
Differential fault attack on DEFAULT

Chandan Dey1, Sumit Kumar Pandey2, Tapabrata Roy1 and Santanu Sarkar1

1 Indian Institute of Technology Madras, Chennai, India
2 Indian Institute of Technology Jammu, Jammu, India

Abstract

Block cipher DEFAULT has been proposed as a differential fault analy-
sis immune cipher at Asiacrypt 2021. In this paper, we consider the initial
version of DEFAULT with no permutation involved in the last round and
show that one can find the key in this version with complexity 216 by
injecting 112 faults. However, our idea does not work in the modified
version of the cipher.

Keywords: Block cipher, DEFAULT, Differential fault attack, Linear
structure
Mathematics Subject Classification: 94A60.

1 Introduction
A lot of research has been done since the first academic publication in the year
1996 by Boneh, DeMillo and Lipton [5] which discussed how to use a differential
fault intentionally to break a cryptographic algorithm. At that time, the attack
was mainly theoretical, but since then the technology has improved and most
of these attacks are being used in practice. The techniques of introducing faults
have been prospered with an intention of amendment of the proper functioning
of cryptographic devices. These procedures include alterations in the voltage
level of power supply, irregularity injections in the clock gestures, overheating
the device, introduction of electromagnetic disturbances, exposing the device to
immense luminous medium, etc.

The differential fault attack (DFA) on symmetric key cryptosystems [4] was
introduced by Biham and Shamir. This was one of the earliest techniques
that was invented to attack a block cipher by provoking a computational er-
ror. Later Piret et al. [6] introduced DFA against SPN based block cipher. In
2009 Mukhopadhyay [7] improved the fault based attack on AES. The idea of
differential fault analysis is same as the classical differential cryptanalysis. The
idea behind DFA is to obtain two ciphertexts out of which one will be a correct
one whereas the other will be a faulty one. The faulty ciphertext is obtained

1

after introducing a possibly known differential in one of the rounds of the in-
put. The adversary tries to guess the key bits by analyzing how the differential
propagates over a small number of rounds.

In recent years, a section of cipher designers [3, 8] have concentrated upon
building ciphers which can resist differential fault attacks. The block cipher
DEFAULT [1] is one such attempt in this direction. The designers of DEFAULT
claimed it be to be DFA-resistant. In this work, we consider the initial version
of DEFAULT with no permutation involved in the last round and show that one
can find the key in this version with complexity 216 by injecting 112 faults.

2 Design of DEFAULT
DEFAULT is an SPN structured block cipher that uses SBoxes having Linear
Structures to ensure both, protection against Differential Fault Analysis and
as well as Differential Attacks. The design of DEFAULT consists of mainly
two parts, namely DEFAULT LAYER and DEFAULT CORE. The DEFAULT
LAYER is meant to corroborate security against the Differential Fault Attacks,
whereas the DEFAULT CORE guarantees protection against other classical at-
tacks. Thus, the DEFAULT LAYER, L is prepended and appended to the
DEFAULT CORE, E during encryption. While decrypting, the inverse of the
DEFAULT LAYER, L−1 is both prepended and appended to the inverse of the
main cipher E−1. Thus, the encryption and decryption for DEFAULT are given
as follows:

C = L◦E◦L(P), and L−1◦E−1◦L−1(C) = (L−1◦E−1◦L−1)◦(L◦E◦L(P)) = P,

P and C being the plaintext and the ciphertext respectively. Below we describe
these two parts in details.

2.1 DEFAULT LAYER
DEFAULT LAYER is the portion of DEFAULT that has been intended to pro-
vide immunity against the Differential Fault Attacks. It comprises of an SBox
and a permutation which takes a 128-bit message along with a 128-bit key as
input. The state, X is then further divided into 32 4-bit nibble words. DE-
FAULT LAYER involves a round function R consisting of four steps viz., Sub-
Cells, PermBits, AddRoundConstants and AddRoundKey. Each round is run
28 times before and after the DEFAULT CORE (Main Cipher).

SubCells: First a 128-bit plaintext, X = x127x126 . . . x0; x0 being the least
significant bit, is fed into the algorithm which is further split into 32
four-bit nibble word as X = x31||x30|| . . . ||x0, where each xi is a 4-bit
nibble word, i = 0, 1, . . . , 31. SubCells applies the 4-bit LS SBox, S =
037ED4A9CF18B265 to every nibble of the state: xi 7→ S(xi), for i ∈
{0, 1, . . . , 31}.

2

PermBits: Following the SubCells operation we obtain a 128-bit word which
is next permuted by the PermBits operation where the i-th bit of a state
is mapped to the P128(i)-th bit (xi 7→ xP128(i) for all i ∈ {0, 1, . . . , 127})
where the bit-permutation, P128 is taken as the permutation of Gift-128 [2].
The permutation is provided in Table 1.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

P128(i) 0 33 66 99 96 1 34 67 64 97 2 35 32 65 98 3 4 37 70 103 100 5 38 71 68 101

i 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

P128(i) 6 39 36 69 102 7 8 41 74 107 104 9 42 75 72 105 10 43 40 73 106 11 12 45 78 111

i 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

P128(i) 108 13 46 79 76 109 14 47 44 77 110 15 16 49 82 115 112 17 50 83 80 113 18 51 48 81

i 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

P128(i) 114 19 20 53 86 119 116 21 54 87 84 117 22 55 52 85 118 23 24 57 90 123 120 25 58 91

i 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

P128(i) 88 121 26 59 56 89 122 27 28 61 94 127 124 29 62 95 92 125 30 63 60 93 126 31

Table 1: DEFAULT permutation

AddRoundConstant: Subsequently, the PermBits operation yields a permuted
128-bit binary string. AddRoundConstant operation XORs a single bit
“1” and a 6-bit round constant C = c5c4c3c2c1c0 to this cipher state at
bit positions 127, 23, 19, 15, 11, 7 and 3 respectively: x127 = x127 ⊕ 1,
x23 = x23⊕c5, x19 = x19⊕c4, x15 = x15⊕c3, x11 = x11⊕c2, x7 = x7⊕c1
and x3 = x3⊕ c0. Round constants are given in Table 2. These values are
expressed as six bit words C in each round and is added to the cipherstate.

AddLayerKey: Next, a layer key, kt = kt127k
t
126 . . . k

t
0 is extracted from the

Master Key (if the bit-length of the Master Key is more than 128 bits,
then the first 128 bits are simply extracted) and XORed to the cipher-
state bitwise. Intial version of DEFAULT LAYER does not have any key
scheduling algorithm. So, the master key is XORed directly to state. In
the modified version, authors proposed a key scheduling algorithm where
4 subkeys K0,K1,K2,K3 are generated from the 128 bit master key K.
Here K0 = K and Ki+1 = R′(R′(R′(R′(Ki)))) for 0 ≤ i ≤ 2, where R′
is a round function with all zero round key and all zero round constant
except for the last bit (where only a single bit 1 is Xored). At round i ≥ 0,
subkey Ki mod 4 is used as the round key.

Cipher Round constants # of rounds

DEFAULT LAYER
1, 3, 7, 15, 31, 62, 61, 59, 55, 47, 30, 60, 57, 51,

28
39, 14, 29, 58, 53, 43, 22, 44, 24, 48, 33, 2, 5, 11

Default CORE
1, 3, 7, 15, 31, 62, 61, 59, 55, 47, 30, 60, 57, 51,

24
39, 14, 29, 58, 53, 43, 22, 44, 24, 48

Table 2: DEFAULT round constants

3

DEFAULT CORE: DEFAULT CORE is the middle part of DEFAULT and
has been designed to prevent the classical cttacks. The design of DEFAULT
CORE is mostly similar with that of DEFAULT LAYER. The only difference
here is in the SBox, number of rounds and the key schedule. Here, the number
of rounds is 24 and the involved Sbox is S = 196F7C82AED and the round
constants are listed in Table 2. For more details we refer to [1].

3 Idea of the Attack
For the sake of brevity we first define the Linear Structure of an SBox that we
have used throughout of the paper.

Definition 1. Let F : Fn
2 → Fn

2 be a vectorial Boolean function, n ∈ N, an
element α ∈ Fn

2 is called a Linear Structure of F if F (x)⊕ F (x⊕ α) = c holds
∀x ∈ Fn

2 and for some constant c ∈ Fn
2 .

3.1 Argument of [1] on DEFAULT against DFA
In this subsection we discuss differential fault attack (DFA) on DEFAULT
LAYER. In [1], authors claimed that DEFAULT LAYER will give 64 bit se-
curity against DFA for 128 bit block cipher. Their arguments are as follows:

DFA on DEFAULT LAYER: As described earliar the DEFAULT LAYER
consists of a total of 32 nibbles on each of which the same 4×4 SBox is operated.
This SBox contains three non-zero linear structures namely 6, 9 and F . Thus
from the knowledge of S(α) ⊕ S(α ⊕ δ) for 0 ≤ α ≤ F , we have 4 options of
input namely

{α, α⊕ 6, α⊕ 9, α⊕ F},

where δ corresponds to the fault. If the attacker injects faults in the last round
and explore each of the 32 SBoxes separately, then for each SBox he/she will
have 4 options for the 4 keybits. Therefore, to find the secret key he/she has to
search among 432 = 264 possible keys.

DFA on DEFAULT CORE: SBoxes in DEFAULT CORE has no linear struc-
ture. So, the attacker can try to target this portion of the cipher. However,
the attacker gets the output after the completion of DEFAULT LAYER. Using
MILP, authors showed that even in this case, the attacker cannot find the key
with complexity less than 264.

3.2 Our attack idea
Here in this subsection we will demonstrate our fault model. We consider only
the last two rounds of the DEFAULT LAYER as described below, one after
another. For sake of simplicity during calculations, we do not XOR the cor-
responding round constants in the respective rounds, as adding constants does
not provide better security against fault attacks. Also, we do not consider the

4

PermBits operation in the last round like GIFT [2]. Fault is usually injected in
three possible ways, viz., bit based fault injection, nibble based fault injection
and byte based fault injection. As the names suggest, faults are induced in a
nibble, in a byte and simply in a bit respectively in the above three cases of
fault injections. In our case of attack against DEFAULT, we consider nibble
based fault injections only.

3.2.1 Analysis at the last round

First, we contemplate the last round of the DEFAULT LAYER. Injecting faults
in the beginning of the last round and then analysing the faulty ciphertexts
reduces the key search complexity by a great margin. In this instance, we
analyse each SBox separately as done by the designers. DEFAULT LAYER
includes a 128-bit state size, i.e., 32 SBoxes get involved in each of the rounds.
As mentioned above, S denotes the SBox of the DEFAULT LAYER and S−1

represents the inverse of that SBox. Let m be the state at any random nibble.
Clearly, there are 15 possible faults corresponding to that nibble, giving rise to
fifteen different faulty states viz., m ⊕ i, i ∈ {1, 2, . . . , 15}. We denote these
faults as δ1, δ2, . . . , δ15. We consider the bits of the nibbles after the SBox
operation. At those positions after adding the respective constants and also the
keybits let c be the corresponding 4-bit word. Similarly, let c1, c2, . . . , c15 be the
4-bit faulty words of the ciphertexts corresponding to the faults δ1, δ2, . . . , δ15
respectively. If we consider the equation

S−1(ci ⊕ k)⊕ S−1(c⊕ k) = δi for all i ∈ {1, 2, . . . , 15} (1)

and try to find the possible choices of 4-bit keywords for k, those satisfy equation
(1) for all i ∈ {1, 2, . . . , 15}, then we get one among the following four partitions:
{0, 5, A, F}, {1, 4, B,E}, {2, 7, 8, D} and {3, 6, 9, C}.

Lemma 1. Let a ∈ F4
2 be a linear structure for the SBox S. So, there exist

b ∈ F4
2 satisfying

S(x)⊕ S(x⊕ a) = b ∀ x ∈ F4
2.

Then, a and b satisfy

S−1(x)⊕ S−1(x⊕ b) = a ∀ x ∈ F4
2,

i.e., b is a linear structure for S−1.

Proof. As S is a permutation, it is bijective and hence, so is S−1. Thus, {S−1(x) :
x ∈ F4

2} = F4
2. So, from the equation

S(x)⊕ S(x⊕ a) = b ∀ x ∈ F4
2

5

we have,

S(S−1(x))⊕ S(S−1(x)⊕ a) = b ∀ x ∈ F4
2,

⇔ x⊕ S(S−1(x)⊕ a) = b ∀ x ∈ F4
2,

⇔ S(S−1(x)⊕ a) = x⊕ b ∀ x ∈ F4
2,

⇔ S−1(x)⊕ a = S−1(x⊕ b) ∀ x ∈ F4
2,

⇔ S−1(x)⊕ S−1(x⊕ b) = a ∀ x ∈ F4
2.

Hence, we have the desired result.

Remark 1. One can check S(x) ⊕ S(x ⊕ 6) = A,S(x) ⊕ S(x ⊕ 9) = F and
S(x)⊕ S(x⊕ F) = 5 for 0 ≤ x ≤ F . From Lemma 1, we know S−1 contains 3
non-zero linear structures namely 5, A, F . The inverse of the SBox used in the
DEFAULT LAYER is 0AD15FE2B76C8439. One can see for any 0 ≤ x ≤ F ,
S−1(x)⊕S−1(x⊕5) = F, S−1(x)⊕S−1(x⊕A) = 6 and S−1(x)⊕S−1(x⊕F) = 9.

Theorem 1. Let b be a linear structure for S. Then for the introduction of
a single fault b, all the sixteen elements in the whole space F4

2 satisfy to be the
possible key options for the fault analysis at the last round.

Proof. Suppose b be a linear structure for S. So, there exists a in F4
2 such that

S(x)⊕ S(x⊕ b) = a ∀ x ∈ F4
2.

Then by Lemma 1 we have,

S−1(x)⊕ S−1(x⊕ a) = b ∀ x ∈ F4
2. (2)

Let m be a state in a nibble and δ be the induced fault injecting a faulty state
m′ = m ⊕ δ. These yields the original ciphertext, c = S(m) ⊕ k and a faulty
ciphertext, c′ = S(m′)⊕ k = S(m⊕ δ)⊕ k, k being the 4-bit portion of the key
corresponding to the considered nibble. Now, S being a permutation, the set
{S(x) : x ∈ F4

2}, and hence the set {S(x) ⊕ k ⊕ c : x ∈ F4
2} contain all the 16

elements of F4
2. So, δ can be chosen in such a way that S(m⊕ δ)⊕ k⊕ c = a, or

in other words, a = S(m′)⊕ k ⊕ c = c′ ⊕ c, i.e., c′ = c⊕ a. Next, from equation
(1) we have,

S−1(c⊕ k)⊕ S−1(c′ ⊕ k) = δ. (3)

Thus, by the above argument,

S−1(c⊕ k)⊕ S−1(c⊕ k ⊕ a) = δ,

which forces δ to be equal to b, i.e.,

S−1(c⊕ k)⊕ S−1(c⊕ k ⊕ a) = b. (4)

But, from equation (2) it can be concluded that equation (4) must hold for all
possible values of c⊕ k, and so, for all possible values of k for a fixed value of c
(or in other words, for a fixed m). Hence, the theorem.

6

Remark 2. If b1 and b2 be two linear structures for S and a1 and a2 be two
elements in F4

2 satisfying S(x) ⊕ S(x ⊕ bi) = ai and S−1(x) ⊕ S−1(x ⊕ ai) =
bi ∀ x ∈ F4

2, i ∈ {1, 2}, then injecting faults b1 and b2 we see that all the
elements in F4

2 are solutions to equation (1) and as a result the intersection of the
sets of possible keys corresponding to the above mentioned faults is F4

2. Clearly,
consideration of each linear structure for S, as a fault, takes all the sixteen
possible key candidates as options. Thus, as there are four linear structures of
S, during the fault analysis it should be kept in mind that the faults must not be
chosen among these four elements.

Observation 1. From Remark 2 it is evident that the faults at the last round
must be chosen among the remaining twelve elements, viz., {1, 2, 3, 4, 5, 7, 8, A,
B,C,D,E}, so that one does not end up in a situation where the intersection
of the two sets of all possible 4-bits key candidates satisfying equation (3) is the
whole set F4

2.
Consider the set A = {(1, 7), (1, 8), (1, D), (2, 4), (2, B), (2, 13), (3, 5), (3, A),

(3, C), (4, B), (4, D), (5, A), (5, C), (7, 8), (7, D), (8, D), (A,C), (B,D)}. We have
observed that irrespective of any four bits input to a nibble if we induce two
distinct faults (x, y) ∈ A, the intersection of the two sets of solutions to 4-
bit keywords satisfying equation (3) have eight elements and that of all other
remaining pairs have four elements where the intersection is one of the following
four partitions: {0, 5, A, F}, {1, 4, B,E}, {2, 7, 8, D} and {3, 6, 9, C}.

Hence, if we simply induce a pair of faults from the set F = {(x, y)|1 ≤
x, y ≤ E, x 6= 6, x 6= 9, y 6= x, y 6= 6, y 6= 9} \ A, we culminate in our desired
situation.

From the above observation, it is clear that there is no need to generate
all possible faulty outputs for each SBox. So, in the last round only 64 faults
are enough to find the all possible key candidates. For each SBox, the possible
keys will be one of the four partitions mentioned above. Since in each partition
there are four elements, so for each SBox, we have four possible key candidates.
Hence, for 32 SBoxes there are 432 = 264 possible key candidates which is less
than an exhaustive search.

3.2.2 Analysis at the penultimate round

Now, we consider the last two rounds of the initial version of DEFAULT LAYER
where no key scheduling algorithm is involved. We try to filter the key can-
didates further from what we have got, following the above procedure after
inducing faults in the last round. Here, we induce faults in the beginning of
the second last round in a nibble and generate faulty ciphertexts. Now, from
the faulty ciphertexts we apply two rounds inverse operation for the possible
key candidates already obtained from the last round fault injection model and
reduce the possible key candidates.

Suppose after 25 rounds S26 be the 128-bit state and s be any 4-bit nibble
of the state. Let c be the corresponding ciphertext. We induce two faults
(δ1, δ2) ∈ F in the nibble s of the state S26 and generate the faulty ciphertexts

7

a

32

.

. . .

⊕ ⊕ ⊕ ⊕

⊕⊕⊕⊕ ⇐= K and const.

⇐= K and const.

Figure 1: Fault at penultimate round. corresponds to faulty nibble.

after 27-th round c1, c2. Now we use the following equation to filter the key
candidates k further,

R−2(c, k)⊕R−2(ci, k) = δi for all i ∈ {1, 2}. (5)

Therefore, the key candidates satisfying equation (5) for all i ∈ {1, 2} will
be the possible filtered key candidates.

As mentioned above, here, we induce nibble based faults in the beginning
state of the second last round which will activate 4 SBoxes in the last round.
Then, the outputs of the four SBoxes be will be XOR-ed to 4 nibbles of the key
K. Note that from what we have discussed earlier in the previous section we
know that the fault analysis at the last round yields 4 possible options for each
nibble of the key K at respective positions. Next, we try to filter these 264 many
possible options for the key K by inducing nibble based fault in the beginning
state of the second last round. According to the last round fault model analysis
for 4 nibbles of the key K, we have 44 = 28 possible options. Suppose, we induce
faults corresponding to the j-th SBox, Sj , j ∈ {0, 1, 2, 3} in the beginning of the
second last round. Then this induced fault activates 4 SBoxes S0, S8, S16, S24

at the last round. Then in the last round, 4 nibbles k0,k8,k16 and k24 of the
key K are XOR-ed to the outputs of SBoxes S0, S8, S16, and S24 respectively to
generate the 4 nibbles c0, c8, c16 and c24 of the ciphertext C. Here we have not
considered the permutation in the last round as SPN structure based ciphers
usually don’t. For faulty ciphertexts Ci, i ∈ {1, 2}, let ci0, c

i
8, c

i
16 and ci24 be

the 4 nibbles corresponding to the faults δ1 and δ2, where (δ1, δ2) ∈ F at the

8

corresponding positions. Now, consider the following equations:

S−1j (P−1(S−10 (c0 ⊕ k0)⊕ k0||S−18 (c8 ⊕ k8)⊕ k8||S−116 (c16 ⊕ k16)⊕ k16||
S−124 (c24 ⊕ k24)⊕ k24))⊕ S−1j (P−1(S−10 (c10 ⊕ k0)⊕ k0||S−18 (c18 ⊕ k8)⊕ k8||

S−116 (c116 ⊕ k16)⊕ k16||S−124 (c124 ⊕ k24)⊕ k24)) = δ1 (6)

S−1j (P−1(S−10 (c0 ⊕ k0)⊕ k0||S−18 (c8 ⊕ k8)⊕ k8||S−116 (c16 ⊕ k16)⊕ k16||
S−124 (c24 ⊕ k24)⊕ k24))⊕ S−1j (P−1(S−10 (c20 ⊕ k0)⊕ k0||S−18 (c28 ⊕ k8)⊕ k8||

S−116 (c216 ⊕ k16)⊕ k16||S−124 (c224 ⊕ k24)⊕ k24)) = δ2 (7)

where k0 = k0k1k2k3,k8 = k32k33k34k35,k16 = k64k65k66k67 and k24 = k96k97
k98k99 and S−1j operates on the 4 bits word after the inverse permutation oper-
ation P−1 where fault is induced at the beginning of the second last round as
shown in the Figure 1.

We use equations (6) and (7) to filter the 28 possible options of k0||k8||k16

||k24 i.e., the corresponding 16 bits of the round key K. Considering these
equations for j = 0, 1, 2 or 3, we explored all the possible options making an
exhaustive search and checked that the possible options for k0||k8||k16||k24

reduces to 26. Again for j ∈ {0, 1} from the equations (6) and (7) we get 24

possible options for k0||k8||k16||k24. So, we have reduced to the square root
of the possible options for 16 bits of round key K than the designers’ claim.
Further, if we consider equations (6) and (7) for j ∈ {0, 1, 2}, then we can
reduce the possible options of k0||k8||k16||k24 to 22. From the permutation
involved in the design of DEFAULT it directly follows that there are 8 groups of
4 SBoxes. Here we have considered one group of 4 SBoxes and the corresponding
4 nibbles of the key K. Similarly, we take into account other group of SBoxes
in the state beginning of the second last round, where we induce nibble based
faults such that we can obtain the remaining part of the key K. Therefore,
we consider 8 different groups of SBoxes in the beginning of the second last
round and perform analysis same as above. Then for each 16 bits part of the
key K we have 22 possible options. Therefore, for the whole key K we have
(22)8 = 216 possible options that is listed in Table 3 and this search complexity
is practical. We have written a Sage code and the source code can be found at
https://github.com/SantanuChennai/Fault.

As discussed above, if we induce nibble based faults in the state at the
beginning of the second last round of the new version of DEFAULT, then it
will activate 4 SBoxes in the last round. So, 4 nibbles of the round key K2

are XOR-ed before these active SBoxes and 4 nibbles of the round key K3 are
XOR-ed with the outputs of the SBox. If we consider both the nibbles of K2

and K3 then it is difficult to recover all the bits of K2 and K3 with search
complexity less the than designers’ claim. In our fault attack, we have first
recovered the possible key candidates of last round key K3 and then try to filter
the key candidates inducing nibble based fault one round before the last round.

9

For the last round, we have 4 possible options for each nibble of the last round
key K3 that we have obtained inducing nibble based faults and analysing each
SBox separately. But the problem is that if we consider the last two rounds of
the DEFAULT, then both the subkeys K2 and K3 gets involved. Since in the
initial version, K2 = K3 and 4 bit positions of K2 are in the 16 bit positions
of K3 the case is quite easier to handle. But in the new version from inverse
key scheduling algorithm we have checked that 128 bits of K3 get involved in
the algebraic expressions of 4 bits of K2 that are used in the inverse round to
verify the induced fault. So, if we know the possible options for the 16 bits of
the round key K3, then from that we can not verify the corresponding possible
options of 4 bits of the round key K2. Therefore, in this case we can not reduce
the search complexity of the secret key than the designers’ claim.

Round Number of Faults Attack Complexity

Last Round 64 264

Last two rounds 80 248

Last two rounds 96 232

Last two rounds 112 216

Table 3: Comparison of Attack Complexities with changing number of faults
for initial version of DEFAULT

4 Conclusion
We have analysed the newly designed block cipher DEFAULT in which DE-
FAULT LAYER is introduced in the cipher to protect the cipher from DFA. We
have observed that the initial version of DEFAULT LAYER fails to thwart DFA
as a safeguard for the main cipher if we remove last round permutation. In the
modified version, designers used key scheduling algorithm and our attack does
not work on this version.

References
[1] A. Baksi, S. Bhasin, J. Breier, M. Khairallah, T. Peyrin, S. Sarkar and S. M.

Sim. DEFAULT: Cipher Level Resistance Against Differential Fault Attack.
Asiacrypt 2021. Available at https://eprint.iacr.org/2021/712

[2] S. Banik, S. K. Pandey, T. Peyrin, Y. Sasaki, S. M. Sim and Y. Todo. GIFT:
A Small Present - Towards Reaching the Limit of Lightweight Encryption.
CHES 2017.

[3] C. Beierle, G. Leander, A. Moradi and S. Rasoolzadeh. CRAFT:
Lightweight Tweakable Block Cipher with Efficient Protection Against DFA
Attacks. IACR Trans. Symmetric Cryptol. 2019

10

[4] E. Biham and A. Shamir. Differential Fault Analysis of Secret Key Cryp-
tosystems. CRYPTO 1997.

[5] D. Boneh, R. A. DeMillo and R. J. Lipton. On the Importance of Checking
Cryptographic Protocols for Faults. EUROCRYPT 1997.

[6] G. Piret and J.-J. Quisquater. A differential fault attack technique against
SPN structure, with application to the AES and KHAZAD. CHES 2003.

[7] D. Mukhopadhyay. An improved fault based attack of the advanced en-
cryption standard. AFRICACRYPT 2009.

[8] T. Simon, L. Batina, J. Daemen, V. Grosso, P.M.C. Massolino, K. Pa-
pagiannopoulos, F. Regazzoni and N. Samwel. Friet: An authenticated
encryption scheme with built-in fault detection. EUROCRYPT 2020

11

