|| . . . ||rt+1) = PRF(K, y).

3. If y < j, then for i ∈ [t− 1], set ci = ComSames∗i (m1; ri). Set d = {ci}i∈[t−1].

4. If y ≥ j, then for i ∈ [t− 1], set ci = ComSames∗i (m0; ri). Set d = {ci}i∈[t−1].

5. Set enc = Encpk(0
κ; rt).

6. Set x = d, (pk, enc, y), w = (M, r1, . . . , rt−1).

7. Compute e = NIWI.P(1k, x, w,LNIWI; rt+1) and output (x, e).

Figure 8: Program P
(j)
pk,K,m0,m1,tag∗

First, we note that Hybrid0 is identical to the CCA game where the challenge commitment
commits to m0, except that the adversary’s oracle queries in Step 2 are decrypted by running
ComSame.CCAVal(τι), as opposed to running ComSame.CCAVal(τ1). We argue that the adversary’s
view is indistinguishable with error negl(2k

ε
f) = negl(2(log κ)

cε

), between Hybrid0 and the CCA game
with challenge commitment to m0, by relying on the soundness of the NIWI. Specifically, by the
soundness of NIWI, any adversary that distinguishes the two hybrids makes at least one decom-
mitment query for which, on verifier randomness y, the commitment program outputs enc as an

39

encryption of s∗ s.t. Puzzle.Ver(y, s∗) 6= 1. By a non-uniform argument identical to that in Lemma

4.2, such an adversary can be used to build a poly(κ) = poly(2k
1/c
f) < poly(2k

ε
f)-adversary that

contradicts one-wayness of f with probability 1/poly(2k
ε
f).

By a similar argument, the adversary’s view is indistinguishable with error negl(2k
ε
f) = negl(2(log κ)

cε

),
between Hybrid2kf and the CCA game with challenge commitment to m1. We therefore conclude
that indistinguishability between the CCA games with challenge commitments to m0 versus m1

respectively is implied by indistinguishability between Hybrid0 and Hybrid2kf . Towards establish-
ing the latter, we begin by proving the following claim.

Claim 6.1. For every j ∈ [1, 2kf] and every (non-uniform) poly(κ)-sized adversary A there exists a negli-
gible function µ(·) such that:∣∣∣Pr[A(Hybridj−1) = 1]− Pr[A(Hybridj) = 1]

∣∣∣ = µ(2(log κ)
cε

)

To prove this claim, we fix arbitrary j ∈ [1, 2kf] and consider two cases. In the first, when
Puzzle.Ver(j) 6= 1, we have that by (subexponential) security of iO,∣∣∣Pr[A(Hybridj−1) = 1]− Pr[A(Hybridj) = 1]

∣∣∣ = µ(2k
ε
) = µ(2κ)

When Puzzle.Ver(j) = 1, we consider a sequence of sub-hybrids between Hybridj−1 and Hybridj
called (Hybridj−1,1, . . . ,Hybridj−1,10) where:

Hybridj−1,1 ≡ Hybridj−1 and Hybridj−1,10 ≡ Hybridj

• Hybridj−1,1 ≡ Hybridj−1.

• Hybridj−1,2 is identical to Hybridj−1,1 except the challenge commitment CCACom(j)(tag∗,m0,m1; r)
is generated as follows: (we underline the difference between Hybridj−1,1 and Hybridj−1,2)

– Sample s← {0, 1}k and set (pk, sk)← KeyGen(s).

– Sample K ← {0, 1}k and R← {0, 1}k.

– Set (r∗1|| . . . ||r∗t+1) = PRF(K, i).

– For i ∈ [t− 1] set c∗i = ComSames∗i (m0; r
∗
i). Set d∗ = {c∗i }i∈[t−1].

– Set enc∗ = Encpk(0
κ; r∗t−1).

– Set x∗ = (d∗, pk, enc∗, j), w∗ = (m0, r
∗
1, . . . , r

∗
t−1, 0

2k).

– Compute e∗ = NIWI.P(1k, x∗, w∗,LNIWI; r
∗
t+1).

– Generate program P
(j)
pk,K,m0,m1,tag∗,(x∗,e∗)

defined in Figure 9.

– Compute P̃ = iO(P
(j)
pk,K,m0,m1,tag∗,(x∗,e∗)

;R).

– Output c = (tag∗, pk, P̃).

Indistinguishability from the previous hybrid follows by (subexponential) security of iO.

Claim 6.2.
Hybridj−1,1 ≈2kε Hybridj−1,2

40

Hardwired: Public key pk, Puncturable PRF Key K, messages m0,m1 ∈ {0, 1}p, small tags
(s∗1, . . . s

∗
t−1) corresponding to tag∗.

Input: Query y ∈ {0, 1}kf .

1. If y 6∈ Range(f), output ⊥. Otherwise, continue.

2. Set r = (r1||r2|| . . . ||rt||rt+1) = PRF(K, y).

3. If y = j, output (x∗, e∗).

4. If y < j, then for i ∈ [t− 1], set ci = ComSames∗i (m1; ri). Set d = {ci}i∈[t−1].

5. If y > j, then for i ∈ [t− 1], set ci = ComSames∗i (m0; ri). Set d = {ci}i∈[t−1].

6. Set enc = Encpk(0
κ; rt).

7. Set x = d, (pk, enc, y), w = (M, r1, . . . , rt−1, 0
2k).

8. Compute e = NIWI.P(1k, x, w,LNIWI; rt+1) and output (x, e).

Figure 9: Program P
(j)
pk,K,m0,m1,tag∗

Proof. Note that the programs have identical functionality. Furthermore, note that answers
to all CCAVal queries on valid commitments are computable in time 2κ = 2k

ε
. Therefore, by

sub-exponential security of indistinguishability obfuscation (with security parameter k), for
every j ∈ [1, 2κ] there exists a negligible function µ1(·) such that:∣∣∣Pr[A(Hybridj−1,1) = 1]− Pr[A(Hybridj−1,2) = 1]

∣∣∣ ≤ µ1(2kε) = µ1(2
κ)

• Hybridj−1,3 is identical to Hybridj−1,2 except that (r∗1|| . . . ||r∗t+1)← {0, 1}2κ+k.

Indistinguishability from the previous hybrid follows by (subexponential) security of the
puncturable PRF.

Claim 6.3.
Hybridj−1,2 ≈2kε Hybridj−1,3

Proof. Note that answers to all CCAVal queries are computable in time 2κ ≤ 2k
ε
. Therefore,

by sub-exponential security of the puncturable PRF (with security parameter k), we have
directly that for every j ∈ [1, 2κ] there exists a negligible function µ2(·) such that:∣∣∣Pr[A(Hybridj−1,2) = 1]− Pr[A(Hybridj−1,3) = 1]

∣∣∣ ≤ µ2(2kε) = µ2(2
κ)

41

• Hybridj−1,4 is is identical to Hybridj−1,1 except CCACom(j)(tag∗,m0,m1; r) is defined as fol-
lows: (we underline the difference between Hybridj−1,3 and Hybridj−1,4)

– Sample s← {0, 1}k and set (pk, sk)← KeyGen(s).

– Sample K ← {0, 1}k and R← {0, 1}k.

– Set (r∗1|| . . . ||r∗t+1) = PRF(K, i).

– Compute (in time poly(2κ)) a solution s∗ such that Puzzle.Check(s∗, j) = 1.

– Set enc∗ = Encpk(s
∗; r∗t).

– For i ∈ [t− 1] set c∗i = ComSames∗i (m0; r
∗
i). Set d∗ = {c∗i }i∈[t].

– Set x∗ = (d∗, pk, enc∗, j), w∗ = (m0, r
∗
1, . . . , r

∗
t−1, 0

2k).

– Compute e∗ = NIWI.P(1k, x∗, w∗,LNIWI; r
∗
t+1).

– Generate program P
(j)
pk,K,m0,m1,tag∗,(x∗,e∗)

defined in Figure 9.

– Compute P̃ = iO(P
(j)
pk,K,m0,m1,tag∗,(x∗,e∗)

;R).

– Output c = (tag∗, pk, P̃).

Indistinguishability from the previous hybrid follows by (subexponential) CPA security of
the encryption scheme.

Claim 6.4.
Hybridj−1,3 ≈2kε Hybridj−1,4

Proof. We will prove this claim based on the sub-exponential IND-CPA security of the en-
cryption scheme against non-uniform adversaries. Towards a contradiction, suppose there
exists a distinguisher A and a polynomial p(·) such that∣∣∣Pr[A(Hybridj−1,3) = 1]− Pr[A(Hybridj−1,4) = 1]

∣∣∣ ≥ 1

p(2kε)

Then there exists a non-uniform adversary A′ that non-uniformly fixes s∗ = f−1(j), then
begins the experiment. It obtains c∗ from the CPA challenger as either Encpk(0

κ; r∗t+1) or
Encpk(s

∗; r∗t+1). Note that answers to all CCAVal queries are computable in time 2κ = 2k
ε
. It

completes the rest of the experiment according to Hybridj−1,3 except setting c∗ according to
the ciphertext obtained from the external challenger. It then mirrors the output of A given
the resulting distribution, which implies that∣∣∣Pr[A′(Encpk(0κ; r∗t+1)) = 1]− Pr[A′(Encpk(s∗; r∗t+1)) = 1]

∣∣∣ ≥ 1

p(2kε)

which gives a contradiction, as desired. Therefore, by sub-exponential IND-CPA security
of the encryption scheme (with security parameter k), for every i ∈ [1, 2κ] there exists a
negligible function µ3(·) such that:∣∣∣Pr[A(Hybridj−1,3) = 1]− Pr[A(Hybridj−1,4) = 1]

∣∣∣ ≤ µ3(2kε)

42

• Hybridj−1,5 is defined as follows: (we underline the difference between Hybridj−1,4 and Hybridj−1,5)

– Set k = κ
1
ε .

– Sample s← {0, 1}k and set (pk, sk)← KeyGen(s).
– Sample K ← {0, 1}k and R← {0, 1}k.
– Set (r∗1|| . . . ||r∗t+1) = PRF(K, i).
– Compute (in time poly(2κ)) a solution s∗ such that Puzzle.Check(s∗, j) = 1.
– Set enc∗ = Encpk(s

∗; r∗t+1).
– For i ∈ [t− 1] set c∗i = ComSames∗i (m0; r

∗
i). Set d∗ = {c∗i }i∈[t].

– Set x∗ = (d∗, pk, enc∗, j), w∗ = (0p(κ)+(t)·κ, s, sk).

– Compute e∗ = NIWI.P(1k, x∗, w∗,LNIWI; r
∗
t+2).

– Generate program P
(j)
pk,K,m0,m1,tag∗,(x∗,e∗)

defined in Figure 9.

– Compute P̃ = iO(P
(j)
pk,K,m0,m1,tag∗,(x∗,e∗)

;R).

– Output c = (tag∗, pk, P̃).

Indistinguishability from the previous hybrid follows by (subexponential) security of the
NIWI.

Claim 6.5.
Hybridj−1,4 ≈2kε Hybridj−1,5

Proof. We will prove this claim based on the sub-exponential witness indistinguishability of
the NIWI against non-uniform adversaries. Towards a contradiction, suppose there exists a
distinguisher A and a polynomial p(·) such that∣∣∣Pr[A(Hybridj−1,4) = 1]− Pr[A(Hybridj−1,5) = 1]

∣∣∣ ≥ 1

p(2kε)

Then there exists a non-uniform adversary A′ that non-uniformly fixes s∗1 = f−1(j), then
begins the experiment. It obtains e∗ from the CPA challenger either using witness w∗ cor-
responding to Hybridj−1,4, or using witness w∗ corresponding to Hybridj−1,5. It completes
the rest of the experiment according to Hybridj−1,4 except setting e∗ according to the NIWI
obtained from the external challenger. Here note that answers to all CCAVal queries are com-
putable in time 2κ = 2k

ε
.

A′ finally mirrors the output of A given the resulting distribution, which implies that∣∣∣Pr[A′(w∗ = (m1, r
∗
1, . . . , r

∗
t , 0

κ+k)) = 1]− Pr[A′(w∗ = (0p(κ)+(t)·κ, s∗, r∗t+1)) = 1]
∣∣∣ ≥ 1

p(2kε)

which gives a contradiction, as desired. Therefore, by sub-exponential security of the NIWI
(with security parameter k), for every j ∈ [1, 2κ] there exists a negligible function µ4(·) such
that: ∣∣∣Pr[A(Hybridj−1,4) = 1]− Pr[A(Hybridj−1,5) = 1]

∣∣∣ ≤ µ4(2kε)
43

• Hybridj−1,6 is defined as follows: (we underline the difference between Hybridj−1,5 and Hybridj−1,6)

– Set k = κ
1
ε .

– Sample s← {0, 1}k and set (pk, sk)← KeyGen(s).
– Sample K ← {0, 1}k and R← {0, 1}k.
– Set (r∗1|| . . . ||r∗t+1) = PRF(K, i).
– Compute (in time poly(2κ)) a solution s∗ such that Puzzle.Check(s∗, j) = 1.
– Set enc∗ = Encpk(s

∗; r∗t).
– For i ∈ [t− 1] set c∗i = ComSames∗i (m1; r

∗
i). Set d∗ = {c∗i }i∈[t−1].

– Set x∗ = (d∗, pk, enc∗, j), w∗ = (0p(κ)+(t)·κ, s, sk).
– Compute e∗ = NIWI.P(1k, x∗, w∗,LNIWI; r

∗
t+1).

– Generate program P
(j)
pk,K,m0,m1,tag∗,(x∗,e∗)

defined in Figure 9.

– Compute P̃ = iO(P
(j)
pk,K,m0,m1,tag∗,(x∗,e∗)

;R).

– Output c = (tag∗, pk, P̃).

Indistinguishability from the previous hybrid follows by CCA security of ComSame.

Claim 6.6.
Hybridj−1,5 ≈(2(log κ)

c
) Hybridj−1,6

Proof. We will prove this claim based on (2(log κ)
c

)-non-malleability of ComSame against non-
uniform adversaries. Towards a contradiction, suppose there exists a distinguisher A and a
polynomial p(·) such that∣∣∣Pr[A(Hybridj−1,5) = 1]− Pr[A(Hybridj−1,6) = 1]

∣∣∣ ≥ 1

p(2(log κ)
c
)

Then there exists a (non-uniform) adversary A′ that non-uniformly fixes a pre-challenge
transcript as well as s∗1 ∈ f−1(j), then begins the experiment. It obtains d∗ from an ex-
ternal challenger sampled either as {c∗i = ComSames∗i (m0; r

∗
i)}i∈[t] as in Hybridj−1,5, or as

{c∗i = ComSames∗i (m1; r
∗
i)}i∈[t] as in Hybridj−1,6

7. It completes the rest of the experiment ac-
cording to Hybridj−1,5 except setting d∗ according to the sample obtained from the external
challenger.

It relies on the oracle of ComSame to answer CCAVal queries (this is possible since the CCAVal
algorithm simply returns the output of ComSame.CCAVal(τι)), which by construction of the
hybrid always uses a different tag than all challenge tags.

It then mirrors the output of A given the resulting distribution, which implies that∣∣∣Pr[A′({c∗i = ComSames∗i (m0; r
∗
i)}i∈[t]) = 1]− Pr[A′({c∗i = ComSames∗i (m1; r

∗
i)}i∈[t]) = 1]

∣∣∣
≥ 1

p(2(log κ)
c
)

which gives a contradiction to the non-malleability of ComSame, as desired.
7One can also imagine a more fine-grained sequence of hybrids where these commitments are replaced one by one.

44

• Hybridj−1,7 is defined as follows: (we underline the difference between Hybridj−1,6 and Hybridj−1,7)

– Set k = κ
1
ε .

– Sample s← {0, 1}k and set (pk, sk)← KeyGen(s).

– Sample K ← {0, 1}k and R← {0, 1}k.

– Set (r∗1|| . . . ||r∗t) = PRF(K, i).

– Compute (in time poly(2κ)) a solution s∗ such that Puzzle.Check(s∗, j) = 1.

– Set enc∗ = Encpk(s
∗; r∗t+1).

– For i ∈ [t− 1] set c∗i = ComSames∗i (m1; r
∗
i). Set d∗ = {c∗i }i∈[t−1].

– Set x∗ = (d∗, pk, enc∗, j), w∗ = (m1, r
∗
1, . . . , r

∗
t−1, 0

2k).

– Compute e∗ = NIWI.P(1k, x∗, w∗,LNIWI; r
∗
t+1).

– Generate program P
(j)
pk,K,m0,m1,tag∗,(x∗,e∗)

defined in Figure 9.

– Compute P̃ = iO(P
(j)
pk,K,m0,m1,tag∗,(x∗,e∗)

;R).

– Output c = (tag∗, pk, P̃).

Indistinguishability (with error negl(2k
ε
) = negl(2κ)) from the previous hybrid follows by

(subexponential) security of the NIWI, similar to the proof of indistinguishability between
Hybridj−1,4 and Hybridj−1,5.

• Hybridj−1,8 is defined as follows: (we underline the difference between Hybridj−1,7 and Hybridj−1,8)

– Set k = κ
1
ε .

– Sample s← {0, 1}k and set (pk, sk)← KeyGen(s).

– Sample K ← {0, 1}k and R← {0, 1}k.

– Set (r∗1|| . . . ||r∗t+1) = PRF(K, i).

– Compute (in time poly(2κ)) a solution s∗ such that Puzzle.Check(s∗, j) = 1.

– Set enc∗ = Encpk(0; r∗t).

– For i ∈ [t− 1] set c∗i = ComSames∗i (m1; r
∗
i). Set d∗ = {c∗i }i∈[t−1].

– Set x∗ = (d∗, pk, enc∗, j), w∗ = (m1, r
∗
1, . . . , r

∗
t−1, 0

2k).

– Compute e∗ = NIWI.P(1k, x∗, w∗,LNIWI; r
∗
t+1).

– Generate program P
(j)
pk,K,m0,m1,tag∗,(x∗,e∗)

defined in Figure 9.

– Compute P̃ = iO(P
(j)
pk,K,m0,m1,tag∗,(x∗,e∗)

;R).

– Output c = (tag∗, pk, P̃).

Indistinguishability (with error negl(2k
ε
) = negl(2κ)) from the previous hybrid follows by

(subexponential) CPA security of the encryption scheme, similar to the proof of indistin-
guishability between Hybridj−1,3 and Hybridj−1,4.

45

• Hybridj−1,9 is identical to Hybridj−1,8 except that (r∗1|| . . . ||r∗t+1) = PRF(K, j).

Indistinguishability (with error negl(2k
ε
) = negl(2κ)) from the previous hybrid follows by

(subexponential) security of the puncturable PRF, similar to the proof of indistinguishability
between Hybridj−1,2 and Hybridj−1,3.

• Hybridj−1,10 ≡ Hybridj .

Indistinguishability (with error negl(2k
ε
) = negl(2κ)) from the previous hybrid follows by

(subexponential) security of iO, similar to the proof of indistinguishability between Hybridj−1,1
and Hybridj−1,2.

We thus have that for every j ∈ [1, 2kf] there exists a negligible function µ(·) such that:∣∣∣Pr[A(Hybridj−1) = 1]− Pr[A(Hybridj) = 1]
∣∣∣ ≤ µ(2(log κ)

c

)

For any (non-uniform) poly(κ)-sized distinguisher A, let µmax denote the maximum value of
the distinguishing advantage µ(·) between any two consecutive hybrids Hybridj and Hybridj+1,
which is again a negligible function. Then we have that∣∣∣Pr[A(Hybrid0) = 1]− Pr[A(Hybrid2kf) = 1]

∣∣∣ ≤ 2kf · µmax(2
(log κ)c)

= 2(log κ)
c

· negl(2(log κ)
c

) = negl(2(log κ)
c

)

This combined with the analysis above implies that the adversary’s advantage in the CCA hiding
game is at most negl(2(log κ)

cε

) which completes the proof of the lemma, as desired.

From CCA commitments for tags in [t/2] for t ≤ poly(κ) to CCA commitments for tags in [T]

where T =

(
t
t/2

)
. We prove the following theorem.

Lemma 6.3. Assume the existence of 2k
ε-secure indistinguishability obfuscation and one-way functions,

and 2(log k
c) secure CCA commitments for tags in [t/2] for t ≤ poly(κ), satisfying Definition 6.1 and where

cε > 1. Then there exist 2(log k
cε)-secure CCA commitments for tags in

(
t
t/2

)
satisfying Definition 6.1.

In what follows, let ε > 0 be an arbitrarily small constant such that:

• The CCA commitment for small tags and security parameter κ is 2(log κ)
c

secure and has a
“brute-force” recovery algorithm CCAVal that recovers the value underlying any commit-
ment, and runs in time at most poly(2κ).

• There exists a subexponentially secure verifiable one-way puzzle that with security parameter k
is 2k

ε
one-way.

• There exists a perfectly correct, sub-exponentially secure public-key encryption scheme with
key generation, encryption and decryption algorithms (KeyGen,Enc,Dec) that for security
parameter 1k satisfies 2k

ε
- IND-CPA security against (non-uniform) adversaries.

46

• There exists a sub-exponentially secure indistinguishability obfuscation scheme (iO.Obf, iO.Eval)
that for security parameter 1k satisfies 2k

ε
- security against (non-uniform) adversaries.

• There exists a sub-exponentially secure puncturable PRF that for security parameter 1k satisfies
2k

ε
- security against (non-uniform) adversaries.

• There exist sub-exponentially secure NIWIs that for security parameter 1k satisfy 2k
ε
- security

against (non-uniform) adversaries.

As before, note that sub-exponential public-key encryption and NIWIs can be based on sub-
exponential iO and sub-exponential one-way functions/permutations [SW14, BP15], and sub-
exponential puncturable PRFs can be based on sub-exponential one-way functions.

Our compiler is described formally below, where lettingRL denote the relation corresponding
to NP language Lwe define language

LNIWI =
{
{(ci, si)}i∈[t/2], (pk, enc, y) : ∃(M, r1, . . . , rt/2, s, sk) s.t.(
∀i ∈ [t/2], ci = ComSmallsi(M ; ri)

)
∨(

(pk, sk)← KeyGen(s) ∧ Puzzle.Check(y, f(Decsk(c))) = 1
)}

where si denotes a tag in [t/2], and ComSmall denotes the commit algorithm for an underlying
CCA commitment with tags in [t/2].

Construction 6.2. We now describe the CCACom and CCAVal algorithms for our scheme with
large tags. We note that just like our commit-and-prove system described in the previous section,
the commit phase ends after the receiver has queried the committer’s program on a random input.
The output of the commit phase is the output of such a receiver (and depending on the application,
the receiver may or may not need to send its input back to the committer).

On input security parameter κ, we will set parameters of our building blocks as follows. Our
one-way function with efficiently recognizable range and sub-exponential security will have secu-
rity parameter kf set to (log κ)c. The CCA commitment for small tags will have security parameter
set to κ. Note that this implies (by assumption) that CCAVal runs in time poly(2κ). Finally, all other
primitives including iO, the puncturable PRF and the PKE scheme will have security parameter
set to k = κ

1
ε .

The CCACom Algorithm: CCACom(1κ,m, tag) does the following.

• Let T denote the ordered set of all possible subsets of [t], of size t/2. Pick the ith element in
set T, for i = tag.8 Let this element be denoted by (s1, . . . st/2).

• The committer C(1κ,M, tag) does the following:

– Set k = κ
1
ε , and kf = (log κ)c.

8Here, we use a different tag encoding scheme due to [KS17] that offers a slightly more optimized way to the same
effect as the DDN encoding [DDN91] discussed in the overview. That is, for every pair of unequal large tags T and
T ′, there is at least one member in the set corresponding to T that is not present in the set corresponding to T ′, and
vice-versa.

47

– Sample s← {0, 1}k and set (pk, sk)← KeyGen(s).

– Sample K ← {0, 1}k and R← {0, 1}k.

– Generate program Ppk,K,M,tag defined in Figure 10.

– Compute P̃ = iO(Ppk,K,M,tag;R).

– Output c = (tag, pk, P̃).

• The receiverR on input a commitment c = (tag, pk, P̃) does the following.

– Sample v ← {0, 1}κ and set y = f(v).

– Compute out = iO.Eval(P̃ , y). Parse out = (x, e), x = (d, pk, enc, y) and d = {ci}i∈[t/2].

– Set x′ = {(ci, si)}i∈[t/2], (pk, enc, y). If NIWI.V(1k, x′, e,LNIWI) rejects, output ⊥ and stop.

– Else output v, and for each i ∈ [t/2], execute the receiver algorithm ComSmall.R(ci).
If any of these (t/2) algorithms output ⊥, then output ⊥ and stop.

– At the end of this process, the receiver either outputs⊥ or (τ1, . . . , τt/2) where τi denotes
the (non-⊥) outcome of ComSmall.R(ci)

9.

The CCAVal Algorithm: The CCAVal algorithm obtains as input a commitment string parsed
as ⊥ or (τ1, . . . , τt/2), generated as the output of the commit phase above, and does the following.

• On input a commitment string, if ⊥, output ⊥. Otherwise parse the string as (τ1, . . . , τt/2)
and execute ComSmall.CCAVal(τ1).

Hardwired: Public key pk, Puncturable PRF Key K, message M ∈ {0, 1}p, small tags
(s1, . . . st/2) corresponding to tag.

Input: Query y ∈ {0, 1}kf .

1. If Puzzle.Ver(y) 6= 1, output ⊥. Otherwise, continue.

2. Set r = (r1||r2|| . . . ||rt/2||rt/2+2) = PRF(K, y).

3. For i ∈ [t/2], set ci = ComSmallsi(M ; ri). Set d = {ci}i∈[t/2].

4. Set enc = Encpk(0
κ; rt/2+1).

5. Set x = d, (pk, enc, y), w = (M, r1, . . . , rt/2, 0
2k).

6. Compute e = NIWI.P(1k, x, w,LNIWI; rt/2+2) and output (x, e).

Figure 10: Program PK,M,tag

9Note that for the base scheme, R simply outputs the string it obtained from the committer.

48

Proof of Security The perfect correctness, efficiency and binding properties follow identically
to the same-tag setting. We now prove the following lemma. We will need to apply the lemma
recursively 4 times to obtain Theorem 6.1.

Lemma 6.4. Construction 6.1 satisfies 2(log κ)
cε-CCA security according to Definition 6.1 for tags in [T]

where T =

(
t
t/2

)
.

Proof. To prove this lemma, we define a sequence of (2kf + 1) hybrid distributions,
(Hybrid0,Hybrid1, . . . ,Hybrid2kf) and prove indistinguishability between them all.
For each j ∈ [0, 2kf], the distribution Hybridj is defined as follows:

1. The adversary sends a “challenge tag” tag∗ ∈ [N].

Let T denote the ordered set of all possible subsets of [t], of size t/2. Pick the ith element in
set T, for i = tag∗. Let this element be denoted by (s∗1, . . . s

∗
t/2).

2. The adversary makes repeated commitment queries com. If com.tag = tag∗ the challenger
responds with ⊥.

Otherwise let T denote the ordered set of all possible subsets of [t], of size t/2. Pick the ith

element in set T, for i = tag. Let this element be denoted by (s1, . . . st/2).

Compute ι ∈ [T] such that sι 6∈ {s∗1, . . . , s∗t/2} and output

ComSmall.CCAVal(τι).

3. The adversary sends two messages m0,m1 ∈ {0, 1}p.

4. The challenger sends com∗ = CCACom(j)(tag∗,m0,m1; r) for randomly chosen r, for the
CCACom(j) algorithm described below.

5. The adversary makes repeated commitment queries again, denoted by com. If com.tag =
tag∗ the challenger responds with ⊥. If com.tag = tag∗ the challenger responds with ⊥.

Otherwise let T denote the ordered set of all possible subsets of [t], of size t/2. Pick the ith

element in set T, for i = tag. Let this element be denoted by (s1, . . . st/2).

Compute ι ∈ [T] such that sι 6∈ {s∗1, . . . , s∗t/2} and output

ComSmall.CCAVal(τι).

6. The adversary finally outputs its view.

For every j ∈ [0, 2kf], CCACom(j)(tag∗,m0,m1; r) is identical to CCACom(tag∗,mb; r) except that
the challenger generates P̃ = iO(P

(j)
pk,K,m0,m1,tag∗

;R), for the program P
(j)
pk,K,m0,m1,tag∗

described in
Figure 11.

First, we note that Hybrid0 is identical to the CCA game where the challenge commitment
commits to m0, except that the adversary’s oracle queries in Step 2 are decrypted by running
ComSmall.CCAVal(τι), as opposed to running ComSmall.CCAVal(τ1). We argue that the adversary’s

49

Hardwired: Public key pk, Puncturable PRF Key K, messages m0,m1 ∈ {0, 1}p, small tags
(s∗1, . . . s

∗
t/2) corresponding to tag∗.

Input: Query y ∈ {0, 1}kf .

1. If y 6∈ Range(f), output ⊥. Otherwise, continue.

2. Set r = (r1||r2|| . . . ||rt/2||rt/2+2) = PRF(K, y).

3. If y < j, then for i ∈ [t/2], set ci = ComSmalls∗i (m1; ri). Set d = {ci}i∈[t/2].

4. If y ≥ j, then for i ∈ [t/2], set ci = ComSmalls∗i (m0; ri). Set d = {ci}i∈[t/2].

5. Set enc = Encpk(0
κ; rt/2+1).

6. Set x = d, (pk, enc, y), w = (M, r1, . . . , rt/2).

7. Compute e = NIWI.P(1k, x, w,LNIWI; rt/2+2) and output (x, e).

Figure 11: Program P
(j)
pk,K,m0,m1,tag∗

view is indistinguishable (with error negl(2log κ
cε

)) between Hybrid0 and the CCA game with chal-
lenge commitment to m0, by relying on the soundness of the NIWI. Specifically, by the sound-
ness of NIWI, any adversary that distinguishes the two hybrids makes at least one decommitment
query for which, on verifier randomness y, the commitment program outputs enc as an encryption
of s∗ s.t. f(s∗) = y. By a non-uniform argument identical to that in Lemma 4.2, such an adversary

can be used to build a poly(κ) = poly(2k
1/c
f) < poly(2k

ε
f)-adversary that contradicts one-wayness of

f with probability 1/poly(2k
ε
f).

By a similar argument, the adversary’s view is indistinguishable (with error negl(2(log κ)
cε

) be-
tween Hybrid2kf and the CCA game with challenge commitment tom1. We therefore conclude that
indistinguishability between the CCA games with challenge commitments to m0 versus m1 re-
spectively is implied by indistinguishability between Hybrid0 and Hybrid2kf . Towards establishing
the latter, we begin by proving the following claim.

Claim 6.7. For every j ∈ [1, 2kf] and every (non-uniform) poly(κ)-sized adversary A there exists a negli-
gible function µ(·) such that:∣∣∣Pr[A(Hybridj−1) = 1]− Pr[A(Hybridj) = 1]

∣∣∣ = µ(2k
ε
)

To prove this claim, we fix arbitrary j ∈ [1, 2kf] and consider two cases. In the first, when
Puzzle.Ver(j) 6= 1, we have that by (subexponential) security of iO,∣∣∣Pr[A(Hybridj−1) = 1]− Pr[A(Hybridj) = 1]

∣∣∣ = µ(2k
ε
) = µ(2κ)

When Puzzle.Ver(j) = 1, we consider a sequence of sub-hybrids between Hybridj−1 and Hybridj
called (Hybridj−1,1, . . . ,Hybridj−1,10) where:

Hybridj−1,1 ≡ Hybridj−1 and Hybridj−1,10 ≡ Hybridj

50

• Hybridj−1,1 ≡ Hybridj−1.

• Hybridj−1,2 is identical to Hybridj−1,1 except the challenge commitment CCACom(j)(tag∗,m0,m1; r)
is generated as follows: (we underline the difference between Hybridj−1,1 and Hybridj−1,2)

– Sample s← {0, 1}k and set (pk, sk)← KeyGen(s).

– Sample K ← {0, 1}k and R← {0, 1}k.

– Set (r∗1|| . . . ||r∗t/2+1) = PRF(K, i).

– For i ∈ [t/2] set c∗i = ComSmalls∗i (m0; r
∗
i). Set d∗ = {c∗i }i∈[t/2].

– Set enc∗ = Encpk(0
κ; r∗t/2+1).

– Set x∗ = (d∗, pk, enc∗, j), w∗ = (m0, r
∗
1, . . . , r

∗
t/2, 0

2k).

– Compute e∗ = NIWI.P(1k, x∗, w∗,LNIWI; r
∗
t/2+2).

– Generate program P
(j)
pk,K,m0,m1,tag∗,(x∗,e∗)

defined in Figure 12.

– Compute P̃ = iO(P
(j)
pk,K,m0,m1,tag∗,(x∗,e∗)

;R).

– Output c = (tag∗, pk, P̃).

Hardwired: Public key pk, Puncturable PRF Key K, messages m0,m1 ∈ {0, 1}p, small tags
(s∗1, . . . s

∗
t/2) corresponding to tag∗.

Input: Query y ∈ {0, 1}kf .

1. If Puzzle.Ver(y) 6= 1, output ⊥. Otherwise, continue.

2. Set r = (r1||r2|| . . . ||rt/2||rt/2+1) = PRF(K, y).

3. If y = j, output (x∗, e∗).

4. If y < j, then for i ∈ [t/2], set ci = ComSmalls∗i (m1; ri). Set d = {ci}i∈[t/2].

5. If y > j, then for i ∈ [t/2], set ci = ComSmalls∗i (m0; ri). Set d = {ci}i∈[t/2].

6. Set enc = Encpk(0
κ; r2).

7. Set x = d, (pk, enc, y), w = (M, r1, . . . , rt/2, 0
2k).

8. Compute e = NIWI.P(1k, x, w,LNIWI; rt/2+1) and output (x, e).

Figure 12: Program P
(j)
pk,K,m0,m1,tag∗

Claim 6.8.
Hybridj−1,1 ≈2kε Hybridj−1,2

51

Proof. Note that the programs have identical functionality. Furthermore, note that answers
to all CCAVal queries are computable in time 2κ ≤ 2κ

ε
. Therefore, by sub-exponential security

of indistinguishability obfuscation (with security parameter k), for every j ∈ [1, 2κ] there
exists a negligible function µ1(·) such that:∣∣∣Pr[A(Hybridj−1,1) = 1]− Pr[A(Hybridj−1,2) = 1]

∣∣∣ ≤ µ1(2kε)

• Hybridj−1,3 is identical to Hybridj−1,2 except that (r∗1|| . . . ||r∗t/2+2)← {0, 1}
2κ+k.

Claim 6.9.
Hybridj−1,2 ≈2kε Hybridj−1,3

Proof. Note that answers to all CCAVal queries are computable in time 2κ ≤ 2κ
ε
. Therefore,

by sub-exponential security of the puncturable PRF (with security parameter k), we have
directly that for every j ∈ [1, 2κ] there exists a negligible function µ2(·) such that:∣∣∣Pr[A(Hybridj−1,2) = 1]− Pr[A(Hybridj−1,3) = 1]

∣∣∣ ≤ µ2(2kε)

• Hybridj−1,4 is is identical to Hybridj−1,1 except CCACom(j)(tag∗,m0,m1; r) is defined as fol-
lows: (we underline the difference between Hybridj−1,3 and Hybridj−1,4)

– Sample s← {0, 1}k and set (pk, sk)← KeyGen(s).

– Sample K ← {0, 1}k and R← {0, 1}k.

– Set (r∗1|| . . . ||r∗t/2+1) = PRF(K, i).

– Compute (in time upto 2κ) value s∗ such that Puzzle.Check(j, s∗) = 1.

– Set enc∗ = Encpk(s
∗; r∗t/2+1).

– For i ∈ [t/2] set c∗i = ComSmalls∗i (m0; r
∗
i). Set d∗ = {c∗i }i∈[t/2].

– Set x∗ = (d∗, pk, enc∗, j), w∗ = (m0, r
∗
1, . . . , r

∗
t/2, 0

2k).

– Compute e∗ = NIWI.P(1k, x∗, w∗,LNIWI; r
∗
t/2+2).

– Generate program P
(j)
pk,K,m0,m1,tag∗,(x∗,e∗)

defined in Figure 12.

– Compute P̃ = iO(P
(j)
pk,K,m0,m1,tag∗,(x∗,e∗)

;R).

– Output c = (tag∗, pk, P̃).

Claim 6.10.
Hybridj−1,3 ≈2kε Hybridj−1,4

52

Proof. We will prove this claim based on the sub-exponential IND-CPA security of the en-
cryption scheme against non-uniform adversaries. Towards a contradiction, suppose there
exists a distinguisher A and a polynomial p(·) such that∣∣∣Pr[A(Hybridj−1,3) = 1]− Pr[A(Hybridj−1,4) = 1]

∣∣∣ ≥ 1

p(2kε)

Then there exists a non-uniform adversary A′ that non-uniformly fixes s∗ = f−1(j), then
begins the experiment. It obtains c∗ from the CPA challenger as either Encpk(0

κ; r∗t/2+1) or
Encpk(s

∗; r∗t/2+1). Note that answers to all CCAVal queries are computable in time 2κ ≤ 2κ
ε
. It

completes the rest of the experiment according to Hybridj−1,3 except setting c∗ according to
the ciphertext obtained from the external challenger. It then mirrors the output of A given
the resulting distribution, which implies that∣∣∣Pr[A′(Encpk(0κ; r∗t/2+1)) = 1]− Pr[A′(Encpk(s∗; r∗t/2+1)) = 1]

∣∣∣ ≥ 1

p(2kε)

which gives a contradiction, as desired. Therefore, by sub-exponential IND-CPA security
of the encryption scheme (with security parameter k), for every i ∈ [1, 2κ] there exists a
negligible function µ3(·) such that:∣∣∣Pr[A(Hybridj−1,3) = 1]− Pr[A(Hybridj−1,4) = 1]

∣∣∣ ≤ µ3(2kε)

• Hybridj−1,5 is defined as follows: (we underline the difference between Hybridj−1,4 and Hybridj−1,5)

– Sample s← {0, 1}k and set (pk, sk)← KeyGen(s).

– Sample K ← {0, 1}k and R← {0, 1}k.

– Set (r∗1|| . . . ||r∗t/2+1) = PRF(K, i).

– Compute (in time upto 2κ) value s∗ such that Puzzle.Check(j, s∗) = 1.

– Set enc∗ = Encpk(s
∗; r∗t/2+1).

– For i ∈ [t/2] set c∗i = ComSmalls∗i (m0; r
∗
i). Set d∗ = {c∗i }i∈[t/2].

– Set x∗ = (d∗, pk, enc∗, j), w∗ = (0p(κ)+(t/2)·κ, s, sk).

– Compute e∗ = NIWI.P(1k, x∗, w∗,LNIWI; r
∗
t/2+2).

– Generate program P
(j)
pk,K,m0,m1,tag∗,(x∗,e∗)

defined in Figure 12.

– Compute P̃ = iO(P
(j)
pk,K,m0,m1,tag∗,(x∗,e∗)

;R).

– Output c = (tag∗, pk, P̃).

Claim 6.11.
Hybridj−1,4 ≈2kε Hybridj−1,5

53

Proof. We will prove this claim based on the sub-exponential witness indistinguishability of
the NIWI against non-uniform adversaries. Towards a contradiction, suppose there exists a
distinguisher A and a polynomial p(·) such that∣∣∣Pr[A(Hybridj−1,4) = 1]− Pr[A(Hybridj−1,5) = 1]

∣∣∣ ≥ 1

p(2kε)

Then there exists a non-uniform adversary A′ that non-uniformly fixes s∗1 = f−1(j), then
begins the experiment. It obtains e∗ from the CPA challenger either using witness w∗ cor-
responding to Hybridj−1,4, or using witness w∗ corresponding to Hybridj−1,5. It completes
the rest of the experiment according to Hybridj−1,4 except setting e∗ according to the NIWI
obtained from the external challenger. Here note that answers to all CCAVal queries are com-
putable in time 2κ ≤ 2κ

ε
.

A′ finally mirrors the output of A given the resulting distribution, which implies that∣∣∣Pr[A′(w∗ = (m1, r
∗
1, . . . , r

∗
t/2, 0

κ+k)) = 1]−Pr[A′(w∗ = (0p(κ)+(t/2)·κ, s∗, r∗t/2+1)) = 1]
∣∣∣ ≥ 1

p(2kε)

which gives a contradiction, as desired. Therefore, by sub-exponential security of the NIWI
(with security parameter k), for every j ∈ [1, 2κ] there exists a negligible function µ4(·) such
that: ∣∣∣Pr[A(Hybridj−1,4) = 1]− Pr[A(Hybridj−1,5) = 1]

∣∣∣ ≤ µ4(2kε)
• Hybridj−1,6 is defined as follows: (we underline the difference between Hybridj−1,5 and Hybridj−1,6)

– Sample s← {0, 1}k and set (pk, sk)← KeyGen(s).

– Sample K ← {0, 1}k and R← {0, 1}k.

– Set (r∗1|| . . . ||r∗t/2+1) = PRF(K, i).

– Compute (in time upto 2κ) value s∗ such that Puzzle.Check(j, s∗) = 1.

– Set enc∗ = Encpk(s
∗; r∗t/2+1).

– For i ∈ [t/2] set c∗i = ComSmalls∗i (m1; r
∗
i). Set d∗ = {c∗i }i∈[t/2].

– Set x∗ = (d∗, pk, enc∗, j), w∗ = (0p(κ)+(t/2)·κ, s, sk).

– Compute e∗ = NIWI.P(1k, x∗, w∗,LNIWI; r
∗
t/2+2).

– Generate program P
(j)
pk,K,m0,m1,tag∗,(x∗,e∗)

defined in Figure 12.

– Compute P̃ = iO(P
(j)
pk,K,m0,m1,tag∗,(x∗,e∗)

;R).

– Output c = (tag∗, pk, P̃).

Claim 6.12.
Hybridj−1,5 ≈(2(log κ)

c
) Hybridj−1,6

54

Proof. We will prove this claim based on (2(log κ)
c

)-non-malleability of ComSmall against non-
uniform adversaries. Towards a contradiction, suppose there exists a distinguisher A and a
polynomial p(·) such that∣∣∣Pr[A(Hybridj−1,5) = 1]− Pr[A(Hybridj−1,6) = 1]

∣∣∣ ≥ 1

p(2(log κ)
c
)

Then there exists a (non-uniform) adversary A′ that non-uniformly fixes a pre-challenge
transcript as well as s∗1 ∈ f−1(j), then begins the experiment. It obtains d∗ from an ex-
ternal challenger sampled either as {c∗i = ComSmalls∗i (m0; r

∗
i)}i∈[t/2] as in Hybridj−1,5, or as

{c∗i = ComSmalls∗i (m1; r
∗
i)}i∈[t/2] as in Hybridj−1,6

10. It completes the rest of the experiment
according to Hybridj−1,5 except setting d∗ according to the sample obtained from the external
challenger.

It relies on the oracle of ComSmall to answer CCAVal queries (this is possible since the CCAVal
algorithm simply returns the output of ComSmall.CCAVal(τι), which by construction of the
hybrid always uses a different tag than all challenge tags.

It then mirrors the output of A given the resulting distribution, which implies that∣∣∣Pr[A′({c∗i = ComSmalls∗i (m0; r
∗
i)}i∈[t/2]) = 1]− Pr[A′({c∗i = ComSmalls∗i (m1; r

∗
i)}i∈[t/2]) = 1]

∣∣∣
≥ 1

p(2(log κ)
c
)

which implies a contradiction to the (2(log κ)
c

) non-malleability of ComSmall, as desired.

• Hybridj−1,7 is defined as follows: (we underline the difference between Hybridj−1,6 and Hybridj−1,7)

– Set k = κ
1
ε .

– Sample s← {0, 1}k and set (pk, sk)← KeyGen(s).

– Sample K ← {0, 1}k and R← {0, 1}k.

– Set (r∗1|| . . . ||r∗t/2+1) = PRF(K, i).

– Compute (in time upto 2κ) value s∗ such that Puzzle.Check(j, s∗) = 1.

– Set enc∗ = Encpk(s
∗; r∗t/2+1).

– For i ∈ [t/2] set c∗i = ComSmalls∗i (m1; r
∗
i). Set d∗ = {c∗i }i∈[t/2].

– Set x∗ = (d∗, pk, enc∗, j), w∗ = (m1, r
∗
1, . . . , r

∗
t/2, 0

2k).

– Compute e∗ = NIWI.P(1k, x∗, w∗,LNIWI; r
∗
t/2+2).

– Generate program P
(j)
pk,K,m0,m1,tag∗,(x∗,e∗)

defined in Figure 12.

– Compute P̃ = iO(P
(j)
pk,K,m0,m1,tag∗,(x∗,e∗)

;R).

– Output c = (tag∗, pk, P̃).
10One can also imagine a more fine-grained sequence of hybrids where these commitments are replaced one by one.

55

Claim 6.13.
Hybridj−1,6 ≈2kε Hybridj−1,7

Proof. By sub-exponential witness indistinguishability of the NIWI against non-uniform ad-
versaries (and following an identical argument to that of the indistinguishability between
Hybridj−1,4 and Hybridj−1,5), for every j ∈ [1, 2κ] there exists a negligible function µ6(·) such
that: ∣∣∣Pr[A(Hybridj−1,6) = 1]− Pr[A(Hybridj−1,7) = 1]

∣∣∣ ≤ µ6(2kε)
• Hybridj−1,8 is defined as follows: (we underline the difference between Hybridj−1,7 and Hybridj−1,8)

– Set k = κ
1
ε .

– Sample s← {0, 1}k and set (pk, sk)← KeyGen(s).

– Sample K ← {0, 1}k and R← {0, 1}k.

– Set (r∗1|| . . . ||r∗t/2+1) = PRF(K, i).

– Compute (in time upto 2κ) value s∗ such that Puzzle.Check(j, s∗) = 1.

– Set enc∗ = Encpk(0; r∗t/2+1).

– For i ∈ [t/2] set c∗i = ComSmalls∗i (m1; r
∗
i). Set d∗ = {c∗i }i∈[t/2].

– Set x∗ = (d∗, pk, enc∗, j), w∗ = (m1, r
∗
1, . . . , r

∗
t/2, 0

2k).

– Compute e∗ = NIWI.P(1k, x∗, w∗,LNIWI; r
∗
t/2+2).

– Generate program P
(j)
pk,K,m0,m1,tag∗,(x∗,e∗)

defined in Figure 12.

– Compute P̃ = iO(P
(j)
pk,K,m0,m1,tag∗,(x∗,e∗)

;R).

– Output c = (tag∗, pk, P̃).

Claim 6.14.
Hybridj−1,7 ≈2kε Hybridj−1,8

Proof. By sub-exponential IND-CPA security of the encryption scheme against non-uniform
adversaries (and following an identical argument to that of the indistinguishability between
Hybridj−1,3 and Hybridj−1,4), for every j ∈ [1, 2κ] there exists a negligible function µ7(·) such
that: ∣∣∣Pr[A(Hybridj−1,3) = 1]− Pr[A(Hybridj−1,4) = 1]

∣∣∣ ≤ µ7(2kε)
• Hybridj−1,9 is identical to Hybridj−1,8 except that (r∗1|| . . . ||r∗t/2+1) = PRF(K, j).

Claim 6.15.
Hybridj−1,8 ≈2kε Hybridj−1,9

56

Proof. By sub-exponential security of the puncturable PRF (with security parameter k), we
have directly that for every j ∈ [1, 2κ] there exists a negligible function µ8(·) such that:∣∣∣Pr[A(Hybridj−1,8) = 1]− Pr[A(Hybridj−1,9) = 1]

∣∣∣ ≤ µ8(2kε)
• Hybridj−1,10 ≡ Hybridj .

Claim 6.16.
Hybridj−1,9 ≈2kε Hybridj−1,10

Proof. Note that the hybrids are indistinguishable except they obfuscate two different pro-
grams that have identical functionality. Therefore, by sub-exponential security of indistin-
guishability obfuscation (with security parameter k), for every j ∈ [1, 2κ] there exists a neg-
ligible function µ9(·) such that:∣∣∣Pr[A(Hybridj−1,9) = 1]− Pr[A(Hybridj−1,10) = 1]

∣∣∣ ≤ µ9(2kε)
By combining all the above claims, we have that for every j ∈ [1, 2kf] there exists a negligible

function µ(·) such that:∣∣∣Pr[A(Hybridj−1) = 1]− Pr[A(Hybridj) = 1]
∣∣∣ ≤ µ(2(log κ)

c

)

For any (non-uniform) poly(k)-sized distinguisher A, let µmax denote the maximum value of
the distinguishing advantage µ(·) between any two consecutive hybrids Hybridj and Hybridj+1,
which is again a negligible function. Then we have that∣∣∣Pr[A(Hybrid0) = 1]− Pr[A(Hybrid2kf) = 1]

∣∣∣ ≤ 2kf · µmax(2
(log κ)c)

= 2(log κ)
c

· negl(2(log κ)
c

) = negl(2(log κ)
c

)

This combined with the analysis above implies that the adversary’s advantage in the CCA
hiding game is at most negl(2(log κ)

cε

) which completes the proof of the lemma, as desired.

Lin, Pass and Soni [LPS17] note that by the work of Bitansky et. al. [BGJ+16], time-lock puzzles
needded for their base scheme can be based on (sub-exponential) indistinguishability obfuscation
and the existence of a parallel-time hard language. Combining this with our results implies CCA
commitments according to our notion of non-interactivity based on (sub-exponential) one-way
functions, indistinguishability obfuscation and the existence of a parallel-time hard language.

Acknowledgments

We thank the anonymous Eurocrypt reviewers for their suggestions. We are grateful to Ran
Canetti, Suvradip Chakraborty, Oxana Poburinnaya and Manoj Prabhakaran for helpful discus-
sions and to Nishant Kumar for detailed feedback on an initial draft of this work.

57

References

[Agr19] Shweta Agrawal. Indistinguishability obfuscation without multilinear maps: New
methods for bootstrapping and instantiation. In EUROCRYPT, 2019.

[AJL+19] Prabhanjan Ananth, Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. In-
distinguishability obfuscation without multilinear maps: New paradigms via low
degree weak pseudorandomness and security amplification. In CRYPTO, 2019.

[AJN+16] Prabhanjan Ananth, Aayush Jain, Moni Naor, Amit Sahai, and Eylon Yogev. Uni-
versal constructions and robust combiners for indistinguishability obfuscation and
witness encryption. In Advances in Cryptology - CRYPTO 2016, Proceedings, Part II,
pages 491–520, 2016.

[AP20] Shweta Agrawal and Alice Pellet-Mary. Indistinguishability obfuscation without
maps: Attacks and fixes for noisy linear FE. In EUROCRYPT, 2020.

[Bar02] Boaz Barak. Constant-Round Coin-Tossing with a Man in the Middle or Realizing
the Shared Random String Model. In FOCS 2002, pages 345–355, 2002.

[BDGM20a] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Candidate io
from homomorphic encryption schemes. In EUROCRYPT, 2020.

[BDGM20b] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Factoring and
pairings are not necessary for io: Circular-secure LWE suffices. IACR Cryptol. ePrint
Arch., 2020.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. J.
ACM, 59(2):6:1–6:48, 2012.

[BGI+17] Saikrishna Badrinarayanan, Sanjam Garg, Yuval Ishai, Amit Sahai, and Akshay Wa-
dia. Two-message witness indistinguishability and secure computation in the plain
model from new assumptions. In Advances in Cryptology - ASIACRYPT 2017 - 23rd
International Conference on the Theory and Applications of Cryptology and Information Se-
curity, Hong Kong, China, December 3-7, 2017, Proceedings, Part III, pages 275–303, 2017.

[BGJ+16] Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, Vinod Vaikuntanathan,
and Brent Waters. Time-lock puzzles from randomized encodings. In Madhu Sudan,
editor, Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer
Science, Cambridge, MA, USA, January 14-16, 2016, pages 345–356. ACM, 2016.

[BKP19] Nir Bitansky, Dakshita Khurana, and Omer Paneth. Weak zero-knowledge beyond
the black-box barrier. In Moses Charikar and Edith Cohen, editors, STOC 2019, pages
1091–1102. ACM, 2019.

[BL18] Nir Bitansky and Huijia Lin. One-message zero knowledge and non-malleable com-
mitments. In Theory of Cryptography Conference, TCC 2018, Goa, India, November 11-14,
2018, Proceedings, 2018.

58

[BM14] Christina Brzuska and Arno Mittelbach. Indistinguishability obfuscation versus
multi-bit point obfuscation with auxiliary input. In Advances in Cryptology - ASI-
ACRYPT 2014 - 20th International Conference on the Theory and Application of Cryptology
and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014, Proceedings,
Part II, pages 142–161, 2014.

[BOV07] Boaz Barak, Shien Jin Ong, and Salil P. Vadhan. Derandomization in cryptography.
SIAM J. Comput., 37(2):380–400, 2007.

[BP04] Boaz Barak and Rafael Pass. On the possibility of one-message weak zero-
knowledge. In Theory of Cryptography, First Theory of Cryptography Conference, TCC
2004, Cambridge, MA, USA, February 19-21, 2004, Proceedings, pages 121–132, 2004.

[BP12] Nir Bitansky and Omer Paneth. Point obfuscation and 3-round zero-knowledge. In
TCC 2012, pages 190–208, 2012.

[BP15] Nir Bitansky and Omer Paneth. Zaps and non-interactive witness indistinguisha-
bility from indistinguishability obfuscation. In Yevgeniy Dodis and Jesper Buus
Nielsen, editors, TCC 2015, volume 9015 of Lecture Notes in Computer Science, pages
401–427. Springer, 2015.

[BPW16] Nir Bitansky, Omer Paneth, and Daniel Wichs. Perfect structure on the edge of chaos
- trapdoor permutations from indistinguishability obfuscation. In Eyal Kushilevitz
and Tal Malkin, editors, Theory of Cryptography - 13th International Conference, TCC
2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part I, volume 9562 of Lecture
Notes in Computer Science, pages 474–502. Springer, 2016.

[BS20] Nir Bitansky and Omri Shmueli. Post-quantum zero knowledge in constant rounds.
In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath,
and Julia Chuzhoy, editors, STOC 2020, pages 269–279. ACM, 2020.

[BST16] Mihir Bellare, Igors Stepanovs, and Stefano Tessaro. Contention in cryptoland: Ob-
fuscation, leakage and UCE. In Theory of Cryptography - 13th International Conference,
TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part II, pages 542–564,
2016.

[CGGM00] Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Resettable zero-
knowledge (extended abstract). In F. Frances Yao and Eugene M. Luks, editors, Pro-
ceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, May
21-23, 2000, Portland, OR, USA, pages 235–244. ACM, 2000.

[CLP10] Ran Canetti, Huijia Lin, and Rafael Pass. Adaptive Hardness and Composable Secu-
rity in the Plain Model from Standard Assumptions. In Proceedings of the 51th Annual
IEEE Symposium on Foundations of Computer Science, FOCS ’10, pages 541–550, 2010.

[CLP15] Kai-Min Chung, Edward Lui, and Rafael Pass. From weak to strong zero-knowledge
and applications. In Theory of Cryptography - 12th Theory of Cryptography Conference,
TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part I, pages 66–92, 2015.

59

[COSV16] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Concurrent
non-malleable commitments (and more) in 3 rounds. In Robshaw and Katz [RK16],
pages 270–299.

[COSV17] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Four-round
concurrent non-malleable commitments from one-way functions. In Annual Interna-
tional Cryptology Conference, pages 127–157. Springer, 2017.

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-Malleable Cryptography (Ex-
tended Abstract). In STOC 1991, 1991.

[DHRW16] Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky encryp-
tion and its applications. In Robshaw and Katz [RK16], pages 93–122.

[DK18] Apoorvaa Deshpande and Yael Kalai. Proofs of ignorance and applications to 2-
message witness hiding. IACR Cryptology ePrint Archive, 2018:896, 2018.

[DNRS03] Cynthia Dwork, Moni Naor, Omer Reingold, and Larry J. Stockmeyer. Magic func-
tions. J. ACM, 50(6):852–921, 2003.

[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive zero knowledge
proofs under general assumptions. SIAM J. Comput., 29(1):1–28, 1999.

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols.
In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, May 13-17,
1990, Baltimore, Maryland, USA, pages 416–426, 1990.

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure
MPC from indistinguishability obfuscation. In Theory of Cryptography - 11th Theory
of Cryptography Conference, TCC 2014, San Diego, CA, USA, February 24-26, 2014. Pro-
ceedings, pages 74–94, 2014.

[GJLS20] Romain Gay, Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfus-
cation from simple-to-state hard problems: New assumptions, new techniques, and
simplification. IACR Cryptol. ePrint Arch., 2020.

[GKLW20] Rachit Garg, Dakshita Khurana, George Lu, and Brent Waters. Black-box
non-interactive non-malleable commitments. Cryptology ePrint Archive, Report
2020/1197, 2020. https://eprint.iacr.org/2020/1197.

[GLOV12] Vipul Goyal, Chen-Kuei Lee, Rafail Ostrovsky, and Ivan Visconti. Constructing non-
malleable commitments: A black-box approach. In FOCS, 2012.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but
their validity for all languages in NP have zero-knowledge proof systems. J. ACM,
38(3):691–729, 1991.

60

https://eprint.iacr.org/2020/1197

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof
systems. J. Cryptology, 7(1):1–32, 1994.

[Gol01] Oded Goldreich. The Foundations of Cryptography - Volume 1, Basic Techniques. Cam-
bridge University Press, 2001.

[GOS12] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for noninteractive
zero-knowledge. J. ACM, 59(3):11:1–11:35, 2012.

[Goy11] Vipul Goyal. Constant Round Non-malleable Protocols Using One-way Functions.
In STOC 2011, pages 695–704. ACM, 2011.

[GP20] Romain Gay and Rafael Pass. Indistinguishability obfuscation from circular security.
IACR Cryptol. ePrint Arch., 2020.

[GPR16] Vipul Goyal, Omkant Pandey, and Silas Richelson. Textbook non-malleable commit-
ments. In STOC, pages 1128–1141, New York, NY, USA, 2016. ACM.

[GR19] Vipul Goyal and Silas Richelson. Non-malleable commitments using goldreich-levin
list decoding. In David Zuckerman, editor, FOCS 2019, pages 686–699. IEEE Com-
puter Society, 2019.

[GRRV14] Vipul Goyal, Silas Richelson, Alon Rosen, and Margarita Vald. An algebraic ap-
proach to non-malleability. In FOCS 2014, pages 41–50, 2014.

[JKKR17] Abhishek Jain, Yael Tauman Kalai, Dakshita Khurana, and Ron Rothblum.
Distinguisher-dependent simulation in two rounds and its applications. In Jonathan
Katz and Hovav Shacham, editors, CRYPTO 2017, volume 10402 of Lecture Notes in
Computer Science, pages 158–189. Springer, 2017.

[JLMS19] Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. How to leverage hardness
of constant-degree expanding polynomials over r to build io. In EUROCRYPT, 2019.

[JLS20] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-
founded assumptions. Cryptology ePrint Archive, Report 2020/1003, 2020. https:
//eprint.iacr.org/2020/1003.

[Khu17] Dakshita Khurana. Round optimal concurrent non-malleability from polynomial
hardness. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, volume 10678 of Lec-
ture Notes in Computer Science, pages 139–171. Springer, 2017.

[KK19] Yael Tauman Kalai and Dakshita Khurana. Non-interactive non-malleability from
quantum supremacy. In CRYPTO 2019, pages 552–582, 2019.

[KS17] Dakshita Khurana and Amit Sahai. How to achieve non-malleability in one or two
rounds. In Umans [Uma17], pages 564–575.

[KZ20] Benjamin Kuykendall and Mark Zhandry. Towards non-interactive witness hid-
ing. Cryptology ePrint Archive, Report 2020/1205, 2020. https://eprint.iacr.
org/2020/1205.

61

https://eprint.iacr.org/2020/1003
https://eprint.iacr.org/2020/1003
https://eprint.iacr.org/2020/1205
https://eprint.iacr.org/2020/1205

[LP] Huijia Lin and Rafael Pass. Constant-round Non-malleable Commitments from Any
One-way Function. In STOC 2011, pages 705–714.

[LP09] Huijia Lin and Rafael Pass. Non-malleability Amplification. In Proceedings of the 41st
Annual ACM Symposium on Theory of Computing, STOC ’09, pages 189–198, 2009.

[LPS17] Huijia Lin, Rafael Pass, and Pratik Soni. Two-round and non-interactive concurrent
non-malleable commitments from time-lock puzzles. In Umans [Uma17], pages 576–
587.

[LPV] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. Concurrent
Non-malleable Commitments from Any One-Way Function. In TCC 2008, pages 571–
588.

[Pas03] Rafael Pass. Simulation in quasi-polynomial time, and its application to protocol
composition. In EUROCRYPT 2003, pages 160–176, 2003.

[PPV08] Omkant Pandey, Rafael Pass, and Vinod Vaikuntanathan. Adaptive One-Way Func-
tions and Applications. In Advances in Cryptology — CRYPTO ’08, pages 57–74, 2008.

[PR05] Rafael Pass and Alon Rosen. Concurrent Non-Malleable Commitments. In Proceed-
ings of the 46th Annual IEEE Symposium on Foundations of ComputerScience, FOCS ’05,
pages 563–572, 2005.

[PR08] Rafael Pass and Alon Rosen. New and Improved Constructions of Nonmalleable
Cryptographic Protocols. SIAM J. Comput., 38(2):702–752, 2008.

[PW10] Rafael Pass and Hoeteck Wee. Constant-round non-malleable commitments from
sub-exponential one-way functions. In EUROCRYPT 2010, pages 638–655, 2010.

[RK16] Matthew Robshaw and Jonathan Katz, editors. Advances in Cryptology - CRYPTO
2016 - 36th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
14-18, 2016, Proceedings, Part III, volume 9816 of Lecture Notes in Computer Science.
Springer, 2016.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, STOC 2014, pages 475–484. ACM,
2014.

[Uma17] Chris Umans, editor. 58th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2017, Berkeley, CA, USA, October 15-17, 2017. IEEE Computer Society, 2017.

[Wee10] Hoeteck Wee. Black-box, round-efficient secure computation via non-malleability
amplification. In FOCS 2010, pages 531–540, 2010.

[WW20] Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious LWE sampling.
IACR Cryptol. ePrint Arch., 2020.

62

	Introduction
	Our Results
	Additional Related Work

	Technical Overview
	Commit-and-Prove Arguments
	Non-Interactive Distributional Indistinguishability
	Application: CCA Commitments

	Preliminaries
	One-Way Puzzles
	Indistinguishability Obfuscation

	Non-Interactive Distributionally Indistinguishable (NIDI) Arguments
	Definitions
	Construction and Analysis

	Commit-and-Prove
	CCA Commitments from Indistinguishability Obfuscation
	Definitions
	Tag Amplification: Construction and Analysis

