
Faster Lattice-Based KEMs via a
Generic Fujisaki-Okamoto Transform Using Prefix Hashing

Julien Duman

Ruhr Universität Bochum

Germany

julien.duman@rub.de

Kathrin Hövelmanns

TU Eindhoven

The Netherlands

kathrin@hoevelmanns.de

Eike Kiltz

Ruhr Universität Bochum

Germany

eike.kiltz@rub.de

Vadim Lyubashevsky

IBM Research Europe, Zurich, Switzerland

vad@zurich.ibm.com

Gregor Seiler

ETH Zürich and IBM Research Europe, Zurich

Switzerland

gseiler@inf.ethz.ch

ABSTRACT
Constructing an efficient CCA-secure KEM is generally done by

first constructing a passively-secure PKE scheme, and then apply-

ing the Fujisaki-Okamoto (FO) transformation. The original FO

transformation was designed to offer security in a single user set-

ting. A stronger notion, known as multi-user security, considers the

attacker’s advantage in breaking one of many user’s ciphertexts.

Bellare et al. (EUROCRYPT 2020) showed that standard single user

security implies multi-user security with a multiplicative tightness

gap equivalent to the number of users.

To obtain even more confidence in the security of KEMs in the

multi-user setting, it is a common design paradigm to also “domain

separate” the random oracles of each user by including his public

key as an input to the hash function.We are not aware of any formal

analysis of this technique, but it was at least informally thought

to be a computationally cheap way to add security. This design

principle was carried over into the FO transformations used by

several schemes in the NIST post-quantum standardization effort –

notably the lattice-based schemes Kyber and Saber, which are two

of the four KEM finalists.

In this work, we formally analyze domain separation in the

context of the FO transformation in the multi-user setting. We first

show that including the public key in the hash function is indeed

important for the tightness of the security reductions in the ROM

and the QROM. At the same time, we show that including the entire
public key into the hash function is unnecessarily wasteful – it is

enough to include just a small (e.g. 32 byte) unpredictable part of

the key to achieve the same security. Reducing the input of the hash

function results in a very noticeable improvement in the running

time of the lattice-based KEMs. In particular, using this generic

transform results in a 2X - 3X speed-up over the current (Round 3)

key generation and encapsulation procedures in Kyber, and up to a

40% improvement in the same functions in Saber.

KEYWORDS
FO Transform; QROM; Key Exchange; Lattice Cryptography; Im-

plementation

1 INTRODUCTION
Security definitions for public key encryption (PKE) schemes are

generally stated in the single-user setting. In this setting, one party

publishes its public key, which allows other parties to send it en-

crypted messages of their choice. For practical applications, how-

ever, this was shown to not be enough. In particular, Håstad showed

[20] that if there are multiple receivers, each with a different public

key, and a sender encrypts the same message to all of them, then

for certain RSA parameter settings everyone will be able to recover

the message.

Håstad’s simple attack against the basic RSA cryptosystem demon-

strated that schemes can be secure in the single user setting, but

completely broken in the multi-user one. In the multi-user and

multi-challenge (multi-user/challenge) setting, it is furthermore re-

quired that the encryptions of many plaintexts, possibly encrypted

to different public keys, remain hidden secure. Furthermore, NIST

lists resistance to multi-key attacks as a “desirable property” in their

Call for Proposals for the post-quantum standardization process [31,

Section 4.A.6]. Luckily, Bellare et al. [6] showed that for CPA and

CCA-secure schemes, security in a single-user and single-challenge

setting implies security (with a multiplicative loss in the number of

parties times the number of challenges) in the multi-user/challenge

setting as well.

Constructing an efficient Key Encapsulation Mechanism (KEM)

with security against chosen-ciphertext attacks (CCA) is generally

done by first constructing a passively-secure PKE scheme, and then

applying the Fujisaki-Okamoto (FO) transformation [16, 17, 21].

To achieve multi-user security in the random oracle model, it is a

common design paradigm to use “domain separation” so that in the

random oracle model, the parties all appear to be using different

random functions. The simple way of achieving this in the context

of the FO transformation is to always include the public key as an

additional input to the cryptographic hash function that is being

modeled as a random oracle. The other stated reason for including

the public key in the hash is an informally-defined notion of making

the KEM “contributory” – that is, both parties affect the shared key.

For classical schemes based on the hardness of the discrete log-

arithm problem, including the public key as an extra input to the

hash function has virtually no effect on the running time of the

full protocol. The reason is that the key is short (e.g. 32 bytes), and

the hash function contributes a negligible amount of computation

compared to the much more expensive group operations such as ex-

ponentiation. So even if unnecessary for practical security, adding

the public key into the hash function does not have any measurable

negative effects on the scheme.

https://orcid.org/0000-0002-5195-1290
https://orcid.org/0000-0002-5478-0140
https://orcid.org/0000-0003-1178-048X

The above-mentioned domain separation technique was carried

over to schemes in the ongoing NIST post-quantum standardization

process. For example, Kyber [12] and Saber [14], which are two

of the four KEM finalists in the NIST quantum-safe competition,

use this method with the explicit purpose of protecting against

multi-user attacks. Even though it was at least informally thought

to be more secure, we are not aware of any formal security analysis

of it.
1

1.1 Our Results
In this paper we formally analyze domain separation in the context

of the FO transformation. Our results are twofold. First, we observe

that there are good reasons for including the public key into the

hash. We show that hashing the public key results in a tighter re-

duction in a multi-user/multi-challenge setting when converting a

CPA-secure scheme into a CCA-secure one, than if one were to di-

rectly apply the hybrid argument from [6] to the FO transformation.

And for schemes that additionally have a small correctness error,

the tightness in the reduction is potentially even more improved.

We additionally give a proof in the QROM which is significantly

tighter that what one would trivially obtain from the hybrid ap-

proach of [6]. This proof also appears to use (but in a different way)

the fact that each party uses a different random function.

Our second, and main, result is that even though there are rea-

sons to hash the public key, hashing the entire public key (as is

currently done) is unnecessarily wasteful. The sizes of public keys

in lattice-based schemes (≈ 1KB) are noticeably larger than the

32 byte keys used in the discrete log setting; so the hash function

that takes the public key as input is now approximately an order of

magnitude slower. At the same time, the underlying lattice-based

CPA-secure scheme is significantly more computationally efficient

than its discrete logarithm counterpart. When compounded, these

two properties result in the hash function being a very significant

contributor to the total running time of the resulting CCA-secure

scheme.

FO Transformation with Prefix Hashing. Our new variant

of the FO transformation, FO
̸⊥

ID(pk),m , transforms a passively secure

PKE scheme into an actively secure KEM. It uses “implicit rejection”

and “prefix hashing”: Implicit rejection (indicated by the
̸⊥
symbol

in FO
̸⊥

ID(pk),m) means that decapsulation of an invalid ciphertext

deterministically outputs a pseudoranom key; prefix hashing (indi-

cated by the
ID(id),m in FO

̸⊥

ID(pk),m) means that we feed a small (e.g.

32 byte), unpredictable part of the public key into the hash function.

FO
̸⊥
m also uses implicit rejection but does not include any part of

pk in the hash function. Compared to feeding the whole public-

key into the hash function, our new transformation significantly

reduces the running time of the scheme. In the ROM we prove that

multi-user/challenge CPA-security of PKE tightly implies multi-

user/challenge CCA-secure KEM. As an additional result, we give

a reduction for multi-user/challenge security in the QROM which

is tighter than the previously-known results which stem from the

generic Bellare et al. result [6]. We remark that ThreeBears [18]

(a Round 2 candidate of the NIST post-quantum competition) im-

plicitly uses an FO transformation with prefix hashing and proves

1
This is in contrast to digital signatures where domain separation provably helps

improving security in the multi-user setting. See, e.g., [7, 9].

multi-user/challenge CCA-security in the QROM [19]. It is unclear,

however, if the specific proof carries over to the general FO trans-

formation.

Impact on Kyber. Instantiating our transformation FO
̸⊥

ID(pk),m
with the CPA-secure Kyber PKE scheme, the key generation and

encryption of Kyber is reduced by 30-56% and 47-66%, respectively;

and the security of the CCA-scheme in the ROM and QROM is

improved as in Fig. 1. So we are now in the same situation with

lattice schemes as we are in the discrete logarithm setting. There

is no longer a theory vs. practice trade-off required for achieving

multi-user/challenge security – hashing the (partial) public key

leads to tighter security reductions and is computationally very

cheap to implement. Since Kyber is currently the most efficient –

as measured by the running time of key generation, encapsulation,

and decapsulation procedures [8] – of all KEMs (quantum-safe and

non-quantum-safe), our new transformation also improves on how

fast a secure KEM can be.

1.2 Impact on Concrete Security
In the Fujisaki-Okamoto transform, a hash function F (modeled as

a random oracle) is mainly used to derive the PKE randomness r
and the symmetric KEM key K from a random messagem. In the

following table, we define three variants of the “implicit rejection”

Fujisaki-Okamoto transformation, depending on which parts of pk
it includes in the hash function F.

Transformation Use of hash F

FO
̸⊥
m [21] (K , r) = F(m)

FO
̸⊥

ID(pk),m (§3) (K , r) = F(ID(pk),m)
FO
̸⊥

pk,m (§3) (K , r) = F(pk,m)

The formal definitions of FO
̸⊥

ID(pk),m and FO
̸⊥

pk,m are given in Fig. 4

of Section 3. FO
̸⊥
m was formally analyzed in [21]. We remark that

[21] also considered a variant (called FO
̸⊥
m,c) where the ciphertext

c is included in F. Follow-up work [10] showed that hashing c is
not necessary so we do not further consider it here.

Fig. 1 compares multi-user/challenge security bounds in the

ROM/QROM of FO
̸⊥
m , FO

̸⊥

ID(pk),m , and FO
̸⊥

pk,m . The ROM bounds

for FO
̸⊥
m are new bounds obtained in this work. They improve on the

naive “hybrid bound” Adv
(n,qC)-IND-CCA
KEM

≤ nqC ·Adv
(n,qC)-IND-CCA
KEM

≤ nqC · (Adv
IND-CPA

PKE
+ qFδ (1)) obtained by applying the Bellare

et al. hybrid argument to the single user/challenge CCA-bounds

of [21]. Unfortunately, we were not able to improve the hybrid

bounds in the QROM setting for FO
̸⊥
m . The bounds for FO

̸⊥

ID(pk),m
and FO

̸⊥

pk,m are new bounds obtained in this work, again improving

on the hybrid bounds. Our proofs in the ROM rely on techniques

of [21], while the ones in the QROM also rely on techniques of

[10, 23, 26].

First we note that the bounds for FO
̸⊥

ID(pk),m and FO
̸⊥

pk,m are

exactly the same (for prefixes with sufficient min-entropy l). Hence
from a security perspective, it does not seem to make much sense

to include the entire public key in the hash function. Hence in what

follows we will only consider the prefix-hash variant FO
̸⊥

ID(pk),m .

How the bounds for FO
̸⊥
m and FO

̸⊥

ID(pk),m compare to each other,

depends on the relation between δ (n) and δ and Adv
(n,qC)-IND-CPA
PKE

and Adv
IND-CPA

PKE
, respectively.

Figure 1: Multi-user/challenge security advantages Adv(n,qC)-IND-CCA
KEM in the ROM/QROM (simplified) for the Fujisaki-Okamoto

variants FO̸⊥m , FO̸⊥ID(pk),m , and FO̸⊥pk,m , as described in the text. Here δ (n) is then-user correctness error of PKE, qC is the number
of challenges, qF is the number of (Q)ROM queries, and l is the min-entropy of ID(pk).

FO variant Adv
(n,qC)-IND-CCA
KEM

(ROM) Adv
(n,qC)-IND-CCA
KEM

(QROM)

FO
̸⊥

ID(pk),m (Th. 3.1+3.2) Adv
(n,qC)-IND-CPA
PKE

+ qFδ (n) +
n2

2
ℓ

√
qFAdv

(n,qC)-IND-CPA
PKE

+ q2
F
δ (n) + n2

2
ℓ

FO
̸⊥

pk,m (Th. 3.1+3.2) Adv
(n,qC)-IND-CPA
PKE

+ qFδ (n)

√
qFAdv

(n,qC)-IND-CPA
PKE

+ q2
F
δ (n)

FO
̸⊥
m (Th. 3.1+[6, 21]) Adv

(n,qC)-IND-CPA
PKE

+ n · qFδ (1) nqC · (
√
qFAdv

IND-CPA

PKE
+ q2

F
δ (1))

The n-user correctness error δ (n). δ (n) is defined as the n-
user correctness error, i.e., the probability that one message induces

a decryption error for one of n independent public-keys. Informally

(see Section 2.1 for a formal definition), the adversary, who is given

n public and secret keys, chooses a message and one of the public

keys under which the message is to be encrypted; he wins if the

ciphertext then induces a decryption failure. The trivial bounds are

δ (1) ≤ δ (n) ≤ nδ (1).
There is also very strong evidence that for most natural lattice-

based schemes, δ (n) < nδ (1). The decryption error of a basic LWE-

based encryption scheme encrypting one bit with secret ®s and

encryption randomness ®r is

Pr

®s, ®r←ψm
[|®s · ®r | > ⌊q/4⌋ − 1] .

If the coefficients of randomness ®r were continuous gaussians,

rather than e.g. discrete binomials, then one could prove that the

optimal strategy for the adversary is to “attack” the public key

whose corresponding secret key has the largest norm. Then the

probability that we are interested in is

Pr

®s1, ..., ®sn, ®r←ψm

[
|®si · ®r | > ⌊q/4⌋ − 1 : i := arg max

1≤j≤n
∥®sj ∥

]
.

In schemes where the randomness is discrete, this is almost

certainly still the best strategy. So, for example, in schemes where

all the secret keys are prescribed to have the same norm, it makes

no difference which public key to attack, and therefore we would

have δ (n) ≈ δ (1). In Kyber and Saber, where each coefficient is

chosen independently, there will be secret keys with larger norms,

and so δ (n) > δ (1). Nevertheless, because the norm of the secret

keys has a tight concentration when the coefficients follow the

binomial distribution, we will still have δ (n) < n · δ (1).
In Table 1, we give the exact values for δ (n) illustrating this

phenomenon for an LWE scheme that has secret vectors consisting

of −1/0/1 coefficients . For example, note that for n = 2
30
, we

have nδ (1) = 2
−148

, whereas δ (n) = 2
−161

. Computing exact δ (n)
for Kyber and Saber would be more computationally exhaustive

because there are many more possibilities for how the vector with

the largest norm looks like when the coefficients are larger. But

the secret key norm will still be tightly concentrated around its

expected value and we will thus still have δ (n) < nδ (1).

The n-user CPA advantage Adv
(n,qC)-IND-CPA
PKE . By a hybrid

argument [6] one obtains the trivial bounds

Adv
IND-CPA

PKE
≤ Adv

(n,qC)-IND-CPA
PKE

≤ nqC · Adv
IND-CPA

PKE
.

Table 1: δ (n) for a basic LWE encryption scheme over Zq ,
for q = 1409, where the secret ®s ← ψ 2048, where ψ (0) =
1/2,ψ (±1) = 1/4, and the public key is A ← Z1024×1024q , ®t =

[A I] · ®s mod q. The ciphertext is constructed as ®u = [AT I] ·
®rT ,v = [®tT 0

1024] · ®r + e + ⌊q/2⌋ µ, where ®r ← ψ 2048, e ← ψ .

n 1 2
10

2
20

2
30

2
40

2
50

log(δ (n)) −178 −170 −165 −161 −158 −155

For schemes based on prime-order groups (eg., ElGamal) we actually

have Adv
IND-CPA

PKE
≈ Adv

(n,qC)-IND-CPA
PKE

by the well known random

self reducibility of Diffie-Hellman tuples.

For lattice-based schemes, we do not have self-reductions that

allow us to directly conclude that Adv
IND-CPA

PKE
≈ Adv

(n,qC)-IND-CPA
PKE

because we do not know of a way to create extra samples from the

same distribution (i.e. either the MLWE one or uniform) even if

these samples are allowed to have completely distinct secrets. Nev-

ertheless, if we assume the hardness ofMLWE as originally defined

for the purpose of worst-case to average-case reductions [28, 30, 32]

where the number of samples (using the same secret) is unlimited,

then we can show that Adv
IND-CPA

PKE
≈ Adv

(n,qC)-IND-CPA
PKE

. In par-

ticular, if we assume that distinguishing {(Ai ,Ai · ®si + ®ei)}1≤i≤k
from uniform is hard for k = max(n,qC),

2
then using the transfor-

mation from [2], one can argue that distinguishing the n public

keys from uniform ones is as hard as MLWE. After replacing the

public keys with random values, simulating the qC queries to the

n public keys can again be done with access to qC samples of an

MLWE problem and the transformation from [2]. And thus we have

Adv
IND-CPA

PKE
≤ 2 · AdvMLWE

, which is also what we based the hard-

ness of the IND-CPA scheme on. In short, we believe that in practice

theMLWE problem with k samples is no easier than with 1 sample,

and then the bound in our reduction is significantly tighter than

the previously known one. And independently of the relationship

between the number of MLWE samples, the new QROM bound for

FO
̸⊥

ID(pk),m is also noticeably better than the one for FO
̸⊥
m .

2
Unless k is so large that the Arora-Ge [3] attack applies, it is not known that seeing

more samples makes theMLWE problem any easier in practice. It should also be noted

that even if such an attack existed, it would still not necessarily apply to increasing

Adv

(n,q
C
)-IND-CPA

PKE
. This is because the secrets in the (n, qC)-IND-CPA game are all

distinct, and so it is a plausibly much harder problem thanMLWE with many samples

for the same secret. In particular, we do not know of any better algorithm for solving

MLWE with many samples if the secrets are small and different for every sample.

Prefix collisions. We note that given a target public-key pk, it
might be possible for an adversary to efficiently compute a different

public key pk′ and a matching sk′ such that ID(pk) = ID(pk′). This
“attack” does not violate any of our security claims, nor do we see

any practical attack that could exploit this property.

But we stress that ID(pk) should never be used as a fingerprint.

Collision-prone public-key fingerprints are known to be insecure

and have been successfully exploited in practice, for example in the

context of PGP [29].

1.3 Impact on Efficiency
We now measure the effect of replacing the original FO trans-

form used in the Kyber and Saber KEMs with our new transform

FO
̸⊥

ID(pk),m (see Figure 4). We implemented FO
̸⊥

ID(pk),m on top of the

underlying CPA-secure encryption schemes in the official AVX2-

optmized implementations of Kyber and Saber, and performed

benchmarks on an Intel Skylake CPU. Concretely, the numbers

in Tables 2 and 3 are the medians of the cycle counts of 10000

executions of the key generation (K), encapsulation (E), and decpa-

sulation (D) operations for either the original FO transform or the

new one from this work.

For the 32-byte prefix ID(pk) of the public key in Kyber and

Saber one can take the seed ρ that is already of size 32 bytes and

uniformly random in these schemes. Alternatively, for Kyber, the

first 33 bytes of the bitpacked representation of the polynomial

vector ®t in the public key can also be used. This is sufficient since ®t
is given in the NTT basis and contains the independently random

short error vector ®e as an additive term. It follows from a simple

Fourier analysis computation as in [4, 13] that the first few NTT

coefficient of ®e are close to uniform modulo q = 3329. Concretely,

the first 22 coefficients have more than 256 bit of entropy and they

occupy 33 bytes in the bitpacking that uses 12 bits per coefficient.

Taking the prefix from ®t instead of ρ has the advantage that this is

still secure in the slightly modified but fully compatible variant of

Kyber where users re-use ρ and hence the MLWE matrix A.
We observe that one obtains significant speed improvements

throughout all parameter sets and variants. For example, the key

generation and encapsulation of Kyber-512-90s are 56% and 66%

faster, respectively, when using FO
̸⊥

ID(pk),m .
3
There is no speed-up

in decryption since in the original Kyber and Saber CCA trans-

forms avoid the expensive full public key hash needed for the

re-encryption during decapsulation by pre-computing this hash

during key generation and storing it in the secret key. But there

is still an expensive hashing operation in decapsulation that is

responsible for a significant portion of the runtime. Namely, the

hash for K̃ in line 11 of the decapsulation algorithm in Figure 4,

which includes the full ciphertext as input. The fake key K̃ is only

needed when re-encryption fails, so one could achieve a significant

speed-up also in decapsulation by only computing K̃ in the case of

decryption failure. The resultion FO transform would effectively

be a middle ground between implicit and explicit rejection as it

would leak rejection only via a timing side-channel. So in an appli-

cation where timing side-channels are absolutely of no concern, this

3
It should be mentioned again that another reason that encapsulation has a larger

increase is that we removed an additional hash of the ciphertext. This was already

shown to be intuitively unnecessary in [10], and in this work we show that it is also

unnecessary in the multi-user setting.

faster and fully compatible transformation can be used. It is well

known that explicit rejection is secure in the ROM [21]. One can

also use the techniques from this paper to show improved bounds

in the multi-user/challenge setting. Moreover, Theorem 6.1 in [15]

now gives a security proof for explicit rejection in the QROM, but

unfortunately only with much worse security bounds. Given the

recent progress in this area, it is natural to think that there will be

better bounds in the future, decreasing the gap between implicit

and explicit rejection. For these reasons we have also benchmarked

this soft variant of explicit rejection. The resulting cycle counts

are included in brackets in Tables 2 and 3 and we see that one

would for example achieve a speed-up of 45% for the Kyber512-90s

decapsulation runtime.

Our new transform also has a noticeably larger effect on Kyber

than Saber because the CPA-secure scheme underlying Kyber is

more efficient than its Saber counterpart. Thus the running time of

Kyber with the original FO transform was much more dominated

by hashing.

2 PRELIMINARIES
For n ∈ N, let [n] := {1, . . . ,n}. For a set S , |S | denotes the cardi-
nality of S. For a finite set S , we denote the sampling of a uniform

random element x by x
$

← S . The min entropy of a discrete random

variable X is defined as H∞(X) = − log(maxx Pr[X = x]).

2.1 Cryptographic Definitions

Public-Key Encryption. A public-key encryption scheme PKE =

(Gen, Enc,Dec) consists of three algorithms, and a finite message

spaceM. The key generation algorithm Gen outputs a key pair

(pk, sk), where pk also defines a finite randomness space R =

R(pk) as well as a ciphertext space C. The encryption algorithm

Enc, on input pk and a message m ∈ M, outputs an encryption

c
$

← Enc(pk,m) of m under the public key pk. If necessary, we
make the used randomness of encryption explicit by writing c :=
Enc(pk,m; r), where r ∈ R. The decryption algorithmDec, on input

sk and a ciphertext c , outputs either a messagem = Dec(sk, c) ∈ M
or a special symbol⊥ <M to indicate that c is not a valid ciphertext.

PKE has n-user correctness error δ (n) if

E

[
max

j ∈[n]
max

m∈M
Pr

[
Dec(skj , Enc(pkj ,m)) ,m

]]
≤ δ (n) ,

where the expectation is taken over ((pk
1
, sk1), . . . , (pkn , skn))

$

←

(Gen)n . For n = 1 we obtain the single-user correctness definition

δ := δ (1) of [21]. Note that δ ≤ δ (n) ≤ nδ . Furthermore, there

exists schemes for which either δ (n) = δ or δ (n) = nδ . PKE is

weakly γ -spread [15] if

E

[
max

m,c
Pr

[
Encpk(m) = c

]]
≤ 2
−γ ,

where the expectation is taken over (pk, sk) $

← Gen.

We define n-user/qC-challenges IND-CPA (“passive”) security

for PKE in terms of the advantage function of an adversary A:

Adv
(n,qC)-IND-CPA
PKE

(A) :=

����Pr[(n,qC)-IND-CPAA ⇒ 1] −
1

2

���� ,
where game (n,qC)-IND-CPA is defined in Fig. 2.

Table 2: Median Skylake cycle counts of 10000 executions of Kyber and Saber using either the original CCA transform or the
improved transform from this work. The “original” version of Kyber and Saber are the Round 3 submissions to the NIST post-
quantum standardization process. The decapsulation cycle counts in brackets are for the “soft” explicit rejection variant that
leaks rejection via a timing side-channel.

Kyber Saber

NIST Level Original This Work Speed-up Original This Work Speed-up

1

K 23562 12883 45% 42169 36220 14%

E 37144 16981 54% 57831 39232 32%

D 28595 28529 0% 57780 57806 0%

(18332) (36%) (47516) (18%)

3

K 40487 25272 38% 74577 64180 14%

E 55726 27624 50% 95958 69304 28%

D 43553 43442 0% 95388 95301 0%

(29660) (32%) (80847) (15%)

5

K 55770 38815 30% 116178 102101 12%

E 77011 40692 47% 142034 109203 23%

D 61470 61473 0% 142957 143090 0%

(43194) (30%) (125589) (12%)

Table 3: Median Skylake cycle counts of 10000 executions of the 90’s variants of Kyber and Saber using either the original CCA
transformor the improved transform from thiswork. The “original” version ofKyber and Saber are theRound 3 submissions to
the NIST post-quantum standardization process. The decapsulation cycle counts in brackets are for the “soft” explicit rejection
variant that leaks rejection via a timing side-channel.

Kyber90s uSaber90s

NIST Level Original This Work Speed-up Original This Work Speed-up

1

K 13994 6224 56% 24557 17294 30%

E 23069 7894 66% 36544 22363 39%

D 16917 16959 0% 38156 38014 0%

(9233) (45%) (30579) (20%)

3

K 21783 10995 50% 37511 29881 20%

E 33534 13137 61% 55436 36282 35%

D 25014 24957 0% 58395 58405 0%

(14893) (40%) (47889) (18%)

5

K 31576 18834 40% 59169 50796 14%

E 46881 21404 54% 81187 57920 29%

D 36190 36165 0% 86142 86359 0%

(22605) (38%) (72879) (15%)

(n,qC)-IND-CPA

01 for j ∈ [n]
02 (pkj , skj)

$

← Gen

03 ®pk ← (pk
1
, . . . , pkn)

04 b
$

← {0, 1}

05 b ′
$

← AChall(®pk)
06 return ⟦b ′ = b⟧
Chall(j,m0,m1) //max. qC queries

07 return Enc(pkj ,mb)

Figure 2: Game (n,qC)-IND-CPA for PKE in the n-user/qC-
challenges setting. Set LMj describes the set of plaintext
messages encrypted to user j.

Key EncapsulationMechanisms. A key encapsulationmechanism

KEM = (Gen, Encaps,Decaps) consists of three algorithms and a

finite key space K similar to a PKE scheme, but Encaps does not

take a message as input. The key generation algorithmGen outputs

a key pair (pk, sk), where pk also defines a finite randomness space

R = R(pk) as well as a ciphertext space C. The encapsulation

algorithm Encaps takes as input a public-key pk and outputs a key

encapsulation ciphertext c and a key k , that is (c,k)
$

← Encaps(pk).
The decapsulation algorithm Decaps, on input sk and a ciphertext

c , outputs either a key k = Decaps(sk, c) ∈ K or a special symbol

⊥ < K to indicate that c is not a valid ciphertext.

In terms ofKEM’s security, we consider then-user/qC-challenges
IND-CCA advantage function of an adversary A:

Adv
(n,qC)-IND-CCA
KEM

(A) :=

����Pr[(n,qC)-IND-CCAAKEM ⇒ 1] −
1

2

����

(n,qC)-IND-CCA

01 for j ∈ [n]
02 (pkj , skj)

$

← Gen

03 ®pk ← (pk
1
, . . . , pkn)

04 b
$

← {0, 1}

05 b ′
$

← ADecaps,Chall(®pk)
06 return ⟦b = b ′⟧

Chall(j) //max. qC queries

07 (c,K0)
$

← Encaps(pkj)
08 K1

$

← K

09 LCj := LCj ∪ {c}
10 return (c,Kb)

Decaps(j, c < LCj)

11 return Decaps(skj , c)

Figure 3: Game (n,qC)-IND-CCA for KEM in the n-user/qC-
challenges setting. Set LCj describes the set of challenge ci-
phertexts for user j.

where game (n,qC)-IND-CCA is defined in Fig. 3.

3 FUJISAKI-OKAMOTO TRANSFORMATION
WITH PREFIX HASHING

Let k, λ ∈ N be integers. Let PKE be a public-key encryption scheme

with message spaceM, public-key space PK , randomness space

R, and ciphertext space C. We assume that the two spaces M

and {0, 1}k × C are disjoint. Let ID : PK → {0, 1}γ be a fixed-

output length function and let F : {0, 1}∗ → {0, 1}k × R be a

hash function, where F1(X) is defined as the first k bits of F(X).
To PKE, ID, and F we associate the key encapsulation mechanism

FO
̸⊥

ID(pk),m [PKE, ID, F] as described in Fig. 4. Our transformation

is essentially FO
̸⊥
m of [21] with the difference that we feed ID(pk)

into the hash function F for domain separation. Note that with the

identity function ID(pk) = pk, we recover FO̸⊥
ID(pk),m = FO

̸⊥

pk,m ;

with ID(pk) = ε , we recover FO̸⊥m .

Note that computing the pseudo-randomkey in line 11 ofDecaps(sk, c)
is only required in case c is inconsistent. We still recommend to

always compute K̃ because otherwise the system might be prone

to a simple side-channel attack.

We now state the ourmain theorems about FO
̸⊥

ID(pk),m [PKE, ID, F]’s

security in the ROM and QROM, respectively. In the concrete secu-

rity statements we will use the following terms

• n-user correctness error δ (n)
• (weak) γ -spreadness

• Min entropy ℓ of ID(pk), i.e., ℓ := H∞(pk), where (pk, sk)
$

←

Gen

• Bit-length λ of the secret seed s ∈ {0, 1}λ

• Max. number of (Q)ROM queries qF
• Max. number of decapsulation queries qD
• Max. number of challenge queries qC

Theorem 3.1 ((n,qC)-IND-CPA of PKE

ROM

=⇒ (n,qC)-IND-CCA
of KEM). For any adversary A against the (n,qC)-IND-CCA secu-
rity of KEM := FO ̸⊥ID(pk),m [PKE, ID, F] there exist adversaries B and
C against (n,qC)-IND-CPA of PKE (with roughly the same running

time) such that Adv(n,qC)-IND-CCAKEM (A) ≤

2Adv
(n,qC)-IND-CPA
PKE (B) +

2(qF + qC)qC
|M|

+
qF

2
λ
+ (qF + qD) · δ (n) +

n2

2
ℓ

(1)

2Adv
(n,qC)-IND-CPA
PKE (C) +

2(qF + qC)qC
|M|

+
n(qF + n)

2
λ

+ (qF + qD) · nδ

+ n · qD2
−γ .

(2)

Equation (1) of Theorem 3.1 will be proved in Section 4, equation

(2) in Section 7. The proofs follow essentially the ones from [21],

where we have to take extra care to allow for a reduction from

multi-user/challenge IND-CPA security.

Note that bound (1) is meaningless for small values ℓ. Bound (2)

is slightly weaker but independent of ℓ and therefore also holds for

ID(pk) = ε .

Theorem 3.2 ((n,qC)-IND-CPA of PKE

QROM

=⇒ (n,qC)-IND-CCA
ofKEM). For any quantum adversaryA against the (n,qC)-IND-CCA
security of KEM := FO̸⊥ID(pk),m [PKE, ID, F] there exists a quantum
adversary B against (n,qC)-IND-CPA of PKE (with roughly the same
running time) such that Adv(n,qC)-IND-CCAKEM (A) ≤

2

√
qAdv

(n,qC)-IND-CPA
PKE (B)+4q

√
qC · n

|M|
+
n2

2
ℓ
+4(qF+1)

√
n

2
λ
+16q2δ (n)+

qC
2

|M|
,

where q := qF + qD + 1.

The proof of Theorem 3.2 is given in Section 5.

4 PROOF OF THEOREM 3.1
In this section we prove (1) of Theorem 3.1. The proof of (2) is

similar and can be found in Section 7.

Proof. Let A be an adversary and consider the games given in

Fig. 5.

Game G0. This is the original (n,qC)-IND-CCA game.����Pr[GA0 ⇒ 1

]
−
1

2

���� = Adv
(n,qC)-IND-CCA
KEM

(A) .

GameG1. In gameG1 an abort conditionCOLL is introduced, which

aborts if there is a collision in the public-key identifiers ID(pkj).
In case there no collision in the identifiers, we are able to identity

each identifier ID(pkj) with a unique index j pointing to pkj . This
allows us to internally simulate

F(ID(pkj)),A) :=

{
(Hj (m),Gj (m)) A =m

Kj (s, c) A = (s, c)
,

where Gj and Hj are internal random oracles, i.e., perfect random

functions not accessible by A. (This works because the two spaces

M and {0, 1}k × C are disjoint.) Since the two games are identical

until COLL happens, we have by the birthday bound���Pr[GA
0
⇒ 1

]
− Pr

[
GA
1
⇒ 1

] ��� ≤ Pr[COLL] ≤
n2

2
ℓ
,

where l = H∞(ID(pk)) is the min-entropy of ID(pk) for (pk, sk) $

←

Gen.

Gen
′

01 (pk, sk) $

← Gen

02 s
$

← {0, 1}λ

03 sk′ := (sk, s)
04 return (pk, sk′)

Encaps(pk)

05 m
$

←M

06 (K , r) ← F(ID(pk),m)
07 c ← Enc(pk,m; r)
08 return (K , c)

Decaps((sk, s), c)
09 m′ ← Dec(sk, c)
10 (K , r) ← F(ID(pk),m′)
11 K̃ := F1(ID(pk), s, c)
12 if m′ = ⊥ or Enc(pk,m′; r) , c

return K̃
13 else return K

Figure 4: KEM = FO ̸⊥ID(pk),m [PKE, ID, F] with “implicit rejection” and “partial key hashing” built from PKE, F, and ID.

GAMES G0 - G5

01 for j ∈ [n]
02 (pkj , skj)

$

← Gen

03 sj
$

← {0, 1}λ

04 ®pk ← (pk
1
, . . . , pkn)

05 ∃i, j ∈ [n] s.t. ID(pki) = ID(pkj) //G1-G5

06 COLL := true //G1-G5

07 abort //G1-G5

08 b $

← {0, 1}

09 b′ $

← ADecaps,Chall,F(®pk)
10 return ⟦b′ = b⟧

Chall(j)

11 m $

← M

12 m $

← M \ LMj //G2-G5

13 (K0, r) ← F(ID(pkj),m)
14 LMj := LMj ∪ {m }

15 r $

← R; K0

$

← {0, 1}k //G5

16 K1

$

← {0, 1}k

17 c ← Enc(pkj ,m; r)
18 LCj := LCj ∪ {c }
19 return (c, Kb)

Decaps(j, c < LCj) //G0-G3

20 m′ := Dec(skj , c)
21 (K, r) ← F(ID(pkj),m

′)

22 if m′ = ⊥ or Enc(pkj ,m
′
; r) , c

23 (K, r) ← F(ID(pkj), sj , c) //G0-G1

24 K := K
′
j (c) //G3

25 return K

Decaps(j, c < LCj) //G4-G5

26 if ∃K s. th. (c, K) ∈ LDj
27 return K
28 K $

← K

29 LDj := LDj ∪ {(c, K)}
30 return K

F(id, A)
31 if ∃j ∈ [n] : id = ID(pkj) //G1-G5

32 if A ∈ M //G1-G5

33 m := A //G1-G5

34 (K, r) := (Hj (m), Gj (m)) //G1-G5

35 if A ∈ {0, 1}λ × C //G1-G5

36 (s, c) := A //G1-G5

37 K := Kj (s, c) //G1-G5

38 if K undefined: K $

← K

39 if r undefined: r $

← R

40 return (K, r)

Gj (m) // Internal random oracle

41 r $

← R

42 if m ∈ LMj //G5

43 QUERY := true //G5

44 abort //G5

45 return r

Kj (s, c) // Internal random oracle

46 K $

← K

47 if s = sj //G3-G5

48 BAD := true //G3-G5

49 abort //G3-G5

50 return K

Hj (m) // Internal random oracle

51 K $

← K

52 if m ∈ LMj //G5

53 QUERY := true //G5

54 abort //G5

55 c′ := Enc(pkj ,m;Gj (m)) //G4-G5

56 if ∃K ′ such that (c′, K ′) ∈ LDj //G4-G5

57 K := K ′ //G4-G5

58 else //G4-G5

59 LDj := LDj ∪ {(c
′, K)} //G4-G5

60 return K

Figure 5: Games G0 - G5 for the proof of Theorem 3.1. The internal random oracles K
′
j ,Hj ,Gj ,Kj are not accessible by the

adversary. We assume wlog that F is only queried once on each value (id,A).

GameG2 In gameG2 the challenge oracleChall samplesm from the

setM\LMj instead ofM. This is necessary sincemi =mj implies

ci = c j . Therefore we have Ki = Kj in the “real world”, but the

KEM keys in the “random world” are independent. Consequently,

an adversary would be able distinguish between the “real” from

“random” keys. Since there are at most qC challenge queries we

have (by the birthday bound)���Pr[GA
1
⇒ 1

]
− Pr

[
GA
2
⇒ 1

] ��� ≤ qC
2

|M|
.

Game G3. In game G3 we modify the Decaps oracle in lines 23

and 24 such that for an invalid ciphertext the key is defined as

K
′
j (c), where K

′
j is an independent internal random oracle. This

remains unnoticed to adversary A unless it queries Kj (sj , ·) for

some j ∈ [n]. Since the seeds sj ∈ {0, 1}
λ
are uniformly random

and information-theoretically hidden from the adversary, we have

by the union bound���Pr[GA
2
⇒ 1

]
− Pr

[
GA
3
⇒ 1

] ��� ≤ qF

2
λ
.

GameG4. In gameG4 we simulate the decapsulation oracleDecaps(j, ·)
without knowledge of the secret key by patching the random ora-

cles Hj in lines 55-59. Note that if PKE was perfectly correct, then

the random oracle patching is also perfectly correct and therefore

the two games would look identical in A’s view.

The only bad case happens if Gj is queried on somem which

induces a correctness error, that is Dec(skj , Enc(pkj ;m;Gj (m))) ,
m. More concretely, define the sets

BADj :=

{
m ∈ M

�����m ,m′,where c ← Enc(pkj ;m;Gj (m));

m′ ← Dec(skj , c)

}
Define the event CORR to be the event that A makes an (implicit)

query to Gj (m) for some m ∈ BADj . Since there are at most

(qF + qD) explicit and implicit queries to Gj , we have

Pr[CORR] ≤ (qF + qD)δ (n) .

We now claim that���Pr[GA
3
⇒ 1

]
− Pr

[
GA
4
⇒ 1

] ��� ≤ Pr[CORR] .

Let us analyze why G3 and G4 are identical conditioned on

¬CORR. Consider a queryDecaps(j, c) and definem′ := Dec(skj , c)
and c ′ := Enc(pkj ,m

′
;Gj (m

′)).

• Case 1:m′ = ⊥. Hj cannot be called onm′ = ⊥ and hence

the KEM key of K = Decaps(skj , c) = K
′
j (c) in G3 is identi-

cally distributed as (c,K) ∈ LD j in G4.

• Case 2: m′ , ⊥ ∧ c , c ′. Both games return a uniform

random key K . The only way for A to detect a difference

between the two games is if it makes a query Hj (m) such
that Enc(pkj ,m;Gj (m)) = c . (In G4, Hj (m) would return the

same key K as in Decaps(j, c), whereas in G3 the two keys

would be independent.) Since c , c ′ we also havem , m′.
But such a query Hj (m) would internally involve the query

Gj (m) form ∈ BADj .

• Case 3:m′ , ⊥ ∧ c = c ′. In game G3, Decaps(j, c) returns
K = Hj (m

′), whereasG4 first picks a uniform K and patches

Hj (m) to match K for allm that deterministically encrypt

to the same c , i.e., all m satisfying Enc(pkj ,m;Gj (m)) = c .
The only way for A to detect a difference between the two

games is to query Hj on some valuem ,m′ that also deter-

ministically encrypts to the same c . But this also implies that

Gj (m) was queried for somem ∈ BADj .

Game G5. In game G5 we abort on queries of the form Hj (m) or
Gj (m) for some challenge message m ∈ LMj , in which case the

event QUERY holds true. We have by the difference lemma,���Pr[GA
4
⇒ 1

]
− Pr

[
GA
5
⇒ 1

] ��� ≤ Pr[QUERY] .

Note that inG5 bit b is independent of the view of the adversary.

We thus have

Pr

[
GA
5
⇒ 1

]
=

1

2

.

We claim that

Pr[QUERY] ≤ 2 ·

(
Adv
(n,qC)-IND-CPA
PKE

(B) +
qFqC
|M|

)
. (3)

Summing up the inequalities yields the claimed bound, concluding

the proof of the theorem.

We show (3) by giving an adversaryB against the (n,qC)-IND-CPA
security of PKE. Adversary B from the (n,qC)-IND-CPA challenger

receives n public-keys and has access to a challenge encryption

oracle. It runs B on the public keys simulating the decapsulation

oracle Decaps and the random oracle F as in G4 and G5. On A’s

challenge query Chall(j), B proceeds as follows. It picks random

m0

$

←M \ LMj,0 andm1

$

←M \ LMj,1 and addsm0 to list LMj,0

andm1 to list LMj,1 . (If it is the first challenge query on input j it
initializes the lists LMj,0 and LMj,1 to be empty.) Next, B queries

its own challenge oracle to obtain c ← Enc(pkj ,mb), where b is

the (n,qC)-IND-CPA’s challenge bit. Finally, it returns (c,K) to A,

for a random key K ∈ {0, 1}k . Note that this perfectly simulates

the challenge oracle as in games G4 and G5.

If, during the simulation of F, B detects a query Hj (m) or Gj (m)
for somem ∈ LMj,b′ , it returns b

′
and terminates. If no such query

happens and A terminates, B returns a uniform bit b ′.
Since all messages in the setLMj,1−b are information-theoretically

hidden from A, the probability that it queries Gj (m) or Hj (m) on
somem ∈ LMj,1−b is bounded by qFqC/|M|. Assume that this is

not the case. We have

Adv
(n,qC)-IND-CPA
PKE

(B) +
qFqC
|M|

≥

����Pr[b = b ′] − 1

2

����
=

����Pr[QUERY] + 1

2

Pr[¬QUERY] −
1

2

����
=

1

2

Pr[QUERY] ,

which proves (3). □

5 PROOF OF THEOREM 3.2
We refer to Section 6 for standard quantum notation. Our notation

and the presentation of known results closely follows [23] and [22,

Section 1.3].

We will now recall some QROM theorems that we will use during

our proof of Theorem 3.2.

Lemma 5.1 (Generic Distinguishing Problem with Bounded

Probabilities [23]). Let X be a finite set, and let λ ∈ [0, 1]. For
any (unbounded, quantum) algorithm A issuing at most q quantum
queries to F ,

| Pr[GDPBAλ,0 ⇒ 1] − Pr[GDPBAλ,1 ⇒ 1]| ≤ 8 · λ · (q + 1)2 , (4)

where games GDPBλ,b (for bit b ∈ {0, 1}) are defined in Fig. 6.

Oneway to Hiding with semi-classical oracles. In [1], Ambai-

nis et al. defined semi-classical oracles that return a state that was

measured with respect to one of the input registers. To any subset

S ⊂ X , one can associate the following “semi-classical” oracle O
SC

S
:

Intuitively, O
SC

S
collapses states taken fromHX×Y to a state that

contains only elements of either S orX \S . To be more precise,O
SC

S

takes as input a quantum state |ψ , 0⟩ such that |ψ ⟩ ∈ HX ⊗ HY .

GAME GDPBλ,b

01 (λx)x∈X ← A1

02 if ∃x ∈ X s.t. λx > λ
03 return 0
04 if b = 1

05 for all x ∈ X
06 O(x) ← Bλx
07 else
08 O := 0

09 b′ ← A |O⟩
2

10 return b′

Figure 6: Generic distinguishing games GDPBλ,b with
bounded maximal Bernoulli parameter λ ∈ [0, 1].

O
SC

S
first measures the X -register with respect to the projectors

M1
:=

∑
x ∈S |x⟩ ⟨x | andM0

:=
∑
x<S |x⟩ ⟨x |, and then initialises the

last register to |b⟩ for the measured bit b. Consequently, |ψ , 0⟩ col-
lapses to either a state |ψ ′, 1⟩ such that the X -register of |ψ ′⟩ only
contains elements of S , or a state |ψ ′, 0⟩ such that the X -register
of |ψ ′⟩ only contains elements of X \ S .

To a quantum-accessible oracle O and a subset S ⊂ X , one can
furthermore associate oracle O \ S which first queries O

SC

S
and

then O. Let FIND denote the event that O
SC

S
ever returns a state

|ψ ′, 1⟩. Unless FIND occurs, the outcome of O \ S is independent

of the values O(x) for all x ∈ S , which is why O \ S is also called a

“punctured” oracle.

We will now restate several “semi-classical one-way to hiding”

theorems from [1]. While [1] consider adversaries that might exe-

cute parallel oracle invocations, and therefore differentiate between

query depth d and number of queries q, we use the upper bound
q ≥ d for the sake of simplicity. Lemma 5.2 is a simplification of [1,

Thm. 1: “Semi-classical O2H”], and Eq. (6) (Eq. (7)) of Lemma 5.3 is

a simplification of [1, Thm. 2: “Search in semi-classical oracle”] ([1,

Cor. 1]).

Lemma 5.2. Let S ⊂ X be random. Let O1,O2 ∈ Y
X be random

functions such that O1(x) = O2(x) for all x ∈ X \ S , and let z be
a random bitstring. (S , O1, O2, and z may have an arbitrary joint
distribution.) For i ∈ {1, 2}, let

pi := Pr[1← A
|Oi ⟩(z)] ,

and let
pFIND := Pr[b ← A

|O1\S⟩(z) : FIND] .

For all quantum algorithms A with binary output, issuing at most
q queries, we have that

|p1 − p2 | ≤ 2 ·
√
(q + 1) · pFIND . (5)

Lemma 5.3. Let S ⊂ X be random, let O be a random function,
and let z be a random bitstring. (S , O, and z may have an arbitrary
joint distribution.) Let

pFIND := Pr[b ← A
|O\S⟩(z) : FIND] .

Then, for all quantum algorithms A with binary output issuing at
most q queries, we have that

pFIND ≤ 4q · Pr[x ← B(z) : x ∈ S] , (6)

where B is the algorithm that, on input z, chooses i $

← {1, · · · ,q},
runs A |O⟩ until (just before) the i-th query, measures its query input
register in the computational basis and outputs the measurement
outcome.

If S := {x1, . . . ,xn } for x1, . . . ,xn
$

← X , and S and z are indepen-
dent, we have that

pFIND ≤
4q |S |

|X |
. (7)

Furthermore, if S := {(y1,x1) . . . , (yn ,xn)} where xi
$

← X \
{x1, . . . ,xi−1} and {y1, . . . ,yn } ⊂ Y independent ofU := {x1, . . . ,xn }
we have for U independent of z

pFIND ≤
4q |S |

|X |
. (8)

We will now prove an additional helper lemma.

Lemma 5.4 (QROMMulti-User PRF). For i ∈ [n], letpi ∈ {0, 1}γ

arbitrarily subject to pi , pj , when i , j. Define ®p := (p1, . . . ,pn).
Let H,H1, . . . ,Hn be independent random oracles with H : {0, 1}γ ×

{0, 1}λ × X → Y ′ and Hi : X → Y
′, then for all quantum algo-

rithms A issuing at most q quantum queries to H and arbitrarily
many queries to Hi with i ∈ [n], we have���Pr[A |H⟩,H(p1,s1, ·), ...,H(pn,sn, ·)(®p) = 1

]
− Pr

[
A |H⟩,H1, ...,Hn (®p) = 1

] ���
≤ 4(q + 1)

√
n

2
λ
,

where the probabilities are taken overH,H1, . . . ,Hn and s1, . . . sn
$

←

{0, 1}λ , and the internal randomness of A.

Proof. The proof follows from combining Lemma 5.2with Lemma

5.3 and the overall proof idea is very similar to the one of [10,

Corollary 1]. The adversary’s goal is to distinguish quantum access

to H and additional classical access to (H(p1, s1, ·), ...,H(pn , sn , ·))
from quantum access to H and additional classical access to a col-

lection (H1, ...,Hn) of independent random oracles. This is the

same as distinguishing (H,H(p1,s1, ·)7→H1(·), . . . ,H(pn,sn, ·)7→Hn (·))

from (H,H1, ...,Hn), and the set of differences between these or-

acles is S :=
{
(pj , sj) | j ∈ [n]

}
× X. According to Lemma 5.2, the

distinguishing advantage is at most 2

√
(q + 1) · pFIND, and we can

apply Eq. (8) from Lemma 5.3 to obtain that pFIND ≤ 4q · n
2
λ . It

remains to note that for i , j we have (pi , si) , (pj , sj).
□

5.1 Proof
With these results at hand, we can finally proceed to the proof of

Theorem 3.2. Its overall structure is very similar to recent QROM

proofs of IND-CCA security [10, 23–27, 33]: we first change the

game such that the decapsulation oracle can be simulated without

knowledge of the collection of secret keys, which is achieved as

usual by plugging encryption into the random oracle (in our case

for multiple users), and then apply one-way to hiding to argue key

indistinguishability.

Proof of Theorem 3.2. LetA be an adversary and consider the

games given in Fig. 7 and Fig. 9.

GAMES G0 - G7

01 for j ∈ [n]
02 (pkj , skj)

$

← Gen

03 sj
$

← {0, 1}λ

04 ®pk ← (pk
1
, . . . , pkn)

05 ∃i, j ∈ [n] s.t. ID(pki) = ID(pkj) //G1-G7

06 COLL := true //G1-G7

07 abort //G1-G7

08 b $

← {0, 1}

09 b′ $

← ADecaps,Chall, |F⟩(®pk)
10 return ⟦b′ = b⟧

Chall(j)

11 m $

← M

12 m $

← M \ LMj //G2-G7

13 LMj := LMj ∪ {m }
14 (K0, r) ← F(ID(pkj),m)

15 K1

$

← {0, 1}k

16 c ← Enc(pkj ,m; r)
17 LCj := LCj ∪ {c }
18 return (c, Kb)

Decaps(j, c < LCj) //G0-G5

19 m′ := Dec(skj , c)
20 (K, r) ← F(ID(pkj),m

′)

21 if m′ = ⊥ or Enc(pkj ,m
′
; r) , c

22 (K, r) ← F(ID(pkj), sj , c)
23 K := K

′
j (c) //G3-G5

24 return K

F(id, A)
25 if A ∈ M
26 m := A
27 return (H(id,m), G(id,m))
28 else if A ∈ {0, 1}λ × C
29 (s, c) := A
30 return (K(id, s, c), L(id, s, c))
31 return L

′(id, A)

H(id,m) // Internal Random Oracle

32 if ∃j ∈ [n] : id = ID(pkj) //G1-G7

33 return Hj (m) //G1-G7

34 return H0(id,m)

Hj (m) // Internal Random Oracle

35 return H
1

j (m) //G0-G4

36 return H
2

j (Enc(pkj ,m;G
′
j (m))) //G5-G6

37 return H
2

j (Enc(pkj ,m;Gj (m))) //G7

G(id,m) // Internal Random Oracle

38 if ∃j ∈ [n] : id = ID(pkj) //G1-G7

39 return Gj (m) //G1-G3,G7

40 return G
′
j (m) //G4-G6

41 return G0(id,m)

G
′
j (m) // Internal Random Oracle

42 return Sample(R \ Rbad (pkj , skj ,m);R(j,m))

Decaps(j, c < LCj) //G6-G7

43 return H
2

j (c)

Figure 7: GamesG0 -G7 for the proof of Theorem 3.2. The internal random oraclesH,H0,G,G0,Gj ,H1

j ,H
2

j , K and K
′
j , L
′, R are not

directly accessible to the adversary. The notation |F⟩ denotes that the adveraryA has quantum access to the random oracle F.
The output range of F is {0, 1}k × R.

Game G0. This is the original (n,qC)-IND-CCA game. We have����Pr[GA0 ⇒ 1

]
−
1

2

���� = Adv
(n,qC)-IND-CCA
KEM

(A) .

Game G1. In game G1 we abort on a public-key identifier collision

(line 05-line 07). Like in the ROM proof, we can now identify every

public-key identifier ID(pkj) with its index j. This allows us to
simulate the random oracles, when called on such an identifier and

m := A ∈ M, via

F(ID(pkj),m) := (Hj (m),Gj (m)) , (9)

where Hj and Gj are independent internal random oracles. We

stress the importance of this step. First, it will allow us in later

steps of the proof to replace Gj with a random oracle G
′
j which

only samples “good randomness” with respect to the public-key pkj .
Second, it is essential in order to simulate the Decaps(j, ·) oracle
without knowledge of the secret-key. Since the identification of

Eq. 9 is only a conceptual change, by the birthday bound and the

ℓ-bit min-entropy of ID(pk) we have���Pr[GA
0
⇒ 1

]
− Pr

[
GA
1
⇒ 1

] ��� ≤ Pr[COLL] ≤
n2

2
ℓ
.

GameG2 In gameG2 the challenge oracle samplesm fromM\LMj

instead ofM, since on a message collision an adversary can easily

differentiate between the real or random world. By the birthday

bound we have���Pr[GA
1
⇒ 1

]
− Pr

[
GA
2
⇒ 1

] ��� ≤ qC
2

|M|
.

Game G3. In game G3 we substitute F(ID(pkj), sj , c) in line 22,

whose first k bits evaluate to K(ID(pkj), sj , c) in line 30, with K
′
j (c)

in line 23, where K
′
j is an internal independent random oracle for

every j ∈ [n]. With a straightforward reduction, we can apply

Lemma 5.4. Concretely, we identify H with K, Hj with K
′
j , pj with

ID(pkj) and the uniform secrets sj ∈ {0, 1}
λ
from Lemma 5.4 with

the scheme’s secret seeds sj used in the game. We obtain���Pr[GA
2
⇒ 1

]
− Pr

[
GA
3
⇒ 1

] ��� ≤ 4(qF + 1)

√
n

2
λ
.

Game G4. In game G4 we switch the random oracle G to an oracle

which samples only “good” randomness, meaning that no decryp-

tion failure of proper encryptions can possibly occur anymore. To

make this more formal, for fixed (pk, sk) ∈ supp (Gen) andm ∈ M,

let

R
bad
(pk, sk,m) := {r ∈ R : Dec(sk, Enc(pk,m; r)) ,m}

in order to define δ (pk, sk,m) := |R
bad
(pk, sk,m)| /|R|. The modi-

fied oracle G can now be defined as follows: We will still let G coin-

cidewithG0 anywhere but on

{
ID(pkj)) | j ∈ [n]

}
×M.Whereas for

any index j, however, G(ID(pkj), ·) was defined until this game by

as an oracleGj which has rangeR (line 39), we now replace eachGj
with a random oracleG

′
j that has rangeR\Rbad(pkj , skj ,m) instead

in line 40. We will now argue that distinguishing game G3 from G4

can be reduced to distinguishing the GDPB games (see Lemma 5.1).

Consider the quantum distinguisher D = (D1,D2) given in Fig. 8.

After choosing its Bernoulli parameters λ(j,m) := δ (pkj , skj ,m),D
is provided with access to oracle O which is either the constant 0

function (if D is run in game GDPBλ,0) or distributed according

to the chosen Bernoulli parameters (in game GDPBλ,1). Note that

δ (n) serves as an upper bound for these parameters. D perfectly

simulates game G3 if run in game GDPBλ,1, and game G4 if run in

GDPBλ,0. Identifying λ with δ (n) and q with qF +qD, we can apply

Lemma 5.1 to obtain���Pr[GA
3
⇒ 1

]
− Pr

[
GA
4
⇒ 1

] ��� ≤ 8(qF + qD + 1)
2δ (n) .

Game G5. In game G5, we modify the random oracle Hj (m) such

that it returns H
2

j (Enc(pkj ,m;G
′
j (m))) in line 36 instead of H

1

j (m)

in line 35. Here, H
1

j and H
2

j are independent internal random or-

acles. Since we use the modified G that only samples “good” ran-

domness, the mapping Enc(pkj , ·;G
′
j (·)) is injective for all j ∈ [n].

Furthermore, since ID(pki) , ID(pkj) for all i , j , we have that the
following function h is injective:

h(id,m) :=

{
(id, Enc(pkj ,m;G

′
j (m))) if ∃j ∈ [n] s.t. id = ID(pkj)

(id,m) else

.

(10)

We can now rewrite H in GameG5 as H = H
2 ◦ h, where we define

the internal random oracle H
2
as

H
2(id,m) :=

{
H
2

j (m) if ∃j ∈ [n] s.t. id = ID(pkj)

H0(id,m) else

.

After these changes, H equals H
2 ◦ h for an internal random oracle

H
2
and an injective function h. Therefore, H is still a random oracle

in G5 and hence perfectly indistinguishable from the one of G4.

Thus, we have shown

Pr

[
GA
4
⇒ 1

]
= Pr

[
GA
5
⇒ 1

]
.

GameG6. In gameG6, we start to simulate the decapsulation oracle

without knowledge of the secret keys. We modify Decaps(j, c) to
return H

2

j (c) in line 43. Let m′ := Dec(skj , c) and consider the

following two cases:

• Case 1: The ciphertext c lies in the image of encryption, that

is Enc(pkj ,m
′
;G
′
j (m
′)) = c . In this case we have

H
2

j (c) = H
2

j (Enc(pkj ,m
′
;G
′
j (m
′)))

= (H2 ◦ h)(ID(pkj),m
′)

= H(ID(pkj),m
′)

= Decaps(j, c) .

Therefore the oracles in G5 and G6 are identical.

• Case 2: The ciphertext c lies not in the image of encryption,

that is Enc(pkj ,m
′
;G
′
j (m
′)) , c . Here the adversary gets

to see K
′
j (c) in G5 and H

2

j (c) in G6 for internal random or-

acles K
′
j and H

2

j . In both games the adversary gets access

to H
2
indirectly through H(ID(pkj),m) forcingm through

the encryption algorithm. Therefore, the adversary can not

access H
2
for ciphertexts lying outside the image space of

encryption. Therefore no adversary can distinguish between

K
′
j (c) in G5 and H

2

j (c).

We just have shown

Pr

[
GA
5
⇒ 1

]
= Pr

[
GA
6
⇒ 1

]
.

GameG7. In gameG7, we switch back to using the original random

oracle G in lines 39 and 37. With essentially the same argument as

in the game-hop from G3 to G4, we have���Pr[GA
6
⇒ 1

]
− Pr

[
GA
7
⇒ 1

] ��� ≤ 8(qF + qD + 1)
2δ (n) .

What we have achieved so far is that the decapsulation oracle

is simulatable by a reduction that does not know the secret keys,

we can now apply the one-way to hiding theorems in order to

reduce key indistinguishability to an attacker against the underlying

encryption scheme.

GameG8. In gameG8 we make the following conceptual change, in

order to be able to apply the one-way to hiding theorems: Instead of

sampling the challenge plaintexts and computing the corresponding

challenge keys Kj,i on the fly in the Chall oracle (like in G7), we

now precompute these values before running the adversary, and

use them in the Chall oracle. Since this change is purely conceptual,

we have that

Pr

[
GA
7
⇒ 1

]
= Pr

[
GA
8
⇒ 1

]
.

Game G9. In game G9, we decouple the oracle values on the chal-

lenge plaintexts from the values that are used to compute the chal-

lenge ciphertexts and the challenge keys, see Fig. 9. In game G9,

the adversary’s view is independent of b and

Pr

[
GA
9
⇒ 1

]
=

1

2

.

We have reprogrammed F on the set

{
(ID(pkj),mj,i) | j ∈ [n], i ∈

[qC]
}
, and we can now first apply Lemma 5.2 in order to argue that���Pr[GA

8
⇒ 1

]
− Pr

[
GA
9
⇒ 1

] ��� ≤ 2

√
(qF + qD + 1) · Pr[FIND] .

Here Pr[FIND] denotes the probability that when game G9 is run

with the punctured counterpart F \ S of F instead of F, F \ S ever

collapses the input register of one of the random oracle queries to

D1

01 for j ∈ [n]
02 (pkj , skj)

$

← Gen

03 form ∈ M
04 λ(j,m) := δ (pkj , skj ,m)
05 return ((λ(j,m)))j∈[n],m∈M

Gj (m)
06 if O(j,m) = 0

07 Gj (m) := Sample(R \ Rbad (pkj , skj ,m);R(j,m))
08 else
09 Gj (m) := Sample(Rbad (pkj , skj ,m);R(j,m))
10 return Gj (m)

D
|O⟩

2

11 for j ∈ [n]
12 (pkj , skj)

$

← Gen

13 sj
$

← {0, 1}λ

14 ®pk ← (pk
1
, . . . , pkn)

15 ∃i, j ∈ [n] s.t. ID(pki) = ID(pkj): abort
16 b $

← {0, 1}

17 b′ $

← ADecaps,Chall, |F⟩(®pk)
18 return ⟦b′ = b⟧

G(id,m)
19 if ∃j ∈ [n] : id = ID(pkj)
20 return Gj (m)
21 return G0(id,m)

Figure 8: DistinguisherD = (D1,D2) for the generic distinguishing problem with bounded probabilities. The internal random
oracle R is used to provide the random coins of the sampling procedure. The oracles Decaps, Chall and F are simulated as in
G3 (or equivalently G4) of Fig. 7.

G7-G10

01 for j ∈ [n]
02 (pkj , skj)

$

← Gen

03 sj
$

← {0, 1}λ

04 ®pk ← (pk
1
, . . . , pkn)

05 ∃i, j ∈ [n] s.t. ID(pki) = ID(pkj)
06 COLL := true
07 abort
08 for j ∈ [n] //G8-G10

09 for i ∈ [qC] //G8-G10

10 mj,i
$

← M \ LMj //G8-G10

11 LMj := LMj ∪ {mj,i } //G8-G10

12 (Kj,i , r j,i) ← F(ID(pkj),mj,i) //G8-G10

13 F(ID(pkj),mj,i)
$

← {0, 1}k × R //G9 -G10

14 b $

← {0, 1}

15 b′ $

← ADecaps,Chall, |F⟩(®pk)
16 return ⟦b′ = b⟧

Chall(j) //G7

17 m $

← M \ LMj
18 LMj := LMj ∪ {m }
19 (K0, r) ← F(ID(pkj),m)
20 c ← Enc(pkj ,m; r)

21 K1

$

← {0, 1}k

22 LCj := LCj ∪ {c }
23 return (c, Kb)

Chall(j) //G8-G10

24 K0
:= Kj,ctrj

25 c ← Enc(pkj ,mj,ctrj ; r j,ctrj) //G8-G9

26 c $

← Enc(pkj , 0) //G10

27 LCj := LCj ∪ {c }
28 ctrj := ctrj + 1

29 K1

$

← {0, 1}k

30 return (c, Kb)

Figure 9: GamesG7 -G10. Apart from the reprogramming in line 13, all oracles except of the Chall oracle remain defined as in
game G7 (see Fig. 7). For j ∈ [n], we initialize the counters ctrj to 1.

an element of S . In order to upper bound Pr[FIND], we dissect S
into the set S1 of (identifiers and) messages that were actually used

by Chall, and the set S2 of (identifiers and) messages that were not

used by Chall. More formally, we define the set

S1 :=
{
(ID(pkj),mj,i) | j ∈ [n], i ∈ [qC, j]

}
,

where qC, j denotes the number of queries that were issued to Chall

on index j, and we let S2 := S \ S1. Accordingly, we can now also

dissect event FIND into the event FIND1 that a query was collapsed

to an element of S1, and into the event FIND2 that a query was

collapsed to an element of S2. We have that

Pr[FIND] ≤ Pr[FIND1] + Pr[FIND2] .

Note that the suffixes of the elements in S2 are uniformly random

(without repetition), and that these elements were used nowhere

in the game except for the puncturing of F. In particular, they are

independent of A’s input. Since S2 consists of qC · (n − 1) many

elements, we can now apply Eq. (8) of Lemma 5.3 to argue that

Pr[FIND2] ≤
4(qF + qD) · qC · (n − 1)

|M|
.

It remains to upper bound Pr[FIND1], for which we will first give

a reduction to (n,qC)-IND-CPA. A (n,qC)-IND-CPA reduction B

can sample the challenge plaintexts and the plaintexts from S2
before running the adversary, it can hence perfectly simulate the

puncturing. Whenever our reduction B receives a challenge query

fromA on an index j , it queries its own challenge oracle on j,m0
:=

mj,ctrj ,m1
:= 0. It uses the response of CHAL to simulate either

game G9 with punctured oracles (if the (n,qC)-IND-CPA bit is 0)

or game G10 with punctured oracles (if the (n,qC)-IND-CPA bit is

1), we hence have

Pr[FIND1] ≤Adv
(n,qC)-IND-CPA
PKE

(B)

+ Pr[FIND1 in G10 with punctured oracle] .

Since in gameG10, the suffixes of the elements in the set S1 are also
independent of A’s input, and since S1 has qC many elements, we

can now apply Eq. (8) of Lemma 5.3 again to argue that

Pr[FIND1 in G10 with punctured oracle] ≤
4(qF + qD) · qC

|M|
.

Adding the bounds yields the claimed bound in the theorem, con-

cluding our proof.

Remark on the running time of the reductions. The running

time of the reductions depends on the implementation of data

structures. Naively, the running time is about that of the CCA

adversary, plus additional quadratic terms in the number of hashing,

challenge and decapsulation queries. Using techniques from [19]

one can generate for example the plaintexts by means of a (strong)

pseudorandom permutation/ideal cipher (e.g.,mi = PRP(i)). Then
the reduction only needs to keep track of a counter, which it can

use to implement set insertions and set membership tests efficiently.

In that case (ignoring logarithmic terms), the running time of the

reductions becomes about that of the CCA adversary (assuming

that evaluation and inversion of the PRP and other primitives as the

encryption algorithm is in O(1)). Similar statements hold for the

quantum case, except that a fully-quantum secure PRP or quantum-

accesible ideal cipher is needed, since the adversary gets quantum

access through the quantum random oracle. Alternatively, using

balanced search trees, one should get similar running times as

using the PRP (up to logarithmic factors), but larger memory usage.

Also note that B has slightly worse running times (factor n on

queries to F) than A in Theorem 3.1, which is an argument for
public-key/prefix hashing.

□

ACKNOWLEDGMENTS
We would like to thank Mike Hamburg for his helpful comments.

Julien Duman was supported by the EU H2020 PROMETHEUS

project 780701. Eike Kiltz was supported by the BMBF iBlockchain

project, the EUH2020 PROMETHEUS project 780701, DFG SPP 1736

Big Data, and the DFG Cluster of Excellence 2092 CASA. Vadim

Lyubashevsky and Gregor Seiler are supported by the EU H2020

ERC Project 101002845 "PLAZA".

REFERENCES
[1] Andris Ambainis, MikeHamburg, andDominique Unruh. 2019. Quantum Security

Proofs Using Semi-classical Oracles. In CRYPTO 2019, Part II (LNCS), Alexandra
Boldyreva and Daniele Micciancio (Eds.), Vol. 11693. Springer, Heidelberg, 269–

295. https://doi.org/10.1007/978-3-030-26951-7_10

[2] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. 2009. Fast Cryp-

tographic Primitives and Circular-Secure Encryption Based on Hard Learning

Problems. In CRYPTO 2009 (LNCS), Shai Halevi (Ed.), Vol. 5677. Springer, Heidel-
berg, 595–618. https://doi.org/10.1007/978-3-642-03356-8_35

[3] Sanjeev Arora and Rong Ge. 2011. New Algorithms for Learning in Presence of

Errors. In ICALP 2011, Part I (LNCS), Luca Aceto, Monika Henzinger, and Jiri Sgall

(Eds.), Vol. 6755. Springer, Heidelberg, 403–415. https://doi.org/10.1007/978-3-

642-22006-7_34

[4] Thomas Attema, Vadim Lyubashevsky, and Gregor Seiler. 2020. Practical Product

Proofs for Lattice Commitments. In CRYPTO (2) (Lecture Notes in Computer
Science), Vol. 12171. Springer, 470–499.

[5] Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald deWolf.

1998. Quantum Lower Bounds by Polynomials. In 39th FOCS. IEEE Computer

Society Press, 352–361. https://doi.org/10.1109/SFCS.1998.743485

[6] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. 2000. Public-Key En-

cryption in a Multi-user Setting: Security Proofs and Improvements. In EURO-
CRYPT 2000 (LNCS), Bart Preneel (Ed.), Vol. 1807. Springer, Heidelberg, 259–274.
https://doi.org/10.1007/3-540-45539-6_18

[7] Mihir Bellare and Gregory Neven. 2006. Multi-signatures in the plain public-Key

model and a general forking lemma. In ACM CCS 2006, Ari Juels, Rebecca N.

Wright, and Sabrina De Capitani di Vimercati (Eds.). ACM Press, 390–399. https:

//doi.org/10.1145/1180405.1180453

[8] Daniel Bernstein. Accessed May 2021. eBACS: ECRYPT Bench-

marking of Cryptographic Systems. (Accessed May 2021).

https://bench.cr.yp.to/results-kem.html.
[9] Daniel J. Bernstein. 2015. Multi-user Schnorr security, revisited. Cryptology

ePrint Archive, Report 2015/996. (2015). https://eprint.iacr.org/2015/996.

[10] Nina Bindel, Mike Hamburg, Kathrin Hövelmanns, Andreas Hülsing, and Edoardo

Persichetti. 2019. Tighter Proofs of CCA Security in the Quantum Random

Oracle Model. In TCC 2019, Part II (LNCS), Dennis Hofheinz and Alon Rosen

(Eds.), Vol. 11892. Springer, Heidelberg, 61–90. https://doi.org/10.1007/978-3-

030-36033-7_3

[11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner,

and Mark Zhandry. 2011. Random Oracles in a Quantum World. In ASI-
ACRYPT 2011 (LNCS), Dong Hoon Lee and Xiaoyun Wang (Eds.), Vol. 7073.

Springer, Heidelberg, 41–69. https://doi.org/10.1007/978-3-642-25385-0_3

[12] Joppe W. Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,

John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. 2018. CRYS-

TALS - Kyber: A CCA-Secure Module-Lattice-Based KEM. In EuroS&P. IEEE,
353–367.

[13] Hao Chen, Kristin E. Lauter, and Katherine E. Stange. 2016. Security Con-

siderations for Galois Non-dual RLWE Families. In SAC 2016 (LNCS), Roberto
Avanzi and Howard M. Heys (Eds.), Vol. 10532. Springer, Heidelberg, 443–462.

https://doi.org/10.1007/978-3-319-69453-5_24

[14] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik Ver-

cauteren. 2018. Saber: Module-LWRBased Key Exchange, CPA-Secure Encryption

and CCA-Secure KEM. In AFRICACRYPT (Lecture Notes in Computer Science),
Vol. 10831. Springer, 282–305.

[15] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. 2021. Online-

Extractability in the Quantum Random-Oracle Model. Cryptology ePrint Archive,

Report 2021/280. (2021). https://eprint.iacr.org/2021/280.

[16] Eiichiro Fujisaki and Tatsuaki Okamoto. 1999. Secure Integration of Asymmetric

and Symmetric Encryption Schemes. In CRYPTO’99 (LNCS), Michael J. Wiener

(Ed.), Vol. 1666. Springer, Heidelberg, 537–554. https://doi.org/10.1007/3-540-

48405-1_34

[17] Eiichiro Fujisaki and Tatsuaki Okamoto. 2013. Secure Integration of Asymmetric

and Symmetric Encryption Schemes. Journal of Cryptology 26, 1 (Jan. 2013),

80–101. https://doi.org/10.1007/s00145-011-9114-1

[18] Mike Hamburg. 201. Post-quantum cryptography proposal: ThreeBears. https:

//www.shiftleft.org/papers/threebears/nist-submission.pdf. (201).

[19] Mike Hamburg. 2019. Security proof of ThreeBears. https://www.shiftleft.org/

papers/threebears/proof-round2.pdf. (2019).

[20] Johan Håstad. 1988. Solving Simultaneous Modular Equations of Low Degree.

SIAM J. Comput. 17, 2 (1988), 336–341. https://doi.org/10.1137/0217019

[21] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. 2017. A Modular Analysis

of the Fujisaki-Okamoto Transformation. In TCC 2017, Part I (LNCS), Yael Kalai
and Leonid Reyzin (Eds.), Vol. 10677. Springer, Heidelberg, 341–371. https:

//doi.org/10.1007/978-3-319-70500-2_12

[22] Kathrin Hövelmanns. 2021. Generic constructions of quantum-resistant cryp-
tosystems. doctoralthesis. Ruhr-Universität Bochum, Universitätsbibliothek.

https://doi.org/10.13154/294-7758

[23] Kathrin Hövelmanns, Eike Kiltz, Sven Schäge, and Dominique Unruh. 2020.

Generic Authenticated Key Exchange in the Quantum Random Oracle Model. In

PKC 2020, Part II (LNCS), Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden,

and Vassilis Zikas (Eds.), Vol. 12111. Springer, Heidelberg, 389–422. https:

//doi.org/10.1007/978-3-030-45388-6_14

[24] Haodong Jiang, Zhenfeng Zhang, Long Chen, Hong Wang, and Zhi Ma. 2018.

IND-CCA-Secure Key Encapsulation Mechanism in the Quantum Random Oracle

Model, Revisited. In CRYPTO 2018, Part III (LNCS), Hovav Shacham and Alexandra

Boldyreva (Eds.), Vol. 10993. Springer, Heidelberg, 96–125. https://doi.org/10.

1007/978-3-319-96878-0_4

[25] Haodong Jiang, Zhenfeng Zhang, and Zhi Ma. 2019. Key Encapsulation Mecha-

nism with Explicit Rejection in the Quantum Random Oracle Model. In PKC 2019,

https://doi.org/10.1007/978-3-030-26951-7_10
https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/978-3-642-22006-7_34
https://doi.org/10.1007/978-3-642-22006-7_34
https://doi.org/10.1109/SFCS.1998.743485
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1145/1180405.1180453
https://eprint.iacr.org/2015/996
https://doi.org/10.1007/978-3-030-36033-7_3
https://doi.org/10.1007/978-3-030-36033-7_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-319-69453-5_24
https://eprint.iacr.org/2021/280
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/s00145-011-9114-1
https://www.shiftleft.org/papers/threebears/nist-submission.pdf
https://www.shiftleft.org/papers/threebears/nist-submission.pdf
https://www.shiftleft.org/papers/threebears/proof-round2.pdf
https://www.shiftleft.org/papers/threebears/proof-round2.pdf
https://doi.org/10.1137/0217019
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.13154/294-7758
https://doi.org/10.1007/978-3-030-45388-6_14
https://doi.org/10.1007/978-3-030-45388-6_14
https://doi.org/10.1007/978-3-319-96878-0_4
https://doi.org/10.1007/978-3-319-96878-0_4

Part II (LNCS), Dongdai Lin and Kazue Sako (Eds.), Vol. 11443. Springer, Heidel-

berg, 618–645. https://doi.org/10.1007/978-3-030-17259-6_21

[26] Haodong Jiang, Zhenfeng Zhang, and Zhi Ma. 2019. Tighter Security Proofs

for Generic Key Encapsulation Mechanism in the Quantum Random Oracle

Model. In Post-Quantum Cryptography - 10th International Conference, PQCrypto
2019, Jintai Ding and Rainer Steinwandt (Eds.). Springer, Heidelberg, 227–248.

https://doi.org/10.1007/978-3-030-25510-7_13

[27] Veronika Kuchta, Amin Sakzad, Damien Stehlé, Ron Steinfeld, and Shifeng Sun.

2020. Measure-Rewind-Measure: Tighter Quantum Random Oracle Model Proofs

for One-Way to Hiding and CCA Security. In EUROCRYPT 2020, Part III (LNCS),
Anne Canteaut and Yuval Ishai (Eds.), Vol. 12107. Springer, Heidelberg, 703–728.

https://doi.org/10.1007/978-3-030-45727-3_24

[28] Adeline Langlois and Damien Stehlé. 2015. Worst-case to average-case reductions

for module lattices. Des. Codes Cryptogr. 75, 3 (2015), 565–599.
[29] Asheesh Laroia. 2011. Short key IDs are bad news (with OpenPGP and GNU

Privacy Guard). http://www.asheesh.org/note/debian/short-key-ids-are-bad-

news.html. (2011).

[30] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. 2010. On Ideal Lattices

and Learning with Errors over Rings. In EUROCRYPT 2010 (LNCS), Henri Gilbert
(Ed.), Vol. 6110. Springer, Heidelberg, 1–23. https://doi.org/10.1007/978-3-642-

13190-5_1

[31] NIST. 2016. Submission Requirements and Evaluation Criteria for the Post-

Quantum Cryptography Standardization Process. https://csrc.nist.gov/CSRC/

media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-

final-dec-2016.pdf. (2016).

[32] Oded Regev. 2005. On lattices, learning with errors, random linear codes, and

cryptography. In 37th ACM STOC, Harold N. Gabow and Ronald Fagin (Eds.).

ACM Press, 84–93. https://doi.org/10.1145/1060590.1060603

[33] Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. 2018. Tightly-Secure

Key-Encapsulation Mechanism in the Quantum Random Oracle Model. In EU-
ROCRYPT 2018, Part III (LNCS), Jesper Buus Nielsen and Vincent Rijmen (Eds.),

Vol. 10822. Springer, Heidelberg, 520–551. https://doi.org/10.1007/978-3-319-

78372-7_17

6 QUANTUM PRELIMINARIES

Qubits. For simplicity, we will treat a qubit as a vector |φ⟩ ∈
C2, i.e., a linear combination |φ⟩ = α · |0⟩ + β · |1⟩ of the two

basis states (vectors) |0⟩ and |1⟩ with the additional requirement

to the probability amplitudes α , β ∈ C that |α |2 + |β |2 = 1. The

basis {|0⟩, |1⟩} is called standard orthonormal computational basis.
The qubit |φ⟩ is said to be in superposition. Classical bits can be

interpreted as quantum bits via themapping (b 7→ 1· |b⟩+0· |1 − b⟩).

Quantum Registers. We will treat a quantum register as a collec-

tion ofmultiple qubits, i.e. a linear combination |φ⟩ :=
∑
x ∈{0,1}n αx ·

|x⟩, whereαx ∈ C,with the additional restriction that
∑
x ∈{0,1}n |αx |

2 =

1. As in the one-dimensional case, we call the basis {|x⟩}x ∈{0,1}n
the standard orthonormal computational basis. We say that |φ⟩ =∑
x ∈{0,1}n αx · |x⟩ contains the classical query x if αx , 0.

Measurements. Qubits can be measured with respect to a basis.

In this paper, we will only consider measurements in the standard

orthonormal computational basis, and denote this measurement

byMeasure(·), where the outcome ofMeasure(|φ⟩) for a single
qubit |φ⟩ = α · |0⟩ + β · |1⟩ will be 0 with probability |α |2 and 1

with probability |β |2, and the outcome of measuring a qubit register

|φ⟩ =
∑
x ∈{0,1}n αx · |x⟩ will be x with probability |αx |

2
. Note that

the amplitudes collapse during a measurement, this means that

by measuring α · |0⟩ + β · |1⟩, α and β are switched to one of the

combinations in {±(1, 0), ±(0, 1)}. Likewise, in the n-dimensional

case, all amplitudes are switched to 0 except for the one that belongs

to the measurement outcome and which will be switched to 1.

Quantum oracles and qantum Adversaries. Following [5, 11],

we view a quantum oracle |O⟩ as a mapping

|x⟩|y⟩ 7→ |x⟩|y ⊕ O(x)⟩ ,

where O : {0, 1}n → {0, 1}m , and model quantum adversaries A

with access to O by a sequenceU1, |O⟩,U2, · · · , |O⟩,UN of unitary

transformations. We write A
|O⟩

to indicate that the oracles are

quantum-accessible (contrary to oracles which can only process

classical bits).

Quantum random oracle model. We consider security games in

the quantum random oracle model (QROM) as their counterparts

in the classical random oracle model, with the difference that we

consider quantum adversaries that are given quantum access to the

(offline) random oracles involved, and classical access to all other
(online) oracles.

7 PROOF OF THEOREM 3.1 (PART 2)
Proof. Let A be an adversary and consider the games given in

Fig. 10.

Game G0. This is the original (n,qC)-IND-CCA game. Thus,����Pr[GA0 ⇒ 1

]
−
1

2

���� = Adv
(n,qC)-IND-CCA
KEM

(A) .

GameG1. In gameG1 the challenge oracle samplesm fromM\LM
instead ofM, since on a message collision an adversary can easily

distinguish the real KEM key from the random one. By the birthday

bound, ���Pr[GA
0
⇒ 1

]
− Pr

[
GA
1
⇒ 1

] ��� ≤ qC
2

|M|
.

Game G2. In game G2 we modify the Decaps oracle in lines 21 and

22 such that for an invalid ciphertext the key is defined as K
′
j (c),

where K
′
j is an independent internal random oracle. This remains

unnoticed to adversary A unless it queries

K(sj , ·) ,

for j ∈ [1,n] or there exists a collision si = sj , that is there exists
i, j ∈ [n] s.t. si = sj , in which case the event BAD is set to true.

Since the seeds sj ∈ {0, 1}
λ
are uniformly random and information-

theoretically hidden from the adversary, we have by the birthday

and union bound

���Pr[GA
2
⇒ 1

]
− Pr

[
GA
1
⇒ 1

] ��� ≤ Pr[BAD] ≤
n2 + n · qF

2
λ

.

Game G3 In game G3 we start introducing changes to the decapsu-

lation oracle Decaps(j, ·) with the goal of simulating decapsulation

queries without the secret-keys by additional changes introduced

in game G4. In more detail, for m′ := Dec(skj , c) we return the

“implicit reject key” K
′
j (c) ifm

′
was not queried on F, and other-

wise return the key K from (K , r) ← F(m′). In other words, we

consider only ciphertexts as valid, where the adversary first queries

G (indirectly through F). The probability that a ciphertext is valid

without first querying G is bounded by the γ -spreadness. Note that
this step is necessary due to not domain separating the random

oracle H in order to guarantee the consistency of the decapsulation

query lists LD j and the random oracle list LH. To see why this

is necessary, consider two ciphertexts c1 and c2 which were not

derived by making queries first to G (indirectly through F). A priori,

https://doi.org/10.1007/978-3-030-17259-6_21
https://doi.org/10.1007/978-3-030-25510-7_13
https://doi.org/10.1007/978-3-030-45727-3_24
http://www.asheesh.org/note/debian/short-key-ids-are-bad-news.html
http://www.asheesh.org/note/debian/short-key-ids-are-bad-news.html
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1007/978-3-319-78372-7_17
https://doi.org/10.1007/978-3-319-78372-7_17

GAMES G0 - G5

01 for j ∈ [n]
02 (pkj , skj)

$

← Gen

03 sj
$

← {0, 1}λ

04 if ∃i, j ∈ [n] s.t. si = sj ;BAD := true; abort //G2-G5

05 ®pk ← (pk
1
, . . . , pkn)

06 b $

← {0, 1}

07 b′ $

← ADecaps,Chall,F(®pk)
08 return ⟦b′ = b⟧

Chall(j)

09 m $

← M

10 m $

← M \ LM //G1-G5

11 (K0, r) ← F(m)
12 LM := LM ∪ {m }
13 r $

← R; K0

$

← {0, 1}k //G5

14 K1

$

← {0, 1}k

15 c ← Enc(pkj ,m; r)
16 LCj = LCj ∪ {c }
17 return (c, Kb)

Decaps(j, c < LCj) //G0-G2

18 m′ := Dec(skj , c)
19 (K, r) ← F(m′)
20 if m′ = ⊥ or Enc(pkj ,m

′
; r) , c

21 (K, r) ← F(sj , c) //G0

22 K := K
′
j (c) //G2

23 return K

Decaps(j, c < LCj) //G3

24 m′ := Dec(skj , c)
25 if ∃(m, r, K) ∈ LF with Enc(pkj ,m; r) = c andm =m′

26 return K
27 K := K

′
j (c)

28 return K

Decaps(j, c < LCj) //G4-G5

29 if ∃K s. th. (c, K) ∈ LDj
30 return K
31 K $

← K

32 LDj := LDj ∪ {(c, K)}
33 return K

F(A)
34 if A ∈ M
35 m := A
36 (K, r) := (H(m), G(m))
37 if A ∈ {0, 1}λ × C
38 (s, c) := A
39 K := K(s, c)
40 if K undefined: K $

← K

41 if r undefined: r $

← R

42 return (K, r)

G(m) // Internal random oracle

43 r $

← R

44 if m ∈ LM //G5

45 QUERY := true //G5

46 abort //G5

47 return r

K(s, c) // Internal random oracle

48 K $

← K

49 if s ∈ {s1, . . . , sn } //G2-G5

50 BAD := true //G2-G5

51 abort //G2-G5

52 return K

H(m) // Internal random oracle

53 K $

← K

54 if m ∈ LM //G5

55 QUERY := true //G5

56 abort //G5

57 for j ∈ [n] : //G4-G5

58 c′j := Enc(pkj ,m;G(m)) //G4-G5

59 LDj := LDj ∪ {(c
′
j , K)} //G4-G5

60 return K

Figure 10: Games G0 - G4 for the proof of Theorem 3.1. The internal random oracles H′j ,Hj ,Gj ,Kj are not accessible by the
adversary. We assume wlog that F is only queried once on each value A.

we can not exclude the possibility that c1 under secret-key sk1 de-
crypts to the samem as c2 under the secret-key sk2. With this game

hop what we are essentially showing is that this does not matter,

since by γ -spreadness, the re-encryption check will not pass, and

thus the KEM keys will be independent. Without this argument,

the simulation would return different KEM keys although we have

not excluded that re-encryption might be successful, where the

simulation would then need to return the same KEM key, i.e. H(m).
By the weak γ -spreadness we have by a union bound over the n

users and qD decapsulation queries���Pr[GA
2
⇒ 1

]
− Pr

[
GA
3
⇒ 1

] ��� ≤ qDn2
−γ .

GameG4. In gameG4 we simulate the decapsulation oracleDecaps(j, ·)
without knowledge of the secret key by patching the random or-

acle H in lines 57-59 and 29-33. Note that if PKE was perfectly

correct, then the random oracle patching is also perfectly correct

and therefore two games would look identical in A’s view.

The only bad case happens if G is queried on some m which

induces a correctness error, that is Dec(skj , Enc(pkj ;m;G(m))) ,

m. More concretely, define the sets BADj := {m ∈ M | m ,
m′,where c ← Enc(pkj ;m;G(m));m′ ← Dec(skj , c)}.

Define the event CORRj to be the event that A makes an (im-

plicit) query to G(m) for somem ∈ BADj . Since there are at most

(qF + qD) explicit and implicit queries to G, we have

Pr

[
CORRj

]
≤ (qF + qD)δ .

DefiningCORR :=
⋃n
j=1 CORRj , we obtain by the union bound

4

Pr[CORR] ≤ n(qF + qD)δ .

We now claim���Pr[GA
4
⇒ 1

]
− Pr

[
GA
3
⇒ 1

] ��� ≤ Pr[CORR] .

Let us analyze why G4 and G3 are identical conditioned on

¬CORR. Consider a queryDecaps(j, c) and definem′j := Dec(skj , c)
and c ′j := Enc(pkj ,m

′
j ;G(m

′
j)).

• Case 1:m′j = ⊥.H cannot be called onm′j = ⊥ and hence the

KEM key of K = Decaps(skj , c) = K
′
j (c) in G3 is identically

distributed as (c,K) ∈ LD j in G4.

• Case 2: m′j , ⊥ ∧ c , c ′j . Both games return a uniform

random key K . The only way for A to detect a difference

between the two games is if it makes a query H(m) such that

Enc(pkj ,m;G(m)) = c . But conditioned thatm < BADj , c

does not lie in the image space of encryption Im(Encpkj (−;G(−)),

since the re-encryption check failed and therefore such an

m cannot exist.

• Case 3:m′j , ⊥ ∧ c = c ′j . In game G3, Decaps(j, c) returns

K = H(m′j), whereasG4 picks a uniform K in H(m) to match

K for allm that deterministically encrypt to the same c , i.e.,
allm satisfying Enc(pkj ,m;G(m)) = c and saves those values

in LD j . Since c = c ′j the re-encryption check had to pass

and H was queried before Decaps. The only way for A to

detect a difference between the two games is to query H on

some valuem ,m′j that also deterministically encrypts to

the same c . But this also implies that G(m) was queried for

somem ∈ BADj .

4
Technically, we would need to consider the δ -correctness for fixed keys pk, sk and

then take the expectations to be formally correct. We omitt this for brevity.

In order to seewhywe had to useγ -spreadness, considerDecaps(i, c)
and definem′i := Dec(ski , ci) and c ′i := Enc(pki ,m

′
i ;G(m

′
i)). Then,

there are two additional cases to consider, since the random oracle

H is shared between the users.

• Case 1: m′j = m′i . Then either both c and ci are valid ci-

phertexts or both of them are invalid, i.e. do not pass the

re-encryption check. If the adversary first queries F (and

implicitly H) first and then Decaps the oracles of G3 and

G4 are consistent, due to the patching in lines 57-59. If the

adversary queries first Decaps on c and ci and then H, they

will be invalid ciphertexts and therefore bothG3 andG4 cor-

rectly give out independent “implicit rejection” KEM keys

(line 27 in G3 and line 31 in G4). This case is the reason we

introduced the game hop from G2 to G3 where we applied

γ -spreadness.
• Case 2:m′j , m′i Here, there are no new potential incosis-

tency problems due to the multi-user setting, which might

occur since H (m′j) and H (m
′
i) are independent.

Game G5. In game G5 we abort on queries of the form H(m) or
G(m) for some challenge messagem ∈ LM , in which case the event

QUERY holds true. We have by the difference lemma,���Pr[GA
5
⇒ 1

]
− Pr

[
GA
4
⇒ 1

] ��� ≤ Pr[QUERY] .

Note that inG5 bit b is independent of the view of the adversary.

We thus have

Pr

[
GA
5
⇒ 1

]
=

1

2

.

Analogously to (3), we can again prove that there exists an ad-

versary C with

Pr[QUERY] ≤ 2 ·

(
Adv
(n,qC)-IND-CPA
PKE

(C) +
qFqC
|M|

)
.

Summing up the inequalities yields the claimed bound, concluding

the proof of the theorem. □

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Impact on Concrete Security
	1.3 Impact on Efficiency

	2 Preliminaries
	2.1 Cryptographic Definitions

	3 Fujisaki-Okamoto Transformation with Prefix Hashing
	4 Proof of THEOREM 3.1
	5 Proof of THEOREM 3.2
	5.1 Proof

	References
	6 Quantum Preliminaries
	7 Proof of THEOREM 3.1 (Part 2)

