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Abstract. Cryptography based on the hardness of lattice problems over polynomial rings currently
provides the most practical solution for public key encryption in the quantum era. The first encryption
scheme utilizing properties of polynomial rings was NTRU (ANTS ’98), but in the recent decade,
most research has focused on constructing schemes based on the hardness of the somewhat related
Ring/Module-LWE problem. Indeed, 14 out of the 17 encryption schemes based on the hardness of
lattice problems in polynomial rings submitted to the first round of the NIST standardization process
used some version of Ring/Module-LWE, with the other three being based on NTRU.
The preference for using Ring/Module-LWE is due to the fact that this problem is at least as hard
as NTRU, is more flexible in the algebraic structure due to the fact that no polynomial division is
necessary, and that the decryption error is independent of the message. And indeed, the practical
NTRU encryption schemes in the literature generally lag their Ring/Module-LWE counterparts in
either compactness or speed, or both.
In this paper, we put the efficiency of NTRU-based schemes on equal (even slightly better, actually)
footing with their Ring/Module-LWE counterparts. We provide several instantiations and transforma-
tions, with security given in the ROM and the QROM, that detach the decryption error from the
message, thus eliminating the adversary’s power to have any effect on it, which ultimately allows us
to decrease parameter sizes. The resulting schemes are on par, compactness-wise, with their counter-
parts based on Ring/Module-LWE. Performance-wise, the NTRU schemes instantiated in this paper
over NTT-friendly rings of the form Zq[X]/(Xd − Xd/2 + 1) are the fastest of all public key encryp-
tion schemes, whether quantum-safe or not. When compared to the NIST finalist NTRU-HRSS-701,
our scheme is 15% more compact and has a 15X improvement in the round-trip time of ephemeral
key exchange, with key generation being 35X faster, encapsulation being 6X faster, and decapsulation
enjoying a 9X speedup.

1 Introduction

The NTRU encryption scheme [HPS98] was the first truly practical scheme based on the hardness
of lattice problems over polynomial rings and, in many ways, the first really practical quantum-safe
encryption scheme. The hardness of the NTRU was originally stated as its own assumption, but as
lattice cryptography evolved over the next few decades, the most natural way to view the NTRU
encryption was as a combination of two assumptions over a polynomial ring R = Zq[X]/(f(X)).
The first assumption, which we call the NTRU assumption, is that the quotient of two polynomials
f and g, with coefficients chosen from some narrow distribution, looks uniform in R. The second
assumption, which later became known as the Ring-LWE assumption [SSTX09, LPR10] states that
given a uniformly random h ∈ R, and hr+e, for polynomials e and r with coefficients from a narrow
distribution, it is difficult to recover e. One could eliminate the need for the first assumption by
choosing a relatively wide distribution for f and g [SS11], the scheme becomes rather inefficient;
thus all practical instantiations of NTRU were based on these two assumptions.



Since Regev’s seminal work constructing an encryption scheme based on the LWE problem
over general lattices [Reg09], and its subsequent porting to lattices over polynomial rings [SSTX09,
LPR10, LS15], most of the community effort of shifted to building encryption schemes that do
not require the NTRU assumption, and are just based on the decisional version (which was shown
to be equivalent to the search in [LPR10], and for which no faster practical algorithm is known)
of the Ring/Module-LWE problems. Indeed, in the first round of the NIST call for quantum-safe
encryption, only 3 out of 17 proposals for lattice-based encryption schemes over polynomial rings
relied on the NTRU assumption, while the rest used just an LWE-type assumption.

There are a few reasons for avoiding the NTRU assumption. The first is that the additional
NTRU assumption is known to be false as the modulus q of the ring becomes larger than the
dimension [ABD16, CJL16, KF17, DvW21] (the Ring-LWE problem is still believed to be hard for
these parameters). While the attacks against this parameter regime have not been extended to the
one used for public key encryption, it does give some reason for concern. Secondly, in many rings,
the division operation is significantly more expensive than multiplication, and so the assumption
was also avoided for efficiency considerations. And third is that the NTRU assumption does not
naturally lend itself to more flexible instantiations, such as Module-LWE. That is, it naturally
operates over a module of dimension 1 (again, due to the division operation), whereas LWE-based
schemes can be extended to work over modules of a larger dimension. This has the advantage
that the underlying ring operations do not need to change as one increases the security parameter.
In fact, all of the non-NTRU finalists in the NIST post-quantum standardization process use the
module structure [BDK+18, DKRV18]. These schemes are also significantly more efficient than the
finalist NTRU-based proposal [HRSS17].6

One real-world advantage that NTRU has is that all patents on it have expired, while there may
still conceivably be some (possibly still hidden) intellectual property claims on the Ring/Module-
LWE schemes. Also, NTRU may have an advantage when used in certain scenarios involving zero-
knowledge proofs, since the ciphertext has a simpler form and thus may require shorter proofs
that it was correctly formed. In this paper, our goal is to put NTRU-based constructions on equal
footing, performance-wise, as schemes based on Ring/Module-LWE.

1.1 Speed

The most efficient lattice-based schemes are those that natively work over rings Zq[X]/(f(X)) that
support the Number Theory Transform (NTT). When the polynomial f(X) factors into compo-
nents having small degree, one can perform multiplication (and division) in the ring using the
Chinese Remainder Theorem. That is, one evaluates the multiplicands modulo these factors, per-
forms component-wise multiplication, and finally converts the product back into the original form.
The process of efficiently doing these computations is the NTT and the inverse NTT.

The most commonly used NTT-friendly ring is of the form Zq[X]/(Xd+1), where d is a power-of-
2. For well-chosen q, the polynomial Xd+1 = (Xd/2−r)(Xd/2+r) mod q, and the respective factors
similarly split as (Xd/2− r) = (Xd/4−

√
r)(Xd/4 +

√
r) mod q, etc. until one reaches an irreducible

polynomial of a small (usually 1 or 2) degree. Because of this very nice factorization (the “niceness”
mainly rests in the fact that all factors have 2 non-zero coefficients, making reduction modulo
them linear-time), evaluation of any polynomial modulo the irreducible factors can be done using

6 The schemes [BDK+18, DKRV18] can be made even more efficient by eliminating an unnecessary input to the
random oracle (see [DHK+21]) which did not exist in [HRSS17].
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approximately 2d log d operations over Zq. These rings also have some very nice algebraic properties
– in particular the expansion factor [LM06] controlling the growth of polynomial products in the
ring is the minimal of all rings. The one disadvantage of these rings is that they are sparse and so
one cannot use one for an appropriate security level. The hardness of the NTRU and Ring-LWE
problem directly depends on the degree of the polynomial f(X). Based on the current state of
knowledge, obtaining 128-256 bit hardness requires taking dimensions somewhere between 512 and
1024. Since there are no powers of 2 in between, and because one may need to go beyond 1024 in
case somewhat better algorithms are discovered, the sparsity of these rings is inconvenience. The
Module-LWE problem overcomes this inconvenience because the problem instance can be made
up of a matrix of smaller rings, but this does not work for NTRU because this approach would
significantly increase the size of the public key.

One can overcome this issue by using “NTT-friendly” rings f(X) = Xd − Xd/2 + 1 where
d = 2i3j .7 The rings Zq[X]/(Xd−Xd/2 + 1), for appropriately-chosen primes, also support efficient
NTT because Xd−Xd/2 + 1 = (Xd/2 + ζ)(Xd/2− (ζ+ 1)) mod q, where ζ is a third root of unity in
Zq (not equal to 1). And after that, every term (Xk−r) factors into either (Xk/2−

√
r)(Xk/2 +

√
r)

or into (Xk/3− 3
√
r)(Xk/3−ζ 3

√
r)(Xk/3−ζ2 3

√
r) modulo q. In both cases, one can efficiently proceed

with the very efficient NTT because all factors have two non-zero coefficients. As can be seen from
Table 1, there are many such polynomials of degree between 512 and 1024. In the work of [LS19],
a version of NTRU was implemented over the ring Z7681[X]/(X768 − X384 + 1), but due to the
structure of the ring, no factorization into three terms was necessary. In this work we show that
there aren’t any efficiency issues when the latter does happen, and give an instantiation of a scheme
over the ring Z2917[X]/(X648−X324+1). The conclusion is that all of the schemes in Table 1 should
have almost equally good instantiations.

One should also mention that Module and Ring-LWE schemes can be used in non-NTT-friendly
rings [CHK+21], and the inefficiency of multiplication in these rings can be partially overcome by
doing multiplication in a ring with a larger modulus and/or degree of f(X) which supports NTT,
and then reducing back into the original ring. This is, however not possible for NTRU-based schemes
because NTRU requires polynomial division, and it is not known how to map this operation between
rings. On the other hand, if a ring supports NTT, then division is essentially as fast as multiplication,
with only the operation in the base ring (which is of a very low degree) being different. Thus any
hope of having NTRU-based schemes being competitive with Ring/Module-LWE schemes seems to
require defining the NTRU encryption scheme directly over NTT-friendly rings.

1.2 Decryption Error and Compactness

To make NTRU encryption work efficiently over NTT-friendly rings, one creates the public key
as h = pg/(pf + 1), for a small prime p, and then the encryption function (which is one-way cpa
secure – meaning that it is hard to decrypt for a random message) outputs c = hr + m, where
r,m are polynomials with coefficients coming from a narrow distribution. The decryption algorithm
computes (pf + 1)c = p(gr + fm) + m. If the coefficients of the product p(gr + fm) are smaller
than q/2, then one can recover m by taking the above value modulo p.

One important area of optimization (and what was already recognized in the original NTRU
scheme [HPS98]) is that the product p(gr + fm) does not always need to be less than q/2, but
only with very high probability. On the one hand, this probability should be negligible, as obtaining

7 The polynomial f(X) is therefore the 3d-th cyclotomic polynomial.
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decryption failures on honestly-generated ciphertexts is the folklore way of recovering the secret key
in LWE-based schemes. On the other hand, the decryption error can be defined as an information-
theoretic quantity. Unlike the security parameter, there is therefore no safety margin needed as
there is no danger of a better algorithm being found to lower this quantity.

To make the decryption error an information-theoretic quantity, one should define it as being
worst-case when the adversary is even given the secret key [HHK17]. In LWE-based schemes, the
message is an additive term in the decryption procedure, and since the message’s coefficients are
generally small (normally in {0, 1}), there is no difference between a worst-case and an “average-
case” (or even best-case) message. In NTRU, however, as we saw from the decryption equation,
we need the quantity p(gr + fm) to be smaller than q/2, and m is multiplied by f . Purposefully
choosing a “bad” m can, therefore, make a large difference (increasing the decryption error by
factors larger than 2100 is normal for standard parameter choices). The naive way to keep the worst-
case decryption error small is to increase the modulus q so that encryption errors do not occur. But
increasing q weakens the security of the scheme by making the lattice-reduction algorithms more
effective.

In this paper, we demonstrate three different ways of handling the decryption error. The first
way is a generic transformation ACWC0 from any scheme into one in which the message does not
affect the decryption error. Hence the worst-case correctness error of the transformed scheme equals
the average-case correctness error of the original scheme. This transformation is most likely folklore,
and it is presented in Figure 5 on page 13. The downside of this transformation is that it increases
the ciphertext size by the message length.

The two next manners in which a worst-case decryption error is handled preserves the ciphertext
size of the underlying scheme. The transformation ACWC (Figure 6 on page 14) requires some
specific properties of the distribution from which the message is generated. A natural distribution
that satisfies this property is having coefficients uniformly-random modulo p. When p is not a
power of 2, this distribution is not particularly pleasant to sample with AVX2 optimizations (due
to the branching caused by rejection sampling), and so it was proposed in [HRSS17] to sample the
distribution as a binomial distribution modulo p. Since the binomial distribution is very easy to
sample by summing up and subtracting random bits, and because this value modulo p is pretty
close to the uniform distribution, this is a more preferable way of sampling the secret coefficients.
Still, being required to only sample the message m according to the uniform distribution could be
an acceptable compromise. It is a very interesting open problem as to whether our transformation
can still be proved secure for a different, more easily sampled, distribution of the message (and
with the resulting scheme being based on the same assumption).

Our final way of handling adversarial-generated messages does not involve any transformation,
but rather shows how for certain distributions of m, the worst-case decryption error is not much
worse than the average-case (or best-case), as in LWE-based schemes. Consider the coefficients of
m as consisting of a message part µ and an error part ε. One has this implicit split by defining
a function f(µ, ε) = m in a particular way where ε and µ are sampled independently. A property
that we need from f is that f(µ, ε) mod 2 = µ. Thus if one recovers m, one can also recover µ. If
we want to choose m according to the binomial distribution (as in e.g. NewHope [ADPS16], Kyber
[BDK+18], or Saber [DKRV18]), then f can be a very simple function as described in Lemma 4.1.
And of course, we also want the decryption error of this function to be approximately the same
for all adversarially-chosen µ. It turns out that because the adversary only gets to set the residue
modulo 2 in the binomial distribution, he has no control over the sign of the final output, nor the
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variance of the conditional distribution. And for this reason, the worst-case error distribution is
close to the random one.

A further observation is that if we only need to recover µ = m mod 2, then there is no need set
the parameter p so as to be able to recover the entire m. In particular, we could just set p = 2 and
the decryption procedure would still work. By decoupling the magnitude of p from the magnitude
of the coefficients of m, we can set m to be large (which increases the hardness of Ring-LWE),
while keeping p = 2. The value of p has no effect on the hardness of any version of Ring-LWE (since
ph is as uniform as just h), and based on the state of affairs regarding solving Ring-LWE problems,
finding m mod 2 is as hard as finding m. We discuss the complexity of this problem in Section 4.3
and present the scheme in Section 4.4.

1.3 Proofs in the (Q)ROM

Our two transformations ACWC0 and ACWC are defined relative to random oracles, and have proofs
in the ROM that are conceptually very simple. We show that ACWC0 transforms any one-way
secure (OW-CPA) encryption scheme into one that is IND-CPA secure, and that ACWC transforms
any OW-CPA secure encryption scheme into one that is also OW-CPA secure. Note that we cannot
prove IND-CPA security of ACWC since there exist instantiations for which application of ACWC
yields a scheme that simply isn’t IND-CPA secure.8 By working with q-OW-CPA security,9 a slight
generalisation of OW-CPA security, we can combine the aforementioned transformations with the
well-known Fujisaki-Okamoto transformation FO⊥ in a way such that we obtain a tight proof for
the resulting KEMs.

Since post-quantum security is a central goal of the constructions in this paper, we also prove
all our results in the quantum random oracle model (QROM). That is, we show the security even if
the adversary can perform queries to the random oracle in superposition between different inputs.
The two constructions involving the random oracle are ACWC0 and ACWC. We show that ACWC0

transforms a one-way secure (OW-CPA) encryption scheme into an IND-CPA secure one. This proof
is a reasonably straightforward application of the one-way to hiding theorem, O2H [Unr15] in the
variant from [AHU19]. (O2H is a common technique used in random oracle proofs for encryption
schemes.) The drawback of the use of O2H is that it introduces a square-root in the adversary’s
advantage. (That is, if the adversary has ε advantage against the underlying scheme and it makes
q random oracle queries, then it has advantage O(

√
q2ε) against the result of the transformation.)

In contrast, security of ACWC does not have an obvious proof using O2H. Instead, we use the
measure-and-reprogram technique (M&R) from [DFMS19, DFM20]. This technique was developed
for proving the security of the Fiat-Shamir transform; it is a quantum alternative to the classical
forking-lemma. The fact that this technique works here is unexpected for two reasons: First, it was
designed specifically with transformations of sigma-protocols (or related structures) into signatures
or non-interactive proof systems in mind; transformations of encryption schemes such as ACWC
have a very different structure. Second, M&R is a technique for adaptive reprogramming of the
random oracle: Its core feature is, on a high level, that we can measure a query that the adversary
will use later for its attack (e.g., as part of a forged signature), and sneak in a value of interest Θ

8 Say that PKE has message spaceM =M1×M2, and say that PKE’s encryptions of messages M1||M2 leak M1 and
the first bit of M2. When instantiated with the classical one-time-pad, ACWC encrypts a message m by sampling
a message M1 ←M1 and encrypting M1||m⊕ F(M1), thereby leaking the first bit of m.

9 In q-OW-CPA security the adversary is given an encryption of a random plaintext and wins if it returns a set of
cardinality at most q containing the plaintext. For q = 1 this is OW-CPA security.
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NTRU-A (§4.4)
OW-CPA

CCA-NTRU-A

GenNTRU[Ud3 ]
PRE-CPA

NTRU-B (§4.5)
q-OW-CPA

CCA-NTRU-B

GenNTRU[ψ̄d2 ]
PRE-CPA

NTRU-C (§4.5)
IND-CPA

CCA-NTRU-C

FO⊥

L. 2.1, Th. 2.3

ACWC (§3.2)

L. 2.2, Th. 3.9

FO⊥

Th. 2.3

ACWC0 (§3.1)

L. 2.2, Th. 3.3

FO⊥

[HHK17]︸ ︷︷ ︸
average-case correctness error

︸ ︷︷ ︸
worst-case correctness error

︸ ︷︷ ︸
CCA-secure KEM

Fig. 1. Overview: How to obtain efficient IND-CCA-secure KEMs from our NTRU-based PKE schemes. Solid arrows
indicate tight reductions in the ROM, dashed arrows indicate non-tight reductions. q-OW-CPA is a strengthening of
standard OW-CPA security, where the adversary is allowed to return q many guesses (instead of just one). PRE-CPA
security stands preimage resistance which in the setting of NTRU is essentially equivalent to OW-CPA security.

into the answer to exactly that query (e.g., the challenge in a sigma-protocol). But in our setting,
there is no such value of interest Θ. (We use a random value Θ when invoking the M&R theorem
because that is technically required, but we would be perfectly happy if the random oracle was
not reprogrammed at all.) We thus “misuse” the M&R for a situation where reprogramming is not
required in the first place. This raises the interesting open question whether there could be variants
of the M&R theorem that only cover the measurement-part of it (without reprogramming) but have
tighter parameters and could be used in situations such as ours to produce a tighter reduction.

Furthermore, the use of M&R also leads to better parameters than we got using O2H: The
advantage of the adversary against the result of the transformation ACWC is O(q2ε), i.e., no square-
root is involved. (However, in contrast to ACWC0, we only get one-way security. This is not a
limitation of the proof technique, though, but stems from the fact that ACWC does not achieve
IND-CPA security. But note that in a setting were we only need one-way security, we still do not
have a better bound than

√
q2ε for ACWC0; in this case, ACWC gives strictly better security.)

1.4 Concrete Results and Comparison to the State of the Art

We now describe the various ways that one can instantiate NTRU using the techniques described
in this paper and compare it to other lattice-based schemes. We defined three different ways to
instantiate NTRU, with all three approaches being in the same ring and only differing in the secret
distributions and the manner in which it is transformed into a scheme with a small “worst-case”
decryption error. When working over the ring Zq[X]/(Xd −Xd/2 + 1), we will write NTRU-Adq to

be the scheme in Figure 7 which did not require any transformation. By NTRU-Bdq , we denote the
scheme presented in Figure 9 which is derived from the generic NTRU scheme GenNTRU (Figure
8) by utilizing the size-preserving transformation from Figure 6. And by NTRU-Cdq , we refer to
the scheme in Figure 10 derived from the folklore transformation of the generic NTRU scheme
GenNTRU (Figure 8) in Figure 5. All of the aforementioned schemes are CPA-secure, and we use
the standard FO-transformation from Figure 4 to create a CCA-KEM. The above is summarized
in the overview Figure 1.

In Table 1, we summarize the “interesting” instantiations of the schemes described in this
paper having between 150 and 350 bits of security. We also compare these to other instantiations
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of NTRU and Module-LWE based schemes in Figure 2. For a “neutral” evaluation of security, we
used the online LWE hardness estimator [APS15]. This estimator has undergone some updates
since its initial release, but still does not (as of this writing) include some recent cryptanalytic
techniques (e.g. [Duc18]) which could lower the security a little bit. Nevertheless, it still provides
very meaningful results for comparing between various schemes.

In comparison to NTRU-HRSS, which is currently a finalist in the NIST standardization,
NTRU-C648

2917 is based on an NTRU problem with the same error distribution, and has an ap-
proximately equal security level. But due to the fact that we show how to control the worst-case
decryption error, the ciphertext/public key sizes are 15% smaller. If one looks at NTRU-C768

3457, which
has a similar public key/ciphertext size as NTRU-HRSS-701, one see that the tradeoff for no error
vs. 2−252 error is 30 bits of security, and the difference in security is even larger if one considers
the NTRU-A version. In our opinion, exchanging such a large security margin in return for, what is
essentially a gimmick of reducing 2−250 to 0 in the information-theoretic decryption error value, is
not a sensible trade-off. The comparison of our NTRU instantiations to Kyber shows that the two
schemes are essentially on the same size/security curve.

We produced a sample implementation of NTRU-A648
2917, as it is most similar in security to

NTRU-HRSS-701. In table 3, we compare this scheme to NTRU-HRSS and other highly-efficient
lattice-based schemes such as Kyber and NTTRU. The efficiency of our implementation is similar
to that of Kyber-512, even though the NTRU variant has about 30 extra bits of security. The
efficiency improvement is due to the fact that there is no matrix sampling required in NTRU-based
schemes. When compared to NTRU-HRSS-701, there is a clear difference in efficiency, with NTRU-A
being over 15X faster for round-trip ephemeral key exchange. The running time of NTRU-C should
be quite similar, and NTRU-B will be a little hampered by the more complicated (uniform vs.
binomial) error distribution, but should also be close.

While all the parameters in Table 1 are over rings of the form Zq[X]/(Xd − Xd/2 + 1), we
mention that another interesting instantiation would be a version of NTRU-A from Figure 7 with
η = ψd3 over the ring Z3329[X]/(X512 + 1). This would have exactly the security of Level 1 Kyber,
a decryption error of 2−197, and public key / ciphertext sizes of 768 bytes. The parameters make
it an attractive NIST level 1 candidate. The one difference is that the inertia degree would be 4,
which requires one to do inversions and multiplications in degree 4 rings, but we don’t believe that
this should cause a noticeable slowdown.

2 Preliminaries

2.1 Notation

If M is a finite set and ψM is a distribution on M, then m ← ψM samples m from M according
to ψM. We write m←M to denote sampling according to the uniform distribution. For a random
variable X, H∞(X) denotes its min-entropy.

For the sake of completeness, we summarise all relevant quantum preliminaries in Appendix A.

2.2 Cryptographic Definitions

Public-Key Encryption. A public-key encryption scheme PKE = (Gen,Enc,Dec) consists of
three algorithms, a probability distribution ψM on a finite message space M. If no probability
distribution is specified we assume ψM to be the uniform distribution. The key generation algorithm
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d q inertia pk & log2(δ) security log2(δ) security log2(δ) security
(dim.) (mod.) degree ct (B) a CCA-NTRU-A CCA-NTRU-B CCA-NTRU-C

576 2593 2 864 -150 162 -165 155 -187 153

576 3457 1 864 -257 157 -297 150 -333 149

648 2917 2 972 -170 180 -187 172 -211 171

648 3889 1 972 -289 175 -335 166 -376 165

768 3457 2 1152 -202 210 -222 201 -252 199

864 3457 3 1296 -182 238 -197 227 -224 225

972 3889 3 1458 -206 265 -223 253 -253 251

1152 3457 1 1728 -140 321 -147 306 -167 304

1296 3889 1 1944 -158 358 -166 342 -189 339

1296 6481 3 2106 -420 339 -471 324 -530 322

a The ciphertext size for NTRU-C is 32 bytes larger.

Table 1. Parameters for the NTRU schemes CCA-NTRU-A, CCA-NTRU-B, and CCA-NTRU-C from this paper. All of
the variants of the NTRU schemes work over the same ring, with the only difference being the underlying distributions
of the secrets and messages, as well as the transformation (if one is necessary) from an instance with worst-case
decryption error to one with average-case. The public key and ciphertext are of the same length (except for the
ciphertext of CCA-NTRU-C, which is 32 bytes larger) and it is reported in bytes. The inertia degree is the smallest
degree of the polynomial ring over which one has to perform operations at the bottom of the NTT tree (for efficiency,
one may not always want to split down to the smallest possible degree, though). The parameter δ is the decryption
error for a worst-case message (computed via a Pari script), and the security (in the ROM) is obtained using the
LWE estimator script [APS15].

dimension modulus pk (B) ct (B) log2(δ) security

Kyber-512 512 3329 800 768 -139 148

Kyber-768 768 3329 1184 1088 -164 212

Kyber-1024 1024 3329 1568 1568 -174 286

NTTRU 768 7681 1248 1248 -1217 183

NTRU-HRSS-701 701 8192 1138 1138 −∞ 166

NTRU-HRSS-1373 1373 16384 2401 2401 −∞ 314

Table 2. Comparison to Existing Work. The Kyber parameters are taken from the Round 3 submission to the NIST
PQC. The NTTRU parameters are from [LS19], and the NTRU-HRSS-701 parameters are from [HRSS17], and the
NTRU-HRSS-1373 instantiation is from the comments to the NIST PQC mailing list. For consistency of comparing
these schemes to those in Table 1, the security of the schemes are computed using the LWE estimator script [APS15].

Scheme Key Gen Encaps Decaps Total Round-Trip

NTRU-A648
2917 (This Paper) 6.2K 5.6K 7.3K 19.1K

NTRU-HRSS-701 220.3K 34.6K 65K 319.9K

NTTRU 6.4K 6.1K 7.9K 20.4K

Kyber-512 6.2K 7.9K 9.2K 23.3K

Kyber-768 11K 13.1K 14.8K 38.9K

Table 3. Number of cycles (on a Skylake machine) for various operations of a CCA-secure KEM. The numbers for
Kyber-512 and Kyber-768 are taken from [DHK+21, Table 3], which shows an improved implementation of Kyber90’s
when using prefix hashing and employing an explicit reject in the decapsulation procedure.
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KeyGen outputs a key pair (pk , sk), where pk also defines a finite randomness space R = R(pk).
The encryption algorithm Enc, on input pk and a message m ∈ M, outputs an encryption c ←
Enc(pk ,m) of m under the public key pk . If necessary, we make the used randomness of encryption
explicit by writing c := Enc(pk ,m; r), where r ∈ R. By ψR we denote be the distribution of r in
Enc, which we require to be independent of m. The decryption algorithm Dec, on input sk and a
ciphertext c, outputs either a message m = Dec(sk , c) ∈M or a special symbol ⊥ /∈M to indicate
that c is not a valid ciphertext.

Randomness Recoverability. PKE is randomness recoverable (RR) if there exists an algorithm
Recover such that for all (pk , sk) ∈ supp(Gen) and m ∈M, we have that

Pr
[
∀m′ ∈ Preimg(pk , c) : Enc(pk ,m′;Recover(pk ,m′, c)) 6= c | c← Enc(pk ,m)

]
= 0 ,

where the probability is taken over c ← Enc(pk ,m) and Preimg(pk , c) := {m ∈ M | ∃r ∈
R : Enc(pk ,m; r) = c}. Additionally, we will require that Recover returns ⊥ if it is run with in-
put m 6∈ Preimg(pk , c).

Correctness Error. PKE has (worst-case) correctness error δ [HHK17] if

E
[

max
m∈M

Pr [Dec(sk ,Enc(pk ,m)) 6= m]

]
≤ δ ,

where the expectation is taken over (pk , sk)← Gen and the choice of the random oracles involved
(if any). PKE has average-case correctness error δ relative to distribution ψM over M if

Pr [Dec(sk ,Enc(pk ,m)) 6= m] ≤ δ ,

where the probability is taken over (pk , sk) ← Gen, m ← ψM and the randomness of Enc. This
condition is equivalent to

E [Pr [Dec(sk ,Enc(pk ,m)) 6= m]] ≤ δ ,
where the expectation is taken over (pk , sk) ← Gen, the choice of the random oracles involved (if
any), and m← ψM.

Spreadness. PKE is weakly γ-spread [DFMS21] if

E
[

max
m∈M,c∈C

Pr [Enc(pk ,m) = c]

]
≤ 2−γ ,

where the probability is taken over the random coins of encryptions and the expectation is taken
over (pk , sk)← Gen.

Security. In the usual one-way game OW-CPA for PKE, the adversary has to decrypt a ciphertext
c∗ of a random plaintext m∗ ← ψM by sending one candidate m′ back to the challenger, and wins
if m′ = m∗. In the generalized q-OW-CPA game, the adversary gets to send a set Q of size at most
q and wins if m∗ ∈ Q. The formal definition of q-OW-CPA is given in Fig. 2 and the advantage
function of an adversary A is

Advq-OW-CPA
PKE (A) := Pr

[
q-OW-CPAAPKE ⇒ 1

]
.

For q = 1 one recovers standard OW-CPA security, i.e., OW-CPA := 1-OW-CPA. We also introduce
preimage resistance of PKE by the defining the advantage function of an adversary A as

AdvPRE-CPAPKE (A) := Pr
[
PRE-CPAAPKE ⇒ 1

]
,
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Game q-OW-CPA
(pk , sk)← KeyGen
m∗ ← ψM
c∗ ← Enc(pk ,m∗)
Q ← A(pk , c∗)
return Jm∗ ∈ Q ∧ |Q| ≤ qK

Game PRE-CPA
(pk , sk)← KeyGen
m∗ ← ψM
c∗ ← Enc(pk ,m∗)
(m, r)← A(pk , c∗)
return JEnc(pk ,m; r) = c∗K

Game IND-CPA
(pk , sk)← Gen
(m0,m1)← A1(pk)
b← {0, 1}
c∗ ← Enc(pk ,mb)
b′ ← A2(pk , c∗)
return Jb = b′K

Fig. 2. Left: q-Set One-Wayness game q-OW-CPA for PKE, where q = 1 is standard OW-CPA. Middle: Preimage
resistance game PRE-CPA for PKE. Right: game IND-CPA for PKE and adversary A = (A1,A2).

where game PRE-CPA is given in Fig. 2.
Finally, we define the IND-CPA advantage for an adversary A as

AdvIND-CPA
PKE (A) :=

∣∣∣∣Pr
[
IND-CPAAPKE ⇒ 1

]
− 1

2

∣∣∣∣ ,
where the game IND-CPAAPKE is defined in Fig. 2.

Lemma 2.1 (PKE OW-CPA =⇒ PKE q-OW-CPA). For any adversary A against the q-OW-CPA
security of PKE, there exists an OW-CPA adversary against PKE with

Advq-OW-CPA
PKE (A) ≤ q · AdvOW-CPA

PKE (B) .

where the running time of B is about that of A.

Proof. Sketch. The reduction B runs the adversary A on the inputs it got from its OW-CPA chal-
lenger and obtains the set Q of size q. It samples m← Q uniformly at random and forwards m to
the OW-CPA challenger, with probability 1/q it guessed the right one when the solution is contained
in Q, thus, the claim follows.

Lemma 2.2 (PKE PRE-CPA and RR
tightly
=⇒ PKE q-OW-CPA). If PKE is randomness recover-

able, then for any adversary A against the q-OW-CPA security of PKE, there exists an PRE-CPA
adversary B against PKE with

Advq-OW-CPA
PKE (A) ≤ AdvPRE-CPAPKE (B) .

where the running time of B is about Time (A) + q · (Time (Recover) + Time (Enc)).

Proof. The reduction B forwards to A the challenge public-key and ciphertext c∗ and obtains a set
Q. For every m ∈ Q it runs r := Recover(pk ,m, c) and then runs Enc(pk ,m; r) to obtain c. If c
equals c∗ it returns (m, r) as the solution, otherwise it continues with the search. If no element is
found it can return a random m ←M. Clearly, if A wins, then so does B. Since the reduction B
runs A once, and algorithms Recover and Enc at most q many times, the claim follows.

Key-Encapsulation Mechanism. A key encapsulation mechanism KEM = (Gen,Encaps,Decaps)
consists of three algorithms and a finite key space K similar to a PKE scheme, but Encaps does not
take a message as input. The key generation algorithm Gen outputs a key pair (pk , sk), where pk

10



also defines a finite randomness space R = R(pk) as well as a ciphertext space C. The encapsulation
algorithm Encaps takes as input a public-key pk and outputs a key encapsulation ciphertext c and
a key K, that is (c,K) ← Encaps(pk). The decapsulation algorithm Decaps, on input sk and a
ciphertext c, outputs either a key K = Decaps(sk , c) ∈ K or a special symbol ⊥ /∈ K to indicate
that c is not a valid ciphertext. We say KEM has correctness error δ if

Pr [Decaps(sk , c) = K | (c,K)← Encaps(pk)] ≤ δ ,

where the probability is taken over the randomness in Encaps and (pk , sk) ← Gen. In terms of
KEM’s security, we consider the IND-CCA advantage function of an adversary A:

AdvIND-CCA
KEM (A) := Pr

[
IND-CCAAKEM ⇒ 1

]
− 1

2

where game IND-CCA is defined in Fig. 3.

IND-CCA
01 (pk , sk)← Gen
02 (K0, c

∗)← Encaps(pk)
03 K1 ← K
04 b← {0, 1}
05 b′ ← ADecaps(pk , c∗,Kb)
06 return Jb = b′K

Decaps(c 6= c∗)
07 return Decaps(sk , c)

Fig. 3. Game IND-CCA for KEM

The Fujisaki-Okamoto transformation with explicit reject. To a public-key encryp-
tion scheme PKE = (KeyGen,Enc,Dec) with message space M and associated uniform distri-
bution over M, randomness space R, and hash functions H : {0, 1}∗ → R × K, we associate
KEM := FO⊥[PKE,H] := (KeyGen,Encaps,Decaps). Its constituting algorithms are given in Fig. 4.
In [DHK+21] it was formally shown that including a short prefix of the public-key into the hash
function provably improves the multi-user security of the Fujisaki-Okamoto transform. In this work,
for simplicity, we will omit this inclusion and analyze the security in the single-user setting.

Theorem 2.3 (qH-OW-CPA of PKE
ROM
=⇒ IND-CCA of KEM). For any adversary A, making at

most qD decapsulation, qH hash queries, against the IND-CCA security of KEM, there exists an
adversary B against the qH-OW-CPA security of PKE with

AdvIND-CCA
KEM (A) ≤ AdvqH-OW-CPA

PKE (B) + qD2−γ + qHδ ,

where the running time of B is about that of A.

The proof is very similar to formerly known proofs for FO - after showing how to simulate oracle
Decaps, we argue that the challenge key cannot be distinguished from random unless the adversary
A queries H on the challenge plaintext. When reducing to plain OW-CPA security, a reduction would
have to guess, but a reduction to qH-OW-CPA security can simply keep a list of all of A queries to
H and return this list as the list of plaintext guesses. For the sake of completeness, a full proof is
given in Appendix B.
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Encaps(pk)
01 m←M
02 (r,K) := H(m)
03 c := Enc(pk ,m; r)
04 return (K, c)

Decaps⊥(sk , c)

05 m′ := Dec(sk , c)
06 (r′,K′) := H(m′)
07 if m′ = ⊥ or c 6= Enc(pk ,m′; r′)
08 return ⊥
09 else
10 return K′

Fig. 4. Key encapsulation mechanism KEM = FO⊥[PKE,H], obtained from PKE = (KeyGen,Enc,Dec) with worst-case
correctness error.

Theorem 2.4 (IND-CPA of PKE
ROM
=⇒ IND-CCA of KEM [HHK17]). For any adversary A,

making at most qD decapsulation, qH hash queries, against the IND-CCA security of KEM, there
exists an adversary B against the IND-CPA security of PKE with

AdvIND-CCA
KEM (A) ≤ 2

(
AdvIND-CPA

PKE (B) + qH/ |M|
)

+ qD2−γ + qHδ ,

where the running time of B is about that of A.

Theorem 2.5 (OW-CPA of PKE
QROM
=⇒ IND-CCA of KEM [DFMS21]). For any quantum adver-

sary A, making at most qD decapsulation, qH (quantum) hash queries, against the IND-CCA security
of KEM, there exists a quantum adversary B against the OW-CPA security of PKE with

AdvIND-CCA
KEM (A) ≤ 2q

√
AdvOW-CPA

PKE (B) + 24q2
√
δ + 24q

√
qqD · 2−γ/4 .

where q := 2(qH + qD) and Time (B) ≈ Time (A) + O(qH · qD ·Time (Enc) + q2).

3 Worst-Case to Average-Case Decryption Error

In this section we introduce two worst-case to average case correctness transform for public-key
encryption.

3.1 Simple transformation ACWC0 with redundancy

Let PKE be an encryption scheme with small average-case correctness error and F be a random
oracle. We first introduce a simple transformation ACWC0 by describing ACWC0[PKE,F] in Fig. 5
which adds λ bits of redundancy to the ciphertexts, where λ is the size of the message space. The
resulting scheme has small worst-case correctness error.

Lemma 3.1. If PKE is δ-average-case-correct, then PKE′ := ACWC0[PKE,F] is δ-worst-case-correct.

Proof. We need to upper bound δ′ = Emaxm∈{0,1}λ Pr[Dec′(Enc′(m)) 6= m], where the expectation
is taken over the internal randomness of KeyGen and the choice of random oracle F, and the
probability is taken over the internal randomness of Enc′. Since a ciphertext (Enc(pk , r),F(r)⊕m)
fails to decrypt iff Enc(pk , r) fails to decrypt, and since message r is drawn according to the
distribution ψR on the message space of PKE,

E max
m∈{0,1}λ

Pr[Dec′(sk ,Enc′(pk ,m)) 6= m] = E Pr
r←ψR

[Dec(sk ,Enc(pk , r)) 6= r] = δ .
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Enc′(pk ,m ∈ {0, 1}λ)
01 r ← ψR
02 return (Enc(pk , r),F(r)⊕m)

Dec′(sk , (c, u))
03 r := Dec(sk , c)
04 return F(r)⊕ u

Fig. 5. ACWC0[PKE,F] transforms PKE with small average-case correctness error, with message space R and associ-
ated distribution ψR, into PKE′ with small worst-case correctness error. The resulting scheme is λ bits longer.

Lemma 3.2. If PKE is weakly γ-spread, then so is ACWC0[PKE,F].

Proof. Follows directly by how PKE is used, since the ciphertext of ACWC0[PKE,F] consists of the
ciphertext of PKE, plus the message blinding part.

Theorem 3.3 (qF-OW-CPA of PKE
ROM
=⇒ IND-CPA of ACWC0[PKE,F]). For any adversary A

against the IND-CPA security of ACWC0[PKE,F], issuing at most qF queries to F, there exists an
adversary B against the OW-CPA security of PKE with

AdvIND-CPA
ACWC[PKE,F](A) ≤ AdvqF-OW-CPA

PKE (B) ,

and the running time of B is about that of A.

In the IND-CPA game for ACWC0[PKE,F], the challenge ciphertext c∗ ←
(
Enc(pk , r),F(r) ⊕ mb)

perfectly hides mb unless the adversary queries F on r, thus breaking OW-CPA security of PKE. A
reduction to qF-OW-CPA security can simply keep a list of all of A queries to F and return this list
as the list of plaintext guesses. For the sake of completeness, a full proof of Theorem 3.3 is given
in Appendix C.1.

Theorem 3.4 (pF-OW-CPA of PKE
QROM
=⇒ IND-CPA of ACWC0[PKE,F]). For any quantum ad-

versary A against the IND-CPA security of ACWC0[PKE,F], with query depth at most dF and query
parallelism at most pF, there exists a quantum adversary B against the OW-CPA security of PKE
with

AdvIND-CPA
ACWC[PKE,F](A) ≤ 2dF

√
AdvpF-OW-CPA

PKE (B).

and the running time of B is about that of A.

Since the random oracle is now quantum-accessible, we will use the O2H lemma to argue that we
can reprogramm F on r, again with the consequence that c∗ now perfectly hides b. In accordance
with the definition of the O2H extractor, our reduction will pick one of A’s queries at random,
measure this query, and return the measured plaintexts as its guess list. Since the query has query
parallelism at most pF, the list has at most pF many elements. For the sake of completeness, a full
proof of Theorem 3.4 is given in Appendix C.2.

3.2 Transformation ACWC without redundancy

Let PKE be an encryption scheme with small average-case correctness error, and let F be a random
oracle. We will now introduce our second transformation ACWC by describing ACWC[PKE,GOTP,F]
in Fig. 6. Again, the resulting scheme has a small worst-case correctness error. Instead of adding
redundancy to the ciphertexts, however, the scheme makes use of a generalised One-Time Pad
GOTP.

13



Definition 3.5. Function GOTP : X ×U → Y is called generalized one-time pad (for distributions
ψX , ψY , ψU) if

1. Decoding: There exists an efficient inversion algorithm Inv such that for all x ∈ X , u ∈ U ,
Inv(GOTP(x, u), u) = x.

2. Message-hiding: For all x ∈ X , the random variable GOTP(x, u), for u ← ψU , has the same
distribution as ψY

3. Randomness-hiding: For all u ∈ U , the random variable GOTP(x, u), for x← ψX , has the same
distribution as ψY

A simple example of the generalized one-time pad GOTP : {0, 1}n × {0, 1}n → {0, 1}n for the
uniform distributions is GOTP(x, u) := x ⊕ u with inversion algorithm Inv(y, u) := y ⊕ u. The
second and third properties are obviously satisfied since the XOR operation is a one-time pad.

Let PKE be a public-key encryption scheme with M =M1 ×M2, where ψM = ψM1 × ψM2 is
a product distribution. Let GOTP :M′ × U →M2 be a generalized one-time pad for distribution
ψM2 and F :M1 → U be a random oracle. The associated distributions ψM1 , ψM2 , ψM′ , ψU do not
necessarily have to be uniform. (If ψU is not uniform, then the distribution of the random oracle
F is such that every output is independently ψU -distributed.) PKE′ obtained by transformation
ACWC[PKE,GOTP,F] is described in Fig. 6.

Enc′(pk ,m ∈M′)
01 M1 ← ψM1

02 M2 := GOTP(m,F(M1))
03 return Enc(pk ,M1||M2)

Dec′(sk , c)
04 M1||M2 := Dec(sk , c)
05 m := Inv(M2,F(M1))
06 return m

Fig. 6. ACWC[PKE,GOTP,F] transforms PKE with small average-case correctness error into PKE′ with small worst-
case correctness error. The output length of the two schemes is the same.

Our first theorem relates the average-case correctness of PKE to the worst-case correctness of
ACWC[PKE,GOTP,F].

Lemma 3.6. Let PKE be a public-key encryption scheme with M = M1 × M2, where ψM =

ψM1 ×ψM2 is a product distribution, and let ‖ψM1‖ :=
√∑
M1

ψ1(M1)2. Let GOTP :M′×U →M2

be a generalized one-time pad (for distributions ψM′ , ψU , ψM2) and F : M1 → U be a random
oracle. If PKE is δ-average-case-correct then PKE′ := ACWC[PKE,GOTP,F] is δ′ worst-case-correct
for

δ′ = δ + ‖ψM1‖ ·
(

1 +
√

(ln |M′| − ln ‖ψM1‖)/2
)
. 10

Proof. With the expectation over choice of F and (pk , sk) ← Gen, we have for the worst-case
correctness of PKE′:

δ′ = E
[

max
m∈M′

Pr
[
Dec′(sk ,Enc′(pk ,m)) 6= m

]]
= E

[
δ′(pk , sk)

]
10 In cases where the support of ψM1 is some finite set R, it may be sometimes convenient to upper bound ‖ψM1‖

by ‖ψM1‖∞ ·
√
|R|, where ‖ψM1‖∞ is the maximum probability for any element in R.
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where δ′(pk , sk) := E
[
maxm∈M′ Pr

[
Dec′(sk ,Enc′(pk ,m)) 6= m

]]
is the expectation taken over

choice of F, for a fixed key pair (pk , sk). For any fixed key pair and for any real t, we have that

δ′(pk , sk) = E
[

max
m∈M′

Pr
[
Dec′(sk ,Enc′(pk ,m)) 6= m

]]
≤ t + Pr

F

[
max
m∈M′

Pr
[
Dec′(sk ,Enc′(pk ,m)) 6= m

]
≥ t
]

= t + Pr
F

[
max
m∈M′

Pr
M1,r

[Dec′(sk ,Enc(pk ,M1||GOTP(m,F(M1)); r) 6= m] ≥ t
]
. (1)

For any fixed key pair and any real c, let t(pk , sk) := µ(pk , sk) + ‖ψ‖ ·
√

(c+ ln |M′|)/2, where
µ(pk , sk) := PrM,r[Dec(sk ,Enc(pk ,M ; r)) 6= M ] and ψ = ψM1 . We can now use helper Lemma 3.7
below to argue that

Pr
F

[
max
m∈M′

Pr
M1,r

[Dec′(sk ,Enc(pk ,M1||GOTP(m,F(M1)); r)) 6= m] > t(pk , sk)

]
≤ e−c . (2)

To this end, we identify r1 from Lemma 3.7 withM1, r2 with r, g(m, r1, r2, u) with (r1||GOTP(m,u), r2)
and B with {(M, r) ∈| Dec(sk ,Enc(pk ,M ; r) 6= m}. Plugging Eq. (2) into Eq. (1) and taking the
expectation yields

δ′ ≤ E
[
µ(pk , sk) + ‖ψM1‖ ·

√
(c+ ln |M′|)/2 + e−c

]
= δ + ‖ψM1‖ ·

√
(c+ ln |M′|)/2 + e−c ,

and setting c := − ln ‖ψM1‖ gives the claim in the lemma. ut

Lemma 3.7. Let g be some function and B be some set such that

∀m ∈M, Pr
r1←ψ1,r2←ψ2,u←U

[g(m, r1, r2, u) ∈ B] ≤ µ, (3)

where ψ1 and ψ2 are independent. Let F be a random function mapping onto U . Define ‖ψ1‖ =√∑
r1

ψ1(r1)2.

Then for all but an e−c fraction of random functions F, we have that ∀m ∈M,

Pr
r1←ψ1,r2←ψ2

[g(m, r1, r2,F(r1)) ∈ B] ≤ µ+ ‖ψ1‖ ·
√

(c+ ln |M|)/2 (4)

Proof. The proof strategy will be to show that for any fixed m ∈ M, the probability in (4) holds
for all but a e−c · |M|−1-fraction of random functions F. The claim of the statement then follows
by the union bound.

Let us fix a specific m ∈M, and for each r1 ∈ supp(ψ1), define pr1 := Pr
r2←ψ2,u←U

[g(m, r1, r2, u) ∈

B]. By the assumption on g in (3), we know that
∑
r1

pr1ψ(r1) ≤ µ. For each r1, define a random

variable Xr1 whose value is determined as follows: F chooses a random u = F(r1) and r2 ← ψ2, and
then checks whether g(m, r1, r2,F(r1)) ∈ B; if it is, then we set Xr1 = 1, and otherwise we set it to
0. Because F is a random function, the probability that Xr1 = 1 is exactly pr1 .
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The probability of (4) for our particular m is now exactly the sum
∑
r1

ψ1(r1)Xr1 and we will

use the Hoeffding bound to show that this value is not much larger than µ. Define the random
variable Yr1 = ψ1(r1)Xr1 . Notice that Yr1 ∈ [0, ψ1(r1)], and that E [

∑
Yr1 ] = E [

∑
Xr1ψ1(r1)] =∑

pr1ψ1(r1) = µ. By the Hoeffding bound, we have for all positive t,

Pr
[∑

Yr1 > µ+ t
]
≤ exp

(
−2t2∑
ψ1(r1)2

)
= exp

(
−2t2

‖ψ1‖2

)
. (5)

Setting t ≥ ‖ψ1‖ ·
√

(c+ ln |M|)/2, we obtain that for a fixed m, (4) holds for all but a e−c · |M|−1
fraction of random functions F. Applying the union bound gives us the claim in the lemma. ut

Lemma 3.8. If PKE is weakly γ-spread, then so is ACWC[PKE,GOTP,F].

Proof. The proof is a simple observation, it follows by applying the law of total probability in order
to fix M1. For fixed M1 one can then apply γ-spreadness for a fixed key pair (pk, sk). By averaging
over (pk, sk) the claim then follows.

Theorem 3.9 ((q·qF)-OW-CPA of PKE
ROM
=⇒ q-OW-CPA of ACWC[PKE,GOTP,F]). Let q ∈ N.

For any adversary A against the q-OW-CPA security of ACWC[PKE,GOTP,F], making at most
qF random oracle queries, there exists an adversary B against the (q·qF)-OW-CPA security of
ACWC[PKE,GOTP,F] with

Advq-OW-CPA
ACWC[PKE,GOTP,F](A) ≤ Adv

(q·qF)-OW-CPA
PKE (B) + q · 2−H∞(ψM′ ) ,

where the running time of B is about Time (A) +O(q · qF) .

In the q-OW-CPA game for ACWC[PKE,GOTP,F], the adversary is presented with an encryption
c∗ ← Enc(pk ,M∗1 ‖GOTP(m∗,F(M∗1 ))) of a message pair (M∗1 ,m

∗)← ψM1×ψM′ , and has to return
a list Q such that m∗ ∈ Q. Unless A queries F on M∗1 , m∗ is perfectly hidden from A and A cannot
win with probability better than q · 2−H∞(ψM′ ). If A queries F on M∗1 and wins, a reduction can
again record A’s oracle queries, and then use the query list LF and A’s one-way guessing list QA
to construct its set Q by going over all possible combinations M ′ = M ′1||M ′2, where M ′1 ∈ LF and
M ′2 := GOTP(m′,F(M ′1)) for m′ ∈ QA. If A queries F on M∗1 and wins, then LF will contain the
right M∗1 , meaning that B’s list Q will contain the challenge plaintext. Note that the ciphertext for
B would be defined relative to M∗2 ← ψM2 , but due to the properties of GOTP, A’s one-way game
can be conceptually changed such that its ciphertext is also defined relative to M∗2 ← ψM2 , and
A wins if it returns a list Q containing m := Inv(M∗2 ,F(M∗1 )). For the sake of completeness, a full
proof of Theorem 3.9 is given in Appendix D.1.

Theorem 3.10 (OW-CPA of PKE
QROM
=⇒ OW-CPA of ACWC[PKE,GOTP,F]). For any quantum

adversary A against the OW-CPA security of ACWC[PKE,GOTP,F], making at most qF random
oracle queries, there exists a quantum adversary B against the OW-CPA security of PKE with

AdvOW-CPA
ACWC[PKE,GOTP,F](A) ≤ (2qF + 1)2 AdvOW-CPA

PKE (B),

where the running time of B is about that of A.
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Intuitively, the proof follows the same idea as its classical counterpart. In contrast to the security
proof for ACWC0, however, we can not simply apply the O2H lemma, as a reduction needs both
a query to F from which it can extract M∗1 and its final output m, and an O2H extractor would
simply abort A once that A has issued the query to be extracted. We will therefore use the measure-
and-reprogram technique (M&R) from [DFMS19, DFM20], arguing that we can run the adversary,
measure a random query, and continue running it afterwards to obtain its final output m. For the
sake of completeness, a full proof of Theorem 3.10 is given in Appendix D.2.

4 NTRU Encryption over NTT Friendly Rings

In this section we present three instantiations of the NTRU encryption scheme in polynomial rings
of the form Zq[X]/(Xd − Xd/2 + 1), where d = 2i3j , where the parameters are set such that
multiplication and inversion can be performed very efficiently using the NTT.

4.1 Notation

We denote by R the polynomial ring Zq[X]/(Xd − Xd/2 + 1), where the positive integer d (of
the form 2i3j) and the prime q are implicit from context. Elements in R will be represented by
polynomials of degree less than d, and we will denote these polynomials by bold lower-case letters.

That is, all elements of R are of the form h =
d−1∑
i=0

hiX
i ∈ R, where hi ∈ Zq. There is a natural

correspondence between elements in R and vectors in Zdq , where one simply writes the coefficients
of a polynomial in vector form. As additive groups, the two are trivially isomorphic. We will thus
sometimes abuse notation and for a vector ~v, write r := ~v to mean that the coefficients of the
polynomial r are assigned the coefficients of the vector ~v.

For an integer h ∈ Zq, we write h mod ±q to mean the integer from the set
{
− q−1

2 , . . . , q−12

}
which is congruent to h modulo q. Reducing an integer modulo 2 always maps it to a bit. These
functions naturally extend to vectors and polynomials, where one applies the function individually
to each coefficient. For a set S, the function HS : {0, 1}∗ → S denotes a hash function modeled as a
random oracle that outputs a uniform distribution on S. Similarly, for a distribution ψ (over some
implicit set S), we will write Hψ : {0, 1}∗ → S to denote a hash function modeled as a random
oracle that outputs a distribution ψ. The function pref(·) extracts a short (around 32-64 byte) prefix
from an element of R.

4.2 The Binomial Distribution

For an even k, we define the distribution ψdk over Zd to be the distribution

k∑
i=1

~ai −
k∑
i=1

~bi, ~ai,~bi ← {0, 1}d. (6)

The distribution ψ̄dk is the distribution over the set {−1, 0, 1}d defined as ψdk reduced modulo 3.
We will mostly be working with ψ̄dk and ψdk for k = 2, which are, by definition, generated as
~b = ~b1 + ~b2 − ~b3 − ~b4 and ~b mod ± 3, where ~bi ← {0, 1}d. Each coefficient of ~b and ~b mod ± 3 is
distributed as

ψ2 =
Output -2 -1 0 1 2

Prob. 1/16 4/16 6/16 4/16 1/16
(7)
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ψ̄2 =
Output -1 0 1

Prob. 5/16 6/16 5/16
(8)

We now state a lemma, which is used for the construction of NTRU-A in Figure 7 that shows
that by creating the distribution ψ2 in a special way, one of the components of the distribution
can be completely recovered when having access to whole sample. Note that this cannot be done
if each coefficient is generated as b = b1 + b2 − b3 − b4. For example, if b = 0, then every bi has
conditional probability of 1/2 of being 0 or 1. If, on the other hand, we generate the distribution as
b = (b1−2b2b3)(1−2b4), where bi ← {0, 1}, then one can see that b1 can be recovered by computing
b mod 2.

Lemma 4.1. The distribution ψd2 can be generated as

~b = (~b1 − 2~b2 �~b3)� (1− 2~b4),

where ~bi ← {0, 1}d and � denotes component-wise multiplication. Furthermore, ~b mod 2 = ~b1.

4.3 The NTRU Problem and Variants

In the framework for the NTRU trap-door function [HPS98], the secret key consists of two poly-
nomials f and g with small coefficients in a polynomial ring (e.g. R) and the public key if the
quotient h = gf−1. The hardness assumption states that given (h,hr + e), where r, e are sampled
from some distribution with support of elements in R with small coefficients, it is hard to recover
e. For appropriately-set parameters, one can recover e when knowing f , and we will discuss this
when presenting the full encryption scheme later in the section. For now, we are mainly interested
in the security of NTRU.

The security of the NTRU function described above is naturally broken down into two assump-
tions. The first is that the distribution of h = gf−1 is indistinguishable from a random element
in R. And the second assumption is essentially the Ring-LWE assumption which states that given
(h,hr + e), where h is uniform in R and r, e are chosen from some distribution with small coef-
ficients, it is hard to find e (and thus also r). We point out that one can eliminate the need for
the first assumption by choosing polynomials with coefficients that are small, but large enough, so
that the quotient is statistically-close to uniform [SS11], but the resulting scheme ends up being
significantly less efficient because the coefficients in the polynomials of the second (Ring-LWE)
problem need to be rather small to compensate; and this in turn requires the dimension of the ring
to be increased in order for the Ring-LWE problem to remain hard. The below definition formally
states the first assumption for the distributions used in this paper.

Definition 4.2 (The R-NTRUη assumption). For a distribution η over the ring R and an integer
p relatively-prime to q, the R-NTRUη assumption states that g · (pf + 1)−1 is indistinguishable from
a uniformly-random element in R when g and f are chosen from the distribution η, and pf + 1 is
invertible in R.

Another common version of the assumption simply states that g · f−1 is indistinguishable from
random, and it doesn’t appear that there is any difference in the hardness between the two. The
reason that multiplication of f by p is useful is because it eliminates the need for an inversion
(which cannot be done using NTT) during the decryption process; and so we use this version of
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the problem in the paper. The downside of this multiplication by p is that half of the “noise terms”
in the decrypted ciphertext increase by a factor of p. We now define the Ring-LWE problem that
is specific to our instantiation, and which forms the second assumption needed for the NTRU
cryptosystem.

Definition 4.3 (R-LWEη). Let η be some distribution over R. In the R-LWE problem, one is given
(h,hr + e), where h← R and r, e← η, and is asked to recover e.

One can also define the decision version of the above assumption as

Definition 4.4 (Decision R-LWEη). Let η be a distribution over R. The decision R-LWE as-
sumption states that (h,hr+e), where h← R and r, e← η, is indistinguishable from (h,u), where
h,u← R.

In the original LWE definition of Regev [Reg09], the distribution η was a rounded continuous
Gaussian, as this was the distribution most convenient for achieving a worst-case to average-case
reduction from certain lattice problems over solving R-LWEη. When implementing cryptographic
primitives based on the hardness of R-LWEη, it is more convenient to take η to be a distribution
that can be easily sampled. Some common distributions include uniform (although sometimes it is
not that simple to sample) and those that can be generated as sums of Bernoulli random variables
such as ψk and ψ̄k from (7) and (8).

The most efficient known attack against the R-NTRU and R-LWE problems are lattice attacks.
They work by defining a set

L⊥c (h) = {(v,w) ∈ Z[X]/(Xd −Xd/2 + 1) : hv + w ≡ c (mod q)}.

When c = 0, the above set is closed under addition, and therefore forms a lattice. To distinguish
the quotient h = g/f , where f ,g have small coefficients, from a uniformly-random h ∈ R, one can
try to find the shortest vector in L⊥0 (h). If h is random, then a vector of `2-norm less than Ω(

√
qd)

is very unlikely to exist in L⊥c (h). On the other hand, if the coefficients of f ,g are noticeably less
than

√
q, then (f ,−g) ∈ L⊥c (h), and so an algorithm that can find a good approximation to the

shortest vector should find something of length significantly less than Ω(
√
qd).

When c 6= 0, L⊥c (h) is a shifted lattice and finding the shortest vector in it is known as the
Bounded Distance Decoding (BDD) problem. For practical parameters, the complexity of the two
problems is identical. Interestingly, when q is very large with respect to the size of the secret
coefficients, finding a short vector in L⊥c (h) is significantly easier when c = 0, as opposed to when c
is random [ABD16, CJL16, KF17, DvW21]. This phenomenon prevents the NTRU assumption from
being used in scenarios requiring such a large gap (and so one uses Ring-LWE and Module-LWE
schemes in those scenarios), such as in Fully-Homomorphic Encryption schemes. This security issue,
however, does not seem to extend to the NTRU parameters that are used in practice for public key
encryption and signature schemes.

We now define a version of the R-LWE problem in which the adversary is not asked to recover
the entire vector e, but just e mod 2.

Definition 4.5 (R-LWE2η). Let η be a distribution over R. In the R-LWE problem, one is given
(h,hr + e), where h← R and r, e← η, and is asked to recover e mod 2.

While we do not have a formal reduction from R-LWE to R-LWE2, based on the state of the
art of how Ring-LWE problems are solved, the two are essentially equivalent. We now present two
heuristic arguments for the equivalence of R-LWE and R-LWE2.
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Suppose that there is an algorithm that solves R-LWE2η and we feed it an instance (h,hr + e)
of R-LWEη. If the R-LWE2η solver returns a correct f ≡ e (mod 2), then we can create another
instance

(2−1 · h, 2−1hr + 2−1(e− f)) = (h′r + e′).

Note that h′ is still uniformly random and the distribution of e′ is now “narrower” than that of the
original e – if the coefficients of e were distributed as ψ2, then each coefficient of e′ has a probability
3/16 of being ±1 and 10/16 of being 0. Based on the state of the art, a R-LWE-type problem should
be easier with this narrower distribution. So one should be able to call the R-LWE2η oracle again,
even though the distribution of e′ is now different. It’s easy to see now that this procedure will
eventually recover the entire polynomial e.

Another heuristic argument is based on a slightly-modified version of decision R-LWE. In par-
ticular, if we assume that the decision R-LWE problem, in which just the first polynomial coefficient
in Zq is noiseless, then there is a simple reduction from this problem to R-LWE2η. In the reduction,
we simply add a noise with distribution η to the first coefficient, and we decide whether the decision
R-LWE instance is real or random based on whether or not the answer returned by the R-LWE2η
oracle matches our added error modulo 2. While the version of the decision R-LWE problem where
the first integer coefficient has no error is slightly different than usual, the current best-known
algorithms would solve the decision problem by solving the search version. And in the search case,
the two versions of the problem are equally hard.

The work of Brakerski et al [BLP+13] considers this “First-is-Errorless” version of LWE and
shows that it is essentially as hard as the usual version. Boudgoust et al. [BJRW21] extend this
problem to it’s Module-LWE variant and showed that an even stronger assumption has a (non-
tight) reduction from the usual Module-LWE problem. In short, it is very reasonable to assume
that the concrete hardness of the R-LWE2η problem is the same as that of R-LWEη.

4.4 NTRU-A: Encryption Based on R-NTRU + R-LWE2 for η = ψd2

We now give a construction of our first OW-CPA-secure encryption scheme, NTRU-A, whose hard-
ness is based on the combination of the R-NTRUη + R-LWE2η problems for η = ψ2. The way that
this scheme differs from the more usual NTRU constructions is that the secret key does let one
recover the entire e. This can pose a problem because generally e the message in the OW-CPA
NTRU scheme, and yet we can only recover a part of it. This is not a OW-CPA scheme and we will
not be able to obtain a CCA-secure KEM using generic transformations.

We remedy this issue by only making the value e mod 2 be the message. This requires that
for a given random message m, the e is generated from the correct distribution (i.e. ψ2) with
the additional restriction that m = e mod 2. An interesting aspect of this scheme is that because
the message is not the entire e, the adversary does not have as much freedom to pick it so as to
maximize the decryption error. If the adversary can only pick e mod 2, it turns out that the worst-
case decryption error is quite close to the “best case”. We now proceed to describe the OW-CPA
scheme in Figure 7.

OW-CPA Scheme. The distribution of the coefficients of the secret polynomials used in key
generation and encryption ψ2 (see (7)) and is produced by the Gen1() algorithm in Figure 7. As
per Lemma 4.1, this distribution can be generated as b1 + b2 − b3 − b4 or, equivalently, as (b1 −
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Gen1()

01 ~b1,~b2,~b3,~b4 ← {0, 1}d

02 return ~b1 +~b2 −~b3 −~b4

Gen2(~b1 ∈ {0, 1}d)
03 ~b2,~b3,~b4 ← {0, 1}d

04 return (~b1 − 2~b2 �~b3)� (1− 2~b4)

KeyGen()

05 f ′ := Gen1()
06 f := 2f ′ + 1
07 if f is not invertible in R, restart
08 g := Gen1()
09 return (pk , sk) = (2gf−1, f)

Enc(h ∈ R, ~m ∈ {0, 1}d, ρ ∈ {0, 1}7d)
10 (use the 7d bits of ρ as the randomness
in the Gen1 and Gen2 algorithms)
11 r := Gen1()
12 e := Gen2(~m)
13 return hr + e

Dec(f ∈ R, c ∈ R)

14 u := (cf mod ±q) mod 2
15 ~m := u
16 return ~m

Fig. 7. OW-CPA Encryption Scheme NTRU-A based on the R-NTRUψ2 + R-LWE2ψ2 problems. Only the procedures
Gen1 and Gen2 are randomized. We include the coins ρ as input for the Encryption algorithm (which will be passed
to Gen1 and Gen2) because these are explicitly used in the CCA transformation. The coins used in the key generation
are implicit.

2b2b3)(1− 2b4), where all the bi are Bernoulli random variables. The reason the latter distribution
is interesting to us is that modulo 2, it is one of the variables that creates it – b1.

The secret key is generated by choosing polynomials f ′,g ← ψd2 and computing f = 2f ′ + 1. If
f is not invertible in R, we restart. Otherwise, the public key is h = 2gf−1 and the secret key is f .

To encrypt a message ~m ∈ {0, 1}d, the encryptor first generates a random polynomial r ← ψd2
using the Gen1() procedure. He then needs to choose a polynomial e such that e mod 2 (as a
vector) is ~m. Furthermore, when ~m is chosen uniformly at random from {0, 1}d, the distribution
of e should be ψd2 . To create such a distribution, we define e = Gen2(~m). By Lemma 4.1, e is
distributed according to ψd2 . The ciphertext is c = hr + e.

To decrypt the ciphertext c = hr + e = 2gr/f + e, we multiply it by f , centralize it mod q, and
then reduce modulo 2 to obtain

(cf mod ±q) mod 2 = 2gr + ef mod 2 = 2gr + 2ef ′ + e mod 2 (9)

If all the coefficients of 2gr + 2ef ′+ e (as integers) are smaller than q/2, then modulo 2, this value
will be exactly e mod 2, which is ~m. Since the coefficients of e have absolute value at most 2, in
order to have decryption be correct, we need the coefficients of gr + ef ′ to be less than q/4− 1. We
will now move on to show how to compute this probability.

Decryption Error for a Worst-Case Message. The decryption error of NTRU-A can be com-
puted following the template given in [LS19, Section 3.2]. As discussed above, if a coefficient of
gr + ef ′ (as an integer) has absolute value less than q/4− 1, then the output of that coefficient in
(9) will be e mod 2, as desired. So we now need to understand what each coefficient of gr + ef ′

looks like. This is easiest to see via an example of how polynomial multiplication in the ring R can
be represented by a matrix-vector product. If we, for example, want to multiply two polynomials
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ab in the ring Zq[X]/(X6 −X3 + 1), where a =
5∑
i=0

ai and b =
5∑
i=0

bi then their product c =
5∑
i=0

ci

can be written as in (10).

a0 −a5 −a4 −a3 −a2 − a5 −a1 − a4

a1 a0 −a5 −a4 −a3 −a2 − a5

a2 a1 a0 −a5 −a4 −a3

a3 a2 + a5 a1 + a4 a0 + a3 a2 a1

a4 a3 a2 + a5 a1 + a4 a0 + a3 a2

a5 a4 a3 a2 + a5 a1 + a4 a0 + a3

 ·


b0

b1

b2

b3

b4

b5

 =



c0
c1
c2
c3
c4
c5

 (10)

Notice that c3, c4, and c5 are a sum of three independently-generated integers of the form

c = ba+ b′(a+ a′). (11)

The coefficient c2, however, is simply a sum of 6 independent random variables of the form ab. Or
to make it look similar to (11), we can think of it as the sum of three random variables of the form

c = ba+ b′a′. (12)

It should be clear that the distribution of (11) is wider than that of (12), and so the probability
that the coefficients which follow the former distribution will be outside of the “safe zone” is larger.
The coefficients c0 and c1 are a hybrid of these two distributions. For example, c1 is the sum of one
coefficient from (11) and two from (12); while c2 is the sum of two from (11) and one from (12).

To bound the probability that decryption will be correct, we should therefore bound the distri-
bution of c3, c4, c5, or in the general case, a coefficient in the bottom half of c and then apply the
union bound. So the widest distribution will consist of sums of d/2 random variables having the
distribution as in (11). The term gr in (9) has this exact distribution, where each coefficient of g, r
is distributed according to Gen1().

The term f ′e is distributed differently because in our security proof we need to consider an
adversarially-chosen message ~m, after the adversary sees the public key. Because the adversary
does not get to choose the whole message, but just the modulo 2 residue, it turns out that the
failure probability for a worst-case message is not too different than for a uniformly random one. In
(13), we give the distribution of a particular coefficient of ei conditioned on the message bit being
either 0 or 1.

Gen2(0) =
Output -2 0 2

Probability 0.125 0.75 0.125
Gen2(1) =

Output -1 1

Probability 0.5 0.5
(13)

One can see that in both cases the distribution is centered around 0 and has variance 1, and
so one should not expect a very large difference in the decryption error. Experimentally, it turns
out that the worst-case messages occur when choosing ~m = ~0. Furthermore, the worst-case mes-
sage is the same for any secret key.11 This implies that the worst-case correctness error is the
average-case one where the distribution over the coefficients of e is as in Gen2(0) of (13). As in
[ADPS16, BDK+18, LS19], the error probability reported in Table 1 is computed via polynomial
multiplications which represent convolutions of random variables.

11 This was verified experimentally by fixing the a, a′ in (11) to all valid values and computing the probability of
failure assuming that all the secret keys have this value.
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IND-CPA-secure KEM. One can apply the Fujisaki-Okamoto transformation FO⊥ from Fig. 4 to
obtain the IND-CCA secure version CCA-NTRU-A := FO⊥[NTRU-A,H] of NTRU-A. The concrete
security bounds on the IND-CCA security of CCA-NTRU-A from Table 4 can be derived in the ROM
using Lemma 2.1 and Theorem 2.3 and in the QROM using Theorem 2.5.

IND-CCA secure KEM ROM QROM

CCA-NTRU-A q(εA + δ) q
√
εA + q2

√
δ

CCA-NTRU-B εB + q(3−λ + δ) q2(
√
εB +

√
δ)

CCA-NTRU-C εC + q(2−λ + δ) q1.5( 4
√
εC +

√
δ)

Table 4. Bounds on the IND-CCA secure NTRU-variants CCA-NTRU-A, CCA-NTRU-B, and CCA-NTRU-C. Constants
and negligible terms are suppressed for simplicity. The value q is the sum of all adversarial (random oracle and
decryption) queries, i.e., q = qH + qD + qF. The ε values are the advantage functions of the underlying NTRU
assumptions: εA = AdvR-NTRUη + AdvR-LWE2η for η = ψd2 ; εB = AdvR-NTRUη + AdvR-LWEη for η = Ud3 and εC =
AdvR-NTRUη + AdvR-LWEη for η = ψ̄d2 .

4.5 Generic NTRU encryption and Error-Reducing Transformations

Fig. 8 defines GenNTRU[η] relative to distribution η over R. Note that GenNTRU[η] is randomness-
recoverable (RR) because once we have e and c = hr+e, we can compute r = (c−e) ·h−1. Because
we checked that g is invertible, it holds that h = 3gf−1 also has an inverse.

KeyGen()

01 f ′,g← η
02 f := 3f ′ + 1
03 if f or g is not invertible in R, restart
04 return (pk , sk)= (3gf−1, f)

Enc(h ∈ R, ~m ∈ {−1, 0, 1}d)
05 r← η
06 return c := hr + ~m

Dec(f ∈ R, c ∈ R)

07 return ~m := (cf mod ±q) mod ± 3

Fig. 8. Generic NTRU GenNTRU[η] relative to distribution ψ over ring R with average-case correctness error. During
key-generation, we need to check that g is invertible in order to have the randomness recovery property. It seems
doubtful that this check adds any actual security in practice, but for all parameter sets, it only adds less than 0.01%
chance to a restart, so it does not make much difference either way.

By the definition, the OW-CPA security of GenNTRU[η] is implied by the R-NTRUη+R-LWEη
assumptions. In this subsection, we will consider two concrete instantiations of GenNTRU, namely
GenNTRU[U3], where U3 is the uniform distribution over {−1, 0, 1}d, and GenNTRU[ψ̄d2 ], where ψ̄d2
was defined in Section 4.2. Both schemes do not have sufficiently small worst-case correctness error,
which is the reason why we will first apply one of our average-case to worst-case correctness error
transformations from the last section.

NTRU-B: Encryption Based on R-NTRUη+R-LWEη for η = Ud3 . We define the generalized
one-time pad GOTP : R×R → R relative to distributions Ud3 as GOTP(~m, u) := ~m + u mod ± 3.
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Then NTRU-B := ACWC[GenNTRU[Ud3 ],GOTP,F], obtained by applying the ACWC transformation
from Section 3.2 to GenNTRU[Ud3 ], is described in Fig. 9. Its message space is M′ = {−1, 0, 1}λ
with distribution Ud3 , where M1 = {−1, 0, 1}d−λ and M2 = {−1, 0, 1}λ.

KeyGen()

01 f ′,g← {−1, 0, 1}d
02 f := 3f ′ + 1
03 if f or g is not invertible in R, restart
04 return (pk , sk)= (3gf−1, f)

Dec(f ∈ R, c ∈ R)

05 ~m′||~m′′ := (cf mod ±q) mod ± 3
06 u := F{−1,0,1}λ(~m′)

07 ~m := ~m′′ − ~u mod ± 3
08 return ~m

Enc(h ∈ R, ~m ∈ {−1, 0, 1}λ, ρ)

09 (use the randomness ρ for creating ~m′ and r)
10 ~m′ ← {−1, 0, 1}d−λ
11 ~u := F{−1,0,1}λ(~m′)

12 ~m′′ := ~m+ u mod ± 3
13 r← {−1, 0, 1}d
14 e := ~m′||~m′′
15 return hr + e

Fig. 9. Randomness-recoverable OW-CPA encryption scheme NTRU-B with worst-case correctness error based on the
R-NTRUUd3

+ R-LWEUd3
problems for Ud3 being uniform over {−1, 0, 1}d.

By Lemma 3.6, the average-case correctness error of GenNTRU[Ud3 ] and the worst-case correct-
ness error of NTRU-B are off by an additive factor of

∆ = ‖Ud−λ3 ‖ ·
(

1 +

√
(ln |M′| − ln ‖Ud−λ3 ‖)/2

)
≈ ‖Ud−λ3 ‖ = 3−(d−λ)/2 ≈ 2−0.8×(d−λ)

which can be neglected for λ = 256 and d ≥ 576. Hence, for all practical parameters considered in
Table 1, worst-case and average-case correctness errors are equal. Using the techniques Section 4.4
it can be verified that the error probabilities reported in Table 1 are correct for NTRU-B.

Finally, one can apply the Fujisaki-Okamoto transformation FO⊥ from Fig. 4 to obtain the
IND-CCA secure version CCA-NTRU-B := FO⊥[NTRU-B,H] of NTRU-B. In the ROM, the concrete
security bound on the IND-CCA security of CCA-NTRU-B from Table 4 can be derived by combining
Lemma 2.2 with Theorems 3.9 and 2.3. We refer to Fig. 1 for an overview of the implications. In
the QROM, the bound can be derived by combining Theorem 3.10 with Theorem 2.5.

NTRU-C: Encryption Based on R-NTRUη+R-LWEη for η = ψ̄d2 . We define NTRU-C :=
ACWC0[GenNTRU[ψ̄d2 ],F] with uniform message space M′ = {0, 1}λ, obtained by applying the
ACWC0 transformation with redundancy from Section 3.1 to GenNTRU[ψ̄d2 ] is described in Fig. 10.
By Lemma 3.1, the average-case correctness error of GenNTRU[ψ̄d2 ] and the worst-case correctness
error of NTRU-C are identical. Using the techniques Section 4.4 it can be verified that the error
probabilities reported in Table 1 are correct for NTRU-C. Finally, one can apply the Fujisaki-
Okamoto transformation FO⊥ from Fig. 4 to obtain the IND-CCA secure version CCA-NTRU-C :=
FO⊥[NTRU-C,H] of NTRU-C. In the ROM, the concrete security bound on the IND-CCA security
of CCA-NTRU-C from Table 4 can be derived by combining Lemma 2.2 with Theorems 3.3 and
2.4. In the QROM, the bound can be derived by combining Lemma 2.2 with Theorem 3.4 and
Theorem 2.5.
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KeyGen()

01 f ′,g← ψ̄d2
02 f := 3f ′ + 1
03 if f or g is not invertible in R, restart
04 return (pk , sk)= (3gf−1, f)

Dec(f ∈ R, (c ∈ R, ~u ∈ {0, 1}λ))

05 e := (cf mod ±q) mod ± 3
06 ~m := ~u⊕ F{0,1}λ(e)
07 return ~m

Enc(h ∈ R, ~m ∈ {0, 1}λ, ρ ∈ {0, 1}8d)
08 (use the randomness ρ for creating e and r)
09 e← ψ̄d2
10 ~u := ~m⊕ F{0,1}λ(e)

11 r← ψ̄d2
12 return (hr + e, ~u)

Fig. 10. NTRU-C: a randomness-recoverable OW-CPA encryption scheme with worst-case correctness error based on
the R-NTRUη + R-LWEη problems for η = ψ̄d2 .
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DHK+21. Julien Duman, Kathrin Hövelmanns, Eike Kiltz, Vadim Lyubashevsky, and Gregor Seiler. Faster lattice-
based KEMs via a generic Fujisaki-Okamoto transform for multi-user security in the QROM. In CCS,
2021.

DKRV18. Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik Vercauteren. Saber: Module-
lwr based key exchange, cpa-secure encryption and cca-secure KEM. In AFRICACRYPT, pages 282–305,
2018.
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A Quantum Preliminaries

We recall some quantum computation preliminaries.

Qubit. A qubit |x〉 = α|0〉 + β|1〉 is a 2-dimensional unit vector with coefficients in C, i.e. x =
(α, β) ∈ C2 fulfilling the normalization constraint |α|2 + |β|2 = 1. When neither α = 1 nor β = 1,
we say that |x〉 is in superposition.

n-qubit state. An n-bit quantum register |x〉 =
∑2n−1

i=1 αi|i〉 is a unit vector of C2n = (C2)⊗n,

that is αi ∈ C and
∑2n−1

i=0 |αi|2 = 1. We call the set {|0〉, |1〉, . . . , |2n − 1〉} the computational basis.
When |x〉 can not be written as the tensor product of single qubits, we say that |x〉 is entangled.
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Measurement. Unless otherwise stated, measurements are done in the computational basis. After
measuring a quantum register |x〉 =

∑2n−1
i=0 ai|i〉 in the computational basis, the state collapses and

|x〉 = ±|i〉 with probability |αi|2.
Quantum Algorithms. A quantum algorithm A is a series of unitary operations Ui, where
unitary operations are defined as to map unit vectors to unit vectors, preserving the normalization
constraint of quantum registers. A quantum oracle algorithm AO is defined similarly, except it can
query the oracle O after (or before) executing a unitary Ui. Since quantum computation needs to
be reversible, we model an oracle O : X → Y by a unitary UO that maps |x〉|y〉 7→ |x〉|y ⊕ O(x)〉.
Quantum Random Oracle Model. Following [BDF+11], we model quantum adversaries to
have quantum access to random oracles since quantum adversaries can evaluate hash functions in
superposition.

Below, we recall the oneway-to-hiding lemma, which is used to reprogram random oracle values.
Informally, Theorem A.1 states that if a random oracle is reprogrammed on a set S ⊂ R of inputs,
the probability of an adversary A behaving differently can be related to the success probability of
an extractor algorithm B which extracts at least on element of S by measuring the query register
of one of A’s randomly chosen oracle queries.

Theorem A.1 (Classical O2H, Theorem 3 from the eprint version of [AHU19]). Let
S ⊂ R be random. Let F,G be random functions satisfying ∀r /∈ S : F(r) = G(r). Let z be a
random classical value. (S,G,H, z may have arbitrary joint distribution.) Let C be a quantum oracle
algorithm with query depth qF, expecting input z. Let D be the algorithm which on input z samples a
uniform i from {1, . . . , qF}, runs C right before its ith query to G, measures all query input registers
and outputs the set T of measurement outcomes. Then∣∣Pr[CF(z)⇒ 1]− Pr[CG(z)⇒ 1]

∣∣ ≤ 2dF

√
Pr
[
S ∩ T 6= ∅ : T ← DG(z)

]
.

We slightly reformulated the theorem: We changed variable names to better fit the present
context. We do not require z to be a bitstring but allow it to be an arbitrary classical value (in
this proof: a tuple). And in the original, the argument to DG would be F, but by symmetry it also
holds with G.

B Proof of Theorem 2.3 (Tight IND-CCA security of FO⊥ from qH-OW-CPA
security of PKE )

Proof. Consider the games given in Fig. 11. We proceed by analyzing the changes introduced by
the different games.

Game G0. This is the original IND-CCA game, by definition we have∣∣∣∣Pr
[
GA0 ⇒ 1

]
− 1

2

∣∣∣∣ = AdvIND-CCA
KEM (A) .

Game G1. In this game we change the decapsulation oracle to return ⊥, when it is queried on a
ciphertext with no preimage from the list LH in line 13. By the weak γ-spreadness, the probability
that the re-encryption check passes for a message which does not use randomness ρ from H(m) is
upper bounded by 2−γ . By a union bound over qD decapsulation queries we have∣∣Pr

[
GA0 ⇒ 1

]
− Pr

[
GA1 ⇒ 1

]∣∣ = qD2−γ .
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Game IND-CCAAPKE
01 (pk , sk)← Gen
02 m∗ ←M
03 (ρ, κ1)← H(m∗)
04 (ρ, κ1)←R×K //G3

05 c∗ := Enc(pk ,m∗; ρ)
06 b← {0, 1}
07 κ0 ← K
08 b′ ← AH,Decaps(pk , c∗, κb)
09 return Jb = b′K

Decaps(c 6= c∗)

10 m′ := Dec(sk , c) //G0-G1

11 (ρ, κ)← H(m′) //G0

12 if m′ = ⊥ or Enc(pk ,m′; ρ) 6= c //G0

13 if 6 ∃(m′, ρ, κ) ∈ LH s.t. Enc(pk ,m′; ρ) = c //G1-G3

14 if 6 ∃(m, ρ, κ) ∈ LH s.t. Enc(pk ,m; ρ) = c //G2-G3

15 return ⊥
16 return κ

H(m)
17 if m = m∗ //G3

18 QUERY := true //G3

19 abort //G3

20 if ∃(m, ρ, κ) ∈ LH

21 return (ρ, κ)
22 (ρ, κ)←R×K
23 LH := LH ∪ {(m, ρ, κ)}
24 return (ρ, κ)

Fig. 11. Game G0-G3 for the proof of Theorem 2.3

Game G2. In this game, we change the decapsulation oracle to not need the secret-key anymore.
Concretely, G2 introduces line 14, which is the same as line 13, except that any m which passes the
re-encryption check is checked, instead of m = m′ := Dec(sk , c). Clearly, whenever Decaps returns
⊥ in G2, it returns ⊥ in G1, since if no m exists, this means there can also not exist m = m′.
The other direction holds by δ-correctness, since when no m′ exists, the boolean expression in G2

(line 14) will only evaluate to false, if there exists another m 6= m′ with Enc(pk ,m; ρ) = c, but
this implies a correctness error, since m′ := Dec(sk , c) 6= m. If a message m ∈ LH exists, it will be
unique, since collisions imply correctness errors, by a similar argument. By the δ-correctness with
a union bound over the qH random oracle queries, we have∣∣Pr

[
GA1 ⇒ 1

]
− Pr

[
GA2 ⇒ 1

]∣∣ = qHδ .

Game G3. In this game we introduce the lines 17-19 to the random oracle H. The event QUERY
is set to true, if H is queried on m∗ in which case the game is aborted. Additionally, in line 04 we
sample κ0 ← K and the randomness ρ for the challenge ciphertext from K, instead from H, which
will not be noticed by A as long as QUERY does not happen. We have by the difference lemma∣∣Pr

[
GA2 ⇒ 1

]
− Pr

[
GA3 ⇒ 1

]∣∣ = Pr [QUERY] .

By a reduction to the qH-OW-CPA security of PKE we can show that there exists an adversary B
with

Pr [QUERY] ≤ AdvqH-OW-CPA
PKE (B) . (14)

The reduction B works as follows: it obtains by the qH-OW-CPA a challenge public-key and challenge
ciphertext, which are forwarded to the CCA adversary together with κ← K. The ciphertext and κ
have the right distribution due to line 04. It then simulates the decapsulation and random oracle as
in G2 and G3 and saves all random oracle queries in LH. It outputs to the qH-OW-CPA challenger
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the random oracle quries as the solution set Q. When QUERY happens, the reduction B wins. We
have thus shown equation (14). 12

Game G3 In game G3 the bit b is independent of the view of the adversary, since κ0, κ1 ← K due
to line 04, thus we have

Pr
[
GA3 ⇒ 1

]
=

1

2
.

Summing up the inequalities yields the claimed bound, which concludes our proof.

C Proofs of Theorem 3.3 and Theorem 3.4 (IND-CPA security of ACWC0 in
the (Q)ROM)

C.1 Proof of Theorem 3.3 (IND-CPA security of ACWC0 in the ROM)

Game G1. In game G1 (see Fig. 12), we have the original IND-CPA game, with ACWC0[PKE,F]
plugged in in line 06. By definition, we have that∣∣∣∣Pr

[
GA1 ⇒ 1

]
− 1

2

∣∣∣∣ = AdvIND-CPA
ACWC0[PKE,F]

(A).

Game G2. In game G2, we raise flag QUERY and abort on the event that A queries F on r∗. We
have that ∣∣Pr

[
GA2 ⇒ 1

]
− Pr

[
GA1 ⇒ 1

]∣∣ ≤ Pr [QUERY] .

Unless QUERY occurs, F(r) is a uniform value independent of A’s view, meaning that u∗ =
F(r)⊕mb is uniformly random, and the input b′ of AF is independent of b. Thus, Pr

[
GA2 ⇒ 1

]
= 1/2

and
AdvIND-CPA

ACWC0[PKE,F]
(A) ≤ Pr [QUERY] .

We construct adversary B against the underlying scheme in Fig. 12. B perfectly simulates the
input to A until QUERY occurs, simulates the random oracle via lazy sampling (see lines 17, 19
and 20), and keeps track of A’s oracle queries by adding them to its internal list Lr (see line 21),
which B forwards as the solution set to its qF-OW-CPA challenger . Since B wins if QUERY occurs
and B’s output list has at most qF many elements,

Pr [QUERY] ≤ AdvqF-OW-CPA
PKE (B).

C.2 Proof of Theorem 3.4 (IND-CPA security of ACWC0 in the QROM)

Proof. The idea of the proof is to reprogramm F on r using the O2H lemma. In order to apply
the lemma, we need to introduce conceptual game changes in G2 and G3. After applying the O2H
lemma, the adversary wins in G4 only with probability 1/2, since u⊕mb information-theoretically
hides b, for uniform u. We proceed by analyzing the games given in Figs. 13 to 15.

12 When QUERY happens the adversary B won’t be able to simulate properly anymore, but this does not matter
since it will win the qH-OW-CPA game anyway, since m∗ will be in Q. The reduction needs an upper bound on the
running time of A though for this argument to hold, since otherwise A could change its running time (e.g. run in
an infinite loop) when it notices that it runs in the simulation. Alternatively, if no upper bound is known to B, it
can run A several times, each time doubling its running time.
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Game G1

01 F← (R→ {0, 1}λ)
02 (pk , sk)← Gen
03 b← {0, 1}
04 (m0,m1)← AF

1(pk)
05 r∗ ← ψR
06 (c∗1, u

∗)←
(
Enc(pk , r∗),F(r∗)⊕mb)

07 b′ ← AF
2(pk , (c∗1, u

∗))
08 return Jb = b′K

B(pk , c∗1)
09 LF,Lr := ∅
10 b← {0, 1}
11 u∗ ← {0, 1}λ
12 (m0,m1)← AF

1(pk)
13 c∗ :=

(
c∗1, u

∗ ⊕mb)

14 b′ ← AF
2(pk , c∗)

15 return Lr

F(r) �As simulated by B
16 if ∃(r,m) ∈ LF

17 return m
18 else
19 m← {0, 1}λ
20 LF := LF ∪ {(r,m)}
21 Lr := Lr ∪ {r}
22 return m

Fig. 12. Games G1 and adversary B for the proof of Theorem 3.4

Game G1. In game G1 we have the original IND-CPA game, with ACWC0[PKE,F] plugged in, in
line 06. By definition, we have∣∣∣∣Pr

[
GA1 ⇒ 1

]
− 1

2

∣∣∣∣ = AdvIND-CPA
ACWC0[PKE,F]

(A).

Game G1

01 F← (R→ {0, 1}λ)
02 (pk , sk)← Gen
03 b← {0, 1}
04 (m0,m1)← AF

1(pk)
05 r ← ψR
06 c∗ ←

(
Enc(pk , r),F(r)⊕mb)

07 b′ ← AF
2(pk , c∗)

08 return Jb = b′K

Fig. 13. Game G1 for the proof of Theorem 3.4

Game G2. In G2 we restructure game G1 by moving part of the game into an adversary CF, defined
in Fig. 14. We also introduce an auxiliary variable for u := F(r), i.e., we query F(r) earlier. The
resulting game is G2. By unfolding the definitions of CF and u, we get G1, therefore the change is
only conceptual, hence

Pr
[
GA1 ⇒ 1

]
= Pr

[
GA2 ⇒ 1

]
.

Game G3. In game G3 we change how F and u are chosen. Instead of choosing F uniformly, and
then computing u, we choose G and u uniformly, and let F := G, except that F(r) = u. This leads
to the same distribution of F and u, hence

Pr
[
GA2 ⇒ 1

]
= Pr

[
GA3 ⇒ 1

]
.

For the next proof step, we will use Theorem A.1. Applying this theorem with C being the
adversary described above, S := {r}, and z := (r, u), we immediately get:∣∣Pr

[
GA3 ⇒ 1

]
− Pr

[
GA4 ⇒ 1

]∣∣ ≤ 2dF
√

Pr [G5 ⇒ 1].
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Games G2–G5

09 F← (R→ {0, 1}λ) //G2

10 r ← ψR
11 u := F(r) //G2

12 G← (R → {0, 1}λ) //G3–G5

13 u← {0, 1}λ //G3–G5

14 F := G(r := u) //G3–G5

15 w ← CF(r, u) //G2–G3

16 w ← CG(r, u) //G4

17 T ← DG(r, u) //G5

18 return w //G2–G4

19 return r ∈ T //G5.

CF(r, u)
20 (pk , sk)← Gen
21 b← {0, 1}
22 (m0,m1)← AF

1(pk)
23 c∗ ←

(
Enc(pk , r), u⊕mb)

24 b′ ← AF
2(pk , c∗)

25 return Jb = b′K

DG(r, u)
26 i← {1, . . . , dF}
27 run CG(r, u) till i-th query
28 T ← measure G-query
29 return T

Fig. 14. Games G2-G5 for the proof of Theorem 3.4. In this definition, “run . . . till the i-th query” means till the
i-th block of up to pF parallel queries. And T ← measure G-query means that we measure the query input register of
G in all of the parallel queries in that query block and let T be the set of the measurement outcomes.

(The initial lines of those games, where G, r, u,F are chosen, define a joint distribution as in the
theorem.)

Game G4. In game G4, the uniformly random value u (line 13) is only used in the expression u⊕mb

(line 23). Thus u⊕mb is uniformly random and hence the input b′ of AF is independent of b. Thus
b = b′ with probability 1/2. Therefore,

Pr
[
GA4 ⇒ 1

]
=

1

2
.

Game G5 and G6. We wrap most of G5 into the adversary B defined in Fig. 15, except for the
choice of pk , sk , r and the first half of the ciphertext c∗. The result is game G6 in Fig. 15 and we
have Pr [G6 ⇒ 1] = Pr [G5 ⇒ 1]. Note that

Game G6

30 (pk , sk)← Gen
31 r ← ψR
32 c∗1 ← Enc(pk , r)
33 T ← B(pk , c∗1)
34 return r ∈ T

B(pk , c∗1)
35 i← {1, . . . , dF}
36 Run until i-th G-query:
37 b← {0, 1}
38 u← {0, 1}λ
39 (m0,m1)← AG

1 (pk)
40 c∗ ←

(
c∗1, u⊕mb)

41 AG
2 (pk , c∗)

42 T ← measure G-query
43 return T

Fig. 15. Game G6 for the proof of Theorem 3.4. The adversary B is the extractor algorithm from the O2H lemma.

AdvpF-OW-CPA
PKE (B) = Pr [G6 ⇒ 1]
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because T will always contain at most pF elements (the query parallelism). Putting all equalities
and bounds in this proof together, we get

AdvIND-CPA
ACWC0[PKE,F]

(A) ≤ 2dF

√
AdvpF-OW-CPA

PKE (B) ,

which concludes our proof.

D Proofs of Theorem 3.9 and Theorem 3.10 ((q-)OW-CPA security of ACWC
in the (Q)ROM)

D.1 Proof of Theorem 3.9 (q-OW-CPA security of ACWC in the ROM)

Proof. Consider the games given in Fig. 16.

Game OW-CPA
01 (pk , sk)← Gen
02 M∗1 ← ψM1

03 m∗ ← ψM′

04 M∗2 := GOTP(m,F(M∗1 ))
05 M∗2 ← ψM2 //G1-G2

06 m := Inv(M∗2 ,F(M∗1 )) //G1

07 u← ψU //G2

08 m := Inv(M∗2 , u) //G2

09 c∗ ← Enc(pk ,M∗1 ‖M∗2 )
10 Q ← AF(pk , c∗)
11 return Jm∗ ∈ QK

F(K)
12 if JK = M∗1 K //G2

13 QUERY := true //G2

14 return u //G2

15 if ∃(K,M2) ∈ LF

16 return M2

17 M2 ← ψM2

18 LF := LF ∪ {(K,M2)}
19 return M2

Fig. 16. q-OW-CPA game against ACWC[PKE,GOTP,F].

Game G0. This is the original q-OW-CPA game, we have

Pr
[
GA0 ⇒ 1

]
= Advq-OW-CPA

ACWC[PKE,GOTP,F](A) .

Game G1. In game G1 we introduce the following conceptual change: instead of sampling m∗ ←M′,
M∗1 ← ψM1 and computing M∗2 := GOTP(m∗,F(M1)), we instead sample M∗2 ← ψM2 (using the
randomness-hiding property) and M∗1 ← ψM1 and then define m∗ := Inv(M∗2 ,F(M∗1 )) (follows
implictly by the decoding property). Due to the randomness-hiding and decoding property of the
generalized one-time pad this change is only conceptual, we have

Pr
[
GA0 ⇒ 1

]
= Pr

[
GA1 ⇒ 1

]
.

Game G2. In game G2 we set the flag QUERY, when A queries M1 which was used to create the
challenge ciphertext. Since this is only conceptual, we have

Pr
[
GA1 ⇒ 1

]
= Pr

[
GA2 ⇒ 1

]
.
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We proceed by bounding the probability of the adversary A winning in game G2. We have

Pr
[
GA2 ⇒ 1

]
≤ Pr

[
GA2 ⇒ 1 ∧ QUERY

]
+ Pr

[
GA2 ⇒ 1 ∧ QUERY

]
.

We claim that there exists an adversary B with

Pr
[
GA2 ⇒ 1 ∧ QUERY

]
≤ Advq·qF-OW-CPA

PKE (B) (15)

and
Pr
[
GA2 ⇒ 1 ∧ QUERY

]
≤ q · 2−H∞(ψM′ ) . (16)

To see why (16) holds, observe that m∗ is defined as Inv(M∗2 ,F(M∗1 )). Since A did not query M∗1 ,
the value F(M∗1 ) looks uniformly random to A, and therefore Inv(M∗2 ,F(M∗1 )) is distributed as ψM′ .
Thus, the probability of m∗ ∈ Q is upper bounded by q · 2−H∞(ψM′ ). We proceed by showing (15).
Consider the reduction given in Fig. 17. The reduction B runs A and records its random oracle
queries and obtains a candidate set QA. It then constructs the set Q which contains all possible
combinations M ′ = M ′1||M ′2 where M ′1 ∈ LF and M ′2 := GOTP(m′,F(M ′1)) for m′ ∈ QA, which
is a set of size at most q · qF. Since we conditioned on QUERY, we know that LF will contain the
right M∗1 used to create the challenge ciphertext. Therefore, B wins if A wins and the claim follows,
which concludes the proof.

B(pk , c∗)
20 Q := ∅
21 QA ← AF(pk , c∗)
22 for (M ′1,m

′) ∈ LF ×QA
23 M ′2 := GOTP(m′,F(M ′1))
24 M ′ := M ′1||M ′2
25 Q := Q∪ {M ′}
26 return Q

Fig. 17. Reduction B against the (q · qF)-OW-CPA-security of PKE. The set LF is the set of recorded random oracle
queries.

D.2 Proof of Theorem 3.10 (OW-CPA security of ACWC in the QROM)

Proof. The main idea of the proof is to run the adversary A to obtain m and measure and re-
program one of the random oracle queries to obtain M1. This can be done using Theorem 2 from
[DFM20], after carefully introducing several conceptual game changes (G1-G4). After some addi-
tional conceptual game changes, we upper bound the probability of G8 by the OW-CPA advantage.
We proceed by analyzing the games given in Figs. 18 to 21.

Game G1. In game G1 we have the original OW-CPA game, where we already unfolded the definition
of ACWC[PKE,GOTP,F]. (In slight abuse of notation, we write F← (M1 → U) for sampling F such
that every output is independently ψU -distributed.) By definition, we have

Pr [G1 ⇒ 1] = AdvOW-CPA
ACWC[PKE,GOTP,F](A) .
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Games G1–G3

01 F← (M1 → U)
02 (pk , sk)← Gen
03 m∗ ← ψM′ //G1–G2

04 M∗1 ← ψM1

05 M∗2 := GOTP(m∗, F (M∗1 )) //G1–G2

06 M∗2 ← ψM2 //G3

07 c∗ ← Enc(pk , (M∗1 ,M
∗
2 ))

08 m← AF (pk , c∗)
09 return m = m∗ //G1

10 return V (M∗1 ,F(M∗1 ), (M∗1 ,M
∗
2 ,m)) //G2–G3

Fig. 18. Games G1-G3 for the proof of Theorem 3.10. The function V is defined in (17).

Game G2. In game G2, we change the winning condition (return value). Instead of checking m = m∗

ine line 09, we check V (M1,F(M1), (M
∗
1 ,M

∗
2 ,m)) in line 10, which is defined as

V (M1, Θ, (M
∗
1 ,M

∗
2 ,m)) :=

(
m = Inv(M∗2 , Θ) ∧M1 = M∗1 ∧M∗2 ∈ imGOTP(−, Θ)

)
. (17)

Since Inv(M∗2 ,F(M∗1 )) = Inv(GOTP(m∗,F(M∗1 )),F(M∗1 )) = m∗ (the last equality by the properties
of the generalize one-time pad f), and since M∗1 = M∗1 and M∗2 ∈ imGOTP(−, F (M∗1 )) hold trivially
by choice of M∗2 , the return values in both games are equal. Thus,

Pr [G1 ⇒ 1] = Pr [G2 ⇒ 1] .

Game G3. In game G3, we replace the definition M∗2 := GOTP(m∗,F(M∗1 )) in line 05 (for m∗ ←
ψM′) by the random sampling M∗2 ← ψM2 in line 06. Note that m∗ is never used anywhere else.
By the randomness-hiding property of the generalized one-time pad GOTP, the value M∗2 has the
same distribution when sampled in this way. Thus,

Pr [G2 ⇒ 1] = Pr [G3 ⇒ 1] .

Game G4. Define the adversary Ã as shown in Fig. 19. Then, game G3 results from the game G4

as shown in Fig. 19 by unfolding Ã. Thus,

Pr [G3 ⇒ 1] = Pr [G4 ⇒ 1] .

[DFM20] shows the following theorem that we will use for the next proof step:

Theorem D.1 (Measure-and-reprogram). Let M1,U be finite non-empty sets. Fix an oracle
quantum algorithm Ã making qF queries to a uniformly random F :M1 → U that outputs (M1, z)
with M1 ∈ M1 and z classical or quantum (here, we only use classical z). Let V (M1, Θ, z) be a
predicate (where Θ ∈ U). Let I := ({0, . . . , qF − 1} × {0, 1}) ∪ {(qF, 0)}.

Let SÃ1 ,SÃ2 be the following quantum algorithms:

SÃ1
20 (i, b)← I
21 F← (M1 → U)
22 ÃF till i-th query
23 M1 ← measure F-query
24 return M1

SÃ2 (Θ)

25 ÃF till (i+ b)-th query
26 F← (M1 → U)
27 ÃF till i-th query
28 (M ′1, (M

∗
1 ,M

∗
2 ,m))← ÃF(M1:=Θ)() till the end

29 return (M∗1 ,M
∗
2 ,m).
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Game G4

11 F← (M1 → U)
12 (M1, (M

∗
1 ,M

∗
2 ,m))← ÃF()

13 return V (M1,F(M1), (M∗1 ,M
∗
2 ,m))

ÃF()
14 (pk , sk)← Gen
15 M∗1 ← ψM1

16 M∗2 ← ψM2

17 c∗ ← Enc(pk , (M∗1 ,M
∗
2 ))

18 m← AF(pk , c∗)
19 return (M∗1 , (M

∗
1 ,M

∗
2 ,m)).

Fig. 19. Game G4 and adversary Ã for the proof of Theorem 3.10.

This adversary runs Ã internally, but not in one go. “Run ÃF till the i-th query” means that
the execution (with oracle F) is stopped just after executing the i-th query. (Where numbering of
queries starts with the 0-th query. And running till the q-th query just means running till the end.)
“M1 ← measure F-query” means that the content of the query input register used when querying F
is measured and the outcome of that measurement assigned to M1. (If we run till the q-th query,

i.e., till the end, then this measures the final output M1 of the adversary.) Note that SÃ1 ,SÃ2 share
state between each other.

Then for all x0 ∈M1,

Pr
[
M1 = x0 ∧ V (M1, Θ, z) : Θ ← (U,M1)← SÃ1 , z ← SÃ2 (Θ)

]
≥ 1

(2qF + 1)2
Pr
[
M1 = x0 ∧ V (M1,F(M1), z) : (M1, z)← ÃF

]
.

(We have slightly reformulated Theorem 2 from [DFM20] here: We changed variable names to

match the ones used here. We wrote the simulator SÃ as two algorithms instead of a “two-stage
algorithm”. And we made the definition of SÃ explicit; in [DFM20] it can be found in the proof of
the theorem.)

Game G5. If we sum the inequality in Theorem D.1 over all x0 ∈M1, the term M1 = x0 vanishes
on both sides. The probability on the right hand side is then Pr [G4 ⇒ 1]. And the probability on
the left hand side is Pr [G5 ⇒ 1] for the game G5 below that we obtain by unfolding the definition

of SÃ1 ,SÃ2 . Thus, we get
Pr [G4 ⇒ 1] ≤ (2qF + 1)2 Pr [G5 ⇒ 1] .

Game G6. By unfolding the definition of Ã in G5, we get game G6. The choices of pk , sk ,M∗1 ,M
∗
2 , c
∗

are performed by Ã before any queries are performed, so they are always performed at the beginning
of “run ÃF till i-th query”. Thus,

Pr [G5 ⇒ 1] = Pr [G6 ⇒ 1] .

Game G7. In gameG7, we replace the return value V (M1, Θ, (M
∗
1 ,M

∗
2 ,m)) in line 44 by (M∗1 ,M

∗
2 ) =

(M1,GOTP(m,Θ)) in line 45. (Note that it is possible that m /∈M′ since it is adversarially gener-
ated. In that case, we make no assumptions what GOTP(m,Θ) has to return. It could be ⊥ or some
arbitrary value. This freedom makes it easier to find an efficient implementation of the adversary
B below in case that membership in M′ is hard to decide.) We need to show

V (M1, Θ, (M
∗
1 ,M

∗
2 ,m)) =⇒ (M∗1 ,M

∗
2 ) = (M1,GOTP(m,Θ)). (18)
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Games G5–G7

30 Θ ← U
31 (i, b)← I
32 F← (M1 → U)
33 ÃF till i-th query //G5

34 (pk , sk)← Gen //G6–G7

35 M∗1 ← ψM1 //G6–G7

36 M∗2 ← ψM2 //G6–G7

37 c∗ ← Enc(pk , (M∗1 ,M
∗
2 )) //G6–G7

38 AF(pk , c∗) till i-th query //G6–G7

39 M1 ← measure F-query
40 ÃF till (i+ b)-th query //G5

41 AF till (i+ b)-th query //G6–G7

42 (M ′1, (M
∗
1 ,M

∗
2 ,m))← ÃF(M1:=Θ)() till the end //G5

43 m← AF(M1:=Θ)() till the end //G6–G7

44 return V (M1, Θ, (M
∗
1 ,M

∗
2 ,m)) //G5–G6

45 return (M∗1 ,M
∗
2 ) = (M1,GOTP(m,Θ)) //G7

Fig. 20. Games G5-G7 for the proof of Theorem 3.10.

That the lhs implies M∗1 = M1 is trivial. To see that the lhs implies M∗2 = GOTP(m,Θ), note the
following: Inv(−, Θ) is a left inverse of GOTP(−, Θ) by the decoding property of the generalized
one-time pad GOTP. Any function composed with its left inverse is the identity on its image. M∗2
is in the image of GOTP(−, Θ) and m = Inv(M∗2 , Θ) by definition of V . Thus GOTP(m,Θ) =
GOTP(Inv(M∗2 , Θ), Θ) = M∗2 . This shows that the rhs is implied. From (18) we get

Pr [G6 ⇒ 1] ≤ Pr [G7 ⇒ 1] .

Game G8. Finally, we define the adversary B in Fig. 21, and then game G8 in Fig. 21 is the same
as G7 up to unfolding of the definition of B, reordering of independent statements, and using the
fact that M∗ ← ψM1×M2 gives the same distribution as M∗1 ← ψM1 ,M

∗
2 ← ψM2 if M∗ is the pair

(M∗1 ,M
∗
2 ). Thus,

Pr [G7 ⇒ 1] = Pr [G8 ⇒ 1] .

By definition of OW-CPA, we have

Pr [G8 ⇒ 1] = AdvOW-CPA
PKE (B) .

Combining all inequalities, we get

AdvOW-CPA
ACWC[PKE,GOTP,F](A) ≤ (2qF + 1)2 AdvOW-CPA

PKE (B) ,

which concludes our proof.
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Game G8

46 (pk , sk)← Gen
47 M∗ ← ψM1×M2

48 c∗ ← Enc(pk ,M∗)
49 M ← B(pk , c∗)
50 return M = M∗

B(pk , c∗)
51 Θ ← U
52 (i, b)← I
53 F← (M1 → U)
54 AF(pk , c∗) till i-th query
55 M1 ← measure F-query
56 AF till (i+ b)-th query
57 m← AF(M1:=Θ) till the end
58 return (M1,GOTP(m,Θ)).

Fig. 21. Game G8 and B for the proof of Theorem 3.10.
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