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Abstract. We consider the task of designing secure computation pro-
tocols in an unstable network where honest parties can drop out at any
time, according to a schedule provided by the adversary. This type of
setting, where even honest parties are prone to failures, is more realistic
than traditional models, and has therefore gained a lot of attention re-
cently. Our model, Phoenix, enables a new approach to secure multiparty
computation with dropouts, allowing parties to drop out and re-enter the
computation on an adversarially-chosen schedule and without assuming
that these parties receive the messages that were sent to them while
being offline - features that are not available in the existing models of
Sleepy MPC (Guo et al., CRYPTO ’19), Fluid MPC (Choudhuri et al.,
CRYPTO ’21 ) and YOSO (Gentry et al. CRYPTO ’21). Phoenix does
assume an upper bound on the number of rounds that an honest party
can be off-line—otherwise protocols in this setting cannot guarantee
termination within a bounded number of rounds; however, if one settles
for a weaker notion, namely guaranteed output delivery only for honest
parties who stay on-line long enough, this requirement is not necessary.
In this work, we study the settings of perfect, statistical and computational
security and design MPC protocols in each of these scenarios. We assume
that the intersection of online-and-honest parties from one round to the
next is at least 2t + 1, t + 1 and 1 respectively, where t is the number
of (actively) corrupt parties. We show the intersection requirements to
be optimal. Our (positive) results are obtained in a way that may be
of independent interest: we implement a traditional stable network on
top of the unstable one, which allows us to plug in any MPC protocol
on top. This approach adds a necessary overhead to the round count
of the protocols, which is related to the maximal number of rounds an
honest party can be offline. We also present a novel, perfectly secure
MPC protocol in the preprocessing model that avoids this overhead by
following a more “direct” approach rather than first building a stable
network and then using existing protocols. We introduce our network
model in the UC-framework, show that the composition theorem still
holds, and prove the security of our protocols within this setting.
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1 Introduction

Secure Multiparty Computation (MPC) is a technique that allows multiple
mutually distrustful parties to compute a function of their inputs without leaking
anything else beyond the output of the computation. Most protocols in the MPC
literature assume that the parties communicate over a synchronous network, that
is, all the parties have access to a global clock. This allows the parties to follow
the protocol specification based on time. A protocol under such network model
proceeds in communication rounds, each of which has a fixed duration and where
each party can send a message to each other party.

Synchronous networks are natural for describing protocols and may make
sense in many contexts, but the model is not resilient to sudden slowdowns: if
a party fails to send a message within the allocated time for a specific round,
this message will not be taken into account, and what is worse, in the context
of an active adversary this will be considered a deviation from the protocol
specification. Hence an honest party who accidentally misses a deadline will
be classified as corrupt. The first problem with this is that an MPC protocol
can only tolerate a certain maximal number of corruptions. Tagging parties as
corrupt because of natural network issues that may appear in practice leaves
little room for real corruptions. For instance, MPC over unstable mobile network
connections or denial of service attacks might consume all the corruptions we
can handle. The second problem is that once a party is tagged as corrupt, the
protocol may now reveal her secret inputs, which seems unfair if the party was
actually honest but suffered a random network delay. An alternative model is
an asynchronous network, where the parties are not assumed to have a clock
anymore. This modeling is more resilient to the type of attacks described above
since the communication network allows for parties to be slow and no deadlines
are set. However, this model comes with its own set of issues since, when dealing
with an active adversary, the parties cannot distinguish a delayed message sent by
a slow party, from a message that an actively corrupt party decided not to send
in the first place. As a result asynchronous protocols tend to tolerate a smaller
number of corruptions [10], and, what is worse, an asynchronous protocol cannot
guarantee that all honest parties get to contribute inputs to the computation.

Therefore, it seems to be a better approach of considering an imperfect
synchronous network where the adversary is allowed to cause some parties to go
offline temporarily, and require protocols to not classify such parties as corrupt.
In such a setting we may still hope to get (1) optimal corruption thresholds,
(2) allow all parties to contribute input, and (3) guarantee termination at a
certain time. A series of works has studied MPC in different variant of this model,
see Section A for a detailed comparison of prior works. However, it is still an
open question whether we can have MPC protocols with optimal security and
corruption thresholds in the most adversarial, but also most realistic setting, that
we call an unstable network in this paper. In such a network parties go offline
and come back according to an adversarially chosen schedule (not a schedule
prescribed by the protocol specifications), and parties are not assumed to receive
messages sent while they were offline. Not receiving messages while being offline
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introduces more challenges since one can only rely on the parties that are online
in the current round and were also online in the previous round.

1.1 Unstable Networks

As we have mentioned—and as we expand in Section A—there are multiple
attempts in the literature to model what a realistic network where parties can
dropout and return should represent concretely. In this work we are interested
in studying the setting of MPC over an unstable network, which is a type of
synchronous network we introduce where, in contrast to a stable network (i.e. a
standard synchronous network), the adversary can choose in each round a subset
of parties that will be offline in that specific round, and hence may not be able
to send or receive messages. This models honest parties dropping out in that
specific round, possibly due to network errors or malicious attacks, which serves
to represent certain failures like weak mobile connections or DDoS attacks. We
remark that our “timing model” is still synchronous in that the parties have
a synchronized clock and know which current protocol step is being run, but
crucially, they may drop and re-join in every round.

Given that over an unstable network the set of offline parties can be different
in every round, an MPC protocol in such setting must allow parties to rejoin the
computation after being offline. Furthermore, these parties may not know they
are under network attack, so a missing message can mean that either (1) they are
under attack, (2) the sender is under attack, or (3) the sender is malicious. This
ambiguity is crucial to maintain a strong and realistic model, but it turns out to
heavily complicate protocol design. This is further accentuated by the fact that,
in an unstable network—and in stark contrast with previous networking models
for tolerating dropouts—parties who rejoin the computation do not necessarily
receive the messages sent to them while being offline, which is an important
property to model settings like peer-to-peer networks where the parties do not
count on “always-running” servers that can queue messages for them. This is an
important scenario to consider in practice, since one might argue that counting
on communication servers that never fail can be equivalent to assuming parties
who never drop.

1.2 Our Contribution

In this work we formally introduce the notion of an unstable network, which we
believe to be an appropriate communication model to capture realistic settings
where parties join and leave an ongoing computation according to a potentially
adversarial schedule. Our first contribution lies in the formal definition of this
novel networking model, and we present a rigorous treatment of this notion
within the confines of the UC framework, which in particular involves re-proving
the UC theorem to ensure that composability still holds in this new setting.

Our second contribution—and where most of our work is devoted—consists of
a full characterization of what types of security properties (i.e. perfect, statistical
or computational) can be achieved by MPC protocols over unstable networks in
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terms of the underlying adversarial schedule. More precisely, we show that the
minimum amount of honest parties that remain online from one round to the next
is the crucial metric that determines whether a given level of security is attainable
or not, and we show both impossibility and correspondingly matching feasibility
results for each one of the three security notions: computational, statistical and
perfect security. We believe our novel model and initial set of results open an
exciting and interesting research direction on the design of MPC protocols over
realistic networks.

In order to discuss what the characterizations above are in detail, let us
introduce some notation. Let n be the number of parties and let t be the number
of corrupt parties.3 Let Or denote the set of online parties in round r, and
let H denote the set of honest parties. Our goal is to determine if we can
construct MPC protocols for an unstable network which enjoy the same security
guarantees as protocols over a stable network and if so, what constraints we
must assume on the unstable network to make this happen. To be able to talk
more concretely about this, we will say that two protocols π, π′ are equivalent if
they tolerate the same number of corruptions, achieve the same type of security
(computational/statistical/perfect) and the same security guarantee (security
with abort/fairness/guaranteed output delivery). Our first set of results is as
follows:

Perfect security. (Section 3) Given any perfectly secure synchronous MPC
protocol against t corruptions, we construct an equivalent protocol over an
unstable network, assuming that |Or ∩ Or+1 ∩ H| ≥ 2t + 1 for all r > 0.
Furthermore, this condition is required for any MPC protocol with perfect
security to exist over an unstable network.

Statistical security. (Section 4) Given any statistically secure synchronous
MPC protocol against t corruptions, we construct an equivalent protocol over
an unstable network, assuming that |Or ∩ Or+1 ∩ H| ≥ t + 1 for all r > 0.
This condition is required for any MPC protocol with statistical security to
exist over an unstable network.

Computational security. (Section E in the Supplementary Material) Given
any computationally secure synchronous MPC protocol secure against t
corruptions, we construct an equivalent protocol over an unstable network,
assuming that |Or ∩ Or+1 ∩H| ≥ 1 for all r > 0 (and, for malicious security,
assuming a PKI and public key encryption). The intersection condition is
required for any computationally secure MPC protocol to exist over an
unstable network.

An overview of the intersection sizes required in each of the settings considered
in our work is presented in Fig 1. Notice that our results imply a necessary tradeoff
between instability and corruptions: taking perfect security as an example, it is
well known that we must have n ≥ 3t+ 1 to have perfect security at all. So for a
maximal value of t, we have only 2t+1 honest parties, and the result above then
3 We consider active corruptions in this section, but later in the paper we also present

results for passive security.
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Perfect
security

Statistical
security

Computational
security

Passive adversary
|Or ∩ Or+1| ≥

t + 1 t + 1 1

Active adversary
|Or ∩ Or+1 ∩ H| ≥ 2t + 1 t + 1 1

Fig. 1 – Overview of the required intersection sizes for each setting considered in
this paper. The result for statistical and passive security follows from the one for
perfect and passive security.

says that all honest parties must stay online all the time. On the other hand, as
we increase n above 3t+ 1, an increasing number of honest players can be sent
offline. Also, note that even if the (minimal) assumptions in our results say that
a minimum amount of parties must stay online from one round to the next, this
does not imply that any particular party stays online for more than one round.
This makes protocol design considerably difficult, as in particular, the following
scenario may occur: a given party can be offline for a while, not receiving any
messages, then it is set to be online in a given round, but the scheduling4 is
such that this party only receives messages in this round after he or she has sent
their own message, so this message can only depend on outdated information
this party learned before going offline. Furthermore, this party may be set to
be offline for the next round immediately after sending their message, which
makes the contribution of this party to the protocol meaningless. The honest
parties in Or ∩ Or+1 are these who are able to receive the messages in round r,
and simultaneously are able to send a derived message in round r + 1, so having
enough honest parties in this intersection is what enables us to design MPC
protocols in this difficult networking setting.

On guaranteeing output and input provision. In our model, parties can
leave the computation and never return, but in that case, naturally, there is
no way to guarantee their input will be considered, or that they will receive
any output. Since the goal of this work is to design protocols over an unstable
network with comparable properties to these over stable networks, including
input provision and guaranteed output delivery for honest parties, we address
this technicality by explicitly considering a bound B such that an honest party
is never offline for more than B rounds, and we assume throughout most of the
paper that B <∞, that is, every party eventually rejoins the computation within
a bounded amount of rounds. Without this requirement, our protocols may stall
indefinitely. Nevertheless, very importantly, we show that the requirement that
the parties eventually return to the computation is not necessary, if one ignores
the properties of input provision and guaranteed output. Indeed, in Section 5,
we present a protocol for the case of perfect security that does not require parties
4 As in the standard synchronous network, the adversary is allowed to choose the

ordering of the messages received by honest parties.
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to return (assuming certain distributed preprocessing data), but in that case not
all honest parties are ensured to provide input and receive output. However, as
we elaborate later in Section 1.3 when we present an overview of our techniques,
this protocol has the advantage of having a considerably smaller round count.

1.3 Technical Overview

At a high level, our constructions are obtained via a generic and modular approach
in which we emulate a stable synchronous network on top of the unstable network
which then, coupled with the composition theorem we prove in our work, allows us
to compile any existing synchronous protocol to the unstable network setting. In
a bit more detail, we first define a functionality FStableNet that represents a secure
and stable network: it allows parties to send and receive messages, and if both
sender and receiver are honest then the functionality guarantees that the message
is eventually transmitted securely (without any eavesdropping or modification)
and reliably (the transmission cannot be stopped). Then, to achieve the general
“feasibility” results presented in Section 1.2, we take a very general approach that
may be of independent interest: instead of developing full-fledged MPC protocols
for general functionalities, we focus on developing protocols to instantiate the
simpler primitive FStableNet assuming a functionality that models an unstable
network. Once this is done, due to the composability of the UC framework,
any MPC protocol that is computational/statistically/perfectly secure in the
FStableNet-hybrid model composed with our instantiations results in an equivalent
protocol over an unstable network.

Approaching cryptographic problems in a modular way by splitting them into
separate components and approaching each separately is at the crux of many
major results in our field, and it constitutes the main reason of existence of the
UC framework (which we show to maintain its composability properties in our
setting). This elegant approach has several advantages, and our modular approach
in particular also inherits these: First, the compiled network can be used for other
use-cases beyond MPC that may require stability. Second, using off-the-shelf
MPC protocols allows us to directly translate improvements on the “traditional”
MPC setting to improvements over the unstable setting. Finally, it allows us to
focus on the hardest part of dealing with unstable networks, which has to do
with message transmission, while ignoring other “extra” complexities like secure
additions or multiplications. One drawback of our approach, however, is that
there is an (inherent) overhead on the round count. As we discuss below, we
show how to overcome this in some concrete settings by building MPC protocols
directly over the unstable network, instead of compiling the network first. This
shows the potential of the unstable network as a meaningful and efficient model
for realistic communication.

High-level ideas for instantiating FStableNet. We present instantiations of FStableNet

with perfect, statistical and computational security, assuming that for every
round r it holds that |Or ∩ Or+1| is larger than 2t+ 1, t+ 1 and 1, respectively,
and we show these bounds to be optimal.
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The instantiation for computational security is straightforward: the sender
PS creates a signed and encrypted message intended for the receiver. In the next
B rounds, PS attempts to send it to all other parties, as this guarantees he will
be heard at least once, by the B-round assumption. Now for B rounds, parties
echo what they heard in the previous round. Again by the B-round assumption,
the sender is guaranteed to come on-line before this is over, and can pick up
the message. This simple construction is described in detail in Section E in
the Supplementary Material, where we also prove security in our extended UC
framework, defined in detail in Section D in the Supplementary Material.

Of course, this approach does not work for information theoretic security,
and so the solutions for perfect and statistical security are more involved. Some
of the primitives we use for unconditional security have been used many times
before in secure computation, our technical contribution is to use them in new
ways and for different purposes, as we now explain.

For perfect security, the idea is to make use of the method for secret-sharing
using bi-variate polynomials that was first used for verifiable secret sharing
in [4]. It can be thought of as a redundant version of Shamir secret-sharing
where each party Pi receives a polynomial fi(x) rater than a single field element.
This redundancy was originally used in [4] to allow honest parties to detect
inconsistencies introduced by a corrupt dealer. Our observation is that it can also
be used to “keep a sharing alive” over several rounds, even if different parties may
be on-line in different rounds. We do this by asking each party Pi to send fi(j)
to each Pj . If Pj is on-line in the next round and has received enough values, she
can recover her polynomial fj(x) using error correction. Hence, in every round,
enough honest parties will have shares they can send to the receiver, so once
she comes online, she will receive the original secret message. This protocol is
described in full detail in Section 3.

For statistical security, the solution is much more involved, and is presented
in Section 4. Intuitively, one reason why this setting is much more difficult than
the one with perfect security is that the number of honest parties that remain
online from one round to the next is not large enough to enable error-correction,
but instead only ensure error-detection. To overcome this issue, we introduce
the notion of robust secret-sharing with deletions (RSSD), an extension of the
known notion of robust secret-sharing. We show that by using RSSD parties can
communicate, assuming that the rounds in which they are online are not too
far from each other. It happens to be the case that RSSD can be instantiated
using the well-known technique where Shamir-shares are authenticated using
unconditionally secure message authentication codes. But we want to emphasize
that the technical contribution is the insight that RSSD is the right notion,
rather than the instantiation. Finally, we devise a novel and non-trivial recursive
construction that leverages the method using RSSD to communicate between
parties that come online at potentially very different times.5

5 This solution has a communication overhead that is exponential in the bound B. We
leave it as an open problem to design a more efficient solution, however we show a
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We emphasize that the task we are dealing with here is fundamentally different
from Secure Message Transmission (SMT) (see e.g. [23]), where two parties want
to send a message to each other over n channels among which an unknown subset
can be compromised. In SMT these channels are known in advance, and the two
communicating parties are connected “directly” to them. In our case, what could
be regarded as the “channels” is the set of online parties at a given time, which
is unknown to any party and can change arbitrarily in every round. This means
the two communicating parties are not “connected directly” to the channels, and
instead, mechanisms for transferring messages from one set of channels to the
next is required. This is not a concern in SMT.

Better bounds for IT-security with pre-shared keys. Interestingly, for the case
of information-theoretic security we can allow the intersection Or ∩ Or+1 ∩ H
to be smaller, if we assume the parties run first a setup phase where each pair
of parties gets access to a large enough common random key. It turns out that
with this set-up assumption, we can emulate a stable network on top of the
unstable one assuming |Or ∩Or+1 ∩H| ≥ 1 for statistical security and assuming
|Or ∩ Or+1 ∩H| ≥ t+ 1 for perfect security. This also implies protocols without
set-up assumptions: namely, to generate the shared keys, the parties first use
the generic network compilation approach to send keys secretly between each
pair of players. Then, to run the actual MPC protocol, they use the alternative
network emulation using shared keys. In practice, this can be an advantage since
the stricter condition on the number of honest players surviving from one round
to the next, only has to be satisfied during the (short) preprocessing phase where
shared keys are exchanged. The reason why results are different with preshared
keys is that a sender can one-time-pad-encrypt his or her so that privacy is not a
concern anymore, and only integrity must be taken care of. This way, the problem
is simply getting the encrypted message unchanged to the receiver by relaying
the message in every round. See Section G in the Supplementary Material for
details.

Less rounds in the preprocessing model (for perfect security). The modular
approach we have taken of first instantiating FStableNet over an unstable network
is clean and powerful as it allows, in principle, the deployment of any synchronous
interactive protocol over an unstable network where parties may drop and return
according to an adversarially-chosen schedule. However, this comes at a price:
the round complexity of the new MPC protocol is a factor θ(B) larger than
that of the underlying protocol (recall that B is the maximal number of rounds
an honest party can stay offline). This is unavoidable and stems from the fact
that communication between two parties can be delayed by an amount of Ω(B)
rounds. To address this, we also consider the construction of more efficient MPC
protocols directly on top of an unstable network, without first compiling a stable
network and without assuming parties eventually rejoin the computation, and we

more efficient protocol (in the statistical setting) by generating pre-shared secret key
material, see Section G.
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present a concrete construction in the perfect security setting in Section 5. The
resulting protocol requires certain preprocessed material which can be generated
in a preprocessing phase by running the existing techniques we have discussed so
far. Once this is set, the protocol makes progress regardless of whether parties
eventually rejoin the computation, and all the parties who are online at the end
of the protocol are guaranteed to obtain output.

To design our “direct” perfectly secure protocol in the preprocessing model,
we start from the standard idea of preprocessed multiplication triples. We then
go through the circuit in the usual way, spending a triple for every multiplication
gate. We use sharing by bivariate polynomials to transfer state from one round to
the next, so the protocol can proceed despite the fact that different sets of honest
parties may be online. At a high level, we reuse the technique sketched before in
which each party has a “share” f(x, i) under a symmetric polynomial f(x, y), but
this time the underlying secret is an intermediate value of the computation. Using
the same “transition” mechanism as before, the parties can transfer the shared
state to the next set of online parties, which, coupled with a method to open
masked shared values for Beaver-based multiplication towards this upcoming set
of parties, enables computation to make progress in a “layer-by-layer” fashion.
This leads to a protocol where the computation phase has essentially the same
number of rounds as that for a stable network. This compares favourably to our
generic compilation where the round complexity is multiplied by 2B. We present
our protocol in Section 5.

1.4 Related Work

In what follows we discuss some of the works that study a similar problem to the
one we address in this work. The description in this section is relatively lightweight,
and we defer a more detailed analysis in Section A in the Supplementary Material.

Fail-stop adversaries that may cause some parties to stop during a computation
were considered for the first time in [12], but this and subsequent works assume
parties know when a given party fail-stopped, plus these parties are not able to
return the computation. A recent model in [1] considers an adversary that can
set parties to be offline at any round, but as before these parties cannot return
the computation, plus that work focuses on computational assumptions, making
use of strong homomorphic encryption tools. In the “sleepy model” of [16] parties
who drop can return. However, a crucial difference with our model is that, in our
case, parties who return after being offline may not receive the messages sent to
them before becoming onine, while in [16] these parties (who are not “offline” but
“slow”) do receive these messages. This makes the problem considerably easier,
plus the authors consider only computational assumptions. Finally, in [8,22] a
new model is considered where the set of parties can change dynamically from
one round to the next. In that work, the set of “online” parties in a given round
is not adversarially chosen, but rather set in advance and used in the design of
the protocol. As a result, this work may not model adversarial attacks to the
underlying network, and may be less realistic in these settings. Furthermore,
the protocol in [8], although statistically secure, only achieves security with
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(d) Our model

Fig. 2 – Our model compared to other models in the literature. Parties inside
the marked region are online, and messages represented by dashed arrows are
dropped. In Lazy-MPC, Fig. 2a, the parties cannot return. In the model of Guo
et al., Fig. 2b, the parties can return but it is assumed they receive the messages
sent to them while they were offline. In the Fluid-MPC model, Fig. 2c, in each
round the set of parties who send messages may differ from the set of parties who
receive these messages, but the identities of these parties must be known by the
protocol. In our model, Fig. 2d, the parties can return to the computation and it
is not assumed that they receive the messages sent to them while they were offline.

abort. Our compilation-based techniques allows us to transfer any result in the
standard synchronous setting (e.g. protocols with guaranteed output delivery) to
the unstable networking setting.

The “You Only Speak Once” (YOSO) model for MPC is introduced in [14].
Our model assumes a somewhat less powerful adversary who must allow a physical
party to come back after being offline, while in [14] this adversary can take a party
down as soon as they speak, and progress is guaranteed by means of assigning
roles “on-the-fly” in certain randomized fashion. Their model does not allow for
perfect security, while in our case, on top of achieving much easier protocol design,
we can obtain information theoretic security based only on point-to-point secure
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channels, and we allow for termination such that all parties can provide input
and get output. Finally, the “constrained parties” and “full-omission parties”
from [19] and [24] are such that whose messages are selectively blocked by the
adversary, as in our setting. However, in these works the adversary choses the
subset of offline parties at the beginning of the protocol execution, while in our
case this subset can change adaptively as the protocol is run. This is in fact
one of the main sources of difficulties when designing protocols in our setting,
since a party who is “full-omission-corrupt” can stop being so, and non-corrupted
parties can later on become full-omission-corrupt. We remind the reader to visit
Section A in the Supplementary Material for an even more detailed discussion
on related work.

We present in Figure 2 a more graphical comparison of our model with respect
to the works of [1,16,8].

1.5 Preliminaries and Organization

Let P = {P1, . . . , Pn} be the set of all parties, and H be the set of honest
parties. We assume that the adversary corrupts t out of the n parties. Let F
be a finite field with |F| > n. Due to space limitations we assume background
on Shamir secret-sharing, with details given in Section B in the Supplementary
Material. For our results in the computational setting, we assume the existence of
a CPA-secure public key encryption scheme (enc, dec), and a EUF-CMA signature
scheme (sign, verify). The formal definitions of these primitives and their security
is standard and can be found in any modern book in Cryptography (e.g. [17]).

Regarding organization, we present in Section 2 the core ideas of our unstable
network, together with a proof of the composition theorem in our new networking
model. A more complete and formal description is given in Section D in the
Supplementary Material. Then, in Section 3 we present our first instantiation
of the functionality for a stable network, FStableNet, in the setting with perfect
security. This also includes the impossibility results that shows that the bound
|Or ∩ Or+1 ∩ H| ≥ 2t + 1 is optimal. At that point, we believe the reader has
grasped the main ideas behind our model and our constructions. Past the 15th
page, in Section 4 we present our instantiation of FStableNet for statistical security,
which uses the perfectly secure construction as a motivating starting point but
has crucial differences due to the lack of redundancy to perform error correction.
Then, in Section 5 we revisit the perfectly secure case by presenting a direct MPC
construction without compiling the stable network first. This cleverly reuses some
ideas from Section 3.

2 Networking Model

In this section we provide the different functionalities we will make use of in our
work, together with a sketch of how to model the type of adversaries we consider
in the UC framework [7]. Importantly, we provide a proof of the composition
theorem in our model in Section 2.3. This is central in our work since this shows
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that our overall approach of first compiling the network from unstable to stable,
and then using a generic MPC protocol on top, does result in a secure protocol
overall. A much more detailed description of our networking model is presented
in Section D in the Supplementary Material.

Our starting point is a synchronous network, where an upper bound ∆ on
the time it takes for a message to be transmitted between any pair of parties is
known. The communication pattern proceeds in rounds, identified with integers
1, 2, 3, . . ., each taking ∆ time and consisting of all parties sending messages to
each other at the beginning of each round. Since each round r takes ∆ time,
it is guaranteed that all the messages sent at the beginning of round r will be
delivered within the same round r.

A synchronous network as described above is modeled by a functionality that
we denote by FStableNet (described in detail in Section D.1 in the Supplementary
Material). Jumping ahead, it is this functionality the one we will implement in a
secure fashion on top of the unstable network we will describe next. Before we
proceed to defining an unstable network, however, we remark that we consider
a family of functionalities {FPi→Pj

StableNet}ni,j=1 that models a synchronous channel
from Pi to Pj only. It is obvious that FStableNet can be securely instantiated in the
{FPi→Pj

StableNet}ni,j=1-hybrid model, so to instantiate FStableNet, it suffices to provide
an instantiation of all directed channels between each pair of parties. This is the
approach we take in this work.

2.1 Unstable Networks
An unstable network is formalized as a functionality, that we denote by FUnstableNet.
In each round, the functionality proceeds as follows (more details are given in
Section D.2 in the Supplementary Material):

– At the beginning of the round the environment, denoted by Z, specifies a
subset of parties Or ⊆ P. This is intended to represent the online parties in
round r.

– For every Pi, Pj ∈ Or ∩H, the functionality delivers messages sent from Pi

to Pj in the given round.
– For every Pi and Pj with either one of the two parties in (Or)

c ∩ H, the
environment can choose whether to drop the message sent from Pi to Pj in
the given round.

2.2 A Stable Network on Top of an Unstable Network
As we have mentioned already, our approach is to instantiate FStableNet in the
FUnstableNet-hybrid model. In this model, and considering an active adverary, there
exist computationally secure protocols with t < n (e.g. [6]), statistically secure
protocols with t < n/2 (e.g. [15,5])6, and perfectly secure protocols with t < n/3

6 These protocols require an additional broadcast channel which, unlike in the other two
settings, cannot be instantiated from point-to-point channels. Since such channel must
be assumed anyway, we do not bother with instantiating it in the FUnstableNet-hybrid
model. We elaborate in Section D.4 in the Supplementary Material.
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(e.g. [3]). It turns out that composability still holds even after extending the
UC framework with the environments from previous sections, a fact that we
prove in Section 2.3 in the Supplementary Material. As a result, a protocol that
instantiates FStableNet in the FUnstableNet-hybrid model would carry the results
above from the FStableNet networking setting to FUnstableNet, effectively enabling
secure MPC over an unstable network. Furthermore, we remark that, as we have
already hinted, to instantiate FStableNet it suffices to provide instantiations to the
individual channels FPi→Pj

StableNet for i, j = 1, . . . , n.

B-termination assumption. If the adversary is allowed to set a given party
Pi as offline forever, it is obvious that no stable channel to or from Pi could
be instantiated. To address this, we assume that the adversary, or rather, the
environment, enables parties to become online “every once in a while”. This is
captured by the B-assumption, defined next.

Definition 1. Let B be a positive integer. We say that an adversary respects the
B-assumption if, for every party Pi and for every non-negative multiple of B,
r ·B, there exists 1 ≤ k ≤ B such that Pi ∈ Or·B+k.

Consider a sender PS who wishes to send a message to a receiver PR. If it
is the adversary’s goal to delay this delivery as much as possible, while still
respecting the B-assumption, then a possible scheduling could consist of the
following: among the rounds r = 1, . . . , B, only set PS online in round B, and
PR in round 1; among the rounds r = B+1, . . . , 2B, only set PR online in round
2B. With this scheduling, we see that PR cannot get the message until round
2B, because it was only online in two rounds, 1 and 2B, but it cannot receive
the message on round 1 since up to that point PS has not been online in order
to send the message. Our protocols from Sections E, 3 and 4 guarantee that
each message is delivered within 2B rounds, which is optimal according to the
reasoning above.

Finally, we stress that the B-assumption is only needed to ensure all honest
parties are guaranteed to provide input and receive output, and we recall that,
in Section 5, we present a perfectly secure MPC protocol (not an instantiation
of FStable) that does not require the B-assumption and is able to make progress
just assuming that the intersection of online parties from round to round is
large enough. Furthermore, the 2B lower bound only applies to the instantiation
of FStableNet in the FUnstableNet-hybrid model. For general MPC, as we show in
Section 5 for the case of perfect security, the parties can make progress on the
computation directly over the unstable network without paying a penalty in the
round complexity, spending one round per multiplication layer in the circuit. The
2B-round overhead will only be apparent in the output phase when requiring all
parties to receive output.

2.3 The Composition Theorem for Unstable Networks

Recall that our main goal is to instantiate the FStableNet functionality in the
FUnstableNet-hybrid model, with the ultimate goal of, as we present in Section D.3 in
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the Supplementary Material, leveraging the existence of different MPC protocols
over traditional stable networks to obtain equivalent protocols over unstable
networks. This, however, requires the composition theorem to hold, which states
that composing protocols that are proven secure individually leads to a secure
protocol. This is known to hold in the “standard” UC framework (as suggested by
the naming Universal Composability), but it is crucial to argue that the changes
we have introduced in order to model instability do not affect this result. This is
indeed the case, as we now show.

The Composition Theorem, as stated (and proven) in [9], shows that compo-
sition holds as long as the set of environments involved constitutes what is called
an environment class. Our approach consists then of simply showing that the set
of environments we have defined in our modeling of an unstable network forms
indeed an environment class. We argue this in what follows.

Environment classes. We first introduce the notion of an environment class,
presented as Definition 4.17 in [9]. A set of environments Env forms an environment
class if for every Z ∈ Env, every protocol Π and every simulator S, the composed
automatas Z �Π and Z � S both belong to Env. We will see below where the
notion of an environment class becomes relevant in the proof of the composition
theorem.

The composition theorem. Now we discuss the composition theorem together
with its proof. We remark that this discussion is kept at an intuitive level, and
its main goal is to convince the reader that, for the composition theorem to hold,
it suffices to show that the set of environments under consideration constitutes
an environment class. For all the details that are left out of the discussion we
refer the reader to [9].

Theorem 1 (Composition Theorem, Thm. 4.20 in [9]). Let Env be an
environment class. Let F , H and R be functionalities. Let ΠF be a protocol
that securely instantiates F in the R-hybrid model, and let ΠR be a protocol
that securely instantiates R in the H-hybrid model. Then the composed protocol
ΠR �ΠF securely instantiates F in the H-hybrid model.

Proof (Sketch). For the sake of illustrating where the assumption that Env is
an environment class plays in, we present the intuition behind the proof of the
composition theorem. Since ΠF securely instantiates F in the R-hybrid model,
we have that there exists a simulator SF such that for any ZF ∈ Env, the random
variables ZF �ΠF � R and ZF � SF � F have a “small” statistical distance, a
situation we denote by ZF �ΠF �R ≡ ZF � SF � F . Similarly, since ΠR securely
instantiates R in the H-hybrid model, there exists a simulator SR such that for
any ZR ∈ Env, it holds that ZR �ΠR � H ≡ ZR � SR � R.

We claim that the composed automata SF �SR is a simulator for the protocol
ΠF�ΠR, that is, for any Z ∈ Env it holds that Z�(ΠF�ΠR)�H ≡ Z�(SF�SR)�F .
To see this, first we notice that, since Env is an environment class, we have that
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ZF := Z�SR and ZR := Z�ΠF both belong to Env, so using the two expressions
from before:

Z � (ΠF �ΠR) � H ≡
ZR︷ ︸︸ ︷

(Z �ΠF ) �ΠR � H ≡
ZR︷ ︸︸ ︷

(Z �ΠF ) �SR � R
≡ (Z � SR)︸ ︷︷ ︸

ZF

�ΠF � R ≡ (Z � SR)︸ ︷︷ ︸
ZF

�SF � F ≡ Z � (SF � SR) � F .

ut

“Unstable” environments form an environment class. Given what we
have seen so far, in order to show that the composition theorem holds in our new
unstable networking model, it suffices to show that our custom environments,
as defined formally in Section D.2 in the Supplementary Material, constitute
an environment class Env. Consider Π a protocol and S a simulator, and let
Z ∈ Env. Our goal is to show that both Z �Π and Z � S are in Env.

Z �Π ∈ Env. We first show that the composition of Z with a protocol Π lies
again in Env. This is relatively simple, given that the composition of Z with a
protocol does not affect the ports the environment has with a given functionality,
so if the environment sends the commands such as erase or schedule, it will keep
doing so after composition with Π. This shows that Z �Π ∈ Env.

Z � S ∈ Env. The composition of an environment with a simulator is slightly
more difficult to tackle, mainly because the simulator connects to Z via the ports
where the latter would communicate the unstable-network-related commands.
To fix this, we simply expand the definition of the simulators so that they are
required to forward all the unstable-network-related commands that Z issues to
the functionality at hand. This way, the composed automata Z �S would provide
the same interface as Z, which implies that Z � S ∈ Env.

This modification can be regarded as an artifact to make the formal model
work, and it is analogous to (and in fact, must be performed in addition to) the
clock-preserving property presented in [9], which requires the simulator to forward
the clockin and clockout commands that model synchrony from the environment
to the functionality under consideration. However, notice that in the case of
synchrony, it is natural that the functionality at hand knows how to handle
these synchrony-related commands (e.g. an OT functionality may use the clock
commands to determine when to receive inputs and when to send outputs), but
in the case of an unstable network, commands like erase or schedule may not be of
any use to many functionalities. For example, FStableNet certainly does not know
how to handle these commands, since they only make sense in the context of an
unstable network. Nevertheless, we can safely assume this type of functionalities
ignore these unstable-network-related commands.
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3 Instantiating FPS→PR
StableNet with Perfect Security

In this section we take care of instantiating the functionality for a stable network
with perfect security. First, in Section 3.1 we discuss the simplest setting of
passive security. Then, in Section 3.2 we extend this to active security, while
retaining perfect simulation.

3.1 Passive Security

Assuming a passive adversary, and assuming that |Or ∩ Or+1| ≥ t + 1 for all
r > 0, our protocol to instantiate FPS→PR

StableNet with perfect security is obtained as
follows. At every round, PS tries to secret-share its message m towards all the
parties, which succeeds in the round in which PS comes online. In the following
rounds, the parties try to send their shares of m to PR, who is able to get them
when it comes online, and hence is able to reconstruct m. The only missing step
is that, when PS secret-shares m, only the parties online in the current round
are able to receive the shares. To alleviate this issue, the parties in each round
“transfer” the shared secret to the parties that are online in the next round. This
is done via a simple resharing protocol.

Protocol Πperf,passive
StableNet (PS , PR,m)

– On input (m), PS samples random elements cij ∈ F for i, j = 0, . . . , t,
subject to c0,0 = m and cij = cji, and lets f(x, y) =

∑t
i,j=0 cijx

iyj . Then,
in rounds 1, . . . , B, PS sends f(x, i) to each party Pi.

– Every party Pi initializes a variable fi = ⊥. In rounds 1, . . . , 2B, Pi does
the following:
• If fi is not set already:

∗ If Pi receives a polynomial fi(x) = f(x, i) from PS , then Pi sets
fi = fi.

∗ Else, if Pi receives messages mj ∈ F from at least t+ 1 parties Pj ,
then Pi sets fi to be the polynomial fi(x) such that fi(j) = mj

for the first t+ 1 messages mj .
• If fi 6= ⊥, then Pi sends fi(j) to each party Pj and fi(0) to PR.

– In rounds B + 1, . . . , 2B, PR does the following: If PR receives messages
mj ∈ F from at least t+ 1 parties Pj , then PR computes the polynomial
f0(x) such that f0(j) = mj for the first t + 1 messages mj , and outputs
m = f0(0).

We remark that, although it is not explicitly written in the protocol description,
whenever it is written that Pi sends a message to Pj , this is done by invoking
the FUnstableNet functionality.
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Theorem 2. Assume that |Or ∩ Or+1| ≥ t+ 1 for every r > 0. Then, protocol
Πperf,passive

StableNet (PR, PS) instantiates the functionality FPR→PS

StableNet in the FUnstableNet-
hybrid model with perfect security against an adversary passively corrupting t < n
parties.

Proof. We claim that, in an execution of protocol Πperf,passive
StableNet (PR, PS), PR learns

the value of m at the end of the interaction, and the adversary does not learn
the value of m, unless PS or PR are passively corrupt.

To see this, let rS ∈ {1, . . . , B} be the smallest value such that PS ∈ OrS ,
which exists due to the B-assumption. We claim the following invariant: at the
end of every round r with rS ≤ r ≤ 2B, each Pi ∈ Or has fi 6= ⊥, and these
polynomials satisfy that fi(x) = f(x, i), where f(x, y) is the polynomial sampled
by PS at the beginning of the protocol. To see this we argue inductively. First,
notice that the invariant holds for r = rS given that parties Pi ∈ OrS receive this
directly from PS . For the inductive step assume that the invariant holds for some
round r, that is, each party Pi ∈ Or has set its variable fi, and fi(x) = f(x, i).
In particular, this is held by the parties in Or ∩Or+1, so each party Pi in this set
sends fi(j) to every other party Pj in round r+1, which is received by the parties
in Or+1. Since |Or ∩Or+1| ≥ t+1, we see that each party Pj ∈ Or+1 receives at
least t+1 values fi(j) = f(j, i) = f(i, j), which enables Pj to interpolate f(x, j),
which is set to fj . We see then that the invariant is preserved.

Finally, let rR ∈ {B + 1, . . . , 2B} be a round in which PR ∈ OrR , which is
guaranteed from the B-assumption. By the invariant, the parties in OrR−1 have
set their variables fi at the end of round rR − 1 correctly, so in particular the
parties in OrR−1 ∩OrR will send fi(0) = f(0, i) to PR in round OrR . Since there
are at least t+1 such parties, this means that PR gets at least t+1 values f(0, i),
which allows PR to interpolate m = f(0, 0).

The fact that the adversary does not learn anything if both PS and PR are
honest follows from the fact that its view is limited to t polynomials of the form
f(x, i), which look uniformly random. We remark that with the analysis above,
it is straightforward to set up a simulator S for the proof. ut

Optimality of |Or ∩Or+1| ≥ t+1. Now we show that, in order to instantiate
FPS→PR

StableNet with perfect security against a passive adversary, the assumption that
the adversary’s schedule satisfies |Or∩Or+1| ≥ t+1 in every round r is necessary.
However, we have to be careful about what this should actually mean: consider an
adversary who respects the B-assumption and breaks the intersection condition
in one, or some finite number of rounds. Now, if the sender happens to start our
protocol for sending a message after the last bad round, it will clearly succeed.
So we cannot hope to show that communication between sender and receiver is
impossible, unless we consider an adversary who keeps breaking the intersection
condition “for ever”. So we construct below an adversary that breaks this condition
once every B rounds, and by doing so it is able to learn the message sent by an
honest sender using any instantiation of FPS→PR

StableNet.
Assume the existence of an implementation of FPS→PR

StableNet with perfect security
that tolerates an adversary that schedules the parties as follows: (1) The adversary
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chooses a set A1 ⊂ P such that |A1| = t+ 1, PS ∈ A1 and Ok·B = A1 for k > 0,
and (2) the adversary chooses a set A2 such that A1 ∪A2 = P and |A1 ∩A2| ≤ t
such that PR ∈ A2, PS /∈ A2 and Or = A2 for every r that is not of the form k ·B.
Notice that this scheduling respects the B-assumption. Now, suppose that PR

learns the output in round rR = k ·B+ ` for some k and ` with 1 ≤ ` ≤ B. Since
during the whole protocol PR only hears from the parties in A2, this means that
these parties together had enough information to reconstruct the secret in round
rR. However, these parties only hear from PS through A1∩A2, which means that
at a given point in the protocol this set had enough information to reconstruct
the secret. This is a contradiction since |A1 ∩A2| ≤ t and PS , PR /∈ A1 ∩A2, and
due to privacy no set of at most t parties that does not contain the sender nor
the receiver can reconstruct the message.

We remark that this lower bound rules out general MPC over unstable
networks when |Or ∩ Or+1| ≤ t, since FPS→PR

StableNet is a particular case of general
MPC. This can be seen even more clearly since what the lower bound actually
shows is that, if the minimum intersection size is not met, then the “state” of the
computation is either leaked, or lost, which rules out general MPC. Indeed, our
perfectly secure protocol from Section 5, which does not use FStableNet directly,
still requires |Or ∩ Or+1| ≥ t+ 1 to hold for every round.

3.2 Active Security

The construction we presented in the previous section does not carry over to
the actively secure setting, given that a corrupted party Pi is not forced to send
correct evaluations fi(j). In this section we show an extension of this protocol
that rules out this case. We assume that, for every r, |Or ∩ Or+1 ∩H| ≥ 2t+ 1,
which should be contrasted with the weaker condition in the passively secure
setting of |Or ∩ Or+1 ∩ H| ≥ t + 1. The use of a larger threshold allows us to
make use of error correction, which allows the parties to reconstruct the right
polynomials at each step of the protocol regardless of any incorrect value sent by
corrupt parties.

The protocol for active security, Protocol Πperf,active
StableNet (PS , PR,m), is similar to

Protocol Πperf,passive
StableNet (PS , PR,m), except for the following crucial change: when

each Pi collects the messages mj ∈ F for Pj received in a given round, only if
there are at least 2t+ 1 such messages, Pi performs error correction on these to
reconstruct a polynomial fi(x) such that fi(j) = mj for every received message
mj , and if this succeeds, then Pi sets fi = fi. Similarly, only if PR receives at
least 2t + 1 messages {mj}j , then PR performs error correction to recover a
polynomial f0(x) such that f0(j) = mj for every received message mj , and if
this succeeds then PR outputs m = f0(0).

Theorem 3. Assume that |Or∩Or+1∩H| ≥ 2t+1 for every r > 0. Then, proto-
col Πperf,active

StableNet (PR, PS) instantiates the functionality FPR→PS

StableNet in the FUnstableNet-
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hybrid model with perfect security against an adversary actively corrupting t < n/3
parties.7

Proof. We claim that, in an execution of protocol Πperf,active
StableNet (PR, PS), PR learns

the value of m at the end of the interaction, and, if PR and PS are honest, the
adversary does not learn the value of m.

To see this, let rS ∈ {1, . . . , B} be the smallest value such that PS ∈ OrS .
We claim the following invariant: at the end of every round r with rS ≤ r ≤ 2B,
each Pi ∈ Or ∩H has fi 6= ⊥, and these polynomials satisfy that fi(x) = f(x, i),
where f(x, y) is the polynomial sampled by PS at the beginning of the protocol.
We use induction in order to show that the invariant holds. First, notice that the
invariant is true for r = rS given that parties Pi ∈ OrS ∩H receive the polynomial
directly from PS . For the inductive step assume that the invariant holds for some
round r, and we show that it holds for round r+1. By the hypothesis assumption
each party Pi ∈ Or ∩H has set its variable fi, and fi(x) = f(x, i). In particular,
this holds for the parties in Or ∩ Or+1 ∩H, which means that each party Pi in
this set sends fi(j) to every other party Pj in round r + 1, which is received by
the parties in Or+1. Since |Or ∩ Or+1 ∩H| ≥ 2t+ 1, each party Pj ∈ Or+1 ∩H
receives at least 2t + 1 correct values fi(j) = f(j, i) = f(i, j). As discussed in
Section B, even if Pj receives more shares, some of them potentially incorrect,
Pj can still recover f(x, j) via error correction, as instructed by the protocol. We
see then that for Pj fj = f(x, j), so the invariant is preserved.

Now, let rR ∈ {B + 1, . . . , 2B} be a round in which PR ∈ OrR . By the
invariant, the parties in OrR−1 have set their variables fi at the end of round
rR − 1 correctly, so in particular the parties in OrR−1 ∩ OrR ∩ H will send
fi(0) = f(0, i) to PR in round OrR . Since there are at least 2t+ 1 such parties,
this means that PR gets at least 2t+ 1 correct values f(0, i), which allows PR to
error-correct m = f(0, 0). The fact that the adversary does not learn anything if
both PS and PR are honest follows as in the proof of Theorem 2.

As with the case with passive security, the analysis above enables the con-
struction of a simulator S for the proof in a straightforward manner. As with
the proof of Theorem 8, the main complication with the actively secure setting
in contrast to the scenario with passive security is that a corrupt PS may send
inconsistent shares in the first round in which it becomes online. However, in this
case, S can simply emulate the protocol exactly as the honest parties would do,
and check if the receiver would be able to error-correct or not at the end of the
execution. Only if this is the case, S would make use of the change command in
the FPS→PR

StableNet functionality to set PS ’s message to be the one that is recovered by
PR, and then it would clock-out PR if PR is honest. ut

Optimality of |Or ∩Or+1∩H| ≥ 2t+1. As in Section 3.1, we show that the
bound |Or∩Or+1∩H| ≥ 2t+1 is necessary for essentially all rounds by presenting
an adversary that breaks the correctness of any perfectly secure implementation
7 In principle the restriction is simply t < n, but we have that n − t = |H| ≥
|Or ∩ Or+1 ∩H| ≥ 2t+ 1, so n ≥ 3t+ 1.
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of FPS→PR

StableNet against active adversaries, by using a scheduling that breaks the
condition above while still respecting the B-assumption.

The adversary’s scheduling is as follows. For simplicity let us assume that
n = 5 and t = 1, although the argument can be extended easily to any number
of parties. Assume that P1 is the sender, P5 is the receiver.

– Let Ok·B = {P1, P2, P3, P4} for k = 0, 1, . . ..
– Let Or = {P2, P3, P4, P5} for every r that is not of the form r0+k ·B. Notice

that |Ok·B ∩ Ok·B+1 ∩ H| = |{P3, P4}| = 2 = 2t where Ok·B ∩ Ok·B+1 =
{P2, P3, P4}.
Notice that this scheduling respects the B-assumption. Suppose that there

is a protocol that instantiates FPS→PR

StableNet with perfect security against an active
adversary, supporting the scheduling above. We will show a contradiction arising
from the fact that the adversary can actively cheat.

Suppose that PR learns the output in round rR = k0 ·B + ` for some k0 and
` with 1 ≤ ` ≤ B. Consider two different messages m 6= m′, and let Mj and M ′

j

for j = 2, 3, 4 be the concatenation of the messages sent by Pj in round k ·B to
the parties in Ok·B ∩ Ok·B+1 = {P2, P3, P4} for k = 0, . . . , k0, when the inputs
of PS to the protocol are m and m′ respectively.

First, we claim that the messages (M2,M3,M4) (resp. (M ′
2,M

′
3,M

′
4)) must

uniquely determine the secret m (resp. m′). To see why this is the case, observe
that the receiver, P5, only ever hears from the parties P2, P3, P4, but these
in turn only hear from the sender, P1, through the messages (M2,M3,M4)
(resp. (M ′

2,M
′
3,M

′
4)), so these messages have to carry enough information to

determine the secret.
Now, due to privacy, no single party must be able to determine whether the

message sent is m or m′. If P3 was corrupt and if M3 6= M ′
3 for all possible

initialization of all random tapes, then the adversary would be able to distinguish
the message by simply looking at whether M3 or M ′

3 is being sent by P3. Hence,
we see that there must exist an initial random tape for which M3 = M ′

3. For the
rest of the attack we assume this is the case.

With the observations we have seen so far, a corrupt party P2 can mount the
following attack: If P2 sees it needs to send M2, it will send M ′

2 instead. Since the
protocol withstands an active attack, the transcript (M2,M3,M4), which would
be transformed to (M ′

2,M3,M4) after the attack, would uniquely determine m.
On the other hand, the very same transcript can arise from an actively corrupt
P4 that modifies the message M ′

4 when the message is m′ to M4 (recall that
M ′

3 = M3). In this case, due to the resilience of the protocol against one active
attack, (M ′

2,M3,M4) should reconstruct to the same message as (M ′
2,M

′
3,M

′
4),

which is m′. This is, however, a contradiction, since the same transcript cannot
lead to two different messages.

4 Instantiating FPS→PR
StableNet with Statistical Security

The goal of this section is to develop an information-theoretic protocol that
instantiates FPS→PR

StableNet against active adversaries, but replacing the condition
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|Or ∩ Or+1 ∩ H| ≥ 2t + 1 from Section 3.2 with |Or ∩ Or+1 ∩ H| ≥ t + 1. As
shown in Section 3.2, perfect security cannot be achieved in this setting, so we
settle with statistical security.

Our construction at a high level works as follows. First, we design a pair of
functions f(m) = (m1, . . . ,mn) and g(m′

1, . . . ,m
′
n) = m′ such that, if m′

i = mi

for at least t + 1 (unknown) indices, then m′ = m. Also, it should hold that
no set of at most t values mi leaks anything about m. Assuming the existence
of such pair of functions, we can envision a simple construction of a protocol
Π1(PS , PR,m) that guarantees that a receiver PR gets the message m sent by
a sender PS , as long as PR comes online either in the same round where PS is,
or in the next one. This operates as follows: PS computes (m1, . . . ,mn) = f(m),
and, in every round, PS sends mi to party Pi, as well as m to PR. Once a party
Pi receives mi, it sends this value to PR in the next round. Let m′

1, . . . ,m
′
n be

the values received by PR when it comes online, where m′
i = ⊥ if PR does not

receive a message from Pi (notice that m′
i could differ from mi if Pi is actively

corrupt). Since |Or ∩ Or+1 ∩H| ≥ t+ 1, we see that at least t+ 1 of the m′
i are

equal to mi, so PR can output m = g(m′
1, . . . ,m

′
n).

Now, we would like to “bootstrap” the protocol Π1 into a protocol Π2(PS , PR,m)
that guarantees that a receiver PR gets the message m sent by a sender PS ,
as long as PR comes online either in the same round where PS is, in the next
one, or in the one after that. To this end, the parties run Π1(PS , PR,m), which
guarantees that PR gets m if it comes online in the same round as PS , or at
most in the round after. However, to deal with the case in which PR comes
online two rounds after PS , the parties also execute the following in parallel: PS

computes (m1, . . . ,mn) = f(m) and executes Π1(PS , PR,mi) for i = 1, . . . , n.
This ensures that every Pi ∈ O2 will get mi, and at this point, the parties in
O3 ∩O2 can send these to PR in the third round. Upon receiving m′

i, PR outputs
m = g(m′

1, . . . ,m
′
n).

To analyze the protocol Π2, assume for simplicity that PS ∈ O1. We first
observe that if PR ∈ O1∪O2, then PR gets m as Π1(PS , PR,m) is being executed.
If, on the other hand, PR ∈ O3, PR gets m as g(m1, . . . ,mn) since the parties
Pi ∈ O2 get mi from Π1(PS , PR,mi). This idea can be iterated to obtain protocols
that deliver messages as long as PR comes online at most k rounds after PS

comes online.
In what follows we present the tools necessary to formalize this idea, and

later discuss the actual protocols for instantiating FPS→PR

StableNet.

Robust Secret Sharing. The functions f and g discussed above are instanti-
ated using robust secret-sharing, which are techniques that enables a dealer to
distribute a secret among multiple nodes in such a way that (1) no subset of at
most t nodes learn the secret and (2) if each node sends its share to a receiver, no
subset of at most t corrupt nodes can stop the receiver from learning the correct
secret.

The definition we consider here is more general than standard definitions
from the literature since, at reconstruction time, we allow for missing shares,
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and if there are many of these we allow the reconstruction algorithm to output
an error signal ⊥. However, if there are enough honest non-missing shares, then
reconstruction of the correct message must be guaranteed. This is needed since,
in our protocols, there are some rounds in which parties may not receive enough
shares to reconstruct the right secret, and they must be able to detect this is the
case to wait for subsequent rounds where more shares are available.

Definition 2. Let A ⊆ {1, . . . , n} with |A| ≤ t. A robust secret-sharing (RSS)
scheme with deletions having message space M and share space S is made up
of two randomized polytime functions, share : M → Sn and rec : Sn → M,
satisfying the properties below for any not-necessarily-polytime algorithm A. Let
(s1, . . . , sn) = share(m). Let Bc = A(missing, {sj}j∈A) ⊆ P denote a set chosen
by A of shares to be deleted. Let (s′1, . . . , s

′
n) be defined as follows: s′i = ⊥ for

i ∈ Bc, s′i = A(i, {sj}j∈A) ∈ S for i ∈ A ∩B and s′i = si for i ∈ Ac ∩B.

– Privacy. The distribution of {si}i∈A is independent of m.
– Error detection. With probability 1− negl(κ), rec(s′1, . . . , s′n) outputs either

m or ⊥.
– Guaranteed reconstruction. If |Ac∩B| > t then, with probability 1−negl(κ),

it holds that m = rec(s′1, . . . , s
′
n).

Several robust secret-sharing constructions can be found in the literature.
However, since we consider a non-standard version of robust secret-sharing, we
present below a concrete construction that fits Definition 2, which is motivated
on the so-called information-checking signatures from [21]. We remark that any
instantiation of Definition 2 will suffice for our stable network construction, with
better parameters such as share length of computational complexity directly
leading to direct improvements on our protocols.

The following proposition shows that the scheme (share, rec) is an RSS scheme
with error detection.

Proposition 1. The construction (share, rec) from above is an RSS scheme with
deletions.

Proof. Let share(m) = (s1, . . . , sn) with si = (mi, (αi, {βij}nj=1), {τij = αjmi +
βji}nj=1). First we argue privacy. It is clear that the n Shamir shares m1, . . . ,mn

do not leak anything about the secret m towards the adversary. Additionally, the
keys (αi, {βij}nj=1) are simply random values, which do not leak anything either.
Finally, each Pi receives {τij = αjmi + βji}nj=1, but these only involve mi, which
is already known by Pi. Notice that, since βji is uniformly random and unknown
to Pi (if j 6= i), Pi learns no information about αj . This will be crucial since, as
we show below, αj is used to prevent Pi from changing their share.

Now, to see the guaranteed reconstruction property, let (s′1, . . . , s
′
n) be as

in Definition 2. Assume that |Ac∩B| > t, we want to show that rec(s′1, . . . , s′n) out-
puts m in this case. Let us write each s′i for i ∈ A∩B as s′i = (m′

i, (α
′
i, {β′

ij}nj=1), {τ ′ij}nj=1).
We claim that if m′

i = mi + δi with δi 6= 0, then τ ′ij = αjm
′
i + βji for at least

j ∈ Ac ∩B can only happen with negligible probability. To see why this holds, let
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RSS scheme with deletions: (share, rec)

share(m): Compute Shamir shares m1, . . . ,mn of m. For each i ∈ {1, . . . , n},
sample (αi, {βij}nj=1), and let, for every i, j ∈ {1, . . . , n}, τij = αjmi + βji.
Return (s1, . . . , sn), with si = (mi, (αi, {βij}nj=1, {τij}nj=1).

rec(s′1, . . . , s
′
n). Let B = {i : s′i 6= ⊥}. Parse each s′i for i ∈ B as

(m′
i, (α

′
i, {β′

ij}nj=1, {τ ′
ij}nj=1). Then proceed as follows:

1. If |B| ≥ t + 1: for every i ∈ B do the following. If α′
jm

′
i + β′

ji
?
= τ ′

ij does
not hold for at least t+ 1 values of j ∈ B, then set m′

i = ⊥.a
2. After this process, if |{m′

i : m′
i 6= ⊥}| > t, then using any subset of this

set of size t+ 1 to interpolate a polynomial f(x) of degree at most t, and
output m = f(0). Else, output ⊥.

a In particular, if 0 ≤ |B| ≤ t then all m′
i would be set to ⊥ as the check would

always fail.

us write τ ′ij = τij+εij , so τ ′ij = (αjmi+βji)+ εij = (αjm
′
i+βji)−αjδi+εij . For

this to be equal to αjm
′
i + βji, it has to hold that αj = δ−1

i εij . However, δi and
εij are functions of {s`}`∈A, so they are computed independently of the uniformly
random value αj since j /∈ A. This shows that the equation αj = δ−1

i εij for at
least j ∈ Ac ∩ B can only hold with probability at most 1/|F| = negl(κ), so in
particular the claim above holds (recall that n = poly(κ)).

From the above we see that if m′
i 6= mi then, with overwhelming probability,

τ ′ij 6= αjm
′
i + βji for every j ∈ Ac ∩B, so in particular τ ′ij = αjm

′
i + βji can only

be satisfied for j ∈ A ∩ B, but since |A ∩ B| ≤ t, we see that m′
i would be set

to ⊥ from the definition of rec(·). As a result, only values with m′
i = mi remain,

and since there are at least |Ac ∩B| > t of these, we see that rec(·) outputs m
correctly in this case.

The argument above also shows the error detection property: the extra
assumption |Ac ∩ B| > t was only used at the end to show that the set {m′

i :
m′

i 6= ⊥} will have at least t+ 1 elements, in which case the correct m could be
reconstructed. If this does not hold, then rec(·) outputs ⊥. ut

Delivering within 2 rounds. Let (share, rec) be a robust secret-sharing scheme
with deletions. We begin by presenting a protocol Π1(PS , PR,m) that guarantees
that PR gets the message m sent by PS as long as PR comes online either in the
same round as PS , or at most one round later. First, we define the concept of
k-delivery, which formalizes and generalizes this notion.

Definition 3 (k-delivery). A protocol Π is said to satisfy k-delivery if it in-
stantiates the functionality FPS ,PR

StableNet (with statistical security), modified so that
PR is only guaranteed to receive the message sent by PS if PR ∈

⋃k
r=0OrS+r,
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where rS is the first round in which PS ∈ OrS . If PR /∈
⋃k

r=0OrS+r, then PR

cannot output an incorrect message.

The following protocol satisfies 1-delivery:

Protocol Π1(PS , PR,m)

PS does the following:

– Let (s1, . . . , sn) = share(m). Send si to Pi in every round.
– Send m to PR.

Every party Pi does the following:

– Pi sets an internal variable si = ⊥. In every round, if Pi receives si from
Pi, then it sets si = si.

– In every round, if si 6= ⊥, then Pi sends si to PR.

PR does the following in every round:

– If PR receives m from PS , then PR outputs m.
– Let s′i be the message PR receives from Pi, setting s′i = ⊥ if no such message

arrives. If rec(s′1, . . . , s′n) 6= ⊥, then PR outputs this value.

Proposition 2. Π1(PR, PS ,m) satisfies 1-delivery.

Proof. Privacy holds from the privacy of the robust secret-sharing scheme.
Now, assume that PR ∈ OrS ∪ OrS+1. If PR ∈ OrS , then PR gets m as it is

being sent by PS directly. On the other hand, if PR ∈ OrS+1, the argument is
the following. First, each Pi ∈ OrS receves si from PS , which in particular means
that the parties in OrS ∩ OrS+1 ∩ H send the correct si to PR. PR receives at
least t+1 correct shares si and at most t incorrect ones, hence, by the guaranteed
reconstruction property of the RSS, PR obtains s from these shares.

Finally, the fact that if PS /∈ OrS ∪ OrS+1 then PS does not output an
incorrect message follows from the error detection property of (share, rec). ut

From (k − 1)-delivery to k-delivery. Now we show that, given a protocol
Πk−1(PR, PS , ·) that achieves (k − 1)-delivery, one can obtain a protocol that
achieves k-delivery.

Proposition 3. Protocol Πk(PS , PR,m) achieves k-delivery.

Proof. Let rS be the first round in which PS ∈ OrS , and assume that PR ∈⋃k
r=0OrS+r. If PR ∈

⋃k−1
r=0 OrS+r, then PR would receive m correctly from the

properties of Πk−1.
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Protocol Πk(PR, PS ,m)

In the following, multiple protocols will be executed in parallel. We assume
that messages are tagged with special identifiers so that they can be effectively
distinguished.

The parties execute Πk−1(PS , PR,m). In parallel, they execute the fol-
lowing.

– Let (s1, . . . , sn) = share(m). The parties run n protocol instances
Πk−1(PS , Pi, si) for i = 1, . . . , n.

– Each Pi, upon outputting si from Πk−1(PS , Pi, si), send (si) to PR in all
subsequent rounds.

– PR initializes variables s1, . . . , sn = ⊥. Then PR does the following in every
round:
• Upon outputting si from some execution Πk−1(PS , Pi, si), PR sets

si = si.
• Upon receiving s′i from some party, sets si = s′i.
• PR outputs rec(s1, . . . , sn) if this value is not ⊥.

Given the above, it remains to analyze the case in which PR ∈ OrS+k. From
the properties of Πk−1, every party Pi ∈ OrS+(k−1) receives si from PS in round
rS + (k − 1). In particular, each party Pi ∈ OrS+(k−1) ∩ OrS+k sends si to PR

in round rS + k. An analysis similar to the one in the proof of Proposition 2
shows that PR is able to recover m from this information, and it also shows that
if PR /∈

⋃k
r=0OrS+r, then PR cannot be fooled into reconstructing an incorrect

message. This concludes the proof. ut

Combining Propositions 2 and 3, we obtain the following corollary:

Corollary 1. For every k, there exists a protocol Πk satisfying k-delivery.

Now, recalling that the B-assumption implies that there is one round among
1, . . . , B in which PS will come online, and a round among B+1, . . . , 2B in which
PR is online as well, we obtain the following theorem as a corollary.

Theorem 4. Assume that |Or∩Or+1∩H| ≥ t+1 for every r > 0. Then, protocol
Π2B(PR, PS , ·) instantiates the functionality FPR→PS

StableNet in the FUnstableNet-hybrid
model with statistical security against an adversary actively corrupting t < n/2
parties.8

Remark 1. The communication complexity of Πk is Θ(nk). This is because, in the
execution of Πk, PS must use Πk−1 to communicate a share to each single party,
adding a factor of n with respect to the communication complexity of this protocol.
8 As with Theorem 3, in principle the restriction is simply t < n, but we have that
n− t = |H| ≥ |Or ∩ Or+1 ∩H| ≥ t+ 1, so n ≥ 2t+ 1.
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This is too inefficient for large values of k. We leave is an open problem the
challenging task of obtaining instantiations of FPS ,PR

StableNet with statistical security
in the setting in which |Or ∩Or+1∩H| ≥ t+1 having communication complexity
that is polynomial in the bound B.

5 A More Efficient Protocol with Perfect Security
Recall that in Section 3.2 we presented a protocol to instantiate the functionality
FStableNet, which is intended to represent a traditional stable and secure network
among the n parties. This is the typical communication model used in several
MPC protocols, and, assuming t < n/3, we can find perfectly secure protocols
in this model which can be used together with our protocol Πperf,active

StableNet (PS , PR)
from Section 3.2 to obtain a perfectly secure protocol over an unstable network.

In order to instantiate the functionality FStableNet, we required that the schedul-
ing the adversary provides allows each party to come online at least once within
certain amount of rounds, say B. This is necessary since FStableNet requires each
message between honest parties to be delivered, and if the receiver never comes
online such guarantee cannot hold. Unfortunately, our protocol Πperf,active

StableNet (PS , PR)
requires 2B rounds to deliver a message between a sender and a receiver, which
ultimately means that the final protocol after composing Πperf,active

StableNet (PS , PR) with
an existing perfectly secure protocol would lead to a multiplicative overhead of
2B in the number of rounds.

Round-count is a very sensitive metric in distributed protocols, especially in
high-latency scenarios where every communication trip incurs in a noticeable
waiting time. Furthermore, the θ(B) overhead may not be so noticeable if the
higher level protocol has a low round count, but unfortunately, it is a well-
known open problem to achieve constant round protocols with perfect security
for functionalities outside NC1 while achieving polynomial computation and
communication complexity. Motivated by this, we develop in this section a
perfectly secure protocol over an unstable network whose number of rounds
corresponds to the depth of the circuit being computed plus a term that depends
on B, but is independent of the size of the circuit, matching the round complexity
of existing protocols over stable networks. Furthermore, after the inputs have
been provided, our protocol does not require anymore the assumption that each
party has to be online at least once every B rounds.9 This is because, as we will
see, our protocol only relies on the assumption that |Or ∩ Or+1 ∩ H| ≥ 2t + 1
for every round r in order to transmit and advance the secret-shared state of the
computation from one round to the next. Intuitively, it is irrelevant if certain
specific parties become online at certain points of the protocol, and the only
thing that matters is that enough parties remain online from one round to the
next one, irrespectively of their identities.
Remark 2. (Low-round complexity in the computational setting) As mentioned
above, if the high level protocol has a low/constant number of rounds then the
9 However, the output will be received only by the parties who happen to be online at

the output phase.
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θ(B) overhead is less of a problem. In the computational setting constant round
protocols can be designed, for example the early works based on garbled circuits
[2] or on threshold variants of fully homomorphic encryption [20]. For instance, we
could use the 3-round protocol from [1] together with Πcomp,active

StableNet (PR, PS) from
Section E.2 to obtain a computationally secure protocol in an unstable network
using 3 · (2B) rounds. The first 2B rounds would consist of the parties sending
to each other certain parameters for an underlying threshold multi-key fully
homomorphic encryption scheme and a non-interactive zero-knowledge protocol.
In the second 2B rounds the parties send to each other encryptions of their inputs,
and the remaining 2B rounds consist of the parties sending decryption shares to
recover the output, after computing homomorphically on the ciphertexts received
in the previous rounds.

5.1 Bivariate Sharings and Transition of Shares

We describe the input and preprocessing phases of our protocol in Section 5.2,
and in Section 5.3 we describe its computation phase. However, before we dive
into the protocols themselves, we need to present certain primitives that will be
useful for these constructions. These are bivariate sharings, defined initially in
Section B, together with methods for transmitting bivariate shared values from
one round to the next. This will allow the parties to “transmit” the state of the
computation from the parties that are online in a given round, to these online in
the next one, making progress in one layer of the circuit at the same time.

We say that the parties have bivariate shares of a value s if there exists a
symmetric bivariate polynomial f(x, y) of degree at most t in both variables such
that (1) each party Pi ∈ P has f(x, i) and (2) it holds that f(0, 0) = s. We denote
this by 〈s〉. Observe that this scheme is linear, i.e. parties can locally compute
additions of secret shared values, which is denoted by 〈x+ y〉 ← 〈x〉+ 〈y〉.

Bivariate sharings were used indirectly in Section 3.2 to instantiate FPS→PR

StableNet

with perfect security against an active adversary. This type of sharings proved
useful in Protocol Πperf,active

StableNet (PS , PR) to “transfer” a state between a set of parties
to another one, and this is the purpose of this primitive in this section as well.
In a bit more detail, during the execution of our protocol it will not hold that
all parties have shares of certain given values, but rather only specific subsets
corresponding to online parties will do. Since the set of online parties potentially
changes from round to round, a crucial primitive our protocol relies on is what
we call transition of shares, which takes care of transmitting the shared state
from one set of parties to another.

We first formalize the notion that only (part of) the online parties hold shares
of a given value. We say that the parties have a bivariate-shared value s in round
r if there exists a symmetric bivariate polynomial f(x, y) of degree at most t in
both variables such that (1) there exists a subset Sr ⊆ Or ∩H with |Sr| ≥ 2t+ 1
such that each Pi ∈ Sr has f(x, i), (2) each Pi ∈ (Or ∩H) \Sr has set their share
to either f(x, i), or a predefined value ⊥, and (3) it holds that f(0, 0) = s. This is
denoted by 〈s〉Or . Observe that nothing is required from parties outside Or ∩H.
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Also, notice that if all the parties have bivariate shares of a value s, which we
denote by 〈s〉, then it holds that 〈s〉Or for every r.

A protocol for transition of shares is a one-round protocol in which the parties
start with 〈s〉Or in round r, and they obtain 〈s〉Or+1 in the next round r + 1. In
what follows we present a protocol for transition of shares, which is motivated in
the perfectly secure protocol for instantiating FPS→PR

StableNet from Section 3.

Protocol Πtransfer

Input: 〈s〉Or in round r
Output: 〈s〉Or+1 in round r + 1.

Parties do the following:

1. For each i = 1, . . . , n, if Pi has a share f(x, i) of 〈s〉Or+1 (different to ⊥),
then Pi sends f(j, i) to Pj for j = 1, . . . , n.

2. For each j = 1, . . . , n, if Pj receives at least 2t+1 messages {f(j, i)}i, then
Pj performs enhanced error correction (see Section B) to either recover
f(j, x) or output an error ⊥.

Theorem 5. If executed in round r, protocol Πtransfer guarantees that the parties
get sharings 〈s〉Or+1 .

Proof. Let Sr ⊆ Or ∩H with |Sr| ≥ 2t+1 be the set of honest parties Pi having
f(x, i), guaranteed from the definition of bivariate sharings. Since the protocol
above is executed in round r, each party Pi ∈ Sr will send f(j, i) to each other
party Pj , which in particular is received by the parties Pj ∈ Or+1 ∩ Or ∩ H,
and given that |Sr| ≥ 2t+ 1, the enhanced error-correction algorithm executed
by Pj will result in Pj recovering f(j, x), which is equal to f(x, j). Let Sr+1 :=
Or+1 ∩ Or ∩ H and note that (1) |Sr+1| ≥ 2t + 1 and also each Pj ∈ Sr+1 has
f(x, j), (2) each Pj ∈ (Or+1 ∩ H) \ Sr+1 set their share to either f(x, j) or ⊥
due to the properties of the enhance error-correction mechanism, and (3) it (still)
holds that f(0, 0) = s. From the definition of bivariate sharings, it holds that
〈s〉Or+1 . ut

Transitioned Reconstruction. Another primitive that we will need in our
protocol, besides transferring shares from one set of parties to another, consists of
reconstructing a bivariate-shared value. Assume that the parties in round r have
〈s〉Or . If all parties in round r send their shares {f(0, j)}j to all other parties,
they can perform (enhanced) error correction to reconstruct s = f(0, 0). In this
way, the parties in Or ∩H are guaranteed to learn s. In particular, s is known
by the parties in Or+1 ∩ Or ∩ H, which contains at least 2t + 1 parties. This
protocol is denoted by s← Πrec(〈s〉Or ).
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Remark 3. An important fact about the proof of Theorem 5 is that, it holds
that Sr+1 ⊆ Or+1 ∩Or ∩H. In addition, the reconstruction protocol from above
ensures that the parties in Or+1 ∩ Or ∩H, so in particular the parties in Sr+1,
learn the secret. This will be important in our main protocol in Section 5.3.

5.2 Preprocessing and Input Phases

We assume that the functionality to be computed is given by a layered circuit
(x

(L)
1 , . . . , x

(L)
`L

) = F (x
(0)
1 , . . . , x

(0)
`0

), as defined in Section C in the Supplementary
Material. Considering layered circuits, in contrast to more general circuits, is
useful for our construction since in this case the values in a given layer completely
determine the current state of the computation, that is, the next layer, and in
particular the remainder of the computation, is fully determined by these values.
This is important since, as we will see, at the heart of our construction lies the
possibility of a given set of online parties to transmit their shared state to the
online parties in the next round, and, from the structure of the protocol, this
state is comprised by the shared values in a given layer.

For our main protocol, we assume that all the parties have certain bivariate-
shared multiplication triples (as specified below), plus bivariate shares of the
inputs of the computation. By making use of the B-assumption from Section E,
these shares can be computed by using any generic MPC protocol for these tasks,
together with our compiler from Section 3.2. This would incur a multiplicative
overhead of B in the number of rounds, however, the circuit representing this
computation is constant-depth, so this does not affect the overall result of this
section. Notice that this does not require all the parties to be online during the
computation of these sharings, but instead, the B-assumption, that requires every
honest party to come online once every B rounds, suffices.

The correlation required for the computation consists of secret-shared values
(〈a〉, 〈b〉, 〈c〉), one tuple for every multiplication gate in the circuit, where a, b ∈R F
and c = a · b.

5.3 Computation Phase

With the primitives described above, the protocol for computing the given
functionality F is relatively straightforward: by making use of the Πtransfer and
Πrec protocols, the parties can use the standard approach to secure computation
based on multiplication triples, making progress from round to round depending
on the set of parties that is online. This is possible since, at the end of the execution
of the method described in Section 5.2, all the parties hold the preprocessing
material and shares of the inputs (even if some parties were offline during certain
parts of the execution), together with the fact that |Or ∩Or+1 ∩H| ≥ 2t+ 1 for
every round r, which enables share transfer and reconstruction. The protocol
is described in detail below. The security proof follows straightforwardly from
existing techniques, together with the properties proven in Section 5.1, and a
sketch of this proof can be found in Section F in the Supplementary Material.
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Observe that the protocol requires only L rounds, which, added to the O(1) rounds
from the preprocessing and input phases, leads to a protocol with comparable
round efficiency to protocols in the stable (i.e. traditional) model.

Protocol ΠMPC

Input: Secret-shared inputs 〈x(0)
1 〉, . . . , 〈x

(0)
`0
〉, where `0 is the number of input

wires.
Preprocessing: A multiplication triple (〈a〉, 〈b〉, 〈c = a · b〉) for every
multiplication gate in the circuit.
Output: Let L be the final round of the protocol. The parties have
〈x(L)

1 〉OL , . . . , 〈x(L)
`L
〉OL in round L, where (x

(L)
1 , . . . , x

(L)
`L

) = F (x
(0)
1 , . . . , x

(0)
`0

).

For rounds r = 1, . . . , L:

– The parties in round r − 1 already have shares
〈x(r−1)

1 〉Or−1 , . . . , 〈x(r−1)
`r−1

〉Or−1 .
– The parties in round r obtain shares 〈x(r)

1 〉Or , . . . , 〈x(r)
`r
〉Or as follows:

1. For every addition gate with inputs 〈x〉Or−1 and 〈y〉Or−1 , the parties
locally obtain 〈x+ y〉Or−1 and call 〈x+ y〉Or ← Πtransfer(〈x+ y〉Or−1).

2. For every multiplication gate with inputs 〈x〉Or−1 and 〈y〉Or−1 , the
parties proceed as follows:
(a) Let (〈a〉, 〈b〉, 〈c〉) be the next available multiplication triple. The

parties in round r−1 locally compute 〈d〉Or−1 = 〈x〉Or−1−〈a〉Or−1

and 〈e〉Or−1 = 〈y〉Or−1 − 〈b〉Or−1 .
(b) The parties in round r learn d and e by calling d← Πrec(〈d〉Or−1)

and e← Πrec(〈e〉Or−1).
(c) The parties in round r compute 〈x · y〉Or as d · 〈b〉Or + e · 〈a〉Or +
〈c〉Or + d · e.a

3. For every identity gate with input 〈x〉Or−1 the parties call 〈x〉Or ←
Πtransfer(〈x〉Or−1).

a Here is where Remark 3 becomes relevant: parties in Or (or rather Sr) can
compute the linear combination defining 〈x · y〉Or since both the constants
and the sharings are known to the parties in Sr.

Remark 4 (About the output). In our protocol above, the parties in OL obtain
shares 〈x(L)

1 〉OL , . . . , 〈x(L)
`L
〉OL in round L, where (x(L)

1 , . . . , x
(L)
`L

) = F (x
(0)
1 , . . . , x

(0)
`0

)
is the result of the computation. This output can be dealt with in multiple different
ways:

– The parties in OL can reconstruct the output to each other. This way, the
parties in OL are guaranteed to learn the output, but parties outside this set
may not satisfy this.
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– If the B-assumption holds for some B, the parties can reconstruct and transfer
this sharing for B more rounds so that all parties learn the output.
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Supplementary Material

A Related Work

Fail-stop adversaries. A series of works have studied the setting of MPC, where
the adversary is allowed to not only corrupt some parties passively/actively, but
also cause some parties to fail (e.g. [12] and subsequent works). However, their
setting differs to ours in several aspects. First, in these works it is typically
assumed that parties who are set to fail do not do so silently, i.e. all the other
parties know when a given party failed. Second, and most crucially, once a party
is set to fail by the adversary, it does not return to the computation.

LazyMPC. The work of [1] considers an adversary that can set parties to be offline
at any round (called “honest but lazy” in that work). This work differs from ours in
several places. First, the authors focus only on the case of computational security,
making use of rather strong techniques such as multi-key fully homomorphic
encryption. Second, just like the case of the fail-stop parties described above,
once a party becomes offline, or “lazy”, it is assumed not to come back. This has
the impact that, in particular, honest parties who leave the computation do not
receive output.

Synchronous but with partition tolerance. Recently, the work of [16] designed
MPC protocol in the so-called “sleepy model”, which enables some of the parties
to lag behind the protocol execution, while not being marked as corrupt. This
could be achieved with an asynchronous protocol, naturally, but the main result
of [16] is obtaining such protocols without the strong threshold assumptions
required to obtain asynchronous protocols. In particular, the authors obtain
computationally secure constant-round protocols, assuming that the set of “fast”-
and-honest parties in every round constitutes as majority, an assumption that is
shown to be necessary.

The honest-and-fast-majority assumption implies the one we use in this work
for the computational case: |Or ∩ Or+1 ∩H| ≥ 1 for every round r, so, in a way,
the results in [16] (except for the constant-round aspect of their protocols) can
be derived from our work as well. However, a crucial aspect of our protocols and
our model which is not present in [16] is the following. In our setting, parties are
set to drop out from the protocol execution, and they can rejoin at some point in
the future. Importantly, we do not assume that parties receive the messages sent
to them while they are offline, that is, after rejoining the computation, a given
party has an outdated view of the protocol execution. In contrast, the model in
[16] is not described as parties being “offline”, but rather as simply being slow.
In particular, once they return to “normal speed”, they receive all the messages
that were sent to them in previous rounds. This is explicitly used in the protocol
from [16], and the fact that we are avoiding such assumption makes designing
protocols in our setting a considerably harder task.
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FluidMPC. In [8], the “fluid” model of MPC is introduced with a statistical
secure protocol. In this model, instead of considering a fixed set of parties as
done traditionally in MPC, the set of parties involved in the protocol execution
can be different from one round to the next one. This setting is related to ours
since, in a way, we can interpret our model of parties dropping out and rejoining
the computation at given times as if the set of active parties in the protocol
changed from round to round.

However, a feature that seems to be essential for the protocol in [8] is that the
identities of the parties that are active in a given round are known beforehand.
This is not the case in our model: the set of parties that are active in a given
round are those that the adversary have not “taken out”, and this set is not
known to the parties in the protocol (in fact, a party does not even know if it is
“offline” or not).

Finally, we also notice that the protocol in [8] satisfies security with abort.
On the other hand, the protocol from our work that is somewhat comparable to
that from [8] in terms of security setting, namely the statistically secure one from
Section 4, satisfies a form of guaranteed output delivery, in the sense that parties
who eventually return to the computation are guaranteed to receive output. It is
not clear how to extend [8] to achieve such notion given that their protocol is
based on certain checks that only enable the parties to detect that some errors
have been introduced, without being able to somehow recover from these.

YOSO. In the recent work of Gentry et al. [14], the “You Only Speak Once”
model for MPC is introduced. In this model, the basic assumption is that the
adversary is able to take a party down as soon as that party sends a message
– using, say, a denial of service attack. Although some number of parties are
assumed to be alive and can receive messages, no particular party is guaranteed
to come back (which is the major difference to our model). Instead, the YOSO
model breaks the computation into small atomic pieces called roles where a role
can be executed by sending only one message. The responsibility of executing
each role is assigned to a physical party in a randomized fashion. The assumption
is that this will prevent the adversary from targeting the relevant party until
it sends its (single) message. This means that one should think of the entire
set of parties as one “community” which as a whole is able to provide secure
computation as a service. In a sense, YOSO aims to make progress and keep
the computation alive without any guarantees for particular physical parties
such as contributing inputs and receiving the output. This makes good sense
in the context of a blockchain, for instance. On the other hand, the demand
that the MPC protocol must be broken down into roles makes protocol design
considerably harder, particularly for information theoretically secure protocols.
An additional caveat with the YOSO model is that one can only have information
theoretically or statistically secure protocols assuming that the role assignment
mechanism is given as an ideal functionality, and an implementation of such a
mechanism must inherently be only computationally secure. In comparison, our
model assumes a somewhat less powerful adversary who must allow a physical
party to come back after being offline. This allows for much easier protocol design,
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information theoretic security based only on point-to-point secure channels, and
allows termination such that all parties can provide input and get output.

Omission-corruption model. The “constrained parties” and “full-omission parties”
from [19] and [24], respectively, are closely related to the unstable parties in
our model. A full-omission corrupted party is an honest party whose messages
are selectively blocked by the adversary, as in our setting. However, a crucial
difference of our model with respect to the one in [24] (which contains improved
results with respect to [19]) is that, in [24], the adversary can full-omission-corrupt
a given subset of the parties at the beginning of the protocol execution, whereas in
our case this subset can change adaptively as the protocol is run.10 This is in fact
one of the main sources of difficulties when designing protocols in our setting,
since a party who is “full-omission-corrupt” can stop being so, and non-corrupted
parties can later on become full-omission-corrupt.

In terms of results, the work of [24] shows that perfectly secure MPC in the
full-omission setting is possible if and only if 3t + 2s < n, where t and s are
the number of active and full-omission corruptions, respectively. The part of our
work that deals with perfect security produces this result as a particular case:
the adversary chooses a set O ⊆ H of n− t− s honest parties that will not be
full-omission corrupt, and when translated to our setting all of our sets Or would
be equal to O. As a result, our optimality condition |Or ∩ Or+1 ∩ H| ≥ 2t + 1
becomes |O| ≥ 2t+ 1, which is equivalent to n ≥ 3t+ 2s+ 1.

Finally, [24] also mentions in a closing remark that one can allow even honest
players to lose some messages in each round. However, no details or proof is
given, so we cannot do a meaningful comparison to our results. In any case, such
a comparison would be relevant only for our network compilation result in the
perfect case. Our direct construction for the perfect case is of a different nature
(and much more efficient).

B Shamir Secret Sharing

Throughout this work we will make use of Shamir secret sharing in order to
distribute data among different parties. To secret-share a value s ∈ F among the
n parties P1, . . . , Pn using threshold t, a dealer proceeds as follows: (1) sample
a uniformly random polynomial f(x) ∈ F[x] of degree at most t, subject to
f(0) = s, and (2) send to Pi its share si := f(i). It is well known that for every
set of t+ 1 points (i, si) there exists a unique polynomial f(x) of degree at most
t such that f(i) = si for all i, which implies that any set of at least t+ 1 shares
can recover the secret, and any set of t shares does not reveal anything about
the secret.

Bivariate sharings. Sometimes we will make use of bivariate sharings, in which
the dealer, to distribute a secret s ∈ F, samples a random symmetric bivariate
10 We remark, however, that [24] is more fine-grained in that they consider different

parties who can be blocked for sending and separately for receiving messages.
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polynomial f(x, y) of degree at most t in each variable subject to f(0, 0) = s, and
sends the polynomial f(x, i) to Pi. As before, given at most t of these polynomials
nothing is leaked about the secret s since any secret could be chosen so that it
looks consistent with the given polynomials.

Error-detection and error-correction. Given m shares among which at most
t can be incorrect, then the parties output f(0) as the secret, where f(x) is
the reconstructed polynomial. Given m shares {si} among which at most t are
incorrect we have the following two possibilities:

– If at least t+1 are guaranteed to be correct, error-detection can be performed
by checking if these shares all lies in a polynomial of degree at most t, and
if this is the case, the reconstructed polynomial is guaranteed to be correct
since it is determined by the t+ 1 correct shares.

– If at least 2t+ 1 are guaranteed to be correct, error-correction is possible by
looping through all possible subsets of these shares of size 2t+1 and checking
if all shares in the given subset are consistent with a polynomial of degree at
most t. The subset used for reconstructing this polynomial has 2t+ 1 points
among which at least t+ 1 are correct (since at most t shares are assumed
to be incorrect), which guarantees that the reconstructed polynomial is the
correct one. Although the process of looping through all subsets of size 2t+1
can be too inefficient if m is much larger than 2t + 1, this can be made
polynomial in m by using error-detection algorithms like Berlekamp-Welch
[13].

In some of our protocols we will need a version of error-correction, which
we call enhanced error-correction, in which the correct polynomial is recovered
if there are enough correct shares, and else an error is output. To this end,
given m ≥ 2t + 1 shares as above among which at most t are incorrect, all
possible subsets of 2t + 1 shares are inspected, checking if all these shares are
consistent with a polynomial of degree at most t. If one such subset is found,
then its corresponding polynomial is output, and else, an error ⊥ is produced
as the result. By the same analysis as above, this either results in the correct
polynomial or an error. The main complication is that error-correcting algorithms
like Berlekamp-Welch are not designed to handle this setting in which not enough
correct shares may be available, but one can easily modify this algorithm to
handle this case (see for example [11]).

C Layered Circuits

As described before, we present in Section 5 a direct construction of an MPC
protocol in the perfectly secure setting. This construction will make use of the
concept of a layered circuit [8, Definition 6]. A layered circuit is a circuit that
can be decomposed into layers, indexed by integers 0, . . . , L. Wires in layer 0 are
input wires, and these in layer L are output wires. We denote by `i the number
of wires in layer i, and we denote by x

(i)
1 , . . . , x

(i)
`i

the values in these wires. For
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every i = 1, . . . , L, every value x
(i)
j is either the sum or product of two values

x
(i−1)
k and x

(i−1)
h , or it is equal to a value x

(i−1)
k . In other words, all wires in a

given layer are a function of the wires in the immediate previous layer, only.
We assume that the function f(x

(0)
1 , . . . , x

(0)
`0

) is given by a layered circuit
with L-layers. This is not very restrictive, as it is shown in [8] that any arithmetic
circuit over a field F with depth d and width w can be transformed into a layered
circuit having L = d layers and maximum width 2w.

D Unstable Network with Dropouts and Comebacks

Our starting point is a synchronous network, where an upper bound ∆ on the
time it takes for a message to be transmitted between any pair of parties is
known. The communication pattern proceeds in rounds, identified with integers
1, 2, 3, . . ., each taking ∆ time and consisting of all parties sending messages to
each other at the beginning of each round. Since each round r takes ∆ time,
it is guaranteed that all the messages sent at the beginning of round r will be
delivered within round r.

In an unstable network with dropouts and comebacks, the parties are allowed
to drop from the computation at any given round, potentially missing some of
the messages sent in that round, as well as failing to send some of their own
messages. Furthermore, as clarified in more detail later on, a crucial aspect of
our model is that the parties who return to the computation after dropping out
for one or more rounds are not assumed to receive the messages that were sent
to them during this offline period.

The set of parties who are set to go offline in each round is specified by the
adversary. We denote by Or the set of online parties in round r.11 Although
several dropouts and comebacks are likely to be caused by more “non-adversarial”
events (e.g. a party running MPC from a phone entering a tunnel while on a train),
allowing the adversary to control such scheduling makes our results stronger. We
assume a rushing adversary, which in particular means that the adversary gets
to decide which parties to set offline in a given round even after learning the
messages that the honest parties send to the corrupt parties. Additionally, once
the adversary has chosen which honest parties will be set to go offline in that
round, the adversary can choose which messages from and to these parties are
actually delivered.

Recall that an honest party does not know whether it was set to be offline
in a particular round. For example, an honest party may fail to receive certain
messages while still receiving others, and this could either be because the senders
were offline, or because the receiving honest party was offline. This imposes a big
challenge when designing protocols in an unstable network since it is not possible
for the parties to selectively send messages depending on whether the receiver is
online or not, for example.
11 This notation is similar to the one in [16], except in that work Or denotes the set of

online and honest parties, which would correspond in our notation to Or ∩H.
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Another complication of working in an unstable network with dropouts and
comebacks is that honest parties may not contribute to the computation anymore,
even if they eventually rejoin the computation. For example, imagine an honest
party that is offline for most of the computation, so it misses essentially all
the messages. This party may rejoin after a while, and maybe in the round in
which this party is online it manages to receive enough information to be able
to contribute in the next round. However, the problem here is that there are no
guarantees that this party will be online for contributing in the next round. In
general, we do not assume that a party who returns to the computation stays for
long enough time to receive the messages sent to it in the comeback round, as
well as sending messages in the following round.12

In what follows we describe in detail our model for an unstable network with
dropouts and comebacks.

D.1 UC Framework

The UC framework was initially introduced by Canetti [7]. However, different
variants and alternatives have been proposed in the literature. In our work, we
follow the definition of the universally-composable (UC) framework as defined in
[9, Chapter 4], which we find conceptually simpler than other alternatives in the
literature and lets us define more appropriately the concept of an unstable network.
We first provide a high level overview of this UC model, before proceeding to our
modifications for the unstable network in Section D.2.

We begin by discussing some basic concepts.

I/O automata. This is a recursive polytime machine (as defined in [9]) that
has named ports, which are common message tapes that the machine can
write to and read from. If different machines have the same named ports
then the resource is shared. Finally, different automatas can be composed,
meaning they form a larger system where the automatas connect to each
other on their open ports with matching names. This operation is denoted
by �

Ideal functionalities. These are I/O automatas that model the way the parties
can interact with each other. It has two connections to each of the parties, one
to send and another to receive messages. An ideal functionality may simply
model authenticated or secure channels, or it may model something more
involved such as an oblivious transfer channel. It is also used to model other
types of interaction like a complex computation done on the inputs received
from the parties. An ideal functionality also connects to the environment to
allow adversarial control, plus other low-level details like activations, which
dictates when a given party “acts” in the protocol.

12 If we require the adversary to let parties who return to the computation stay online
for at least two rounds (that is, if Pi ∈ Oc

r−1 ∩ Or then Pi ∈ Or+1), then several of
the obstacles we need to overcome in this work would not be present anymore. This
assumption is not too unrealistic.
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Communication resource. A particular type of functionalities that are of
high relevance are communication resources. These functionalities model the
underlying network over which a given protocol is run, and we will use them
to model our stable and unstable networks.

Protocols. A protocol is a collection of I/O automatas {P1, . . . , Pn} connected
through a communication resource, and each connected to the environment.

Environment. This is an I/O automata Z that is connected to both the parties
and an ideal functionality serving as the communication resource. It is in
charge of several things, like providing inputs to the computation, orches-
trating it by activating13 the machines it is connected to in certain specific
order, overriding the behavior of actively corrupt parties or manipulating
the communication resource. Finally, it is also Z the machine that has to
distinguish real/ideal executions, as described below.

Simulator. The goal of a protocol is to achieve the “same” behavior as some
given ideal functionality. The simulator S is an I/O automata that “sits
between” the corrupt parties (controlled by Z) and the ideal functionality
F that the protocol is supposed to instantiate. S connects to Z and F , and
Z executes the computation S just like it was doing it with the real parties.
The goal of S is then to ensure Z cannot distinguish between an execution
with real parties and one in which S is involved.

Corruptions. The environment is also in charge of executing corruptions. For
the case of active corruptions, Z gets absolute control of the chosen t corrupt
parties during the xecution of the protocol. For the case of passive corruptions,
Z is only allowed to see the messages that the chosen t corrupt parties send
and receive.

Real and Ideal Worlds. Consider a pair of functionalities R and F , and con-
sider a protocol Π that is intended to realize the functionality F , making
use of the resource R. The real and ideal worlds are described as follows (a
good graphical illustration of the real and ideal worlds is Figure 4.7 in [9]).

– In the real world the environment Z, the resource R and the protocol
Π are connected, which is denoted by Z � Π � R. The environment
orchestrates the execution, plays the role of actively corrupt parties, sees
the state of passively corrupt parties and provides inputs and receives
outputs of honest parties. Z also has certain limited interaction with R
(e.g. if R models a communication channel, then Z can typically learn
when parties communicate and control the order in which messages are
delivered).

– In the ideal world the environment Z provides the honest parties’ inputs
to the functionality F instead, and the corrupted parties controlled by Z
interact with the simulator S instead, who is also in charge of emulating
the resource R, and gets to interact with the actual functionality F
on behalf of the corrupt parties. This composed system is denoted by
Z � S � F .

13 Only active parties are allowed to run at a given time. A party is activated by
inputting a special activation token, which is returned upon termination of the
current activation step.
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Security. At a high level, a protocol Π for a given functionality F is secure if,
for every environment Z, there exists a simulator S such that the statistical
distance of the two random variables Z �Π �R and Z �S �F is very small.14

Computational security relates to the fact that such distance is a negligible
function for each environment, but only polynomial-time environments are
considered, while statistical security means that the environments are not
restricted. Perfect security refers to the case in which this distance is exactly
0.

We are deliberately using intuitive language, leaving a lot of details out of
our discussion. We remark that our intention is mostly to recap basic notions
which are useful when we discuss the extension to unstable networks, and we
refer the reader to the thorough description from, say [9], for full details.

Synchrony and Stable Networks. We take the approach from [9] of defining
synchrony as a restriction of the way in which the environment activates the
different parties in a protocol. This, in contrast to other approaches to defining
synchronous communication in the UC framework such as the one from [18], fits
much better our extension to an unstable network from Section D.2, and it is
conceptually much simpler.

Synchronous protocols proceed by rounds. Each round allows the parties to
send messages to the communication resource and hear back from it after it has
proceessed all the messages. A synchronous environment activate honest and
semi-honest parties within a round as dictated below. Actively corrupt parties
can be activated at any point.

1. For every Pi ∈ H ∪ SH, Z activates Pi and then sends (clockin, Pi) to the
communication resource R. Then Z activates R. Overall, this allows Pi to
send messages to the communication resource, which can then be processed.
The parties can be chosen in any order.

2. The environment possibly interacts with R.
3. For every Pi ∈ H ∪ SH, Z sends (clockout, Pi) to R and activates R. Then
Z activates Pi. Overall, this allows Pi to receive messages from the commu-
nication resource. The parties can be chosen in any order.

Synchronous communication per se does not depend only on how Z schedules
activations but also on how the communication resources manage messages. A
crucial communication resource we will consider in this work is given by FStableNet,
which is intended to model a synchronous stable network (in contrast to an
unstable network, discussed in Section D.2 below) in which parties send messages
to each other in each round, and all of these messages are received within the same
round. The purpose of having this communication resource is two-fold. First, it
serves as a basis for our communication resource FUnstableNet modelling an unstable
network with dropouts and comebacks. Second, it becomes the functionality that
14 In both composed systems, at the end of their run, Z outputs a bit, which is what

defines the respective random variables.
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we wish to instantiate in the FUnstableNet-hybrid model in order to obtain MPC
over an unstable network. We return to this discussion in Section D.3.

The functionality FStableNet is described below. It is inspired by the function-
ality FSC from [9, Section 4.4].

Functionality FStableNet

Let C and SH be the set of actively corrupt and semi-honest parties, respectively.
Upon activation, proceed as follows.

– On input (clockin, Pi), check for input from Pi and, if there is one, parse it
as (mi1,mi2, . . . ,min). Store (Pi,mi1, . . . ,min), and send {mij}Pj∈C∪SH
to Z.

– On input (change, Pi, {mij}nj=1), where Pi ∈ C, store (Pi,mi1, . . . ,min),
deleting any previous record of the same form. This will be important for
the simulation.

– Upon receiving a message (clockout, Pi) from Z, send {(Pj ,mji)}nj=1 to
Pi, where mji = ⊥ if there is not a recorded message of the form
(Pj ,mj1, . . . ,mjn).

The functionality FStableNet, together with the restrictions of a synchronous
environment described above, constitute what a synchronous protocol looks like:
in every round, in the clockin phase each honest and semi-honest party gets the
chance to send a message to FStableNet, which is activated in order to process
these messages. Then, in the clockout phase the functionality sends the messages
back to the parties, which are activated in order to be able to retrieve them.

For simplicity in our protocols, we will not attempt to instantiate FStableNet

directly, but rather, we will instantiate a set of functionalities {FPi→Pj

StableNet}ni,j=1,
where each FPi→Pj

StableNet is defined as FStableNet, except that only Pi is clocked-in,
only Pj is clocked-out, and the message that Pi sends has the form (mij) (rather
than (mi1, . . . ,min)). Similarly, the message that FPi→Pj

StableNet sends to Pj is only
comprised by the message that Pi sent, if there is any. This functionality models a
channel from Pi to Pj only. It is obvious that FStableNet can be securely instantiated
in the {FPi→Pj

StableNet}ni,j=1-hybrid model.

D.2 Unstable Networks

In an unstable network with dropouts and comebacks, the guarantees from a
stable network only need to hold for a subset Or of parties specified by Z for the
given round r. For parties outside this set, Z gets to choose who is allowed to
send and receive messages.

This is captured by the following functionality.
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Functionality FUnstableNet

Let C and SH be the set of actively corrupt and semi-honest parties, respectively.
Upon activation, proceed as follows.

– On input (clockin, Pi), check for input from Pi and, if there is one, parse it
as (mi1,mi2, . . . ,min). Store (Pi,mi1, . . . ,min), and send {mij}Pj∈C∪SH
to Z.

– On input (change, Pi, {mij}nj=1), where Pi ∈ C, store (Pi,mi1, . . . ,min),
deleting any previous record of the same form.

– On input (erase, Pi, Pj), look for a record of the form (Pi,mi1, . . . ,min),
and if there is one, replace mij with ⊥. This allows Z to specify messages
to be dropped.

– Upon receiving a message (clockout, Pi) from Z, send {(Pj ,mji)}nj=1 to
Pi, where mji = ⊥ if there is not a recorded message of the form
(Pj ,mj1, . . . ,mjn).

The environment Z, on top of following the rules for synchrony described
before, follows this rule: at every round, and after clocking-in the honest and semi-
honest parties so that they send messages to FUnstableNet, Z internally chooses a
set Or ⊆ P. We require then that, for every Pi, Pj ∈ Or ∩H ∩ SH, Z does not
send (erase, Pi, Pj) to FUnstableNet. Furthermore, for simplicity, we assume that Z
sends (schedule,Or) to FUnstableNet after clocking-in the honest and semi-honest
parties. Intuitively, Or is the set of online parties in the given round r, which
means that all the messages they send are guaranteed to be received by parties
in this set. However, this only holds for honest and semi-honest parties, since
actively corrupt parties may simply refrain from sending or receiving messages
completely.

Notice that we do not place any restriction on Z besides ensuring a stable
network among the parties in Or. For example, Z may let some of the parties
outside Or send some of their messages, and some others may receive only part
of their intended messages, by making use of the erase command. Also, observe
that this command completely deletes the stated message from FUnstableNet’s state,
which models the fact that a party that rejoins the computation at a later point
does not get messages sent to it in previous rounds. If we wanted to model, say,
the network in [16] in which parties who return to the computation get previous
missed messages, we could modify FUnstableNet so that erased messages do not get
completely deleted, but rather delayed.

D.3 MPC in the FStableNet-Hybrid Model

Basically, FStableNet allows an honest sender to transmit a message to another
party while ensuring confidentiality from the adversary, as well as guaranteeing
that the message will be received at the other end, and furthermore without
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any alteration. Thus, this fuctionality effectively emulates a stable network with
private and authenticated channels.

Fortunately, the study of MPC over such type of networks is very extensive.
For instance, the following results can be obtained from existing works.

Theorem 6. – (e.g. [6]) Assume that t < n. Then there exists a computation-
ally secure protocol with abort in the FStableNet-hybrid model.

– (e.g. [15,5]) Assume that t < n/2. Then there exists a statistically secure
protocol with guaranteed output delivery in the FStableNet-hybrid model.15

– (e.g. [3]) Assume that t < n/3. Then there exists a perfectly secure protocol
with guaranteed output delivery in the FStableNet-hybrid model.

As a consequence of this, and due to the composability of our model, we see
that it suffices to develop protocols to instantiate the FStableNet functionality.

Intersections of online parties from round to round. Previous works, like
[16], characterize the feasibility of MPC in dynamic settings dependending on
the fraction of the online and honest parties on each round with respect to the
total number of parties. For example, in [16] it is shown that the set of honest
and online parties has to be at least 1

2n+ 1 in order for MPC to be possible in a
dynamic setting with computational security.16

In this work we take a different approach and characterize the feasibility of
MPC in an unstable network with dropouts and comebacks by measuring not
the amount of online and honest parties in each round, but rather the amount
of honest parties that are online from one round to the next one, that is, the
size of the set Or ∩ Or+1 ∩H (or Or ∩ Or+1 for passive security). This is more
flexible than a characterization in terms of the relative number of online and
honest parties with respect to n, since in particular it could be the case that n
is large and not so many parties are online in each round, as long as there are
enough parties that are online from each round to the next. This also reflects
the intuition that, in order to get MPC, we need to get enough “quorum” that
transmits the states from one round to the next one, and this quorum is precisely
the set of parties that were allowed to receive messages in one round and also
send messages in the next one.

B-termination assumption. Now we introduce an assumption that we will
need throughout this work, which restricts the scheduling the adversary can make
with the goal of guaranteeing that honest parties receive messages. Intuitively, no
protocol can instantiate FPS→PR

StableNet if we allow the adversary to set parties offline
forever, since the functionality requires honest parties to receive messages sent
to them by other honest parties. Given this, we assume, in words, that every
party gets the chance to be online “with certain regularity”. This is quantified
15 These protocols require broadcast. We elaborate on this in Section D.4.
16 Recall, however, that [16] assumes that the parties who return to the computation

get the messages sent to them while being offline. See Section A for details.
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by requiring that every party should be online at least “once every B rounds”,
which is captured in the following definition.

Definition 4 (Definition 1, re-stated). Let B be a positive integer. We say
that an adversary respects the B-assumption if, for every party Pi and for every
non-negative multiple of B, r ·B, there exists 1 ≤ k ≤ B such that Pi ∈ Or·B+k.

Consider a sender PS who wishes to send a message to a receiver PR. If it
is the adversary’s goal to delay this delivery as much as possible, while still
respecting the B-assumption, then a possible scheduling could consist of the
following: among the rounds r = 1, . . . , B, only set PS online in round B, and
PR in round 1; among the rounds r = B+1, . . . , 2B, only set PR online in round
2B. With this scheduling, we see that PR cannot get the message until round
2B, because it was only online in two rounds, 1 and 2B, but it cannot receive
the message on round 1 since up to that point PS has not been online in order
to send the message. Our protocols from Sections E, 3 and 4 guarantee that
each message is delivered within 2B rounds, which is optimal according to the
reasoning above.

D.4 Broadcast in the Statistical Setting

When designing secure MPC protocols in the statistical setting with t < n/2, it is
well known that a broadcast channel is required (for computing general functions),
and furthermore, it cannot be instantiated from point-to-point channels alone. It
is possible to define a reasonable notion of broadcast over an unstable network:
parties that receive a broadcast message in a given round are guaranteed to receive
the exact same message, which in the case the sender is honest, corresponds to
the message this party intended to send. Unfortunately, this notion is insufficient
to instantiate an actual “stable” broadcast functionality in which all honest
parties (and not only these that are online at a given round) must agree on some
value. This is because a corrupt sender may behave honestly during almost all
rounds and then, before the last round, it changes its input towards the parties
that are online in that given round. This way, all the other parties output the old
value, while the parties online in the last round output the new, different value.

The above analysis is not intended to show an impossibility, but rather, to
illustrate how highly non-trivial is the problem of instantiating “stable” broadcast
over an unstable network, a problem which we believe is orthogonal to our results.
To further support this claim, we notice that the work of [16] is devoted almost
in its entirety to solving the problem of broadcast and agreement in a networking
model that, as discussed in Section A in the introduction, is in a way stronger
than ours.

In practice, even over a stable network, a statistically secure protocol for
secure computation with t < n/2 must assume the existence of a broadcast
channel. This can be instantiated, for example, using a bulletin board, and in
such case this type of instantiations would also work, from a more pragmatic
perspective, over an unstable network.
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E Instantiating FPS→PR
StableNet with Computational Security

In this section we present protocols for instantiating the FPS→PR

StableNet functionality
in the computational setting, with both passive and active security. We remark
that, even though the protocols here are quite simple in nature, we provide
full-fledged security proofs that make use of our detailed unstable network model
from Section D.

E.1 Passive Security

Our protocol requires the existence of a PKI, which we model as a functionality
FPS ,PR

PKI that samples two secret/public key pairs (skR, pkR) and (skS , pkS) and
sends (skR, pkR, pkS) to PR, and (skS , pkS , pkR) to S.17 This functionality is
executed before the protocol starts. Observe that, since the environment Z
follows the rules for synchronized computation from Section D.1, it in particular
activates all the parties in every round, which means that the PKI is effectively
distributed, regardless of dropouts and comebacks.

We begin by presenting an instantiation of FStableNet in the passively secure
setting. In this case we assume that, for every round r, |Or ∩ Or+1| ≥ 1. The
reason why this is necessary is rather simple: if the intersection Or ∩ Or+1 is
allowed to be empty, then the adversary could choose two disjoint sets A1, A2 ⊆ P
and set O2k = A1 and O2k+1 = A2 for every k > 0, which means that the parties
in A1 only talk among themselves, and same for the parties in A2. In particular,
a sender PS ∈ A1 could not deliver a message to a receiver PR ∈ A2.

The construction is also quite simple: essentially the sender sends its message
on encrypted form to all other players, who then echo it to all others until we
know that the receiver has had a chance to see it.

17 This means that to instantiate FStableNet in the {FPi→Pj

StableNet}
n
i,j=1-hybrid model, the

parties need to call FPS ,PR
PKI for every possible sender/receiver pair (PS , PR), which in

turn implies that each party Pi gets a different public key for each other party. This
can be avoided by having one single “global” functionality FPKI that assigns a single
secret/public key pair to each party, and calling this inside each protocol execution
Πcomp,passive

StableNet (PS , PR) when instantiating FStableNet.
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Protocol Πcomp,passive
StableNet (PS , PR,m)

Setup: The parties call FPS ,PR
PKI , so each PR gets (skR, pkR, pkS) and PS gets

(skS , pkS , pkR).

– On input (m) from Z, PS does the following: In rounds 1, . . . , B, PS sends
(c, . . . , c) to FUnstableNet, where c = encpkR(m).

– Every party Pi initializes a variable msgi = ⊥. In rounds 1, . . . , 2B, Pi does
the following:
• If Pi receives a message {(Pj , cj)}nj=1 from FUnstableNet, then Pi sets msgi

to be equal to cj0 , where j0 is the smallest index such that cj0 6= ⊥.
• If msgi 6= ⊥, then Pi sends (msgi, . . . , msgi) to FUnstableNet.

– In rounds B + 1, . . . , 2B, PR does the following: If PR receives a message
{(Pj , cj)}nj=1 from FUnstableNet, then PR outputs m = decskR(cj0), where j0
is the smallest index such that cj0 6= ⊥.

Theorem 7. Assume that |Or∩Or+1| ≥ 1 for every round r > 0. Then, protocol
Πcomp,passive

StableNet (PS , PR) instantiates the functionality FPS→PR

StableNet in the (FPS ,PR

PKI ,FUnstableNet)-
hybrid model with computational security against an adversary passively corrupting
t < n parties.
Proof. We provide a proof with all the “bells and whistles” in order to illustrate
how our formal framework for unstable networks is used. We will construct a
simulator S that interacts with the environment Z and with the ideal functionality
FPS→PR

StableNet in such a way that Z cannot distinguish in polynomial time between
the execution of Πcomp,passive

StableNet (PS , PR) and the execution of FPS→PR

StableNet with S.
The simulator S is defined as follows. First, it emulates the functionality

FPS→PR

PKI so when the parties request the PKI in the zeroth round it samples and
distributes the necessary secret/public key pairs. S also emulates the functionality
FUnstableNet.

In what follows, S must emulate the execution of Πcomp,passive
StableNet (PS , PR). To

this end S emulates all the parties internally, and executes a local copy of the
protocol among these parties as instructed by Z (e.g. activating virtual parties
as Z indicates). Furthermore, for the first round r such that PS ∈ Or, S sends
(clockin, PS) to FPS→PR

StableNet, which allows the functionality FPS→PR

StableNet to receive input
from PS . When emulating PS in this round, S sets c = encpkR(0) if PR is honest,
or it sets c = encpkR(m) if PR /∈ H, where m is the value S receives from FStableNet

after clocking-in PS (recall that FStableNet immediately leaks to Z the values sent
to corrupt parties). Finally, for the first round r ∈ {B + 1, . . . , 2B} in which
PR ∈ Or, S sends (clockout, PR) to FPS→PR

StableNet, which allows PR to get the message
from the functionality.

Now we have to argue that Z cannot distinguish between the ideal and the
real execution. We first begin with the following claim.
Claim. There exists a round rR ∈ {B + 1, . . . , 2B} such that PR outputs m in
round rR, where m is the input from Z to PS .

46



To prove this claim, we first observe that, due to the B-assumption, there must
be a round 1 ≤ rS ≤ B in which PS ∈ OrS , so PS gets to send c = encpkR(m)
to all parties in OrS . Then, for each round r with rS ≤ r ≤ 2B, the following
invariant holds: all parties in Or know c (at the end of round r). Indeed, we
argue inductively. The invariant clearly holds for round rS . Since |Or∩Or+1| ≥ 1,
assuming that the invariant holds for a round r, we see that it also holds for
round r+1 since there is at least one party in Or ∩Or+1, and this party knows c
since it is in Or, and it also disseminates c to all parties in Or, being part of that
set as well. This shows that the invariant is preserved. This, together with the
fact that from the B-assumption there is a round rR such that B +1 ≤ rR ≤ 2B
in which PR ∈ OrR , shows that PR gets c.

With this claim at hand, we can show the indistinguishability of the ideal
and real worlds via a reduction to the CPA security of the underlying encryption
scheme. We construct an adversary A that uses Z internally in order to break
the CPA-game. A works as follows. First, it runs Z and sees what message m
is provided as input for PS . A sets the two messages for the CPA-game to be 0
and m. Upon receiving a challenge ciphertext c = encpk(b), where b ∈R {0,m},
A plays the role of the simulator S defined above, interacting with Z, except
it uses pk as PR’s public key and the challenge c as the message PS sends. If
Z believes it is in the ideal execution, then A guesses the plaintext is 0, else it
guesses the plaintext is m.

To analyze the advantage of A, first observe the following:

– If b = 0, then this looks to Z exactly as the execution with the simulator in
the ideal world.

– If b = m, then this looks to Z exactly as the real execution. This is because
S runs exactly the real protocol, but with a “dummy” c. If b = m, however,
then S is given the real c, so the execution corresponds to the real protocol.
Furthermore, in the simulated execution PR gets the message sent by PS

through the functionality FPS→PR

StableNet, but this also happens in the real execution
thanks to the claim above.

Given this, we see that the advantage of A is equal to the advantage of Z:

Adv(A) =|Pr[A = m | b = m]− Pr[A = m | b = 0]|
=|Pr[Z = real | b = m]− Pr[Z = real | b = 0]|
=|Pr[Z = real | real]− Pr[Z = real | ideal]| = Adv(Z).

We conclude then that Z’s advantage is negligible, given that A’s advantage is
negligible since the encryption scheme is CPA-secure. ut

E.2 Active Security

The protocol above does not work against active adversaries directly since a
corrupt party may lie when sending c. This can be fixed using signatures, since
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this would allow a receiver to discard a message that was not originally signed
by the sender. This protocol also requires the PKI functionality FPR,PS

PKI .
In this setting we assume that |Or ∩ Or+1 ∩H| ≥ 1 for every round r.18 The

intuition why this is like necessary is similar to the one from the passive setting in
Section E.1: since the actively corrupt parties could simply refrain from sending
any message at all, allowing |Or ∩ Or+1 ∩H| = 0 would allow the parties to be
partitioned into two disjoint sets that do not communicate among each other.

In the description of the protocol below, and for the rest of the protocols in
this work, we relax the notation with respect to the usage of the functionality
FUnstableNet. For example, instead of saying that a party Pi inputs (mi1, . . . ,min)
to this functionality, we will say that Pi sends mij to Pj . Several other intuitive
relaxations are made.

Protocol Πcomp,active
StableNet (PR, PS ,m)

Setup: The parties call FPS ,PR
PKI , so each PR gets (skR, pkR, pkS) and PS gets

(skS , pkS , pkR).

– On input (m), PS does the following: In rounds 1, . . . , B, PS sends (c, σ)
to all parties, where c = encpkR(m) and σ = signskS (c).

– Every party Pi 6= PR initializes an variable msgi = ⊥. In rounds 1, . . . , 2B,
Pi does the following:
• If Pi receives a message (cj , σj) from Pj , and if verifypkS (cj , σj) = 1,

then Pi sets msgi to be equal to cj .
• If msgi 6= ⊥, then Pi sends msgi to all parties.

– In rounds B + 1, . . . , 2B, PR does the following: If PR receives a message
(cj , σj) from a party Pj , and if verifypkS (cj , σj) = 1, then PR outputs
m = decskR(cj).

Theorem 8. Assume that |Or ∩ Or+1 ∩H| ≥ 1 for every r > 0. Then, protocol
Πcomp,active

StableNet (PR, PS) instantiates the functionality FPR→PS

StableNet in the (FPR,PS

PKI ,FUnstableNet)-
hybrid model with computational security against an adversary actively corrupting
t < n parties.

Proof. At a high level, the simulator S in this case is defined in a similar manner
as the one from the proof of Theorem 7: S emulates internal honest parties, and
executes the protocol exactly as in the real execution, except that it uses an
encryption of 0 for the case in which PR is honest, and the real m received from

18 This is in particular implied by the alternative assumption |Ok ∩H| > n/2 for every
k > 0, which is used in [16].
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FPS→PR

StableNet otherwise. However, since this time the environment is corrupting some
parties maliciously, certain modifications must be made to the simulation.

We assume for now that PS is honest, and we discuss the other case towards
the end. In this case, S simply emulates the honest parties as indicated above,
interacting with the actively corrupt parties that are controlled by Z. As in the
simulation from the proof of Theorem 7, S instructs FPS→PR

StableNet to read input from
PS in the round in which PS comes online for the first time, and it instructs
FPS→PR

StableNet to send output to PR in the first round in {B+1, . . . , 2B} in which PR

comes online, if PR is honest.
To show indistinguishability between the ideal and real worlds, we rely on

the following claim:
Claim. There exists a round rR ∈ {B + 1, . . . , 2B} such that PR outputs m in
round rR, where m is the input from Z to PS .
To see this, observe that, from the B-assumption, there must be a round 1 ≤
rS ≤ B in which PS ∈ OrS , so PS gets to send (c, σ) to all parties in OrS . The
invariant we claim here is that, for all rounds rS ≤ r ≤ 2B, all the parties
Pi ∈ Or ∩H set their internal variable msgi to the correct message-signature pair
(c, σ). To see that this invariant holds, we argue inductively: First, the invariant
clearly holds for round rS . This is because each party Pi ∈ OrS ∩H receives the
message (c, σ) from PS , and even if they receive other pairs (c′, σ′) with c 6= c′

and σ 6= σ′ from other parties, these messages are discarded as they will satisfy
verifypkS (c

′, σ′) = 0, since these are not produced by PS .19

Now, recall that |Ok ∩ Ok+1 ∩H| ≥ 1 for every k. Given this, assuming the
invariant holds for a round r, we see that it also holds for round r+1 since there
is at least one honest party Pi in Or ∩Or+1. This is because this party Pi knows
(c, σ) since by induction hypothesis all parties in Or ∩H know (c, σ), and also,
since Pi ∈ Or+1, Pi is able to send this to all parties in Or+1, which preserves
the invariant for round r + 1. This agains uses the fact that the parties can filter
out incorrectly-signed messages.

Finally, let rR ∈ {B+1, . . . , 2B} be a round in which PR ∈ OrR , which exists
due to the B-assumption. Due to the invariant, all the honest parties in OrR

know (c, σ). Hence, PR gets this pair in this round and is therefore able to learn
m.

With this claim at hand, the rest of the analysis is essentially the same as the
one from the proof of Theorem 7. We define an adversary A for the CPA-game
for the encryption scheme that interacts with Z while playing the role of S, and
outputs a guess based on the guess of Z. The key is that we can show that, when
using the “right” message in the simulation (the one given by Z to PS), the
execution looks exactly as the one from the real world, which makes use of the
claim above to argue that in the real world PR receives the message sent by PS ,
as in the simulated execution.
19 Here we are making use of the unforgeability of the signature scheme. This could be

made more formal by defining an adversary that breaks the EUF-CMA security of
the signature scheme, interacting with the environment and playing the role of the
simulator. However, we leave such formal approach out for the sake of simplicity.
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Finally, if PS is corrupt, the simulation proceeds with the following changes.
S emulates the honest parties as before, except that this time it can decrypt the
potentially multiple signed ciphertexts that PS sends. As a result, S, following the
protocol, is able to determine what is the message that at the end of the execution
PR is supposed to receive, and uses the change command on the FPS→PR

StableNet to
modify the input from PS to this new value. ut

F Security of the Protocol from Section 5

In this section, we provide a sketch of the security properties of protocol ΠMPC

from Section 5.3. Recall that the function to be computed is assumed to be given
by a layered circuit (x

(L)
1 , . . . , x

(L)
`L

) = F (x
(0)
1 , . . . , x

(0)
`0

), as defined in Section C.
Furthermore, it is assumed that the parties have bivariate shares of the inputs
〈x(0)

1 〉, . . . , 〈x
(0)
`0
〉, and also, for every multiplication gate, a triple (〈a〉, 〈b〉, 〈c =

a · b〉) with a, b uniformly random in F.20 Recall that 〈s〉Or means that there is
a large enough subset Sr ⊆ Or ∩ H such that every party Pi ∈ Sr has f(x, i)
such that f(0, 0) = s, and parties in (Or ∩H) \ Sr either have f(x, i) or a special
symbol ⊥.

Assume the protocol starts in round 0. We claim that the following invariant
holds: In round r, the parties in Or have shares of the intermediate results in layer
r, namely 〈x(r)

1 〉Or , . . . , 〈x(r)
`r
〉Or . To see this we argue inductively. For r = 0 this

follows trivially as we assumed that the parties start with shares 〈x(0)
1 〉, . . . , 〈x

(0)
`0
〉,

which in particular means they have shares 〈x(0)
1 〉O0 , . . . , 〈x(0)

`0
〉O0 .

Assume the invariant holds for r, and let us show it also holds for r + 1. Let
k ∈ {1, . . . , `r+1}. From the definition of a layered circuit, the value x

(r+1)
k can

be computed in either one of three ways:

– Identity gate x
(r+1)
k = x

(r)
i . In this case the protocol instructs that the parties

must call 〈x(r+1)
k 〉Or+1 ← Πtransfer(〈x(r)

i 〉Or ).
– Addition gate x

(r+1)
k = x

(r)
i + x

(r)
j . In this case the protocol dictates the

parties to compute 〈x(r)
k 〉Or = 〈x(r)

i 〉Or+〈x(r)
j 〉Or , followed by 〈x(r+1)

k 〉Or+1 ←
Πtransfer(〈x(r+1)

k 〉Or ).
– Multiplication gate x

(r+1)
k = x

(r)
i · x

(r)
j . Here, the parties in Or first compute

locally 〈d〉Or = 〈x(r)
i 〉Or − 〈a〉Or and 〈e〉Or = 〈x(r)

j 〉Or − 〈b〉Or , and call
d← Πrec(〈d〉Or ) and e← Πrec(〈e〉Or−1), which enables the parties in Or ∩H,
which include Or ∩ Or+1 ∩H, to learn d and e. Observe that this does not
reveal anthing about x(r)

i and x
(r)
j to the adversary since a and b are assumed

to be uniformly random and unknown to the adversary. Finally, these parties,
which define the set Sr+1, compute d · 〈b〉Or+1 + e · 〈a〉Or+1 + 〈c〉Or+1 + d · e,

20 A simple “optimization” is that these shares do not need to be held by all the parties,
but rather by these that will make use of these sharings in each corresponding round.
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which can be easily checked to be equal to 〈x(r)
i ·x

(r)
j 〉Or+1 , which is the same

as 〈x(r+1)
k 〉Or+1 .

Since the invariant holds for every layer, in particular it holds for r = L,
which shows that, after L rounds, the parties obtain 〈x(L)

1 〉OL , . . . , 〈x(L)
`L
〉OL . As

mentioned in Remark 4 in Section 5.3, these shared outputs can be handled in
different ways, depending on the application under consideration.

G Results with Pre-Shared Keys

In this section we sketch how our results change if the parties are allowed to
interact with a setup functionality before the beginning of the protocol. For the
case of computational (malicious) security, nothing changes as the intersection
condition is clearly already minimal: if no honest player survives from one round
to the next, nothing can be transmitted.

We then consider perfect security. Assume that PS and PR have a random
shared key k ∈ F only known by the two of them. Then we only need to build a
protocol where PS sends c = m+ k (instead of m), which does not require any
privacy. For this, it is easy to see that the condition |Or ∩ Or+1 ∩H| ≥ t+ 1 for
every r > 0 is sufficient and necessary: PS can simply send c in the clear to all
parties, and all parties relay this message in every round; however, an honest
party only relays a message if it hears the given message either directly from
the sender, or from at least t+ 1 parties. The latter condition ensures that you
only relay something you heard from at least one honest party. On the other
hand, in each round every honest player will hear at least from the ≥ t+1 honest
survivors from that previous round.

For the case of statistical security, we can also let the receiver one-time pad
encrypt the message to be sent, so we only need a protocol that transmits a
public message m reliably. Recall that with a shared key K = (a, b), a value x
can be authenticated by sending along an “unconditional MAC” mK(x) = ax+ b
(computed in a finite field). The receiver recomputes the MAC and compares to
what she received. An adversary can make the receiver accept a different message
only by guessing a, which happens with negligible probability if a is chosen from
a sufficiently large field.

Now, let M(x) stand for the following operation: for each party Pi, PS takes
a fresh MAC-key K she shares with Pi and appends mK(x) to x. Thus, M(x)
consists of x followed by n MACs. Now, to send m to PR, PS will compute and
send M(M(· · ·M(m) · · · )) = M2B(m). Suppose that, in some round, Pi receives
a message that can be parsed as M j(m). Note that this means M j(m) consists
of M j−1(m) followed by n MACs, one of which is intended for Pi. If this MAC
verifies, she will send M j−1(m) to all parties in the next round.

This protocol works if |Or ∩Or+1 ∩H| ≥ 1 for all r: in the round where PS is
online all honest players will get a message that they can verify, so at least one
of them will relay a correct message in the next round, where one layer of MACs
has been “peeled off”. This continues until PR comes online, which happens no
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later than 2B rounds after PS started the exchange, so the parties will not “run
out” of MACs. The only way in which PR can receive an incorrect message is if
a MAC was forged, which happens with negligible probability.

As for the communication complexity, note that PS will need to attempt to
start the protocol in each of the first B rounds (she does not know in which of
them she is online). For each instance, O(Bn2) messages may be sent, so we have
O(B2n2) messages. Each message has size equal to the original message size plus
O(Bn) macs. Note here that even if the simple example mac we mentioned has
mac size that depends on the message size, it is well known that we can have
macs whose size depend only on the security parameter. Total communication is
therefore O(B2n2(`+Bnκ)) where ` is the message length and κ is the security
parameter.
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