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Abstract. We provide the first isogeny-based group signature (GS) and
accountable ring signature (ARS) that are provably secure in the quan-
tum random oracle model (QROM). We do so by building an intermedi-
ate primitive called openable sigma protocol and show that every such
protocol gives rise to a secure ARS and GS. Additionally, the QROM
security is guaranteed if the perfect unique-response property is satis-
fied. Our design, with the underlying protocol satisfying this essential
unique-response property, is sophisticatedly crafted for QROM security.
From there, with clever twists to available proving techniques, we obtain
the first isogeny-based ARS and GS that are proven QROM-secure.
Concurrently, Beullens et al. (Eurocrypt 2022) proposed an efficient con-
struction analyzed in the classical random oracle model (ROM). Their
proof, however, is marred by the Fiat-Shamir with Aborts (FSwA) flaw,
recently discovered in the work of Barbosa et al. and Devevey et al. (both
in CRYPTO 23). Our proposal seeks stronger QROM security, and even
though it is less efficient due to the signature size scaling quadratically
with the ring/group size, the analysis remains unaffected by the FSwA
flaw.

Keywords: isogeny, group signature, accountable ring signature, quan-
tum random oracle model

1 Introduction

Group signatures and accountable ring signature Group signatures (GS),
first proposed by Chaum and van Heyst [16], are signature schemes that permit
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signing by a group, a set of players chosen by a prescribed group manager. Each
player can generate publicly verifiable signatures on behalf of the group while
keeping himself anonymous to everyone except the group manager. The group
manager has the authority to open, i.e., to reveal the signer’s identity from a
signature with its master secret key. Afterward, there have been numerous works
devoted to group signatures. Many of them aimed to give refinements and exten-
sions to the primitive [4, 13]. An important line of research on group signatures
studies variants with dynamic groups. In contrast to the original formulation
where only static groups are supported [3,16], a dynamic group signature allows
a group to be updated after the setup stage. The notion of partially dynamic
group signatures was formulated in [4, 29], where parties can join a group but
cannot be removed. However, Accountable ring signatures (ARS), first proposed
by Xu and Yung [45], provides the “dynamic property for groups” in a different
aspect. ARS, while having a “ring signature” [38] within its name, can also be
viewed as a variant of group signatures where groups are fully dynamic but not
authenticated. In an ARS scheme, the manager no longer controls the group. In-
stead, a signer can freely decide which master public key to use and which group
to sign for, and the corresponding master secret key can then open its identity.
Though seemingly incomparable to a standard group signature, an ARS scheme
can, in fact, trivially imply a group signature scheme simply by fixing the group
at the setup stage. Later, Bootle, Cerulli, Chaidos, Ghadafi, Groth, and Pe-
tit [11] proposed a stringent formulation for ARS and a provable construction
based on the DDH assumption. It is further shown in [10] that such a stringent
ARS scheme can be generally transformed to a fully dynamic group signature
scheme.

Signatures with post-quantum assumptions. There has been increasing at-
tention to the importance of post-quantum security for cryptographic primitives.
Various attempts emerged to construct group signatures based on cryptographic
assumptions that resist quantum attacks. Gordon, Katz, and Vaikuntanathan
first gave a group signature construction from lattice-based assumptions [27].
Several constructions of lattice-based group signatures followed this, either for
static groups [30, 35], or dynamic groups [32, 33]. There have also been a few
attempts at constructing group signatures from other classes of post-quantum
assumptions, such as code-based assumptions [24] or hash-based assumptions [1].
However, multiplayer signatures, including ring, accountable ring, and group
signatures, are often found in only classical ROM setting. To the best of our
knowledge, only a select few lattice-based signatures offer QROM-security [39].
Offering multiplayer signatures with QROM-security from other assumptions, as
a result, becomes an intriguing topic.

Signatures from ROM to QROM. Signature construction typically involves
a cryptographic hash function, which is then modeled as a random function
giving its query access to the considered adversary. This is referred to as the
random oracle model (ROM), which has been proven successful for security
analysis. In light of a full-fledged quantum adversary being able to evaluate
the hashes in superposition, one should consider an adversary given quantum
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query access to the random oracle. Security under this quantum random oracle
model (QROM) is always considered necessary in post-quantum cryptography. In
terms of isogeny-based cryptography, there have been several primitives proven
QROM-secure [7, 25], but there is still a lack of more advanced QROM-secure
ones such as ring signatures or group signatures. This leads to the main question
of this work:

Can we construct QROM-secure group signatures and accountable ring
signatures from isogenies?

1.1 Our results

We construct accountable ring signatures (ARS) from isogeny-based assumptions
in the quantum random oracle model (QROM). Moreover, since ARS can be
easily transformed into group signatures and ring signatures6 while preserving its
QROM security, we also achieve the first provably QROM-secure group signature
and ring signature. On top of it, we introduce a primitive for constructing ARS
called openable sigma protocol, which is simple and fits well with the Fiat-Shamir
methodology: Any openable sigma protocol Σ can be securely transformed into
an ARS ARStΣ using Fiat-Shamir transformation. Furthermore, we show that a
typical requirement for QROM-secure signatures, the unique-response property,
suffices to provide QROM security to the abovementioned ARS. Note that it is
non-trivial to obtain (or avoid relying on) the unique-response property, and we
will direct the readers to our technical overview in Section 2 for further details.

Theorem 1. (Informal) Let Σ be a secure openable sigma protocol. Then ARStΣ
is a classically secure ARS. Furthermore, if Σ is perfect unique-response, then
ARStΣ is QROM-secure.

We base our construction on the decisional CSIDH assumption (D-CSIDH).
From an abstract viewpoint, D-CSIDH is a natural generalization of DDH which
is built over the weaker group-action structure. Due to the lack of homomorphic
properties in group-action assumptions, it is usually infeasible to transform re-
sults obtained from group-based assumptions to those from group-action-based
assumptions. Our work demonstrates the possibility of constructing advanced
cryptographic primitives with group-action-based assumptions, despite its lim-
ited expressiveness. For future works and open problems, please refer to Supple-
mentary A for more detail.

Concurrent works. Independent and concurrent to our work, [8,31] also man-
aged to construct isogeny-based group signatures, with the former based on
the accountable ring signatures as we do, and the latter based on the so-called
collusion-resistant revocable ring signatures. There was coordination in which
[8, 31], and we released our preprints simultaneously. At that time, they offered

6 ARS⇒RS is trivial by throwing away the opening functionality.
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more efficient constructions but only in classical ROM, and we were still work-
ing on the QROM analysis. Soon after, our updated version was able to provide
QROM security, whereas neither of [8, 31] does. This is mainly because of the
following reasons. With QROM security borne in mind, our underlying sigma
protocol has been designed to be unique-response, which is absent in the con-
struction of [8, 31]. In terms of efficiency, our signature size scales quadratically
O(n2) in the number n of members, which is relatively bigger than their O(log n)
and O(n log n). In comparing these works, one may regard [8,31] as focusing on
efficiency and ours more on full-fledged quantum security.

Nevertheless, two recent works [2, 20] discovered a flaw in the analyses of
the Fiat-Shamir with Aborts (FSwA) paradigm, which in particular is likely
to affect all previous (and concurrent) constructions of isogeny-based ring and
group signatures [6,8,31]. In particular, we confirmed with Yi-Fu Lai, one of the
co-authors of [8] that the paper is indeed affected by the FSwA flaw, yet without
consensus on how to fix it. We refer readers to Supplementary I for more details.
On the other hand, our result remains unaffected, as it does not rely on FSwA.

2 Technical overview

In this overview, we assume some familiarity for sigma protocols and the Fiat-
Shamir transformation [26].

2.1 Hurdles to QROM-security

To start off, we explain why one needs to be extra careful when performing
security proofs in QROM.

We follow the so-called Fiat-Shamir paradigm. In this paradigm, one often
starts with constructing a so-called sigma protocol, where an adversary can make
random challenges for the prover to respond. Then, the interaction is removed by
substituting the verifier’s random challenges with hashes of earlier transcripts.

In proving security for this kind of construction, two commonly used tech-
niques are rewinding, and reprogramming. We briefly describe their use-case as
follows.

(1) The properties of a sigma protocol Σ can often be lifted to its correspond-
ing Fiat-Shamir signatures, which run almost as Σ, except challenges are
computed as the hashes (partly) of to-be-signed messages. An adversary
may therefore bias the challenge distribution, by post-selecting the messages
depending on previous hash queries. One typically resorts to the reprogram-
ming argument to control such bias.

(2) A common way to argue the underlying sigma protocol indeed proves the
knowledge of a certain relation, is by means of running a prover multiple
times, and each time rewinding to the point where fresh challenges are about
to be made, in order to collect its responses for many different challenges.
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The reprogramming argument usually involves reasoning around previous query
inputs. For instance, classically one may argue a certain random variable x has
not been queried to the random oracle, except with a small probability. However,
in the quantum setting where the queries are made in superposition, it is non-
trivial to even define a notion of previously queried inputs. It is not possible
to read out the previously queried inputs due to the no-cloning principle, nor
to measure them as it may disturb the running states and be noticed by the
adversary. Similar issues occur in the rewinding arguments, where we run the
same prover multiple times. Each time, when a response is made, the running
state of the prover is disturbed, which then affects later execution as well.

Mitigating the unique-response property?
In [42], Unruh demonstrated how to perform the quantum rewinding argument
with an additional so-called collapsing property. The collapsing property is a
slight relaxation of the unique-response property, which turns out necessary in
the currently available quantum rewinding technique, e.g., [17]. In particular,
if the prover can produce two distinct responses for the same challenge, as in
[6, 8, 31], then the collapsing property is violated.

A natural question is: for a construction lacking the collapsing property, can
we easily ”uniquify” their responses? There is a rule of thumb along the line of the
so-called Unruh’s transformation [21, 42]. The prover commits to one response
for each challenge and publishes it in the first message, which the verifier can
open and check in the later phase. However, the situation is more complicated,
and we need to be more careful when we look into specific constructions and ask
if they could be modified and obtain QROM securities.

We note that the previous construction [6] of isogeny-based ring signatures
in ROM may also obtain QROM security if we slightly twist the protocol with
careful analysis. A twist in our mind is via removing an optimization trick that
replaces a list of commitments in the first message to a Merkle-tree root, and after
the removal, additionally adopting Unruh’s transformation. However, whether or
not it works remains to be confirmed, and the authors of [6] did not contemplate
such an adaptation in their paper.

As has been highlighted in the introduction, the security guarantees as claimed
in [6,8,31] are likely to be affected by the FSwA flaw [2], already in the classical
ROM. Nevertheless, even if there is a patch to such a flaw, the quantum secu-
rities of these protocols still remain unclear. The following two reasons come as
major obstructions to achieve QROM security:

(1) Within their underlying sigma protocols, a prover is able to compute two
distinct responses when the challenge is 0. This violates the collapsing prop-
erty, which is required in presently available quantum rewinding techniques,
e.g., [17, 42].
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(2) Unruh’s transformation [43] premises a sigma protocol in the plain model
and is not directly applicable to [8,31] due to their extra hash commitments
involved.

How about a polynomial number of valid responses?
One thing worth mentioning is that there is a variant of Unruh’s rewinding tol-
erating up to polynomially many responses (for the same challenge). However,
this variant of rewinding still does not help either because typical constructions
involve parallel repetition, which executes the same protocol multiple times in-
dependently in order to amplify soundness probability. The number of valid
responses will then have an exponential blow-up as the number of repetitions
scales, from which the QROM analysis falls apart.

2.2 A technical trailer

Signatures based on isogeny class group action. Stolbunov [41] gave the
first attempt toward an isogeny-based signature scheme in his thesis. His scheme
applies the Fiat-Shamir transformation [26] to the sigma protocol of Couveignes
[19]. While Couveignes’ protocol is structurally similar to the discrete log-based
protocol by Chaum and van Heyst [16], its challenge space cannot be extended
as in Schnorr’s protocol [40]. Parallel repetition is thus necessary for Stolbunov’s
signature scheme.

Later, following the proposal of an efficient class group action implemen-
tation by CSIDH [14], SeaSign [25], and CSI-FiSh [7] separately gave efficient
signature constructions based on Stolbunov’s approach. One main contribution
of their works is that they overcome the lack of canonical representation for
elements in the class group Cl(O). In Stolbunuov’s scheme, the signer would

reveal rs for r
$←− Cl(O) and secret s ∈ Cl(O). However, since r and s are rep-

resented as element-wise bounded vectors in the CSIDH representation, a naive
representation for rs does not hide the information of s. To cope with this issue,
SeaSign proposed a solution using the Fiat-Shamir with abort technique [34],
while CSI-FiSh computes the whole class group structure and its relation lattice
for a specific parameter set, CSIDH-512. In this work, we will adopt the latter
approach, where we can simply assume canonical representation for elements in
Cl(O).

Beullens, Katsumata, and Pintore [6] showed how to construct an isogeny-
based ring signature with the sigma protocol for an OR-relation. Our work sim-
ilarly starts with a sigma protocol which additionally supports an opening op-
eration. We want a sigma protocol that takes n statements and a master public
key as inputs, computes a proof for one of the statements and embeds the “iden-
tity” of the proved statement into the transcript so that it can be extracted
with the master secret key. As the first step, we will discuss how we can embed
information for opening the transcript.
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Embedding opening information. In a group signature scheme, the informa-
tion for the signer’s identity must be somehow embedded into the signature so
that the master can open it. One natural approach to embed opening informa-
tion is to encrypt the information with the master public key. Such an approach
is proven successful in a few previous works on group signatures [9,11]. However,
since the opening information is now a ciphertext under the master key, a ver-
ifier can only check the validity of the ciphertext via homomorphic operations
or NIZK. Unfortunately, unlike group-based assumptions, it is not yet known
how to achieve such homomorphic property from the weaker group action struc-
ture given by isogeny-based assumptions. There is also no isogeny-based NIZK
construction in the literature. Thus, we will have to develop a structurally more
straightforward way to encode our opening information.

In light of this, we construct our opening functionality in a very naive way.
For a signature with group/ring size n and a master secret key sm for opening,
we embed the signer identity by one DDH tuple and n − 1 dummies. Namely,
the opening information is in the form

τ = ((r1E, r2E, . . . , rnE), rkEm), where r1, . . . , rn
$←− G and Em = smE ,

which embeds the signer’s identity k ∈ [n] through position, and is extractable
for the manager holding sm. Note that such τ keeps all its elements in the form
of curves/set elements, hence the verifier can do further group action on τ for
consistency checking. This circumvents the previous difficulty, but with the cost
of a larger payload.

Openable sigma protocol. To construct a group signature/accountable ring
signature scheme through Fiat-Shamir transformation, we first introduce an in-
termediate primitive called openable sigma protocol. We refer the reader to
Section 4 for more details.

The formulation of the openable sigma protocol looks similar to the standard
OR sigma protocol. They both take n statements and one witness as input.
However, there is a significant difference between them. The OR sigma protocol
is a proof of knowledge for the OR-relation. The openable sigma protocol, on
the other hand, is a proof of knowledge for the relation of the kth statement,
where k is chosen at the proving stage and embedded in the first message com,
and can then be extracted by the master secret key sm.

For our openable sigma protocol, the special soundness would thus require an
extractor that extracts the kth witness, which matches the opening result. Such
a stronger extractor is crucial for proving unforgeability for group signatures, in
which we transform a forger for party k into the extractor for the kth witness.
Extractors for standard OR sigma protocols cannot provide such reduction.

Also, unlike an OR sigma protocol, an openable sigma protocol cannot get
anonymity directly from the HVZK property, as the proving statement is now
embedded in com. To achieve anonymity, we need an extra property computa-
tional witness indistinguishability (CWI), which states that for an honest master
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key pair (mpk,msk), the proof for the ith the statement is indistinguishable from
the proof for the jth statement. This promises that when transformed into signa-
tures, the signer would be anonymous as long as the manager has not colluded.

The construction of our openable sigma protocol is built on top of the pre-
vious identity embedding component. For statements E1, . . . , En along with the
kth witness sk s.t. Ek = skE and the master key pair (sm, Em = smE), the
opening information in our protocol is set to

τ = (Eβ , EOpen) = ((r1E1, r2E2, . . . , rnEn), rkskEm), r1, . . . , rn
$←− G

As argued earlier, the manager can extract k from τ with sm. To complete a
proof of knowledge protocol, we use two challenges (ch = 1, 2) to extract the
knowledge of each ri, and use another two challenges (ch = 3, 4) to extract
“some d = rksk s.t. dE ∈ Eβ and dEm = EOpen.” This gives us a four-challenge
openable sigma protocol with a corresponding special soundness property.

We detail the full construction and security proofs in Section 4.

Parallel repetitions and Fiat-Shamir transformation. From our 4-challenge
sigma protocol with opening property, we immediately obtain an identification
scheme with a soundness error 3

4 . In order to amplify away the soundness error,
the designed openable sigma protocol is executed in parallel repetitions. The
parallel repeated proof can be opened by taking the majority of the opening
results from each of its sessions.

It may be tempting to claim that we can achieve soundness ( 3
4 )λ through

a λ repetition. Unfortunately, this is not the case because each parallel session
can be independently generated with a different witness, and some of the wit-
nesses might be validly owned by the adversary. As a concrete example, in a
λ-parallel protocol, an adversary that owns 3 keys can generate λ/4− 1 honest
parallel sessions on behalf of each key, and then cheat on only λ/4+3 sessions to
achieve a successful forgery. Looking ahead, for an adversary owning nA keys, we
would need nA · poly(λ) repetitions to keep the error negligibly bounded, where
the bound holds with its polynomial degree depending on the adversary being
classical or quantum.

With an identification scheme under a negligible soundness error, we can
now apply the Fiat-Shamir transformation and obtain a signature scheme. This
is done by substituting the verifier’s random message with the hash of earlier
transcripts. Classically, a µ-special-sound protocol with some constant µ, under
parallel repetitions, preserves its proof of knowledge (PoK) property after being
Fiat-Shamir transformed. This is done by adopting the so-called improved fork-
ing lemma, which rewinds a soundness adversary under the hood multiple times
in order to collect multiple outputs and extract a secret from it. However, in the
quantum setting, this does not work trivially. Each time measuring an output of
a quantum adversary potentially corrupts its internal state and would require a
different set of techniques for analysis.
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A recently developed technique, measure-and-reprogram [21,22], gives a non-
trivial reduction from non-interactive PoK to the interactive one. Then, by means
of generalized Unruh’s rewinding, one can again rewind the interactive adversary
and use it to extract a secret, assuming the collapsing property of the underly-
ing protocol. Keeping the goal to construct a signature in mind, at some point,
we need to reduce security against chosen-message attacks to no-message at-
tacks. The crucial part of such reduction lies in the simulation of the signing
oracle. One typically needs to reprogram the random oracle and argue that such
reprogramming is not noticeable by the adversary except with some small prob-
ability. Assuming the reprogrammed places are of high min-entropy, a recent
technique adaptive reprogramming [28] helps one show that such reprogramming
is not noticeable, even if the distribution of reprogrammed places is chosen by
the quantum adversary on-the-fly.

Now, it becomes retrospectively clear why an openable sigma protocol should
be defined in such a way that the index k of the proven statement is embedded in
its first message com, and not in the responses: only then, obtaining µ accepted
responses to distinct challenges at the same position i ∈ [t] implies extraction
because they share the same first message and therefore the same opening result.
In order to obtain these µ responses, the abovementioned QROM tools are used
in a non-blackbox manner. In particular, we are taking advantage of the fact
that the extracted responses are subject to uniformly and independently chosen
challenges in each repetition and rewinding. We can then fix the sessions that
open to the desired k, and argue about the probability where µ distinct challenges
occur at the same position.

3 Preliminary

3.1 Isogeny and class group action

At the bottom level of our construction is the so-called isogeny class group action,
which considers a commutative class group Cl(O) acting on the set of supersin-
gular elliptic curves E``p(O, πp) up to Fp isomorphisms. The group action is free
and transitive: for every E1, E2 ∈ E``p(O, πp), there is exactly one a ∈ Cl(O)
such that E2

∼=Fp aE1. For the use of cryptography, we note that computing the
action is efficient while extracting a from the end-point curves is considered in-
tractable. This introduces a hard-to-compute relation while regarding the curves
as public keys and the group element a as secret. Note that validating the public
key is efficient because it is efficient to validate the supersingularity of a curve.
We refer readers to Supplementary D for a guided walk-through.

Hardness assumptions. Hardness for the group action inverse problem (GAIP)
in Definition 1 is commonly assumed for the above-mentioned group action,
which has been shown useful on constructing signature schemes such as CSI-
FiSh [7] and SeaSign [25].
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Definition 1 (Group Action Inverse Problem (GAIP)). On inputs E1, E2 ∈
E``p(O, πp), find a ∈ Cl(O) such that E2

∼=Fp a · E1.

In this work, we need to assume hardness for a weaker problem, the deci-
sional CSIDH problem (abbreviated as D-CSIDH7) in Definition 2, which was
considered already in [19,41], and is the natural generalization of the decisional
Diffie-Hellman problem for group actions.

Definition 2 (Decisional CSIDH (D-CSIDH) / DDHAP). For E ∈
E``p(O, πp), distinguish the two distributions

– (E, aE, bE, cE), where a, b, c
$←− Cl(O),

– (E, aE, bE, abE), where a, b
$←− Cl(O).

We note that for typical cryptographic constructions such as CSIDH, addi-
tional heuristic assumptions are required to sample a random element from the
class group (as in Definition 2). This is because the “CSIDH-way” for doing this
is by sampling exponents (e1, . . . , en) satisfying ∀i : |ei| ≤ bi, and the resulting
distribution for ideals le11 . . . lenn is generally non-uniform within Cl(O). To get
rid of such heuristics, one could instead work with specific parameters, where a
bijective (yet efficient) representation of ideals is known. For instance, in [7], the
structure of Cl(O) is computed, including a full generating set of ideals l1, . . . , ln
and the entire lattice Λ := {(e1, . . . , en)|le11 . . . lenn = id}. Evaluating the group
action is just a matter of approximating a closest vector and then evaluating
the residue as in CSIDH. In this work, we will be working with such a “perfect”
representation of ideals, unless otherwise specified.

As a remark, we note that the D-CSIDH problem for characteristic p = 1
mod 4 is known to be broken [15]. Nevertheless, the attack is not applicable to
the standard CSIDH setting where p = 3 mod 4.

3.2 Group action DDH

In this section, we give an abstract version of the CSIDH group action. Such
formulation will simplify our further construction and security proof.

A commutative group action GAλ = (Gλ, Eλ) with security parameter λ (we
will omit the subscripts for simplicity) is called a DDH-secure group action if
the following holds:

– G acts freely and transitively on E .
– DDHAP is hard on GAλ. i.e., for any efficient adversary A and E ∈ E , the

advantage for A distinguishing the following two distributions is negl(λ).

7 This problem is called the decisional Diffie-Hellman group action problem (DDHAP)
in [41].
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• (E, aE, bE, cE), a, b, c
$←− G

• (E, aE, bE, abE), a, b
$←− G

As a side remark, the GAIP problem is also hard on a DDH-secure group action.

For a DDH-secure group action, we can also have a natural parallel extension
for DDHAP. Such extension is also discussed in [23].

Definition 3 (Parallelized-DDHAP (P-DDHAP)). Given E ∈ E, distin-
guish the two distributions

– (aE, {biE}i∈[m], {ciE}i∈[m]), where a, {bi}i∈[m], {ci}i∈[m]
$←− G,

– (aE, {biE}i∈[m], {abiE}i∈[m]), where a, {bi}i∈[m]
$←− G.

By a simple hybrid argument, we can easily see that if DDHAP is ε-hard,
then P-DDHAP is mε hard. To see this, note that a single DDHAP can be turned

into a P-DDHAP as (aE, {ribE}i∈[m], {ricE}i∈[m]) for {ri}i∈[m]
$←− G.

In the following we will use this in the form (aE, {biE}i∈[m], {ciE}i∈[m]) ≈c
(aE, {cia−1E}i∈[m], {ciE}i∈[m]).

3.3 Sigma protocol

A sigma protocol is a three-message public coin proof of knowledge protocol. For
interested readers, we provide a brief introduction in Supplementary E.

3.4 The forking lemma

A sigma-protocol-based signature naturally allows witness extraction from the
special soundness property. By extracting the witness from signature forgeries,
one can reduce the unforgeability property to the hardness of computing the
witness. However, the main gap between special soundness and unforgeability is
that special soundness needs multiple related transcripts to extract the witness,
while a signature forging adversary only provides one. The forking lemma [36] is
thus proposed to close this gap. For our particular application, as elaborated in
Supplementary F.1, a generalized variant is adopted for the classical analysis.

3.5 Group signature

A group signature scheme consists of one manager and n parties. The manager
can set up a group and provide secret keys to each party. Every party is allowed
to generate signatures on behalf of the whole group. Such signatures are pub-
licly verifiable without revealing the corresponding signers, except the manager
can open signers’ identities with his master’s secret key. We refer readers to
Supplementary H for group signature syntax and formal definitions.
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3.6 Accountable ring signature

Accountable ring signatures (ARS) are a natural generalization for both group
and ring signatures. Compared to a group signature, ARS gives the power of
group decision to the signer. On signing, the signer can sign for an arbitrary
group (or ring, to fit the original naming) and can decide on a master independent
of the choice of the group. The master can open the signer’s identity among the
group without needing to participate in the key generation of parties in the ring.
Note that accountable ring signatures directly imply group signatures simply by
fixing the group and the master party at the key generation step. Thus, ARS
can be viewed as a more flexible form of group signature.

Syntax. An accountable ring signature scheme ARS is associated with the
following sets M, Km, K, KPm, KP and (efficient) algorithms MKeygen,
Keygen, Sign, Verify, Open, as elaborated below.

– MKeygen(1λ) → (mpk,msk) ∈ KPm generates a master public-secret key
pair.

– Keygen(1λ) → (pk, sk) ∈ KP generates a public key-secret key pair for a
ring member.

– Sign(mpk, S,m, sk) → σ, for a message m ∈ M, a finite set of public keys
S ⊂fin K with the existence of pk ∈ S such that (pk, sk) ∈ KP, generates a
signature σ.

– Verify(mpk, S,m, σ)→ acc ∈ {0, 1} verifies whether the signature is valid.

– Open(msk, S,m, σ) → pk ∈ S ∪ {⊥} reveals an identity pk, which presum-
ably should be the public key of the signer of σ. It outputs pk =⊥ when the
opening fails, (e.g. when σ is malformed).

We refer to M as the message space, Km as the master public key space and
K as the public key space. We also define KPm to be the set of all master key
pairs (mpk,msk), and KP to be the set of all public-private key pairs (pk, sk).
For simplicity, we keep the parameter λ implicit for the before-mentioned key
spaces, and additionally require public keys to be all distinct for a set S of size
|S| ≤ poly(λ).

An accountable ring signature scheme should satisfy the following security
properties.

Correctness. An ARS is said to be correct if every honest signature can be
correctly verified and opened.

Definition 4. An accountable ring signature scheme ARS is correct if for any
master key pair (mpk,msk) ∈ KPm, any key pair (pk, sk) ∈ KP, and any set of
public keys S such that pk ∈ S,

Pr

[
acc=1∧out=pk

∣∣∣∣ σ←Sign(mpk,S,m,sk),
acc←Verify(mpk,S,m,σ),
out←Open(msk,S,m,σ)

]
> 1− negl(λ).
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Anonymity. An ARS is said to be anonymous if no adversary can determine
the signer’s identity within the set of signers of a signature without using the
master secret key.

Definition 5. An accountable ring signature scheme ARS is anonymous if for
any PPT adversary A and any two key pairs (pk0, sk0), (pk1, sk1) ∈ KP,∣∣∣Pr
[
1← ASign∗(mpk•,•,•,sk0),mpk•(x)

]
− Pr

[
1← ASign∗(mpk•,•,•,sk1),mpk•(x)

]∣∣∣ ≤ negl(λ) ,

with each query Sign∗(mpkν , S,m, skb) returning an honest signature only when
both pk0, pk1 ∈ S and otherwise abort, where each master key pairs (mpkν ,mskν)←
MKeygen(1λ) are sampled honestly.

Remark 1. As we do not forbid x to contain information about the secret keys,
adversaries in Definition 5 are referred to as being under the full key exposure.

Unforgeability. An ARS is said to be unforgeable if no adversary can forge a
valid signature that fails to open or opens to some non-corrupted party, even if
the manager has also colluded. We model this property with the unforgeability
game GUF

A as defined below. Note that below we quantify over A that may have
the master key pairs (mpk,msk) hard-coded within.

GUF
A (mpk,msk): Unforgeability game

1: (pk, sk)← Keygen(1λ)
2: (S∗,m∗, σ∗)← ASign(•,•,•,sk),H(pk)
3: check σ∗ is not produced by querying Sign(mpk, S∗,m∗, sk)
4: check 1← Verify(mpk, S∗,m∗, σ∗)
5: check pk or ⊥ ← Open(msk, S∗,m∗, σ∗)
6: A wins if all check pass

Definition 6. An accountable ring signature scheme ARS is unforgeable if for
any PPT adversary A, any valid master key pair (mpk,msk) ∈ KPm

Pr[A wins GUF
A (mpk,msk)] < negl(λ).

Transforming ARS to GS. As mentioned earlier, an accountable ring signa-
ture can be viewed as a generalization of a group signature. We give here the
general transformation from an ARS scheme ARS to a group signature scheme
GSARS .

The algorithms of the group signature scheme GSARS are detailed as follows:

– GKeygen(1λ, 1n):

13



1: (mpk,msk)← ARS.MKeygen(1λ)
2: ∀i ∈ [n], (pki, ski)← ARS.Keygen(1λ) and S = {pki}i∈[n]
3: return (gpk = (mpk,S), {ski}i∈[n],msk)

– GSign(gpk = (mpk, S),m, skk)

1: return σ ← ARS.Sign(mpk, S,m, skk)

– GVerify(gpk = (mpk, S),m, σ):

1: return σ ← ARS.Verify(mpk, S,m, σ)

– GOpen(gpk = (mpk, S),msk,m, σ):

1: pk← ARS.Open(msk, S,m, σ)
2: return k s.t. pk = pkk ∈ S or ⊥ otherwise

Note that the transformation only changes the formulation of the setup stage.
Thus, the security properties from ARS transfer directly to the induced group
signature scheme GSARS .

4 Openable sigma protocol

In this section, we will introduce the openable sigma protocol, which is an inter-
mediate primitive toward group signatures and accountable ring signatures. We
will first give some intuition on how we formulate this primitive, and then give
a formal definition and construction from DDH-hard group actions.

4.1 Intuition

Typical construction of a Fiat-Shamir-based signature starts from a sigma pro-
tocol. As introduced in Section 3.3, the three message protocol (com, ch, resp)
only requires special soundness, which is, informally speaking, weaker than the
unforgeability property in the sense that multiple transcripts are required in or-
der to break the underlying hardness. The forking lemma closes this gap with the
power of rewinding and random oracle programming. As stated in Section 3.4,
the lemma takes a forger that outputs a single forgery and gives an algorithm
that outputs multiple instances of valid (com, chj , respj)’s. This gives a transfor-
mation from a signature breaker to a witness extractor, bridging the two security
notions.

For our accountable ring signature, we thus plan to follow the previous
roadmap. We design a sigma protocol that supports an extra “opening” prop-
erty. Our openable sigma protocol takes n statements as input and additionally
requires the prover to take a master public key mpk as input on generating the
first message com. The function Open, with the master secret key msk, can
then extract the actual statement to which the proving witness corresponds. For
a com generated from statement (x1, . . . , xn) and witness wi with (xi, wi) ∈ R,
we have xi = Open(com,msk). As our target is a signature scheme, (xi, wi)
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would be set to public key/secret key pairs, and thus the open function outputs
the signer’s identity.

To achieve the stronger security property of ARS after the Fiat-Shamir trans-
formation, our openable sigma protocol needs to have modified security prop-
erties correspondingly. For special soundness, we would not be satisfied with
extracting only “one of the witnesses”; instead, we need to build an extractor
that extracts a witness which matches the opening result. Such a stronger ex-
tractor will allow us to extract secret keys from adversaries that can impersonate
other players. For honest verifier zero knowledge (HVZK), we require the tran-
script to be ZK even when given the master secret key msk. This is crucial for
proving that the impersonating attack cannot succeed even with a corrupted
manager. Note that when given msk, one cannot hope to hide the signer’s iden-
tity, so we only require ZK against the signer’s witness. The formulation for the
HVZK simulator thus takes the signer identity as input. Finally, we need an ex-
tra property to provide anonymity for the signer, which we named computational
witness indistinguishability (CWI). CWI requires that, given honest master key
pairs, the transcript generated from two different witnesses/identities should be
indistinguishable. This property is formulated as the indistinguishability of two
signing oracles.

4.2 Definition

An openable sigma protocol Σ is defined with respect to two relations. A base
relation R ⊂ X ×W and an opening relation Rm. Each R ∈ {R,Rm} of the
both relations is efficiently samplable with respect to some distribution, but
for a fresh sample (x, s) ← R(1λ), it is hard to derive the witness s from the
statement x as the security parameter λ scales. We will keep λ implicit for
convenience if the context is clear. Additionally, we define the OR-relation for R,
i.e. ({xi}i∈[n], s) ∈ Rn if and only if all xi are distinct and ∃i ∈ [n] s.t. (xi, s) ∈ R.
The openable sigma protocol Σ contains the following four algorithms.

– Commit(xm, {xi}i∈[n], s) → (com, st) generates a commitment com based
on ({xi}i∈[n], s) ∈ Rn. Commit also generates a state st which is shared
with Resp and will be kept implicit for convenience.

– Resp(xm, {xi}i∈[n], s, com, ch, st) → resp computes a response resp relative

to a challenge ch
$←− C.

– Verify(xm, {xi}i∈[n], com, ch, resp)→ 1/0 verifies whether a tuple (com, ch, resp)
is valid. Verify outputs 1 if the verification passes and 0 otherwise.

– Open(sm, {xi}i∈[n], com) → x ∈ {xi}i∈[n] ∪ {⊥} reveals some (x, s) ∈ R,
where s is the witness used to generate the commitment com. It outputs
x =⊥ when the opening fails. (i.e. when com is malformed)

An openable sigma protocol is secure if it is high min-entropy, computational
unique-response, correct, µ-special sound for some constant µ and statistical
honest-verifier zero-knowledge, as defined below.
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Definition 7 (High min-entropy). An openable sigma protocol Σ is of high
min-entropy if the for any possible commitment com0

Pr[Commit(x)→ com = com0] ≤ negl(λ) .

Definition 8 (Unique-response property). An openable sigma protocol Σ
is computational unique-response if for every (xm, sm) ∈ Rm and every efficient
algorithm A

Pr
(x,s)←R(1λ)

[
(S,com,ch,resp1,resp2))←A(x)

∀i∈[2]:1←Verify(xm,S,com,chi,respi)
pk or ⊥←Open(sm,S,com)

resp1 6=resp2

]
≤ negl(λ) .

Furthermore, Σ is called perfect unique-response if for every xm, S, com, ch there
is at most one resp such that 1← Verify(xm, S, com, ch, resp).

Definition 9 (Correctness). An openable sigma protocol Σ is correct if for
all n = poly(λ), (xm, sm) ∈ Rm, ({xi}i∈[n], s) ∈ Rn, ch ∈ C, and x ∈ {xi}i∈[n]
such that (x, s) ∈ R,

Pr

acc = 1 ∧ id = x

∣∣∣∣∣∣
com←Commit(xm,{xi}i∈[n],s),

resp←Resp(xm,{xi}i∈[n],s,com,ch),

acc←Verify({xm,{xi}i∈[n],com,ch,resp),

id←Open(sm,{xi}i∈[n],com)

 ≥ 1− negl(λ).

Definition 10 (µ-Special Soundness). An openable sigma protocol Σ is µ-
special sound if for all n = poly(λ) there exists an efficient extractor Ext such
that, for all (xm, sm) ∈ Rm and any ({xi}i∈[n], com, {chj}j∈[µ], {respj}j∈[µ]) such
that each chj ∈ C are distinct, then

Pr

[
(∀j∈[µ], accj=1)∧
(x=⊥∨(x,s)/∈R)

∣∣∣∣∀j∈C, accj←Ver(xm,{xi}i∈[n],com,chj ,respj),

x←Open(sm,{xi}i∈[n],com),

s←Ext({xi}i∈[n],com,{chj}j∈[µ],{respj}j∈[µ])

]
= 0. (1)

Definition 11 (Statistical honest-verifier zero-knowledge / sHVZK).
An openable sigma protocol Σ is statistical HVZK if there exists an efficient
simulator Sim such that, for any xm ∈ Xm, any ({xi}i∈[n], s) ∈ Rn, and x ∈
{xi}i∈[n] such that (x, s) ∈ R,

Trans(xm, {xi}i∈[n], s) ≈s Sim(xm, {xi}i∈[n], x)

where Trans outputs honest transcript (com, ch, resp) generated honestly by Commit

and Resp with honestly sampled ch
$←− C.

Definition 12 (Computational witness indistinguishability / CWI).
An openable sigma protocol Σ is computational witness indistinguishable, if for
any two (xi, si), (xj , sj) ∈ R and any efficient adversary A, with x•m(ν) returning
xνm where (xνm, s

ν
m)← Rm is freshly sampled for each ν, we have∣∣∣Pr

[
1← ATrans∗(x•m,•,si),x

•
m(x)

]
− Pr

[
1← ATrans∗(x•m,•,sj),x

•
m(x)

]∣∣∣ ≤ negl(λ)
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where Trans∗(mpkν , S, sk) for whichever k ∈ {i, j} returns an honest transcript
(com, ch, resp) tuple from Σ if both xi, xj ∈ S and aborts otherwise.

4.3 Construction

Here, we give our construction to an openable sigma protocol ΣGA for relations
from our DDH-secure group action GA = (G, E). We let E ∈ E be some fixed
element in E . When implemented with CSIDH, we can choose the curve E0 :
y2 = x3 + x for simplicity. Let the relation RE = {(aE, a)|a ∈ G} ⊂ E ×G.

For our ΣGA, we set its opening and base relations Rm = R = RE , with the

natural instance generator that samples a
$←− G and outputs (aE, a). For inputs

Em ∈ E and ({Ei}i∈[n], s) ∈ Rn with any n = poly(λ), the algorithms for ΣGA
are constructed as follow.

– Commit(Em, {Ei}i∈[n], s)
1: set k ∈ [n] s.t. (Ek, s) ∈ R.

2: {∆i}i∈[n], {∆′i}i∈[n], b
$←− G

3: τ
$←− sym(n) {τ is a random permutation}

4: ∀i ∈ [n] : Eαi := ∆iEi
5: ∀i ∈ [n] : Eβi := ∆′iE

α
i = ∆i∆

′
iEi

6: ∀i ∈ [n] : Eγi := bEβi = ∆i∆
′
ibEi

7: EOpen := ∆k∆
′
ksEm

8: ECheck := ∆k∆
′
kbsEm = bEOpen

9: st = ({∆i}i∈[n], {∆′i}i∈[n], b, l = ∆k∆
′
kbs)

10: return (com, st) = (({Eαi }i∈[n], {E
β
i }i∈[n], τ({Eγi }i∈[n]), EOpen, ECheck), st)

{We use τ(•) as a lazy convention of sending a permuted list}
– Resp(Em, {Ei}i∈[n], s, com, ch, st):

1: if ch = 1 then
2: return resp := {∆i}i∈[n]
3: if ch = 2 then
4: return resp := {∆′i}i∈[n]
5: if ch = 3 then
6: return resp := b
7: if ch = 4 then
8: return resp := l = ∆k∆

′
kbs

– Verify(Em, {Ei}i∈[n], com, ch, resp):

1: return 0 if {Ei}i∈[n] or {Eβi }i∈[n] are not all distinct
2: if ch = 1 then
3: check ∀i ∈ [n] : Eαi = ∆iEi
4: if ch = 2 then
5: check ∀i ∈ [n] : ∆′iE

α
i = Eβi

6: if ch = 3 then
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7: check ∃τ ′ ∈ sym(n) s.t. τ ′({bEβi }i∈[n]) = τ({Eγi }i∈[n])
8: check ECheck = bEOpen

9: if ch = 4 then
10: check ECheck = lEm
11: check ∃Eγ ∈ τ({Eγi }i∈[n]) s.t. Eγ = lE
12: return 1 if all checks pass

– Open(sm := msk, {Ei}i∈[n] := {pki}i∈[n], com):

1: for i ∈ [n] do

2: if smE
β
i = EOpen then

3: return Ei
4: return ⊥

The construction of our openable sigma protocol looks complicated, but the
intuition is simple. The core section of the message com is (Eβ , EOpen), which
allows opening. The other parts of com are to ensure that the opening section is
honestly generated. Eα along with the challenge/response pair on ch = 1, 2 al-
lows extraction for ∆i∆

′
i’s, ensuring that Eβ is honestly generated. (Eγ , ECheck)

along with the challenge/response pair on ch = 3, 4 verifies the relation between
Eβ and EOpen. By using a permuted Eγ , the CWI property is preserved through
such a verification process. Combined together, we complete the proof of knowl-
edge protocol.

Theorem 2. ΣGA is an openable sigma protocol with RE being both the opening
relation and the base relation

4.4 Security

The proof for Theorem 2 is broken down into proving each of the required prop-
erties. First, by construction one immediately get ΣGA being perfect unique-
response, and high min-entropy. It is also easy to show that ΣGA is correct and
statistical HVZK (see Supplementary B for full proof).

Lemma 1. ΣGA is correct and statistical honest-verifier zero-knowledge.

Lemma 2. ΣGA is 4-special sound.

Proof. For any Em ∈ E and any ({Ei}i∈[n], com, {respj}j∈C) where

com = ({Eαi }i∈[n], {E
β
i }i∈[n], σ({Eγi }i∈[n]), and {respj}j∈[4] = ({∆i}i∈[n], {∆′i}i∈[n], b, l).

Suppose that ∀j ∈ [4], 1← Ver(Em, {Ei}i∈[n], com, j, respj), then by the defini-
tion of Verify, we can get the following equations:
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

{Ei}i∈[n], {Eβi }i∈[n] are both pairwise distinct sets

∀i ∈ [n] : Eαi = ∆iEi, E
β
i = ∆′iE

α
i

∃τ ′ ∈ sym(n) s.t. τ ′({bEβi }i∈[n]) = τ({Eγi }i∈[n])
∃Eγ ∈ τ({Eγi }i∈[n]) s.t. Eγ = lE

ECheck = lEm = bEOpen

Thus, there exists a unique k ∈ [n] such that lE = bEβk = ∆′kbE
α
k =

∆k∆
′
kbEk, which means l(∆k∆

′
kb)
−1E = Ek. This implies that (Ek, l(∆k∆

′
kb)
−1) ∈

RE . Furthermore, we also have EOpen = b−1lEm = smb
−1lE = smE

β
k . This im-

plies that Ek ← Open(sm, {Ei}i∈[n], com). Thus Open does not output⊥. From
these observations, we can easily construct the extractor Ext(com, {respj}j∈C),
which simply searches through k ∈ [n] for k satisfying lE = bEβk , then output
s = l(∆k∆

′
kb)
−1. This concludes the proof that ΣGA is 4-special sound.

Lemma 3. ΣGA is computational witness indistinguishable (assuming DDHAP
is hard for GA).

Here we will finally use the fact that GA is DDH-hard. We will prove this
theorem through two hybrids. We highlight the changes between Trans and
Hyb1 and between Hyb1 and Hyb2 with different colors for easier comparison.

Proof. For any Em ∈ E and any ({Ei}i∈[n], com, {respj}j∈C) where

com = ({Eαi }i∈[n], {E
β
i }i∈[n], σ({Eγi }i∈[n]), and {respj}j∈[4] = ({∆i}i∈[n], {∆′i}i∈[n], b, l).

Suppose that ∀j ∈ [4], 1← Ver(Em, {Ei}i∈[n], com, j, respj), then by the defini-
tion of Verify, we can get the following equations:

{Ei}i∈[n], {Eβi }i∈[n] are both pairwise distinct sets

∀i ∈ [n] : Eαi = ∆iEi, E
β
i = ∆′iE

α
i

∃τ ′ ∈ sym(n) s.t. τ ′({bEβi }i∈[n]) = τ({Eγi }i∈[n])
∃Eγ ∈ τ({Eγi }i∈[n]) s.t. Eγ = lE

ECheck = lEm = bEOpen

Thus, there exists a unique k ∈ [n] such that lE = bEβk = ∆′kbE
α
k =

∆k∆
′
kbEk, which means l(∆k∆

′
kb)
−1E = Ek. This implies that (Ek, l(∆k∆

′
kb)
−1) ∈

RE . Furthermore, we also have EOpen = b−1lEm = smb
−1lE = smE

β
k . This im-

plies that Ek ← Open(sm, {Ei}i∈[n], com). Thus Open does not output⊥. From
these observations, we can easily construct the extractor Ext(com, {respj}j∈C),
which simply searches through k ∈ [n] for k satisfying lE = bEβk , then output
s = l(∆k∆

′
kb)
−1. This concludes the proof that ΣGA is 4-special sound.
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Lemma 4. For any s ∈ G, any efficient adversary A with E•m(ν) generating
Eνm from (Eνm, s

ν
m)← RE for each ν, we have∣∣∣Pr

[
1← ATrans(E•m,•,s),E

•
m(x)

]
− Pr

[
1← AHyb1(E

•
m,•,s),E

•
m(x)

]∣∣∣ ≤ negl(λ) ,

where Hyb1 is as specified below.

Hyb1(Em, {Ei}i∈[n], s)

1: ch
$←− {1, 2, 3, 4}

2: set k ∈ [n] s.t. (Ek, s) ∈ R.

3: {∆i}i∈[n], {∆′i}i∈[n], b
$←− G

4: τ
$←− sym(n)

5: ∀i ∈ [n] : Eαi = ∆iEi, E
β
i = ∆′iE

α
i

6: ∀i ∈ [n] : Eγi = bEβi

7: r
$←− G, EOpen = rE

8: if ch = 1, 2, 3 then
9: ECheck = bEOpen

10: else if ch = 4 then
11: l = ∆k∆

′
kbs, E

Check = lEm
12: set resp honestly w.r.t ch
13: return (com, ch, resp)

Proof. Each query input of Trans and Hyb1 is of form (Em, {Ei}i∈[n], s) where
({Ei}i∈[n], s) ∈ Rn and Em is the curve correspoinding to the random master
public key. We first note that the difference between honest transcript Trans
and Hyb1 is that Hyb1 replaces honest EOpen with rE for a random r ∈ G. For
ch 6= 4, ECheck is also replaced accordingly to EOpen.

We will prove the indistinguishability of (com, ch, resp)← Trans and (com′, ch′, resp′)←
Hyb1 for each different challenge ch ∈ C separately. In the following proof, we
set k s.t. (Ek, s) ∈ R, as in both Trans and Hyb1

For ch′ = 1, we have resp′ = {∆i}i∈[n], which is honestly generated and thus
identical to Trans. We thus focus on the com′ part.

By the hardness of P-DDHAP, for random ∆′k, r
$←− G, we have

(Em, ∆
′
kE,∆

′
kEm) ≈c (Em, ∆

′
kE, rE)

Hence, for random ∆k, ∆
′
k, b, r

$←− G and honestly generated (Em, E
β
k , E

γ
k , E

Open,
ECheck), we have

(Em, E
β
k , E

γ
k , E

Open, ECheck)

=(Em, ∆ks(∆
′
kE), ∆kbs(∆

′
kE), ∆ks(∆

′
kEm), ∆kbs(∆

′
kEm))

≈c(Em, ∆ks(∆
′
kE), ∆kbs(∆

′
kE), ∆ks(rE), ∆kbs(rE))

=(Em, E
β
k , E

γ
k , r
′E, br′E)

Where the left-hand side is the output com from Trans, restricted to the vari-
ables dependent on sm or ∆′k. The right-hand side is the corresponding partial
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output from Hyb1. As the remaining parts of Trans and Hyb1 are equiva-
lent, this equation shows that the output distributions of Trans and Hyb1 are
indistinguishable for ch = 1.

For the case ch = 2, 3, the indistinguishability can be proved in a simi-

lar fashion. Notice again that for random ∆k, r
$←− G, (Em, ∆kE,∆kEm) ≈c

(Em, ∆kE, rE). Thus for random ∆k, ∆
′
k, b, r

$←− G

(Em, E
α
k , E

β
k , E

γ
k , E

Open, ECheck)

=(Em, s(∆kE), ∆′ks(∆kE), ∆′kbs(∆kE), ∆′ks(∆kEm), ∆′kbs(∆kEm))

≈c(Em, s(∆kE), ∆′ks(∆kE), ∆′kbs(∆kE), ∆′ks(rE), ∆′kbs(rE))

=(Em, E
α
k , E

β
k , E

γ
k , r
′E, br′E)

For the case ch = 4, we would need a slight change. First we recall the fact
that, since GA is free and transitive, for every Ei there exists a unique si ∈ G
s.t. siE = Ei. Thus, sampling {Di}i∈[n], b

$←− G and letting ∆′i = (bsi)
−1Di gives

us a uniformly distributed {∆′i}i∈[n].

Now, again from P-DDHAP, for random b, r
$←− G,

(Em, b
−1E, b−1Em) ≈c (Em, b

−1E, rE)

Thus, for random {∆i}i∈[n], {Di}i∈[n], b, r
$←− G where Di = ∆′ibsi, we have

(Em, {Eαi }i∈[n], {E
β
i }i∈[n], {E

γ
i }i∈[n], E

Open, ECheck, l)

=(Em, {∆iEi}i∈[n], {∆i∆
′
iEi}i∈[n], {∆i∆

′
ibEi}i∈[n], ∆k∆

′
kskEm, ∆k∆

′
kbskEm, ∆k∆

′
kbsk)

=(Em, {∆iEi}i∈[n], {∆iDi(b
−1E)}i∈[n], {∆iDiE}i∈[n], ∆kDk(b−1Em), ∆kDkEm, ∆kDk)

≈c(Em, {∆iEi}i∈[n], {∆iDi(b
−1E)}i∈[n], {∆iDiE}i∈[n], ∆kDk(rE), ∆kDkEm, ∆kDk)

=(Em, {Eαi }i∈[n], {E
β
i }i∈[n], {E

γ
i }i∈[n], r

′E,ECheck, l)

Finally, since both ch and ch′ are sampled randomly in {1, 2, 3, 4}, we can
conclude that Trans and Hyb1 are computationally indistinguishable.

Lemma 5. For any s ∈ G, any efficient adversary A with E•m(ν) generating
Eνm from (Eνm, s

ν
m)← RE for each ν, we have∣∣∣Pr

[
1← AHyb1(E

•
m,•,s),E

•
m(x)

]
− Pr

[
1← AHyb2(E

•
m,•,s),E

•
m(x)

]∣∣∣ ≤ negl(λ) ,

where Hyb2 is as defined below.
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Hyb2(Em, {Ei}i∈[n], s)

1: ch
$←− {1, 2, 3, 4}

2: set k ∈ [n] s.t. (Ek, s) ∈ R.

3: {∆i}i∈[n], {∆′i}i∈[n], b
$←− G

4: τ
$←− sym(n)

5: ∀i ∈ [n] : Eαi = ∆iEi, E
β
i = ∆′iE

α
i

6: r
$←− G, EOpen = rE

7: if ch = 1, 2, 3 then
8: ECheck = bEOpen

9: ∀i ∈ [n] : Eγi = bEβi
10: else if ch = 4 then
11: ∀i ∈ [n] : ri

$←− G,Eγi = riE
12: l = rk, ECheck = lEm
13: set resp honestly w.r.t ch
14: return (com, ch, resp)

Proof. The hybrids Hyb1 and Hyb2 differ only in the case ch = 4, in which we
replace the whole Eγ with random curves, ECheck and l are also changed corre-

spondingly. As in the previous proof, we use the fact that sampling {Di}i∈[n], b
$←−

G and letting ∆′i = (bsi)
−1Di gives us uniformly random ({∆′i}i∈[n], b).

By P-DDHAP, for random b, {Di}i∈[n]\{k}, {ri}i∈[n]\{k},

(b−1E, {DiE}i∈[n]\{k}, {Dib
−1E}i∈[n]\{k})

≈c(b−1E, {riE}i∈[n]\{k}, {Dib
−1E}i∈[n]\{k})

For simplicity, we let S = [n]\{k}. Now, for random {∆i}i∈[n], {Di}i∈[n], b, {ri}i∈S
where Di = ∆′ibsi, and (Em, {Eαi }i∈[n], {E

β
i }i∈S , {E

γ
i }i∈S , E

β
k , E

γ
k , E

Check, l) are
the elements output from Hyb1, we have

(Em, {Eαi }i∈[n], {E
β
i }i∈S , {E

γ
i }i∈S , E

β
k , E

γ
k , E

Check, l)

=(Em, {∆iEi}i∈[n], {∆i(Dib
−1E)}i∈S , {∆i(DiE)}i∈S , ∆kDk(b−1E),

∆kDkE,∆kDkEm, ∆kDk)

≈c(Em, {∆iEi}i∈[n], {∆i(Dib
−1E)}i∈S , {∆i(riE)}i∈S , ∆kDk(b−1E),

∆kDkE,∆kDkEm, ∆kDk)

=(Em, {Eαi }i∈[n], {E
β
i }i∈S , {r

′
iEi}i∈S , E

β
k , E

γ
k , E

Check, l)

Finally we let r′k = ∆kDk, which is obviously independent from all other r′i,

then (Eβk , E
γ
k , E

Check, l) = (r′kb
−1E, r′kE, r

′
kEm, r

′
k). Note that r′kb

−1 gives fresh
randomness since b is now independent from all other elements in the right-hand
side. Thus the right-hand side perfectly fits the distribution for Hyb2. This
concludes that Hyb1 and Hyb2 are computationally indistinguishable.
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Lemma 6. For any Em ∈ Xm, {Ei}i∈[n] ∈ Xn, and sk0 , sk1 s.t. both ({Ei}i∈[n], sk0),
({Ei}i∈[n], sk1) ∈ Rn then

Hyb2(Em, {Ei}i∈[n], sk0) = Hyb2(Em, {Ei}i∈[n], sk1) ,

where “=” is understood as the output distribution being identical.

Proof. We always have Hyb2(Em, {Ei}i∈[n], sk0) = Hyb2(Em, {Ei}i∈[n], sk1)
for ch = 1, 2, 3, as every elements in the output is generated independently
from k. For ch = 4, we can give a deeper look on elements in (com, resp) =
(Eα, Eβ , Eγ , EOpen, ECheck, l). The part (Eα, Eβ , EOpen) is generated indepen-
dent from k, and the part (Eγ , ECheck, l) is of the form (τ({riE}i∈[n]), rkEm, rk).
Since τ is a random permutation and ri’s are independent randomness, the two
distributions (τ({riE}i∈[n]), rk0Em, rk0) and (τ({riE}i∈[n]), rk1Em, rk1) are ob-
viously identical. Hence Hyb2(Em, {Ei}i∈[n], sk0) = Hyb2(Em, {Ei}i∈[n], sk1).

Finally, by combining Lemma 4, Lemma 5, and Lemma 6, we conclude that
for any efficient adversary A with E•m and Trans∗ defined as usual, and any
si, sj ∈ G, we have∣∣∣Pr
[
1← ATrans∗(E•m,•,si),E

•
m(x)

]
− Pr

[
1← ATrans∗(E•m,•,sj),E

•
m(x)

]∣∣∣ ≤ negl(λ) ,

by restricting the query inputs (Em, {Ei}i∈[n], sk) to those ({Ei}i∈[n], si), ({Ei}i∈[n], sj) ∈
Rn for whichever k ∈ {i, j}. This concludes the proof of Lemma 3, and thus ΣGA
is indeed an openable sigma protocol.

5 Constructing accountable ring signatures

In this section, we will show how to obtain an accountable ring signature scheme
from our openable sigma protocol. The construction can be decomposed into two
parts. We first take multiple parallel repetitions to the protocol for soundness
amplification; then, we apply the Fiat-Shamir transformation on the parallelized
protocol to obtain the full construction. One subtle issue is that since every
sigma protocol in the parallel repetition is generated independently, each parallel
session of the transcript may open to a different party. Hence, we need an opening
function for the parallelized protocol, which returns the majority output over the
opening results of the parallel sessions.

5.1 Construction

More generally, we are going to construct our ARS scheme ARStΣ by perform-
ing Fiat-Shamir transformation to the parallel repeated protocol Σ⊗t where the
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number of repetitions t(λ, n) depends on the security parameter λ and the num-
ber of members n. The construction of ARStΣ is detailed as follows.

Remark 2. This can later be instantiated with ARSGA := ARStΣGA by choosing
Σ := ΣGA to be our previously constructed protocol over the group action and
t(λ, n) := 2λn.

– MKeygen(1λ):

1: return (mpk,msk)← Rm(1λ)

– Keygen(1λ):

1: return (pk, sk)← R(1λ)

– Sign(mpk, S,m, sk)

1: t := t(λ, |S|)
2: ∀j ∈ [t], (comj , stj)← ΣGA.Commit(mpk, S, sk)
3: (ch1, . . . , cht)← H(m, com1, . . . , comt, S)
4: ∀j ∈ [t], respj ← Σ.Resp(mpk, S, sk, comj , chj , stj)
5: return σ = (com, resp) := ((com1, . . . , comt), (resp1, . . . , respt))

– Verify(mpk, S,m, σ):

1: t := t(λ, |S|)
2: parse σ = (com, resp)
3: ch := H(m, com, S)
4: check ∀j ∈ [t] : 1← Σ.Verify(mpk, {pki}i∈[n], comj , chj , respj)
5: return 1 if all checks pass

– Open(msk, S,m, σ):

1: t := t(λ, |S|)
2: parse σ = (com, ch, resp)
3: ∀j ∈ [t], outj ← Σ.Open(msk, S, comi)
4: pk = Maj({outj}j∈[t]) {Maj outputs the majority element from its input

list. In case of ties, it outputs a random choice of the majority elements.}
5: return pk

Theorem 3. Let Σ be a secure openable sigma protocol. Then ARStΣ is secure
for every t(λ, n) = n · poly(λ). If Σ is furthermore perfect-unique-response, then
ARStΣ is QROM-secure.

Proof. See Section 5.2, 5.3 for the proof. This is concluded jointly from Lemma 7, 8, 9, 10, 15.

From Section 4.4 we know that ΣGA is a secure openable sigma protocol
being 4-special sound, and by applying the transformation from Section 3.6, we
immediately get the following corollaries.

Corollary 1. Assuming DDHAP is hard, then ARSGA is a QROM-secure ARS
scheme, and GSARSGA is a QROM-secure GS scheme
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This completes our construction of both an accountable ring signature scheme
and a group signature scheme.

Remark 3. One additional benefit of using class group action as the key relation
is that honest public keys can be efficiently verified. As discussed in Section 3.1,
any Ei ∈ E``p(O, πp) is a valid public key since the group action is transitive,
and furthermore, any Ei /∈ E``p(O, πp) can be efficiently detected. This prevents
the possibility of a malformed master key or malformed public keys, which is a
potential attacking interface of an ARS scheme.

5.2 Classical Security

In this section, we are going to provide classical security proof of the ARStΣ
described earlier. Starting from classical ROM, and then lifting those to QROM.

For the proof of Theorem 3 we again break down the theorem into proving
each security property, i.e. correctness, anonymity and unforgeability. For cor-
rectness, there is no difference between classical and quantum settings, but since
the proof does not exploit “quantum-ness” of an adversary, we put it in this
section as well.

Lemma 7. Let Σ be a secure openable sigma protocol, then ARStΣ is correct.

Proof. For any master key pair (mpk,msk) ∈ KPm, any key pair (pk, sk) ∈ KP,
and any set of public keys S such that pk ∈ S, we directly have (mpk,msk) ∈ Rm
and (S, sk) ∈ Rn where n = |S|. Let σ ← Sign(mpk, S,m, sk) be an honest signa-
ture on message m and ring S. Notice that in an honest execution of Sign, each
comj and respj is honestly generated according to Σ. Thus by the correctness of
Σ, we know for ch := H(com,m) and every j ∈ [t] with probability 1− negl(λ),
that 1 ← Σ.Verify(mpk, S, comj , chj , respj) and pk ← Σ.Open(mpk, S, comj).
Hence we directly obtain that, with probability 1 − t · negl(λ) = 1 − negl(λ),
we have that 1 ← Verify(mpk, S,m, σ) and pk ← Open(msk, S,m, σ). This
concludes the proof that ARSΣ is correct.

Lemma 8. Let Σ be a secure openable sigma protocol, then ARStΣ is anony-
mous for every t(λ, n) ≤ poly(λ, n) in classical ROM.

Proof. The anonymity of ARSΣ follows immediately from the CWI property
of Σ. For any efficient adversary A with at most q queries to the random
oracle, it can have at most q · negl(λ) ≤ negl(λ) advantage on distinguishing
Sign∗ and (Trans∗)t. And by CWI from Σ, we have Trans∗(mpk, S, skid0) ≈c
Trans∗(mpk, S, skid1). Hence we can directly conclude that Sign∗(mpk, S, skid0) ≈c
Sign∗(mpk, S, skid1), which proves that ARStΣ is anonymous.

Lemma 9. Let Σ be a secure openable sigma protocol. Then ARStΣ is unforge-
able for every t(λ, n) = n · poly(λ) in the classical ROM.

We refer readers to F.2 for the proof.
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5.3 QROM security

In this section, we are going to show QROM security.

To start, we show the anonymity first, where an adversary is asked to distin-
guish the signing oracles Sign∗(mpk•, •, •, skk) for k ∈ {i, j}. Recall that Sign∗

is defined with respect to two fixed public-secret key pairs (pkk, skk) ∈ KP for
k ∈ {i, j}, a query Sign∗(mpkν , S,m, skk) must be such that {pki, pkj} ⊆ S.

The idea is that Sign∗ behaves almost as if running t repetitions of the open-
able sigma protocol Trans∗(mpk•, •, skk), which one cannot distinguish between
k ∈ {i, j}. There is one exception: namely, Sign∗ computes the challenges by
hash evaluation ch := H(m, com, S), but then since m and S are chosen by the
adversary, this may cause bias to the challenge distribution.

Such bias is handled by reprogramming techniques. Note that the first mes-
sage com is freshly sampled with high min-entropy in each query to Sign∗.
Therefore, it is unlikely that H(m, com, S) has been queried, and thus ch is
almost unbiased. In the quantum setting, one cannot simply identify previous
queries to H, but the adaptive reprogramming technique [28] can still be used
to mimic this line of reasoning.

For convenience, we will use the prefix “Σ⊗t.” to specify that the scope of
the object lies in the t-time repetitions of Σ, with Σ⊗t.Verify outputting 1 if all
repetitions are accepted, and Σ⊗t.Open outputting the majority of the opening
results.

Lemma 10. Let Σ be an openable sigma protocol that is high min-entropy. Then
ARStΣ is anonymous for every t(λ, n) ≤ poly(n, λ) in QROM.

Proof. For the purpose of analysis, define the following Sign∗2(mpk•, •, •, skk)
oracle for k ∈ {i, j}.

– Sign∗2(mpkν , S,m, skk):

1: abort if {pki, pkj} 6⊆ S
2: (com, st)← Σ⊗t.Commit(mpk, S, skk)
3: program H(m, com, S) := ch← Σ⊗t.C
4: resp← Σ⊗t.Resp(mpk, S, skk, com, ch, st)
5: return (com, resp)

Note that Sign∗2 only replaces the computation of challenge in Sign∗ from
ch := H(m, com, S) using the random oracle H, to freshly sampling ch and
reprogramming to H(m, com, S) := ch. As described earlier, since com is high-
min-entropy, by [28, Theorem 1] we obtain ASign∗(mpk•,•,•,skk),mpk•,H(pkk) ≈
ASign∗2(mpk•,•,•,skk),mpk•,H(pkk) being indistinguisable. Now, via Zhandry’s com-
ressed oracle technique, or alternatively as described in [18, Appendix A], there
is an efficient quantum algorithm BTrans∗(mpk•,•,•,skk),mpk•(pkk) that run as if
ASign∗2(mpk•,•,•,skk),mpk•,H(pkk) but emulating the random oracle and reprogram-
ming by itself. Since Σ is computational witness-indistinguishable, B cannot
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distinguish between k ∈ {i, j}. Putting things together, we obtain the following
chain of indistinguishability,

ASign∗(mpk•,•,•,ski),mpk•,H(pki) ≈ ASign∗2(mpk•,•,•,ski),mpk•,H(pki)

≈ BTrans∗(mpk•,•,•,ski),mpk•(pki) ≈ BTrans∗(mpk•,•,•,skj),mpk•(pkj)

≈ ASign∗2(mpk•,•,•,skj),mpk•,H(pkj) ≈ ASign∗(mpk•,•,•,skj),mpk•,H(pkj) .

This concludes the proof.

For the rest of this section, we show unforgeability in QROM. The key to
lifting Lemma 9 into QROM is a quantum extraction technique. The classical
forking lemma, which measures out part of the transcript before rewinding, may
ruin the internal quantum state of the adversary and therefore does not trivially
apply to the quantum setting.

First, we give a CMA-to-NMA reduction, i.e. transforming an adversary A
against GUF

A into an adversary against G̃UF
A as defined below.

G̃UF
A (mpk,msk): NMA-Unforgeability game

1: (pk, sk)← Keygen(1λ)
2: (S∗,m∗, σ∗)← AH(pk)
3: check 1← Verify(mpk, S∗,m∗, σ∗)
4: check pk or ⊥ ← Open(msk, S∗,m∗, σ∗)
5: A wins if all check pass

This is by means of simulating the signing queries Sign via a simulator Sim
as follows.

Sign(mpk, S,m, sk):

1: t := t(λ, |S|)
2: com← Σ⊗t.Commit
3: ch := H(m, com, S)
4: resp← Σ⊗t.Resp
5: return (com, resp)

Sim(mpk, S,m):

1: t := t(λ, |S|)
2: (com, ch, resp)← Σ⊗t.Sim(mpk, S, pk)
3: program H(a,m) := ch
4: return (com, resp)

Lemma 11. Let Σ be a statistical HVZK, high min-entropy openable sigma pro-
tocol, the number of repetitions be t(λ, n) ≤ poly(λ, n) and (pk, sk)← Keygen(1λ)
be freshly sampled. Then for every efficient quantum algorithm A, we have∣∣∣Pr

[
1← ASign(•,•,•,sk),H(pk)

]
− Pr

[
1← ASim,H(pk)

]∣∣∣ ≤ negl(λ) .

Proof. Define an intermediate oracle Sign2 as follows.
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– Sign2(mpk, S,m):

1: t := t(λ, |S|)
2: com← Σ⊗t.Commit
3: program H(m, com, S) := ch

$← C
4: resp← Σ⊗t.Resp
5: return (com, resp)

Note that Sign and Sign2 only differs at one place, where the former computes
the challenge ch := H(m, com, S) using the random oracle H, but the latter
samples a fresh challenge ch and then reprogrammed the corresponding entry
H(m, com, S) := ch. Since com is of high-min-entropy, a direct application of [28,
Theorem 1] implies ASign(•,•,•,sk),H(pk) ≈ ASign2,H(pk) being indistinguishable.
Furthermore, Sign2 and Sim only differ in how the transcript is respectively
generated, with the former produced via an honest execution Σ⊗t.Trans, and
the latter via the corresponding simulator Σ⊗t.Sim. It follows directly from
the HVZK property that ASign2,H(pk) ≈ ASim,H(pk) is indistinguishable. This
concludes the proof.

Now we are ready to prove the CMA-to-NMA reduction.

Lemma 12. Let Σ be a statistical HVZK, high min-entropy, computationally
unique-response openable sigma protocol and the number of repetitions t(λ, n) ≤
poly(λ, n). For every valid master key pair (mpk,msk) ∈ KPm efficient (CMA)
quantum adversary A against GUF

A (mpk,msk), there is an efficient (NMA) quan-

tum adversary B against G̃UF
B (mpk,msk) such that∣∣∣Pr

[
A wins GUF

A (mpk,msk)
]
− Pr

[
B wins G̃UF

B (mpk,msk)
]∣∣∣ ≤ negl(λ) .

Proof. Let BH(pk) run (S∗,m∗, σ∗) ← ASim,H(pk) but emulating the repro-
gramming of H by itself. Already from Lemma 11 we may conclude the following∣∣∣∣Pr

[
(S∗,m∗,σ∗)←ASign(•,•,•,sk),H(pk)

1←Verify(mpk,S∗,m∗,σ∗)
pk or ⊥←Open(msk,S∗,m∗,σ∗)

]
− Pr

[
(S∗,m∗,σ∗)←ASim,H(pk)

1←VerifyH(mpk,S∗,m∗,σ∗)
pk or ⊥←Open(msk,S∗,m∗,σ∗)

]∣∣∣∣ ≤ negl(λ) ,

where VerifyH is understood as the verification with respect to the possibly
reprogrammed random oracle H.

Without loss of generality we may assume ASim,H never outputs σ∗ produced
by querying Sim(mpk, S∗,m∗) for the messagem∗. If the produced (S∗,m∗, σ∗)←
ASim,H(pk) satisfies 1← VerifyH(mpk,S∗,m∗, σ∗) and pk← Open(msk, S∗,m∗, σ∗).
It may be (1) there has been a query of form (com∗, resp)← Sim(mpk, S∗,m∗, pk)
for some resp so that there has been the reprogramming of formH(m∗, com∗, S∗) :=
ch∗, in which case resp 6= resp∗ so (com∗, ch∗, resp∗) and (com∗, ch∗, resp) are dis-
tinct valid transcripts of Σ⊗t, which is hard to find due to the computational
unique-response property, or (2) there has not been such a query, in which case
H(m∗, com∗, S∗) would not have been reprogrammed (except with negligible
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probability), and so the verification Verify(msk, S∗,m∗, σ∗) with respect to the
un-reprogrammed H will pass. This concludes the proof.

Next, for every valid master key pair (mpk,msk) ∈ KPm, define the interac-
tive unforgeability game Gint

A (mpk,msk) as follows.

Gint
A (mpk,msk): Interactive unforgeability game

1: (pk, sk)← Keygen(1λ)
2: (S∗,m∗, com∗, st)← A(pk) and t := t(λ, |S|)
3: ch

$← Σ⊗t.C
4: resp∗ ← A(st, ch)
5: A wins if the following holds: 1← Σ⊗t.Verify(mpk, S∗, com∗, ch∗, resp∗) and

pk or ⊥ ← Σ⊗t.Open(msk, S∗, com∗)

We are going to reduce an NMA adversary to the another interactive adver-
sary against the openable sigma protocol, with freedom to choose which set S
of instances to break on its choice, so long as the secret key sk is included in S.

Lemma 13. Let Σ be an openable sigma protocol. For every (mpk,msk) ∈ KPm
and every efficient (NMA) quantum adversary A against G̃UF

A (mpk,msk) making
at most q queries to the random oracle H, there is an efficient (interactive)

quantum adversary B against G̃int
B such that the following holds

Pr
[
A wins G̃UF

A (mpk,msk)
]

(2q + 1)2
≤ Pr

[
B wins Gint

A (mpk,msk)
]
.

Proof. This is via direct application of the measure-and-reprogram technique.
For every fixed choice of pk◦ ∈ KP, let Vpk◦ be the predicate as described below.

– Vpk◦(x = (m, com, S), ch, resp):

1: t := t(λ, |S|)
2: check 1← Σ⊗t.Verify(mpk, S, com, ch, resp)
3: check pk◦ or ⊥ ← Σ⊗t.Open(msk, S, com)
4: return 1 iff all check pass
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By construction, for (pk, sk)← Keygen(1λ) we have

Pr
[
A wins G̃UF

A

]
=

∑
(pk◦,sk◦)∈KP

Pr
[

pk=pk◦

sk=sk◦

]
· Pr
H

[
(S∗,m∗,(com∗,resp∗))←AH(pk◦)

1←Vpk◦ (x,H(x),resp∗)

]
Pr
[
B wins G̃int

A

]
=

∑
(pk◦,sk◦)∈KP

Pr
[

pk=pk◦

sk=sk◦

]
· Pr

ch←Σ⊗t.C

[
(S∗,m∗,com∗,st)←B(pk◦)

resp∗←B(st,ch)
1←Vpk◦ (x,H(x),resp∗)

]
,

for every interactive algorithm B, where x denotes (m∗, com∗, S∗). Summing
over x◦ in [22, Theorem 2], we obtain the existence of an efficient B such that
the following holds for all pk◦, sk◦

Pr
ch←Σ⊗t.C

[
(S∗,m∗,com∗,st)←B(pk◦)

resp∗←B(st,ch)
1←Vpk◦ (x,ch∗,resp∗)

]
≥ Pr

H

[
(S∗,m∗,(com∗,resp∗))←AH(pk◦)

1←Vpk◦ (x,H(x),resp∗)

]/
(2q + 1)2 .

Finally, summing over all choice of (pk◦, sk◦) with suitable probability, the proof
is concluded.

Finally, we reduce an interactive adversary against Gint
A into another adver-

sary that extract the secret key sk from the public key pk. Note that the key
generation samples a key pair (pk, sk) ← R(1λ) with respect to a hard relation
R, and thus the secret key sk should be hard to extract.

The idea of extraction goes as follows. Let t(λ, n) = (n+ 1)κ be the number
of repetitions, where κ is to be decided later. If A wins Gint

A , i.e. producing a
valid transcript that is opened to pk or ⊥, then by the pigeonhole principle, there
must be at least κ repetitions opened to pk or at least κ opened to ⊥. We then
perform rewinding in order to collect sufficient number of accepted responses for
these repetitions. Once there are µ accepted responses in the same repetition
being produced with non-zero probability, (1) immediately falsify them being
opened to ⊥, and so we can always extract a secret key sk using the extractor
Σ.Ext provided by the µ-special-sound property.

Note that it is not just a black-box evocation of (generalized) Unruh’s rewind-
ing because it only provides guarantee toward the number of collected valid
transcripts, but not toward the content of those transcripts. When analyzing
a parallel-repetition multi-special-sound protocol, one needs to open up the
rewinding argument and see what’s inside. On a very high-level, thanks to the
fact that the opening result is determined once the first message com is produced,
one can still argue that conditioned on any fixed choice of the opening result, the
collected transcripts are with challenges being uniformly random. The analysis
is more involved, and we refer interested readers to Supplementary G.1.

Lemma 14. Let Σ be a µ-special-sound openable sigma protocol, the number of
repetitions be t(λ, n) = (n+ 1) · κ(λ, n). For every (mpk,msk) ∈ KPm and every
efficient quantum adversary A against Gint

A , there exists an efficient quantum
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adversary B such that

Pr
[
A wins Gint

A (mpk,msk)
]2µ−1 ≤ Pr

[
(pk,sk)←R(1λ)

sk←B(pk)

]
+ exp

(
−κ
µµ

)
.

Putting everything together, we conclude unforgeability in QROM. For com-
pletion, see Supplementary G.2 for a rather formal wrapping up.

Lemma 15. Let µ be a constant and Σ be an openable sigma protocol being cor-
rect, µ-special-sound, statistical HVZK, perfect-unique-response, and high min-
entropy. Then ARStΣ is unforgeable in QROM for every t(λ, n) = n · poly(λ).
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Supplementary Material

A Open problems

Efficiency and QROM-security. In this work, we construct the first isogeny-
based group signatures and accountable ring signatures in QROM. It would be
prefereable to obain an efficient QROM-secure group signature in terms of the
signature size.

Extra judging functionality. Our setting has premised an honest manager,
only to whom the opening result is available. A corrupted manager can thus
incriminate any party as the signer of an arbitrary signature. Many previous
works on group signatures then provide an extra judging function allowing the
manager to generate a publicly verifiable proof for its opening results. We offer
(in Supplementary C) a weaker version with a simple tweak that will prevent
a dishonest manager from incriminating honest non-signers. It remains open to
constructing a QROM-secure ARS with a full-fledged judging function.

B Security proofs for ΣGA

B.1 Proof of Lemma 1

Proof of correctness. By the definition of Commit and Verify, any honestly
generated (com, ch, resp) based on ({Ei}i∈[n], s) ∈ Rn will be accepted as long as

the set {Eβi }i∈[n] is pairwise distinct. Since GA is free and transitive, there is a

unique g ∈ G s.t. gEi = Ej . Thus, Eβi = Eβj if and only if (∆j∆
′
j)
−1∆i∆

′
i = g,

which happens with negligible probability since all ∆’s are honestly sampled.
Hence with probability 1 − n · negl(λ), the set {Eβi }i∈[n] are all distinct, and
hence Verify accepts.

For the function Open, note that if (Em, sm) ∈ Rm and (Ek, s) ∈ R, then

EOpen = ∆k∆
′
ksEm = ∆k∆

′
kssmE, hence smE

β
k = EOpen. As argued previously,
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{Eβi }i∈[n] are all distinct with probability 1− negl(λ), and k would be unique if
this is the case. Thus the probability that Open outputs Ek is overwhelming,
concluding the proof that ΣGA is correct.

Proof of statistical HVZK. The construction of Sim is given in the following
algorithm. We will show that Sim is in fact a perfect simulator for Trans.

Sim(Em, {Ei}i∈[n], Ek)

1: ch
$←− {1, 2, 3, 4}

2: b
$←− G, τ

$←− sym(n)
3: if ch = 1 then
4: {∆i}i∈[n], {Di}i∈[n]

$←− G
5: ∀i ∈ [n] : Eαi := ∆iEi
6: ∀i ∈ [n] : Eβi := ∆iDiE
7: EOpen := ∆kDkEm
8: else if ch = 2, 3, 4 then

9: {Di}i∈[n], {∆′i}i∈[n]
$←− G

10: ∀i ∈ [n] : Eαi := DiE

11: ∀i ∈ [n] : Eβi := ∆′iE
α
i

12: EOpen := Dk∆
′
kEm

13: ∀i ∈ [n] : Eγi := bEβi
14: if ch = 1, 2, 3 then
15: ECheck := bEOpen

16: else if ch = 4 then
17: l := ∆kDkb
18: ECheck

km := lEm
19: return (com, ch, resp) with the

same definition as honest Commit
and Resp

Since GA is free and transitive, for every Ei ∈ E , there exists a unique
si ∈ G s.t. siE = Ei. In Sim, we can thus set ∆′i = Dis

−1
i in case ch = 1

and ∆i = Dis
−1
i in case ch = 2, 3, 4. Since the distribution of Dis

−1
i is uniformly

random, Sim generates identical distributions for ∆’s as Trans. Thus the output
distribution of Sim should also be identical to the real transcript. Checking that
verification passes for all cases shows that Sim is a perfect simulator.

C Judging the opening

Due to the majority voting that we have adopted in our opening design, we do
not know yet how to construct a proof for the exact opening output. However,
as a natural byproduct of our construction, we could also empower the manager
to generate a proof π additionally from Open that could be publicly verified
showing for multiple sessions smE

β
k = EOpen (as in Section 4.3), which is done

with a slight twist to Couveignes’ sigma protocol, as defined in Judge below.

– Open(msk, S = {pki}i∈[n],m, σ)→ (pk, π) ∈ (S ∪ {⊥})× {0, 1}∗: The rede-
fined open algorithm not only reveals signer identity pk but also produces a
publicly verifiable proof π for it.
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– Judge(mpk, S = {pki}i∈[n], σ, pk, π) → acc ∈ {0, 1}: The judge algorithm
accepts if the manager opened correctly,

Note that in Section 4.3, the opening within the sigma protocol is done by
picking the index k such that smE

β
k = EOpen. A manager could therefore prove

this equality in a Schnorr-like manner, re-starting from the sigma protocol ΣGA
with three additional algorithms JCommit,JResp,JVerify.

– JCommit(sm := msk, {Ei}i∈[n] := {pki}i∈[n], com):

1: b′
$←− G

2: parse com = ({Eαi }i∈[n], {Eβi }i∈[n], τ({Eγi }i∈[n]),E
Open,ECheck) {We use τ(•)

as a lazy convention of sending a permuted list}
3: EJudge := b′EOpen

4: Eb
′

m := b′smE

5: return (jcom, jst) =
(

(EJudge, Eb
′

m), (b′, sm)
)

– JResp(Em, {Ei}i∈[n], jcom, jch, jst):
1: parse jst = (b′, sm)
2: if jch = 0 then
3: return jresp := b′

4: if jch = 1 then
5: return jresp := l′ = b′sm

– JVerify(Em := mpk, {Ei}i∈[n] := {pki}i∈[n], Ek := pk, com, jcom, jch, jresp):

1: parse com = ({Eαi }i∈[n], {E
β
i }i∈[n], τ({Eγi }i∈[n]), EOpen, ECheck)

2: parse jcom = (EJudge, Eb
′

m)
3: if jch = 0 then
4: check EJudge = b′EOpen

5: check Eb
′

m = b′Em
6: if jch = 1 then
7: check EJudge = l′Eβk
8: check Eb

′

m = l′E
9: return 1 if all check pass

For each run of Commit→ (com, st), we have to do additionally ι repetitions
of JCommit (and thus ιt repetitions in total) to confirm that it is opened to the
k-th signer with negl(ι) probability. Similar as before, the Fiat-Shamir transform
is applied for non-interactivity as follows.

– Open(msk, S = {pki}i∈[n],m, σ)

1: t = t(λ, |S|); ι = λ
2: parse σ = (com, resp)
3: ∀j ∈ [t], outj ← ΣGA.Open(msk, S, comi)
4: ∀(i, j) ∈ [ι]× [t], jcomi,j ← ΣGA.JCommit(msk, {Ei}i∈[n], comj)
5: jch := {jchi,j}(i,j)∈[ι]×[t] ← H(σ, {jcomi,j}(i,j)∈[ι]×[t])

36



6: ∀(i, j) ∈ [ι]×[t], (jrespi,j , jsti,j)← ΣGA.JResp(Em, {Ei}i∈[n], jcomi,j , jchi,j , jsti,j)

7: pk = Maj({outj}j∈[t]) {Maj outputs the majority element of a set. In
case of ties, Maj outputs a random choice of the marjority elements.}

8: π := {jcomi,j , jrespi,j}(i,j)∈[ι]×[t]
9: return (pk, π)

– Judge(mpk, S = {pki}i∈[n], σ, pk, π):

1: return 0 if pk = ⊥
2: t = 2λ|S|; ι = λ
3: parse σ = (com, ch, resp)
4: parse π = {jcomi,j , jrespi,j}(i,j)∈[ι]×[t]
5: jch := {jchi,j}(i,j)∈[ι]×[t] ← H(σ, {jcomi,j}(i,j)∈[ι]×[t])
6: ∀j ∈ [t], joutj ←

∧
i∈[ι]ΣGA.JVerify(mpk, {Ei}i∈[n], pk, comj , jcomi,j , jchi,j , jrespi,j)

7: return 1 if
∑
j∈[t] joutj ≥ λ

Here, a corrupted manager gets to selectively generate a partial proof {Eoutj , jcomi,j , jchi,j , jrespi,j}(i,j)∈[ι]×J
where J ⊆ [t] is adaptively chosen. So long as we have

∑
j∈J joutj ≥ λ, the

judged proof is accepted. This does not prevent the manager from generating
accepted proofs that open to different members when #{Eoutj} > 1, which could
happen if the corresponding signature is generated by multiple colluding signers.
Otherwise, incriminating an honest non-signer would require to make up at least
λ valid sessions of Commit, which will succeed with only negligible probability,
i.e. for any PPT adversary A, any t(λ, n) = n ·poly(λ) and valid master key pair
(mpk,msk) ∈ KPm,

Pr[A wins GJUF
A (mpk,msk)] ≤ negl(λ),

where the judging unforgeability game GJUF
A is as specified below.

GJUF
A : Judging unforgeability game

1: (pk, sk)← Keygen(1λ)
2: (S,m∗, σ∗)← ASign(•,•,•,sk),H(pk)
3: A wins if σ∗ is not produced by querying Sign(mpk, S∗,m∗, sk), 1 ←

Verify(mpk, S,m∗, σ∗), (out, π) ← Open(msk, S,m, σ∗) satisfies out ∈
{pk,⊥} and 1← Judge(mpk, S, σ, out, π).

D Isogeny class group action

Here we briefly cover the basics for elliptic curve isogenies. For simplicity, we
consider a working (finite) field Fq with characteristic p > 3. An isogeny φ be-
tween elliptic curves E1 → E2 defined over an algebraic closure F̄q is a surjective
homomorphism between the groups of rational points E1(F̄q) → E2(F̄q) with a
finite kernel. If, additionally, φ is assumed separable, i.e. the induced extension
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of function fields φ∗ : F̄q(E2) ↪→ F̄q(E1) by F̄p(E2) 3 f 7→ f ◦φ ∈ F̄p(E1) is sepa-
rable, then for any finite subgroup H ≤ E1(F̄p), there is an isogeny φ : E1 → E2

having H as its kernel, and the co-domain curve is furthermore uniquely de-
termined up to isomorphisms (in F̄q). We refer to the co-domain curve as the
quotient curve, denoted E1/H. A corresponding isogeny could be computed us-
ing Velu’s formula specified in [44], which works by expanding the coordinates
of Q = φ(P ) as follows,

x(Q) = x(P ) +
∑

R∈H\{0}

(x(P +R)− x(R)) ,

y(Q) = y(P ) +
∑

R∈H\{0}

(y(P +R)− y(R)) .

The separable degree degsep φ is defined as the separable degree for φ∗, which co-
incides with the size of its kernel # kerφ, and since any isogeny could be acquired
by precomposing Frobenius maps to a separable isogeny, i.e. of form φ◦πkp where

φ is separable, we can (equivalently) define the (full) degree deg
(
φ ◦ πpk

)
=

degsep(φ)pk. From now on, we will assume separability of isogenies unless other-
wise specified, and therefore deg φ = degsep φ in this case.

For large degree φ, when both domain E1 and co-domain E2 (supersingular)
curves are prescribed, it could be hard to determine the kernel (and thus φ). The
current best-known (generic) quantum algorithm is claw finding, which takes
Õ
(
deg(φ)1/3

)
operations.

One important structure for isogenies is the so-called isogeny class group ac-
tion, which was first used for cryptographic constructions by [19, 41], and was
viewed as a weaker alternative for discrete logarithm. However, although theo-
retically feasible, the instantiated group action used to rely heavily on techniques
regarding the so-called modular polynomials, which is computationally expensive
in practice. Later on, improvements in the Commutative SIDH (CSIDH) [14]
scheme got rid of these techniques. Concretely, the space X is instantiated as a
set E``p(O, πp) = {E/Fp supersingular elliptic curves}/ ∼=Fp acted by their ideal
class group Cl(O) of the Fp-rational endomorphism ring O = Endp(E) where
E ∈ E``p(O, πp) but O⊗Q tensored as a Z-module is identical regardless of the
choice of E ∈ E``p(O, πp) thus so is Cl(O). The additional parameter πp denotes
the p-power Frobenius πp : (x, y) 7→ (xp, yp). Elements of Cl(O) are equivalence
classes a of ideals of the (partial) endomorphism ring J C Endp(O). Any such
ideal class a ∈ Cl(O) therefore acts on the curves by sending E ∈ E``p(O, πp)
to the quotient curve a · E := E/E[J ] where J ∈ a is a representative of the
equivalence class a and E[J ] =

⋂
f∈J ker f is the simultaneous kernel of J .

The working base field Fp for CSIDH is carefully selected such that p =
4`1 · · · `n−1 where each `i > 2 is a small prime generally referred to as an Elkies
prime. This allows one to generate a heuristically large enough sub-covering
{le11 . . . lenn |∀i : |ei| ≤ bi} of Cl(O) where each prescribed bi is small8 and each l±1i
8 For CSIDH-512 [14] proposes b1 = · · · = bn = 5.
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is the class of ideal 〈πp ∓ 1, `i〉. The indices (e1, . . . , en) thus represent the ideal
class le1i · · · lenn , making it easier to compute the co-domain curve. In particular,
for a curve E ∈ E``p(O, πp) and any choice of `i, the curve li · E := E/E[〈πp −
1, `i〉] is computed by sampling a generator of the kernel,

E[〈πp − 1, `i〉] = E(Fp)[`i] = {P ∈ E(Fp)|`iP = 0},

which is a one dimensional Z/`-linear eigen-subspace of πp within the `i-torsion

E[`i]. For the opposite direction, one can compute l−1i ·E = (li · Et)
t

where the
superscript t is referred to as the quadratic twist of the specified curve, by taking
the convention that the curve is fixed when its j-invariant is 1728, or equivalently,
this can be done by sampling from the other Z/`i-linear eigen-subspace of πp in
E[`i], which sits in the quadratic extension E(Fp2).

We also list here some well-known properties for the considered class group
action. First, the class group Cl(O) commutes, which is a direct result of the fact
that the Fp-rational endomorphism ring Endp(E) commutes. Second, as noted
in [14, Theorem 7], Cl(O) acts freely and transitively on E``p(O, πp), which means
that for all E1, E2 ∈ E``p(O, πp), there exists a unique a ∈ Cl(O) such that
a ·E1 = E2. Finally, elements in E``p(O, πp) can be efficiently verified. We note
that a curve E is supersingular if and only if it has p + 1 points over Fp. This
can be efficiently tested by finding some P ∈ E(Fp) with order ord(P ) ≥ 4

√
p

dividing p+ 1. A random point P sampled from E(Fp) satisfies such a condition
with high probability if E is supersingular, and whether it does can be verified
efficiently as follows. If (p+ 1)P 6= 0, then ord(P ) does not divide p+ 1 and E is
ordinary. Otherwise, we can perform the so-called batch co-factor multiplication
computing Pi = p+1

`i
P for each i, by using convention that `0 = 4. This allows

us to determine ord(P ) =
∏
i ord(Pi).

For typical cryptographic constructions such as CSIDH, additional heuristic
assumptions are required to sample a random element from the class group (as
in Definition 2). This is because the “CSIDH-way” for doing this is by sampling
exponents (e1, . . . , en) satisfying ∀i : |ei| ≤ bi, and the resulting distribution
for ideals le11 . . . lenn is generally non-uniform within Cl(O). To get rid of such
heuristics, one could instead work with specific parameters, where a bijective
(yet efficient) representation of ideals is known. For instance, in [7], the structure
of Cl(O) is computed, including a full generating set of ideals l1, . . . , ln and the
entire lattice Λ := {(e1, . . . , en)|le11 . . . lenn = id}. Evaluating the group action is
just a matter of approximating a closest vector and then evaluating the residue as
in CSIDH. In this work, we will be working with such a “perfect” representation
of ideals, unless otherwise specified.

As a remark, we note that the D-CSIDH problem for characteristic p = 1
mod 4 is known to be broken [15]. Nevertheless, the attack is not applicable to
the standard CSIDH setting where p = 3 mod 4.
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E Sigma protocol

A sigma protocol should satisfy the following three properties.

Definition 13. (Correctness) A sigma protocol is correct if for any (x,w) ∈ R,
the probability

Pr
[
(com, st)← P1(x,w), ch

$←− C, resp← P2(st, ch), 0← V (x, com, ch, resp)
]

is negligible.

Definition 14. (Honest Verifier Zero Knowledge/HVZK) Let Trans(x,w) →
(com, ch, resp) be a function that honestly executes the sigma protocol and outputs
a transcript. We say that the sigma protocol is HVZK if there exists a simulator
Sim(x) → (com, ch, resp) such that the output distribution of Trans(x,w) and
Sim(x) is indistinguishable.

Definition 15. (µ-special soundness) A sigma protocol is µ-special sound if
there exist an efficient extractor Ext such that, for any set of µ transcripts
with the same (x, com), denoted as (x, com, {chi}i∈[µ], {respi}i∈[µ]), where every
chi is distinct, the probability

Pr
[
(x, s) /∈ R ∧ ∀i ∈ [µ], acci = 1 :

∀i∈[µ], acci←V (x,com,chi,respi),
s←Ext(x,com,{chi}i∈[µ],{respi}i∈[µ])

]
is negligible.

Here, we formulate a more general form of special soundness. While most
sigma protocol constructions in the literature adopt 2-special soundness, any
µ-special sound protocol with constant µ can be similarly transformed into a
signature scheme, simply by applying more rewinding trials.

F Analysis in classical ROM

F.1 The forking lemma

The concept of the forking lemma is as follows. In the random oracle model,
let A be an adversary that can with non-negligible probability generate valid
transcripts (m, com, ch, resp) with ch = H(m, com). Since H is a random oracle,
for some (m, com), A should be able to succeed on sufficiently many different ch′

from H in order to achieve an overall non-negligible success probability. If we
can rewind and rerun A with different oracle outputs on H(m, com), we should
be able to get multiple accepting transcripts.

To dig a little bit deeper, we can construct an efficient algorithm B that runs
A as a subroutine, where A → (m, com, ch, resp) has at most Q oracle queries.
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The tuple (m, com) should, with all but negligible probability, be among one
of the Q queries. B first guesses the critical query i ∈ [Q], the index where
Qi = (m, com) is being queried. Then, B replays A with fixed random tape,
fixed oracle outputs for the first i− 1 queries, and fresh random oracle outputs
for the remaining queries. If the query guess i and fixed randomness are “good,”
which should happen with non-negligible probability, then among sufficiently
many retries we should get t successful outputs of A, which are transcripts with
identical (m, com) with distinct challenges ch’s. For a rigorous proof, we refer
the reader to [36, 37] for the forking lemma with 2 transcripts and [12] for a
µ-transcript version.

Here, we give a reformulated version of the improved forking lemma proposed
by [12]. We renamed the variables to fit our notion and restricted parameters to
the range that is sufficient for our proof.

Theorem 4. (The Improved Forking Lemma [12], Reformulated) Let A be a
probabilistic polynomial-time algorithm and Sim be a probabilistic polynomial-
time simulator which can be queried by A. Let H be a random oracle with image
size |H| ≥ 2λ. If A can output some valid tuple (m, com, ch, resp) with non-
negligible probability ε ≥ 1/poly(λ) within less than Q queries to the random
oracle, then with O(Qµ logµ/ε) rewinds of A with different random oracles, A
will, with at least constant probability, output µ valid tuples (m, com, chi, respi)
with identical (m, com) and pairwise distinct chi’s.

F.2 Proof of Lemma 9

Proof. Assume that there exists an efficient adversaryA′ that winsGUF
A′ (mpk,msk)

on some valid key pair (mpk,msk) ∈ KPm with non-negligible probability. We
aim to show that we can construct some algorithm B which runs A′ as a sub-
routine and extract an un-corrupted secret key.

As it doesn’t hurt for a signing oracle to produce the challenges, let’s abuse
the notation as say the signing oracle returns not only the signature, but also
those corresponding challenges. First, we replace the Sign oracle with a simula-
tor, so that AH := A′Sim,H can emulate the oracle responses to A′. We consider
a modified game GUF,1

A′ which replaces the signing oracle Sign(•, •, •, sk) by a
simulator Sim defined as follows:

– Sim(mpk, S,m, pk ∈ S):

1: t := t(λ, |S|)
2: for j ∈ [t], (comj , chj , respj)← ΣGA.Sim(mpk, S, pk ∈ S)
3: program H(m,S, com1, . . . , comt) := (ch1, . . . , cht)
4: return σ = (com, resp) := ((com1, . . . , comt), (resp1, . . . , respt))

Since Σ.Sim is a statistical HVZK simulator, any adversary with Q = poly(λ)
queries to H cannot distinguish Sign from Sim with non-negligible proba-
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bility. Without loss of generality we assume A′Sim,H never produces a signa-
ture σ∗ from previous queries to Sim(mpk, S∗,m∗, pk). Therefore for an forgery
(com∗, resp∗)← A′Sim,H accepted with respect to the potentially reprogrammed
H, H(S∗,m∗, com∗) must have not been reprogrammed, otherwise there must
be a prior query of form (com∗, resp) ← Sim(mpk, S∗,m∗, pk) for some resp,
but then resp 6= resp∗ is hard to find due to the computational unique-response
property. Thus, A should also win GUF,1

A with non-negligible probability.

Now, since A wins GUF,1
A (mpk,msk) only if it outputs some (R,m∗, σ∗) such

that out∗ ← Open(msk, R,m, σ∗) satisfies out∗ = pk or out∗ =⊥, either A wins
with non-negligible probability with out∗ =⊥, or A wins with non-negligible
probability with out∗ = pk. We deal with these cases separately.

We first prove that there cannot exist efficient A⊥ that wins GUF,1
A (mpk,msk)

with non-negligible probability with out∗ =⊥. If such A⊥ exists, we can con-
struct an algorithm B that honestly generates (pk, sk) and runs A⊥(pk). With
non-negligible probability, A⊥ will output valid (S,m, σ = (com, ch, resp)) such
that ⊥← Open(msk, S,m, σ). By applying the improved forking lemma (The-
orem 4), with r = O(Q/ε) rewinds of A⊥, it would, with constant probability,
output µ valid signatures (S,m, σ1, . . . , σµ) with identical com and pairwise dis-
tinct chc, and that ⊥← Open(msk, S,m, σc) for all c ∈ [µ]. We now claim
that with high probability, we can find some parallel session j ∈ [t] such that
⊥← Σ.Open(msk, S, comj) and ch1j , . . . , ch

µ
j are distinct. Note that this is not

trivially true, as the forking lemma only promises that ch1, . . . , chµ are pairwise
distinct as vectors, so they might not be pairwise distinct on any index j.

Let T be the set of indices j where ⊥← Σ.Open(msk, S, comj). Since ⊥←
Open(msk, S,m, σ), by the definition of Open, ⊥ must be (one of) the majority
output among the t parallel sessions. Thus |T | ≥ t/(|S| + 1) ≥ λ. We say that

µ challenges ch′
1
, . . . , ch′

µ
are good on T if there exists some j ∈ T such that

ch′1j , . . . , ch
′µ
j are distinct. For µ independently random challenges in [µ]t, the

probability that they are good on T is 1− (1− (µ!/µµ))|T | = 1− negl(λ).

Unfortunately, the challenges ch1, . . . , chµ obtained from rewinding A are not
necessarily independent. To cope with this, we will need the fact that in each
rewind of A, the valid ch is a new random output from the new random oracle
H. Thus, the finally output µ-tuple ch1, . . . , chµ must be a subset of r = O(Q/ε)
independent random samples from [µ]t. By the union bound, the probability that
all µ-tuples in the r samples are good on T is 1−

(
r
µ

)
negl(|T |) ≥ 1−negl(λ). Thus

we can find j ∈ T such that ch1j , . . . , ch
µ
j are distinct with probability 1−negl(λ).

For such j, we without loss of generality let (ch1j , . . . , ch
µ
j ) = (1, . . . , µ) and

consider (S, comj , resp
1
j , . . . , resp

µ
j ). NowB achieves ∀c ∈ [µ], 1← Σ.Verify(S, comj , c, resp

c
j),

and ⊥← Σ.Open(msk, S, comj). Thus B violates the µ-special soundness prop-
erty of Σ and brings a contradiction. Hence such A⊥ cannot exist.

Now we consider the case where some A wins GUF,1
A (mpk,msk) with non-

negligible probability with out∗ = pk.
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For such A, we can similarly construct an algorithm B that runs A with input
pk. Then again by applying the improved forking lemma, with the same proba-
bility, r = O(Q/ε) rewinds of A will output µ valid signatures (S,m, σ1, . . . , σµ)
with identical com and pairwise distinct chc, so that pk← Open(msk, S,m, σc)
for all c ∈ [µ]. Again by the same argument as in the case of A⊥, we can with
high probability find some j ∈ [t] such that pk← ΣGA.Open(msk, S, comj) and
ch1j , . . . , ch

µ
j are distinct.

Now, without loss of generality let (ch1j , . . . , ch
µ
j ) = (1, . . . , µ) and consider

(S, comj , resp
1
j , . . . , resp

µ
j ). We have ∀c ∈ [µ], 1← ΣGA.Verify(S, comj , c, resp

c
j),

and that the challenge statement pk ← ΣGA.Open(msk, S, comj). Thus by the
µ-special soundness property of ΣGA, we can extract the matching secret key
sk← ΣGA.Ext(S, comj , resp

1
j , . . . , resp

µ
j ), such that (pk, sk) ∈ R.

From the previous arguments, we see that if such efficient A exists, then
we can obtain an algorithm B based on A that, on inputting random pk ∈
PK, output sk such that (pk, sk) ∈ R with non-negligible probability. Thus,
we successfully construct a secret extractor from adversary A that wins the
unforgeability game, which concludes the proof that our ARSΣ is unforgeable
assuming the instance relations are hard (to extract witness) for Σ.

G Analysis in QROM

G.1 Proof of Lemma 14

Proof. We adopt the generalized Unruh’s rewinding, as described in [21, Lemma 29].
Let B(pk) run as follows. First, execute (S,m, com, st0)← A(pk) as usual. Then,
perform the following computation for µ times. For the jth time, freshly sam-
ple a challenge chj ← Σ⊗t.C and then produce respj ← A(stj−1, chj), where
the computation is projectively executed, i.e. after respj is produced, the com-
putation is rewinded to where it started with stj−1, but with the internal state
collapsed to stj for the next run. After µ trials of rewinding, B obtains µ samples
of transcripts com, {chj , respj}j∈[µ] sharing the same first message com. Denote

comi, chij , resp
i
j to be the ith repetition of the jth rewinding. If there is some

repetition (the ith) such that the corresponding transcript (comi, chij , resp
i
j)

are distinct valid responses opened to pk or ⊥ for all j ∈ [µ], then output
s← Σ.Ext(S, comi, {chij}j∈µ, {respij}j∈[µ]), and abort otherwise.

As described earlier, by (1), we know that the output s of B(pk) is always
such that (pk, s) ∈ R whenever B does not abort. Let out, outi and accj re-
spectively be the output of Σ⊗t.Open(msk, S, com), Σ.Open(msk, S, comi) and
Σ⊗t.Verify(mpk, S, com, chj , respj).
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The non-abort probability of B can be union-bounded by two parts, namely

Pr [B(pk) non-abort] ≥ Pr
[

out∈{pk,⊥} and
∀j∈[µ]:accj=1

]
−Pr

[
∀i∈[µ]:outi 6∈{pk,⊥} or

chi1,...,chiµ not distinct

∣∣∣out ∈ {pk,⊥}] .
We bound Pr

[
out∈{pk,⊥} and
∀j∈[µ]:accj=1

]
first. For every fixed choice x◦ := (pk◦, S◦, com◦)

of the joint random variable x := (pk, S, com), identifying the (mixed) state of
st0 conditioned on x = x◦ as ρx◦ , and thus the un-conditioned state would be
ρ :=

∑
x◦ Pr[x = x◦]ρx◦ . Due to the perfect unique-response property, every

time when a valid response respj is produced, it only disturbs the running state

as a projector. Thus, we can define a family of projectors {P x◦ch◦}ch◦∈Σ⊗t.C where
each projector P x

◦

ch◦ on input stj−1 serve as the predicate that (com◦, chj , respj)
is an accepted transcript, i.e. 1← Σ⊗t.Verify(mpk, S◦, com◦, chj , respj). Then

Pr
[

∀j∈[µ]:
1←Σ⊗t.Verify(mpk,S◦,com◦,chj ,respj)

∣∣∣x = x◦
]

=
∑

ch◦1 ,...,ch◦µ∈Σ⊗t.C

tr
(
P x
◦

ch◦1
. . . P x

◦

ch◦µ
ρx◦
)
.

Expanding ρx◦ :=
∑
i αi |ψi〉 〈ψi| via singular-value decomposition, we get∑

ch◦1 ,...,ch◦µ∈Σ⊗t.C

tr
(
P x
◦

ch◦1
. . . P x

◦

ch◦µ
ρx◦
)

=
∑
i

αi
∑

ch◦1 ,...,ch◦µ∈Σ⊗t.C

∥∥∥P x◦ch◦1
. . . P x

◦

ch◦µ
|ψi〉

∥∥∥2

≥
∑
i

αi

( ∑
ch◦∈Σ⊗t.C

∥∥∥P x◦ch◦ |ψi〉
∥∥∥2)2µ−1

≥

( ∑
ch◦∈Σ⊗t.C

tr
(
P pk◦

ch◦ ρx◦
))2µ−1

,

where the first inequality is by [21, Lemma 29] and the second inequality is by
Jensen’s inequality. Summing over x◦ = (pk◦, S◦, com◦) such that {pk◦,⊥} 3
out◦ := Σ⊗t.Open(msk, S◦, com◦) with suitable probability, we obtain

Pr
[

out∈{pk,⊥} and
∀j∈[µ]:accj=1

]
≥

∑
x◦ s.t. out◦∈{pk◦,⊥}

Pr [x = x◦]

( ∑
ch◦∈Σ⊗t.C

tr
(
P x
◦

ch◦ρx◦
))2µ−1

≥

 ∑
x◦ s.t. out◦∈{pk◦,⊥}

ch◦∈Σ⊗t.C

Pr [x = x◦] tr
(
P x
◦

ch◦ρx◦
)

2µ−1

= Pr
[
A wins Gint

A (mpk,msk)
]2µ−1

,

where the second inequality is again via Jensen’s inequality.

Next, for every x◦ = (pk◦, S◦, com◦) we define

Ix◦ :=
{
i ∈ [µ]

∣∣ pk◦ or ⊥ ← Σ.Open(msk, S◦, com◦)
}
,
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in order to bound Pr
[
∀i∈[µ]:outi 6∈{pk,⊥} or

chi1,...,chiµ not distinct

∣∣∣out ∈ {pk,⊥}]
≤ max
x◦ s.t. out◦∈{pk◦,⊥}

Pr
[

∀i∈Ix◦ :
chi1,...,chiµ not distinct

∣∣∣x = x◦
]

= max
x◦ s.t. out◦∈{pk◦,⊥}

Pr
[

∀i∈Ix◦ :
chi1,...,chiµ not distinct

]
,

where the last equality is due to the freshly sampled {chij}(i,j)∈[µ]×[µ] being
independent with x. Note that, by the pigeonhole principle, out◦ ∈ {pk◦,⊥}
implies #Ix◦ ≥ κ, thus the above can be bounded by

≤

(
1−

(
C
µ

)
Cµ

)κ
≤ exp

(
−κ
µµ

)
,

where C := #Σ.C is the size of the challenge space.

Putting things together,

Pr [sk← B(pk)] ≥ Pr[B(pk) non-abort]

≥ Pr
[
A wins Gint

A (mpk,msk)
]2µ−1 − exp

(
−κ
µµ

)
,

we conclude the proof.

G.2 Proof of Lemma 15

Proof. Let t(λ, n) = (n+ 1)κ where κ = poly(λ) and A be an efficient quantum
adversary against GUF

A (mpk,msk), making at most q queries to the random oracle
H. By Lemma 12, 13, 14, we know that for every (mpk,msk) ∈ KPm, there exists
efficient quantum adversaries A1, A2, A3 respectively such that

Pr
[
A wins GUF

A (mpk,msk)
]
≤ Pr

[
A1 wins G̃UF

A (mpk,msk)
]

+ negl(λ)

≤ Pr
[
A2 wins G̃int

A (mpk,msk)
]

(2q + 1)2 + negl(λ)

≤
(

Pr
[
(pk,sk)←R(1λ)

sk←A3(pk)

]
+ exp

(
−κ
µµ

)) 1
2µ−1

(2q + 1)2 + negl(λ) .

By assumption R is hard and κ ≥ poly(λ), making the right-most term negligible.
This concludes the proof.

H Group signature

A group signature scheme consists of one manager and n parties. The manager
can set up a group and provide secret keys to each party. Every party is allowed
to generate signatures on behalf of the whole group. Any party can verify the
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signature for the group without knowing the signer, while the manager party
can open the signer’s identity with his master secret key.

Syntax. A group signature scheme GS consists of the following four algorithms.

– GKeygen(1λ, 1n) → (gpk, {ski}i∈[n],msk): The key generation algorithm

GKeygen takes 1λ and 1n as inputs where λ is the security parameter and
n ∈ N is the number of parties in the group, and outputs (gpk, {ski}i∈[n],msk)
where gpk is the public key for the group, ski being the secret key of the i-th
player for each i ∈ [n], and msk is the master secret key held by the manager
for opening.

– GSign(gpk,m, skk) → σ: The signing algorithm GSign takes a secret key
skk and a message m as inputs, and outputs a signature σ of m using skk.

– GVerify(gpk,m, σ)→ y ∈ {0, 1}: The verification algorithm GVerify takes
the public key gpk, a message m, and a candidate signature σ as inputs, and
outputs either 1 for accept or 0 for reject.

– GOpen(gpk,msk,m, σ) → k ∈ [n]: The open algorithm GOpen takes the
public key gpk, the manager’s master secret key msk, a message m, and a
signature σ as inputs, and outputs an identity k or abort with output ⊥.

A group signature scheme should satisfy the following security properties.

Correctness. A group signature scheme is said to be correct if every honest
signature can be correctly verified and opened.

Definition 16. A group signature scheme GS is correct if for any tuple of keys
(gpk, {ski}i∈[n],msk)← GKeygen(1κ, 1n), any i ∈ [n] and any message m,

Pr

[
acc=1∧out=i :

σ←GSign(gpk,m,ski),
acc←GVerify(gpk,m,σ),

out←GOpen(gpk,msk,m,σ)

]
> 1− negl(λ)

Anonymity. A group signature is said to be anonymous if no adversary can
determine the signer’s identity among the group of signers given a signature,
without using the master’s secret key (msk).

Definition 17. A group signature scheme GS is anonymous if for any PPT
adversary A and any n = poly(λ),∣∣Pr[1← GAnon

A,0 (λ, n)]− Pr[1← GAnon
A,1 (λ, n)]

∣∣ ≤ negl(λ),

where the game GAnon
A,b (λ, n) is defined below.

GAnon
A,b (λ, n): Anonymity game

1: (gpk, {ski}i∈[n],msk)← GKeygen(1λ, 1n)
2: (st, i0, i1)← A(gpk, {ski}i∈[n])
3: b← {0, 1}
4: return out← AGSign(gpk,·,skib )(st)
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Unforgeability. A group signature is said to be unforgeable if no adversary can
forge a valid signature that fails to open or opens to some non-corrupted parties,
even if the manager has also colluded.

Definition 18. A group signature scheme GS is unforgeable if for any PPT
adversary A and any n = poly(λ),

Pr[A wins GUF
A (λ, n)] < negl(λ),

where the game GUF
A (λ, n) is defined below.

GUF
A (λ, n): Unforgeability game

1: (gpk, {ski}i∈[n],msk)← GKeygen(1λ, 1n), Cor = {}
2: (m∗, σ∗)← AGSign(gpk,•,ski /∈Cor),Corrupt(•)(gpk,msk)
{Corrupt(i) returns ski stores query i in list Cor}

3: A wins if σ∗ is not produced by querying GSign(gpk,m∗, ski 6∈ Cor), 1 ←
GVerify(gpk,m∗, σ∗)
and i← GOpen(gpk,msk,m∗, σ∗) satisfies i /∈ Cor

I Fiat-Shamir with Aborts Flaw in Related Works

We briefly introduce several relevant notions before describing the Fiat-Shamir
with Aborts (FSwA) flaw. In FSwA signatures (resp. NIZKs), one considers a
Sigma protocol (com, ch, resp) ← Σ that may abort (in such case resp = ⊥)
with a certain probability. Such a protocol is called an aborting Sigma protocol.
Typically, the transcript (com, ch, resp) may leak information about the secret
key sk, and the transcript can only be simulated conditioned on it not aborting
(resp 6= ⊥). Let SimΣ be such a simulator indistinguishable from Σ|resp6=⊥ as
specified in Fig. 1. Typically, a FSwA signature is then constructed by repeating
Σ but replacing the challenge with some hash output (as produced by FSwA[Σ]
in Fig. 1). To show that it is hard to forge a signature, even given existing
signatures, one typically has to perform a so-called CMA-to-NMA reduction,
which makes up the signatures via Sim(pk,m) as in Fig. 1 and give them to the
forger. In such a reduction, it is then crucial to argue the signatures simulated
by Sim are indistinguishable from the real signatures as generated by FSwA[Σ].

Now, we give a high-level description of the Fiat-Shamir with Aborts (FSwA)
flaw. In order to argue the closeness between FSwA[Σ] and Sim, essentially
in all the existing analyses, an intermediate oracle Trans is introduced, that
(1) generates a non-abort transcript (com, ch, resp) ← Σ|resp6=⊥, (2) reprograms
H(m, com) := ch, and (3) returns the transcript (com, resp). From the simulata-
bility of non-abort transcripts, the closeness between Sim and Trans imme-
diately follows, and hence it remains to argue the closeness between FSwA[Σ]
and Trans. The FSwA flaw lies in those analyses that argue (on a high level)
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Σ(sk): leaks sk

1: com, st← Commit(sk)
2: ch← C
3: resp← Resp(sk)
4: return (com, ch, resp)

Σ|resp6=⊥(sk): simulatable by SimΣ(pk)

1: repeat
2: com, st← Commit(sk)
3: ch← C
4: resp← Resp(sk)
5: until resp 6= ⊥
6: return (com, ch, resp)

FSwA[Σ](sk,m)

1: repeat
2: com, st← Commit(sk)
3: ch← H(m, com)
4: resp← Resp(sk)
5: until resp 6= ⊥
6: return (com, resp)

Sim(pk,m):

1: (com, ch, resp)← SimΣ(pk)
2: H(m, com) := ch
3: return (com, resp)

Fig. 1: An aborting Sigma protocol Σ that may leak sk, its non-abort transcripts
Σ|resp=⊥ that does not leak sk (formally, simulatable by SimΣ), and its FSwA
signatures FSwA[Σ] that can be simulated by Sim.

that as long as the input (m, com) where H is being reprogrammed has not
been queried prior to the reprogramming, then both oracles cannot be distin-
guished. However, this is not the case, for even without any prior query to the
oracle FSwA[Σ] or Trans, there is still positive advantage of distinguishing both
oracles. Indeed, each time the oracle Trans is queried, a non-abort transcript
(com, ch, resp 6= ⊥) is reprogrammed to the oracle, thereby biasing the distri-
bution of H toward having more non-aborting input-output pairs. This flawed
argumentation occurs not only in Dilithium (as [2] have pointed out) but also
in [5] and likely even in [6, 31].

Since the flaw that appeared in the analyses of Dilithium has been fixed by [2],
it is natural to ask if similar techniques fix relevant isogeny-based ring/group
signatures.9 To the best of our knowledge, the fix as provided in [2] does not
immediately fix these works. Indeed, in each of [5,6,31], the construction crucially
relies on a non-standard variant of aborting Sigma protocols ΣH (specified by
CommitH ,RespH) that is given additional query access to the random oracle
H. However, in showing the closeness between Sign and Trans, for both games,
the sub-procedures CommitH and RespH are now given query access to the
random oracle H. It is then conceivable that such additional access may help an
adversary to distinguish both oracles.

Indeed, zooming into the argumentation of the Dilithium fix [2], one relies
(information-theoretically) on the fact that a distinguisher interacting with H
and Trans cannot learn those aborting transcripts generated in Trans. However,
since now the aborting transcripts are partly determined by the randomness of

9 The work [20] also fixes the FSwA flaw for Lyubashevsky-style signatures, but it
premises a stronger simulator that is not available in isogeny-based constructions.
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H, by making queries toH, the distinguisher may actually learn something about
those aborting transcripts. Therefore, for fixing the FSwA flaw in all currently
available isogeny-based ring/group signatures [5,6,31] (besides ours), a new idea
or a very different proof is necessary.

I.1 Details of the Flaw in [8]

Here, we elaborate on the technical details of how the Fiat-Shamir with Aborts
flaw affects the analyses of [8]. We point to the proof in its ePrint version, [5,
Theorem 6.4], in which the closeness of two specific games Game1 and Game2 is
argued.

To start, we briefly recap the definitions of both games. In Game1, the adver-
sary A interacts with the oracle Prove, while in Game2, such oracle is replaced
by another oracle Sint, which runs the underlying aborting Sigma protocol (as
P1 and P2 specified in [5, Fig. 4]) and then reprograms the transcript to the
random oracle, which is formally realized by maintaining a list L of previously
defined inputs.

Indeed, if taken at the face value, Game1 and Game2 are easily distinguishable,
because in the former game the oracle Prove always returns non-⊥ transcripts,
whereas in the latter game Sint may return an aborting transcript (with ⊥).

A natural way to fix this is by insisting that Sint always generates a non-
aborting transcript and then reprograms such transcript to the random oracle.
Concretely, this can be done by adding a for-loop in Simint (see [5, Fig. 9])
that terminates after resp 6= ⊥, and only then executes the reprogramming
L[FS ‖ lbl ‖ X ‖ com] := chall. However, if this is their intended approach, the
FSwA flaw re-appears. This is because such reprogramming biases the random
oracle toward having more non-⊥ input-output pairs. Hence, even if Q2 = 1 and
no query to O/Sim0 is made prior to the Prove/Sint query, there is still a positive
advantage of distinguishing Game1 and Game2, contradicting the reasoning in,
quote “the view of A is identical to the previous game unless Simint outputs ⊥
in Line 4.”

Is it fixable? To the best of our knowledge, there is no immediate solution to
the flaw. Below, we show two natural alternatives that do not (directly) fix the
flaw.

First, if we modify Sint in such a way that does the reprogramming L[FS ‖ lbl ‖ X ‖ com] :=
chall in every iteration of the for-loop (instead of at the end), then one may then
be able to show the closeness between Game1 ≈ Game2, but the very next hybrid
step Game2 ≈ Game3 falls apart. This is because, under the considered non-abort
HVZK property, only non-abort transcripts are guaranteed to be efficiently sim-
ulatable, and hence, the reprogramming taking place at abort iterations cannot
be simulated in (any imaginable twists of) Game3 efficiently. Therefore, this ap-
proach does not (immediately) work.
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Second, one may be tempted to apply generic results provided in [2], but the
(flawed) analyses in [5, Theorem 6.4] are performed in a non-blackbox manner,
and simply un-covered by such results. In addition, note that [5] considers a
twisted variant of aborting Sigma protocol, where the prover is given access
to the random oracle, which is not the case in [2]. It is conceivable that such
additional access to the random oracle helps an adversary to distinguish Game1
and Game2. Therefore, it is unclear how (and whether it is possible) to fix such
a flaw, even with the reasoning provided in [2].
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