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Abstract. Sender-anonymous end-to-end encrypted messag-
ing allows sending messages to a recipient without revealing
the sender’s identity to the messaging platform. Signal re-
cently introduced a sender anonymity feature that includes an
abuse mitigation mechanism meant to allow the platform to
block malicious senders on behalf of a recipient.

We explore the tension between sender anonymity and
abuse mitigation. We start by showing limitations of Signal’s
deployed mechanism, observing that it results in relatively
weak anonymity properties and showing a new griefing attack
that allows a malicious sender to drain a victim’s battery.
We therefore design a new protocol, called Orca, that allows
recipients to register a privacy-preserving blocklist with the
platform. Without learning the sender’s identity, the platform
can check that the sender is not on the blocklist and that the
sender can be identified by the recipient. We construct Orca
using a new type of group signature scheme, for which we
give formal security notions. Our prototype implementation
showcases Orca’s practicality.

1 Introduction
End-to-end (E2E) encrypted messaging, now relied upon by
billions of people due to products like Signal, WhatsApp,
Facebook Messenger, and more, provides strong E2E con-
fidentiality and integrity guarantees [5, 25]: the messaging
platform itself cannot read or modify user messages. The E2E
encryption protocols used [56] do not, however, attempt to
ensure anonymity, so the platform learns the sender and recip-
ient of every message sent over the network. While academic
systems [4, 6, 26, 27, 45, 48, 51, 62, 64, 65] have developed
protocols that hide the identity of senders and receivers from
platforms, they introduce expensive overheads.

A recent suggestion for pragmatic privacy improvements is
to aim solely for sender anonymity. Introduced by Signal in a
feature called “sealed sender” [52], sender anonymity ensures
that the sender’s identity is never revealed via messages to
the platform, e.g., the sender does not authenticate with an
account password or digital signature; messages reveal only
the intended recipient. While sealed sender does not hide
network-level identifiers such as IP addresses, one can do so
by composing it with Tor [29] or an anonymous broadcast [26,
44, 51, 57, 65].

In this work, we explore a key tension in sender-anonymous
systems: mitigating abuse by malicious senders. Already E2E

encryption makes some kinds of abuse mitigations, such as
content-based moderation, more challenging (c.f., [30, 32,
38, 63]). Sender anonymity complicates the setting further
because the lack of sender authentication means that the plat-
form cannot block unwanted messages on behalf of a recipient
in a conventional way.

To enable platform blocking, Signal’s sealed sender has
a user distribute an access key to their contacts that senders
must show to the platform when sending the user a sender-
anonymous message. If a sender cannot provide an access key,
the platform drops the message. A user that blocks a sender in
their client triggers a rotation of this key and a redistribution to
the (remaining) contacts. Future messages from the blocked
sender will be dropped by the platform.

We observe two deficiencies with this approach. First, ac-
cess keys must be distributed over non-sender-anonymous
channels, meaning the platform learns the identities of users
who can send sender-anonymous messages to a particular
recipient. This significantly lowers the anonymity guarantee—
in the limit of having only a single contact, there is no
anonymity at all.

Second, we show a simple “griefing” attack that works
despite the anti-abuse mechanism. By design, the sender is
hidden from the platform, and only the recipient can iden-
tify the sender of a sender-anonymous message. However, a
malicious sender can trivially craft malformed messages that
even the recipient will not be able to identify. The recipient’s
client rejects these messages, but not before processing them.
This is particularly problematic for mobile clients as it uses
up battery life; we experimentally verify that an attacker can
easily drain a target’s battery in a short period of time. To
make matters worse, neither victim nor platform can identify
the attacker, and so the victim will not know who to block.

We design a new abuse mitigation mechanism for privacy-
preserving blocklisting in sender-anonymous messaging. Our
protocol, called Orca, allows recipients to register a block-
list with the platform. The blocklist is privacy-preserving,
meaning it does not reveal the identities of the blocked users.
Senders construct messages that are anonymous to the plat-
form, but can be verified by the platform as being attributable
to a sender not present on the blocklist. If the sender is on the
blocklist or if the message is malformed, then the platform
rejects the message; if the message is delivered, the recipient
is guaranteed to be able to identify the sender.
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Importantly, Orca provides a new non-interactive initial-
ization functionality that allows a user to initiate sender-
anonymous messages without having previously commu-
nicated with the recipient. This significantly enhances the
anonymity guarantees, because it expands the anonymity set
to be as large as all registered users of the system.

In summary, our contributions are:
• We build a threat model for sender-anonymous messag-

ing and identify limitations in previous approaches, in-
cluding a new griefing attack against Signal’s sealed
sender that we evaluate.

• We construct a new group signature scheme [24] to make
up the core of Orca’s functionality. The new primitive is
tailored to the needs of our setting and supports multiple
openers, keyed verification, and local revocation; see Sec-
tion 4 for details. We provide new security definitions,
building upon ones from prior work [9, 15].

• We show an extension of Orca that integrates mecha-
nisms from anonymous credentials [22] to arrange that
the relatively expensive group signature scheme is only
used periodically when initiating a new conversation. Ini-
tialization will generate a batch of one-time-use sender
tokens [46, 47], which can be spent to authenticate mes-
sages and replenished at very low cost.

• We implement and evaluate Orca, suggesting that it is
sufficiently performant to deploy at scale. In particular,
once initialized, the token-based extension incurs only
30B additional bandwidth cost per message and only one
extra group exponentiation of computation for clients;
the platform need only compute a group exponentiation
and check the token against a strikelist. The computa-
tional cost for the platform is paid during initialization
which incurs work on the order of the size of the recipi-
ent’s blocklist (∼ 200ms for a blocklist of length 100).
We find that a medium-provisioned server can comfort-
ably support a deployment of a million users depending
on frequency of conversation initialization.

2 Setting: Sender Anonymity for E2EE
This work focuses on sender-anonymous E2E encrypted mes-
saging hosted by a centralized messaging platform. In this
section and throughout the body, we will often use Signal
as our running example. However, the techniques that we
introduce are relevant for any sender-anonymous messaging
system in which the platform learns the recipient identity.

2.1 Background: Signal and Sealed Sender

Non-sender-anonymous E2EE messaging. We first briefly
outline Signal’s non-sender-anonymous protocol. For simplic-
ity we restrict attention to one client per user. A user wishing
to send a message first registers an account with the platform
using a long-lived identity public key pks , retaining the asso-
ciated secret key sks . The user then must contact the platform

to obtain the long-lived public key pkr of their intended re-
cipient. Once this phase is complete, a client can securely
send messages via Signal’s double ratchet protocol [56]. This
provides state-of-the-art message confidentiality guarantees
even in the event of key compromise [5, 25].

Signal, like most other E2E encrypted messaging platforms,
requires users to authenticate their account when sending
and receiving messages. Importantly, this allows for abuse
prevention because the platform can block malicious senders,
and even block senders from talking to a specific recipient. On
the other hand, such account authentication, e.g., via public
key signature or unique account password, does not provide
cryptographic sender anonymity.
Sender anonymity with sealed sender. Sealed sender is Sig-
nal’s protocol [52] for cryptographic sender anonymity mo-
tivated by their desire to minimize the amount of trust their
users must place in the platform. We will now walk through a
high level summary of how sealed sender works.
Initialization and key exchange. As before, senders must first
register a public key pks with the platform. The user is issued
a short-lived sender certificate from the platform, that we
denote by cert. The certificate contains a digital signature
by the platform in order to attest to the validity of the user’s
identity key. These certificates must be periodically updated,
requiring the user to rerun the registration protocol.

To receive sealed messages a recipient must generate their
long-lived identity key pair (pkr ,skr) as usual, but now ad-
ditionally generate a 96-bit access key that we denote by ak.
Both pkr and ak are registered with the platform. Looking
ahead, senders will need to show ak to the platform to send
a sealed message. This means that the recipient must dis-
tribute ak to whomever they want to grant the ability to send
sealed messages. By default, the access key is distributed to
all contacts of a user through Signal’s original non-sender-
anonymous channel. Additionally, users can opt into accept-
ing sealed messages from anyone, including non-contacts. In
this case, senders do not need a recipient’s access key to send
them sealed messages.
Sending a sealed message. The pseudocode for sending and
receiving a message via sealed sender is provided in Figure 1.
It is designed to work modularly as a layer on top of any non-
sender-anonymous E2E encryption protocol. At a high level,
the protocol creates two ciphertexts: (1) an identity ciphertext
encrypting the sender’s long-lived public key pks to the recip-
ient, and (2) a content ciphertext encrypting the standard E2E
encryption ciphertext along with the sender certificate. The
identity ciphertext and content ciphertext cryptographically
hide the sender identity even if the underlying E2E encryption
ciphertext does not 1.

More specifically, the protocol encrypts the sender identity

1Signal’s use of the double ratchet algorithm produces ciphertexts that can
either include the sender identity in plaintext or include messaging metadata
such as counters used for in-order processing that would leak information
useful for linking senders.
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SealedSender.Send(m)

ctm← ratchet.Enc(m)

(pke ,ske)←$KeyGen()

salt1← (pkr ,pke)

(echain,ke)←HKDF(salt1,pk
ske
r )

ctid←$ AE.Enc(ke,pks)

salt2← (echain,ctid)

k← HKDF(salt2,pk
sks
r )

ctss←$ AE.Enc(k,cert‖ctm)

Return (pke ,ctid ,ctss),ak

SealedSender.Rcv(pke ,ctid ,ctss)

salt1← (pkr ,pke)

(echain,ke)←HKDF(salt1,pk
skr
e )

pks ← AE.Dec(ke,ctid)

salt2← (echain,ctid)

k← HKDF(salt2,pk
skr
s )

cert‖ctm← AE.Dec(k,ctss)

b← Verify(pks ,cert)

If b= 0 then return ⊥
m← ratchet.Dec(ctm)

Return m

Figure 1: Pseudocode for Signal’s sealed sender feature.

pks via a variant of hashed ElGamal [2] to produce the iden-
tity ciphertext ctid. In particular, it generates ephemeral key
pair (pke ,ske) and makes use of a hash-based key derivation
function HKDF and authenticated encryption scheme AE. The
sender then encrypts the plaintext m using the original double
ratchet algorithm ratchet.Enc(m). It bundles the resulting
ciphertext ctm and sender certificate cert and encrypts this
with a key derived from long-lived identity keys pks and pkr

to produce the content ciphertext ctss . The sender indicates
the intended recipient and sends the triple (pke , ctid, ctss)
along with the recipient’s access key ak to the platform.

Upon receipt of the sender’s message, the platform checks
that the intended recipient’s registered access key matches ak.
If this check passes, then the platform forwards the triple
(pke ,ctid,ctss) to the recipient. The recipient decrypts as
shown in Figure 1. Once it recovers cert and ctm, it veri-
fies the sender as a valid account using the certificate and
the recovered identity key pks . If the sender’s identity is au-
thenticated, then ctm is decrypted using the double ratchet
algorithm.

2.2 Limitations of Sealed Sender

There are limitations to Signal’s sealed sender protocol for
sender anonymity, which we raise here in the form of three
different classes of attacks.
Traffic analysis of sender-anonymous messages. An inher-
ent leakage of the sender-anonymous messaging setting (as
opposed to the sender- and recipient-anonymous setting) is
that the recipient of each message is inherently leaked to the
platform. Martiny et al. [53] demonstrate a set of statistical
disclosure attacks that use this leakage to infer communicating
partners, for example, by searching for users with interleaving
messages suggesting a back-and-forth conversation pattern.
They provide a modification to Signal’s sealed sender that pro-
tects against traffic analysis of sender-anonymous messages,
which they call “sender-anonymous conversations”. This mit-
igation approach, as well as another separate approach which
instead relies on random message delays and/or noise mes-
sages [57], do not provide solutions for blocklisting. The
techniques we introduce for supporting blocklists compose
well with these traffic analysis mitigations. Given this prior

work, we do not explicitly address traffic analysis of sender-
anonymous messages beyond considering the anonymity set,
as we discuss next.
Traffic analysis of non-sender-anonymous messages. Re-
call that access keys are distributed through Signal’s origi-
nal non-sender-anonymous channel. While this setup is still
encrypted, the platform nevertheless observes with whom
the user exchanged non-sender-anonymous messages. Thus,
when a sender anonymously authenticates using ak, the set of
users that could correspond to the sender (i.e., the anonymity
set of the sender) is restricted and known to the platform.
This means, for example, if a recipient only has a single con-
tact with which they have communicated, there is no sender
anonymity at all. Furthermore, if a user rotates their access
key to revoke sending access, this resets their anonymity set
of senders, as their new access key must be redistributed.

Martiny et al. [53] assume in their threat model that these
access keys have already been exchanged between commu-
nicating parties. Their attack can therefore be improved by
tracking the sender anonymity set of a recipient learned by the
platform. Notably, our solution for blocklisting will prevent
such improvements.
Griefing attack by evading identification. Sealed sender re-
lies on the sender to self-identify to the recipient: the platform
can not check for malformed messages. Instead, the recipient
must decrypt and check validity of the sender identity key
and certificate, dropping messages that do not verify. This al-
lows for a straightforward griefing attack in which an attacker
can spam the recipient with untraceable messages, causing
the recipient’s device to suffer battery drain and to consume
bandwidth, a type of user-mounted DoS attack.

We demonstrate through a proof-of-concept implementa-
tion that this griefing attack is effective. Our attack simply
modifies pke in (pke ,ctid,ctss) to a random value pkf . To
the platform this is indistinguishable from a legitimate sealed
sender message, but the recipient’s decryption will fail when
trying to decrypt ctid . The recipient cannot recover any infor-
mation about the sender. Running experiments on a Google
Pixel phone running Android 9, we find that sending just 1
message every 10 seconds causes the battery to drain at an in-
creased rate of 9× over baseline. We provide more extensive
measurements of this attack in Appendix A.

Ultimately, there are no satisfying mitigation options avail-
able to victims (see last section of Appendix A). If the victim
of the attack has opted in to accepting sealed sender messages
from non-contacts, the attack can be mounted by anyone. Oth-
erwise the attacker needs the recipient’s access key, meaning
the attacker must be one of the victim’s contacts (or has found
some other way to obtain the access key). While this limits
who can mount the attack in the default case, it is still prob-
lematic: The victim can rotate their access key ak and attempt
to redistribute a new ak′ to their communicating partners. If
the attacker is not able to get access to the new access key, the
attack will be stopped by the platform and no messages will
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Figure 2: Privacy-preserving, outsourced blocklisting for sender-
anonymous messaging. The platform is able to block messages from
users on Chloe’s blocklist without learning their identity. The top
view shows the functionality of outsourced blocklisting, while the
bottom view shows what is revealed to the platform. Not shown,
Chloe can also efficiently identify the sender of message m1 as
Alice and update her blocklist BLC if needed.

reach the victim’s client. But since the attack leaves no infor-
mation about which of the victim’s communicating partners
is responsible, the victim can only make a guess as to whom
they should block.

Realistically to maintain usability of their mobile device, a
user may limit Signal to only a few highly trusted contacts,
or will push the user off Signal to a less private messenger.
We consider both of these outcomes to be highly damaging to
vulnerable users that would benefit from a metadata-private
messenger. Looking forward, we will want a mechanism that
provides the user more granular recourse against misbehaving
senders.

3 Outsourced Blocklisting
We now turn to building a new sender-anonymous messaging
protocol that avoids the current weaknesses of sealed sender.
Our approach is to enable what we call privacy-preserving
outsourced blocklisting (see Figure 2).
Goals. Such a system should enjoy the following features:

• Sender anonymity: Messages cryptographically hide the
sender identity from the platform.

• Sender attribution: Recipients can cryptographically ver-
ify the sender of any ciphertexts delivered by the plat-
form.

• Blocklisting: Recipients can register a blocklist with the
platform and update it efficiently. The platform can use
the blocklist to drop sender-anonymous messages from
senders that the recipient has added to the blocklist.

• Blocklist anonymity: The blocklist should not reveal the
identities of the senders blocked by the recipient.

Together these properties prevent the type of griefing attacks
that affect sealed sender: a client receiving problematic mes-
sages can identify the sender and instruct the platform to drop

them on the client’s behalf.
We would also like the system to support:

• Non-interactive initialization: Users can begin sending
sender-anonymous messages without previous interac-
tion with the intended recipient.

This property obviates the use of non-sender-anonymous chan-
nels to initiate sender-anonymous communication. In particu-
lar, the platform should not be able to attribute messages to
some smaller subset of users, as messages can have originated
from any registered user of the system.

Orca is designed to accompany a sender-anonymous E2EE
messaging protocol to provide the functionality of outsourced
blocklisting while carrying over both the sender-anonymity
and message confidentiality properties of the underlying pro-
tocol. As such, we assume the underlying E2EE protocol is
sender-anonymous, and if it is not, can easily be made so
using encapsulation techniques similar to sealed sender (see
Figure 1). Our protocol will provide a registration process in
which users interact with the platform to generate the required
keys for the protocol; this will be done at the same time users
register for the underlying E2EE protocol. To send a message,
the sender first encrypts the message plaintext pt to the re-
cipient as specified by the E2EE protocol. Then, Orca will
concern itself with authenticating the delivery of the produced
E2EE ciphertext; the authenticity of the underlying message
plaintext needs to be provided by the E2EE protocol. We will
refer to the E2EE ciphertext as the “message” from Orca’s
perspective.
Threat model. We assume an active, persistent adversary
that controls the messaging platform and an arbitrary number
of users. We assume the clients of legitimate users are not
compromised and that they correctly abide by the protocol.

Our primary concern is the cryptographic anonymity of the
messaging protocol. The adversary, even with active devia-
tions from the protocol, should not be able to learn sender
identity information from the contents of protocol messages.

Even in the case that anonymity is achieved at the message
proctocol layer, identification information can leak through
the network layer, e.g., by associating IP addresses or by mak-
ing inferences based on timing. We consider preventing such
leakage to be orthogonal to the goal of providing a block-
listing solution for the message protocol layer: existing solu-
tions for mitigating network leakage will compose. Sender-
anonymous channels resilient to linking attacks that exploit IP
addresses can be constructed using services such as Tor [29];
linking attacks performed by stronger global network adver-
saries with the ability to observe and inject traffic along any
network link can be mitigated using prior academic solutions
for anonymous broadcasting [26, 44, 51, 57, 65]. Lastly, as
discussed in Section 2.2, given a sender-anonymous channel,
timing analysis of messages with designated recipients can
be mitigated using existing techniques [53, 57].

It is trivial for an active adversary that controls the platform
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to deny service to arbitrary users by not delivering messages.
In future work, it may be valuable to provide a mechanism
for honest users to provably expose such misbehavior, but in
this work we leave platform-mounted denial-of-service (DoS)
attacks out of scope. On the other hand, we do want to protect
against user-mounted DoS attacks, in which a malicious user
can interact with an honest platform to deny service to other
users, as in the griefing attack.

Overview. We will now provide an overview of Orca’s design
by stepping through a series of strawman constructions.

Sender-specific one-time use access tokens. Instead of hav-
ing all senders authenticate by reusing the same shared access
token, the recipient can deal unique access tokens to each
sender. Reusing a sender-specific token allows linking by the
platform, so these tokens will necessarily be one-time use
only. We outline a version of this approach that is taken by
the Pond messaging system [46, 47].

On registration, recipients register a key k to a pseudoran-
dom function F , e.g. HMAC, with the platform. Recipients
distribute one-time use tokens of the form (x,y = F (k,x))
for random values x to senders. The platform verifies these
tokens using k and the recipient can identify senders since
they know to whom they dealt (x,y). A sender’s tokens are
refreshed in the normal exchange of messages. Now a recipi-
ent can block by reporting the unused tokens of a sender to
the platform; the platform tracks these tokens along with pre-
viously spent tokens for a recipient in a strikelist and rejects
incoming messages that authenticate with struck tokens. The
platform’s strikelist grows unbounded as more messages are
sent, but this cost can be managed by scheduled key rotations.

This blocklisting approach improves significantly over
sealed sender as it effectively removes the griefing attack
vector, however it does not address the concerns around leak-
age during initialization: the recipient still initially distributes
the access tokens over non-sender-anonymous channels to
senders, revealing to the platform a small set of possible
senders for future messages. A different approach is needed
to provide stronger sender anonymity with non-interactive
initialization.

Group signatures. A promising starting point for sender-
anonymous blocklisting with non-interactive initialization
is group signatures, a well-studied cryptographic primi-
tive [7, 9, 12, 18, 24]. Group signature schemes allow users
to sign messages anonymously on behalf of a group whose
membership is controlled by a group manager. Signatures
appear anonymous to everyone except to a special opening
authority who has the ability to deanonymize the signer and
revoke their signing ability.

Our next strawman solution has the platform maintain a sep-
arate group signature scheme for each registered user, where
the user is the opening authority and the platform is the group
manager. A sender registers with the platform under the de-
sired recipient’s group signature scheme. The sender sends

their message along with a signature on the message under
the recipient’s group to the platform. The platform then ver-
ifies the anonymized signature. For blocklisting, we use a
group signature scheme that supports verifier-local revoca-
tion [15]. This means that the recipient can revoke senders by
communicating only with the platform (i.e., verifier).

This strawman provides effective sender attribution and
blocklisting. It also allows senders to acquire group signature
credentials without previous interaction with the recipient.
However, messages to a recipient can be attributed by the plat-
form to the set of users that registered under the recipient’s
group signature scheme, so we do not achieve our stronger
anonymity goal. Furthermore, existing group signatures that
meet our requirements use expensive bilinear pairing oper-
ations, adding on to the efficiency concerns of managing a
separate scheme for each registered user.

We resolve these issues by proposing a new type of group
signature that introduces two novel features. The first is sup-
port for multiple opening authorities. This will dispense with
the per-recipient group signature schemes and the need to
register separately for each recipient that you wish to send to.
The second feature is keyed-verification, in which we observe
that the platform is also the only verifier. Removing public
verifiability improves efficiency of client-side operations.

This new group signature, presented in Section 4, makes up
the core of Orca. However even with our optimizations, e.g.,
keyed-verification, the group signature approach incurs signif-
icant computational cost, in particular for the platform, owing
to the use of verifier-local revocation: verifying a signature
incurs work linear in the size of the recipient’s blocklist.
Hybrid: Group signature with one-time tokens. This leads us
to our final construction which combines the use of group
signatures for non-interactive initialization with one-time use
tokens for efficient authentication of subsequent messages.
Here, the group signature is used to allow the sender to ac-
quire its first batch of tokens from the platform. The main
contribution of this approach is a new protocol for allowing
the platform to dispense tokens on behalf of the recipient.
This is challenging because the platform should not be able
to link newly minted tokens to a sender, but it must provide
a way for the recipient to learn to whom new tokens were
dealt (for future sender attribution). We construct this protocol
by adapting techniques from blinded issuance of anonymous
credentials [22]. After this (relatively) expensive initialization
procedure, users exchange new tokens in the normal flow of
conversation and the system enjoys all the efficiency benefits
of the token-based protocol. We describe Orca’s one-time
token extension in Section 5.

4 Orca’s Group Signature

Our main construction is based on a novel group signature
scheme. In this section, we will introduce our new group
signature abstraction, describe how to use it to construct an
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outsourced blocklisting protocol, and lastly provide an instan-
tiation of such a group signature,

4.1 Group Signature Syntax and Security

Group signatures [24] allow users to sign messages anony-
mously on behalf of a group. The basic setting is as follows.
The membership of a group is coordinated by a group man-
ager, with whom users register with in order to join the group.
Additionally, anonymous group signatures can be opened
(traced) to identify the signing user in the group by a desig-
nated opening authority.

We make use of three extensions to the basic group signa-
ture setting.

(1) Verifier local revocation: A group signature supporting
revocation allows the opening authority to additionally
revoke the signing ability of group members. Verifier
local revocation means that to revoke a member, the
opening authority need only communicate a revocation
message to verifying parties (as opposed to both veri-
fying parties and group members); revocation does not
affect the way group members sign messages.

(2) Multiple opening authorities: An opening authority is
created through registration with the group manager.
Group members sign messages designated to one of
many opening authorities, and only the opening author-
ity that a signature is designated to is able to open the
signature to the signer’s identity. Revocation is han-
dled separately per opening authority, meaning a group
member may be able to sign messages designated for
some opening authorities, but be revoked from signing
messages to others.

(3) Keyed verification: Verification of group signatures can
only be completed by a secret key owned by the group
manager and shared to verifying parties. This is particu-
larly useful in cases where the group manager is the only
party verifying signatures and allows for more efficient
schemes than those that achieve public verifiability.

Verifier local revocation has been previously studied [15],
but the other two extensions are novel to the best of our knowl-
edge. The model and following security definitions for our
new setting are derived from [9, 15].
Syntax. A multi-opener, keyed-verification group signature
scheme GS is run between three types of participating parties:
(1) users U that join the group and sign messages, (2) opening
authorities OA that can trace signatures to signers, and (3) a
group manager GM to coordinate registration and perform
verification. It consists of the following algorithms:

• pp←$GS.Setup(λ): The setup algorithm defines the
public parameters pp. We will assume pp is available
to all algorithms, and all parties have assurance it was
created correctly.

• (gmpk,gmsk)←$GS.KgppGM(): The key generation al-

gorithm is run by the group manager to generate a public
key gmpk and secret key gmsk.

• GS.JoinUpp
U ↔ GS.IssueUpp

GM: Group registration is
an interactive protocol implemented by GS.JoinU and
GS.IssueU run between a user and the group manager,
respectively. If execution is successful, the user will re-
ceive a public, secret key pair (upk,usk) and the group
manager will receive upk, else both parties receive ⊥. If
the protocol accepts, the group manager will store upk
in a global registration table and reject duplicate upk
registrations.

• GS.JoinOApp
OA ↔ GS.IssueOApp

GM: Opening authority
registration is an interactive protocol run between a
prospective opening authority and the group manager.
If execution is successful, the opening authority will
receive a public, secret key pair (oapk,oask) and the
group manager will receive and store oapk in the regis-
tration table, else both parties receive ⊥.

• σ←$GS.SignppU (usk,gmpk,oapk,m): The signing al-
gorithm is run by a group member to produce a group
signature σ on a message m designated for opening au-
thority oapk.

• upk ← GS.OpenppOA(oask,m,σ): The opening algo-
rithm is run by an opening authority to learn the identity
of the signing user upk, and returns ⊥ upon failure.

• τR←$GS.RevokeppOA(oask,upk): The revocation algo-
rithm is run by an opening authority to create a revo-
cation token τR for a user upk. The opening authority
sends the revocation token to the group manager who
includes it in a revocation list RL used for verification.

• b ← GS.VerppGM(gmsk,oapk,RL,m,σ): The verifica-
tion algorithm is run by the group manager to determine
if an input signature σ and m are valid under a designated
opening authority oapk and revocation list RL.

As mentioned, we assume some global registration table
that contains all user public keys upk and opening authority
public keys oapk that succeed registration. In practice, such
a table might be implemented with a public key infrastructure
(PKI) supporting key transparency audits [54] allowing it be
hosted by the untrusted platform. Additionally, for simplicity,
we may drop the executing party from the subscript and the
public parameters from the superscript if their use is clear
from context.
Correctness and security notions. We extend the standard
notions of correctness and security from [9, 15]. Here, we
describe correctness and then the three security properties:
anonymity, traceability, and non-frameability. The properties
are formalized via security games involving an adversary, but
we defer the formal definitions to Appendix D.

The correctness property concerns signatures generated
by honest group members. An honestly generated signature
should pass verification under all honestly generated revoca-
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tion lists that do not include a revocation token for the signing
user created by the designated opening authority. An hon-
estly generated signature should also be opened to the correct
signing user by the designated opening authority.

The anonymity property (see Figure 11 for full security
game) captures that an adversary without access to the desig-
nated opening authority’s key should not be able to determine
the signer of a signature among unrevoked group members.
The adversary has the power of an actively malicious group
manager and may adaptively compromise group members and
opening authorities. More specifically, we target CCA-selfless-
anonymity [12] meaning signatures are not anonymous to the
signer (selfless) and the adversary has access to an opening
oracle throughout the security game (CCA). We consider
rogue key attacks, allowing the adversary to create public
keys for corrupted parties, but require the adversary to prove
knowledge of secret keys. We model this, for simplicity, by
asking the adversary to produce the secret key for generated
public keys following the knowledge of secret key model
of [11], which can be instantiated with extractible proofs of
knowledge. We also provide an extension of our anonymity
game to capture anonymity of revocation tokens (in addition
to signatures) that is, to our knowledge, the first definitional
attempt at doing so.

Traceability (Figure 12)nsures that every signature that
passes verification can be opened by the designated opening
authority to a registered user. Traceability necessarily con-
siders an adversary that does not control the group manager
since it is trivial for the group manager to craft signatures for
unregistered public keys. However, traceability is accompa-
nied by non-frameability (Figure 13) which ensures that it is
not possible to forge a signature that opens to an honest user;
non-frameability considers a stronger adversary that controls
the group manager as in anonymity.
Bilinear pairing groups. Our construction will make use of
bilinear pairing groups for which we will use the following
notation. (1) Groups G1,G2,GT are cyclic groups of prime
order p. (2) Group element g1 is a generator of G1, g2 is a
generator of G2. (3) Pairing function e : G1×G2→GT is a
computable map with the following properties: Bilinearity:
∀ u ∈ G1, v ∈ G2, and a,b ∈ Z, e(ua,vb) = e(u,v)ab, and
Non-degeneracy: e(g1,g2) 6= 1. We assume an efficient setup
algorithm that on input security parameter λ, generates a bilin-
ear group, (p,G1,G2,GT ,g1,g2,e)←G(λ), where |p|= λ.

4.2 Outsourced Blocklisting from Group Signatures

Given a keyed-verification, multi-opener group signature with
verifier-local revocation, we build our core protocol, detailed
in Figure 3. The platform plays the role of the group manager.
Users register with the platform as both a user of the group
and as an opening authority, receiving keys (uski,oaski). For
user i to send a message to user j, assume for now that user
i has user j’s public keys (upkj ,oapkj). We will describe
how user i obtains these keys shortly.

User i signs their message with uski under the group sig-
nature scheme designating oapkj as the opening authority.
The platform verifies the anonymous group signature against
user j’s revocation list, and if it verifies, delivers the message
and signature to user j, who can then identify the sender,
upki, by opening the signature. Users can blocklist a sender
upki to the platform by generating a revocation token un-
der their opening authority key oaskj and sending it to the
platform. Anonymity of the group signature and revocation
tokens ensure that the platform does not learn sender identity
information from messages or from the blocklist; and trace-
ability and non-frameability ensure recipients will be able to
properly attribute received messages to a sender.

To achieve our stronger sender anonymity goal, user i must
be able to read the public key information of user j needed
to start a conversation without revealing their own identity to
the platform. Since public key information is not sensitive,
the platform can provide unrestricted access to PKI lookups
that do not require user authentication. Note that the platform
can observe the number of lookups to a recipient’s public key,
but learns no information on which users are making those
lookups. We discuss how the platform can restrict access to
resources and maintain anonymity in Section 8.

4.3 Construction of Group Signature

Our group signature follows closely the “certified signature”
recipe that many group signatures take [36]. In this recipe,
the group manager registers users by certifying their public
key Y = gy; the user’s group key is made up of their secret
identity key y along with the group manager’s certificate t. To
sign a message under the group, the user encrypts their public
key to the opening authority creating an identity ciphertext
where Z is the opening authority’s encryption key.

ctid← (gαct
1 ,Y Zαct) αct←$Zp

They then prove in zero knowledge that they have a certifi-
cate from the group manager on the same public key that is
enclosed in the ciphertext and that they know the secret key
associated to it. The signature is verified by verifying the zero
knowledge proof and can be opened by the opening authority
simply by decrypting the identity ciphertext.

This recipe naturally extends to support a scheme with mul-
tiple opening authorities. The identity ciphertext is encrypted
using the public key of the designated opening authority.
Supporting verifier-local revocation. An opening authority
registers with two keys: (1) an encryption key (z,Z = gz1),
and (2) a revocation key (w,W = gw1 ), where oapk = (W,Z).
We have described how a user with identity key (y,Y = gy1 )
encrypts their public key Y to the opening authority. To re-
voke a user’s signing ability, the opening authority constructs
a user-specific revocation token as the Diffie-Hellman value
between the user’s public key and their own revocation key,
τR = Y w. Intuitively, these revocation tokens are anonymous
since a Diffie-Hellman value looks random to a verifier that
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Protocol 1: Orca Outsourced Blocklisting Protocol

Setup:

(1) Public parameters for the group signature scheme are generated,
pp←$GS.Setup(λ).

(2) The platform initializes its state as the group manager of the group
signature scheme.

(a) (gmpk,gmsk)←$GS.KgppGM()

(b) TU ← [·]: Table tracking user public keys.
(c) TR← [·]: Table tracking user revocation tokens.

Registration:

(1) User registers with platform to acquire group signature signing key with
which to send messages, GS.JoinUpp

U ↔ GS.IssueUpp
GM. User stores

usk and platform stores upk.
(2) User registers as opening authority and generates keys with which to re-

ceive messages, GS.JoinOApp
OA↔ GS.IssueOApp

GM. User stores oask
and platform stores oapk.

(3) Platform stores public keys in TU [upk]← oapk.
(4) Platform initializes empty revocation token list for user, TR[oapk]← [·].
Sending a message:

(1) [Optional] Sender anonymously requests recipient public key (oapk)
and/or rate-limited pre-keys from platform (described in Section 8).

(2) Sender signs message specifying the recipient as the opening author-
ity (with recipient’s oapk), σ←$GS.SignppU (usk,gmpk,oapk,m).
Sender sends message, signature, and recipient to platform, (m,σ,oapk).

(3) Platform checks validity of signature against recipient’s revocation list,
b←GS.VerppGM(gmsk,oapk,TR[oapk],m,σ). If b= 1, then platform
delivers (m,σ) to recipient.

Blocklisting a user:

(1) Recipient generates and sends anonymous revocation token to platform,

(a) upk← GS.OpenppOA(oask,m,σ)

(b) τR←$GS.RevokeppOA(oask,upk)

(2) Platform adds revocation token to recipient’s blocklist,
TR[oapk]← TR[oapk]∪{τR}.

(3) [Optional] Recipient stores identities of blocklisted senders and/or reports
sender identity to platform (described in Section 8).

Figure 3: Core protocol based on group signature.

does not know the secret keys y or w.

To allow a verifier in possession of a user’s revocation to-
ken to identify signatures from a user, we need something
more. In addition to the identity ciphertext, the user also
constructs a revocation ciphertext enclosing their revocation
token, τR = W y. This “ciphertext” is constructed to be un-
decryptable, but includes a backdoor for testing whether a
plaintext pt is enclosed (following the approach of Boneh
and Shacham [15]).

ctR← (M
αT
1 , τRN

αT
1 ) αT←$Zp M1,N1←$G1

The backdoor of ctR consists of the isomorphic G2 elements
M2,N2. The verifier can check whether τ̂R is enclosed in ctR
via the following test using the pairing function e:

e(T2/τ̂R,M2)
?
= e(T1,N2) (T1,T2)← ctR

The verifier performs this test for each revocation token in an

opening authority’s revocation list and outputs 1 if no revoca-
tion token matches and the signature’s proof verifies. The sig-
nature’s proof now additionally proves the well-formedness
of ctR with respect to user public key Y .
Improving efficiency with keyed-verification. A central
part of the group signature is that the user must prove they
have a certificate on their public key from the group manager.
Creating this proof, even for certificate signatures designed
for this purpose [12, 20], is relatively expensive, with known
constructions requiring multiple pairings to be evaluated. In
our setting, the platform plays the role of both the group
manager and the sole verifier; all messages pass through the
platform. This setting allows us to bring in techniques from
keyed-verification anonymous credentials [22]. Specifically,
during user registration, instead of receiving a signature from
the group manager, users receive a MAC t on their public
key from an algebraic MAC scheme; our construction uses
MACGGM from [22, 31]. Proving knowledge of a valid MAC
is more efficient and, in particular, does not require pairing
evaluations. The resulting proof can only be verified using
the secret MAC key (held by the group manager), hence our
introduction of the keyed-verification setting for group signa-
tures (i.e., “group MACs”). This optimization limits the use
of pairings in our group signature only to the revocation token
tests made by the group manager during verification.
Summary. In total, our group signature is composed of three
components, (1) the identity ciphertext ctid enclosing the
signer’s public key to the opening authority, (2) the revocation
ciphertext ctR enclosing the revocation token, and (3) a zero
knowledge proof π that (1) and (2) were constructed properly
with knowledge of a key pair (y,Y ) and a MAC t on Y .
The full details of the construction are given in Figure 8
in Appendix C, and we prove security of our scheme with
respect to our formal definitions of anonymity, traceability,
and non-frameability in Appendix D.

As stated, every time a user sends a message, they create
a group signature and the platform verifies the group signa-
ture. Even with our optimizations, this involves the platform
running a verification algorithm that is linear in the size of
the recipient’s revocation list. We improve in the next section,
extending Orca with one-time use sender tokens to make the
need for a group signature a rare event.

5 Extending Orca with One-time Use Tokens

In this section, we describe how to reduce Orca’s reliance
on its core group signature protocol. Instead of creating and
verifying a group signature for every message sent, the group
signature will only be used periodically to mint new batches of
one-time use sender tokens from the platform. Messages can
be sent, with very little cost, by including a valid token for a
recipient. Furthermore, once communication with a recipient
has been established, a recipient can replenish a sender’s
tokens directly in a return message, avoiding the need to
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mint more token batches from the platform. The protocol is
detailed in Figure 4.
Blinded MACs as one-time use tokens. We want that a
sender can anonymously mint a batch of tokens for a recipient
from the platform. The platform should not be able to link
the tokens (when they are spent) to the time of minting. To
realize this, we again turn to algebraic MACs used by keyed-
verification anonymous credentials [22]; we use MACGGM.
Each user generates a MAC secret key sk ← (x0,x1) ∈ Z2

p

and sends it to the platform. A valid MAC on input ν ∈ Zp is
of the form,

t← (u0,u1 = ux0+x1ν
0 ) u0←$G1 .

To blindly evaluate a MAC on input ν, a user generates a
random ElGamal key pair (γ,D = gγ1 ) and encrypts gν1 to D,

ct = (ct1 = gr1,ct2 = gν1D
r) r←$Zp .

The user blinds a batch of inputs [ν]i in this manner, creates
a group signature σ over [ct]i designating the recipient as the
opening authority, and then sends (σ, [ct]i,D) to the platform.
The platform verifies the group signature under the recipient’s
revocation list, and if verification succeeds, proceeds with the
blind evaluation using the recipient’s MAC secret key. By the
homomorphic properties of ElGamal, the platform can maul
ct to form ct′ as an encryption of a valid MAC on ν without
ever learning anything about ν,

ct′ = (ctx1·b1 gr
′

1 ,ct
x1·b
2 ux00 Dr′) u0← gb1 b,r′←$Zp .

The full details of the blind MAC evaluation is given in
Figure 9 of Appendix C. The user decrypts ct′ to learn u1 and
stores token τ ← (ν,t= (u0,u1)) as the input, tag pair.

To send a message, the user sends the message to the plat-
form along with an unused token τ for the recipient. The
platform checks that the token (ν,t)← τ is unused, i.e., ν is
not in the strikelist of used tokens for a recipient, and that the
token is valid, i.e., the MAC t is valid for ν under the recip-
ient’s MAC key. If those checks pass, the platform delivers
the message along with the token τ to the recipient and adds
ν to the recipient’s strikelist.

However, the recipient has no way identifying the sender
from the token τ . The generation of τ was (necessarily)
blinded to prevent linking by the platform, but that also pre-
vents linking by the recipient.
Allowing a recipient to link tokens to senders. Senders
must communicate to the recipient the unblinded inputs ν for
which they are minting tokens. They do this by additionally
encrypting the input ν to the recipient under the recipient’s
public key Z,

ĉt = (ĉt1 = gr̂1, ĉt2 = gν1Z
r̂) r̂←$Zp ,

and proving in zero knowledge that the input ν enclosed in
the blinded ciphertext ct is the same as that enclosed in the
ciphertext ĉt to the recipient( details highlighted in Figure 9).
The sender signs the batch of recipient ciphertexts [ĉt]i under
the group signature with the recipient as the designated open-

ing authority. As before, if the signature σ verifies under the
recipient’s revocation list, the platform proceeds with blind
evaluation, but also sends (σ, [ĉt]i) to the recipient.

The recipient opens σ to the sender’s identity upk, then
decrypts and stores the token identifiers [gν1 ]i. Later when a
recipient receives a message and token (ν,t)← τ from the
platform, they can link the token to the sender by looking up
gν1 . To block a sender, the recipient generates and sends the
revocation token for the sender’s upk to the platform so the
sender cannot mint new tokens, as well as sends the sender’s
remaining unused tokens [gν1 ]i to add to the strikelist.

Replenishing tokens directly from the recipient. The mo-
tivation for one-time use tokens was to avoid the cost of the
more expensive group signature for every message. However,
in some sense, the gain from not running the group signature
for every message is offset by the upfront cost of generating
a proof to mint each token. While there are optimizations that
can be made when batching proofs in this manner [40], this
is still an unsatisfying result.

The real efficiency gain from one-time use tokens is when
senders can replenish their tokens directly from the recipient,
without going through the blind minting process with the
platform. Once two users have established sender-anonymous
communication, they can use their own secret MAC keys to
generate and exchange tokens directly at very little cost.

Summary. In this protocol, the core group signature is used
only to initiate conversations and mint the first batch of tokens.
Once conversation has been established, messages can be
exchanged and tokens can be replenished at almost no cost,
beyond storage. With regards to storage, users must maintain
lists of unused tokens in order to send messages and identify
senders of received messages. The platform also needs to
maintain an ever-growing strikelist for each user; in practice,
users will need to periodically rotate their keys to refresh the
platform strikelist, but can ensure that they have distributed
tokens for the new key prior to doing so.

Using tokens does leak some information about user com-
munication patterns in a nuanced way. An example might be
that if senders need to often mint tokens from the platform for
a particular user, the platform can infer that user is not active
in responding and replenishing sender tokens.

A second nuance is that in both our scheme and the token
strawman [46, 47] presented in Section 3, the message cipher-
text of a sender is not bound to the token. The platform can
forward the sender’s token to the recipient, but swap out the
ciphertext, so the recipient will incorrectly attribute it to the
sender. In Section 6, we discuss why the impact of such an
attack is not large if the underlying E2EE protocol provides
message authentication. Nevertheless, we provide a proposal
for modifying our token showing protocol to bind the sender’s
message ciphertext using a BLS signature [14] in Appendix E.

Despite these nuances, we feel Orca with one-time use
tokens represents an attractive design choice.
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Protocol 2: Orca with One-time Use Tokens
Setup:

(1) Public parameters for the group signature scheme, algebraic MAC scheme,
and public key encryption scheme are generated, pp←$GS.Setup(λ),
ppM←$MAC.Setup(λ), ppPKE←$PKE.Setup(λ).

(2) The platform initializes its state as the group manager of the group signa-
ture scheme.

(a) (gmpk,gmsk)←$GS.KgppGM()

(b) TU ← [·]: Table storing user public keys.

(c) TR← [·]: Table storing user revocation tokens.

(d) Tk ← [·]: Table storing user token MAC key and encryption key.

(e) Tτ ← [·]: Table storing strikelist of previously-used tokens for user.

Registration:

(1) User generates keys for protocol and initializes recipient state:

(a) User registers with platform to acquire group signature signing key
with which to send messages, GS.JoinUpp

U ↔ GS.IssueUpp
GM. User

stores usk and platform stores upk.

(b) User registers as opening authority and generates keys with which to
block senders, GS.JoinOApp

OA↔ GS.IssueOApp
GM.

(c) User generates algebraic MAC key used for creating sender tokens,
(tsk,tpk)←$MAC.KgppM (), and sends both tsk and tpk to plat-
form.

(d) User generates keys for public key encryption scheme,
(ek,dk)←$PKE.Kg(), stores dk and sends ek to platform.

(e) User initializes two tables, Tx and T−1
x , to identify (and blocklist)

senders and their associated sender tokens.

(2) Platform stores keys and initializes table entries for user:
TU [upk]← (oapk) ; Tk [oapk]← (tsk,tpk,ek)

TR[oapk]← [·] ; Tτ [oapk]← [·]

Sending a message:

(1) Sender selects unused sender token for recipient and sends message, token,
and recipient, (m, τ,oapk), to platform.

(2) Platform checks if token (x,t)← τ is valid under recipient’s MAC key
(tsk,tpk,ek)← Tk [oapk] and if token was not already used (i.e., is not
on strikelist).
b1←MAC.VerppM (tsk,x, t)

b2← (x 6∈ Tτ [oapk])

If b1 = 0 or b2 = 0, platform aborts.

(3) Platform adds token to strikelist, Tτ [oapk]← Tτ [oapk]∪{x}.
(4) Platform forwards message and token value, (m,x), to recipient.

(5) Recipient removes token from list of valid tokens for sender,
Tx[T−1

x [x]]← Tx[T−1
x [x]]\{x}; T−1

x [x]←⊥.

Acquiring sender tokens (from platform):

(1) [Optional] Sender anonymously requests public key information,
(oapk,tpk,ek), for desired recipient from platform.

(2) Sender authenticates to platform as a non-blocklisted sender for the recip-
ient using a group signature.

(a) Sender signs set of recipient ciphertexts [ĉt]i (constructed in (3))
with recipient as opening authority, and sends (σ,oapk) to platform,
σ←$GS.SignppU (usk,gmpk,oapk, [ĉt]i).

(b) Platform checks validity of signature against recipient’s revocation list,
b ← GS.VerppGM(gmsk,oapk,TR[oapk], [ĉt]i,σ). If b = 0, then
platform aborts.

(3) Sender engages in token generation protocol with platform.

(a) Sender samples m inputs, [x]mi ←$MAC.In(λ)m.

(b) Sender encrypts inputs to recipient, ĉti←$PKE.Enc(ek,xi).

(c) Sender and platform engage in MAC blind evaluation for each token,
MAC.BlindInpppM (tpk,xi)↔MAC.BlindEvppM (tsk), for recip-
ient keys (tsk,tpk,ek)← Tk [oapk]. Sender also sends proof that
the input used in the MAC protocol is properly well-encrypted in the
ciphertext to the recipient:
πi←$NiZK{xi : MAC.BlindInpppM (tpk,xi)

∧ cti = PKE.EncppPKE (ek,xi)}
If πi does not verify, platform aborts the blind MAC protocol.

(d) If blind MAC protocol succeeds, sender receives MAC ti as output
and stores token, τi← (xi, ti).

(4) Platform sends (σ, [ĉt]mi ) to recipient.

(5) Recipient stores tokens to later identify sender.

(a) Recipient traces sender, upk← GS.OpenppOA(oask, [ĉt]i,σ).

(b) Recipient decrypts token ciphertexts and stores tokens.
xi← PKE.DecppPKE (dk, ĉti)

Tx[upk]← Tx[upk]∪ [x1, . . . ,xm] ; T−1
x [xi]← upk

Acquiring sender tokens (from recipient):

(1) Recipient samplesm inputs, (x1, . . . ,xm)←$MAC.In(λ)m, and MACs
them, ti←MAC.EvppM (tsk,xi).

(2) Recipient sends tokens τi← (xi, ti) to sender associated with upk out-
of-band or via secure channel.

(3) Recipient stores tokens to later identify sender.
Tx[upk]← Tx[upk]∪{x1, . . . ,xm} ; T−1

x [xi]← upk

Blocklisting a user:

(1) Recipient looks up sender identity associated with token, upk← T−1
x [x],

and generates revocation token, τR←$GS.RevokeppOA(oask,upk). Re-
cipient sends revocation token along with list of remaining sender tokens
for sender to platform, (x1, . . . ,xm)← Tx[upk].

(2) Platform updates blocklist state by adding revocation token to blocklist
and remaining tokens to strikelist.
TR[oapk]← TR[oapk]∪{τR}
Tτ [oapk]← Tτ [oapk]∪{x1, . . . ,xm}

Figure 4: Hybrid protocol based on group signature and tokens.
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6 Composition with an E2EE Protocol

The main security properties of an E2EE messaging proto-
col are message confidentiality and message authentication.
Modern forms of message confidentiality include forward se-
crecy and post-compromise security which ensure that, even
in the event of key compromise, previous message content and
future message content (after recovery) are not leaked, respec-
tively [25]. Message authentication ensures that messages
accepted by the recipient were those encrypted by the sender.
A third property, repudiability, requires that the authentication
mechanism cannot help non-conversation participants verify
message authorship, even if secrets from a conversation par-
ticipant are leaked [16]. For our setting, we will also require
the E2EE messaging protocol to be sender-anonymous, mean-
ing ciphertexts do not leak any information about the sender,
which can be achieved using encapsulation as in sealed sender.

Orca composes with an E2EE messaging protocol to further
provide anonymous, outsourced blocklisting (see Section 3).
Public keys for Orca may be distributed using the same mech-
anism used to distribute public keys for the E2EE messaging
protocol. Similar to E2EE messaging, to prevent ghost key
attacks by a malicious PKI, in which a user’s key is replaced
by one owned by the adversary, users are expected to per-
form manual verification of key fingerprints out-of-band or
perform periodic auditing of the PKI [54]. Without this as-
surance, ghost key attacks against Orca result in a break in
anonymity, as the adversary can open group signatures using
the ghost key. Of course, using Orca does not increase the
damage of such attacks: such an adversary can read encrypted
messages and break anonymity by subverting the E2EE.

In basic Orca (Figure 3), E2EE ciphertexts are sent along
with a group signature over the ciphertext, and when extended
with one-time sender tokens (Figure 4), E2EE ciphertexts
are sent along with a token produced from a token minting
protocol authenticated with a group signature. The composi-
tion preserves the message confidentiality and authentication
properties of the underlying E2EE protocol: Orca composes
generically with the E2EE ciphertexts and does not make
further use of the message plaintext. However, Orca necessar-
ily weakens sender-anonymity and repudiability to support
blocklisting by a third-party (the platform).

With regards to anonymity, a necessary leakage of the out-
sourced blocklisting setting is that a ciphertext leaks (to the
platform) whether or not the sender is present on the desig-
nated recipient’s blocklist. Basic Orca meets this minimum
leakage, following directly from the anonymity and revoca-
tion anonymity security properties of the group signature.
Orca extended with one-time tokens leaks more: platform-
assisted token minting leaks how many tokens for a recipient
are minted, and blocking reveals how many valid tokens re-
main for the blocked sender. In addition to the anonymity
properties of the group signature, achieving only this level
of leakage relies on (1) randomly chosen MAC inputs, (2)

security of blind MAC evaluation, (3) confidentiality of the
recipient ElGamal ciphertexts, and (4) zero knowledge of the
well-formedness proof. We believe it is unlikely the additional
leakage of token counts leads to damaging inference attacks,
especially considering token counts are further obscured by
tokens replenished directly by the recipient.

The minimum weakening to repudiability for the out-
sourced blocklisting setting is that the platform can at most
verify authorship to some registered member of the platform,
even with compromised secrets. However, our group signature
construction does not meet this weakened notion; the platform
and the recipient can together provide proof of authorship of
a message for a sender. Future work may adapt techniques
from deniable signatures (c.f., [63]) to recover repudiability.

Lastly, outsourced blocklisting requires sender attribution:
messages delivered to recipients can be correctly attributed
to a sender. Basic Orca achieves sender attribution following
directly from the traceability security property of the group
signature. The extension with one-time tokens achieves sender
attribution additionally relying on the soundness of the well-
formedness proof of recipient token-tracing ciphertexts.

We also note an optional non-frameability property: a ma-
licious platform should not be able to frame a user as being a
sender for a ciphertext they did not create. We do not see this
property as security-critical for outsourced blocklisting. A
break in non-frameability allows a platform to deliver cipher-
texts that are misattributed, however, due to the message au-
thentication property of the underlying E2EE protocol, these
ciphertexts will not be accepted by the recipient. The recipi-
ent may choose to block the misattributed sender, mistakenly
thinking they are spamming malformed ciphertexts. We view
this as a special (slightly more damaging) case of a platform-
mounted DoS attack, which is not a goal of Orca to defend
against. Nevertheless, basic Orca does prevent this attack
due to the non-frameability security property of the group
signature. Orca with one-time tokens can be extended with
token-binding (see Appendix E) to achieve non-frameability
relying on the soundness of the blind MAC evaluation proof
and the unforgeability of the token-binding signature.

Formal analyses. As mentioned, we provide in Appendix D
formal definitions and security analyses for our group signa-
ture, the core underlying component of Orca. These analyses
do not cover the one-time token extension, nor the security
of the composition informally discussed above. Developing
formal models suitable for analysis of these higher level prim-
itives remains an open problem. Our initial attempts suggest
that this will be challenging, as it seems to require extending
existing (already complex) confidentiality and authenticity
models for messaging (e.g., [5,10,25,41,58]) to model sender
anonymity, token distribution, blocklist maintenance, etc. An
ideal functionality based approach may provide an alternative
tack, though any resulting functionality will also be complex
(possibly as complicated as our protocols).
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7 Implementation and Evaluation
This section aims to evaluate the feasibility of deploying Orca
at scale. Specifically, we answer the following questions:

• Client costs: What are the processing and storage costs
that Orca incurs on user clients?

• Platform costs: What are the processing and storage
costs incurred on the platform? What throughput (user
activity) can be reasonably supported given these costs?

• Bandwidth costs: How large are Orca protocol messages?
What additional networking costs does Orca introduce?

To answer these questions, we provide a prototype library in
Rust of our group signature and token-based scheme. Our im-
plementation is over the BLS12-381 pairing-friendly elliptic
curve and uses the zexe/algebra Rust pairing library [17].
We instantiate the proofs of knowledge using standard Sigma
protocols of discrete logarithm relations [18] made non-
interactive using the Fiat-Shamir transform [33]. Our security
proofs (see Appendix D) rely on a simulation-extractability
property of the zero knowledge proofs which has been shown
to hold in the algebraic group model [34] for the knowledge of
discrete logarithm relation [3,35]; we believe these techniques
can be readily extended to the discrete logarithm relations
used in this work. Our implementation consists of less than
1400 lines of code and is available open source 2.

The experiments, including the microbenchmarks given in
Figure 5, were performed using a c5.12xlarge Amazon EC2
virtual machine with 24 cores and 96 GB of memory running
Ubuntu Server 20.04 LTS as the platform and desktop client
(single-core) and on a Google Pixel device running Android
9 as the mobile client. The platform is implemented using an
in-memory Redis database for storing revocation blocklists
and token strikelists.

When evaluating Orca, recall that users can replenish their
token supply directly from the recipient provided there is
back and forth communication. Thus, we make the distinction
between “initialization costs” of minting an initial token batch
from the platform and the “steady-state costs” that occur
when tokens are replenished directly from the communicating
partner. We expect the majority of user communication to be
in steady-state where costs are low.
Client costs. Clients must store, for each of their communi-
cating partners, two lists of unused tokens, one for sending
messages and one for identifying received messages. These
tokens are not large (240B) and the lists can remain small as
they can be replenished on next communication. Say a user
has 200 communication partners and stores 20 tokens per list.
This setup would incur ∼ 1MB for the client.

The bulk of the processing costs incurred by Orca are con-
centrated at initialization when a client mints an initial batch
of tokens to start a conversation. On a mobile client, mint-
ing an initial batch of tokens takes ∼ 150 ms for the group

2https://github.com/nirvantyagi/orca

signature and an additional ∼ 100 ms for each token in the
batch (see Figure 5). This means it takes around 1 second for
a sender to mint 10 tokens. While these costs are significant,
we stress that a user only needs to mint enough tokens to
initiate a conversation and await a response. If a response
from a recipient is delayed, more tokens can be minted as
needed. Once a conversation with back-and-forth communica-
tion is established, the amortized steady-state cost of sending
a message is in creating a new token to replenish the recipient,
which is done at very little cost (∼ 10 ms) — approximately
the same as sealed sender.
Platform costs. The platform stores per-recipient revocation
blocklists and token strikelists. The revocation lists are on the
order of 100B / revoked user; e.g., a recipient that has blocked
100 users would require a revocation list of size 10KB to be
stored. We do not anticipate revocation lists to grow too large,
since the platform has other mechanisms to ban users globally
(see Section 8). In any case, a platform can impose limits on
the size of revocation lists if necessary.

The per-recipient strikelists would grow in size with every
message a user sends (32B / spent token). One can use Bloom
filters or other data structures to compress the size of the
strikelist as well as enforce periodic key rotations to reset its
size. If each user sends ∼ 100 messages per day and token
keys are rotated every two weeks, the platform can store a
strikelist of ∼ 5KB per user with a false positive rate of 10−6.
Note the false positive rate can be traded off with storage size;
messages that get rejected due to false positives will result in
an error returned to the anonymous sender, who may resend
with a different token.

The processing costs of the platform are similarly domi-
nated by the token mint requests for initializing conversation
as opposed to send requests during steady-state conversa-
tion. A request to mint a batch of 10 tokens given a recipient
blocklist size of 100 takes ∼ 200 ms to complete whereas a
send request is just a simple algebraic MAC verification and
strikelist lookup taking < 1 ms (see Figure 5).

Figure 6 demonstrates these workloads are easily paralleliz-
able to achieve high levels of throughput. In this experiment,
we run the platform with one million users, each with a block-
list of size 100 and a strikelist of size 1400 (100 messages/-
day/two weeks), and measure the rate at which the platform
can process requests for different levels of hardware paral-
lelism. We do not implement the Bloom filter optimization,
so the Redis database stores ∼ 50KB per user (50GB total),
which can still easily fit in memory. The computationally
expensive mint requests parallelize with essentially no loss,
reaching a rate of 80 requests (for 10 token batches) per
second on 24 cores. The inexpensive send requests also paral-
lelize but top out at around 30000 requests per second on 12
cores, which is bottlenecked by the operation throughput of
a single Redis database and can be unblocked via a different
database setup if needed (e.g. through sharding). The achieved
bottlenecked throughput already demonstrates feasibility.
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Operation Platform User (Desktop client) User (Mobile client)
Sender Recipient Sender Recipient

Sealed sender – 0.50 (0.02) 0.50 (0.02) 6.6 (0.2) 6.6 (0.2)

Orca mint tokens with group signature 11.2 (0.2) 10.8 (0.1) 9.7 (0.2) 131.7 (0.8) 117 (2)
+ cost per token minted 7.60 (0.09) 8.50 (0.08) 0.30 (0.01) 105.2 (0.9) 3.3 (0.1)
+ cost per blocked user 1.70 (0.04) – – – –

send message with token* 0.30 (0.01) 0.80 (0.02) – 10.0 (0.2) –

*Steady-state cost of sending a message with a token that includes cost of replenishing one token

Figure 5: Processing time (ms) microbenchmarks of user and platform operations for Orca compared to sealed sender. Mean time is given with
standard deviations shown in parentheses. Dashes indicate an operation that has negligible cost (e.g., a table lookup).
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Figure 6: Platform request throughput for different levels of hardware
parallelism over a one million user deployment with blocklists of
size 100 and strikelists of size 1400. Each mint request corresponds
to a request to mint a batch of 10 tokens.

Bandwidth costs. Minting a token requires sending the group
signature (1.6KB) and exchanging proofs for each token to
be minted (0.7KB / token). These costs extend to the recipi-
ent who receives the signature and also a ciphertext for each
token minted (0.2KB / token). Apart from these initialization
costs, the steady-state bandwidth costs of sending a message,
once again, compare quite favorably with sealed sender. In
the steady state, the amortized bandwidth overhead of sending
a message would be two tokens (240B / token) — the token
being spent and the token being created to replenish the recip-
ient. Thus we can achieve amortized per-message overheads
of only 30B compared to sealed sender (450B / message).

8 Further Extensions

Backwards unlinkability for revocation tokens. A draw-
back of verifier-local revocation is that whenever a new revo-
cation token is provided, the platform can replay the history of
messages to link which ones were sent by the newly blocked
sender. To prevent such leakage one can take the approach
of [55] to rotate revocation keys in set epochs. Naively, this
requires recipients to resupply their entire list of revocation
tokens; future work may try to incorporate techniques from
updatable encryption [13] to provide more efficient epoch
transitions.
Credential expiry and global banning. Per-recipient block-
lists are not a substitute for platform-wide banning of abusive
users. The platform must maintain some mechanism for ban-
ning accounts in the case of identified user abuse, e.g., through
user reports [30, 38, 63] or account compromise. This can be
done by enforcing periodic credential expiration, by for ex-

ample, rotating the platform’s group manager key. Users must
retrieve a new MAC on their public key, at which point, the
platform can choose to deny their request.
Sybil resistance and account recovery. Outsourced block-
listing works by blocking a public key, not an identity. If
malicious users are able to easily send messages under new
public keys, either by registering with many accounts or con-
tinually rotating an account key after they are blocklisted,
then our blocklisting protocol will be of little use. Signal ties
accounts to phone numbers to mitigate the ability to easily
register new accounts. On the other hand, rotating an account
key is a legitimate operation that may need to be taken af-
ter account compromise or device loss. Blocking accounts
with suspicious key rotation behavior or rate-limiting account
recovery are possible mitigations.
Rate-limited resources. In Signal, in addition to needing the
recipient’s long-lived identity public key, senders also need
to pull a one-time use recipient “pre-key” which is used in
the initial key agreement protocol to provide forward secrecy
properties. Recipients store some number of pre-keys with
the platform and replenish them as needed. If a recipient’s
pre-keys run out, then conversations are initiated without the
pre-key leading to weaker forward secrecy. To prevent mali-
cious users from exhausting a recipient’s pre-key supply, these
resources can be protected while preserving anonymous au-
thentication using anonymous rate-limiting techniques [19].

9 Related Work

Anonymous credentials. Anonymous credentials [20] allow
a user to present a cryptographic token proving some spe-
cific statement about their identity (e.g., their authorization
to send messages to a particular recipient), without revealing
anything else about their identity. A problem with anonymous
credentials in our setting is that they are — by design — not
attributable. While the server processing messages can ver-
ify the sender is authorized, the recipient cannot identify the
sender. This means there is no way for the server to block the
sender in the future, even if some revocation mechanism for
the credentials did exist.

A notable design contrast to general-purpose anonymous
credential schemes is Privacy Pass [28], which offers single
use credentials that encode only one bit — “I am authorized.”
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Privacy Pass mints tokens using a verifiable oblivious pseu-
dorandom function [42, 43], which is more efficient than our
approach of blind MACs [22], but does not provide the al-
gebraic structure needed to prove relations on the input. We
need this property to encrypt the input to the recipient to
allow linking of tokens. Blind MACs have been previously
suggested for use as one-time tokens [50] and have also been
recently proposed as part of Signal’s new proposal for private
group messaging [23].
Anonymous blacklisting. Anonymous blacklisting [39, 59,
60] systems cover a variety of cryptographic techniques. In
general, these systems allow a user to authenticate anony-
mously to third parties in such a way that the third party can
block them from subsequent authentications if they misbe-
have. In some systems, this blocking ability takes the form
of an additional trusted third party that can de-anonymize
users much like a group signature. In others, every time a
user authenticates they provide a fresh anonymous crypto-
graphic token derived from their identity and a proof that the
current blacklist contains no tokens generated by their own
keys. Such systems are cryptographically expensive, requiring
work linear in the blacklist (for the sender). Moreover, much
of the overhead across both settings comes from providing
anonymity from the third party. Our setting differs in that the
sender need not be anonymous (and in fact, should be identi-
fiable) to the party adding to the blacklist (i.e., the recipient),
but only be anonymous to the party filtering on the blacklist
(i.e., the platform).
Abuse reporting in E2EE messaging. A complementary
line of work [30, 32, 38, 63] considers reporting abusive con-
tent sent over an encrypted channel. These systems allow the
recipient to verifiably reveal the content of a message to the
platform to enable content moderation. They allow attribution
of message content to a sender for a known sender identity.
They do not allow the attribution of a malformed message
with unknown sender as in the griefing attack we describe.
Metadata-private messaging. A number of messaging sys-
tems have been proposed that provide strong metadata-privacy
even against strong network adversaries [4,6,26,27,45,48,51,
57, 62, 64, 65]. These systems incur significant costs on their
users, e.g. to send and receive messages at frequent intervals.
These costs may dwarf the costs of the types of abuse that
Orca aims to prevent. Despite this, a subclass of these systems
that could still make use of Orca for blocklisting are based
on anonymous broadcasting [26, 44, 51, 57, 65]. Anonymous
broadcasts can be converted to a sender-anonymous messag-
ing service by having a messaging service collect, filter, and
deliver the broadcast messages with designated recipients.

10 Conclusion
This paper explores the tensions between abuse mitigation
and sender-anonymity in E2EE messaging. We highlighted
several issues with Signal’s sealed sender feature, including

weak anonymity set guarantees and vulnerability to griefing
attacks.

Our solution, Orca, allows recipients to register privacy-
preserving blocklists with the platform. Without learning the
sender’s identity, the platform can check that the sender is not
on the blocklist and that the recipient will be able to verify
their identity. We introduced a new type of group signature
tailored to Orca’s needs and propose a hybrid scheme that
uses tokens to amortize the bandwidth and computational
costs of group signatures.
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A Griefing Attack on Sealed Sender
We identify and implement a griefing attack against Signal’s
sealed sender protocol. An attacker in possession of a recip-
ient’s access key can spam the recipient with untraceable
messages, causing the recipient’s system to suffer battery
drain and to consume bandwidth.
Attack vector. The attack takes advantage of the fact that
the platform cannot check for malformed sealed messages.
Our proof-of-concept attack simply modifies the Signal client
to modify the triple (pke ,ctid,ctss) by replacing pke with
a new, random value pkf . To the platform this is indistin-
guishable from a legitimate sealed sender message, but the
recipient’s decryption will fail when trying to decrypt ctid
and cannot recover any information about the sender. Our
modification causes the recipient’s decryption to fail early.
While technically one could force the recipient to perform
more cryptographic steps, this would have small impact on
the efficacy of the attack.

This approach required changing only two lines of code
in the Signal Desktop client. We also wrote a small script to
automate sending messages via the client.
Attack efficacy. We performed some measurements to assess
whether the griefing attack can be used, particularly, to drain
a target’s battery. In our experiments, we used as attacker our
modified Signal Desktop application on a MacBook Pro 2017
machine running macOS Mojave using a 2.5 GHz Intel Core
i7. We used as a stand-in for victim recipient an unmodified
Signal Android application (version 4.54.3) on a Google Pixel
phone running Android version 9. We used the Android Bat-
tery Historian tool [1] to inspect the effect of our attack on
battery drainage. It reports the battery level rounded to the
nearest percent.

In our experiments we only interacted with the Signal plat-
form and with researcher devices. We purposefully experi-
mented only with very low volume attacks in order to ensure
we did not burden the Signal platform, and confirmed ahead
of time with members of the Signal team that our experiments
would not be problematic. In summary, the platform and its
users were not negatively affected by our experiments.

We measured the rate of change in battery level per hour
when sending one malformed sealed message every 1, 2, 5, or
10 seconds. As a baseline comparison, we also measured the
rate of battery drainage when no messages were sent. Each
of the four sending rates were measured over a period of 2
hours, while the baseline was measured over a period of 11
hours; the phone discharges slowly at rest so an extended
measurement period was needed for the baseline. Before each
experiment, the recipient phone was rebooted and charged
to full capacity. During each experiment, the phone used its
mobile data for network connectivity and was otherwise idle.

In the baseline case, where the phone received no malicious
messages, the battery level dropped by only 0.45 levels per
hour (dropping the battery by only 7% in 11 hours). In com-
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Figure 7: Battery drain rate of griefing attack for various rates of
sending, x ∈ {0,0.1,0.2,0.5,1} / second. The box plot shows the
variability of drain rates over trials, with the range, quartiles and
median denoted by the whiskers, box, and line, respectively (outliers
marked separately).

parison, the drop rates were 4.11, 5.37, 5.84, and 6.88 levels
per hour when sending a message once every 10s, 5s, 2s, and
1s. Thus even the slowest attack rate speeds up battery drain
by 9x; for one message a second it is 15x. We show a boxplot
of these measurements in Figure 7.

The attack also consumes recipient bandwidth (which could
be costly if they pay for data service per byte): at one mes-
sage per second, the Signal Android application received 1.13
MB/hour, while as a baseline it receives 0.94 KB/hour.

A real attacker can of course trivially increase attack vol-
ume up to any general rate limiting enforced by the platform.
While it is not public if Signal rate limits clients (and we did
not want to stress test it), we believe even modest increases to
the volume will allow draining batteries quickly. While bat-
tery drain rates will vary significantly based on target handset
and other factors, we believe our proof-of-concept evidences
sufficient impact on a victim to be a concern.
Mitigation options for victims. The receiver’s Signal client
gives no obvious visual indication that messages are being
received and filtered. To learn of message filtering, a user
would have to inspect the client’s debug logs, making the
attack essentially invisible for the majority of users. Even if
detected, there are no particularly good ways to prevent the
griefing attack.

The victim can rotate their access key ak and attempt to
redistribute a new ak′ to their communicating partners. If the
attacker is not able to get access to the new access key, the
attack will be stopped by the platform and no messages will
reach the victim’s client. But since the attack leaves no infor-
mation about which of the victim’s communicating partners
is responsible, the victim can only make a guess as to whom
they should block.

This issue might lead people to only add a few, highly
trusted contacts. But this degrades anonymity significantly,
since as discussed in Section 2.2, the platform knows that a
sealed sender must be one of the recipient’s contacts.
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B Proof Preliminaries

Notation. We use x← y and x← Eval() to denote assigning the value of y and the evaluation of Eval to variable x. If Eval
uses random coins, we instead denote x←$Eval. For finite set Y , we denote x←$Y as sampling a random value from the set.
We denote a dictionary D initialized as [·] to store key-value pairs (k,v). Adding or updating a value v for key k is denoted as
D[k]← v. A table T is a special use of a dictionary in which values are added in sequence with incrementing keys. We denote
appending a value v to a table with T ←[ v. We will allow for membership queries on dictionaries of the form k ∈D, v ∈D, and
(k,v) ∈D, also allowing for wildcard queries of the form (k,∗) ∈D.

To model interactive protocols between two parties, we define an algorithm for each party that takes an incoming message and
a current state, and returns an outgoing message, an updated state, and a decision in {accept,reject,cont}. If the decision is
accept, the output of the protocol for the party will be stored in the state.

We also define notation for prime-order cyclic groups. We assume an efficient setup algorithm that on input security parameter
λ, generates a group description, (p,G,g)←G(λ), where for group order p, |p|= λ, and g is a canonical generator. The group
operation is denoted by multiplication.

Bilinear pairing groups. We follow the notation of [14]. (1) Groups G1,G2,GT are cyclic groups of prime order p. (2) Group
element g1 is a generator of G1, g2 is a generator of G2. (3) Pairing function e : G1×G2→GT is a computable map with the
following properties: Bilinearity: ∀ u ∈G1, v ∈G2, and a,b ∈ Z, e(ua,vb) = e(u,v)ab, and Non-degeneracy: e(g1,g2) 6= 1. We
assume an efficient setup algorithm that on input security parameter λ, generates a bilinear group, (p,G1,G2,GT ,g1,g2,e)←
BG(λ), where |p|= λ.

B.1 Computational Assumptions

Discrete log assumption. The discrete log assumption is defined by the security game Gdl
G,p,A(λ) in which an adversary is

tasked with finding the discrete log of a random group element. The advantage of an adversary is defined as Advdl
G,p,A(λ) =

Pr[Gdl
G,p,A(λ) = 1]. We will make use of the discrete log assumption in G1 of the bilinear pairing groups, which is one of the

assumptions made by external Diffie-Hellman (XDH).

Decisional Diffie-Hellman assumption. The decisional Diffie-Hellman (DDH) assumption is defined by the security game
Gddh-b

G,p,A(λ) in which an adversary is tasked with distinguishing between a triple of random group elements and a random

Diffie-Hellman triple. The advantage of an adversary is defined as Advddh
G,p,A(λ) =

∣∣∣Pr[Gddh-1
G,p,A(λ) = 1]−Gddh-0

G,p,A(λ) = 1]
∣∣∣. We

will make use of the DDH assumption in G1 of the bilinear pairing groups, which is one of the assumptions made by external
Diffie-Hellman (XDH).

Decision linear assumption. The decision linear (DLIN) assumption is defined by the security game Gdlin-b
G,p,A(λ) in which an

adversary is tasked with distinguishing between a set of three random group elements along with those same three values
taken to different random exponents and a set where the last group element is not taken to a random exponent but the sum
of the previous two exponents. The decision linear assumption is considered to hold even in groups where DDH is easy and
thus is thought to hold in pairing groups even when the associated group elements in the paired group are revealed. In our
version of the game, we explicitly return the group elements in G2 since we will need to make use of them in our reductions.
If we used a pairing type with an efficiently computable isomorphism then we wouldn’t need to this change. This variant is
sometimes referred to as the external decision linear assumption (XDLIN) [49]. The advantage of an adversary is defined as
Advdlin

G,p,A(λ) =
∣∣∣Pr[Gdlin-1

G1,G2,p,A(λ) = 1]−Gdlin-0
G1,G2,p,A(λ) = 1]

∣∣∣.
Game Gdl

G,p,A(λ)

g←$G
x← Zp
x′←$A(gx,g)

Return x== x′

Game Gddh-b
G,p,A(λ)

g←$G
(α,β,γ)←$Zp
C0← gγ ; C1← gαβ

b′←$A(gα,gβ ,Cb,g)

Return b′

Game Gdlin-b
G1,G2,p,A(λ)

g1←$G1 ; g2←$G2

(α,β,γ)←$Zp
(m,n, l)←$Zp
m1← gm1 ; m2← gm2
n1← gn1 ; n2← gn2
l1← gl1 ; l2← gl2
C0← lγ1 ; C1← lα+β1

b′←$A(m1,n1, l1,mα1 ,n
β
1 ,Cb,m2,n2, l2)

Return b′
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B.2 Public-key Encryption

Syntax and correctness. A public key encryption scheme PKE is a tuple of algorithms (PKE.Setup , PKE.Kg,PKE.Enc,
PKE.Dec). The setup algorithm produces the public parameters for the scheme, pp←$PKE.Setup(λ). The key generation
algorithm outputs a public encryption key and a secret decryption key, (ek,dk)←$PKE.Kgpp(). The encryption algorithm
produces a ciphertext on an input message, ct←$PKE.Encpp(ek,m), and the decryption algorithm decrypts the ciphertext to
retrieve the enclosed message, m←$PKE.Decpp(dk,ct). Correctness dictates that PKE.Dec(dk,PKE.Enc(ek,m)) = m for all
valid key pairs (ek,dk) and messages m in the message space.
Indistinguishability under chosen-plaintext attacks (IND-CPA). Indistinguishability under chosen-plaintext attacks (IND-
CPA) for a public key encryption scheme PKE is defined by the security game G

indcpa-b
PKE,A (λ) in which an adversary is tasked

with distinguishing the decryption of a challenge ciphertext to one of two distinct self-chosen plaintexts. The advantage of an
adversary is defined as Adv

indcpa
PKE,A(λ) =

∣∣∣Pr[G
indcpa-1
PKE,A (λ) = 1]−G

indcpa-0
PKE,A (λ) = 1]

∣∣∣.
ElGamal construction. We provide pseudocode for the ElGamal public key encryption scheme ElG below. It is IND-CPA-secure
under the DDH assumption [61].

Game G
indcpa-b
PKE,A (λ)

pp←$PKE.Setup(λ)

(pk,sk)←$PKE.Kgpp()

b′←$AEnc(pk)

Return b′

Enc(m0,m1)

Return PKE.Enc(mb)

ElG.Setup(λ)

(p,g,G)←$G(λ)

pp← (p,g,G)

Return pp

ElG.Kgpp()

x←$Zp
Return (gx,x)

ElG.Encpp(ek,m)

r←$Zp
ct← (gr,mekr)

Return ct

ElG.Decpp(dk,ct)

(ct1,ct2)← ct

Return ct2/ctdk1

B.3 Non-interactive Zero Knowledge Proofs and Signatures of Knowledge

We define a non-interactive proof system NiZK over an efficiently computable relationR defined over pairs (x,w) where x is
called the statement and w is called the witness. Let L be the language consisting of statements inR.

A non-interactive proof system NiZK is made up of the following algorithms. The setup algorithm produces the public
parameters for execution, pp←$NiZK.Setup(λ). The proving algorithm takes a witness and statement and produces a proof,
π←$NiZK.Provepp(w,x). The verification algorithm verifies a proof for a statement, b← NiZK.Verpp(x,π). We further extend
the notion of a non-interactive proof system to a signature of knowledge proof system SoK by modifying the proving and
verification algorithms to support binding a message [21, 37]. A signature of knowledge is similar to a digital signature in that a
message can only be validly signed with respect to a statement by a party with knowledge of a witness. The signing algorithm
and signature verification algorithm additionally take a message m as input, NiZK.Provepp(w,x,m) and NiZK.Verpp(x,m,π).

The below definitions will apply to both a non-interactive proof system and to a signature of knowledge proof system.
Extensions to the non-interactive proof system definitions introduced for signatures of knowledge are highlighted.
Completeness. A proof system is complete if given a true statement, a prover with a witness can convince the verifier. We
will make use of a proof system with perfect completeness. A proof system has perfect completeness if for all (x,w) ∈ R
and all m in the message space,

Pr[NiZK/SoK.Ver(x,m,NiZK/SoK.Prove(w,x,m)) = 1] = 1 .

Knowledge soundness. A proof system is computationally knowledge sound if whenever a prover is able to produce a valid
proof, it is possible to extract a valid witness from the prover’s internal transcript. The prover’s internal transcript, denoted by τ ,
contains the description of the prover algorithm and input along with any random choices made. Knowledge soundness is defined
by the security game Gsound

NiZK,A,X (λ) in which an adversary is tasked with finding a verifying statement and proof for which the
extractor does not extract a valid witness. The advantage of an adversary is defined as Advsound

NiZK,A,X (λ) = Pr[Gsound
NiZK,A,X (λ) = 1].

Simulation extractability. Simulating a proof for a false statement might jeopardize the soundness of the proof system. It may
be possible for an adversary to modify the proof into another proof for a false instance. This scenario is common in security
proofs of cryptographic schemes, in which case it is desireable to have some sort of non-malleable property that prevents this
type of break in soundness even in the presence of simulated proofs.

A proof system is simulation extractable if even after seeing many simulated proofs, whenever a prover produces a new proof,
it is possible to extract a valid witness from their internal transcript. Simulation extractability is defined by the security game
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Gsimext
NiZK,A,X ,S(λ) in which an adversary is given access to a simulation oracle and tasked with finding a verifying statement and

proof for which the extractor does not extract a valid witness. The advantage of an adversary is defined as Advsimext
NiZK,A,X ,S(λ) =

Pr[Gsimext
NiZK,A,X ,S(λ) = 1].

Observe that simulation extractability implies knowledge soundness, since the games are identical if the simulation extractability
adversary does not use its simulation oracle.
Zero knowledge. A proof system is computationally zero-knowledge if a proof does not leak any information besides the truth of
a statement. Zero knowledge is defined by the security game Gzk-b

NiZK,A,S(λ) in which an adversary is tasked with distinguishing
between proofs generated from a valid witness and simulated proofs generated without a witness. The advantage of an adversary
is defined as Advzk

NiZK,A,S(λ) =
∣∣∣Pr[Gzk-1

NiZK,A,S(λ) = 1]−Gzk-0
NiZK,A,S(λ) = 1]

∣∣∣, with respect to simulator algorithm S.

Game Gsound
NiZK,A,X (λ) ; Gsound

SoK,A,X (λ)

pp←$NiZK/SoK.Setup(λ)

(x,π,m)←$A(pp)

w←X (τA)

b← NiZK/SoK.Ver(x,m,π)

Return (x,w) 6∈ R∧ b

Game Gzk-b
NiZK,A,S(λ) ; Gzk-b

SoK,A,S(λ)

pp1←$NiZK/SoK.Setup(λ)

(pp0, ξ)←$S.Setup(λ)

b′←$AProve(ppb)

Return b′

Prove(x,w,m)

Require (x,w) ∈R
π1←$NiZK/SoK.Prove(x,w,m)

π0←$S.Prove(ξ,x,m)

Return πb

Game Gsimext
NiZK,A,X ,S(λ) ; Gsimext

SoK,A,X ,S(λ)

pp1←$NiZK/SoK.Setup(λ)

(pp0, ξ)←$S.Setup(λ)

(x,π,m)←$ASimProve(ppb)

w←X (τA)

b← NiZK/SoK.Ver(x,m,π)

Return (x,w) 6∈ R∧ (x,π,m) 6∈ Q∧ b

SimProve(x,m)

π←$S.Prove(ξ,x,m)

Q← [ (x,π,m)

Return π

C Full Construction Details
Here we provide the full details of our group signature and one-time use token constructions. Figure 8 gives the pseudocode
for the group signature and Figure 9 gives our modified version of the blind MAC evaluation from [22] (relevant to the token
protocol).

Our construction makes use of a number of proofs of knowledge of various standard discrete log relationships. Our security
proofs are independent of the choice of zero knowledge proof system with which to instantiate the scheme, relying only on the
simulation-extractability and zero-knowledge properties described above. In our implementation, we evaluate the classic proof
system based on use of Sigma protocols, the building blocks of which are outlined by Camenisch [18]. Our proofs of knowledge
are made non-interactive using the Fiat-Shamir heuristic in which the Sigma protocol commitments and proof statement are
hashed to get the challenge for the Sigma protocol. The signature of knowledge algorithms are instantiated with the Fiat-Shamir
heuristic by additionally passing m into the hash function along with the commitments and statement when generating a challenge.
It has been shown that the simulation-extractibility property holds in the algebraic group model [34] for the knowledge of discrete
logarithm relation [3, 35]. We believe the techniques used [35] can be applied to show simulation-extractability of the discrete
logarithm relations used in this work.

We model interactive algorithms using the syntax from previous work [7, 9]. Each algorithm takes an incoming message and a
current state, and returns an outgoing message, an updated state, and a decision in {accept,reject,cont}.

D Group Signature Security Proofs
Here we provide our formal definitions along with proofs of security and discussion of alternative security targets.

D.1 Correctness

Correctness is defined by the game Gcorr
GS,A shown in Figure 10 and explained below. We define the advantage of adversary A as:

Advcorr
GS,A(λ) = Pr

[
Gcorr

GS,A(λ) = 1
]
.

We say that a verifier-local revocable, keyed-verification, multi-opener group signature GS is correct if Advcorr
GS,A(λ) = 0 for any

adversary A and any λ ∈ N. Note that the adversary is not computationally restricted.
In the correctness game, the adversary can query AddU and AddOA oracles to register new users and opening authorities,

each running their respective join/issue interactive protocol with the group manager; the adversary is given the public and secret
key of the registered party. The adversary can also query Revoke to add user i to opening authority j’s revocation list; the
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ΠGS.Setup(λ)

(p,G1,G2,GT ,g1,g2,e)←BG(λ)

α←$Zp ; h1← gα1
REGU ,REGOA← [·]
pp← (p,G1,G2,GT ,e,g1,h1,g2)

ppM← (p,G1,g1,h1)

Return pp

1

2

3

4

5

6

7

ΠGS.JoinU
pp
U (gmpk,min : st)

If min ==⊥ do
y←$Zp ; Y ← gy1
mout← Y ; st← (Y,y)

Return (mout,cont,st)

(t,π,Yr)←min

(u0,u1)← t ; (y,Y )← st ; (X1,Cx̃0 )← gmpk

b← NiZKR1 .Ver(π,(g1,h1,u0,u1,X1,Cx̃0 ,Y,Yr))

usk← (t,y) ; upk← Y

st← (upk,usk)

If b== 1 then return (⊥,accept,st)
Return (⊥,reject,st)

8

9

10

11

12

13

14

15

16

17

18

19

ΠGS.IssueU
pp
GM(gmsk,min : st)

Y ←min

st← Y

t←MACGGM.GroupElemEvppM (gmsk,Y )

(x0,x1, x̃0)← gmsk

r←$Zp
u0← gr1 ; u1← (gx01 Y x1 )r

Return (u0,u1)

Yr ← Y r ; X1← hx11 ; Cx̃0 ← gx01 hx̃01
π←$NiZKR1

.Prove(

(x0,x1, x̃0, r),(g1,h1,u0,u1,X1,Cx̃0 ,Y,Yr))

mout← (t,π,Yr)

Return (mout,accept,st)

20

21

22

23

24

25

26

27

28

29

30

31

32

ΠGS.JoinOApp
OA(gmpk,min : st)

If min ==⊥ do
w←$Zp ; W ← gw1
z←$Zp ; Z← gz1
mout← (W,Z) ; oapk← (W,Z) ; oask← (w,z)

st← (oapk,oask)

Return (mout,cont,st)

Return (⊥,accept,st)

33

34

35

36

37

38

39

40

ΠGS.IssueOApp
GM(gmsk,min : st)

(W,Z)←min

st← (W,Z)

Return (>,accept,st)

41

42

43

44

ΠGS.Kg
pp
GM()

(gmpk,gmsk)←$MACGGM.Kg
ppM ()

x0←$Zp ; x1←$Zp ; x̃0←$Zp
X1← hx11 ; Cx̃0 ← gx01 hx̃01
pk← (X1,Cx̃0 ) ; sk← (x0,x1, x̃0)

Return (pk,sk)

Return (gmpk,gmsk)

45

46

47

48

49

50

51

ΠGS.Sign
pp
U (usk,gmpk,oapk,m)

(t,y)← usk ; (u0,u1)← t

(X1,Cx̃0 )← gmpk ; (W,Z)← oapk

αct,αu,αy ,αT ,β←$Z4
p

rm←$Zp ; rn←$Zp
M1← grm1 ; M2← grm2 ; N1← grn1 ; N2← grn2
u′0← uβ0 ; u′1← uβ1
τR←W y

ct1← gαct
1 ; ct2← gy1Z

αct

T1←M
αT
1 ; T2← τRN

αT
1

Cy ← u′y0 h
αy

1 ; Cu← u′1g
αu
1 ; V ← g−αu

1 X
αy

1

π←$SoKR2
.Prove((y,αy ,αu,αct,αT , rm, rn),

(g1,h1,u′0,X1,Cy ,V,W,Z,ct1,ct2,M1,M2,N1,N2,T1,T2),m)

σ← (u′0,Cy ,Cu,V,ct1,ct2,M1,M2,N1,N2,T1,T2,π)

Return σ

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

ΠGS.OpenppOA(oask,gmpk,m,σ)

(w,z)← oask ; W ← gw1 ; Z← gz1 ; (X1,Cx̃0 )← gmpk

(u0,Cy ,Cu,V,ct1,ct2,M1,M2,N1,N2,T1,T2,π)← σ

Require SoKR2
.Ver(

(g1,h1,u0,X1,Cy ,V,W,Z,ct1,ct2,M1,M2,N1,N2,T1,T2),m,π)

upk← ct2/ctz1
Return upk

67

68

69

70

71

72

73

ΠGS.Revoke
pp
OA(oask,upk)

(w,z)← oask

τR← upkw

Return τR

74

75

76

77

ΠGS.Ver
pp
GM(gmsk,oapk,RL,m,σ)

(x0,x1, x̃0)← gmsk ; (W,Z)← oapk

(u0,Cy ,Cu,V,ct1,ct2,M1,M2,N1,N2,T1,T2,π)← σ

For τR ∈RL do
If e(T2/τR,M2) = e(T1,N2) then return 0

V ′← ux00 Cx1y /Cu

X1← hx11 ; Cx̃0 ← gx01 hx̃01
b← SoKR2

.Ver(

(g1,h1,u0,X1,Cy ,V ′,W,Z,ct1,ct2,M1,M2,N1,N2,T1,T2),m,π)

Return V == V ′∧ b

78

79

80

81

82

83

84

85

86

87

R1 =
{(

(x0,x1, x̃0, r),(g1,h1,u0,u1,X1,Cx̃0 ,Y,Yr)
)

: u0 = gr ∧Yr = Y r ∧u1 = ux00 Y x1r ∧Cx̃0 = gx01 hx̃01 ∧X1 = hx11
}

R2 =
{(

(y,αy ,αu,αct,αT , rm, rn),(g1,h1,u0,X1,Cy ,V,W,Z,ct1,ct2,M1,M2,N1,N2,T1,T2)
)

:

Cy = uy0h
αy

1 ∧V = g−αu
1 X

αy

1 ∧ ct1 = gαct
1 ∧ ct2 = gy1Z

αct

∧M1 = grm1 ∧M2 = grm2 ∧N1 = grn1 ∧N2 = grn2 ∧T1 =M
αT
1 ∧T2 =W yN

αT
1

}

Figure 8: Keyed-verification, multi-opener group signature with verifier-local revocation. The core primitive of Orca.
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MACGGM.BlindInp
ppM (pk,x,oapk,min : st)

(X1,Cx̃0 )← pk ; (W,Z)← oapk

If min ==⊥ do
(γ,r)←$Z2

p ; D← gγ1
ct1← gr1 ; ct2← gx1D

r

r̂←$Zp ; ĉt1← gr̂1 ; ĉt2← gx1Z
r̂

π← NiZKR3
.Prove((x,r, r̂),(g1,D,Z,ct1,ct2, ĉt1, ĉt2))

mout← (D,ct1,ct2,ĉt1, ĉt2,π)

st← (γ,ct1,ct2)

Return (mout,cont,st)

(ct′1,ct
′
2,u0,Xb,π)←min

(γ,ct1,ct2)← st

b← NiZKR4 .Ver((g1,h1,X1,Xb,Cx̃0 ,g
γ
1 ,u0,ct1,ct2,ct

′
1,ct

′
2),π)

If b== 0 then return (⊥,reject,st)
u1← ct′2/ct

′γ
1 ; t← (u0,u1) ; st← t

Return (⊥,accept,st)

MACGGM.BlindEv
ppM (sk,oapk,min : st)

(x0,x1, x̃0)← sk ; X1← hx11 ; Cx̃0 ← gx01 hx̃01 ; (W,Z)← oapk

(D,ct1,ct2,ĉt1, ĉt2,π)←min

b← NiZKR3 .Ver((g1,D,Z,ct1,ct2, ĉt1, ĉt2),π)

If b== 0 then return (⊥,reject,st)
b←$Zp ; r′←$Zp ; b1← x1 · b
u0← gb1 ; Xb←Xb

1

ct′1← ctb11 g
r′
1 ; ct′2← ctb12 u

x0
0 Dr

′

π←$NiZKR4 .Prove((x0,x1, x̃0, r
′, b,b1),

(g1,h1,X1,Xb,Cx̃0 ,D,u0,ct1,ct2,ct
′
1,ct

′
2))

mout← (ct′1,ct
′
2,u0,Xb,π)

st← (ĉt1, ĉt2)

Return (mout,accept,st)

R3 =
{(

(x,r, r̂),(g1,D,Z,ct1,ct2, ĉt1, ĉt2)
)

: ct1 = gr1 ∧ ct2 = gx1D
r ∧ ĉt1 = gr̂1 ∧ ĉt2 = gx1Z

r̂
}

R4 =
{(

(x0,x1, x̃0, r′, b,b1),(g1,h1,X1,Xb,Cx̃0 ,D,u0,ct1,ct2,ct
′
1,ct

′
2)
)

:

Cx̃0 = gx01 hx̃01 ∧X1 = hx11 ∧Xb =Xb
1 ∧Xb = hb11 ∧u0 = gb1∧ ct′1 = ctb11 g

r′
1 ∧ ct′2 = ctb12 u

x0
0 Dr

′}

Figure 9: Modified blind evaluation of algebraic MACs for token generation used in the extension of Orca with one-time tokens.

adversary is given the revocation token. After interacting with these oracles, the adversary outputs a msg, user i, and opening
authority j. User i signs message m to opening authority j, and the adversary wins if one of three conditions holds on the
signature σ. If the signature verifies with j’s revocation list, but user i was on the revocation list from Revoke, this represents a
break of correctness. The second winning condition is the opposite: if the signature does not verify, and user i is not part of the
revocation list, that is also incorrect behavior. The last winning condition is if the signature opens to some value other than user
i’s public key.

We forgo a formal proof of correctness for our scheme, as it is relatively straightforward to confirm through inspection.

D.2 Anonymity

Anonymity is defined by the game Ganon-b
GS,A shown in Figure 11. We define the advantage of adversary A as:

Advanon
GS,A(λ) =

∣∣Pr
[
Ganon-1

GS,A (λ) = 1
]
−Pr

[
Ganon-0

GS,A (λ) = 1
]∣∣ .

We say that a verifier-local revocable, keyed-verification, multi-opener group signature GS is anonymous if Advanon
GS,A(·) is

negligible for any polynomial-time adversary A.
In the anonymity game, the adversary plays the role of the platform in attempting to determine the signer’s identity of a

challenge signature. The adversary may register users and opening authorities using oracles AddU and AddOA (denoted
as AddX for X ∈ {U,OA} in the security game) and may corrupt parties to learn their secret key through oracles SKU and
SKOA (denoted SKX). The adversary can generate signatures for uncorrupted users using Sign and generate revocation tokens
from honest opening authorities for arbitrary signatures using OpenRevoke. After interacting with these oracles, the adversary
may make a single challenge query to ChSign in which they specify two uncorrupted users i0 and i1 and an opening authority j
and receives a signature from user ib based on challenge bit b. To disallow trivial wins, neither user’s revocation token for j can
have been queried via a previous signature to OpenRevoke prior to the challenge query, and are restricted from being queried
after the challenge query. The challenge users and opening authority are also restricted from being queried to SKX following the
challenge query. The adversary wins if it correctly guesses the challenge bit b.

We extend the game in Grevanon-b
GS,A to capture revocation token anonymity (includes highlighted code in Figure 11). Here an

additional ChRevoke oracle is given to be run on the challenge signature to receive the revocation token for the user ib. To
prevent trivial wins where the adversary holds other signatures from the challenge signers, the ChRevoke oracle rejects queries
when either of the two challenge signing users have been queried to Sign.
Discussion. Our anonymity definition captures an actively malicious platform with the ability to adaptively compromise signing
users. Our definition captures what is commonly referred to as CCA-anonymity in the group signature literature by providing
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Game Gcorr
GS,A(λ)

pp←$GS.Setup(λ)

(gmpk,gmsk)←$GS.Kg()

(i, j,m)←$AAddX,Revoke(gmsk)

If i 6∈HU ∨ j 6∈HOA then return 0

(upk,usk)←HU [i] ; (oapk,oask)←HOA[j]

σ←$GS.Sign(usk,gmpk,oapk,m)

b← GS.Ver(gmsk,oapk,RL[j],m,σ)

If b= 1∧ i ∈RLU [j] then return 1

If b= 0∧ i 6∈RLU [j] then return 1

upk′←$GS.Open(oask,gmpk,m,σ)

If upk 6= upk′ then return 1

Return 0

AddX(i)X∈{U,OA}

Require i 6∈HX
st←⊥ ; stGM ←⊥
min←⊥ ; dec← cont

While dec = cont do
(min,dec)←$GS.JoinX(gmpk,min : st)

(min,dec)←$GS.IssueX(gmsk,min : stGM )

If dec = accept then
(pk,sk)← st

REGX [i]← pk ; HX [i]← (pk,sk)

Revoke(i, j)

Require i ∈HU ∧ j ∈HOA
(upk,usk)←HU [i] ; (oapk,oask)←HOA[j]

τR←$GS.Revoke(oask,upk)

RL[j]←[ τR ; RLU [j]← [ i
Return τR

Figure 10: Correctness game for keyed-verification multi-opener group signatures.

access to an opening oracle OpenRevoke, allowing the adversary to maul signatures in an arbitrary fashion. This treatment is
slightly different from previous formalizations that do not handle verifier-local revocation in that we choose not to explicitly
provide a separate “open” oracle, but rather combine the open and revoke functionality into a single oracle. This choice fits
the setting where the open algorithm is run locally by the recipient and only the revocation token is ever sent to the platform.
Nevertheless, adding a separate “open” oracle would not affect the security of our scheme; it is omitted for simplification.

We also consider rogue key attacks; we allow the adversary to arbitrarily create public keys for corrupted parties, i.e., the group
manager and opening authorities, but require the adversary to prove knowledge of secret keys. We model this, for simplicity, by
asking the adversary to produce a valid secret key for a public key during key generation, following the knowledge of secret
key (KOSK) model of [11]. This model can in turn be instantiated by including proofs of knowledge of secret keys that we can
extract from to proceed with the proof in the KOSK model. In the game pseudocode, we use a wellformed predicate to capture
this check, i.e., for a discrete log public key X and secret key x, checks X = gx.

Many previous schemes that achieved verifier-local revocation targeted a weaker form of anonymity called selfless anonymity
meaning that user signatures can be deanonymized by their own secret key. Our scheme also targets selfless anonymity, as shown
by the query restriction on SKU, however it seems possible that the keyed-verification setting may allow for an efficient scheme
with full anonymity and verifier-local revocation; we leave this to future work.

Lastly, in addition to anonymity of the signature, we also target anonymity of the revocation token. To our knowledge, our
extension of the anonymity game to capture anonymity of the revocation token is the first definitional attempt at doing so.
Revocation anonymity implies the anonymity as the security games are equivalent if the challenge revoke oracle (ChRevoke)
of the revocation anonymity game is not called.

Theorem 1. Let ΠGS be the keyed-verification, multi-opener group signature scheme defined in Figure 8 over prime order p
cyclic groups G1 and G2. Let MACGGM be the keyed-verification anonymous credentials scheme from [22] on G1. Let ElG be
the ElGamal encryption scheme on G1. Then for any adversary A against the anonymity of ΠGS, we give adversaries A1 to A6

such that

Advanon
ΠGS,A(λ)≤ 2q2

uqoa
(
Advsound

NiZKR1
,A1,XR1

(λ) +Advanon
MACGGM,A2,SMAC

(λ) +Advsimext
SoKR2

,A3,XR2
,SR2

(λ)

+Adv
indcpa
ElG,A4

(λ) + 2 ·Advddh
G1,p,A5

(λ) +Advdlin
G1,G2,p,A6

(λ)
)

where A makes at most qu and qoa queries to the add user and add opening authority oracles, respectively.

Proof. We bound the advantage of A by bounding the advantage of each of a series of game hops. We define Gb = Ganon-b
ΠGS,A(λ)

and define games Gb
A, Gb

B, Gb
C, Gb

D, Gb
E, Gb

F0, Gb
F1, GG to gradually transform the view of the adversary until in GG it is no

longer dependent on bit b. The inequality above follows from simple calculations based on the following claims which we will
justify:
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Game Ganon-b
GS,A (λ) ; Grevanon-b

GS,A (λ)

pp←$GS.Setup(λ)

(gmpk,gmsk)←$A(⊥ : stA)

Require GS.wellformedGM(λ,gmpk,gmsk)

b′←$AWRegOA,Sign,ChSign,AddX,SKU,OpenRevoke, ChRevoke (⊥ : stA)

Return b′

WRegOA(i,pk,sk)

Require GS.wellformedOA(λ,pk,sk)

If i ∈HOA then (pk,sk)←HOA

REGOA[i]← (pk,sk)

Sign(i, j,m)

Require i ∈HU ∧ j ∈REGOA
(upk,usk)←HU [i] ; (oapk,oask)←REGOA[j]

σ←$GS.Sign(usk,gmpk,oapk,m)

Σ[j][σ]← i

Return σ

ChSign(i0, i1, j,m)

Require i0, i1 6∈KU ∧ j 6∈KOA
Require i0, i1 ∈HU ∧ j ∈HOA
Require i0, i1 6∈RL[j]

(upk0,usk0)←HU [i0] ; (upk1,usk1)←HU [i1]

(oapk,oask)←HOA[j]

σ←$GS.Sign(uskb,gmpk,oapk,m)

RQ[j]←[ [i0, i1]

Σ̃[σ]← (i0, i1, j)

Return σ

AddX(i,min)X∈{U,OA}

Require i 6∈HX
(min,dec)←$GS.JoinX(gmpk,min : stX [i])

If dec = accept then
(pk,sk)← stX [i] ; HX [i]← (pk,sk)

Return (min,dec)

SKX(i)X∈{U,OA}

Require i 6∈RQ[∗]∧ j 6∈RQ
KX ← [ i
Return HX [i]

OpenRevoke(m,σ,j)

Require j ∈HOA
Require σ 6∈ Σ̃

Require σ 6∈ Σ[j]∨Σ[j][σ] 6∈RQ[j]

(oapk,oask)←HOA[j]

upk← GS.Open(oask,gmpk,m,σ)

τR←$GS.Revoke(oask,upk)

If σ ∈ Σ[j] do RL[j]←[ Σ[j][σ]

Return τR

ChRevoke(σ)

Require σ ∈ Σ̃ ; (i0, i1, j)← Σ̃[σ]

Require i0, i1 6∈ Σ[∗][∗]
(upk,usk)←HU [ib] ; (oapk,oask)←HOA[j]

τR←$GS.Revoke(oask,upk)

Return τR

Figure 11: Anonymity game for keyed-verification multi-opener group signatures. An extension to the anonymity game is provided to capture
anonymity of revocation tokens which includes the highlighted code.

(1) Advanon
ΠGS,A(λ) =

∣∣Pr[G0 = 1]−Pr[G1 = 1]
∣∣≤ q2

uqoa ·
∣∣Pr[G0

A = 1]−Pr[G1
A = 1]

∣∣
(2) |Pr[Gb

A = 1]−Pr[Gb
B = 1]|= Advsound

NiZKR1
,A1,XR1

(λ)

(3) |Pr[Gb
B = 1]−Pr[Gb

C = 1]|= Advanon
MACGGM,A2,SMAC

(λ)

(4) |Pr[Gb
C = 1]−Pr[Gb

D = 1]|= Advsimext
SoKR2

,A3,XR2
,SR2

(λ)

(5) |Pr[Gb
D = 1]−Pr[Gb

E = 1]|= Adv
indcpa
ElG,A4

(λ)

(6) |Pr[Gb
E = 1]−Pr[Gb

F1 = 1]|= 2 ·Advddh
G1,p,A5

(λ)

(7) |Pr[Gb
F1 = 1]−Pr[GG = 1]|= Advdlin

G1,G2,p,A7
(λ)

Sketch: Recall the group signature is composed of three components: (i) the identity ciphertext ctid enclosing the signer’s public
key to the opening authority, (ii) the revocation ciphertext ctR enclosing the revocation token, and (iii) a zero knowledge proof π
that (i) and (ii) were constructed properly with knowledge of a key pair (y,Y ) and a MAC t on Y . To remove the dependence
of signing on challenge bit b, our proof steps through each of these components in sequence. Claims 2 and 3 remove the use
of signing key yb in creating (iii) the zero knowledge proof π of a valid MAC. Claims 4 and 5 remove the use of signing key
yb in encrypting (i) the identity ciphertext. And lastly, claims 6 and 7 remove the use of signing key yb in constructing (ii) the
revocation ciphertext.

Claim 1: Without loss of generality, assume calls to AddX are made with incrementing indices, e.g., i= 1,2, . . . ,q. Gb
A is the

same as Gb except it guesses the parties i0, i1, j on which A will make its ChSign query and aborts if it is incorrect. If A makes
its ChSign query on a different set of parties, if it queries OpenRevoke with a Sign signature from i0 or i1, or calls SKX
on any of i0, i1, j, then Gb

A sets a badbA flag and aborts. By an identical-until-bad argument and the fundamental lemma of game
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playing [8], we have that
Pr[Gb = 1∧¬badbA] = Pr[Gb

A = 1∧¬badbA] .

And since Gb
A aborts and outputs 0 when badbA is set, i.e., only outputs 1 when ¬badbA, we have

Pr[Gb
A = 1] = Pr[Gb

A = 1|¬badbA]Pr[¬badbA] + Pr[Gb
A = 1|badbA]Pr[badbA]

= Pr[Gb
A = 1|¬badbA]Pr[¬badbA]

= Pr[Gb
A = 1∧¬badbA] .

Then, we have ∣∣Pr[G0
A = 1]−Pr[G1

A = 1]
∣∣ =

∣∣∣Pr[G0 = 1∧¬badbA]−Pr[G1 = 1∧¬badbA]
∣∣∣

=
∣∣∣Pr[G0 = 1] ·Pr[¬badbA]−Pr[G1 = 1] ·Pr[¬badbA]

∣∣∣ (1)

= Pr[¬bad0
A] ·

∣∣Pr[G0 = 1]−Pr[G1 = 1]
∣∣ , (2)

where (1) holds because the condition to set badbA is independent of the rest of the game Gb, and (2) holds since Pr[¬bad0
A] =

Pr[¬badbA]; the probability the guess is correct is independent of bit b.
Lastly since the parties are guessed at random, the probability that the guess is correct and badb is not set is at least

Pr[¬bad0
A]≥ 1

q2
uqoa

.

Claim 2: The next game Gb
B checks the knowledge soundness of the issuance proofs for honest group members that accept the

interactive join protocol in AddU by using the extractor for NiZKR1 to extract and double check proofs (line 15 in Figure 8). If
the extractor fails, a badbB flag is set and the game is aborted. By an identical-until-bad argument via the fundamental lemma of
game playing [8],

|Pr[Gb
A = 1]−Pr[Gb

B = 1]| ≤ Pr[badbB] .

We bound the probability badbB is set exactly by the advantage against the knowledge soundness of NiZKR1 , constructing an
adversary Ab1 that wins the game whenever badbB is set by returning the proof and statement that failed extraction. We construct
A1 by running A0

1 and A1
1 each with probability 1/2.

Claim 3: The previous game ensures that the credentials issued to honest users are properly generated. The next game Gb
C

replaces the construction of proof π and values u0,Cy,Cu,V in Sign and ChSign (line 58, 62-64 of Figure 8) with the output
of a simulator. We observe that the generation of π throughR2 is exactly that of showing a credential in MACGGM [22] with the
added relation on MAC value y:

φ(y) = ct1 = gαct
1 ∧ ct2 = gy1Z

αct ∧ M1 = grm1 ∧M2 = grm2 ∧N1 = grn1 ∧N2 = grn2 ∧ T1 =M
αT
1 ∧T2 =W yN

αT
1 .

By the KVAC anonymity of MACGGM [22, Definition 7], we have a simulator SMAC that can simulate the output of credential
showing, (π,u′0,Cy,Cu,V ), given only the secret key of the issuer, gmsk, without values of the MAC, y. Under the hood, the
KVAC simulator SMAC is constructed using the signature of knowledge simulator SR2 to simulate π with special constructions
of u′0,Cy,Cu,V using gmsk. We provide the pseudocode for SMAC from [22, Theorem 4] that makes use of SR2 . This will be
important since in a later game hop, we will make use of simulation extractability over simulated proofs from SR2 .

Simulator SMAC(λ)

SMAC.Prove
ppM (gmsk,gmpk,(W,Z,ct1,ct2,M1,M2,N1,N2,T1,T2),m)

(p,G1,g1,h1)← ppM

(x0,x1, x̃0)← gmsk ; (X1,Cx̃0 )← gmpk

(u0,Cy ,Cu)←$G3
1

V ← ux00 Cx1y /Cu

π←$SR2
.Prove(ξ,(g1,h1,u0,X1,Cy ,V,W,Z,ct1,ct2,M1,M2,N1,N2,T1,T2),m)

Return (π,u0,Cy ,Cu,V )
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We can bound the distinguishing advantage between Gb
B and Gb

C exactly by the advantage against the KVAC anonymity game,
constructing an adversary Ab2 that simulates Sign and ChSign for A by generating the proof through their own show oracle.
We construct A2 from A0

2 and A1
2 analogously to before.

Claim 4: Our goal in the next game hop (to Gb
D) is to respond to OpenRevoke queries without using oask. This is done

using the simulation extractability extractor for SoKR2 . Recall in the previous game, all signatures created by honest parties are
simulated using the simulator SR2 . In game Gb

D, these simulated signatures are tracked in a table along with the signing user and
intended opening authority.

If a simulated signature is passed to OpenRevoke for opening authority, the oracle responds using the table. More specifically,
the intended opening authority is looked up and if it does not match, then ⊥ is returned. Otherwise, the signing key y for the
signing user is looked up and the revocation token is calculated as τR ← oapkyj . By the correctness property of the group
signature, this matches the behavior of GS.Open since a signature for a different opening authority will not open and looking up
the signing user upk simulates exactly running GS.Open for valid signatures.

If a non-simulated signature is passed to OpenRevoke and the proof π verifies under oapk, the extractor for SoKR2 is
run to extract y and the revocation token is calculated as τR← oapkyj . If the extractor fails, a badbD flag is set and the game is
aborted. By an identical-until-bad argument via the fundamental lemma of game playing [8],

|Pr[Gb
C = 1]−Pr[Gb

D = 1]| ≤ Pr[badbD] .

We bound the probability badbD is set exactly by the advantage against the simulation extractability of NiZKR2 , constructing an
adversary Ab1 that simulates signing proofs using its SimProve oracle and wins the game whenever badbD is set by returning
the proof and statement that failed extraction. We construct A3 from A0

3 and A1
3 analogously to before.

Claim 5: Gb
E replaces the ElGamal encryption of Yb = g

yb
1 in ChSign (line 60 of Figure 8) with an encryption of g1, a group

element independent of bit b. We bound the distinguishing advantage between Gb
D and Gb

E by the IND-CPA security of ElG
which in turn is dependent on DDH in G1 (external Diffie-Hellman assumption). We construct IND-CPA adversary Ab4 that sets
the encryption key of opening authority j (Zj) to the key output from the IND-CPA game. Ab4 simulates ChSign generating
(ct1,ct2) by passing (g

yb
1 ,g1) to its left-right encryption oracle. Due to Gb

D, the decryption of ct in OpenRevoke is not run,
and instead the table of simulated signatures or extractor is used to respond to queries — both of which are done without the use
of the decryption key of oask. Thus, Ab4 exactly runs Gb

D and Gb
E. We construct A4 from A0

4 and A1
4 analogously to before.

Claim 6: Gb
F0 replaces the revocation token of opening authority j for user i0 (τi0,j =W y0

j ) with a random group element (line
59 of Figure 8). We bound the distinguishing advantage between Gb

E and Gb
F0 by DDH. We construct an adversary Ab5,0 for the

DDH game that takes input (A= gα,B = gβ ,C) and assigns A as the public key of i0, assigns B as the public key of j, and sets
C as j’s revocation token for i0.

To construct a DDH adversary, we must ensure that we can simulate all the oracles without knowledge of i0’s signing key y0 or
j’s revocation key w. From Gb

A,Ab6,0 aborts when SKX is called i0 or j, so y0 orw are never exposed. From Gb
C, Sign/ChSign

are simulated with SR2 . Generating the identity ciphertext does not need knowledge of y0. Generating the revocation ciphertext
uses y0 to calculate the revocation token, but since we are in the KOSK setting, we can instead use the secret key of the target
opening authority w′, and calculate τ ←Aw

′
. The only opening authority for which we do not have the secret key is j, where we

set the revocation token to C.
Lastly, from Gb

D, simulating the revocation token in OpenRevoke uses the table of simulated signatures and the extractor,
and importantly does not need the revocation secret key w. If a simulated signature for i0 is passed to OpenRevoke, it will
return ⊥. Thus, Ab5,0 runs Gb

E and Gb
F0 exactly.

We next define Gb
F1 and Ab5,1 analogously to Gb

F0 and Ab5,0 where Gb
F1 is the same as Gb

F0 except it replaces j’s revocation
token for user i1 with a random group element. We construct A5 from A0

5,0,A0
5,1,A1

5,0,A1
5,1 analogously as before.

Claim 7: Gb
G is the same Gb

F1 except that instead of sampling two separate random values for τi0,j and τi1,j , it samples a single
shared random value R = τi0,j = τi1,j . Observe that with this change, the output ChSign is now independent of b: (1) the
proof is simulated by SR2 , (2) the ciphertext (ct1,ct2) enclose g1, and (3) the revocation ciphertext (T1,T2) encloses a shared
revocation token R. Thus G0

G = G1
G and we call this game GG.

We bound the distinguishing advantage of Gb
F1 and GG by the advantage in the DLIN game using a trick to embed the DLIN

elements into τi0,j and τi1,j [15]. Define Ab6 that takes DLIN input (m1,n1, l1,m
a
1 ,n

b
1, l
′
1,m2,n2, l2), samples random group

element R and sets τi0,j = l′1R/l
a
1 and τi1,j = Rlb1. Note that since a and b are unknown, τi0,j and τi1,j can not be explicitly
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calculated, but we show how they can still be enclosed in T1,T2. Second, note that when l′1 = lc1, τi0,j and τi1,j are different
independent random values, but when l′1 = la+b

1 , they are equal to the same random value,

τi0,j =
l′1R

la1
=
la+b
1 R

la1
= lb1R= τi1,j .

Even without being able to calculate the revocation tokens directly,Ab6 can still simulate ChSign and construct T1,T2 as follows.
Ab6 samples r,s, t←$Zp.
• A0

6 encloses τi0,j by constructing
T1←ma

1m
s
1 T2← l′1l

s
1(ma

1)tmst
1 R

M1←mr
1 M2←mr

2 N1← (l1m
t
1)r N2← (l2m

t
2)r

Let α= (a+s)/r, then T1 =Mα
1 and T2 = τi0,jN

α
1 .

• A1
6 encloses τi1,j by constructing

T1← nb1n
s
1 T2←

(nb1)tnst1 R

ls1

M1← nr1 M2← nr2 N1←
(
nt1
l1

)r
N2←

(
nt2
l2

)r
Let α= (b+s)/r, then T1 =Mα

1 and T2 = τi1,jN
α
1 .

In both cases, (T1,T2) are constructed with some random M1,N1 and random α, so Ab6 perfectly simulates the ChSign oracle.
We construct A6 from A0

6,A1
6 analogously to as before.

Lemma 1. Let ΠGS be the keyed-verification, multi-opener group signature scheme defined in Figure 8 over prime order p
cyclic groups G1 and G2. Let MACGGM be the keyed-verification anonymous credentials scheme from [22] on G1. Let ElG be
the ElGamal encryption scheme on G1. Then for any adversary A against the anonymity of ΠGS, we give adversaries A1 to A6

such that

Advrevanon
ΠGS,A(λ)≤ 2q2

uqoa
(
Advsound

NiZKR1
,A1,XR1

(λ) +Advanon
MACGGM,A2,SMAC

(λ) +Advsimext
SoKR2

,A3,XR2
,SR2

(λ)

+Adv
indcpa
ElG,A4

(λ) + 2 ·Advddh
G1,p,A6

(λ) +Advdlin
G1,G2,p,A6

(λ)
)

where A makes at most qu and qoa queries to the add user and add opening authority oracles, respectively.

Proof. The proof follows exactly the same game hops as the group signature anonymity proof. In Gb
D and Gb

E, ChRevoke
is simulated using the identity mappings in the table of simulated signatures, same as in OpenRevoke. In Gb

F0, Gb
F1, GG,

ChRevoke is simulated by responding with the random group element chosen as the revocation token for ib. GG again has no
dependence on the challenge bit b.

D.3 Traceability

Traceability is defined by the game Gtrace
GS,A shown in Figure 12. We define the advantage of adversary A as:

Advtrace
GS,A(λ) = Pr

[
Gtrace

GS,A(λ) = 1
]

We say that a verifier-local revocable, keyed-verification, multi-opener group signature GS is traceable if Advtrace
GS,A(·) is negligible

for any polynomial-time adversary A.
In the traceability game, the adversary plays the role of a set of malicious users and opening authorities with the goal of

creating a message, signature pair that verifies under the honest platform, but fails to open at the recipient. The adversary may
register as users and opening authorities using AddX. The adversary may verify arbitrary signatures under arbitrary revocation
lists using Verify. Note that a verify oracle is necessary for the keyed-verification setting. After interacting with these oracles,
the adversary outputs a message, signature pair along with a revocation list. The adversary wins if the signature verifies, and the
open algorithm fails by either returning ⊥ or returning an unregistered public key upk.
Discussion. The traceability game necessarily considers an honest platform, since it is trivial for the platform to issue unregistered
credentials and win the game. The non-frameability game addresses the forging ability of a malicious platform.

Again we prove security in the knowledge of secret key model [11], where we add a KoskX oracle to complete registration
by providing a wellformed secret key after a public key was accepted by AddX. As before, instantiating the scheme with proofs
of knowledge of secret keys during registration allows the proof to proceed as in the KOSK model.
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Game Gtrace
GS,A(λ)

pp←$GS.Setup(λ)

(gmpk,gmsk)←$GS.Kg()

(j,m,σ,L)←$AVerify,AddX(gmpk)

Assert j ∈REGOA ; (oapk,oask)←REGOA[j]

bver ← GS.Ver(gmsk,oapk,L,m,σ)

upk← GS.Open(oask,gmpk,m,σ)

bopn1← upk ==⊥∨upk 6∈REGU
Return bver ∧ bopn1

KoskX(i,sk)X∈{U,OA}

PX [i]← sk

AddX(i,min)X∈{U,OA}

Require i 6∈REGX
(min,dec)←$GS.IssueX(gmsk,min : stX,i)

If dec = accept then
pk← stX,i ; sk← PX [i]

Require GS.wellformedX(λ,pk,sk)

REGX [i]← (pk,sk)

Return (min,dec)

Verify(j,m,σ,L)

Require j ∈REGOA
(oapk,oask)←REGOA[j]

b← GS.Ver(gmsk,oapk,L,m,σ)

Return b

Figure 12: Traceability game for keyed-verification multi-opener group signatures.

Theorem 2. Let ΠGS be the keyed-verification, multi-opener group signature scheme defined in Figure 8 over prime order p
cyclic groups G1 and G2. Let MACGGM be the keyed-verification anonymous credentials scheme from [22] on G1. Then for any
adversary A against the traceability of ΠGS, we give adversaries B such that

Advtrace
ΠGS,A(λ)≤Advunf

MACGGM,B(λ)

where A makes at most qu and qver queries to the add user, and verify oracles, respectively, and B makes at most qu and qver
queries to its issue and show verify oracles, respectively.

Proof. We bound the advantage of adversary A by constructing an adversary B that uses A to win the KVAC unforgeability
game [22, Definition 6] whenever A wins the traceability game. Adversary B simulates the traceability game for A. The issuer
parameters from the KVAC unforgeability game are set as gmpk, and the Issue and ShowVerify oracles are used to simulate
the actions of the group manager in AddU and Verify.

To simulate issuing a signing key in AddU, B makes a call to the Issue oracle to generate a MAC t and proof π of
wellformedness (lines 23-30 of Figure 8). To make a call to Issue, B must send the secret signing key usk. This is fine since B
only needs to properly simulate AddU if a wellformed secret key has been added via KoskX, otherwise B will return ⊥.

To simulate Verify, B runs its ShowVerify oracle on σ with the following added MAC relation φ. The ShowVerify
oracle will calculate keyed-verifier values and run the verification procedure forR2 (lines 83-86 in Figure 8). The remainder of
Verify, i.e. checking against the revocation list, can be run directly by B.

φ(y) = ct1 = gαct
1 ∧ ct2 = gy1Z

αct ∧ M1 = grm1 ∧M2 = grm2 ∧N1 = grn1 ∧N2 = grn2 ∧ T1 =M
αT
1 ∧T2 =W yN

αT
1 .

If A wins the game, then bver = 1 meaning verification passed. This tells us two things. First, open did not return ⊥, since
the only way for open to return ⊥ is if the signature proof verification fails; this cannot be the case since it is also checked
by the verification algorithm. This means that open returned a upk 6∈REGU . Second, the signature σ verified under relation
φ(y), where it was claimed that ct1 = gαct

1 ∧ ct2 = Y Zαct for some Y = gy1 . However, the call to the open algorithm returned a
upk = Y = ct2/ct

z
1 6∈REGU for all y that credentials were issued for. The signature is then an example of a credential show

for which the verification passes but φ(y) = 0 allowing B to win the KVAC unforgeability game.

D.4 Non-frameability

Non-frameability is defined by the game Gnf
GS,A shown in Figure 13. We define the advantage of adversary A as:

Advnf
GS,A(λ) = Pr

[
Gnf

GS,A(λ) = 1
]

We say that a verifier-local revocable, keyed-verification, multi-opener group signature GS is non-frameable if Advnf
GS,A(·) is

negligible for any polynomial-time adversary A.
The non-frameability game is similar to the traceability game in that the adversary’s goal is to output a signature with unwanted

opening behavior. However, in the non-frameability game, we consider a stronger adversary that actively controls the platform,
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Game Gnf
GS,A(λ)

pp←$GS.Setup(λ)

(gmpk,gmsk)←$A(⊥ : stA)

Require GS.wellformedGM(λ,gmpk,gmsk)

(j,m,σ)←$AWRegOA,AddX,Sign,OpenRevoke,SKX(⊥ : stA)

Assert j ∈HOA ; (oapk,oask)←HOA[j]

bver ← GS.Ver(gmsk,oapk,RL[j],m,σ)

upk← GS.Open(oask,gmpk,m,σ)

bopn2← upk ∈HU ∧upk 6∈KU
Return (upk,m) 6∈ Q∧ bver ∧ bopn2

WRegOA(i,pk,sk)

Require GS.wellformedOA(λ,pk,sk)

If i ∈HOA then (pk,sk)←HOA

REGOA[i]← (pk,sk)

Sign(i, j,m)

Require i ∈HU ∧ j ∈REGOA
(upk,usk)←HU [i] ; (oapk,oask)←REGOA[j]

σ←$GS.Sign(usk,gmpk,oapk,m)

Q← [ (upk,m)

Return σ

AddX(i,min)X∈{U,OA}

Require i 6∈HX
(min,dec)←$GS.JoinX(gmpk,min : stX [i])

If dec = accept then
(pk,sk)← stX [i] ; HX [i]← (pk,sk)

Return (min,dec)

SKX(i)

KX ←[ i
Return HX [i]

OpenRevoke(m,σ,j)

Require j ∈HOA
(oapk,oask)←HOA[j]

upk← GS.Open(oask,gmpk,m,σ)

τR←$GS.Revoke(oask,upk)

Return τR

Figure 13: Non-frameability game for keyed-verification multi-opener group signatures.

similar to the anonymity game. In the non-frameability game, the adversary wins if the signature opens to an honest user not
controlled by the adversary, i.e., creates a successful forged signature. The adversary may register honest users and opening
authorities using AddX and may corrupt parties to learn their secret key through SKX. The adversary can generate signatures
for uncorrupted users using Sign and generate revocation tokens on arbitrary signatures using OpenRevoke. After interacting
with these oracles, the adversary outputs a message, signature pair and revocation list. The adversary wins if the message,
signature pair was not previously output from Sign, the signature verifies, and the open algorithm returns the public key of an
uncorrupted user.
Discussion. Since the non-frameabilty game captures an adversary with similar power to that of the anonymity game, we make
many of the same game design decisions. See the discussion in Section D.2 for more details.

Theorem 3. Let ΠGS be the keyed-verification, multi-opener group signature scheme defined in Figure 8 over prime order p
cyclic groups G1 and G2. Let MACGGM be the keyed-verification anonymous credentials scheme from [22] on G1. Then for any
adversary A against the non-frameability of ΠGS, we give adversaries A1 to A4 such that

Advnf
ΠGS,A(λ)≤ qu

(
Advsound

NiZKR1
,A1,XR1

(λ) +Advanon
MACGGM,A2,SMAC

(λ) +Advsimext
SoKR2

,A3,XR2
,SR2

(λ) +Advdl
G1,p,A4

(λ)
)

where A makes at most qu queries to the add user oracle.

Proof. We bound the advantage ofA by bounding the advantage of each of a series of game hops. Similarly to as in the anonymity
proof, we define G = Gnf

ΠGS,A(λ) and define games GA, GB, GC, and GD that slowly transform the view of the adversary so
that signing queries for a guessed user are no longer dependent on their secret key. Then we will show in the final game GD, if A
wins, we can win the discrete logarithm game. The inequality above follows from simple calculations based on the following
claims which we will justify:
(1) Advnf

ΠGS,A(λ) = Pr[G = 1]≤ qu ·Pr[GA = 1]

(2) |Pr[GA = 1]−Pr[GB = 1]|= Advsound
NiZKR1

,A1,XR1
(λ)

(3) |Pr[GB = 1]−Pr[GC = 1]|= Advanon
MACGGM,A2,SMAC

(λ)

(4) |Pr[GC = 1]−Pr[GD = 1]|= Advsimext
SoKR2

,A3,XR2
,SR2

(λ)

(5) Pr[GD = 1] = Advdl
G1,p,A4

(λ)
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Claim 1: Without loss of generality, assume calls to AddX are made with incrementing indices, e.g., i= 1,2, . . . ,q. GA is the
same as G except it guesses the signing party i on which A’s winning signature will open to and aborts if it is incorrect. If A
does not win, or if it wins by opening to a upk that does not belong to user i, then GA sets a badA flag and aborts. This also
means GA aborts if party i is queried to SKU since A cannot win on a corrupted user. By an identical-until-bad argument and
the fundamental lemma of game playing [8], we have that

Pr[G = 1∧¬badA] = Pr[GA = 1∧¬badA] .

And since GA aborts and outputs 0 when badA is set, we have

Pr[G = 1∧¬badA] = Pr[GA = 1] .

Then, we have

Pr[GA = 1] = Pr[G = 1∧¬badA]

= Pr[¬badA] ·Pr[G = 1] (1)

where (1) holds because the condition to set badA is independent of the rest of the game G.
Lastly since the party is guessed at random, the probability that the guess is correct and badA is not set is at least

Pr[¬badA]≥ 1

qu
.

Sketch: The arguments and game hops for claims 2-4 follow analogously to the same claims in the anonymity proof. We refer the
reader to the details there (Section D.2).

Claim 5: Observe that in GD, the secret key y of signing user i is not used. Yet to win GD, the adversary A must produce a
verifying signature that opens to Y . Since the extractor for the signature proof did not fail, we have that it will correctly extract y
where Y = gy. We build an adversary A4 for the discrete logarithm game that wins whenever A wins by setting the signing
user’s public key Y to the discrete logarithm challenge element and returning the extracted value y.

E Providing Message Binding for One-time Tokens
In this section, we describe an alternate token showing protocol to provide ciphertext binding for senders, preventing the DoS
attack described in Section 5. At a high level, our alternate proposal can be thought of as receiving a MAC on a one-time-use
BLS signature public key. Messages are bound to a token by signing the message under the BLS signature scheme [14].

Recall that senders mint tokens of the form (ν,t) where (u0,u1 = ux0+x1ν
0 )← t is a valid MAC for m under the MACGGM

scheme [22]. Our alternate token showing protocol will make use of the fact that the platform can verify the MAC t on gν2 instead
of ν. Here we use gν2 as a one-time BLS verification key and ν as the secret signing key known only to the sender. The sender
will sign their ciphertext with the BLS signing key, meaning that the platform will not be able to swap out the ciphertext. It will
make use of a hash function H : ∗→G2.

If a sender wants to send a ciphertext ct with token (ν,t= (u0,u1)), they will “show” the token by constructing and sending
(K,H) = (gν2 ,H(ct)ν) along with (ct, t). The BLS signature H is what binds the ciphertext as it can only be created from
knowledge of ν.

The platform will verify the token by first checking the validity of the MAC tag t against BLS verification key K,

e(u0,g
x0
2 Kx1)

?
= e(u1,g2) ,

and then checking the binding of the ciphertext with the BLS signature,

e(H(ct),K)
?
= e(H,g2) .

If both these checks pass, the platform accepts the token, adding K to the strikelist and forwarding (K,H) and ct to the recipient.
Even though ν is not shown to the platform, a token can still only be spent once since the one-time verification key K = gν2
uniquely maps ν. Note, the recipient can perform the signature verification to ensure the ciphertext was created by the party that
knows the signing key of K.
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The recipient needs to be able to identify the sender based on K = gν2 . To do this, we change the ciphertext created for the
recipient during the minting process to encrypt gν2 instead of gν1 . This requires the recipient to publish a public key in G2, but
otherwise the minting protocol does not change.

We leave to future work the formal analysis of this extension. In some sense, this proposal can be thought of as extending the
algebraic MAC protocol of Chase et al. [22] to support group elements in the message space (as opposed to only scalars) and
support verification using a bilinear pairing. An alternative tack to avoid pairings would be to use the algebraic MAC protocol of
Signal [23], which supports group elements in the message space without pairings (and a pairing-free signature scheme, like
Schnorr).
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