
Maliciously-Secure MrNISC in the Plain Model

Rex Fernando∗ Aayush Jain† Ilan Komargodski‡

November 7, 2022

Abstract

We study strong versions of round-optimal MPC. A recent work of Benhamouda and Lin
(TCC ’20) identified a version of secure multiparty computation (MPC), termed Multiparty
reusable Non-Interactive Secure Computation (MrNISC), that combines at the same time several
fundamental aspects of secure computation with standard simulation security into one primitive:
round-optimality, succinctness, concurrency, and adaptivity. In more detail, MrNISC is essentially
a two-round MPC protocol where the first round of messages serves as a reusable commitment to
the private inputs of participating parties. Using these commitments, any subset of parties can
later compute any function of their choice on their respective inputs by broadcasting one message
each. Anyone who sees these parties’ commitments and evaluation messages (even an outside
observer) can learn the function output and nothing else. Importantly, the input commitments
can be computed without knowing anything about other participating parties (neither their
identities nor their number) and they are reusable across any number of computations.

By now, there are several known MrNISC protocols from either (bilinear) group-based
assumptions or from LWE. They all satisfy semi-malicious security (in the plain model) and
require trusted setup assumptions in order to get malicious security. We are interested in
maliciously secure MrNISC protocols in the plain model, without trusted setup. Since the
standard notion of polynomial simulation is un-achievable in less than four rounds, we focus on
security with super-polynomial -time simulation (SPS).

Our main result is the first maliciously secure SPS MrNISC in the plain model. The result is
obtained by generically compiling any semi-malicious MrNISC and the security of our compiler
relies on several well-studied assumptions of an indistinguishability obfuscator, DDH over Z∗p and
asymmetric pairing groups, and a time-lock puzzle (all of which need to be sub-exponentially
hard). As a special case, we obtain the first 2-round maliciously secure SPS MPC based on
well-founded assumptions. This MPC is also concurrently self-composable and its first message
is short (i.e., its size is independent of the number of the participating parties) and reusable
throughout any number of computations. Prior to our work, for two round maliciously secure
MPC, neither concurrent MPC nor reusable MPC nor MPC with first message independent in
the number of parties was known from any set of assumptions. Of independent interest is one of
our building blocks: the first construction of a one-round non-malleable commitment scheme
from well-studied assumptions, avoiding keyless hash functions and non-standard hardness
amplification assumptions.

∗Carnegie Mellon University. Email: rex1fernando@gmail.com. Supported in part by a Simons Investigator Award,
DARPA SIEVE award, NTT Research, NSF Frontier Award 1413955, BSF grant 2012378, a Xerox Faculty Research
Award, a Google Faculty Research Award, and an Okawa Foundation Research Grant. This material is based upon
work supported by the Defense Advanced Research Projects Agency through Award HR00112020024.

†Carnegie Mellon University. Email: aayushjain1728@gmail.com.
‡Hebrew University of Jerusalem and NTT Research. Email: ilank@cs.huji.ac.il. Incumbent of the Harry

& Abe Sherman Senior Lectureship at the School of Computer Science and Engineering at the Hebrew University,
supported in part by an Alon Young Faculty Fellowship, by a grant from the Israel Science Foundation (ISF Grant No.
1774/20), and by a grant from the US-Israel Binational Science Foundation and the US National Science Foundation
(BSF-NSF Grant No. 2020643).

1

Contents

1 Introduction 4
1.1 Our Results . 5

1.1.1 Notable Building Blocks . 6
1.1.2 Putting Things Together . 7

1.2 On the Necessity of iO . 8
1.3 Related Work . 8

2 Technical Overview 9
2.1 The MrNISC Protocol . 10

2.1.1 Solving Challenge 1: How do we get a “statistically-sound” SPS ZK? 12
2.1.2 Solving Challenge 2: How do we avoid non-interactive non-malleability? . . . 13
2.1.3 Solving Challenge 3: How do we get reusability? 14
2.1.4 Putting things together . 14

3 Preliminaries 16
3.1 Indistinguishability Obfuscation . 16
3.2 Witness Encryption . 17
3.3 Time Lock Puzzles . 17
3.4 Correlation Intractable Hash Functions . 18
3.5 Sender Equivocal Oblivious Transfer . 19
3.6 Equivocal Garbled Circuits for NC1 . 20

4 MrNISC Syntax and Security 20

5 Main Building Blocks 23
5.1 Reusable Statistical ZK Arguments with Sometimes-Statistical Soundness 23
5.2 One-Round Simultaneous-Message CCA-Non-Malleable Commitments 25

6 Malicious-Secure MrNISC 26
6.1 Proof of Security . 30

6.1.1 The Simulator . 32
6.1.2 The Hybrids . 34
6.1.3 Indistinguishability Between Hybrid0 and Hybrid1 36
6.1.4 Indistinguishability Between Hybrid1 and Hybrid2 41
6.1.5 Proving Indistinguishability of the Remaining Hybrids 45

7 Construction of One-Round CCA-Non-Malleable Commitments 50
7.1 A High-Level Overview . 50
7.2 The Construction and Security Proof . 54

7.2.1 Security Proof . 59
7.2.2 Indistinguishability between Hybrid4,γ and Hybrid4,γ+1 64

7.3 Removing One-Tag Restriction . 69

8 Primitives used for Constructing Our Zero-Knowledge Protocol 70
8.1 Non-Interactive Distributional Indistinguishability 70
8.2 Sometimes Extractable Equivocal Commitments . 72
8.3 Construction of NIDI . 74

2

8.3.1 Overview of NIDI . 74
8.3.2 The Formal Construction . 75

8.4 Construction of Sometimes Extractable Equivocal Commitments 79

9 Construction of Reusable Statistical ZK arguments with Sometimes Statistical
Soundness 84
9.1 Overview . 84
9.2 Construction . 88
9.3 Soundness . 92
9.4 Zero-Knowledge . 94

3

1 Introduction

In this work, we study the round complexity of cryptographic protocols, giving special attention
to secure multi-party computation (MPC). MPC allows a group of mutually distrusting parties
P1, . . . , Pn, each with private input xi, to compute the evaluation of some function f(x1, . . . , xn)
without revealing their inputs to each other [GMW87, BGW88, CCD88].

Round complexity is a fundamental measure of both the efficiency and power of cryptographic
protocols. The importance of this measure is strongly grounded in practice: while the bandwidth of
modern networks has constantly been increasing, there is a physical lower bound on their latency,
imposed by distance and the speed of light. The round complexity of a protocol can also affect its
security properties. One very useful property of fully non-interactive and quasi-non-interactive1

arguments is that proofs can be posted to some public bulletin board, like a blockchain, and then any
party can later independently verify its validity, even if the original prover is offline. This enables
arguments to be recursively composed, which has been used to achieve fundamental new results
in the areas of succinct arguments [BCCT13], and also to achieve new space and communication
efficient secure multi-party computation protocols [FGKS22].

The round complexity of MPC protocols in particular has been well-studied over the last few
decades. The original MPC construction of [GMW87] was highly round-inefficient, taking a number
of rounds proportional to the depth of the circuit for the functionality being computed. Since then, a
long line of work [BMR90a, KOS03, KO04, Wee10, GMPP16, ACJ17, BHP17, COSV17, CCG+20]
has made dramatic improvements, with recent works finally achieving four rounds [COSV17,
CCG+20, ACJ17, BHP17]. This was shown to be optimal by the works of [KO04, GMPP16], which
showed that achieving secure computation in three rounds within the standard regime of black-box
polynomial-time simulation is impossible.

In the classical definition of simulation security for MPC protocols, the parties are assumed
to run the protocol in an isolated environment, separate from other parties and other executions
of protocols. While this definition is simple and elegant, the ubiquity of the internet means that
this assumption is not very realistic. The notion of concurrent security fixes this by allowing an
adversary to spawn an arbitrary number of parties and executions of a protocol. Unfortunately, the
work of [BPS06] showed that concurrent security is impossible in any number of rounds within the
standard regime of black-box polynomial-time simulation.

The exciting work of [Pas03] introduced a very useful relaxation of standard polynomial-time
simulation, called super-polynomial-time simulation (SPS). In this new definition, the simulator is
allowed to run for slightly longer than polynomial-time. This has been used, among other things,
to achieve concurrent security for MPC protocols by the works of [CLP10, GGJS12, KMO14],
sidestepping the impossibility result of [BPS06]. In 2017, the work of [BGJ+17] constructed
a concurrent MPC protocol in three rounds, thus bypassing both the lower bounds of [KO04,
GMPP16] and [BPS06] at once. For several years, this has been the state of the art in terms of
the round complexity of both MPC and concurrent-secure MPC in the plain model. A very recent
work [ABG+21] partially advanced the state of the art in terms of round complexity, giving a
two-round standalone-secure MPC protocol in the plain model. However, their security proof relies
on ad-hoc (exponentially strong) assumptions that are novel to their work, and they do not achieve
concurrent security.2

An important question, then, is whether concurrent-secure MPC, or even standalone MPC, can
be achieved in two rounds in the plain model, without setup, relying on well-studied assumptions.

1By quasi-non-interactive we refer to “non-interactive” protocols that require a trusted setup such as a common
reference string.

2We discuss this work further in Section 1.3.

4

In this work, we study this question.

MrNISC. Going one step further, it is natural to ask whether MPC can be done in one round,
with each party sending a single simultaneous message. However, one can very easily show that
this is impossible, via the following argument, commonly referred to as the residual function attack.
Consider the case of two parties P1 and P2, and say that P1 sends its message m1. Then P2 should
be able to compute and send her message m2, so that both parties learn f(x1, x2). However, this
means that P2 can compute m′2 for any other x′2 in her head, and learn f(x1, x2) as well. She can do
this for arbitrarily many x′2. This means that parties are able to learn much more than is allowed
by a secure MPC protocol. This simple argument also extends to the case of protocols with trusted
setup, showing that one-round protocols are also impossible in this case.

This raises the question, how close can we get to a non-interactive protocol without running
into this impossibility?

We study this question via a recent new strong version of MPC, identified by a recent work by
Benhamouda and Lin [BL20] and termed Multiparty reusable Non-Interactive Secure Computation
(MrNISC). MrNISC requires the following general structure:

1. Input encoding : at any time, a party can publish an encoding of its input noninteractively,
independent of the number of parties.

2. Computation encoding : At any time, any subset I of parties can jointly compute a function f
on their inputs xI = {xi}i∈I by broadcasting a single public message. Each party’s message is
only dependent on the input encodings of the parties in I.

Parties are allowed to join the system at any time by publishing their input encoding, even after
an arbitrary number of computation sessions have occurred.

In this way, MrNISC achieves essentially the best-possible form of non-interactivity for MPC
protocols without running into the aforementioned impossibility: once parties have committed to
their input, any subset of parties can compute an arbitrary function on their committed inputs via
a single round. Note that MrNISC is a strict generalization of two-round concurrent-secure MPC.

Several MrNISC protocols have been constructed in the semi-malicious regime, where security
only holds for adversaries who follow the protocol specification.3 Benhamouda and Lin [BL20] con-
structed such a protocol for all efficiently computable functionalities relying on the DDH assumption
in asymmetric bilinear groups. In two concurrent follow-up works, Ananth et al. [AJJM21] and
Benhamouda et al. [BJKL21] obtained MrNISC protocols relying on Learning With Errors (LWE).
However, it was unknown whether it is possible to construct MrNISC in the plain model which
satisfies the full malicious version of security, where adversaries can deviate arbitrarily from the
protocol specification.

1.1 Our Results

In this paper, we give the first affirmative answer to the above question. Specifically, relying on
commonly-used, well-established assumptions, we obtain a maliciously secure SPS MrNISC in the
plain model, without any trusted setup. In particular, this implies a concurrently secure SPS MPC
in two rounds from the same assumptions. We state our (informal) theorem below.

3Semi-malicious security allows the adversary to choose arbitrary randomness for the parties, but otherwise requires
honest behavior.

5

Theorem 1 (Main Result, informal). Assume the existence of a subexponentially-secure indistin-
guishability obfuscation (iO) scheme, subexponential DDH (over both asymmetric pairing groups4

and Z∗p), and subexponential time-lock puzzles. Then there exists a malicious-secure MrNISC in the
plain model, with a super-polynomial simulator.

Key ideas. Our result is obtained via a generic compiler which takes any subexponentially-secure
semi-malicious secure MrNISC and upgrades it to malicious security. As mentioned above, the work
of [BL20] showed that such a semi-malicious-secure MrNISC exists assuming subexponential DDH
over asymmetric pairing groups. Our transformation relies heavily on the idea of multiple axes
of hardness [LPS17], where there are multiple ways to measure the hardness of a problem, such
as circuit size and circuit depth. This allows one to define pairs of problems (A,B) where A is
simultaneously harder than B (with respect to one axis) and easier than B (with respect to the
other). Time-lock puzzles are a well-known way to achieve such scenarios based on circuit size and
depth.

Implications for (Classical) MPC. As mentioned, it is possible to view an MrNISC as a
standard MPC. Specifically, we get the following:

• Our MrNISC implies the first concurrent two-round maliciously secure SPS MPC. Indeed, at
any point in time, parties can join the protocol by publishing their input encodings and even
start evaluation phases. This could happen even after some of the other parties published their
input encodings and participated in several evaluation phases. The only previously known
malicious (SPS) concurrent MPC required three rounds [BGJ+17].

• Our MrNISC implies the first 2-round maliciously secure SPS MPC with a short and
reusable first message, based on any assumption. Namely, the first round message is not
only independent of the function to be computed (which is necessary for reusability), but it
is actually generated independently of the number of participating parties. All prior MPC
protocols with this property only satisfy semi-malicious security in the plain model [BGMM20,
BL20, AJJM21, BGSZ22, BJKL21].

• Our MrNISC implies the first 2-round maliciously secure SPS MPC based on well-studied,
falsifiable assumptions.

1.1.1 Notable Building Blocks

In the course of obtaining our main result, we achieve two intermediate results, in the areas of
zero-knowledge and non-malleable commitments.

First, we give a new definition of two-round zero knowledge, called reusable statistical zero-
knowledge with sometimes-statistical soundness. This new type of argument that satisfies both
statistical zero knowledge and a weakened form of statistical soundness. (Note that it is well-known
that achieving both statistical zero knowledge and full statistical soundness is impossible for all
statements in NP unless the polynomial-time hierarchy collapses [SV97].) We also require a strong
form of reusability. We show the following:

Theorem 2 (Informal). Assume the existence of a subexponentially-secure indistinguishability
obfuscation (iO) scheme, subexponential DDH (over both Z∗p and assymetric pairing groups), and

4DDH assumption over asymmetric pairing groups is also referred to as the SXDH assumption. We will inter-
changeably use SXDH wherever we specifically require DDH over assymetric pairing groups.

6

subexponential time-lock puzzles. Then there exists a reusable statistical ZK argument with sometimes-
statistical soundness as defined in Definition 14.

Second, we give a new one-round non-malleable commitment in the simultaneous-message model
under better assumptions than were previously known. This commitment satisfies a strong definition
of security called CCA-non-malleability. We prove the following theorem:

Theorem 3 (Informal). Assume the existence of a subexponentially-secure indistinguishability
obfuscation (iO) scheme, subexponential SXDH, and subexponential time-lock puzzles. Then, there
exists a subexponentially-secure one-round CCA commitment scheme supporting a super-polynomial
number of tags.

Non-interactive non-malleable commitments were first constructed by the work of [PPV08], using
very strong and non-standard assumptions. In particular, their assumption incorporates a strong
form of non-malleability into it. The works of [BL18, GKLW21] were able to obtain constructions
based on different assumptions, including (among other things) a rather new assumption called
keyless multi-collision-resistant hash functions [BKP18a]. This assumption, which is described in
more detail below, is still somewhat strong as we do not have any instantiation of it besides using
cryptographic hash functions. In contrast, our commitment scheme relies solely on well-established
assumptions which have a long history of study.

Our construction is based heavily on and improves upon the work of [Khu21], which achieves a
weakened version of one-round non-malleable commitments. In order to achieve our main result, we
need full CCA-non-malleable commitments which work in one round, so the construction of [Khu21]
will not suffice as-is. We elaborate on this in Section 2 and Section 7.

1.1.2 Putting Things Together

Our compiler makes use of these two new tools in order to upgrade security of a semi-malicious
MrNISC scheme. Informally, we achieve the following:

Theorem 4 (The Compiler, Informal). Assume the existence of subexponential variants of the
following:

• a reusable two-round statistical zero knowledge argument with sometimes-statistical soundness,

• a one-round non-malleable commitment,

• a non-interactive perfectly-binding commitment,

• a pseudorandom function,

• a witness encryption scheme for NP,

• and finally, a semi-malicious MrNISC scheme.

Then, there exists a malicious-secure MrNISC scheme in the plain model, with super-polynomial
simulation.

7

1.2 On the Necessity of iO

We make use of an obfuscation scheme when constructing both our zero knowledge scheme as well
as our non-malleable commitment scheme. Also, it is directly used to get the witness encryption
scheme. We do not know if iO can be avoided in constructing MrNISC in the plain model.

As mentioned above, constructions of one-round non-malleable commitments exist from other
assumptions than iO [PPV08, BL18], however these constructions rely on assumptions that are
problematic for various reasons. The only known route to avoid these assumptions is via iO [Khu21]
but even then previous work failed to achieve one-round protocols.

We now discuss the need in a witness encryption scheme. Intuitively, it seems that some sort of
witness encryption for a specific language is required when upgrading security for a semi-malicious
MrNISC scheme in the plain model, for the following reason. Since one-round zero knowledge is
impossible without setup [GO94], honest parties are forced to send their second-round semi-malicious
MrNISC messages without knowing whether the first round is honest. Sending these messages
in the clear would violate security, so the parties must somehow send a “locked” version of their
second-round such that they are only revealed conditioned on the first round being honest. Since
these messages must be publicly unlockable, this means that the second round is some form of
witness encryption. We explain this in more detail in Section 2. It is an interesting open question
whether it is possible to build a witness encryption scheme for this specific type of statement without
relying on iO.

1.3 Related Work

A recent work of Agarwal, Bartusek, Goyal, Khurana, and Malavolta [ABG+21] gave the first
two-round standalone maliciously secure MPC in the plain model. Although an exciting first step,
the result is nonstandard in several ways. First, they require the existence of several primitives
(including semi-malicious MPC) which are exponentially secure in the number of parties. Their con-
struction also requires a special type of non-interactive non-malleable commitment. Notably, neither
the non-interactive commitments of [BL18, KK19] nor the weakly non-interactive commitments
of [Khu21], nor our new one-round non-malleable commitment scheme can be used to instantiate
this (because they strongly rely on exponential full security and non-interactivity). The authors
of [ABG+21] propose two instantiations which work for their construction. One instantiation relies
on factoring-based adaptive one-way functions [PPV08],5 a strong assumption that incorporates
a strong non-malleability flavor. Another instantiation relies on an exponential variant of the
“hardness amplifiability” assumption of [BL18], along with keyless multi-collision resistant hash
functions [BKP18b]. Both of these assumptions are still highly non-standard:

1. A keyless multi-collision resistant hash function is a single publicly known function for which
(roughly) collisions are “incompressible”, namely, it is impossible to encode significantly more
than k collisions using only k bits of information. While keyless hash functions are formally
a plain-model assumption, there is no known plain-model instantiation based on standard
assumptions. The only known instantiation is either in the random oracle model, or by
heuristically assuming that some cryptographic hash function, like SHA-256, is such.

2. Hardness amplification assumptions postulate (roughly) that the XOR of independently
committed random bits cannot be predicted with sufficiently large advantage. There are

5An adaptive one-way function is a non-falsifiable hardness assumption postulating the existence of a one-way
function f that is hard to invert on a random point y = f(x) even if you get access to an inversion oracle that inverts
it on every other point y′ 6= y.

8

concrete (contrived) counter examples for this type of assumptions showing that they are
generically false [DJMW12], although they certainly might hold for specific constructions.

The specific variant used by Agarwal et al. is novel to their work. It assumes exponential
hardness amplification against PPT adversaries, i.e., that there exists a constant δ > 0 such
that for large enough `, the XOR of ` independently committed random bits cannot be
predicted by a PPT adversary with advantage better than 2−`δ. This assumption (similarly
to [PPV08]’s adaptive one-way functions) also incorporates a non-malleability flavor.

Because of this, there is no way to instantiate the protocol of [ABG+21] relying on any well-studied
assumptions, or even on assumptions not specifically formulated in order to achieve non-malleable
commitments. These drawbacks unfortunately seem inherent in the techniques used by [ABG+21].
Our work uses a completely different approach from their work, and is thus able to achieve a strictly
stronger result, without using ad-hoc assumptions.

2 Technical Overview

In this section, we give an overview of our constructions and the main ideas needed to prove their
security. We start by reviewing the syntax of MrNISC, as defined by Benhamouda and Lin [BL20].

Model and syntax. A MrNISC consists of an input encoding phase done without coordination
with other parties in the system (i.e., without even knowing they exist), and an evaluation phase
in which only relevant parties participate by publishing exactly one message each. In other words,
MrNISC is a strict generalization of 2-round MPC with the following properties:

- there is no bound on the number of parties;

- multiple evaluation phases can take place with the same input encodings;

- parties can join at any point in time and publish their input encoding, even after multiple
evaluation phases occurred.

We assume all parties have access to a broadcast channel that parties use to transmit messages
to all other parties. The formal syntax of an MrNISC consists of three polynomial-time algorithms
(Encode,Eval,Output), where Encode and Eval are probabilistic, and Output is deterministic. The
allowed operations for a party Pi are:

• Input Encoding phase: each party Pi computes mi,1, σi,1 ← Encode(1λ, xi), where xi is Pi’s
private input, mi,1 is Pi’s round 1 message, and σi,1 is Pi’s round 1 private state. It broadcasts
mi,1 to all other parties.

• Function Evaluation phase: any set of parties I can compute an arity-|I| function f on their
respective inputs as follows. Each party Pi for i ∈ I computes mi,2 ← Eval(f, σi,1, I, {mj,1}j∈I),
where f is the function to compute, xi is Pi’s private input, σi,1 is the private state of Pi’s
input encoding, {mj,1}j∈I are the input encodings of all parties in I, and the output mi,2 is
Pi’s round 2 message. It broadcasts mi,2 to all parties in I

• Output phase: upon completion of the evaluation phase by each of the participating parties,
anyone can compute y ← Output({mi,1,mi,2}i∈I) which should be equal to f({xj}j∈I).

9

Security. For security, we require that an attacker does not learn any information beyond what
is absolutely necessary, which is the outputs of the computations. Formally, for every “real-world”
adversary that corrupts the evaluator and a subset of parties, we design an “ideal world” adversary
(called a simulator) that can simulate the view of the real-world adversary using just the outputs of
the computations. As in all previous works on MrNISC (including [BL20, AJJM21, BJKL21]), we
assume static corruptions, namely that the adversary commits on the corrupted set of parties at
the very beginning of the game. However, all previous works only achieved semi-malicious security
(unless trusted setup assumptions are introduced). This notion of security, introduced by Asharov et
al. [AJL+12], only considers corrupted parties that follow the protocol specification, except letting
them choose their inputs and randomness arbitrarily. In contrast, we consider the much stronger
and more standard notion of malicious security, which allows the attacker to deviate from the
specification of the protocol arbitrarily.

More precisely, in malicious security, the adversary can behave arbitrarily in the name of the
corrupted parties. Specifically, after the adversary commits on the corrupted set of parties, it
can send an arbitrary round 1 message for a corrupted party, ask for a round 1 message of any
honest party (with associated private input), ask an honest party to send the round 2 message
corresponding to an evaluation of an arbitrary function on the round 1 message of an arbitrary set of
parties, and send an arbitrary round 2 message of a malicious party corresponding to an evaluation
of an arbitrary function on the round 1 message of an arbitrary set of parties. The simulator needs
to simulate the adversary’s view with the assistance of an ideal functionality that can provide only
the outputs of the computations that are being performed throughout the adversary’s interaction.

Typically, protocols are called maliciously secure if for every polynomial-time adversary, there is
a polynomial-time simulator for which the real-world experiment and the ideal-world experiment
from above are indistinguishable. However, as mentioned, it is impossible to achieve such a notion
of malicious security for MPC (let alone MrNISC) in merely two rounds unless trusted setup
assumptions are introduced. Therefore, we settle for super-polynomial time simulation (SPS), which
means that the simulator can run in super-polynomial time. In contrast, the adversary is still
assumed to run in polynomial time.

We refer to Section 4 for the precise definition.

Terminology. For the sake of brevity, we will sometimes refer to the input encoding phase as
round 1, and the function evaluation phase as round 2.

2.1 The MrNISC Protocol

To obtain our main result, we will start with a semi-malicious-secure MrNISC protocol [BL20,
BJKL21] and introduce modifications to achieve malicious security. Recall that semi-malicious
security only guarantees security when the adversary follows the honest protocol specification exactly,
except that it can arbitrarily choose corrupted parties’ randomness. We would like to use the
following high-level approach used by many classical MPC protocols. During the input encoding
phase, we require each party to commit to its input and randomness in addition to publishing a
semi-malicious input encoding, and then to prove using zero-knowledge that all of its semi-malicious
MrNISC messages were generated by following the prescribed protocol using that committed input
and randomness. However, a problem arises when using this strategy with 2-round protocols. (Note
that MrNISC requires that evaluation can be carried out in two rounds; in this way, it is a strict
generalization of 2-round MPC.) This problem comes from the fact that zero-knowledge in the
plain model requires at least two rounds. Assuming we use such a 2-round ZK scheme, honest
parties would need to send their second-round MrNISC messages before finding out whether the

10

first-round MrNISC messages were honest. This completely breaks security—if any party publishes
semi-malicious messages based on a non-honest transcript, the semi-malicious protocol can make no
security guarantees about these messages.

We need some way of overcoming this problem. That is, we need a way to publish second-round
messages so that they are only revealed if the first round is honest. To this end, we are going to
use witness encryption as a locking mechanism: we “lock” the round 2 message of the underlying
(semi-malicious) MrNISC and make sure that it can be unlocked only if all involved parties’ proofs
verify. More precisely, party i does:

1. Round 1 message: Commit to its input and randomness and publish a round 1 message
using the underlying MrNISC with the committed input/randomness pair. At the same time,
generate a verifier’s first-round ZK message for the other parties.

2. Round 2 message: Compute a round 2 message using the underlying MrNISC with randomness
derived from the secret state. Generate a zero-knowledge proof that this was done correctly.
Publish a witness encryption hiding the aforementioned round 2 message that could be
recovered by supplying valid proofs that all other parties’ first-round messages were created
correctly.

With this template in mind, even before starting to think about what a security proof will look,
it is already evident that there are significant challenges in realizing the building blocks. Here are
the three main challenges.

Challenge 1: The ZK argument system. The first challenge arises from trying to use ZK
arguments as witnesses for the witness encryption scheme. Recall that witness encryption allows
an encryptor to encrypt a message with respect to some statement Φ, and only if Φ is false, then
the message is hidden. Witness encryption (WE) crucially only can provide security when Φ is
false; in particular, if Φ is true, even if it is computationally hard to find a witness for Φ, no
guarantees are made about the encrypted message being hidden. Thus, it seems like we would need
a statistically-sound ZK argument, i.e., a ZK proof: if the verifier’s first-round message is honest,
with high probability, there should not exist an accepting second-round ZK message.

It is well-known that to achieve ZK in two rounds, it is necessary to have a simulator that
runs in super-polynomial time (i.e., an SPS simulator). In every such known two-round ZK, the
simulator works by brute-forcing some trapdoor provided in round 1, and giving proof that “either
the statement is true or I found the trapdoor.” Because of the existence of this trapdoor, it would
be impossible to make any such ZK argument statistically sound: an unbounded-time machine can
always find the trapdoor and prove false statements. So it seems like the ZK scheme needs to satisfy
two contradictory requirements: be statistically sound, and be a two-round scheme (which appears
to preclude statistical soundness).

Challenge 2: Non-malleability attacks. Since the security of the underlying semi-malicious
MrNISC holds only if the adversary knows some randomness for its messages, we need all parties to
prove that they know the input and randomness corresponding to their messages. We are aiming
for a protocol that can be evaluated in two rounds, so this necessitates using a non-malleable
commitment (to prevent an attacker from, say copying the round 1 message of some other party).
Unfortunately, non-interactive non-malleable commitments without setup are only known from
very strong non-standard assumptions, such as adaptive one-way functions [PPV08], hardness
amplifiability [BL18, ABG+21], and/or keyless hash functions [BKP18b, LPS17, BL18]. These are
very strong and non-standard assumptions, for some of which we have no plain-model instantiation,

11

except heuristic ones. Thus, we want to achieve a secure MrNISC protocol (in the plain model)
without such strong assumptions.

Challenge 3: Adaptive reusability of the primitives. We emphasize that we are building an
MrNISC protocol, which significantly strengthens standalone two-round MPC. Because of this, our
ZK argument and commitment schemes must satisfy strong forms of reusability. There are several
challenges in ensuring both the ZK argument and non-malleable commitment scheme satisfy the
types of reusability that we need, and we introduce several new ideas to solve these challenges. We
will elaborate on this challenge below after we describe our ideas for solving challenges 1 and 2.

2.1.1 Solving Challenge 1: How do we get a “statistically-sound” SPS ZK?

We now discuss how to achieve the seemingly contradictory requirements of getting a 2-round SPS
ZK argument which has a statistical soundness property that would allow it to be a witness for the
WE scheme. Our key idea is to relax the notion of statistical soundness to one that is obtainable in
two rounds but still sufficient to use with WE.

Imagine we have a WE scheme where the distinguishing advantage of an adversary is tiny (say,
subexponential in λ). It would then suffice to have a ZK protocol that is statistically sound a
negligible fraction of the time, as long as it is quite a bit larger than the distinguishing advantage
of the WE. In more detail, consider a hypothetical zero-knowledge protocol with the following
properties:

• The first round between a computationally-bounded verifier and a prover fully specifies one of
the two possible “modes”: a statistical ZK mode and a perfectly sound mode.

• The perfectly sound mode occurs with some negligible probability ε, and in this mode, no
accepting round 2 message exists for any false statement

• In the statistical ZK mode (which occurs with overwhelming probability 1 − ε), the sec-
ond message is simulatable by an SPS machine and a simulated transcript is statistically
indistinguishable from a normal transcript.

• Furthermore, it is computationally difficult for a malicious prover to distinguish between the
two modes.

If we had such a ZK protocol, it would enable us to argue hiding of the witness encryption scheme
whenever the first round of the protocol is not honest. The idea of this argument is as follows.
Suppose an adversary could learn something about the second-round messages from their witness
encryptions in some world where the first round was not honest. In that case, it should also be able
to do so even in the perfectly-sound mode (otherwise, it would distinguish the modes). But in this
mode, proofs for false statements do not exist; thus, the witness encryption provides full security.
Even though this mode happens with negligible probability, it is still enough to contradict witness
encryption security, whose advantage is much smaller.

To construct this new ZK scheme, we use ideas that are inspired by the extractable commitment
scheme of Kalai, Khurana, and Sahai [KKS18]. This commitment scheme has the property that
it is extractable with some negligible tunable probability but is also statistically hiding. This
commitment was used in the works of [BFJ+20] to get a two-round statistical zero-knowledge
argument with super-polynomial simulation. To instantiate our new “sometimes perfectly-sound”
ZK argument, we use the protocol of [BFJ+20] as a starting point, but we will need to make
significant modifications. Namely, to force a well-defined perfect soundness mode, we will make

12

Sender Receiver

C
τ

openingτ

Sender Receiver

τ

C

openingτ

Figure 1: The diagram on the left depicts the communication pattern of Khurana’s [Khu21]
commitment scheme, whereas the diagram on the right depicts ours. The key difference is that in
our scheme, the receiver’s message and the sender’s messages can be sent simultaneously, while
in [Khu21] the receiver’s message must be sent after the sender’s message.

the first round of this protocol a “simultaneous-message” round, where both the prover and the
verifier send a message. We elaborate further on this and other key ideas used in our construction
in Section 9.1.

We note an important subtlety in this new definition and our construction. Namely, the statistical
ZK and perfect soundness properties only hold with respect to the second round. If the verifier is
unbounded-time, then after seeing a first-round prover’s message, it can send a first-round verifier’s
message that forces perfect soundness all the time and thus disallows any prover from giving a
simulated proof. On the other hand, if the prover is unbounded-time, then after seeing a first-round
verifier’s message, it can send a first-round prover’s message, which causes the probability ε of the
perfect soundness mode to be 0. Thus the frequency of perfect soundness mode and the ability of the
simulator to give a simulated proof depend on the first round being generated by computationally
bounded machines.

2.1.2 Solving Challenge 2: How do we avoid non-interactive non-malleability?

To solve challenge two, we must somehow get a non-malleable commitment (NMC) scheme which
can be executed in the first round without using strong assumptions such as keyless hash functions,
hardness amlifiability, or adaptive one-way functions. Recall that unfortunately, all known instanti-
ations of non-interactive NMCs (for a super-polynomial number of tags) currently require the use of
(some combination of) these strong assumptions, so it seems at first glance that avoiding them would
require making substantial progress on the difficult and well-studied question of non-interactive
NMCs.

Our approach to solving this problem is inspired by the exciting work of Khurana [Khu21],
which builds a new type of commitment that works as follows. The commitment phase is similar to
a non-interactive commitment in that the only communication from the committer is a first-round
message C. The role of the receiver is slightly different: The receiver chooses a random string τ
internally, and it is both C and τ together that truly defines the commitment (and, correspondingly,
the underlying value being committed to). Consequently, to compute an opening, the committer
must receive a τ from the receiver. Non-malleability (and binding) hinges upon the fact that the
τ chosen by the receiver is chosen after seeing the commitment. (See the left diagram below for
an illustration of this scheme.) Crucially, this commitment can be constructed from well-founded
assumptions (indistinguishability obfuscation, time-lock puzzles, and OWPs), bypassing the need
for the strong assumptions discussed earlier.

We would like to use this commitment scheme in our protocol. There are two main issues that
arise.

13

• First, to use this scheme, we would need the commitment phase to happen entirely in the first
round. Namely, the receiver must publish τ simultaneously while the committer is publishing
C. (See the right-hand diagram above.) In particular, in the security proof, we need to handle
the case of malicious committers who publish C after seeing the round-1 τ .

• Second, our goal is to have every party use this commitment to commit to their input and
randomness for the protocol. Recall that in the scheme of [Khu21], a well-defined commitment
(Cj , τi) consists of both the committer’s message Cj and the receiver’s random string τi.
Although honest parties Pj will always provide commitments Cj which are consistent across
all τi, it is perfectly plausible for a corrupted party to publish some Cj where different τi yield
commitments (Cj , τi) to different values.

Solving the first issue involves identifying some technical challenges in the security proof
of [Khu21] and making changes to the protocol to avoid these issues. Because of this issue, the
non-malleable commitment of [Khu21] is really a two round commitment scheme. In this paper,
relying on the axis of hardness given by a time-lock puzzle that we additionally use as an assumption,
we construct a truly one round non-malleable commitment scheme, in the simultaneous message
model. For the second issue, we use a surprisingly simple idea of adding a standard (potentially
malleable) perfectly biding commitment scheme (e.g., Blum’s commitment) at the MrNISC protocol
level, we can use this NMC scheme even though it does not satisfy the standard notion of binding.
The overview of the non-malleable commitment scheme can be found in Section 7.1.

2.1.3 Solving Challenge 3: How do we get reusability?

We now describe the challenges which arise when trying to get the type of reusability required
by MrNISC. The main problem is to ensure that all of the building blocks we use (i.e., the ZK
scheme and the NMC scheme) support the reuse of their first-round message. It turns out that the
non-malleable commitment we described in the previous section can be adapted to this reusable
setting without much modification. However, several challenges arise when adapting the sometimes-
statistically-sound ZK scheme, which we discussed earlier, to the reusable setting. We focus on
these challenges here.

Recall that the ZK scheme is a simultaneous message protocol, so a transcript consists of three
messages of the form (zk1,P , zk1,V , zk2,P), a round-1 message of the prover and the verifier, and
a round-2 message of the prover. What we need is for any prover to be able to publish a single
zk1,P in round 1, which can be used in many different sessions with respect to many different zk1,V

messages. In addition, we require a very strong form of reusability: even if a malicious verifier
sees an entire transcript (zk1,P , zk1,V , zk2,P), and then chooses a new verifier’s first-round message
zk′1,V , zero-knowledge should still hold when the prover publishes a proof with respect to zk′1,V and
the prover’s original message zk1,P . Similarly, a verifier should be able to publish a single zk1,V

which can be used in many different sessions with respect to many different zk1,P messages, and the
soundness properties of the ZK scheme should still hold.

Note that it is not immediately clear whether this reusability for ZK arguments are implied by a
corresponding non-reusable version of ZK arguments. This turns out not to be the case. To satisfy
reusability, we end up having to make several changes to our (non-reusable) sometimes-perfectly-
sound ZK scheme. We describe this in more detail in Section 9.

2.1.4 Putting things together

We now have the main pieces that we will use to construct a malicious-secure MrNISC: the two-round
sometimes-statistically-sound ZK, receiver-assisted one-round CCA-secure commitment, and the

14

underlying semi-malicious MrNISC. Significant challenges arise when attempting to combine these
pieces in the way described earlier to get a malicious MrNISC protocol. To see this, it will be
convenient to briefly mention the approach we take for the security proof.

A simplified version of the sequence of hybrids we use is as follows. First, we extract the value
underlying the commitments and check if anyone acted dishonestly. If so, we switch the honest
parties’ witness encryptions to encrypt 0 rather than the actual round 2 messages (this is hybrid 1).
Second, we simulate the ZK proof (this is hybrid 2). Third, we switch the underlying value in the
commitment to 0 (this is hybrid 3). Once the commitments are independent of the true input, we
can use the simulator of the underlying MrNISC (this is hybrid 4). The last hybrid is identical to
our simulator.

To make the transitions between the hybrids possible, we need to set the hardness of every
primitive carefully. Each hybrid indistinguishability induces some hardness inequality for the
involved primitives. Unfortunately, the inequalities seem to be in contradiction to each other.
Observe that for the first indistinguishability (between hybrid 0 and hybrid 1), we need our ZK
argument’s soundness properties to hold against adversaries who can run the CCA extractor. That
is,

Textractor � Tsound.

For the transition between hybrid 2 to 3, we need to guarantee that the security of the commitment
scheme holds even against an adversary that can run the ZK simulator. That is,

TZKSim � Textractor.

Together, the above two inequalities imply that it is necessary to have TZKSim � Tsound. But
this is impossible, at least using the techniques we use in constructing the ZK argument. Our
simulator works by brute-forcing the verifier’s zk1,V message to obtain some secret and produces
proofs with this knowledge. In other words, whoever has the secret can produce accepting proofs
without knowing a witness—this is essentially an upper bound on the soundness of the scheme, i.e.,
Tsound � TZKSim, which means that our inequalities cannot be satisfied at the same time.

To solve this problem, we introduce another axis of hardness, namely, circuit depth. In particular,
assume that it is possible to run the ZK simulator in some super-polynomial depth d. To do this,
we would have to construct a ZK argument where the secret embedded in zk1,V is extractable in
depth d. Further, assume that in polynomial depth, it is extremely hard to extract the secret from
zk1,V (much harder than size d). We can use such a ZK argument to solve the problem above.
Namely, we can restrict the reduction for hybrids 0 and 1 to run in polynomial depth, and in this
complexity class, it holds that Textractor � Tsound. For the reduction for hybrids 2 and 3, we will
allow the depth to be d, in which case the inequality TZKSim � Textractor is satisfied.

So we have reduced this problem to constructing a ZK argument which is simulatable in some
super-polynomial depth d and whose soundness holds against size much larger than d as long as
the depth is restricted to be polynomial. It turns out that it is possible to modify our original ZK
argument to satisfy this property; we describe this in Section 9, where we explain the ZK argument
in detail.

Several more minor technical issues arise when putting things together. One such problem is
that of “simulation soundness,” that is, we need to guarantee that the adversary cannot give valid
ZK arguments for false statements even if it sees simulated arguments from the honest parties.
We solve this issue using techniques from the work of [BGJ+17]. At a very high level, if we use
a ZK argument where the simulated proofs are indistinguishable from normal proofs even to an
adversary who is powerful enough to run the simulator itself, and if we commit to the witnesses

15

using a non-malleable commitment, it is possible to design a sequence of hybrids that guarantees
simulation soundness.

This and other minor technical details result in a construction and sequence of hybrids that are
slightly more involved than the simplified version presented in this overview. We refer the reader
to Section 6 for details.

3 Preliminaries

For any distribution X , we denote by x← X the process of sampling a value x from the distribution
X . For a set X we denote by x← X the process of sampling x from the uniform distribution over X.
For an integer n ∈ N we denote by [n] the set {1, .., n}. A function negl : N→ R is negligible if for
every constant c > 0 there exists an integer Nc such that negl(λ) < λ−c for all λ > Nc. Throughout,
when we refer to polynomials in security parameter, we mean constant degree polynomials that take
positive value on non-negative inputs. We denote by poly(λ) an arbitrary polynomial in λ satisfying
the above requirements of non-negativity.

Throughout this paper, all machines are assumed to be non-uniform. We will use λ to denote
the security. We will use PPT as an acronym for “probabilistic (non-uniform) polynomial-time”.
In addition, we use the notation T1 � T2 (or T2 � T1) if for all polynomials p, p(T1) < T2

asymptotically.
The statistical distance between two distributions X and Y over a discrete domain Ω is defined

as ∆(X,Y) = (1/2) ·
∑

ω∈Ω |Pr[X = ω]− Pr[Y = ω]|.

(C, ε)-indistinguishability. By C we denote an abstract class of adversaries, where each adversary
A ∈ C grows in some complexity measure (i.e. size, depth, etc) based on the security parameter λ.
Security definitions will always hold with respect to some class of adversaries which we will specify.

Definition 1 ((C, ε)-Indistinguishability). Let ε : N → (0, 1) be a function. We say that two
distribution ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N are (C, ε)-indistinguishable if for any
adversary A ∈ C, for any polynomial poly, and any λ ∈ N,∣∣∣∣ Pr

x←Xλ

[
A
(

1λ, x
)]
− Pr
y←Yλ

[
A
(

1λ, y
)]∣∣∣∣ ≤ ε(λ).

We use the shorthand X ≈(C,ε) Y to denote this. If A is unbounded time then we say that Y and
X are statistically indistinguishable and we write X ≈(∞,ε) Y, or alternately ∆(X ,Y) ≤ ε. (This
corresponds to the standard definition of statistical distance.)

3.1 Indistinguishability Obfuscation

In this section, we define the notion of an indistinguishability Obfuscation.

Definition 2 (Indistinguishability Obfuscator (iO) for Circuits [BGI+01, BGI+12]). A probabilistic
polynomial-time algorithm iO is called a secure indistinguishability obfuscator for polynomial-sized
circuits if the following holds:

• Completeness: For every λ ∈ N, every circuit C with input length n, every input x ∈ {0, 1}n,
we have that

Pr
[
C̃(x) = C(x) : C̃ ← iO(1λ, C)

]
= 1 .

16

• (C, ε)-Indistinguishability: For every two ensembles {C0,λ}λ∈Z+ and {C1,λ}λ∈Z+ of polynomial-
sized circuits that have the same size, input length, and output length, and are functionally
equivalent, that is, ∀λ ∈ Z+, C0,λ(x) = C1,λ(x) for every input x, the distributions iO(1λ, C0,λ)
and iO(1λ, C1,λ) are (C, ε) indistinguishable.

In this work, we require that iO is actually subexponentially secure against adversaries of
subexponential size. As shown in [JLS21, JLS22] this can be instantiated assuming subexponential
security of well studied hardness assumptions.

3.2 Witness Encryption

Here, we recall the definition of witness encryption, originally due to Garg et al. [GGSW13].

Definition 3. A witness encryption scheme for an NP language L (with corresponding relation R)
consists of the following two polynomial-time algorithms:

WE.Enc(1λ, x,M): The encryption algorithm takes as input the security parameter λ, a string
x ∈ {0, 1}∗, and a message M ∈ {0, 1}∗. It outputs a ciphertext CT. This procedure is
probabilistic.

WE.Dec(CT, w): The decryption algorithm takes as input a ciphertext CT along with a witness
w ∈ {0, 1}∗. It outputs a string M ∈ {0, 1}∗ or the symbol ⊥. This procedure is deterministic.

These algorithms satisfy the following properties:

Correctness: For any security parameter λ, for any message M ∈ {0, 1}∗, any x ∈ {0, 1}∗ such
that R(x,w) = 1 for w ∈ {0, 1}∗, we have that:

Pr[WE.Dec(WE.Enc(1λ, x,M), w) = M] = 1.

(C, ε)-Security: Fix any ensemble Xλ of polynomial length strings such that every x ∈ Xλ satisfies
x /∈ L, and any ensemble of messages Mλ of polynomial length. For every λ ∈ N, x ∈ Xλ, and
M ∈Mλ, it holds that

WE.Enc(1λ, x,M) ≈(C,ε) WE.Enc(1λ, x, 0|M |).

It is well known that witness encryption can be obtained directly from indistinguishability
obfuscation by ofuscating a circuit that has the instance x and the message M hardwired, gets as
input a witness, and outputs M if the instance-witness pair verify.

Theorem 5. Assuming a (C, ε)-indistinguishability obfuscator for all polynomial-size circuits, then
there is a (C, ε)-witness encryption scheme for all NP.

3.3 Time Lock Puzzles

We recall the notion of a time-lock puzzle scheme, originally due to [RSW96]. We adapt the
definition from [BGJ+16].

Definition 4. A D-secure time lock puzzle TLP is a tuple of two algorithms (PGen, Solve) that
satisfies the following properties.

Syntax:

17

• PGen(1λ, 1t, x) : The puzzle generation algorithm is a randomized polynomial time algorithm
takes as input a security parameter λ and a hardness parameter t. It also takes as input a
solution x ∈ {0, 1}λ. It outputs a puzzle Z.

• Solve(Z) The puzzle solving algorithm takes as input a puzzle Z. It outputs x ∈ ⊥ ∪ {0, 1}∗.

Completeness: For every λ, t ∈ N and every x ∈ {0, 1}λ, Pr[Solve(PGen(1λ, 1t, x)) = x] = 1.

Efficiency: PGen is a polynomial time algorithm in its input length, and Solve(Z) runs in time

poly(2t, λ) for every Z in support of PGen(1λ, 1t, ·).

D-security: Let λ ∈ N, t = t(λ) ∈ λΩ(1/ log log λ) ∩ λO(1) and x ∈ {0, 1}λΘ(1)
. Then, it holds that for

every Boolean circuit A with depth D(t) and total size bounded by any polynomial in 2λ it holds that:∣∣∣∣Pr[A(PGen(1λ, 1t, x)) = 1]− Pr[A(PGen(1λ, 1t, 0|x|)) = 1]

∣∣∣∣ ≤ 2−λ.

Note that we require security against sub-exponential size attackers and with sub-exponential
distinguishing advantage. Specifically, we require that sub-exponential-size attackers (that are in
depth at most D(t)) will not have advantage better than inverse sub-exponential. Sub-exponential
size assumptions on the repeated squaring assumption were already made before, e.g., in [LPS17,
DKP21, FKPS21]).

The first and most popular instantiation of time-lock puzzles was proposed by Rivest, Shamir,
and Wagner [RSW96]. It is based on the “inherently sequential” nature of exponentiation modulo
an RSA integer. That is, that t repeated squarings mod N , where N = pq is a product of two secret
primes, require “roughly” t depth. More than twenty years after their proposal, there still does not
exist a (parallelizable) strategy that can solve such puzzles of difficulty parameter t in depth D(t)
which is significantly less than 2t, with any non-trivial advantage. This is true even for the decision
problem variant, rather than the search problem. (Note that the decision version is the one that is
typically defined and assumed in constructions, e.g., [BN00, BGJ+16, LPS17, DKP21, FKPS21]).

Another construction of time-lock puzzles, due to Bitansky et al. [BGJ+16], based on indistin-
guishability obfuscation and (worst-case) non-parallelizing languages, is also an instantiation of the
above definition, as long as the underlying are assumed to be sub-exponentially hard.

3.4 Correlation Intractable Hash Functions

We adapt definitions of a correlation intractable hash function family from [PS19, CCH+19].

Definition 5. For any polynomials k, (·), s(·) = ω(k(·)) and any λ ∈ N, let Fλ,s(λ) denote the class

of NC1 circuits of size s(λ) that on input k(λ) bits output λ bits. Namely, f : {0, 1}k(λ) → {0, 1}λ is
in Fλ,s if it has size s(λ) and depth bounded by O(log λ).

We require the following property from such a function.

Definition 6 ((C, ε)-Somewhere-Statistical Correlation Intractable Hash Function Family). A hash
function family H = (FakeGen,Eval) is (C, ε)-somewhere-statistically correlation intractable (CI)
with respect to F = {Fλ,s(λ)}λ∈N as defined in Definition 5, if the following two properties hold:

• Perfect Correlation Intractability: For every f ∈ Fλ,s and every polynomial s,

Pr
K←H.FakeGen(1λ,f)

[
∃x such that (x,H.Eval(K,x)) = (x, f(x))

]
= 0.

18

• Computational Indistinguishability of Hash Keys: Moreover, for every two functions
f0, f1 ∈ Fλ,s, for every A ∈ C, and every large enough λ ∈ N,∣∣∣ Pr

K←H.FakeGen(1λ,f0)
[A(K) = 1]− Pr

K←H.FakeGen(1λ,f1)
[A(K) = 1]

∣∣∣ < ε(λ),

The work of [PS19] gives a construction of correlation intractable hash functions with respect to
F = {Fλ,s(λ)}λ∈N, based on polynomial LWE with polynomial approximation factors. In this work,
we use the construction of [CCH+19] that builds this primitive using a circular-secure FHE. To
instantiate a circular secure FHE, we use subexponentially secure iO and a circular secure perfectly
rerandomizable encryption [CLTV15]. A circular secure perfectly rerandomizable encryption can be
constructed using SXDH [BHHO08].

3.5 Sender Equivocal Oblivious Transfer

Definition 7 (Oblivious Transfer). An Sender-Equivocal Oblivious Transfer (OT) protocol consists
of three randomized polynomial time algorithms:

• OT1(1λ, b; r1) → ot1 : The OT1 algorithm takes as input a bit b ∈ {0, 1} and randomness r,
and outputs the “receiver” message ot1.

• OT2(ot1,m0,m1; r2) → ot2 : The OT2 algorithm takes as input a receiver message ot1, two
messages m0,m1, and randomness r2, and it outputs the sender message ot2.

• OT3(ot2, b, r1)→ z : The OT3 algorithm takes as input the sender message along with a bit
b ∈ {0, 1} and randomness r1. It outputs z ∈ ⊥ ∪ {0, 1}∗.

We require a number of basic properties.
Correctness: Let λ ∈ N, b ∈ {0, 1} and (m0,m1) ∈ {0, 1}∗ with |m0| = |m1|. Then, it holds that:

Pr[OT3(ot2, b, r1) = mb] = 1,

where ot2 = OT2(ot1,m0,m1; r2), ot1 = OT1(1λ, b; r1) and probability is taken over the coins of r1, r2.

(C, ε)-Receiver Security: Let λ ∈ N be the security parameter. Then, it holds that:

OT1(1λ, 0) ≈(C,ε) OT1(1λ, 1).

Equivocation: There exist a polynomial time algorithm Equiv such that the following property is
satisfied. For every λ ∈ N b ∈ {0, 1}, m0,m1 ∈ {0, 1}∗ with length `, with probability 1 over the coins
r1 of ot1 ← OT1(1λ, b; r1), the following two distributions are identically distributed. Let v = (v0, v1)
where vb = mb and v1−b = 0`.

• Distribution 1: Compute ot2 ← OT2(ot1,m0,m1; r2). Output (b, r1, ot2,m0,m1, r2).

• Distribution 2: Compute ot2 ← OT2(ot1, v0, v1; r′2) and r2 ← Equiv(b, r1, ot2, r
′
2,m0,m1).

Output (b, r1, ot2,m0,m1, r2).

19

3.6 Equivocal Garbled Circuits for NC1

Another primitive that we use is a an information theoretic variant of Yao’s Garbled Circuits [Yao86]
for NC1 circuits. This variant allows one to to efficiently “invert” the randomness used for garbling.

Definition 8 (Syntax). An information theoretic garbling scheme Gb = (Garble,Eval) for circuit
class F = {Fλ}λ (looking ahead, we will work with poly(λ) sized circuits with λ input bits, and depth
O(log λ)) consists of the following algorithm.

• Garble(1λ, C; r) → (Γ, {Labb,i}b∈{0,1},i∈[λ]) : The garbling algorithm takes as input a circuit
C ∈ F , and it outputs a garbled circuit Γ and input labels {Labb,i}b∈{0,1},i∈[λ].

For any input x, we denote by Labx the shorthand for {Labxi,i}i∈[λ] and Lab as the shorthand
for {Labb,i}b∈{0,1}.

• Eval(Γ, {Labxi,i}i∈[λ])→ z : The evaluation algorithm takes as input a garbled circuit Γ, and

labels {Labxi,i}i∈[λ] for some input x ∈ {0, 1}λ. It outputs z ∈ {0, 1}∗ ∪ ⊥.

We require that such a scheme satisfies the following properties:
Correctness: Let λ ∈ N, C ∈ F and x ∈ {0, 1}λ, then it holds that:

Pr
Garble(1λ,C)→Γ,{Labb,i}b∈{0,1},i∈[λ]

[Eval(Γ, {Labxi,i}i∈[λ]) = C(~x)] = 1

Equivocation: Let λ ∈ N, C0, C1 ∈ F and x ∈ {0, 1}λ such that C0(x) = C1(x), then the following
two distributions are identical.

• Distribution 1: Compute (Γ, Lab)← Garble(1λ, C1; r). Output (C1,Γ, Lab, r).

• Distribution 2: Compute (Γ, Lab) ← Garble(1λ, C0; r). Compute GbEquiv(Γ, Labx, C1,x) →
Lab′, r′ such that Lab′xi,i = Labxi,i for i ∈ [λ]. Output (C1,Γ, Lab

′, r′).

Instantiation: To instantiate this, one can rely on the folklore instantiation of information-
theoretic version of Yao’s garbling scheme [Yao86] for NC1 circuits, and in particular the point-of-
permute formulation of the scheme [Yao86, BMR90b].

4 MrNISC Syntax and Security

We define the syntax of MrNISC and formalize security notions for malicious adversaries as well as
semi-malicious adversaries, following the general framework given by Benhamouda and Lin [BL20].

We assume all parties have access to a broadcast channel, which any party can transmit a message
to all other parties. We consider protocols given in the form of three polynomial-time algorithms
(Encode,Eval,Output), where Encode and Eval are probabilistic, and Output is deterministic, for
which we define the syntax as follows:

• Input Encoding phase: each party Pi computes mi,1 ← Encode(1λ, xi; ri,1), where xi is Pi’s
private input, and the output mi,1 is Pi’s round 1 message.

• Function Evaluation phase: any set of parties I can compute an arity-|I| function f on their
respective inputs as follows. Each party Pi for i ∈ I computesmi,2 ← Eval(f, xi, ri,1, I, {mi,1}i∈I ; ri,2),
where f is the function to compute, xi is Pi’s private input, ri,1 is the randomness which Pi
used to generate its input encoding, {mi,1}i∈I are the input encodings of all parties in I, and
the output mi,2 is Pi’s round 2 message.

• Output phase: Anyone can compute y ← Output({mi,1,mi,2}i∈I).

20

Malicious security. We follow the standard real/ideal paradigm in the following definition. An
MrNISC scheme is malicious-secure for every PPT adversary A in the real world there exists an
ideal-world adversary S (the “simulator”) such that the outputs of the following two experiments
ExptRealA (λ) and ExptIdealA,S (λ) are indistinguishable.

In the following, for ease of exposition, we assume that each party sends at most one computation
encoding for any (f, I) pair, and that parties ignore any subsequent computation encodings.

Real experiment ExptRealA (λ, z). The experiment initializes the adversary A with security param-
eter 1λ and auxiliary input z. In addition, the experiment initializes an empty list honest outputs.
A chooses the number of parties M and the set of honest parties H ⊆ [M]. A then submits queries
to the experiment in an arbitrary number of iterations until it terminates. In every iteration k, it
can submit one query of one of the following four types.

• Corrupt Input Encoding: The adversary A can corrupt a party i /∈ H and send an
arbitrary first message m∗i,1 on its behalf.

• Honest Input Encoding: The adversary A can choose an input xi for honest party i and
ask a party i ∈ H to send its first message by running m∗i,1 ← Encode(1λ, xi; ri,1), where ri,1
is freshly chosen randomness. This m∗i,1 is sent to the adversary.

• Honest Computation Encoding: The adversary A can ask an honest party i ∈ H to
evaluate a function f on the inputs of parties I. If all first messages of parties in I are already
published, party i computes and publishes m∗i,2 ← Eval(f, xi, I, ri,1, {m∗i,1}i∈I ; ri,2). Otherwise,
the party instead publishes ⊥.

• Corrupt Computation Encoding: The adversary can send an arbitrary function evaluation
encoding m∗i,2 to the honest parties on behalf of some corrupted party i /∈ H with respect
to some function f and set I. If all parties in I have sent their Eval messages for (f, I),
the experiment adds the honest parties’ output (f, I,Output({m∗i,1,m∗i,2}i∈I)) to the list
honest outputs.

The output of the real experiment is defined to be (viewA, τ, honest outputs), where viewA is the
output of A at the end of the computation, i.e. an arbitrary function of its view, τ is the transcript
of queries sent by A along with the experiment’s responses, and honest outputs is the list defined
above.

Ideal experiment ExptIdealA,S (λ, z). The ideal experiment initializes A with security parameter

1λ and auxiliary input z. After A chooses the number of parties M and the set H ([M], the
experiment initializes S with 1λ, M , and H. In addition, the experiment initializes an empty list
honest outputs. Subsequently, the adversary can make the same queries as in the real world, which
are handled as follows:

• Corrupt Input Encoding: When A sends a first message m∗i,1 on behalf of some party
i /∈ H, the experiment forwards this encoding to S, who responds with an extracted input
xi. S also has the option to declare that Pi’s input is ⊥, which means that S was not able to
extract an input from m∗i,1 (for example, if the adversary sends a bogus string as its message).
The experiment then sends xi (if it is not ⊥) to the ideal functionality to be used as the input
for party i.

21

• Honest Input Encoding: When the adversary A chooses honest input xi and asks party
i ∈ H to send its first message, the experiment sends xi to the ideal functionality to be used as
the input for party i. The experiment then sends the index i (but not xi) to the simulator S,
who generates a simulated honest input encoding m̃i,1. This encoding is forwarded back to A.

• Honest Computation Encoding: When the adversary A asks an honest party i ∈ H for a
function evaluation encoding with respect to function f and parties I, assuming all parties in
I have published input encodings, the experiment forwards this request to S. If this is the last
honest computation encoding generated with respect to f and I, and all corrupted parties in
j ∈ I \H have sent first messages m∗j,1 from which non-⊥ inputs have been extracted, then the
experiment queries the ideal functionality on (f, I) to obtain the output y, which it forwards
to the simulator as well. The simulator must then generate a simulated function evaluation
encoding m̃i,2 on behalf of party i, regardless of whether it receives y or not. This encoding is
forwarded to A.

• Corrupt Computation Encoding: When the adversary sends a function evaluation
encoding m∗i,2 on behalf of some corrupted party corresponding to some (f, I), the experiment
forwards (f, I, i,m∗i,2) to the simulator. If all parties have sent computation encodings, the
simulator chooses whether to allow the honest parties to learn the output corresponding to
(f, I). If so, the experiment adds (f, I, y) to the list honest outputs; otherwise, the experiment
adds (f, I,⊥) to honest outputs.

The output of the ideal experiment is defined to be (v̂iew, τ, honest outputs), where v̂iew is the
output of A at the end of the experiment, τ is the transcript of queries made by A along with the
experiment’s responses, and honest outputs is the list defined above. In addition, at any point in
the experiment, S may choose to abort; in this case, the output of the experiment is whatever S
outputs at that point.

Definition 9 ((Cadv, Csim, ε)-Maliciously Secure MrNISC). We say that an MrNISC protocol Π is
(Cadv, Csim, ε)-maliciously secure if for every Cadv adversary (A,D) there exists a Csim ideal-world
adversary S (i.e., the simulator) such that for every string z,

∣∣∣Pr
[
D(ExptRealA (λ, z)) = 1

]
− Pr

[
D(ExptIdealA,S (λ, z)) = 1

]∣∣∣ < ε(λ).

The standard notion of security requires for every polynomial p(·) the existence of a polynomial
q(·) for which the protocol is (p, q, ε)-maliciously secure, where ε(·) is a negligible function. However,
since we are interested in two-round protocols, it is known that the standard polynomial notion
of security is impossible. Therefore, we focus on the relaxed notion of super-polynomial security
(SPS): there is a sub-exponential function q(·) such that for all polynomials p(·), the protocol is
(p, q, ε)-maliciously secure.

The semi-malicious case. We define a variant of the above security definition, which closely
mirrors the definition of semi-malicious secure multiparty computation [AJW11]. A semi-malicious
MrNISC adversary is modeled as an algorithm which, whenever it sends a corrupted input or
computation encoding on behalf of some party Pj , must also output some pair (x, r) which explains
its behavior. More specifically, all of the protocol messages sent by the adversary on behalf of Pj up to
that point, including the message just sent, must exactly match the honest protocol specification for
Pj when executed with input x and randomness r. Note that the witnesses given in different rounds

22

need not be consistent. We also allow the adversary to “abort” a function evaluation in two different
scenarios. First, instead of sending a Corrupt Input Encoding message for Pj , the adversary
can send (j,⊥) to the experiment. In this case, the experiment will respond with ⊥ for all Honest
Computation Encoding requests for (f, I), and when all parties in I have been queried, it will
add (f, I,⊥) to honest outputs. Second, instead of sending a Corrupt Computation Encoding
message on behalf of Pj the adversary can again send (j, f, I,⊥). Again, after receiving such a
query, the experiment will respond with ⊥ for all Honest Computation Encoding requests for
(f, I), and when all parties in I have been queried, it will add (f, I,⊥) to honest outputs.

I have published computation encodings for (f, I). In this sense, the adversary may abort
any individual function evaluation. Whenever an adversary aborts a Corrupt Input Encoding
message on behalf of party Pj , it must abort any subsequent Corrupt Computation Encoding
messages for Pj .

Definition 10 ((Cadv, Csim, ε)-Semi-Malicious Secure MrNISC). We say that an MrNISC protocol Π
is (Cadv, Csim, ε)-semi-malicious secure if for every Cadv semi-malicious adversary (A,D) there exists
Csim ideal-world adversary S (i.e., the simulator) such that for every string z,

∣∣∣Pr
[
D(ExptRealA (λ, z)) = 1

]
− Pr

[
D(ExptIdealA,S (λ, z)) = 1

]∣∣∣ < ε(λ).

5 Main Building Blocks

In this section, we give formal definitions for our new notion of reusable sometimes-statistically-sound
zero-knowledge arguments along with the receiver-assisted one-round CCA-secure commitments,
both of which we make use of in our MrNISC protocol.

5.1 Reusable Statistical ZK Arguments with Sometimes-Statistical Soundness

We define statistical zero-knowledge arguments with a specific communication pattern. The protocol
that we need has a “simultaneous message” first round, where both the prover and verifier will
simultaneously send a message. The syntax is the following:

1. The (honest) prover P = (ZKProve1,ZKProve2) and verifier V = (ZKVerify1,ZKVerify2) are
each composed of two uniform PPT algorithms.

2. ZKProve1 and ZKVerify1 get as input only the security parameter λ. ZKProve1 outputs a
message zk1,P and a state σP . ZKVerify1 outputs a message zk1,V and a state σV . The first
round transcript is denoted τ1 = (zk1,P , zk1,V).

3. ZKProve2 gets σP , zk1,V , the instance x, and a witness w. It outputs a message zk2,P .

4. ZKVerify2 gets the instance x and τ = (τ1, zk2,P), and outputs 0/1.

Looking ahead, we shall consider two-round ZK protocols as above with super-polynomial
simulation (SPS), i.e., the simulator can run longer than the soundness bound. Further, we will
also require that for a given prover and a verifier, the first message is reusable for proving multiple
statements. We denote 〈P (w), V 〉(1λ, x) the output of the interaction between P and V , where P
gets as input the witness w, and both P and V receive the instance x as a common input.

23

Definition 11 (Reusable Statistical Zero-Knowledge Arguments with Sometimes-Statistical Sound-
ness). Let L be a language in NP with a polynomial-time computable relation RL. A protocol between
P and V is a (Csound, CS , Czk, εsound,1, εsound,2, εS)-reusable statistical zero-knowledge argument with
sometimes-statistical soundness if it satisfies Definitions 12 to 14 below.

Definition 12 (Perfect Completeness). Let L be a language in NP with a polynomial-time computable
relation RL. A protocol between P and V satisfies perfect completeness if for every security parameter
1λ and (x,w) ∈ RL, it holds that Pr

[
〈P (w), V 〉(1λ, x) = 1

]
= 1,

where the probability is over the random coins of P and V .

Additionally, we need a refined soundness property, defined next.

Definition 13 ((Csound, εsound,1, εsound,2)-statistical soundness). Consider any prover P ∗ ∈ Csound and
a polynomial p(·), where on input the security parameter 1λ, P ∗ outputs an instance x ∈ {0, 1}p \ L.
We require that there exists a “soundness mode indicator” machine E that on input (τ1, stateV)
outputs either 0 or 1 such that the following properties hold.

• Frequency of Soundness Mode. For every prover P ∗ ∈ Csound,

Pr [E(τ1, stateV) = 1] ≥ εsound,1(λ),

where the probability is over the coins of the prover and the verifier in round 1.

• Perfect Soundness Holds During Soundness Mode. For every prover P ∗ ∈ Csound
and every round-1 state (τ1, stateP ∗ , stateV) of the protocol, if E(τ1, stateV) = 1 then for all
second-round messages zk2,P sent by the prover corresponding to some false statement x 6∈ L,
the verifier rejects on input (x, τ1, zk2,P , stateV).

• Indistinguishability of Soundness Mode. For every prover P ∗ ∈ Csound, it holds that

{(τ1, stateP ∗) | E(τ1, stateV) = 1} ≈(Csound,εsound,2) {(τ1, stateP ∗) | E(τ1, stateV) = 0}.

The full MrNISC protocol needs a powerful version of zero knowledge, as follows:

Definition 14 ((CS , Czk, εS)-Adaptive Reusable Statistical Zero-Knowledge). We say a zero
knowledge scheme satisfies (CS , Czk, εS,1, εS,2)-adaptive reusable statistical zero-Knowledge if there
exists a (uniform) simulator ZKSim ∈ CS which takes as input the round-one transcript τ1, the
honest prover’s state σP , and a statement x such that the following holds. Consider an adversary
V ∗ ∈ Czk that takes as input 1λ and an honestly generated prover’s first round message zk1,P , and
plays the following game exptbV ∗,zk:

1. V ∗ may adaptively issue queries of the form (x,w, zk∗1,V). The challenger responds as follows:

• f (x,w) /∈ RL, the challenger responds with ⊥.

• If (x,w) ∈ RL and b = 0, the challenger responds with the honest prover’s second message
ZKProve2(σp, zk

∗
1,V , x, w).

• If (x,w) ∈ RL and b = 1, the challenger responds with the simulated prover’s message
ZKSim(σp, zk

∗
1,V , x).

2. At the end of the game, V ∗ outputs an arbitrary function of its view, which is used as the
output of the experiment.

It must hold that expt0V ∗,zk ≈(∞,εS) expt
1
V ∗,zk.

An overview and complete details of our construction of the reusable SZK argument with
sometimes-statistical soundness can be found in Section 9.

24

5.2 One-Round Simultaneous-Message CCA-Non-Malleable Commitments

In the following, we define the syntax and required security properties of the commitment scheme
which we construct in Section 7, and which we use in the main MrNISc construction in Section 6.
This commitment is a simultaneous-message one-round commitment, where both committer and
receiver send a message during the single round. The receiver’s message is a uniform random string
τ , and the committer’s message is some obfuscated program P. The committed value is only fixed
when both P and τ are fixed. To reflect this, in the definition of syntax below, ComputeOpening,
VerifyOpening, and CCAVal take both the committer’s message P and the receiver’s message τ as
input.

Let T = {Tλ}λ∈N be the tag space which is [T (λ)], where T = 2poly(λ). The modified syntax is
as follows.

Definition 15 (Syntax of one-round simultaneous-message CCA-non-malleable commitments).
With respect to the tag space T , the NMC consists of the following algorithms.

CCACommit(1λ, tag,m; r) : The probabilistic polynomial time commitment algorithm takes as input
the security parameter λ, a tag tag ∈ Tλ, and a message m ∈ {0, 1}∗, and outputs a commitment
P.

ComputeOpening(τ, tag,P,m, r) : The polynomial time deterministic algorithm
ComputeOpening takes as input a string τ ∈ {0, 1}`t, a tag tag ∈ Tλ, a commitment P, a
message m ∈ {0, 1}∗, and the randomness r used to commit. It outputs an opening σ ∈ {0, 1}∗.
Above `t = `t(λ, n) is a polynomial associated with the scheme.

VerifyOpening(τ, tag,P,m, σ) : The polynomial-time deterministic algorithm VerifyOpening takes a
string τ ∈ {0, 1}`t, a tag tag ∈ Tλ, a commitment P, a message m ∈ {0, 1}∗, and an opening
σ. It outputs a value in {0, 1}.

Such a scheme is said to be a one-round simultaneous-message CCA-non-malleable commitment
if it satisfies the following properties:

Definition 16 (Correctness of Opening). Let λ ∈ N be the security parameter, and consider any
tag ∈ Tλ, any message m ∈ {0, 1}∗, any τ ∈ {0, 1}`t, any P ← CCACommit(1λ, tag,m; r). Then,
Pr[VerifyOpening(τ, tag,P,m, σ) = 1] = 1,

where σ = ComputeOpening(τ, tag,P,m, r).

Definition 17 (Extraction). There exists an (inefficient) algorithm CCAVal with the following
properties. For any λ ∈ N and any message m ∈ {0, 1}∗, tag tag ∈ Tλ, commitment P, and
τ ∈ {0, 1}`t(λ), it holds that(

∃σ : VerifyOpening(τ, tag,P,m, σ) = 1
)
⇐⇒ CCAVal(τ, tag,P) = m.

In addition, CCAVal runs in time 2poly(λ) for some fixed polynomial poly.

We now specify the CCA security property.

Definition 18 ((C, ε)-CCA security). We define the following security game played between the
adversary A ∈ C and the challenger. We denote it by exptA,CCA(1λ):

1. The challenger manages a list L that is initially empty. The contents of the list are visible to
the adversary at all stages.

25

2. The adversary sends a challenge tag tag∗ ∈ Tλ.

3. The adversary submits queries of the following kind in an adaptive manner:

(a) Adversary can ask for arbitrary polynomially many τ -queries. Challenger samples τ ′ ←
{0, 1}`t and appends τ ′ to L.

(b) Adversary can ask for an arbitrary polynomially many (τ, tag,P)-queries for any τ ∈ L,
any tag 6= tag∗, and any commitment P. The challenger computes CCAVal(τ, tag,P) and
sends the result to the adversary.

4. The adversary submits two messages m0,m1 ∈Mλ. The challenger samples b← {0, 1}, and
computes P∗ ← CCACommit(1λ, tag∗,mb). The adversary gets P∗ from the challenger.

5. The adversary repeats Step 3.

6. Finally, the adversary outputs a guess b′ ∈ {0, 1}. The experiment outputs 1 if b′ = b and 0
otherwise.

The one-round (simultaneous-message) CCA-secure commitment scheme CCA scheme satisfies
(C, ε)-CCA security if for all adversaries A ∈ C:∣∣∣∣∣Pr[exptA,CCA(1λ) = 1]− 1

2

∣∣∣∣∣ ≤ ε.
Our NMC construction is an extension of of [Khu21]. It takes the same form as that of [Khu21],

namely, the committer publishes a message P , and the receiver publishes a random τ . We change
the internals of the construction, though, to allow the receiver to publish τ during the first round,
simultaneously while the committer is publishing P . We show that with our modifications, even a
rushing committer who chooses P based on τ cannot break security. Thus we achieve a (simultaneous-
message) one-round NMC which satisfies the full CCA security definition given above, relying on iO
and other standard assumptions. We refer to Section 7 for details.

6 Malicious-Secure MrNISC

In this section, we give the formal construction and proof of security for our MrNISC protocol.

Required Primitives and Parameters. We make use of the following primitives in our con-
struction.

• Commitment: A non-interactive perfectly binding commitment (NICommit).

• Pseudo-Random Function A pseudo-random function (PRF).

• Witness Encryption: We use witness encryption as in Definition 3. We use circuit SAT as our
NP language.

• Reusable Statistical ZK Arguments with Sometimes-Statistical Soundness: We use the SPS ZK
argument (ZKProve1,ZKVerify1,ZKProve2,ZKVerify2) satisfying Definitions 11, 13 and 14 for
circuit SAT constructed in Section 9.

26

• One-round CCA commitments: We use one-round (simultaneous-message) CCA commitments
as in Definitions 15 to 18.

• Semi-malicious MrNISC : We use an underlying semi-malicious MrNISC protocol (SM.Encode,
SM.Eval, SM.Output), satisfying the security notion given in Definition 10.

Complexity hierarchy. In order to argue security, we require that the primitives we use are
secure against adversaries of varying complexities. In particular, we require the following complexity
hierarchy to hold with respect to the primitives. Let T1, T2, T3, T4, T5 be functions over λ, such that

T1 � T2 � T3 � T4 � T5,

where T � T ′ means that p(T) < T ′ asymptotically for all polynomials p. We require the following:

• The ZK argument scheme satisfies (CS , Czk, εS)-adaptive reusable statistical zero knowledge
(Definition 14) where CS is the class of circuits of size poly(T1) and depth T1 (i.e. the simulator
runs in size poly(T1) and depth T1), and Czk is the class of circuits of size p(T3) for all
polynomials p, and εS is any negligible function (i.e. statistical zero knowledge holds as long
as the verifier’s first-round message is generated by a machine in Czk.

• The CCA non-malleable commitment scheme satisfies (C, ε)-CCA security, where C is the class
of circuits of size p(T1) for all polynomials p, and ε is any negligible function.

• The CCA non-malleable commitment scheme’s extractor CCAVal is a circuit of size T2 and
polynomial depth.

• The perfectly-binding commitment scheme is hiding against adversaries of size p(T2) for all
polynomials p, and is extractable by a circuit of size T3.

• The ZK argument scheme satisfies (Csound, εsound,1, εsound,2)-statistical soundness, where Csound
is the class of circuits of size p(T5) and polynomial depth for all polynomials p (refer to Defini-
tion 13 for details on the meaning of Csound), and εsound,1 = 1/T4, and εsound,2 is any negligible
function.

• The witness encryption scheme satisfies (C, ε)-security, where C is the class of circuits of size
p(T5) for all polynomials p, and ε = 1/T5.

• The pseudo-random function is secure against adversaries of size p(T5) for all polynomials p.

• The semi-malicious MrNISC protocol is secure against adversaries of size p(T5) for all polyno-
mials p.

The Relation Φzk,i,j

Hardwired: The function f and the set I, Pi’s tag tagi, Pi’s CCA non-malleable commitment nmci,
Pi’s perfectly binding commitment comi, Pi’s first round semi-malicious MPC message m̂i,1, Pj ’s string
τj , Pi’s commitment comi,m̂i,2

to its semimalicious evaluation encoding m̂i,2, and the transcript ρsm,1 of
the semi-malicious input encodings of all parties from I.

Input/Witness: Wzk,i = (xi, ri,SM,1,Ki, ri,com, σi,j,CCA, m̂i,2).

Computation: Verify the following steps.

27

1. VerifyOpening(τj , tagi, nmci, (xi, ri,SM,1,Ki, ri,com), σi,j,CCA) = 1

2. comi = NICommit(1λ, (xi, ri,SM,1,Ki); ri,com)

3. m̂i,1 = SM.Encode(1λ, xi, ri,SM,1)

4. m̂i,2 = SM.Eval(f, xi, ri,SM,1, I, ρsm,1;PRFKi
(f, I, 1))

5. comi,m̂i,2 = NICommit(1λ, m̂i,2;PRFKi(f, I, 2))

Output 1 if all the above checks succeed, otherwise output 0.

The Relation ΦWE,i

Hardwired: The function f , the set I, the set of tags of all parties, Pi’s first-round verifier zk
messsage zk1,i,V , Pi’s string τi, the first-round prover zk messages, commitments and semi-malicious
encodings {zk1,j,P , m̂j,1, comj , nmcj}j∈I\{i} included in the input encodings of all other parties in I.

Witness:
WWE,i = ({zk2,j→i,P , comj,m̂j,2

}j 6=i).

Computation: For every j ∈ I \ {i},

1. Let
Φzk,j = Φzk,j [f, I, tagj , nmcj , comj , m̂j,1, τi, comj,m̂j,2

, ρsm,1]

be the circuit described in page 27, with the values

[f, I, tagj , nmcj , comj , m̂j,1, τi, comj,m̂j,2
, ρsm,1]

hardcoded.

2. Compute ZKVerify2(Φzk,j , zk1,i,V , zk1,j,P , zk2,j→i,P).

Output 1 if all the above checks succeed, otherwise output 0.

Protocol. We give the protocol below, described in terms of the behavior of party Pi during the
input encoding phase, the evaluation phase, and the output computation phase. In particular, we
give this behavior by implementing the Encode, Eval and Output algorithms defined in Section 4.
Assume that each party Pi has input xi and a public identity denoted by tagi ∈ Tλ. Note that the
Output algorithm is public and can be performed without Pi’s private input or state. Throughout
the protocol description, we deal with PPT algorithms as follows. If a PPT algorithm P is invoked
on some input x without any randomness explicitly given (i.e., we write P (x)), we implicitly
assume that it is supplied with freshly chosen randomness. In some cases we will need to explicitly
manipulate the randomness of algorithms, in which case we will write P (x; r).

• Input Encoding Encode(1λ, tagi, xi): The input encoding algorithm takes as input 1λ, where
λ is the security parameter, along with Pi’s tag tagi and private input xi, and does the
following.

1. Compute the semi-malicious input encoding m̂i,1 ← SM.Encode(1λ, xi; ri,SM,1), where

ri,SM,1
$←− {0, 1}∗ is freshly chosen randomness.

2. Choose a PRF key Ki.

28

3. Compute a perfectly binding commitment

comi ← NICommit(1λ, (xi, ri,SM,1,Ki); ri,com)

of the input and the semi-malicious encoding randomness, where ri,com
$←− {0, 1}∗ is

freshly chosen randomness.

4. Compute a CCA-non-malleable commitment

nmci ← CCACommit(1λ, tagi, (xi, ri,SM,Ki, ri,com); ri,CCA)

of the same values committed to in the perfectly binding commitment, along with the

randomness used for generating the perfectly binding commitment, where ri,CCA
$←− {0, 1}∗

is freshly chosen randomness.

5. Compute a random string τi
$←− {0, 1}`.

6. Compute the first round verifier’s message and state

(σzk,1,i,V , zk1,i,V)← ZKVerify1(1λ)

and the first round prover message and state

(σzk,1,i,P , zk1,i,P)← ZKProve1(1λ).

7. Output mi,1 = (m̂i,1, comi, nmci, τi, zk1,i,V , zk1,i,P).

• Function Evaluation Eval(f, tagi, xi, ri,1, I, ρ1): The function evaluation algorithm takes as
input the function f to be evaluated, the set I of participating parties, Pi’s private input xi,
the randomness ri,1 which Pi used to generate its input encoding, and the input encoding
transcript ρ1, and does the following:

1. Parse ρ1 = {m̂k,1, comk, nmck, τk, zk1,k,V , zk1,k,P }k∈[n] to obtain (ri,SM,1, ri,com, ri,CCA,

σzk,1,i,V , σzk,1,i,P) from ri,1.

2. Compute the semi-malicious function evaluation encoding

m̂i,2 ← SM.Eval(f, xi, ri,SM,1, I, ρsm,1;PRFKi(f, I, 1))

of the underlying semi-malicious protocol, using the transcript ρsm,1 = {m̂k,1}k∈I of the
semi-malicious input encodings of all parties from I, where the randomness is chosen
using the PRF key committed to during the input encoding phase.

3. Compute a commitment comi,m̂i,2 ← NICommit(m̂i,2;PRFKi(f, I, 2)) of the encoding
m̂i,2 using randomness derived from the PRF key committed to during the input encoding
phase.

4. For each Pj , j ∈ I \ {i}:
– Compute an opening

σi,j,CCA ← ComputeOpening(τj , tagi, nmci, (xi, ri,SM,1,Ki, ri,com), ri,CCA)

for the non-malleable-commitment nmci with respect to τj .

29

– Compute a round two ZK prover’s message zk2,i→j,P ← ZKProve2(Φzk,i,j ,Wzk,i,
σzk,1,i,P , zk1,j,V), where Φzk,i,j is the circuit SAT instance defined on page 6. Here
Wzk,i = (xi, ri,SM,1,Ki, ri,com, σi,j,CCA, m̂i,2) is the witness for generating this prover
message.

5. Compute a witness encryption WEi ←WE.Encrypt(1λ,ΦWE,i, rcom,i,m̂i,2) where the circuit
ΦWE,i is described on page 28, and the plaintext rcom,i,m̂i,2 = PRFKi(f, I, 2) is the opening
for comi,m̂i,2 .

6. Return mi,2 = (comi,m̂i,2 , {zk2,i→j,P }j∈I\{i},WEi).

• Output Computation Output({mj,1,mj,2}j∈I): The output computation algorithm takes
as input the input encoding mj,1 and the function evaluation encoding mj,2 of every party Pj
for j ∈ I and does the following:

1. Parse
mj,1 = (m̂j,1, comj , nmcj , τj , zk1,j,v, zk1,j,p)

and
mj,2 = (comj,m̂j,2 , {zk2,j→k,P }k∈I\{j},WEj)

for each j ∈ I.

2. For each j, k ∈ I, j 6= k:

– Run ZKVerify2(Φzk,j,k, zk1,k,v, zk1,j,p, zk2,j→k,p), where Φzk,j,k is described on page 27.
If the verification fails, abort and output ⊥.

3. For each j ∈ I:

– Compute the decryption rcom,j,m̂j,2 ← WE.Decrypt(WEj ,WWE,j) of the opening
rcom,j,m̂j,2 to the commitment comj,m̂j,2 , using the witnessWWE,j = ({zk2,k→j,P , comj,m̂j,2}k 6=j).
If the decryption fails, abort and output ⊥.

– Open comj,m̂j,2 to Pj ’s semi-malicious function evaluation encoding m̂j,2 using
rcom,j,m̂j,2 .

4. Compute the output y ← Output({m̂j,1, m̂j,2}j∈I) using the values m̂j,2 obtained from
decrypting the witness encryptions along with the semi-malicious input encodings m̂j,2.

5. Output y.

Correctness. Correctness of the protocol follows directly from correctness of the underlying
primitives.

6.1 Proof of Security

This section proves that the MrNISC protocol given above satisfies the definition of SPS malicious
security from Section 4. Formally, we prove the following theorem:

Theorem 6. Assume the existence of the following primitives, satisfying the complexity hierarchy
above:

• A subexponentially-secure non-interactive perfectly binding commitment (NICommit).

• A subexponentially-secure pseudo-random function (PRF).

30

• A subexponentially-secure witness encryption scheme for NP.

• A reusable SPS ZK argument for circuit SAT with sometimes-statistical soundness satisfy-
ing Definitions 11, 13 and 14

• One-round (simultaneous-message) subexponentially-secure CCA commitments as in Defini-
tions 15 to 18.

• A subexponentially-secure semi-malicious MrNISC protocol satisfying the security notion given
in Definition 10.

Then the protocol above is malicious-secure MrNISC in the plain model as defined in Definition 9,
with a super-polynomial simulator.

We can instantiate the primitives listed in the theorem in the following way, which satisfy the
complexity hierarchy listed above:

• A subexponentially-secure non-interactive perfectly binding commitment (NICommit) can be
obtained from subexponential SXDH.

• A subexponentially-secure pseudo-random function (PRF) can be obtained from SXDH.

• A subexponentially-secure witness encryption scheme for NP can be obtained from subexpo-
nential indistinguishability obfuscation.

• Following Theorem 10, a SPS ZK argument for circuit SAT satisfying Definitions 11, 13 and 14
can be obtained from subexponential indistinguishability obfuscation, time-lock puzzles,
subexponential DDH over Z∗p and asymmetric pairing groups.

• Following Theorem 7, one-round (simultaneous-message) subexponentially-secure CCA com-
mitments in Definitions 15 to 18 can be obtained from subexponential indistinguishability
obfuscation, time-lock puzzles, and subexponential SXDH.

• The work of [BL20] showed that subexponentially-secure semi-malicious MrNISC protocol
satisfying the security notion given in Definition 10 can be constructed from subexponential
SXDH.

Using the above instantiations, we get Theorem 1 as a corollary to Theorem 6 above, which we
restate now.

Corollary 1. Assume the existence of a subexponentially-secure indistinguishability obfuscation (iO)
scheme, subexponential DDH over both Z∗p and asymmetric pairing groups, and time-lock puzzles.
Then there exists a malicious-secure MrNISC in the plain model, with a super-polynomial simulator.

Assume that there exists a real-world PPT adversary A for the MrNISC security game. That is,
A takes as input 1λ and some auxiliary input z, chooses the number of parties M and the set of
honest parties H ⊆ [M], and then interacts with the experiment in an execution of the protocol
by submitting queries of the four types described in Section 4 (i.e., Corrupt Input Encoding,
Honest Input Encoding, Honest Computation Encoding, and Corrupt Computation
Encoding). We prove security by exhibiting an ideal world adversary S (referred to as the simulator)
which runs in time TS = 2λ

ε
, and interacts with the experiment as described in Section 4, such that

the outputs of the corresponding experiments ExptRealA (λ) and ExptIdealA,S (λ) are indistinguishable.

31

6.1.1 The Simulator

Upon being initialized with the number of parties M and the set H ([M], the simulator S, initializes
the semi-malicious simulator with the same M and H. It then responds to the environment’s queries
in the following manner:

• Corrupt Input Encoding: Upon receiving a corrupt input encoding

mj,1 = (m̂j,1, comj , nmcj , τj , zk1,j,v, zk1,j,p)

on behalf of Pj , j ∈ C, the simulator S extracts comj to obtain (x̃j , r̃j,SM,1, K̃j), and submits
x̃j to the experiment to use as Pj ’s input if it holds that m̂j,1 = SM.Encode(1λ, x̃j ; r̃j,SM,1).
Otherwise, it sends ⊥.

• Honest Input Encoding: Upon receiving a query from the experiment asking for Pi’s
simulated input encoding, S does the following:

1. Compute a perfectly binding commitment

comi = NICommit(1λ, 0|xi|+|ri,SM,1,|+|Ki|).

2. Compute a CCA-non-malleable commitment

nmci = CCACommit(1λ, tagi, 0
|xi|+|ri,SM,1,|+|Ki|+|ri,com|).

3. Compute a random string τi
$←− {0, 1}`.

4. Compute the first round verifier’s message and state

(σzk,1,i,V , zk1,i,V)← ZKVerify1(1λ)

and the first round prover message and state

(σzk,1,i,P , zk1,i,P)← ZKProve1(1λ).

5. Ask the semi-malicious simulator to generate a semi-malicious input encoding m̂i,1 for
party Pi.

6. Send mi,1 = (m̂i,1, comi, nmci, τi, zk1,i,v, zk1,i,p) to A.

• Honest Computation Encoding: Upon receiving an honest computation encoding query
asking for honest party Pi’s encoding w.r.t f and I, the simulator does the following.

1. Compute the extracted value

(x̃j , r̃j,SM,1, K̃j , r̃j,com)← CCAVal(τi, tagj , nmcj)

of Pj ’s CCA-non-malleable commitment with respect to Pi’s τi, for each j ∈ I ∩ C.
2. For each j ∈ I ∩ C, check whether

m̂j,1 = SM.Encode(1λ, x̃j ; r̃j,SM,1)

and
comj = NICommit(1λ, (x̃j , r̃j,SM,1, K̃j); r̃j,com),

where m̂j,1 is the semi-malicious input encoding sent by Pj , comj is the perfectly-binding
commitment sent by Pj , and x̃j , r̃j,SM,1, K̃j , r̃j,com are the extracted values from before.

32

– If both equalities hold for all j ∈ I ∩ C, then the simulator does the following.

(a) Query the semimalicious simulator for Pi’s semi-malicious computation encoding
m̂i,2 with respect to (f, I). (If the experiment sent the function output y, forward
this to the semi-malicious simulator to use when generating m̂i,2.)

(b) Compute a commitment comi,m̂i,2 ← NICommit(m̂i,2; rcom,i,m̂i,2) obtained in the
previous step, where rcom,i,m̂i,2 is freshly chosen randomness.

(c) For each Pj , j ∈ I \ {i}:
∗ Compute a simulated prover’s second-round ZK message

zk2,i→j,P ← ZKSim(σzk,1,i,P ,Φzk,i,j , zk1,j,V).

(d) Compute a witness encryption

WEi ←WE.Encrypt(1λ,ΦWE,i, rcom,i,m̂i,2)

where the circuit ΦWE,i is described in Figure 6, and the plaintext rcom,i,m̂i,2 is
the opening for comi,m̂i,2 .

(e) Respond with mi,2 = (comi,m̂i,2 , {zk2,i→j,P }j∈I\{i},WEi).

– If the equalities do not hold for some j ∈ I ∩ C, then the simulator instead does the
following:

(a) Compute a commitment comi,m̂i,2 ← NICommit(0|m̂i,2|).

(b) For each Pj , j ∈ I \ {i}:
∗ Compute the simulated prover’s second-round ZK message zk2,i→j,P ← ZKSim(
σzk,1,i,P ,Φzk,i,j , zk1,j,V).

(c) Compute a witness encryption

WE.CTi ←WE.Encrypt(1λ,ΦWE,i, 0
|ri,com|)

.

(d) Respond with mi,2 = (comi,m̂i,2 , {zk2,i→j,P }j∈I\{i},WEi).

• Corrupt Computation Encoding: On receiving a corrupt computation encoding mj,2 =
(comj,m̂j,2 , {zk2,j→i,P }i∈I\{j},WEj) from the experiment on behalf of corrupted party Pj w.r.t.
f and I, the simulator does the following:

1. Compute the extracted value

(x̃j , r̃j,SM,1, K̃j , r̃j,com)← CCAVal(τi, tagj , nmcj)

of Pj ’s CCA-non-malleable commitment for each i ∈ I \ C.
2. For each i ∈ I \ C, check if there exists a j ∈ I ∩ C such that:

– ZKVerify2(φzk,j,i, zk1,i,V , zk1,j,P , zk2,j→i,P) verifies, and

– Steps 2-5 of Φzk,j,i do not hold with respect to the extracted values x̃j , r̃j,SM,1, K̃j ,
r̃j,com and the input encoding phase of the protocol. Note that this is checkable in
polynomial time given the values x̃j , r̃j,SM,1, K̃j , r̃j,com.

3. If there does exist such a j, halt the experiment and output a special abort symbol ⊥∗.
4. Otherwise, if all parties in I have submitted function evaluation encodings for f and if

all parties’ ZK messages have verified correctly and if all parties’ WEs decrypt correctly,
the simulator instructs the experiment to deliver the output y to the honest parties. If
any ZK messages verify incorrectly or if any WE fails to decrypt, the simulator instructs
the experiment to deliver the output ⊥ to the honest parties.

33

6.1.2 The Hybrids

We prove the indistinguishability between the real and ideal worlds via a sequence of hybrids listed
below. In each hybrid, we make changes to the behavior of the experiment, such that the first
hybrid Hybrid0 corresponds to the real world experiment, and the last hybrid Hybrid8 corresponds
to the ideal world experiment with simulator S described above.

• Hybrid0: This hybrid performs the real-world experiment ExptRealA (λ) with A. That is, the
experiment responds to the queries of A as described in the real world defined in Section 4. At
the end of the execution, the output of the hybrid is defined to be (viewA, τ, honest outputs).

• Hybrid1: The behavior of this hybrid is identical to the previous hybrid, except for the following
difference. Whenever A submits a Honest Computation Encoding query asking for honest
party Pi’s encoding w.r.t f and I, the experiment does the following:

1. Compute the extracted value

(x̃j , r̃j,SM,1, K̃j , r̃j,com)← CCAVal(τi, tagj , nmcj)

of Pj ’s CCA-non-malleable commitment for each j ∈ I ∩ C.
2. For each j ∈ I ∩ C, check whether

m̂j,1 = SM.Encode(1λ, x̃j ; r̃j,SM,1)

and
comj = NICommit(1λ, (x̃j , r̃j,SM,1, K̃j); r̃j,com),

where m̂j,1 is the semi-malicious input encoding sent by Pj , comj is the perfectly-binding
commitment sent by Pj , and x̃j , r̃j,SM,1, K̃j , r̃j,com are the extracted values from before.

– If both equalities hold for all j ∈ I ∩ C, then the experiment generates WE.CTi in
the same way as in Hybrid0.

– If the equalities do not hold for some j ∈ I∩C, then the experiment instead computes
WE.CTi ←WE.Encrypt(1λ,ΦWE,i, 0

|ri,com|).

Because of the use of CCAVal, this hybrid runs in size O(T2) and polynomial depth.

• Hybrid2: This hybrid behaves identically to the previous hybrid, except for the following
difference. Whenever A submits a Corrupt Computation Encoding

mj,2 = (comj,m̂j,2 , {zk2,j→i,P }i∈I\{j},WEj)

on behalf of corrupted party Pj w.r.t. f and I, the experiment does the following:

1. Compute the extracted value

(x̃j , r̃j,SM,1, K̃j , r̃j,com)← CCAVal(τi, tagj , nmcj)

of Pj ’s CCA-non-malleable commitment for each i ∈ I \ C.
2. For each i ∈ I \ C, check if there exists a j ∈ I ∩ C such that:

– ZKVerify2(φzk,j,k, zk1,i,V , zk1,j,P , zk2,j→i,P) verifies, and

34

– Steps 2-5 of Φzk,j,i do not hold with respect to the extracted values x̃j , r̃j,SM,1, K̃j ,
r̃j,com and the input encoding phase of the protocol. Note that this is checkable in
polynomial time given the values x̃j , r̃j,SM,1, K̃j , r̃j,com.

3. If there does exist such a j, halt and output a special abort symbol ⊥∗.

Because of the use of CCAVal, this hybrid runs in size O(T2) and polynomial depth.

• Hybrid3: This hybrid behaves identically to the previous hybrid, except for the following
difference. Whenever A submits a Honest Computation Encoding query asking for
honest party Pi’s encoding w.r.t f and I, the experiment computes Pi’s ZK prover’s messages
zk2,i→j,P ← ZKSim(Φzk, σP , zk1,j,V) using the zero-knowledge simulator instead of generating
the message using the honest prover. This hybrid runs in size poly(T1 + T2) = poly(T2) and
depth T1 as we run the ZK Simulator and CCAVal.

• Hybrid4: This hybrid behaves identically to the previous hybrid, except for the following
difference. WheneverA submits a Honest Input Encoding query asking for honest party Pi’s
first message, the experiment generates nmci = CCACommit(1λ, tagi, 0

|xi|+|ri,SM,1,|+|Ki|+|ri,com|).
This hybrid runs in the same size and depth as the previous hybrid.

• Hybrid5: This hybrid behaves identically to the previous hybrid, except for the following
difference. Whenever A submits a Honest Input Encoding query asking for honest party
Pi’s first message, the experiment generates comi = NICommit(1λ, 0|xi|+|ri,SM,1,|+|Ki|). This hybrid
runs in the same size and depth as the previous hybrid.

• Hybrid6: This hybrid behaves identically to the previous hybrid, except for the following
difference. Whenever A submits a Honest Computation Encoding query asking for
honest party Pi’s encoding w.r.t f and I, the experiment uses true random strings when
computing the semi-malicious function evaluation encoding and the perfectly binding com-
mitment, instead of using PRF evaluations. In other words, the experiment computes
mi,2 ← SM.Eval(f, xi, ri,SM,1, I, ρsm,1; r) and comi,m̂i,2 ← NICommit(m̂i,2; r′), where r and r′

are freshly chosen randomness.

• Hybrid7: This hybrid behaves identically to the previous hybrid, except for the following
difference. Whenever A submits a Honest Computation Encoding query asking for honest
party Pi’s encoding w.r.t f and I, the experiment computes comi,m̂i,2 ← NICommit(0|m̂i,2|)
whenever the equalities checked in the steps for Hybrid1 do not hold. This hybrid runs in the
same size and depth as the previous hybrid.

• Hybrid8: This hybrid behaves identically to the previous hybrid, except for the following
differences. During the beginning of the protocol, the experiment initializes the semi-malicious
simulator with M and H. It then responds to the adversary’s queries in the following manner.

– Whenever A submits an Honest Input Encoding query asking for honest party Pi’s
input encoding with respect to some input xi, the experiment forwards xi to the ideal
functionality as Pi’s input, and then queries the semi-malicious simulator for a simulated
input encoding m̂i,1, which it uses when constructing the message

mi,1 = (m̂i,1, comi, nmci, τi, zk1,i,v, zk1,i,p)

to send to A.

35

– Whenever A submits a Corrupt Input Encoding query on behalf of Pj , j ∈ C, the
experiment extracts comj to obtain (x̃j , r̃j,SM,1, K̃j). If Pj ’s m̂j,1 is honestly generated,
the experiment submits (j, x̃j) to the ideal functionality. Otherwise it submits (j,⊥).

– Whenever A submits an Honest Computation Encoding query asking for honest
party Pi’s encoding w.r.t f and I, if the equalities checked in Hybrid1 hold, do the
following:

∗ If A has already received honest computation encodings with respect to (f, I) for
all other honest parties in I, and all corrupted parties in I have non-⊥ inputs, the
experiment sends (f, I) to the ideal functionality, and receives back the output y. It
sends (f, I, i, y) to the semi-malicious simulator, which replies with the semi-malicious
computation encoding m̂i,2 for Pi.

∗ If A has not already received all other honest computation encodings, or if some
corrupted parties in I have ⊥ as their extracted input, the experiment does not
query the ideal functionality and sends (f, I, i) to the simulator, which replies with
the semi-malicious computation encoding m̂i,2 for Pi.

The experiment then uses this m̂i,2 when constructing the message

mi,2 = (comi,m̂i,2 , {zk2,i→j,P }j∈I\{i},WEi)

to send to A. Note that if the equalities checked in Hybrid1 do not hold, the experiment
does not need to have a m̂i,2 message from Pi to respond to A, since comi,m̂i,2 and WEi
are a commitment and WE of 0, respectively.

– Whenever A submits a Corrupt Computation Encoding on behalf of corrupted
party Pj w.r.t. f and I, if all parties in I have submitted function evaluation encodings
for f , and if all parties’ ZK messages have verified correctly, their WEs have decrypted
correctly, and the special abort condition has not occurred, the experiment instructs the
ideal function to deliver the output y to the honest parties. If any ZK messages verify
incorrectly or if any WE fails to decrypt, the experiment instructs the ideal functionality
to deliver the output ⊥ to the honest parties.

This hybrid is identical to the behavior of the ideal-world experiment. Here the simulator runs
in size poly(T3) and depth T1.

We now describe indistinguishability between each pair of hybrids. The indistinguishability
between Hybrid0 and Hybrid1 follows from the soundness properties of the SPS ZK protocol and the
security of the Witness Encryption scheme. Because proving this indistinguishability is the most
involved, we dedicate a separate section to the proof.

6.1.3 Indistinguishability Between Hybrid0 and Hybrid1

Claim 1. Assuming:

• (CWE, ε)-security for the witness encryption scheme, where CWE is the class of circuits of size
p(T5) for all polynomials p and ε = 1/T5,

• The zero knowledge protocol is (Csound, εsound,1, εsound,2)-statistically sound, where Csound is the
class of circuits of size p(T5) and polynomial depth for all polynomials p, and εsound,1 = 1/T4,
and εsound,2 is any negligible function,

36

• The CCAVal extraction procedure for the CCA-non-malleable commitment scheme is a circuit
of size T2 and polynomial depth, and

• T2 � T4 � T5,

Hybrid0 is computationally indistinguishable from Hybrid1.

We prove this claim via a sequence of subhybrids, which we describe here. Let q = q(λ) be a
polynomial upper bound on the number of Honest Computation Encoding queries made by A.

• Hybrid0,0,0 is the same as Hybrid0.

• Hybrid0,k,r is the same as Hybrid0,k,r−1, except for the following differences. Whenever A
submits its `-th Honest Computation Encoding query asking for honest party Pi’s
encoding w.r.t f and I, the simulator does the following:

1. Compute the extracted value (x̃j , r̃j,SM,1, K̃j , r̃j,com) ← CCAVal(τi, tagj , nmcj) of Pj ’s
CCA-non-malleable commitment for each j ∈ I ∩ C.

2. For each j ∈ I ∩ C, check whether

m̂j,1 = SM.Encode(1λ, x̃j ; r̃j,SM,1)

and
comj = NICommit(1λ, (x̃j , r̃j,SM,1, K̃j); r̃j,com),

where m̂j,1 is the semi-malicious input encoding sent by Pj , comj is the perfectly-binding
commitment sent by Pj , and x̃j , r̃j,SM,1, K̃j , r̃j,com are the extracted values from before.

– If both equalities hold for all j ∈ I ∩ C, then the simulator generates WE.CTi in the
same way as in Hybrid0.

– If the equalities do not hold for some j ∈ I ∩ C, then if i ≤ k ∈ [n] \ C and if ` ≤ r,
the simulator instead computes WE.CTi ←WE.Encrypt(1λ,ΦWE,i, 0

|ri,com|).

• Hybrid0,n,q is the same as Hybrid1.

In the following, we denote with expt0,k,rA the output of the simulator during Hybrid0,k,r. Note
that for all k ∈ [n], Hybrid0,k,q = Hybrid0,k+1,0. Thus, to prove Claim 1, it is then sufficient to prove
the following claim.

Claim 2. For all k ∈ [n] and r ∈ [q], assuming: Assuming:

• (CWE, ε)-security for the witness encryption scheme, where CWE is the class of circuits of size
p(T5) for all polynomials p and ε = 1/T5,

• The zero knowledge protocol is (Csound, εsound,1, εsound,2)-statistically sound, where Csound is the
class of circuits of size p(T5) and polynomial depth for all polynomials p, and εsound,1 = 1/T4,
and εsound,2 is any negligible function,

• The CCAVal extraction procedure for the CCA-non-malleable commitment scheme is a circuit
of size T2 and polynomial depth, and

• T2 � T4 � T5,

Hybrid0,k,r is computationally indistinguishable from Hybrid0,k,r−1.

37

We will rely on several subclaims in order to prove Claim 2. First we introduce some notation.
Assume for the sake of contradiction that there exists an adversary (A,D) and an index (k, r)

such that A distinguishes between Hybrid0,k,r−1 and Hybrid0,k,r with non-negligible probability. That
is, assume that ∣∣∣Pr

[
D(expt0,k,rA) = 1

]
− Pr

[
D(expt0,k,r−1

A) = 1
]∣∣∣ ≥ 1/p(λ),

for some polynomial p. Fix some j∗ ∈ C, and consider the event that during Hybrid0,k,r−1 or
Hybrid0,k,r:

• A asks for Pk’s honest input encoding,

• A sends corrupted party Pj∗ ’s input encoding to S, where either m̂j,1 6= SM.Encode(1λ, x̃j ; r̃j,SM,1)
or comj 6= NICommit(1λ, (x̃j , r̃j,SM,1, K̃j); r̃j,com), and

• A’s r-th Honest Computation Encoding query asks for Pk’s encoding w.r.t. some (f, I)
such that j∗ ∈ I.

Define êxpt
0,k,r
A and êxpt

0,k,r−1
A to be the same as expt0,k,rA and expt0,k,r−1

A , except that whenever the
event above does not occur, the simulator outputs a “dummy evaluation”, where all parties behave
according to the honest input specification, have input 0, and evaluate the constant f(x1, . . . , xn) = 0
with I = [n]. Fixing the j∗ that maximizes the probability of A distinguishing these two experiments,
we then have that ∣∣∣Pr

[
D(êxpt

0,k,r
A) = 1

]
− Pr

[
D(êxpt

0,k,r−1
A) = 1

]∣∣∣ ≥ 1/p′(λ),

for some polynomial p′(λ).
Define PSk,j∗ to be the event that perfect soundness holds in the zero knowledge instance with

prover Pj∗ and verifier Pk which takes place during Hybrid0,k,η for η ∈ {r − 1, r}. Note that since
both hybrids are identical up to the r-th Honest Computation Encoding query, this event is
well-defined even if η is unspecified.

With this event defined, we can rewrite the probability

Pr
[
D(êxpt

0,k,r
A) = 1

]
as the following:

Pr
[
D(êxpt

0,k,r
A) = 1 | PSk,j∗

]
Pr
[
PSk,j∗

]
+ Pr

[
D(êxpt

0,k,r
A) = 1 | PSk,j∗

]
Pr
[
PSk,j∗

]
.

Claim 3. Assuming the zero knowledge protocol is (Csound, εsound,1, εsound,2)-sound where Csound,
εsound,1, and εsound,2 are as in Claim 2, it holds that

Pr
[
PSk,j∗] ≥ εsound,1.

Proof. Assume this is not the case. Then we construct a reduction R to the soundness mode
frequency property of the zero knowledge protocol. R is a circuit of size poly(T2) which does the
following:

1. Receive zk1,V from the challenger.

2. Run expt0,kA , using zk1,V as part of Pk’s input encoding whenever this encoding is requested
from A.

38

3. Whenever A sends an input encoding on behalf of Pj∗ , halt and output the zk1,j∗,P message
which is part of Pj∗ ’s input encoding.

By assumption, PSk,j∗ holds with probability < εsound,1. This means that E(τ1, σzk,V,k) = 1 with
probability < εsound,1. Thus R contradicts (Csound, εsound,1, εsound,2)-soundness of the zero knowledge
protocol.

Claim 4. Assuming the zero knowledge protocol is (Csound, εsound,1, εsound,2)-sound where Csound,
εsound,1, and εsound,2 are as in Claim 2, and the extractor CCAVal for the CCA-non-malleable
commitment scheme is a T2-size circuit, it holds that for all k and r,∣∣∣Pr

[
D(êxpt

0,k,r
A) = 1 | PSk,j∗

]
− Pr

[
D(êxpt

0,k,r
A) = 1 | PSk,j∗

]∣∣∣ ≤ εsound,2.
Proof. We prove the claim via a poly(T2)-size reduction to soundness of the zero knowledge protocol.
Assume for the sake of contradiction that∣∣∣Pr

[
D(êxpt

0,k,r
A) = 1 | PSk,j∗

]
− Pr

[
D(êxpt

0,k,r
A) = 1 | PSk,j∗

]∣∣∣ > εsound,2.

We construct the reduction R, which behaves as follows:

1. Receive zk1,V from the challenger.

2. Run a← êxpt
0,k
A using zk1,k,V = zk1,V whenever Pk’s input encoding is queried, where a is the

output of the experiment. Send zk1,j∗,P to the challenger. Output D(a).

Note that the probability that R distinguishes between soundness modes is exactly∣∣∣Pr
[
D(êxpt

0,k,r
A) = 1 | PSk,j∗

]
− Pr

[
D(êxpt

0,k,r
A) = 1 | PSk,j∗

]∣∣∣,
and thus R contradicts indistinguishability of soundness mode.

Claim 5. Assuming the existence of a distinguishing A as before, the zero knowledge protocol is
(Csound, εsound,1, εsound,2)-sound where Csound, εsound,1, and εsound,2 are as in Claim 2, and the extractor
CCAVal for the CCA-non-malleable commitment scheme is a T2-size circuit, it holds that for all k
and r, ∣∣∣Pr

[
D(êxpt

0,k,r
A) = 1 ∧ PSk,j∗

]
− Pr

[
D(êxpt

0,k,r−1
A) = 1 ∧ PSk,j∗

]∣∣∣ ≥ εsound,1/p(λ),

for some polynomial p(λ).

Proof. By Claim 3 the left-hand side of the inequality is at least∣∣∣ (Pr
[
D(êxpt

0,k,r
A) = 1 | PSk,j∗

]
− Pr

[
D(êxpt

0,k,r−1
A) = 1 | PSk,j∗

])
· εsound,1

∣∣∣.
So it suffices to show that∣∣∣Pr

[
D(êxpt

0,k,r
A) = 1 | PSk,j∗

]
− Pr

[
D(êxpt

0,k,r−1
A) = 1 | PSk,j∗

]∣∣∣ ≥ 1/p(λ)

for some polynomial p(λ).
Recall that by assumption we have∣∣∣Pr

[
D(êxpt

0,k,r
A) = 1

]
− Pr

[
D(êxpt

0,k,r−1
A) = 1

]∣∣∣ ≥ 1/poly(λ). (1)

39

We can lower-bound the left-hand side of (1) as∣∣∣ (Pr
[
D(êxpt

0,k,r
A) = 1 | PSk,j∗

]
− Pr

[
D(êxpt

0,k,r−1
A) = 1 | PSk,j∗

])
· Pr
[
PSk,j∗

]
+(

Pr
[
D(êxpt

0,k,r
A) = 1 | PSk,j∗

]
− Pr

[
D(êxpt

0,k,r−1
A) = 1 | PSk,j∗

])
· Pr
[
PSk,j∗

]∣∣∣,
which by claim Claim 4 is

≤
∣∣∣ (Pr

[
D(êxpt

0,k,r
A) = 1 | PSk,j∗

]
− Pr

[
D(êxpt

0,k,r−1
A) = 1 | PSk,j∗

])
· (Pr

[
PSk,j∗

]
+ Pr

[
PSk,j∗

]
)
∣∣∣

+ 2εsound,2 · Pr
[
PSk,j∗

]
.

(i.e., substitute out Pr
[
D(êxpt

0,k,r

A) = 1 | PSk,j∗
]

and Pr
[
D(êxpt

0,k,r−1

A) = 1 | PSk,j∗
]

for Pr
[
D(êxpt

0,k,r

A) = 1 |
PSk,j∗

]
+ εsound,2 and Pr

[
D(êxpt

0,k,r−1

A) = 1 | PSk,j∗
]

+ εsound,2, respectively.)

Thus,∣∣∣ (Pr
[
D(êxpt

0,k,r
A) = 1 | PSk,j∗

]
− Pr

[
D(êxpt

0,k,r−1
A) = 1 | PSk,j∗

]) ∣∣∣ ≥ 1/poly(λ)− 2εsound,2,

which proves the claim.

Claim 6. Assuming the “perfect soundness holds during soundness mode” property of the zero
knowledge argument, and (CWE, ε)-security for the witness encryption scheme, where CWE is the class
of circuits of size p(T5) for all polynomials p and ε = 1/T5, and T5 � T2, the size of the extraction
procedure CCAVal for the CCA commitment, it holds that for all k,∣∣∣Pr

[
D(êxpt

0,k,r
A) = 1 ∧ PSk,j∗

]
− Pr

[
D(êxpt

0,k,r−1
A) = 1 ∧ PSk,j∗

]∣∣∣ < εWE.

Proof. Fix a state state of the experiment just before the r-th Honest Computation Encoding.
We show that given such a state where PSk,j∗ holds,∣∣∣Pr

[
D(êxpt

0,k,r
A (state)) = 1

]
− Pr

[
D(êxpt

0,k,r−1
A (state)) = 1

]∣∣∣ < εWE.

We consider two cases. First is the case in which the “dummy evaluation” is triggered. In this

case, the output of both êxpt
0,k,r
A (state) and êxpt

0,k,r−1
A (state) are both drawn from exactly the same

distribution, and thus∣∣∣Pr
[
D(êxpt

0,k,r
A (state1)) = 1

]
− Pr

[
D(êxpt

0,k,r−1
A (state1)) = 1

]∣∣∣ = 0.

The second case is where the “dummy evaluation” is not triggered, i.e. where the following three
conditions are satisfied:

• A asks for Pk’s honest input encoding,

• A sends corrupted party Pj∗ ’s input encoding to S, where either m̂j,1 6= SM.Encode(1λ, x̃j ; r̃j,SM,1)
or comj 6= NICommit(1λ, (x̃j , r̃j,SM,1, K̃j); r̃j,com), and

• A’s r-th Honest Computation Encoding query asks for Pk’s encoding w.r.t. some (f, I)
such that j∗ ∈ I.

40

In this case, the difference between the two experiments is that when responding to the

r-th Honest Computation Encoding in êxpt
0,k,r−1
A (state), the simulator sends WE.CTk ←

WE.Encrypt(1λ,ΦWE,k, rk,com) to A on behalf of Pk, whereas in êxpt
0,k,r
A (state), the simulator sends

WE.CTk ←WE.Encrypt(1λ,ΦWE,k, 0
|rk,com|). Here ΦWE,k is the statement in Section 6.

Assume for the sake of contradiction that∣∣∣Pr
[
D(êxpt

0,k,r
A (state1)) = 1

]
− Pr

[
D(êxpt

0,k,r−1
A (state1)) = 1

]∣∣∣ ≥ εWE.

WLOG fix the randomness of A which maximizes this probability. Note that if A is deterministic
this means that state fully determines the statement ΦWE,k.

We build a reduction R which is of size T2 and contradicts security of the witness encryption
scheme. R has state hardcoded and does the following:

1. Receive WE.CTk ← WE.Encrypt(ΦWE,k,m) from the challenger, where m is either rk,com or
0|rk,com|, and ΦWE,k is the statement fixed by state and the randomness of A.

2. Run b ← D(ẽxpt
0,k,r−1
A (state1)), where ẽxpt

0,k,r−1
A (state1) is computed in the same way as

êxpt
0,k,r−1
A (state1), except using WE.CTk as Pk’s witness encryption during the r-th Honest

Computation Encoding.

If the challenger chooses m = rk,com then the experiment run by R is exactly the same as

êxpt
0,k,r−1
A (state); if the challenger chooses m = 0|rk,com| then the experiment is exactly the same

as êxpt
0,k,r
A (state). Note that the statement ΦWE,k is false because of perfect soundness of the zero

knowledge scheme. Thus R is a size-T2 machine which distinguishes between two different witness
encryptions for the same false statement, thus contradicting security of the witness encryption
scheme.

We now finish the proof of Claim 2 using the three claims proven above.

Proof of Claim 2. We directly achieve a contradiction by applying Claim 5 and Claim 6, along with
the fact that εsound,1 � εWE.

6.1.4 Indistinguishability Between Hybrid1 and Hybrid2

The proof of indistinguishability between Hybrid1 and Hybrid2 is very similar to the previous proof.
We include it for the sake of completeness.

Claim 7. Assuming:

• The zero knowledge protocol is (Csound, εsound,1, εsound,2)-statistically sound, where Csound is the
class of circuits of size p(T5) and polynomial depth for all polynomials p, and εsound,1 = 1/T4,
and εsound,2 is any negligible function,

• The CCAVal extraction procedure for the CCA-non-malleable commitment scheme is a circuit
of size T2 and polynomial depth, and

• T2 � T4 � T5,

Hybrid1 is computationally indistinguishable from Hybrid2.

41

We prove this claim via a sequence of subhybrids, which we describe here. Let q = q(λ) be a
polynomial upper bound on the number of Corrupt Computation Encoding queries made by
A.

• Hybrid1,0,0 is the same as Hybrid1.

• Hybrid1,k,r is the same as Hybrid1,k,r−1, except for the following differences. Whenever A
submits its `-th Corrupt Computation Encoding, on behalf of some corrupted party Pj
w.r.t. f and I, then the simulator does the following:

1. Compute the extracted value (x̃j , r̃j,SM,1, K̃j , r̃j,com) ← CCAVal(τi, tagj , nmcj) of Pj ’s
CCA-non-malleable commitment for each i ∈ I \ C.

2. For each i ∈ I \ C, i ≤ k, check if there exists a j ∈ I ∩ C such that:

– ZKVerify2(φzk,j,k, zk1,i,V , zk1,j,P , zk2,j→i,P) verifies, and

– Steps 2-5 of Φzk,j,i do not hold with respect to the extracted values x̃j , r̃j,SM,1, K̃j ,
r̃j,com and the input encoding phase of the protocol. Note that this is checkable in
polynomial time given the values x̃j , r̃j,SM,1, K̃j , r̃j,com.

3. If there does exist such a j, then if either i < k, or if i = k and ` ≤ r, halt and output a
special abort symbol ⊥∗.

• Hybrid1,n,q is the same as Hybrid2.

Note that for all k ∈ [n], Hybrid1,k,q = Hybrid1,k+1,0. Thus, to prove Claim 7, it is then sufficient
to prove the following claim.

Claim 8. For all k ∈ [n] and r ∈ [q], assuming: Assuming:

• The zero knowledge protocol is (Csound, εsound,1, εsound,2)-statistically sound, where Csound is the
class of circuits of size p(T5) and polynomial depth for all polynomials p, and εsound,1 = 1/T4,
and εsound,2 is any negligible function,

• The CCAVal extraction procedure for the CCA-non-malleable commitment scheme is a circuit
of size T2 and polynomial depth, and

• T2 � T4 � T5,

Hybrid1,k,r is computationally indistinguishable from Hybrid1,k,r−1.

We will rely on several subclaims in order to prove Claim 8. First we introduce some notation.
In the following, we denote with expt1,k,rA the output of the simulator during Hybrid1,k,r.

Assume for the sake of contradiction that there exists an adversary (A,D) and an index (k, r)
such that A distinguishes between Hybrid1,k,r−1 and Hybrid1,k,r with non-negligible probability. That
is, assume that ∣∣∣Pr

[
D(expt1,k,rA) = 1

]
− Pr

[
D(expt1,k,r−1

A) = 1
]∣∣∣ ≥ 1/p(λ),

for some polynomial p. Fix some j∗ ∈ C, and consider the event that during Hybrid1,k,r−1 or
Hybrid1,k,r:

• A asks for Pk’s honest input encoding,

• A sends corrupted party Pj∗ ’s input encoding to S, and

42

• A’s r-th Corrupt Computation Encoding query sends Pj∗ ’s computation encoding w.r.t.
some (f, I) such that k ∈ I,and the conditions for special abort hold with respect to this
encoding.

Define êxpt
1,k,r
A and êxpt

1,k,r−1
A to be the same as expt1,k,rA and expt1,k,r−1

A , except that whenever the
event above does not occur, the simulator outputs a “dummy evaluation”, where all parties behave
according to the honest input specification, have input 0, and evaluate the constant f(x1, . . . , xn) = 0
with I = [n]. Fixing the j∗ that maximizes the probability of A distinguishing these two experiments,
we then have that ∣∣∣Pr

[
D(êxpt

1,k,r
A) = 1

]
− Pr

[
D(êxpt

1,k,r−1
A) = 1

]∣∣∣ ≥ 1/p′(λ),

for some polynomial p′(λ).
Define PSk,j∗ to be the event that perfect soundness holds in the zero knowledge instance with

prover Pj∗ and verifier Pk which takes place during Hybrid1,k,η for η ∈ {r − 1, r}. Note that since
both hybrids are identical up to the r-th Corrupt Computation Encoding query, this event is
well-defined even if η is unspecified.

With this event defined, we can rewrite the probability

Pr
[
D(êxpt

1,k,r
A) = 1

]
as the following:

Pr
[
D(êxpt

1,k,r
A) = 1 | PSk,j∗

]
Pr
[
PSk,j∗

]
+ Pr

[
D(êxpt

1,k,r
A) = 1 | PSk,j∗

]
Pr
[
PSk,j∗

]
.

Claim 9. Assuming the zero knowledge protocol is (Csound, εsound,1, εsound,2)-sound where Csound,
εsound,1, and εsound,2 are as in Claim 8, it holds that

Pr
[
PSk,j∗] ≥ εsound,1.

Proof. Assume this is not the case. Then we construct a reduction R to the soundness mode
frequency property of the zero knowledge protocol. R is a circuit of size poly(T2) which does the
following:

1. Receive zk1,V from the challenger.

2. Run expt1,kA , using zk1,V as part of Pk’s input encoding whenever this encoding is requested
from A.

3. Whenever A sends an input encoding on behalf of Pj∗ , halt and output the zk1,j∗,P message
which is part of Pj∗ ’s input encoding.

By assumption, PSk,j∗ holds with probability < εsound,1. This means that E(τ1, σzk,V,k) = 1 with
probability < εsound,1. Thus R contradicts (Csound, εsound,1, εsound,2)-soundness of the zero knowledge
protocol.

Claim 10. Assuming the zero knowledge protocol is (Csound, εsound,1, εsound,2)-sound where Csound,
εsound,1, and εsound,2 are as in Claim 8, and the extractor CCAVal for the CCA-non-malleable
commitment scheme is a T2-size circuit, it holds that for all k and r,∣∣∣Pr

[
D(êxpt

1,k,r
A) = 1 | PSk,j∗

]
− Pr

[
D(êxpt

1,k,r
A) = 1 | PSk,j∗

]∣∣∣ ≤ εsound,2.
43

Proof. We prove the claim via a poly(T2)-size reduction to soundness of the zero knowledge protocol.
Assume for the sake of contradiction that∣∣∣Pr

[
D(êxpt

1,k,r
A) = 1 | PSk,j∗

]
− Pr

[
D(êxpt

1,k,r
A) = 1 | PSk,j∗

]∣∣∣ > εsound,2.

We construct the reduction R, which behaves as follows:

1. Receive zk1,V from the challenger.

2. Run a← êxpt
1,k,r
A using zk1,k,V = zk1,V whenever Pk’s input encoding is queried, where a is

the output of the experiment. Send zk1,j∗,P to the challenger. Output D(a).

Note that the probability that R distinguishes between soundness modes is exactly∣∣∣Pr
[
D(êxpt

1,k,r
A) = 1 | PSk,j∗

]
− Pr

[
D(êxpt

1,k,r
A) = 1 | PSk,j∗

]∣∣∣,
and thus R contradicts indistinguishability of soundness mode.

Claim 11. Assuming the existence of a distinguishing A as before, the zero knowledge protocol is
(Csound, εsound,1, εsound,2)-sound where Csound, εsound,1, and εsound,2 are as in Claim 8, and the extractor
CCAVal for the CCA-non-malleable commitment scheme is a T2-size circuit, it holds that for all k
and r, ∣∣∣Pr

[
D(êxpt

1,k,r
A) = 1 ∧ PSk,j∗

]
− Pr

[
D(êxpt

1,k,r−1
A) = 1 ∧ PSk,j∗

]∣∣∣ ≥ εsound,1/p(λ),

for some polynomial p(λ).

Proof. By Claim 9 the left-hand side of the inequality is at least∣∣∣ (Pr
[
D(êxpt

1,k,r
A) = 1 | PSk,j∗

]
− Pr

[
D(êxpt

1,k,r−1
A) = 1 | PSk,j∗

])
· εsound,1

∣∣∣.
So it suffices to show that∣∣∣Pr

[
D(êxpt

1,k,r
A) = 1 | PSk,j∗

]
− Pr

[
D(êxpt

1,k,r−1
A) = 1 | PSk,j∗

]∣∣∣ ≥ 1/p(λ)

for some polynomial p(λ).
Recall that by assumption we have∣∣∣Pr

[
D(êxpt

1,k,r
A) = 1

]
− Pr

[
D(êxpt

1,k,r−1
A) = 1

]∣∣∣ ≥ 1/poly(λ). (2)

We can lower-bound the left-hand side of (2) as∣∣∣ (Pr
[
D(êxpt

1,k,r
A) = 1 | PSk,j∗

]
− Pr

[
D(êxpt

1,k,r−1
A) = 1 | PSk,j∗

])
· Pr
[
PSk,j∗

]
+(

Pr
[
D(êxpt

1,k,r
A) = 1 | PSk,j∗

]
− Pr

[
D(êxpt

1,k,r−1
A) = 1 | PSk,j∗

])
· Pr
[
PSk,j∗

]∣∣∣,
which by claim Claim 10 is

≤
∣∣∣ (Pr

[
D(êxpt

1,k,r
A) = 1 | PSk,j∗

]
− Pr

[
D(êxpt

1,k,r−1
A) = 1 | PSk,j∗

])
· (Pr

[
PSk,j∗

]
+ Pr

[
PSk,j∗

]
)
∣∣∣

+ 2εsound,2 · Pr
[
PSk,j∗

]
.

44

(i.e., substitute out Pr
[
D(êxpt

1,k,r

A) = 1 | PSk,j∗
]

and Pr
[
D(êxpt

1,k,r−1

A) = 1 | PSk,j∗
]

for Pr
[
D(êxpt

1,k,r

A) = 1 |
PSk,j∗

]
+ εsound,2 and Pr

[
D(êxpt

1,k,r−1

A) = 1 | PSk,j∗
]

+ εsound,2, respectively.)

Thus,∣∣∣ (Pr
[
D(êxpt

1,k,r
A) = 1 | PSk,j∗

]
− Pr

[
D(êxpt

1,k,r−1
A) = 1 | PSk,j∗

]) ∣∣∣ ≥ 1/poly(λ)− 2εsound,2,

which proves the claim.

Claim 12. Assuming the “perfect soundness holds during soundness mode” property of the zero
knowledge argument, , it holds that for all k,∣∣∣Pr

[
D(êxpt

1,k,r
A) = 1 ∧ PSk,j∗

]
− Pr

[
D(êxpt

1,k,r−1
A) = 1 ∧ PSk,j∗

]∣∣∣ = 0.

Proof. This follows directly from the perfect soundness mode of the ZK argument scheme.

We now finish the proof of Claim 8 using the three claims proven above.

Proof of Claim 8. We directly achieve a contradiction by applying Claim 11 and Claim 12.

6.1.5 Proving Indistinguishability of the Remaining Hybrids

Claim 13. Assuming the ZK argument scheme satisfies (CS , Czk, εS)-adaptive reusable statistical
zero knowledge, where CS is the class of circuits of size poly(T1) and depth T1 (i.e. the simulator
runs in size poly(T1) and depth T1), and Czk is the class of circuits of size p(T3) for all polynomials
p, and εS is any negligible function, and the CCA extractor CCAVal is a circuit of size T2, where
T2 � T3, then for any polynomial time MPC adversary A and unbounded distinguisher D, we have

|Pr[D(Hybrid2) = 1]− Pr[D(Hybrid3) = 1]| < negl(λ)

for some negligible negl.

Proof. This can be done by introducing |[n] \ C| intermediate hybrids. For simplicity, we use n
hybrids, where ||C| hybrids are non-functional. We index each hybrid as Hybrid2,i for i ∈ [n].
Hybrid2,i is exactly the same as the same as Hybrid2,i−1 except that if i ∈ [n] \ C, every zk2,i→j,P is
now generated by running ZKSim(σzk1,i,P

,Φzk,i,j , zk1,j,V). Note that the final hybrid in the series is
exactly the same as Hybrid3. To prove the claim, it suffices to show indistinguishability between
each successive pair of subhybrids.

Assume for the sake of contradiction that (A,D) distinguishes between two successive subhybrids
Hybrid2,i and Hybrid2,i−1. We then construct a reduction (R,D) which breaks the statistical ZK
property of the zero knowledge protocol. R is a circuit of size poly(T2) and depth T1 and does the
following:

1. Receive zk1,P from the challenger.

2. Run Hybrid2,i−1 with A, using zk1,i,P = zk1,P (i.e. use the challenger’s round-one zk prover’s
message as the round-one prover’s message for Pi2 as part of its input encoding.

3. When A asks for an honest computation encoding from Pi w.r.t. f and I, for each j ∈ I \ {i},
send the message (Φzk,i,j ,Wzk,i, zk1,j,V) to the challenger, and receive a response zk2,i→j,P =
zk2,P from the challenger.

45

4. Generate Pi2 ’s honest computation encoding in the same way as in Hybrid2,i−1 except using
the challenger’s responses {zk2,i→j,P }j∈I\{i} as the ZK2 messages instead of generating them
honestly.

5. Output the result of the experiment.

If the challenger sends honestly generated proofs toR, then the output ofR is identical to Hybrid2,i−1;
otherwise, if the challenger simulates the proofs, then the output of R is identical to Hybrid2,i. Note
that R has size � T3; thus by assumption (R,D) contradicts (CS , Czk, εS)-statistical zero knowledge
of the zero knowledge protocol.

Claim 14. Assuming that the CCA non-malleable commitment scheme satisfies (C, ε)-CCA security
(Definition 18), where C contains all circuits of size poly(T1) where T1 is the size of the ZK simulator,
and ε is any negligible function, we have that for any polynomial time MPC adversary (A,D):

|Pr[D[Hybrid3] = 1]− Pr[D[Hybrid4] = 1]| ≤ negl(λ),

for some negligible negl.

Proof. We show this by constructing intermediate hybrids Hybrid3,i for i ∈ [n]. We define Hybrid3,i

to be identical to the previous hybrid except that if Pi is honest, nmci is generated as a non-malleable
commitment of all zero string with tag tagi during the Honest Input Encoding query. Note
that Hybrid3,0 is identical to Hybrid3 and Hybrid3,n is identical to Hybrid4. We show that for any two
intermediate hybrids Hybrid3,i−1 and Hybrid3,i, it holds that for any polynomial time distingusher D:

|Pr[D[Hybrid3,i−1] = 1]− Pr[D[Hybrid3,i] = 1]| ≤ negl(λ)

The only difference is how nmci is generated. If the advantage in distinguishing between the two
is more than 1

poly(λ) for some polynomial poly, then, we can create a reduction R that runs in

time poly(T1) and breaks the security of the one-round CCA commitment scheme with the same
advantage. Here is how the reduction works:

• R submits tag∗ = tagi to the CCA challenger.

• It runs the adversary (A,D) as in Hybrid3,i−1.

• R generates nmci′ for all i′ ∈ [n] \ C and i′ 6= i as in Hybrid3,i−1.

• For all Pi′ , i
′ ∈ [n] \ C, R sends a τ -query to the CCA challenger, and uses the response as the

string τi′ given the input encoding for Pi′ .

• When R receives the Honest Input Encoding query from A for Pi with input xi, it sends
α0 = (xi, ri,SM,Ki, ri,com) and α1 = 0|xi,ri,SM,Ki,ri,com| to the challenger of the non-malleable
commitment. It gets a response nmc∗ which is a commitment with respect to the tag tagi. It
it either a commitment of α0 or α1. The reduction uses this as nmci when constructing Pi’s
input encoding.

• Whenever Hybrid3,i−1 needs to extract a CCA commitment nmcj w.r.t. tagj and some honest
τi′ , R sends a query (τi′ , tagj , nmcj), and uses the response as the extracted value.

• Finally it outputs whatever D outputs.

46

Note that if nmc∗ is a commitment of α0, then the view is identical as in Hybrid3,i, otherwise it is
as in Hybrid3,i−1. The reduction runs in time polynomial in T1, since excluding the simulation for
ZK rest of the steps are polynomial time. Further, the CCAVal algorithm is never invoked for the
challenge tag tagi. Thus if D distinguishes between the two cases with probability 1

poly(λ) , then, it
must win in the CCA non-malleable commitment security game with the same advantage.

This proves the claim.

Claim 15. Assume that the perfectly binding commitment scheme is hiding against adversaries of
size poly(T2), where T2 is the size of the CCAVal circuit. Then we have that

|Pr[D[Hybrid4] = 1]− Pr[D[Hybrid5] = 1]| ≤ negl(λ)

for some negligible negl.

Proof. We show this by constructing intermediate hybrids Hybrid4,i for i ∈ [n]. We define Hybrid4,i

to be identical to the previous hybrid except that if Pi is honest, comi is generated as a non-malleable
commitment of all zero string during the Honest Input Encoding query. Note that Hybrid4,0 is
identical to Hybrid4 and Hybrid4,n is identical to Hybrid5. We show that for any two intermediate
hybrids Hybrid4,i−1 and Hybrid4,i, it holds that for any polynomial time distingusher D:

|Pr[D[Hybrid4,i−1] = 1]− Pr[D[Hybrid4,i] = 1]| ≤ negl(λ)

The only difference is how comi is generated. Assume there is an (A,D) where the distinguishing
advantage between the two is more than 1

poly(λ) for some polynomial poly. Then we can create a

reduction R that runs in time poly(T2), and contradicts hiding of the commitment scheme. First,
fix the randomness of A and all randomness in Hybrid4,i−1 and Hybrid4,i except for that used to
generate Pi’s perfectly-binding commitment comi. There must be a way to fix this randomness so
that (A,D) still has advantage 1

poly(λ) in distinguishing the two hybrids. Note also that this fixes
the input xi which A chooses for Pi, and thus fixes the committed value in Hybrid4,i. The reduction
then works as follows:

• It runs the adversary (A,D) as in Hybrid4,i−1.

• The reduction generates comj for all j ∈ [n] \ C and j 6= i as in Hybrid4,i−1.

• When the reduction receives an Honest Input Encoding request from A for Pi with input
xi, it sends α0 = (xi, ri,SM,Ki) and α1 = 0|xi,ri,SM,Ki| to the challenger of the perfectly binding
commitment. It gets a response com∗. It it either a commitment of α0 or α1. The reduction
uses this in constructing Pi’s input encoding

• The reduction runs the rest of the experiment exactly the same as Hybrid4,i−1.

Note that if com∗ is a commitment of α0, then the view is identical as in Hybrid4,i, otherwise it is as
in Hybrid4,i−1. The reduction runs in time polynomial in T2. Thus if D distinguishes between the

two cases with probability 1
poly(λ) , then, it contradicts hiding of the perfectly binding commitment

scheme against adversaries of size poly(T2).
This proves the claim.

Claim 16. Assume that the PRF is secure against adversaries of size poly(T2), where T2 is the size
of the CCAVal circuit. Then we have that

|Pr[D[Hybrid5] = 1]− Pr[D[Hybrid6] = 1]| ≤ negl(λ)

for some negligible negl.

47

Proof. We show this by constructing intermediate hybrids Hybrid5,i for i ∈ [n]. We define Hybrid5,i

to be identical to the previous hybrid except that if Pi is honest, then during any the Honest
Computation Encoding query for Pi the hybrid generates m̂i,2 and comi,m̂i,2 using true randomness
instead of the PRF evaluations. Note that Hybrid5,0 is identical to Hybrid5 and Hybrid5,n is identical
to Hybrid6. We show that for any two intermediate hybrids Hybrid5,i−1 and Hybrid5,i, it holds that
for any polynomial time distinguisher D:

|Pr[D[Hybrid5,i−1] = 1]− Pr[D[Hybrid5,i] = 1]| ≤ negl(λ)

Assume there is an (A,D) where the distinguishing advantage between the two is more than 1
poly(λ)

for some polynomial poly. Then we can create a reduction R that runs in time poly(T2), and
contradicts security of the PRF. The reduction works as follows:

• It runs the adversary (A,D) as in Hybrid5,i−1.

• The reduction generates computation encodings for all j ∈ [n] \ C and j 6= i as in Hybrid5,i−1.

• Whenever a Honest Computation Encoding query is made requesting Pi’s encoding, R
makes two queries to the PRF oracle at indices (f, I, 1) and (f, I, 2), receiving strings r1 and
r2. It then uses r1 as the randomness when computing m̂i,2, and uses r2 as the randomness
when computing comi,m̂i,2 .

• The reduction runs the rest of the experiment exactly the same as Hybrid5,i−1.

Note that if the oracle is supplying PRF values, then the view is identical as in Hybrid5,i. If the
oracle is supplying true random values, the view is as in Hybrid5,i−1. The reduction runs in time

polynomial in T2. Thus if D distinguishes between the two cases with probability 1
poly(λ) , then, it

contradicts security of the PRF against adversaries of size poly(T2).
This proves the claim.

Claim 17. Assume that the perfectly binding commitment scheme is secure against adversaries of
size poly(T2), where T2 is the size of the CCAVal circuit. Then we have that

|Pr[D[Hybrid6] = 1]− Pr[D[Hybrid7] = 1]| ≤ negl(λ)

for some negligible negl.

Proof. We show this by constructing intermediate hybrids Hybrid6,i,r for i ∈ [n], r ∈ [q], where q is
a (polynomial) upper bound on the total number of Honest Computation Encoding queries
that A makes. We define Hybrid6,i,r to be identical to the previous hybrid except that if Pi is
honest, then during the r-th Honest Computation Encoding query for Pi, the hybrid computes
comi,m̂i,2 ← NICommit(0|m̂i,2|) whenever the equalities checked in the steps for Hybrid1 do not hold.
Note that Hybrid6,i,q = Hybrid6,i+1,0, Hybrid6,1,0 = Hybrid6, and Hybrid6,n,q = Hybrid7. We show that
for any two intermediate hybrids Hybrid6,i,r−1 and Hybrid6,i,r, it holds that for any polynomial time
distinguisher D:

|Pr[D[Hybrid6,i,r−1] = 1]− Pr[D[Hybrid6,i,r] = 1]| ≤ negl(λ)

Assume there is an (A,D) where the distinguishing advantage between the two is more than
1

poly(λ) for some polynomial poly. Then we can create a reduction R that runs in time poly(T2),
and contradicts security of the PRF. First, fix the randomness used in all rounds before the r-th

48

Honest Computation Encoding made to Pi. Let (f, I) be this r-th query. In particular, this
fixes whether or not the equalities check in the steps for Hybrid1 hold w.r.t. Pi, f and I. It also
fixes Pi’s semi-malicious MrNISC message m̂i,2 which it computes when computing its r-th honest
computation encoding. If we fix the randomness such that the distinguishing advantage is maximized,
then the distinguishing advantage must still be polynomial in λ. This means that the equalities
must not hold, otherwise the two hybrids are identical.

The reduction R then works as follows. It plays a game with a commitment challenger, which
either gives a commitment to m̂i,2 or 0|m̂i,2| R does the following:

• It runs the adversary (A,D) as in Hybrid6,i,r−1, with the randomness fixed as described above.

• When A submits the r-th Honest Computation Encoding, R queries the challenger to get com,
which it then uses as comi,m̂i,2 when generating its response on behalf of Pi.

• R runs the rest of the experiment in the same way as Hybrid6,i,r−1.

Note that if the challenger sends R a commitment to m̂i,2, then the view is identical to that
in Hybrid6,i,r−1. If the challenger sends a commitment to 0|m̂i,2|, the view is as in Hybrid6,i,r. The
reduction runs in time polynomial in T2. Thus if D distinguishes between the two cases with
probability 1

poly(λ) , then, it contradicts the hiding of the perfectly binding commitment scheme

against adversaries of size poly(T2).
This proves the claim.

Claim 18. Assuming semi-malicious security of the underlying semi-malicious protocol holds against
poly(T3)-time adversaries, where T3 is the size of the NICommit commitment scheme extractor,

|Pr[D[Hybrid7] = 1]− Pr[D[Hybrid8] = 1]| ≤ negl(λ).

Proof. Assume for the sake of contradiction that there exists an adversary (A,D) which distinguishes
between the two hybrids with non-negligible probability. We build a reduction (R,D) to the semi-
malicious security of the underlying semi-malicious MrNISC protocol. R runs in time p(T3), and
behaves as follows. First, R is initialized with 1λ and z; it then invokes A with the same 1λ and z.
When A chooses M and H, R forwards these to the challenger. R then interacts with A and the
challenger as follows:

1. Whenever A submits an Honest Input Encoding query asking for honest party Pi’s input
encoding with respect to input xi, R sends the same Honest Input Encoding query for Pi
to the semimalicious challenger. It then uses the response m̂i,1 when computing Pi’s input
encoding for A.

2. Whenever A submits a Corrupt Input Encoding query on behalf of Pj , j ∈ C, R extracts
comj to obtain (x̃j , r̃j,SM,1, K̃j). If Pj ’s m̂j,1 is honestly generated, then R submits m̂j,1 to the
challenger as Pj ’s message, along with the explanation (j, x̃j , rj,SM,1). Otherwise, R submits
(j,⊥).

3. Whenever A submits an Honest Computation Encoding query asking for honest party Pi’s
encoding w.r.t f and I, if the equalities checked in Hybrid1 hold, R sends the same Honest
Computation Encoding query to the challenger. It uses the (semi-malicious) response
m̂i,2 when constructing Pi’s (malicious) response to A’s query. If the checks do not hold, R
responds to A without querying the challenger.

49

4. Whenever A submits a Corrupt Computation Encoding on behalf of corrupted party Pj
w.r.t. f and I, if R already submitted (j,⊥) as Pj ’s input encoding, then R submits the query
(j, f, I,⊥). Otherwise, R performs the “special abort” check (steps 1 to 3 in the simulator
description) and outputs the special abort symbol ⊥∗ if the check fails. If the check passes, R
checks that

(a) All ZK2 messages sent by Pj as part of its computation encoding verify correctly.

(b) Pj ’s WE decrypts correctly. (R can do this by generating computation encodings “in the
head” for any honest parties Pi who have not already sent their computation encodings.)

If so, R forwards m̂j,2 along with the witness (x̃j , r̃j,SM,1, K̃j) to the challenger. Otherwise, R
again submits the query (j, f, I,⊥).

5. At the end of the experiment, R outputs the output of A.

If the challenger enacts the real-world experiment for the semi-malicious protocol, then the output
of R, the transcript τ of queries made by A along with R’s responses, and the list honest outputs
are identical to the view of A along with τ in the output of Hybrid7. If the challenger enacts the
ideal-world game, then the output of R, τ , and honest outputs are identical to A’s view and τ in the
output of Hybrid8. Thus by assumption we have a distinguisher (R,D) which contradicts security of
the semi-malicious MrNISC against adversaries running in time poly(T3).

7 Construction of One-Round CCA-Non-Malleable Commitments

This section is dedicated to constructing one-round simultaneous-message CCA-non-malleable
commitments (CCA-NMCs) which satisfy the syntax and security requirements given in Section 5.2.
We start with a high-level overview of the construction in Section 7.1, and then in Section 7.2 we
give a formal description of the construction along with its security proof.

7.1 A High-Level Overview

Tag amplification. Our main contribution comes in the form of a tag-amplification construction,

which compiles a commitment scheme with tag space T , |T | = t, into one with

(
t
t/2

)
tags. At a

very high level, we do the following. In the resulting commitment scheme, each tag T is of the form
{s1, . . . , st/2}, where si ∈ T is a tag in the original scheme. A commitment ({csi}i∈[t/2], π) under
tag T consists of commitments csi under each tag si, along with a privacy-preserving proof π that
all commitments are to the same underlying message. We call the commitments {csi}i∈[t/2] the
inner-tag commitments. Let us think about how we would reduce security of this scheme to security
of the underlying inner-tag scheme. Intuitively, since we have a proof that all commitments are to
the same value, during the CCA game we are not required to extract all the commitments, rather
we only need to extract one csi for each commitment ({csi}i∈[t/2], π). If the challenge tag is T ∗, we
can find an inner tag si for each query tag T such that si /∈ T ∗, and extract the corresponding
commitment csi when queried on tag T . Since we are not extracting any commitments with inner
tags s∗ ∈ T ∗, we should be able to switch the challenge inner-tag commitments from m0 to m1 one
by one, relying on CCA security of the inner-tag scheme.

This high-level approach was introduced in [KS17] and was additionally used in [BL18, Khu21].
The challenge with this strategy is to find a proof that has the privacy and round complexity
requirements we need. Ideally, we want a zero-knowledge argument, so that we can simulate when

50

switching each inner-tag commitment from m0 to m1. It is well-known that non-interactive zero
knowledge does not exist in the plain model; the main technical contributions of [BL18] and [Khu21]
are in finding a way to get around this.

In the following, we describe the techniques of [Khu21], the issues in these techniques mentioned
earlier, and how we solve them.

Khurana’s construction and our modifications. As stated before, the main technical contri-
bution of [Khu21] is a tag-amplification procedure. Starting from a one-round CCA commitment
scheme for small tags (say tags lie in [T ′] where T ′ = log log λ), they build a two round scheme with
a much larger tag space (say supporting tags in [T] where T = T ′Ω(T ′)). This transformation can be
applied once again on top of the resulting scheme to get a scheme supporting a super-polynomial
number of tags. Thus, a constant number of applications suffice to construct a scheme for 2Ω(λ)

tags. At the base level, we can use the non-interactive scheme supporting say log . . . log︸ ︷︷ ︸
O(1) times

λ tags

from [LPS17], based on time-lock puzzles and perfectly-binding non-interactive commitments. (This
scheme does not satisfy full CCA-security since it has the problems of over-extraction and same-tag
non-malleability, but this notion is enough for their transformation. We explain these two problems
and discuss how to address them in the inner commitment later.)

We first explain why Khurana’s scheme is a two round scheme. In the scheme of [Khu21], the
committer’s message is an obfuscated program P . The receiver’s message is a uniform random string
τ , which is used as input to P in order to verify the commitment. Importantly, the committed value
is only fixed once both P and τ are fixed; in particular, the committer’s opening is computed based
on τ as well as P . Also, for security to hold, P cannot be chosen after seeing τ . Because of this, the
receiver’s message must be sent in round 2. If one is willing to accept a weaker security guarantee,
it is possible to have the receiver compute τ privately in her head, and to also carry out the
verification of the commitment privately. The committer’s opening can then be the randomness used
to generate the obfuscation. However, using the commitment in this way introduces the possibility
of over-extraction,6 where the Extract algorithm sometimes outputs a non-⊥ value even though
the commitment is invalid and has no opening. Over-extraction is a problem in the construction
of [Khu21] because it is impossible to test for a well-formed obfuscation based on a polynomial
number of queries to the obfuscated program. Because of this, is only possible to achieve a weaker
notion of security, called non-malleability with respect to extraction, which is insufficient for our
purposes.

We now describe the scheme of [Khu21] in more detail. The tag-amplification procedure
makes use of a base commitment scheme nmc = (CCACommit,CCAVal) for small tags in [T ′] where
T ′ = log . . . log︸ ︷︷ ︸

O(1) times

λ, an indistinguishability obfuscator iO, a public-key encryption scheme PKE with

dense public keys, a non-interactive witness indistinguishable proofs NIWI, a puncturable PRF
PPRF, and a one-way permutation OWP : {0, 1}`OWP → {0, 1}`OWP (actually a one-way function with
verifiable range suffices, but we describe using a permutation for simplicity).

The scheme follows a variant of the general strategy for tag amplification discussed above. The
tag space of the resulting scheme consists of subsets of [T ′] of size exactly T ′/2. Thus, T =

(
T ′

T ′/2

)
.

The idea is the following: to commit to a message m with respect to tag ∈ [T], parse tag as
(t1, . . . , tT ′/2) where each ti ∈ [T ′]. Then, the commitment simply consists of an iO obfuscation of
the program described in Figure 2, where pk and the PPRF key KPPRF are freshly sampled by the

6We note that over-extraction of this commitment used in this way is possible even if the inner commitment does
not suffer from over-extraction.

51

committer and hardwired into the program. When evaluated on a random input τ , the obfuscated
program returns a set of inner-tag commitments along with a special “trapdoor commitment” c0

along with a proof either that they are consistent or that c0 commits to OWP−1(τ). Note that if we
are able to make this strategy work, it will also fix the problem of over-extraction: even if the inner
scheme suffers from over-extraction, the resulting outer scheme does not, because soundness of the
proofs guarantees that all inner commitments are well-formed.

The Circuit G[t1, . . . , tT ′/2,m,KPPRF, pk]

Hardwired: Tags (t1, . . . , tT ′/2) ∈ [T ′]T
′/2, Message m and PPRF key KPPRF, public key pk,

Input: τ ∈ {0, 1}`OWP

Computation:

1. Compute r ← PPRF.Eval(KPPRF, τ) and parse r = (r1, r2,1, . . . , r2,T ′/2, r3). Compute:

• c0 = PKE.Enc(pk, 0`OWP ; r1),

• For i ∈ [T ′/2], compute ci = CCA′.CCACommit(ti,m; r2,i),

• Compute π = NIWI.P(X,W ; r3) where X = (c0, c1, . . . , cT ′/2) and W = (m, {r2,i}i∈[T ′]) are
so that (X,W) ∈ LG for the language LG defined below.

2. Output (c0, c1, . . . , cT ′/2, π).

Language LG = LG1 ∨ LG,2:

LG,1 =
{

(c0, c1, . . . , cT ′/2) |∃x ∈ {0, 1}`OWP s.t. c0 = Enc(pk, x) ∧ OWP(x) = τ
}

LG,2 =
{

(c0, c1, . . . , cT ′/2) |∃m s.t. ∀i ∈ [T ′/2], ci = CCA′.CCACommit(ti,m)
}

Figure 2: The Circuit G[t1, . . . , tT ′/2,m, kPPRF]

Recall that the strategy for tag amplification given in the beginning of this section seems to
require a zero-knowledge argument in order to work. Since one-message zero-knowledge does not
exist, the hope is that generating commitments this way can be useful to revive this approach. As
explained above, a receiver can evaluate the program on a randomly chosen input τ to compute
(c0, c1, . . . , cT ′/2, π). If π verifies, then this means that unless c0 is an encryption of OWP−1(τ),
c1, . . . , cT ′/2 must be well-formed nmc commitments of the same message m. To switch the challenge

commitment from m0 to m1, one can go “input-by-input”. For α ∈ [0, 2`OWP − 1], we switch the
obfuscated circuit to commit to m1 as opposed to m0 when the input τ ≤ α. To do so, we need to
hardwire non-uniformly β = OWP−1(α) into the reduction at each hybrid so that the reduction can
generate c0 by encrypting β and using it to prove NIWI. For the security arguments to go through,
it requires that the public-key encryption, NIWI and the base commitments are more secure with an
advantage of at least 2−`OWP .

This yields the following contradiction. On the one hand, public-key encryption needs to be
more secure than the OWP to argue security. On the other hand, we need OWP to be secure against
the time it takes to break c0 to extract a pre-image of τ chosen by the challenger to show that the
adversary does not query the CCAVal algorithm on non-well formed commitments.

The security proof of [Khu21] is not able to handle this problem in the general case. Conse-
quently, [Khu21] was forced to restrict the proof of security to only work in the case where all

52

the receivers’ randomnesses {τ} are chosen after declaring the set of commitments that would be
queried to the CCAVal oracle. In this case, the following clever idea given in [Khu21] offers a simple
fix. Since the commitment programs {Pi} are fixed by the adversary before receiving anything from
the CCAVal oracle, a non-uniform reduction can take as advice the secret-keys {ski} associated with
the public keys {pki} used in the {Pi}. If a program Pi produces “bad” outputs (c0, c1, . . . , cT ′/2, π)

on a large fraction of points τ , then one can recover inverses of OWP−1(τ) using the secret key ski
provided as advice. This gives a non-uniform reduction to the security of OWP.

There is another reason why the construction of [Khu21] only provides security in this restricted
setting. On the one hand, nmc needs to be much more secure than OWP to argue indistinguishability,
since the number of hybrids which rely on nmc security is proportional to the domain size of OWP,
which is exponential in the security parameter of OWP. On the other hand, in order to prove that
adversaries cannot use the trapdoor in the NIWI, we must construct a reduction to OWP which can
run nmc.CCAVal(?). Again, this problem does not arise if the adversary outputs commitments Pi
for which CCAVal is queried before interacting with the CCAVal oracle, since in this case a cheating
adversary will have already inverted OWP before the reduction needs to run nmc.CCAVal(?). However,
in the more general case, this is still an issue.

In order to fix this issue and to achieve full CCA-non-malleable commitments in one round,
our main idea is to introduce a new axis of hardness. The tool we use to do this are time-lock
puzzles with carefully chosen parameters. Recall that in a time-lock puzzle, one can generate a
puzzle/commitment c0 = PGen(tTLP, λ,m) for any tTLP = λω(1) where the puzzle has following
properties:

• The message m can be recovered by an algorithm Solve that runs in time/depth dTLP,Ext,
which is more than poly(λTLP) but less than 2λtlp.

• There exists a constant 0 < ε < 1, such that any circuit of depth dε, but with size even as large
as 2λTLP , the advantage in distinguishing a puzzle/commitment of m0 from m1 is bounded by
2−λ.

We will change c0 to be a time-lock puzzle with parameters dTLP,Ext and λTLP chosen carefully. In
particular, we set dTLP,Ext � 2` � 2λTLP , where ` is the input size and security parameter for the one-
way permutation. As described before, the program P on input τ , will produce (c0, c1, . . . , cT ′/2, π)

where π will prove that either c0 is a TLP commitment of OWP−1(τ) or c1, . . . , cT ′/2 are all well-
formed commitments of m. In contrast to before, now it is possible to have one reduction, which
runs in time and depth poly(dTLP), in which c0 is broken yet the one-way permutation is secure, and
to have another reduction, which runs in depth dεTLP, under which the advantage in distinguishing
the value committed to by c0 is 2−λTLP , which is much less than 2−`.

We have fixed one part of the problem, however we still need to deal with the issue regarding
the inner commitment nmc. Again, we need two different reductions with seemingly contradictory
requirements. The first reduction should be able to run nmc.CCAVal to extract nmc commitments,
and the one-way permutation should be secure for this reduction. The second reduction plays the
CCA non-malleability game with respect to the nmc, and should have advantage much less than
2−` in distinguishing.

Ideally, in order to achieve these two different reductions, we would like nmc to have properties
similar to a time-lock puzzle. That is, we would like that nmc.CCAVal can be run in depth dTLP,
whereas for any machine playing the CCA game which runs in depth less than dεTLP and up to
2λnmc size, the distinguishing advantage is much less than 2−`. Unfortunately, we do not know of
any base CCA-non-malleable nmc scheme which satisfies these properties. However, consider the

53

following simple black-box modification of a commitment scheme nmc. We take such a scheme nmc
(which can be instantiated with, e.g., [LPS17]) and a time-lock puzzle and produce a new nmc′

which works as follows. Let dCCAVal and TCCAVal be the depth and size required to run nmc.CCAVal.
A commitment to a message m with respect to nmc′ consists of a tlp-based commitment c′ to m,
along with a commitment P under nmc to m along with the randomness r used to generate the
tlp-based commitment c′. The CCA commitment nmc is instantiated with security parameter λ,
and the tlp-based commitment is instantiated so that it is extractable in depth dTLP � dCCAVal,
but machines running in depth poly(dCCAVal) and size poly(TCCAVal) have advantage at most 2−λ in
distinguishing. It is not hard to show that nmc′ is CCA-secure with advantage 2−λ. In addition, we

now have a new “weak” extraction algorithm nmc′.C̃CAVal, which runs in depth dTLP; nmc′.C̃CAVal
simply extracts the TLP-based commitment to m. For any commitment (c′,P) which is honestly

generated, the extracted values from nmc′.CCAVal and nmc′.C̃CAVal are equal. Unfortunately, for
commitments which are not honestly generated, no such guarantee exists.7

The bulk of our technical contributions in this section involves constructing (1) a complexity
hierarchy and (2) a careful sequence of hybrids, which allows us to use an inner commitment with
this weak version of extraction in order to achieve security. With these two pieces, we are able to

use the (perfect) soundness of the NIWI in order to avoid using C̃CAVal on dishonestly-generated
inner commitments. Full details are in the next section.

Technical Remarks. Before we describe our construction, we mention a technical issue. The
underlying non-malleable commitments such as [LPS17, KK19] have two issues that we have to deal
with:

• As mentioned before, they satisfy security with one-tag restriction, and,

• To support Ω(log log λ), assuming subexponential security of the underlying assumptions,
these schemes are only quasi-polynomially secure. Thus, our transformation should work with
those parameters.

Our transformation below actually works with a quasi-polynomially secure base commitment.
For the first problem, we follow as in [Khu21], and take a one-round nmc with one-tag restriction
and convert it to a (simultaneous-message) one-round scheme for the same number of tags, but
without this restriction. This transformation is extremely similar to our tag-amplification, and we
sketch this in Section 7.3.

7.2 The Construction and Security Proof

In this section, we prove the following theorem.

Theorem 7. Assume the existence of a subexponentially-secure indistinguishability obfuscation
(iO) scheme, subexponential SXDH, and subexponential time-lock puzzles. Then, there exists a
subexponentially-secure one-round CCA commitment scheme supporting a super-polynomial number
of tags.

7Note that this is similar to but different than overextraction. In overextraction, there is a single extraction
procedure CCAVal which might extract values when no opening exists, but CCA non-malleability still holds with
respect to CCAVal. In our setting, there are two extraction procedures, but CCA non-malleability only holds with
respect to one of them.

54

As a starting point, we make use of a one-round CCA commitment CCA′ with security parameter
λCCA′ for small tag space T ′(λCCA′). The tag-space T ′(λCCA′) is at least log . . . log(λCCA′)︸ ︷︷ ︸

O(1) times

and at

most some polynomial λO(1).
At the end of a single step of this transformation, we will get another scheme CCA supporting

the larger tag space T (λ) where T = T ′Ω(T ′/2). Applying the transformation a constant number of
times we will get the scheme with a superpolynomial number of tags.

Required Primitives. We make use of the following primitives and instantiate them with the
following parameters. These instantiated parameters for the primitives we use are loose for what
we require. The circuit classes and advantages of various primitives and their relation/complexity
hierarchy is described below. Let TAdv be the size of circuits against which we want security.

• One-way Permutation: We require a one-way permutation OWP.

– The length of the output/input is `.

– It is secure against adversaries running in time TOWP = 2`
c

with advantage at most
εOWP = 2−`

c
for some constant c > 0.

This can be instantiated using subexponential SXDH.

• One-round CCA commitments: We require a one-round CCA commitment CCA′ with small
tag space T ′(λCCA′) that is at least log . . . log λ︸ ︷︷ ︸

O(1) times

and at most a polynomial in λ.

– The commitment satisfies CCA security against adversaries of size polynomial in TAdv
with advantage εCCA′ = 2−λCCA′ .

– The extraction algorithm CCAVal′ has size TCCAVal′ (which is larger than 1/εCCA′) and
depth dCCAVal′ .

– There is an alternate extraction algorithm C̃CAVal
′
, which has depth d

C̃CAVal
′ � dCCAVal′

and size polynomial in d
C̃CAVal

′ , and where for all λ, m, and tag, it holds that

Pr

[
C̃CAVal

′
(τ, tag,P) = CCAVal′(τ, tag,P)

∣∣∣∣∣ P← CCACommit(1λ, tag,m)

τ
$←− {0, 1}`CCA′

]
= 1

We explain how to instantiate this below. It can be instantiated using subexponential time-lock
puzzles and subexponential SXDH.

• Time Lock Puzzles: We require a time lock puzzle as in Definition 4. The TLP satisfies the
following parameters.

– It is solvable by a circuit of depth dTLP,Ext and size polynomial in dTLP,Ext.

– It is secure against circuits of depth � dTLP,Ext and size 2λTLP , with an advantage of at
most 2−λTLP .

• Indistinguishability Obfuscation: We require an indistinguishability Obfuscator iO. We assume
that iO is secure against adversaries of size 2λother with advantage at most 2−λother .

55

• Puncturable PRF : We require a puncturable PRF, PPRF = (Puncture,Eval). Assume the
length of the key is randomly chosen of length `PPRF(λ) where λ is its security parameter.
We assume that the PPRF is secure against adversaries of size 2λother with advantage at most
2−λother . This can be instantiated assuming subexponential SXDH.

• NIWI : We require a non-interactive witness indistinguishable proof NIWI for NP. We assume
that the NIWI is perfectly sound, and satisfies witness indistinguishability against adversaries
of size 2λother with advantage at most 2−λother . This can be instantiated using subexponential
SXDH.

Complexity hierarchy. We require the following:

TAdv � dCCAVal′ � d
C̃CAVal

′ = dTLP,ext � TOWP � 2` � 2λ
′
CCA � TCCAVal′ � 2λTLP , 2λother .

The above hierarchy implies the following, in terms of advantage:

2−` � 2λCCA′ , 2−λTLP , 2λother ,

This means that the advantage against security of the timelock puzzle, the obfuscation scheme, the
puncturable PRF, and the witness indistinguishability of the NIWI are much less than 2−` for a
machine that runs in time poly(TCCAVal′) and depth dCCAVal′ , and the advantage against security of
CCA′ is much less than 2−` for a machine that runs in time poly(TAdv) and depth dAdv.

Instantiating CCA′. To instantiate a commitment CCA′ which has the alternate extraction

procedure C̃CAVal
′

as described above, it suffices to combine the following two primitives:

• A CCA non-malleable commitment scheme CCA′′ which satisfies CCA security against ad-
versaries of size polynomial in TAdv with advantage εCCA′ = 2−λCCA′ , and has an extraction
algorithm CCAVal′′ that runs in size TCCAVal′ and depth dCCAVal′

• a time-lock puzzle which is secure against circuits of depth � d
C̃CAVal

and size poly(TCCAVal′

with advantage 2−λCCA′ , but is solvable by a circuit of depth d
C̃CAVal

.

We combine them in the following simple way.

CCA′.CCACommit(tag,m): Compute the following steps.

• Compute a commitment c′ to m using the TLP-based non-interactive commitment and
uniform randomness r.

• Compute a commitment P to (m, r) using CCA′′.CCACommit with respect to tag r.

• Output (P, c′).

CCA′.ComputeOpening(τ, tag, (P, c′)): Compute the following steps.

• use CCA′′.ComputeOpening(τ, tag,P) to obtain an opening σ to (m, r).

• Output (σ, r).

CCA′.VerifyOpening(τ, tag, (P, c′),m, (σ, r)): Compute the following steps.

56

• Use CCA′′.VerifyOpening(τ, tag,P, (m, r), σ) to verify that σ is an opening of P to (m, r).
Otherwise, output 0.

• Use r to verify that c′ is a tlp-based commitment to m, otherwise output 0.

• Output 1.

The extractor CCA′.CCAVal is implemented by running CCA′′.CCAVal on the CCA′′-based commit-
ment to get (m, r), then verifying whether the TLP-based commitment is honest before outputting

m. The alternate extractor C̃CAVal is implemented by using the TLP solver to extract c′ directly to
obtain m. It is straightforward to prove that the commitment CCA′ above satisfies all the required
properties specified above.

The construction. We define the tag space T , as in [Khu21], to be the set T =
(
T ′

T ′/2

)
which is

precisely equal to the number of unique subsets of [T ′] of size [T ′/2]. Let φ be a polynomial time
computable bijective map that takes as input tag ∈ [T], and outputs a unique subset {t1, . . . , tT ′/2}
of [T ′] of size T ′/2. These subsets are unique upto permutation. We assume that they are sorted in
ascending order.

CCA.CCACommit(tag,m; r): Compute the following steps.

• Compute φ(tag) = (t1, . . . , tT ′/2). Sample a PPRF key KPPRF ← {0, 1}`PPRF ,

• Compute G̃ ← iO(G[t1, . . . , tT ′/2,m,KPPRF]) by obfuscating the circuit described in

Figure 3. Output G̃.

CCA.ComputeOpening(τ, tag, G̃,m, r): Compute the following steps.

• Parse ρ = (ρ, ρ′) where ρ ∈ {0, 1}` and ρ′ ∈ {0, 1}`CCA′ ,
• Compute φ(tag) = (t1, . . . , tT ′/2),

• Check if G̃ = CCA.CCACommit(tag,m; r). Abort if its not the case. Derive the PPRF
key KPPRF used in code of G described in Figure 3.

• Compute G̃[ρ] = (c0, c1, . . . , cT ′/2, π),

• From the code of Figure 3, use the PPRF key KPPRF to derive r′i as in the code such that
ci = CCA′.CCACommit(ti,m; r′i). Compute and output σi = CCA′.ComputeOpening(ρ′, ti, ci,m, r

′
i)

for i ∈ [T ′/2].

CCA.VerifyOpening(τ, tag, G̃,m, σ): Compute the following steps.

• Parse τ = (ρ, ρ′) where ρ ∈ {0, 1}`f and ρ′ ∈ {0, 1}`CCA′ ,
• Compute φ(tag) = (t1, . . . , tT ′/2) and σ = (σ1, . . . , σT ′/2),

• Compute G̃[ρ] = (c0, c1, . . . , cT ′/2, π) and verify π using NIWI.Vf for the language de-
scribed in Figure 3. Abort if the proof does not verify,

• Output 1 if for every i ∈ [T ′/2], CCA′.VerifyOpening(ρ′, ti, ci,m, σi). Output ⊥ otherwise.

We now argue various properties involved. The correctness of opening is immediate due to the
correctness of opening of the underlying commitment scheme CCA′ and correctness and completeness
of other primitives involved. To argue the extraction property, we now describe the CCA.CCAVal
algorithm.

CCA.CCAVal(τ, tag, G̃) : Compute the following steps.

57

The Circuit G[t1, . . . , tT ′/2,m,KPPRF]

Hardwired: Tags (t1, . . . , tT ′/2) ∈ [T ′]T
′/2, Message m and PPRF key KPPRF,

Input: ρ ∈ {0, 1}`f

Computation:

1. If ρ is not in the image of f , output ⊥, otherwise proceed as follows.

2. Compute r ← PPRF.Eval(KPPRF, ρ) and parse r = (r1, r2,1, . . . , r2,T ′/2, r3). Compute:

• c0 = PGen(0`; r1),

• For i ∈ [T ′/2], compute ci = CCA′.CCACommit(1λCCA′ , ti,m; r2,i),

• Compute π = NIWI.P(X,W ; r3) where X = (c0, c1, . . . , cT ′/2) and W = (m, {r2,i}i∈[T ′]) are
so that (X,W) ∈ LG for the language LG defined below.

3. Output (c0, c1, . . . , cT ′/2, π).

Language LG = LG1
∨ LG,2:

LG,1 =
{

(c0, c1, . . . , cT ′/2) |∃x ∈ {0, 1}` s.t. ρ = f(x) ∧ c0 = PGen(x)
}

LG,2 =
{

(c0, c1, . . . , cT ′/2) |∃m, {r2,i} s.t. ∀i ∈ [T ′/2], ci = CCA′.CCACommit(1λCCA′ , ti,m; r2,i)
}

Figure 3: The Circuit G[t1, . . . , tT ′/2,m, kPPRF]

• Parse τ = (ρ, ρ′) where ρ ∈ {0, 1}` and ρ′ ∈ {0, 1}`CCA′ ,

• Compute φ(tag) = (t1, . . . , tT ′/2),

• Compute G̃[ρ] = (c0, c1, . . . , cT ′/2, π) and verify π using NIWI.Vf for the language described in
Figure 3. Abort if the proof does not verify.

• Assuming the proof verifies, break open c0 to recover x. Check if f(x) = ρ. If this is true,
halt the experiment and output ⊥special.

• Assuming we have not yet aborted, output m if m = CCA′.C̃CAVal(ρ′, t1, c1) = . . . =

CCA′.C̃CAVal(ρ′, tT ′/2, cT ′/2).

The extraction property then follows immediately from the extraction property of the under-
lying CCA′ scheme. The idea is that in the last step, if m = CCA′.CCAVal(ρ′, t1, c1) = . . . =
CCA′.CCAVal(ρ′, tT ′/2, cT ′/2), then there exists openings σ1, . . . , σT ′/2, that opens (c1, . . . , cT ′/2) to
m due to the extraction property of CCA′. Similarly, the reverse is also true. Note that even if
CCA′ suffers from over-extraction, CCA does not, because the NIWI proof guarantees that the inner
commitments are well-formed. Note that since both CCA′.CCAVal and TLP is extractable by a
circuit of depth 2tTLP and size polynomial in 2tTLP , CCA.CCAVal is also extractable by a circuit of
depth 2tTLP and size polynomial in 2tTLP .

We now move on to the security proof.

58

7.2.1 Security Proof

The security proof can be structured by giving indistinguishable hybrids. The first one corresponds
to the game where the challenger computes CCA.CCACommit(tag∗,mb) for a random b, whereas
the last hybrid is independent of b. We describe the first hybrid elaborately, and in later ones, we
merely describe the change.

Hybrid Hybrid0 : In this hybrid,

1. The challenger manages a list L that is initially empty. The contents of the list are visible to
the adversary at all stages.

2. The adversary sends a challenge tag tag∗ ∈ Tλ.

3. The adversary submits queries of the following kind in an adaptive manner:

(a) Adversary can ask for arbitrary polynomially many τ -query. Challenger samples τ ′ ←
{0, 1}`CCA and appends τ ′ to L.

(b) Adversary can ask for an arbitrary polynomially many (τ, tag,P)-query for any τ ∈ L,
any tag 6= tag∗, and any commitment P. The challenger computes CCAVal(τ, tag,P) and
sends the result to the adversary.

4. The adversary submits two messages m0,m1 of equal length. The challenger samples b← {0, 1},
and computes P∗ ← CCA.CCACommit(tag∗,mb). The adversary gets P∗ from the challenger.

5. The adversary repeats Step 3.

6. Finally, the adversary outputs a guess b′ ∈ {0, 1}. The experiment outputs 1 if b′ = b and 0
otherwise.

To start the proof, we first prove that the probability that the experiment outputs ⊥special is
negligible, i.e,

Pr [Hybrid0 → ⊥special] < negl(λ).

We do this via a reduction R to security of the one-way permutation f .
Assume that there is an adversaryA under which Pr [Hybrid0 → ⊥special] < poly(λ). Let Q = Q(λ)

be a polynomial which upper bounds the maximum number of queries thatAmakes when instantiated
with security parameter λ. R receives a challenger ρ from the one-way permutation challenger, and
then runs the experiment Hybrid0 with A honestly, except for these differences:

• At the beginning of the experiment, it chooses j
$←− [Q].

• It generates all τ queries honestly, except that it for the jth query, it sets τj = (ρ, ρ′) where ρ
is received from the challenger and ρ′ is sampled randomly by the challenger.

• It answers CCAVal queries for every τi for i 6= j honestly.

• For CCAVal queries on τj , it does the following. Assume that the query is for CCAVal(τj , tag,P)
for tag 6= tag∗. Then, do the following:

– Run P[ρ] = (c0, c1, . . . , cT ′/2, π).

59

– Return ⊥ to A if π does not verify. If it does, break open c0 to recover x. Check if
f(x) = ρ. If this is true, output x as the answer to the one-way permutation challenger.

– Assuming we have not yet aborted, return m to A if m = CCA′.C̃CAVal(ρ′, t1, c1) = . . . =

CCA′.C̃CAVal(ρ′, tT ′/2, cT ′/2).

Observe that since answering the CCAVal queries takes time and depth poly(d
C̃CAVal

, dTLP,Ext)
and since A runs in time TAdv � d

C̃CAVal
, dTLP,Ext, the reduction R runs in time and depth

poly(d
C̃CAVal

, dTLP,Ext), which is much less than TOWP. Further, observe that ifA causes Pr [Hybrid0 → ⊥special] >

1/poly(λ) then with probability 1/poly(λ) there is one query of the form CCAVal(τi = (ρ, ρ′), tag,P)
where i ∈ [Q] and where P [ρ] outputs a commitment c0 to the inverse of ρ under f . Since j = i
with probability 1/Q, the probability that R wins the OWP game is 1/(Q · poly(λ)) = 1/poly(λ).
This contradicts the one-way permutation security against adversaries of time TOWP. Thus we have
the following claim.

Lemma 1. Assuming that f is secure against TOWP-sized circuits, for any A of size TAdv, it holds
that

Pr [Hybrid0 → ⊥special] < negl(λ).

Hybrid Hybrid1 : This hybrid is the same as Hybrid0, except that we modify how A’s extraction
queries are handled, only extracting one of the inner commitments {ci} instead of extracting all of
them. We implement this using a new procedure CCAVal1. The new code for CCAVal1 is as follows.

CCA.CCAVal1(τ, tag,P) : Compute the following steps.

• Parse τ = (ρ, ρ′) where ρ ∈ {0, 1}` and ρ′ ∈ {0, 1}`CCA′ ,

• Compute φ(tag) = (t1, . . . , tT ′/2) and φ(tag∗) = (t∗1, . . . , t
∗
T ′/2),

• Since tag 6= tag′, there must exist a first index i ∈ [T ′/2] such that ti 6= {t∗1, . . . , t∗T ′/2}.

• Compute P[ρ] = (c0, c1, . . . , cT ′/2, π) and verify π using NIWI.Vf for the language described in
Figure 3. Abort if the proof does not verify.

• Assuming the proof verifies, break open c0 to recover x. Check if f(x) = ρ. If this is true,
halt the experiment and output ⊥special.

• Assuming we have not yet aborted, output m where m = CCA′.C̃CAVal(ρ′, ti, ci).

It follows directly from perfect soundness of the NIWI that the view of A is identical from
Hybrid0 to Hybrid1. Since the NIWI proves that either: (1) all inner commitments {ci} commit to
the one consistent value value m, or (2) c0 is an inverse of ρ, and neither hybrid ever runs the last
step of CCA.CCAVal or CCA.CCAVal1 without verifying the NIWI and that c0 is not an inverse of ρ,
the behavior of the extraction oracle is the same across the two hybrids. We therefore have the
following claim.

Lemma 2. Assuming that NIWI is perfectly sound we have that for any adversary A of size
poly(sCCA′) and for j ∈ [0, Q− 1], it holds that

|Pr[A(Hybrid1) = 1]− Pr[A(Hybrid0) = 1]| = 0.

60

By Lemma 2 and the previous Lemma 1, we also have the following:

Lemma 3. Assuming that f is secure against TOWP-sized circuits and that NIWI is perfectly sound,
for any A of size TAdv, it holds that

Pr [Hybrid1 → ⊥special] < negl(λ).

Hybrid Hybrid2: This hybrid is the same as Hybrid1, except that we modify how A’s extrac-
tion queries are handled, using the algorithm CCA′.CCAVal on the inner commitments instead of

CCA′.C̃CAVal. We implement this using a new procedure CCAVal2. The code is below.
CCA.CCAVal2(τ, tag,P) : Compute the following steps.

• Parse τ = (ρ, ρ′) where ρ ∈ {0, 1}` and ρ′ ∈ {0, 1}`CCA′ ,

• Compute φ(tag) = (t1, . . . , tT ′/2) and φ(tag∗) = (t∗1, . . . , t
∗
T ′/2),

• Since tag 6= tag′, there must exist a first index i ∈ [T ′/2] such that ti 6= {t∗1, . . . , t∗T ′/2}.

• Compute P[ρ] = (c0, c1, . . . , cT ′/2, π) and verify π using NIWI.Vf for the language described in
Figure 3. Abort if the proof does not verify.

• Assuming the proof verifies, break open c0 to recover x. Check if f(x) = ρ. If this is true,
halt the experiment and output ⊥special.

• Assuming we have not yet aborted, output m where m = CCA′.CCAVal(ρ′, ti, ci).

It follows from perfect soundness of the NIWI and the property of CCA′.C̃CAVal that the
view of A is identical from Hybrid1 to Hybrid2. The NIWI proves that either: (1) every inner
commitment ci is generated honestly: ci ← CCA′.CCACommit(1λCCA′ , t,m) for some valid inner tag t
and message m, or (2) c0 is an inverse of ρ. Neither hybrid ever runs the last step of CCA.CCAVal1
or CCA.CCAVal2 without verifying the NIWI and also that c0 is not an inverse of ρ, so it always

holds that CCA′.C̃CAVal(ρ′, ti, ci) = CCA′.CCAVal(ρ′, ti, ci). Thus behavior of the extraction oracle
is the same across the two hybrids. We therefore have the following claim.

Lemma 4. Assuming that NIWI is perfectly sound and that the extraction procedure CCA′.C̃CAVal
has the property described in Section 7.2, we have that for any adversary A of size poly(sCCA′) and
for j ∈ [0, Q− 1], it holds that

|Pr[A(Hybrid2) = 1]− Pr[A(Hybrid1) = 1]| = 0.

By Lemma 4 and the previous Lemma 3, we also have the following:

Lemma 5. Assuming that f is secure against TOWP-sized circuits, that NIWI is perfectly sound,

and that the extraction procedure CCA′.C̃CAVal has the property described in Section 7.2, for any A
of size TAdv, it holds that

Pr [Hybrid2 → ⊥special] < negl(λ).

61

Hybrid Hybrid3: This hybrid is the same as Hybrid2, except that we modify how A’s extraction
queries are handled, removing the step that opens c0 and checks whether it commits to a preimage
of ρ under f . We implement this using a new procedure CCAVal3. The code is below.

CCA.CCAVal3(τ, tag,P) : Compute the following steps.

• Parse τ = (ρ, ρ′) where ρ ∈ {0, 1}` and ρ′ ∈ {0, 1}`CCA′ ,

• Compute φ(tag) = (t1, . . . , tT ′/2) and φ(tag∗) = (t∗1, . . . , t
∗
T ′/2),

• Since tag 6= tag′, there must exist a first index i ∈ [T ′/2] such that ti 6= {t∗1, . . . , t∗T ′/2}.

• Compute P[ρ] = (c0, c1, . . . , cT ′/2, π) and verify π using NIWI.Vf for the language described in
Figure 3. Abort if the proof does not verify.

• Assuming the proof verifies, output m where m = CCA′.CCAVal(ρ′, ti, ci).

Since the only time A can distinguish between Hybrid2 and Hybrid3 is when the hybrid outputs
⊥special, and Lemma 6 shows that this happens with negligible probability, it then follows that A
has a negligible advantage in distinguishing the two hybrids. We thus have the following claim.

Lemma 6. Assuming that f is secure against TOWP-sized circuits, that NIWI is perfectly sound,

and that the extraction procedure CCA′.C̃CAVal has the property described in Section 7.2, we have
that for any adversary A of size poly(sCCA′) and for j ∈ [0, Q− 1], it holds that

|Pr[A(Hybrid3) = 1]− Pr[A(Hybrid2) = 1]| = 0.

We now describe a series of hybrids, one for each γ ∈ [0, 2`].

Hybrid Hybrid4,γ : This hybrid is the same as the previous hybrid, except that in order to
generate P∗, we obfuscate the circuit in Figure 4. Namely, compute φ(tag∗) = (t∗1, . . . , t

∗
T ′/2). Output

P∗ = iO(G1) where G1 = G1[t∗1, . . . , t
∗
T ′/2,mb,m0, γ,KPPRF].

Note that the only difference between Hybrid3 and Hybrid4,0 is how the challenge commitment P∗

is generated. In Hybrid3, it is generated by obfuscating program G[t∗1, . . . , t
∗
T ′/2,mb,KPPRF], where is

Hybrid4,0 it it generated by obfuscating program G1[t∗1, . . . , t
∗
T ′/2,mb,m0, 0,KPPRF]. These programs

have identical input-output behavior. Thus, if an adversary A distinguishes these hybrids with
probability p, we can build a reduction that distinguishes iO with probability p. The reduction
needs to invoke the code of A and answer polynomially many CCAVal queries. Therefore, its time
is polynomial in the time of A and the time of CCAVal, or in other words, poly(TAdv, TCCA′.CCAVal).
By the complexity hierarchy from Section 7.2, iO is secure against adversaries of size 2λother �
poly(TAdv, TCCA′.CCAVal). We have the following claim:

Lemma 7. Assume that iO is secure against circuits that run in time 2λother . Then, for any
adversary A of size TAdv, it holds that:

|Pr[A(Hybrid3) = 1]− |Pr[A(Hybrid4,0) = 1]| ≤ 2−λother .

We now define the final hybrid.

62

The Circuit G1[t1, . . . , tT ′/2,mb,m0, γ,KPPRF]

Hardwired: Tags (t1, . . . , tT ′/2) ∈ [T ′]T
′/2, Messages mb and m0, PPRF key KPPRF, and γ ∈ [0, 2`].

Input: ρ ∈ {0, 1}`.

Computation: The computation can be divided into two cases.
Case: ρ < γ

1. Compute r ← PPRF.Eval(KPPRF, ρ) and parse r = (r1, r2,1, . . . , r2,T ′/2, r3).

2. Compute c0 = PGen(0`; r1) and for i ∈ [T ′/2], compute ci = CCA′.CCACommit(ti,m0; r2,i),

3. Compute π = NIWI.P(X,W ; r3) where X = (c0, c1, . . . , cT ′/2) and W = (m0, {r2,i}i∈[T ′]) are so
that (X,W) ∈ LG for the language LG defined below.

4. Output (c0, c1, . . . , cT ′/2, π).

Case: ρ ≥ γ

1. Compute r ← PPRF.Eval(KPPRF, ρ) and parse r = (r1, r2,1, . . . , r2,T ′/2, r3).

2. Compute c0 = PGen(0`; r1) and for i ∈ [T ′/2], compute ci = CCA′.CCACommit(ti,mb; r2,i),

3. Compute π = NIWI.P(X,W ; r3) where X = (c0, c1, . . . , cT ′/2) and W = (mb, {r2,i}i∈[T ′]) are so
that (X,W) ∈ LG for the language LG defined below.

4. Output (c0, c1, . . . , cT ′/2, π).

Language LG = LG1 ∨ LG,2:

LG,1 =
{

(c0, c1, . . . , cT ′/2) |∃x ∈ {0, 1}` s.t. f(x) = ρ ∧ c0 = PGen(x)
}

LG,2 =
{

(c0, c1, . . . , cT ′/2) |∃m s.t. ∀i ∈ [T ′/2], ci = CCA′.CCACommit(ti,m)
}

Figure 4: The Circuit G1[t1, . . . , tT ′/2,mb,m0, γ, kPPRF]

63

Hybrid Hybrid5 : This hybrid is the same as the previous hybrid except to generate P∗, we
obfuscate the circuit in Figure 3 by committing to m0.

Note that the only difference between Hybrid4,2` and Hybrid5 is how the challenge commitment
P∗ is generated. In Hybrid4,2` , it is generated by obfuscating program G1[t∗1, . . . , t

∗
T ′/2,mb,m0, γ =

2`,KPPRF], where as in Hybrid5 it it generated by obfuscating program G[t∗1, . . . , t
∗
T ′/2,m0,KPPRF].

These programs have identical input output behavior. Thus, if an adversary A distinguishes these
hybrids with probability p, we can build a reduction that distinguishes iO with probability p. The
reduction needs to invoke the code of A and answer polynomially many CCAVal queries. Therefore, its
time is polynomial in the time ofA and the time of CCAVal, or in other words, poly(TAdv, TCCA′.CCAVal).
By the complexity hierarchy from Section 7.2, iO is secure against adversaries of size 2λother �
poly(TAdv, TCCA′.CCAVal). We have the following claim:

Lemma 8. Assume that iO is secure against circuits that run in time 2λother . Then, for any
adversary A of size TAdv, it holds that:

|Pr[A(Hybrid5) = 1]− |Pr[A(Hybrid4,`) = 1]| ≤ 2−λother .

7.2.2 Indistinguishability between Hybrid4,γ and Hybrid4,γ+1

The proof of security has now been reduced to showing that A has advantage ≤ ε in distinguishing
between Hybrid4,γ and Hybrid4,γ+1, where ε · 2` < negl(λ). We show this indistinguishability via a
sequence of subhybrids, as follows.

Subhybrid Hybrid′0 : This hybrid is the same as Hybrid4,γ .

Subhybrid Hybrid′1 : This hybrid is the same as Hybrid4,γ except that we generate P∗ differ-
ently. We puncture the PPRF key KPPRF at γ, and hardwire the response at ρ = γ. Namely,
compute the punctured key k∗PPRF at α. We compute a value v as follows. Compute (r1, r2, r3)←
PPRF.Eval(KPPRF, γ). Then:

• Compute c0 = PGen(0`; r1) and for i ∈ [T ′/2], compute
ci = CCA′.CCACommit(t∗i ,mb; r2,i),

• Compute π = NIWI.P(X,W ; r3) where X = (c0, c1, . . . , cT ′/2) and W = (mb, {r2,i}i∈[T ′]) are
so that (X,W) ∈ LG.

• Set v = (c0, c1, . . . , cT ′/2, π).

Output P∗ = iO(G2) where G2 = G2[t∗1, . . . , t
∗
T ′/2,mb,m0, γ,K

∗
PPRF, v] as described in Figure 5.

Note that the only difference between Hybrid′0 and Hybrid′1 is how P∗ is generated. In Hybrid′0,
it is generated by obfuscating program G1[t∗1, . . . , t

∗
T ′/2,mb,m0, γ,KPPRF], where as in Hybrid′1 it is

generated by obfuscating G2[t∗1, . . . , t
∗
T ′/2,mb,m0, γ,K

∗
PPRF, v] where the key K∗PPRF is punctured

at γ. Note that if PPRF key is correct at un-punctured points, these circuits have identical
behavior on all inputs ρ 6= γ. On input ρ = γ, the outputs are made to be identical by setting
v = (c0, c1, . . . , cT ′/2, π) which is computed as described in the Hybrid′1 description. Thus, the

security follows from the security of iO. Since both hybrids run in poly(TAdv, TCCA′.CCAVal)� 2λother ,
we have that:

64

The Circuit G2[t1, . . . , tT ′/2,mb,m0, γ,KPPRF, v]

Hardwired: Tags (t1, . . . , tT ′/2) ∈ [T ′]T
′/2, Messages mb and m0, PPRF key KPPRF, γ ∈ [0, 2`] and a

value v.

Input: ρ ∈ {0, 1}`

Computation: The computation can be divided into two cases.
Case: ρ < γ

1. Compute r ← PPRF.Eval(KPPRF, ρ) and parse r = (r1, r2,1, . . . , r2,T ′/2, r3).

2. Compute c0 = PGen(0`; r1) and for i ∈ [T ′/2], compute ci = CCA′.CCACommit(ti,m0; r2,i),

3. Compute π = NIWI.P(X,W ; r3) where X = (c0, c1, . . . , cT ′/2) and W = (m0, {r2,i}i∈[T ′]) are so
that (X,W) ∈ LG for the language LG defined below.

4. Output (c0, c1, . . . , cT ′/2, π).

Case: ρ > γ

1. Compute r ← PPRF.Eval(KPPRF, ρ) and parse r = (r1, r2,1, . . . , r2,T ′/2, r3).

2. Compute c0 = PGen(0`; r1) and for i ∈ [T ′/2], compute ci = CCA′.CCACommit(ti,mb; r2,i),

3. Compute π = NIWI.P(X,W ; r3) where X = (c0, c1, . . . , cT ′/2) and W = (mb, {r2,i}i∈[T ′]) are so
that (X,W) ∈ LG for the language LG defined below.

4. Output (c0, c1, . . . , cT ′/2, π).

Case: ρ = γ Output v.
Language LG = LG1

∨ LG,2:

LG,1 =
{

(c0, c1, . . . , cT ′/2) |∃x ∈ {0, 1}` s.t. f(x) = ρ ∧ c0 = PGen(x)
}

LG,2 =
{

(c0, c1, . . . , cT ′/2) |∃m s.t. ∀i ∈ [T ′/2], ci = CCA′.CCACommit(ti,m)
}

Figure 5: The Circuit G2[t1, . . . , tT ′/2,mb,m0, γ, kPPRF, v]

65

Lemma 9. Assuming that iO is secure against circuits that run in time 2λother and PPRF is correct
at unpunctured points, then for any adversary A of size TAdv, it holds that:

|Pr[A(Hybrid′0) = 1]− |Pr[A(Hybrid′1) = 1]| ≤ 2−λother .

Subhybrid Hybrid′2 : This hybrid is the same as the previous hybrid except while computing the
hardwired value v, we replace r1, r2, r3 ← PPRF.Eval(KPPRF, γ) to a truly random string.

Thus, if an adversary A distinguishes these hybrids with probability p, we can build a reduc-
tion that breaks the pseudorandomness at the punctured points property of PPRF with probability
p. The reduction needs to invoke the code of A and answer polynomially many CCAVal queries.
Therefore, its time is polynomial in the time of A and the time of CCAVal.

Note that the only difference between Hybrid′1 and Hybrid′2 is how r = (r1, r2, r3) is generated.
In Hybrid′1 it is generated by computing PPRF(KPPRF, γ) where as in Hybrid′2 it is generated r is
sampled randomly. Note the in both the hybrids, the key appears in a punctured form K∗PPRF,
punctured at γ. Thus if there exists an adversary A that distinguishes these hybrids with probability
p, then we can build a reduction that breaks the pseudorandomness at the punctured points property
of PPRF with probability p. The reduction needs to invoke the code of A and answer polynomially
many CCAVal queries. Therefore, its time is polynomial in the time of A and the time of CCAVal,
or in other words poly(TAdv, TCCA′.CCAVal). Since poly(TAdv, TCCA′.CCAVal) � 2λother , we have the
following claim.

Lemma 10. Assuming that PPRF is secure against circuits that run in time poly(2λother), then for
any adversary A of size TAdv, it holds that:

|Pr[A(Hybrid′1) = 1]− |Pr[A(Hybrid′2) = 1]| ≤ 2−λother .

Subhybrid Hybrid′3 : This hybrid is the same as the previous hybrid except that while we compute
the hardwired value v = (c0, c1, . . . , cT ′/2, π), we switch the commitment as c0 = PGen(x) where

x ∈ {0, 1}`, and f(x) = γ.

Note that the only difference between Hybrid′2 and Hybrid′3 is how hardwiring v = (c0, c1, . . . , cT ′/2, π)
is generated. In particular, it is about how c0 is generated. In Hybrid′2 it is generated by computing
c0 as an honest time-lock puzzle commitment of 0`, whereas in Hybrid′3 it is generated by committing
to x such that f(x) = γ. The openings for these commitments are not used to compute π. Thus, if
an adversary A distinguishes these hybrids with probability p, we can build a reduction that breaks
the security of the time lock puzzle with probability p. The reduction is non-uniform and must know
a preimage for γ. The reduction also needs to answer polynomially many CCAVal queries. Therefore,
its time is poly(TAdv, TCCA′.CCAVal), and its depth is poly(dCCAVal′ , TAdv). By the complexity hierarchy
from Section 7.2, poly(dCCAVal′ , TAdv) � dTLP,Ext, and poly(TAdv, TCCA′.CCAVal) � 2λTLP , thus the
time-lock puzzle provides security with advantage 2−λTLP against such a reduction. We thus have
the following claim.

66

Lemma 11. Assuming that TLP is secure against circuits of depth � dTLP,Ext and size sλTLP with
advantage 2−λTLP. Then, for any adversary A of size TAdv, it holds that:

|Pr[A(Hybrid′2) = 1]− |Pr[A(Hybrid′3) = 1]| ≤ 2−λTLP .

Subhybrid Hybrid′4 : This hybrid is the same as the previous hybrid except that while we
compute the hardwired value v = (c0, c1, . . . , cT ′/2, π), we replace π as π = NIWI.P(X,W) where
X = (c0, . . . , cT ′/2) and W is consists of opening of c0.

Note that the only difference between Hybrid′3 and Hybrid′4 is how hardwiring v = (c0, c1, . . . , cT ′/2, π)
is generated. In particular, it is about how π is generated. In Hybrid′3 it is generated by using
openings of c1, . . . , cT ′/2, whereas in Hybrid′4 it is generated by using opening of c0 as the witness.
Thus, if an adversary A distinguishes between these hybrids with probability p, we can build a
reduction that breaks the security of the NIWI with probability p. The reduction also needs to answer
polynomially many CCAVal queries. Therefore, its time is poly(TAdv, TCCA′.CCAVal)� 2λother where
λother is the security parameter of the NIWI (and where the � is from the complexity hierarchy
in Section 7.2).

Lemma 12. Assuming that NIWI is secure against circuits that run in time 2λother , then for any
adversary A of size poly(TAdv), it holds that:

|Pr[A(Hybrid′3) = 1]− |Pr[A(Hybrid′4) = 1]| ≤ 2−λother .

Subhybrid Hybrid′5 : This hybrid is the same as the previous hybrid except that while we compute
the hardwired value v = (c0, c1, . . . , cT ′/2, π), we replace for i ∈ [T ′/2], ci = CCA′.CCACommit(t∗i ,m0).

Note that the only difference between Hybrid′4 and Hybrid′5 is how hardwiring v = (c0, c1, . . . , cT ′/2, π)
is generated. In particular, it is about how c1, . . . , cT ′/2 is generated. In Hybrid′4 it is generated by
computing each ci = CCA′.CCACommit(t∗i ,mb) for i ∈ [T ∗], where as in Hybrid′4 it is generated by
computing each ci = CCA′.CCACommit(t∗i ,m0) for i ∈ [T ∗]. The openings of these commitments
are not used in generating π. Thus if there exists an adversary A that distinguishes these hybrids
with probability p, then we can build a reduction against the security of CCA′. Note that since the
reduction gets oracle access to CCA′.CCAVal(·), and does not need to query on any of the challenge
tags (t∗1, . . . , t

∗
T ′/2), the reduction can be implemented in time poly(TAdv). We thus have the following

theorem.

Lemma 13. Assuming that CCA′ is secure against circuits of size poly(TAdv). Then, for any
adversary A of size poly(TAdv), it holds that:

|Pr[A(Hybrid′4) = 1]− |Pr[A(Hybrid′5) = 1]| ≤ T ′ · 2−λCCA′ .

[Rex: ended here]

67

Subhybrid Hybrid′6 : This hybrid is the same as the previous hybrid except that while we
compute the hardwired value v = (c0, c1, . . . , cT ′/2, π), we replace π as π = NIWI.P(X,W) where
X = (c0, . . . , cT ′/2) and W is consists of opening of c1, . . . , cT ′/2 committing to m0.

Hybrid′5 and Hybrid′6 are indistinguishable due to the security of NIWI, and follow similarly as
in the indistinguishability between Hybrid′3 and Hybrid′4, as in both cases the reduction takes time
poly(TAdv, TCCA′.CCAVal). Thus we have:

Lemma 14. Assuming that NIWI is secure against circuits that run in time poly(2λother), then for
any adversary A of size poly(TAdv), it holds that:

|Pr[A(Hybrid′5) = 1]− |Pr[A(Hybrid′6) = 1]| ≤ 2−λ.

Subhybrid Hybrid′7 : This hybrid is the same as the previous hybrid except that while we compute
the hardwired value v = (c0, c1, . . . , cT ′/2, π), we switch the commitment c0 as c0 = NICom(02`hin).

Hybrid′6 and Hybrid′7 are indistinguishable due to the security of TLP, and follow similarly as in
the indistinguishability between Hybrid′2 and Hybrid′3. Thus we have:

Lemma 15. Assuming that TLP is secure against circuits of depth � dTLP,Ext and size sλTLP with
advantage 2−λTLP. Then, for any adversary A of size TAdv, it holds that:

|Pr[A(Hybrid′6) = 1]− |Pr[A(Hybrid′7) = 1]| ≤ 2−λTLP .

Subhybrid Hybrid′8 : This hybrid is the same as the previous hybrid except while comput-
ing the hardwired value v, we replace r1, r2, r3 from being truly random to be generated by
(r1, r2, r3)← PPRF.Eval(KPPRF, γ).

Hybrid′7 and Hybrid′8 are indistinguishable due to the security of PPRF and follow similarly as in
the indistinguishability between Hybrid′1 and Hybrid′2. Thus we have:

Lemma 16. Assuming that PPRF is secure against circuits that run in time poly(2λother), then for
any adversary A of size TAdv, it holds that:

|Pr[A(Hybrid′7) = 1]− |Pr[A(Hybrid′8) = 1]| ≤ 2−λother .

68

Subhybrid Hybrid′9 : This hybrid is the same as Hybrid4,γ+1.

Hybrid′8 and Hybrid′9 are indistinguishable due to the security of iO and follow similarly as in the
indistinguishability between Hybrid′0 and Hybrid′1. Thus we have:

Lemma 17. Assuming that iO is secure against circuits that run in time 2λother and PPRF is correct
at unpunctured points, then for any adversary A of size TAdv, it holds that:

|Pr[A(Hybrid′8) = 1]− |Pr[A(Hybrid′9) = 1]| ≤ 2−λother .

Final Advantage. As we have shown, the advantage of A in distinguishing between each successive
pair of hybrids Hybrid′i and Hybrid′i+1 is at most some ε� 2−`. (Refer to the complexity hierarchy
in Section 7.2 for why the particular advantage in each step is � 2−`. It follows that 2` · ε < negl(λ)
as we require.

7.3 Removing One-Tag Restriction

To remove one-tag restriction, [Khu21] suggested the following approach. We explain the idea with
the help of an ideal one-message zero-knowledge and standard one-round CCA commitments. Let
nmc′ be a commitment with tag space T ′(λ) = log . . . log λ︸ ︷︷ ︸

O(1) times

with one-tag restriction. We can build

a CCA scheme without this restriction as follows. Suppose we want to commit to a message m
with respect to a tag t ∈ [T ′], then we can output the new commitment nmc.CCACommit(t,m) as:
(c1, . . . , cT ′ , π) where:

• For i 6= t, ci = nmc.CCACommit(i,m) is a commitment of m with tag i,

• ct = ⊥,

• π is proof that the commitment is generated in the way described above.

The reason this gets around the issue of one-tag restriction is because for any tag t 6= t′, we can run
nmc.CCAVal(t′, ?), by accessing just nmc′.CCAVal(t, ?). This is because in the new commitment to the
message m, nmc.CCACommit(t,m) does not invoke nmc′.CCACommit() with respect to tag t (but uses
every other tag), where as nmc.CCACommit(t′, ?) will always have a component generated by using
nmc′.CCACommit(t, ?) as t′ 6= t. Further, the soundness of π will ensure that all commitments that
are queried are consistently generated as in the procedure so that extraction using nmc′.CCAVal(t, ?)
is correct. The security can then be proven by first simulating π and then switching the commitments
one by one.

While this is the idea relying on a one-message zero-knowledge, the above idea can be formalized
without such a zero-knowledge relying on the same techniques used in the tag-amplification. Let
CCA′ be the underlying CCA scheme for tag space [T ′] above. We build our scheme CCA without
one-tag restriction for the same tag [T ′] following the same approach as our tag amplification
transformation, except that the obfuscation corresponds to a slightly different program. The only
change is that now, on input the receiver string τ it will produce c0, c1, . . . , cT ′ , π where c1, . . . , cT ′

are generated in the way described above.
We now describe this transformation below. We use the same primitives, notation, and parameters

as our tag amplification transformation; the only change is that CCA′ suffers from one-tag restriction
and T = T ′. The security proof is essentially the same as in our tag amplification construction.

69

CCA.CCACommit(tag,m; r): Compute the following steps.

• Sample a PPRF key KPPRF ← {0, 1}`PPRF ,

• Compute F̃ ← iO(F [tag,m,KPPRF]) by obfuscating the circuit described in Figure 6.
Output F̃ .

CCA.ComputeOpening(τ, tag, G̃,m, r): Compute the following steps.

• Parse τ = (ρ, ρ′) where ρ ∈ {0, 1}` and ρ′ ∈ {0, 1}`CCA′ ,
• Check if F̃ = CCA.CCACommit(tag,m; r). Abort if its not the case. Derive the PPRF

key KPPRF used in code of F described in Figure 6.

• Compute F̃ [ρ] = (c0, c1, . . . , cT ′ , π),

• From the code of Figure 6, use the PPRF key kPPRF to derive r′t as in the code so
that ct = CCA′.CCACommit(t,m; r′i) for t ∈ [T ′] \ tag. Compute and output σt =
CCA′.ComputeOpening(ρ′, t, ct,m, r

′
t) for i ∈ [T ′] \ t.

CCA.VerifyOpening(τ, tag, F̃ ,m, σ): Compute the following steps.

• Parse τ = (ρ, ρ′) where ρ ∈ {0, 1}`hkey and ρ′ ∈ {0, 1}`CCA′ ,
• Compute F̃ [ρ] = (c0, c1, . . . , cT ′ , π) and verify π using NIWI.Vf for the language described

in 6. Abort if the proof does not verify,

• Output 1 if for every t ∈ [T ′] \ tag, CCA′.VerifyOpening(ρ′, t, ct,m, σt). Output ⊥ other-
wise.

Remark 1 (Opening algrorithm for base scheme with T ′ tags). For base commitments as in
[BL18, LPS17], the CCA′.ComputeOpening simply outputs the randomness to commit the message.

8 Primitives used for Constructing Our Zero-Knowledge Protocol

This section defines and constructs two tools that we will use to build our reusable statistical
ZK arguments with sometimes statistical soundness. We first give the definitions and then the
constructions. The first notion is that of Non-interactive Distributional Indistinguishability (NIDI),
due to Khurana [Khu21]. Unfortunately, due to the reasons we explain below, we need to strengthen
the definition and construction for our purposes. The second notion is that of a sometimes extractable
equivocal commitments (SEE), which is new to this work. A reader may skip this section and proceed
onto Section 2.1.1 for an overview of our zero-knowledge argument construction, and then come
back here for formal details about these ingredients.

8.1 Non-Interactive Distributional Indistinguishability

This section defines the notion of Non-Interactive Distributional Indistinguishability arguments
(NIDI for short). The definitions below are strengthenings of analogous definitions given by Khu-
rana [Khu21], where the difference is that their definitions assume that the verifier’s message comes
after the prover’s message; see Remark 3 for details.

Definition 19 (Syntax of NIDI). A NIDI for an NP language L and its relation RL consists of the
following algorithms.

70

The Circuit F [tag,m,KPPRF]

Hardwired: Tag tag ∈ [T ′], Message m and PPRF key KPPRF,

Input: ρ ∈ {0, 1}`hkey

Computation:

1. Compute r ← PPRF.Eval(KPPRF, ρ) and parse r = (r1, r2,1, . . . , r2,T ′ , r3). Compute:

• c0 = PGen(0`; r1),

• For t ∈ [T ′], and t 6= tag, compute ct = CCA′.CCACommit(t,m; r2,i),

• Set ctag = ⊥,

• Compute π = NIWI.P(X,W ; r3) where X = (c0, c1, . . . , cT ′) and W = (m, {r2,i}i∈[T ′]) are so
that (X,W) ∈ LF for the language LF defined below.

2. Output (c0, c1, . . . , cT ′ , π).

Language LG = LF1 ∨ LF,2:

LF,1 =
{

(c0, c1, . . . , cT ′) |∃x ∈ {0, 1}` s.t. f(x) = ρ ∧ c0 = PGen(x)
}

LF,2 =
{

(c0, c1, . . . , cT ′) |∃m s.t. ∀t ∈ [T ′] \ tag, ct = CCA′.CCACommit(t,m) ∧ ctag = ⊥
}

Figure 6: The Circuit F [tag,m, kPPRF]

• P(1λS , 1λD ,D) : The prove algorithm takes as input two security parameters 1λS and 1λD

(one for the soundness property, and one for the distribution indistinguishability property), a
polynomial time sampler D(·) that on input λD samples from (X ,W) consisting of tuples that
are in RL. It outputs a proof string π.

• V(τ, π) : The verification algorithm is a deterministic polynomial time algorithm that takes as
input a string τ ∈ {0, 1}`NIDI(λS) for some polynomial `NIDI, a proof π, and it outputs a string
in x ∈ ⊥ ∪ {0, 1}∗.

A NIDI scheme satisfies a number of different properties: completeness, soundness and distribu-
tional indistinguishability.

Definition 20 (Completeness). We require that for any poly-time samplable distribution D = (X ,W)
supported over instance-witness pairs in RL, we have that for every λS , λD ∈ N:

Pr
τ,π

[x ∈ L | V(τ, π) = x] = 1,

where π ← P(1λS , 1λD ,D) and τ ← {0, 1}`NIDI(λS).

Definition 21 ((CD, CDI , εD, εDI)- Distributional Indistinguishability). Let D0 = (X0,W0) and
D1 = (X1,W1) be two polynomial-time distribution samplers supported over tuples in RL. Further,
assume that X0 and X1 are (CD, εD) indistinguishable. Then, we require that:

P(1λS , 1λD ,D0) ≈CDI ,εDI P(1λS , 1λD ,D1).

71

Definition 22 (Completeness, Extraction). There exist a (possibly inefficient) algorithm E :
{0, 1}∗ → {0, 1} with the following properties. Let λS , λD ∈ N, τ ∈ {0, 1}`NIDI(λS) and π be any proof
string such that V(τ, π)→ x where x 6= ⊥. Then:

• E(τ, π) = 1 =⇒ x ∈ L.

• For any polynomial time samplable distribution D = (X ,W) supported over tuples in RL, it
holds that:

Pr

[
E(τ, π) = 1

∣∣∣∣∣ τ $←− {0, 1}`NIDI(λS)

π ← P(1λS , 1λD ,D)

]
= 1.

Definition 23 ((CS , εS)-Soundness). We define the following security game played between the
adversary A ∈ CS and the challenger. We denote it by exptA,NIDI,sound(1

λS , 1λD):

1. A is given 1λS , 1λD as the input.

2. The challenger manages a list List that is initially empty. The contents of the list are visible
to the adversary at all stages.

3. Adversary can ask adaptively a polynomial number of τ -query. If that happens, sample
τ ′ ← {0, 1}`NIDI(λS) and append τ ′ to List.

4. Adversary outputs a proof string π and a τ ∈ List. The adversary wins if V(τ, π) = x where
x 6= ⊥ and E(τ, π) = 0.

The NIDI scheme satisfies (CS , εS)-soundness if for all adversaries A ∈ CS:

Pr[exptA,NIDI,sound(1
λS , 1λD) = 1] ≤ εS

Remark 2. Observe that the last two properties gives rise to a meaningful soundness property. The
extraction property (Definition 22) ensures that whenever x /∈ L, if V(τ, π) = x then E(τ, π) 6= 1.
The Soundness property (Definition 23) then says that for a computationally bounded adversary it
is hard to come up with a proof string π such that V(τ, π) = x and E(τ, π) 6= 1. This rules out a
computationally bounded adversary producing false instances.

Remark 3 (weaker soundness requirement). One could ask for a weaker soundness requirement
where the proof string must be published before making any τ query. Such a NIDI will not be sufficient
for us. The protocol in [Khu21] satisfies this weaker property.

8.2 Sometimes Extractable Equivocal Commitments

This section defines the notion of sometimes extractable equivocal commitments SEE that we use.
These commitments are inspired by the ones used to build statistical ZAP arguments [BFJ+20,
GJJM20].

Definition 24. An SEE is a tuple of three p.p.t. algorithms Com1,R,Com1,C ,Com2,C with the
following syntax:

• Com1,R(1λ, 1t, 1µ,bR; r)→ com1,R. The Com1,R denotes the first receiver message. It takes
as input three security parameters λ, t, µ along with a string bR ∈ {0, 1}` for some polynomial
` = `(µ). It outputs com1,R.

72

• Com1,C(1λ, 1t, 1µ,bC)→ com1,C . The Com1,C denotes the first committer message. It takes
as input three security parameters λ, t, µ along with a string bC ∈ {0, 1}`. It deterministically
outputs com1,C .

• Com2,C(com1,R, com1,C ,m; r′)→ com2,C . The Com2,C denotes the second committer message.
It takes as input first committer and receiver messages com1,R, com1,C along with a message
m and outputs com2,C which is referred to as the commitment.

Such a scheme satisfies the following properties.

(CD, εD)-Indistinguishability of Com1,R. Let λ ∈ N and µ ∈ λO(1), t ∈ λΩ(1)(log log λ)−1 ∩ λO(1)

and b ∈ {0, 1}`. Then, it holds that:

Com1,R(1λ, 1µ, 1t,b) ≈CD,εD Com1,R(1λ, 1µ, 1t, 0`).

Verifiability of Com1,C. There exists a deterministic polynomial time algorithm Vf that takes
as input 1λ, 1t, 1µ and com1,C and outputs 1 if and only if com1,C = Com1,C(1λ, 1t, 1µ,b) for some
b ∈ {0, 1}`.

Extraction when bR = bC There exist a deterministic polynomial time algorithm Dec∗ such that
the following holds. Let λ ∈ N, µ = λO(1), t ∈ λΩ(1)(log log λ)−1 ∩ λO(1). Then, for any b ← {0, 1}`
and any message m ∈ {0, 1}∗

Pr
r,r′

[Dec∗(b, r, com1,C , com1,R, com2,C) = m] = 1,

where, com1,C = Com1,C(1λ, 1µ, 1t,b), com1,R = Com1,R(1λ, 1µ, 1t,b; r) and com2,C = Com2,C(
com1,R, com1,C ,m; r′). We can define another deterministic algorithm Dec, that runs Dec∗ to always
compute the valid message v. It outputs a default string 0 if Dec∗ fails to produce an output,
otherwise it outputs the response of Dec∗. Observe that if com1,C and com2,R are generated semi-
maliciously using same bR = bC = b, then, this property means that the value given by Dec is
perfectly binding to the commitment com2,C even when this may not be well formed.

Equivocation when bR 6= bC . We require that these exist an algorithm S such that the following
holds. Let λ ∈ N, µ = λΘ(1) and t = λΩ(1)(log log λ)−1 ∩ λO(1). Let b1 6= b2 be both in {0, 1}`.
Then, for any m ∈ {0, 1}∗, with probability 1 over the coins of Com1,R = Com1(1λ, 1µ, 1t,b1) and
Com1,C(1λ, 1µ, 1t,b2), the following distributions are identical:

• Distribution 1: com2,C = Com2,C(com1,R, com1,C ,m; r). Output (com1,R, com1,C , com2,C ,m,
r).

• Distribution 2: com2,C = Com2,C(com1,R, com1,C , 0
|m|; r′). Compute S(com1,R, com1,C , r

′,m)→
r. Output (com1,R, com1,C , com2,C ,m, r).

Additionally, S(com1,R, com1,C , r
′,m) runs in time 2t · poly(λ, |m|).

Hard to force bR = bC by adversaries in CA. Let λ ∈ N, µ = λΘ(1) and t = λΩ(1)(log log λ)−1 ∩
λO(1). Then, for any adversary A in class CA, the advantage of any adversary in the following
experiment is 2−µ.

• The challenger samples bC ← {0, 1}` and sends com1,C = Com1,C(1λ, 1µ, 1t,bC).

• Adversary sends out com1,R. Adversary wins if it outputs com1,R = Com1,R(1λ, 1µ, 1t,bC ; r)
for some r ∈ {0, 1}∗.

73

8.3 Construction of NIDI

We start by giving a short overview of how we can construct a NIDI scheme satisfying properties
specified in Definitions 19 to 21 and 23.

8.3.1 Overview of NIDI

We now describe the intuitive ideas behind the construction of NIDI given by Khurana [Khu21] and
identify the reasons why the properties of the construction fall short of satisfying, and then we will
describe our change to the construction.

Intuitively speaking, a NIDI scheme allows a prover to prove with respect to efficiently samplable
distributions D supported over instance-witness pairs in some relation RL corresponding to some
NP language L. For example, the distribution can be the set of encryptions of 1 with respect to
some public key PK, and the language could be the set of all ciphertexts with respect to public key
PK.

The idea is that a prover can generate a proof Π using this distribution D. A verifier can use this
proof to sample from D. It simply chooses a random string τ , and runs x← V(τ, π). The soundness
guarantee of NIDI ensures that with high probability if τ is randomly chosen, x sampled by the
verifier must be in L. Further, the distributional indistinguishability property guarantees that for
computationally indistinguishable distributions D0 and D1 (such as encryptions of 0 vs. encryptions
of 1) which are supported over RL, NIDI generated using D0 is computationally indistinguishable
to the proof generated using D1. Thus, NIDI can be useful in protocols where we need to sample
well-formed messages per some specifications in one round (using a single message by a prover and
a verifier) while maintaining indistinguishability guarantees. The prover displays Π and the verifier
displays τ , and this let us sample x← V(τ, π).

The construction of Khurana [Khu21] uses iO, a public-key encryption PKE scheme with verifiable
public keys8 and perfect correctness, a non-interactive witness indistinguishable argument NIWI,
and a one-way permutation OWP. The prover obfuscates a program Π that takes as input τ in the
range of OWP. It derives using τ randomness r using a PRF key K hardwired inside the program.
Using this randomness, the program computes c = PKE.Enc(pk, 0) using the public-key pk, sampled
by the prover and hardwired in the program. It also samples (x,w) by running sampler D and
computes a NIWI proof π proving either x ∈ L or c is an encryption of OWP−1(τ) (using w as its
witness). The output of Π on input τ is (c, x, π). The verifier evaluates Π at τ to get (c, x, π), and
then it verifies the NIWI, and if it succeeds, it outputs x.

To argue distributional indistinguishability, we go input by input as commonly done in many iO
proofs. Using hybrid arguments, we can go from obfuscating a program that uses D0 to sample
instance to a program that uses D1. We do this by changing the program’s behavior undetectably
one input at a time. For every input τ , we puncture the PRF key at τ , and hardwire the circuit
output (c, x, π) at input τ . Then, we switch the encryption c to encrypt to OWP−1(τ) and then
we generate NIWI π by using OWP−1(τ) as the witness for the statement. At this point, we start
sampling x from D1 (instead of D0). We apply the same sequence of hybrids in reverse to reach
a point where at input τ , the circuit’s behavior is identical to the previous behavior except that
it uses D1 to sample x when provided input τ . For this to work out, we need PKE, PRF, iO, the
distributions D0,D1 and NIWI to be indistinguishable with an advantage lesser than 2−|τ |.

Soundness, on the other hand, is a bit more involved. For soundness, we want that if an adversary
outputs a program Π, that on input τ chosen by the verifier outputs (c, x, π) where π verifies but
x /∈ L, then it should somehow translate to recovering OWP−1(τ) efficiently. This means that PKE

8where given a string, it is efficiently checkable if it is a valid public key.

74

must be breakable by an algorithm against which OWP is still secure. Due to perfect soundness
of NIWI, since x /∈ L it must mean that c encrypts OWP−1(τ). Because of this, a reduction could
invert c to recover OWP−1(τ). This seems to be at odds with the requirement of PKE to be more
secure than OWP as required in the distributional indistinguishability property.

To address this issue, Khurana observed that if Π is fixed first, and τ is chosen after, we can
build a non-uniform polynomial-time reduction that breaks OWP security. The idea is that we can
guess the secret key sk corresponding to the public key pk. This is independent of the τ chosen by
the verifier. Because of this, if an adversary exists that wins in the soundness experiment, we can
construct another circuit that wins in the OWP game.

Since we are working to construct round efficient MPC protocols, we cannot allow a verifier to
choose τ after seeing the proof Π. It must be done simultaneously in the same round. As a result
of this, the previous proof of Khurana breaks down for our security requirement. We fix this by
introducing a new axis of hardness. We use a time lock puzzle to commit instead of a public key
encryption. The commitment is secure against adversary of size 2λ

c1 of depth polynomial in λ, but
can be broken by a circuit of size 2λ

c2 where c2 � c1. This ensures distributional indistinguishability
against adversaries of polynomial depth and 2λc1 size. For soundness, we choose OWP, so that it is
secure against adversaries of size 2λ

c2 . Thus, we can show a reduction that breaks the commitment
in size 2λ

c2 to invert OWP.

8.3.2 The Formal Construction

We now describe our construction of the NIDI scheme (for any NP language L with its relation
verifier R) satisfying all the properties described in Section 8.1. Formally, we prove the following
theorem.

Theorem 8. Assume that the following assumptions hold:

• A subexponentially secure indistinguishability obfuscator exists,

• A time lock puzzle (as in Definition 4) exists,

• subexponential SXDH,

then there exists a NIDI scheme that satisfies security definitions in Definitions 20, 23, 21, 22,
and is secure against adversaries of subexponential size.

The scheme is almost identical to the construction of [Khu21] except for one change which we
highlight below in red. Before we proceed, we describe the complexity classes involved.

Complexity Classes. We have the following:

• Initial Distribution Properties. We will consider distributions that are εD(λD) = 2−λD

indistinguishable against adversaries in the class CD which consists of all circuits of depth
poly(λD) and size 2λD .

• Properties of the resulting NIDI Proofs. We will guarantee that the NIDI proofs for such
distributions are indistinguishable for CDI = CD described above (same circuit class). The
advantage of adversaries in the security game will be bounded by εDI = O(εD · 2`(λS)) for
some fixed polynomial ` described later.

• Soundness properties. We will ensure that the soundness holds against adversaries in CS
which consists of all adversaries of size 2λS . The advantage will be bounded by εS = 2−λS .

75

Used Primitives. We make use of the following primitives and instantiate them with the following
parameters. These instantiated parameters for the primitives we use are loose for what we require.

OWP: We require a one way permutation OWP. We assume that OWP is secure against adversaries
of size 2λOWP , with advantage bounded by 2−λOWP , where λOWP is the security parameter of the
one-way permutation. Let the function be described as OWP : {0, 1}`OWP → {0, 1}`OWP where
`OWP = `OWP(λOWP) is some polynomial in λOWP. We set λOWP = λS and ` = `OWP(λS). Such
a function can be constructed assuming the subexponential time and advantage hardness of
DDH/SXDH assumption.

Indistinguishability Obfuscation: We require an indistinguishability Obfuscator iO. This
scheme uses λiO as the security parameter and is secure against adversaries of size 2λiO with advantage
2−λiO . Such a primitive can be built using well-studied assumptions as shown in [JLS21, JLS22].
We set λiO as a large enough polynomial. In particular, setting λiO = `OWPλD suffices.

Time-Lock Puzzles: We require a time lock puzzle as in Definition 4. The TLP satisfies the
following parameters.

• λTLP = λD`OWP,

• tTLP = λρS for a small constant ρ > 0,

• The function D(t) = 2t
ε
TLP for some constant ε > 0.

Therefore, TLP with these parameters ensures the security against adversary of size 2λTLP and depth
bounded by 2t

ε
TLP with the advantage bounded by 2λTLP . Further, Solve can be run by a circuit of

depth poly(2tTLP).

Puncturable PRF: We require a puncturable PRF, PPRF = (Puncture,Eval). Assume the length
of the key is randomly chosen of length `PPRF(λPPRF) where λPPRF is its security parameter. The
length of the output is some polynomial implicit in the scheme. We assume that the PPRF is secure
against adversaries of size 2λPPRF with a maximum advantage of 2−λPPRF . We set λPPRF = λD · `.

NIWI: We require a non-interactive witness indistinguishable proof NIWI for NP, that is secure
against adversaries of size 2λNIWI with advantage bounded by 2−λNIWI . We set λNIWI = ` · λD.
NIWIs can be instantiated assuming the subexponential time and advantage security of the SXDH
assumption over bilinear maps.

The only difference from the primitives used in the construction by [Khu21] is the usage of a
TLP as opposed to a public-key encryption scheme. This is the key component that helps us argue
security in the presence of adaptive τ queries.

Construction. We now describe the construction.

NIDI.P(1λS , 1λD ,D) : Sample a PPRF key K ← {0, 1}`PPRF .

The proving algorithm outputs C̃ = iO(C[D,K]) where the program C[D,K] is described in Figure
7.

NIDI.V(τ, C̃) : Run C̃(τ). If this evaluation outputs ⊥, output ⊥. Otherwise, parse the output as
(x, c, π). Run NIWI.V(x, c, π) for the language L′. If the verification fails output ⊥. Otherwise,
output x.

76

The Circuit C[D,K]

Hardwired: The PPRF key K, and the distribution sampled D.

Input: τ ∈ {0, 1}`

Computation:

1. Compute r ← PPRF.Eval(K, τ).

2. Parse r = (r1, r2, r3). Compute:

• (x,w) = D(r1),

• c = TLP.PGen(0`; r2),

3. For the statement (x, c) ∈ L′, compute π = NIWI.P((x, c), w; r3). We define the language

L′ = {(x′, c′) |∃w′ : R (x′, w′) = 1 ∨ ∃α : (c′ = TLP.PGen(α) ∧ OWP(α) = τ)}

4. Output (x, c, π).

The code highlighted in red is the only difference from the construction proposed by [Khu21]. In their
scheme, they generate c = Enc(pk, 0`) where pk is a public key for a dense cryptosystem, which is
sampled and hardwired in the program. Any adversary breaking the soundness must commit/encrypt
to an element in OWP−1(τ), and the reduction breaks open the encryption to win in the OWP game.
This breaking is done by non-uniformly choosing the secret key for the public key pk. This only allows τ
queries to come after the prover outputs a NIDI proof. A TLP helps us to bypass this issue.

Figure 7: The Circuit C[D,K]

77

E(τ, C̃) : Run C̃(τ). Output 0 if this yields ⊥. Otherwise parse the output as (x, c, π). Run
NIWI.V(x, c, π). If the proof does not verify, output 0. Otherwise, check if c = TLP.PGen(α)
for some α. If this is not the case or OWP(α) 6= τ , then output 1. Otherwise output 0.

Observe that the completeness property is immediate. Similarly, the distributional indistin-
guishability property argument is also identical to the proof in [Khu21] because the public key
encryption is replaced with a time-lock puzzle. All we need for the proof is the component c to
satisfy the indistinguishability property.

Sketch of Indistinguishability: The idea for indistinguishability is to go input by input as
common in applications of iO. Consider two distributions D0 and D1 which yields instances that are
(CD, εD) indistinguishable. The proof will follow the following strategy. We will define 2` hybrids
where a typical hybrid (Hybridτ ′) is indexed by τ ′ ∈ [2`]. In Hybridτ ′ , we will generate an obfuscation
C̃ of program C[D0,D1,K, τ

′] described in Figure 8. Now to prove indistinguishability, we need to
prove that Hybridτ ′ and Hybridτ ′ are O(2−λD) indistinguishable for circuits in CD. This will yield a
total advantage of O(2−λD`). We can do this again by using standard tricks. Observe that the only
change in the C[D0,D1,K, τ

′] and C[D0,D1,K, τ
′ + 1] is its behavior at the input τ ′ + 1. In this

case, we take the following hybrids. The indistinguishability between the hybrids are immediate
and follow similarly to [Khu21].

• Hybrid′0 : This is the same as Hybridτ ′ .

• Hybrid′1 : In this hybrid the only is change is to puncture the PRF key K∗ at τ ′ + 1 and use
it to generate the circuit we obfuscate. To do so, we hardwire the output (x, c, π) at input
τ ′ + 1 generated from D0 as before using (r1, r2, r3) = PPRF.Eval(K, τ ′ + 1). This hybrid is
indistinguishable to the previous hybrid against adversaries in CD with advantage O(2−λiO)
due to the correctness property of the PPRF and the security of iO.

• Hybrid′2 : In this hybrid the only change from the previous hybrid is that we generate (x, c, π)
from D0 but now using true randomness (r1, r2, r3). This hybrid is indistinguishable from
the previous hybrid against adversaries in CD with advantage O(2−λPPRF) due to the security
property of the PPRF.

• Hybrid′3 : In this hybrid the only change is to generate (x, c, π), where c is computed as
TLP.PGen(α) where OWP(α) = τ ′ + 1. This hybrid is indistinguishable to the previous hybrid
against adversaries in CD with advantage O(2−λTLP) due to the security property of the TLP.

• Hybrid′4 : In this hybrid, the only change is to generate (x, c, π) by using the opening of c as
a witness to generate π. This hybrid is indistinguishable from the previous hybrid against
adversaries in CD with advantage O(2−λNIWI) due to the security property of the NIWI.

• Hybrid′5 : In this hybrid, the only change is to generate (x, c, π) by switching x to be sampled
from D1. This hybrid is indistinguishable from the previous hybrid against adversaries in CD
with advantage O(2−λD) due to the indistinguishability property of D0 and D1.

• Hybrid′6 : In this hybrid, the only change is to generate (x, c, π) by using a witness of x to
generate π. This hybrid is indistinguishable from the previous hybrid against adversaries in
CD with advantage O(2−λNIWI) due to the security property of NIWI.

• Hybrid′7 : In this hybrid the only change is to generate (x, c, π) where c is computed as
TLP.PGen(0`). This hybrid is indistinguishable to the previous hybrid against adversaries in
CD with advantage O(2−λTLP) due to the security property of TLP.

78

• Hybrid′8 : In this hybrid the only change is to generate (x, c, π) by using (r1, r2, r3) =
PPRF.Eval(K, τ ′+1). This hybrid is indistinguishable to the previous hybrid against adversaries
in CD with advantage O(2−λPPRF) due to the security property of the PPRF.

• Hybrid′9 : This hybrid is the same as Hybridτ ′+1. This hybrid is indistinguishable from the
previous hybrid against adversaries in CD with advantage O(2−λiO) due to the correctness
property of the PPRF and the security of iO.

Observe that the parameters λiO, λNIWI, λPPRF are set to be larger than λD`. Thus, the total
advantage is bounded by O(2−λD + 2−`λD) = O(2−λD). This finishes the overview.

The Circuit C[D0,D1,K, τ
′]

Hardwired: The PPRF key K, and the distribution sampled D.

Input: τ ∈ {0, 1}`

Computation:

1. Compute r ← PPRF.Eval(K, τ).

2. Parse r = (r1, r2, r3). Compute:

• If τ ≤ τ ′, then (x,w) = D1(r1) otherwise (x,w) = D0(r1).

• c = TLP.PGen(0`; r2),

3. For the statement (x, c) ∈ L′, compute π = NIWI.P((x, c), w; r3). We define the language

L′ = {(x′, c′) |∃w′ : R (x′, w′) = 1 ∨ ∃α : (c′ = TLP.PGen(α) ∧ OWP(α) = τ)}

4. Output (x, c, π).

Figure 8: The Circuit C[D0,D1,K, τ
′]

We now focus on the soundness argument:

Sketch of Soundness. Consider a circuit A of size 2λS in the soundness security game. Assume
that the adversary wins in the soundness experiment with probability ε. We will show that we
can build a reduction of size O(2λS) winning in the OWP inversion game with the ε/Q for some
polynomial. Remember in the soundness game adversary is given a list τ1, . . . , τQ of randomly

chosen elements for some polynomial Q and it outputs C̃ and an index i ∈ [Q]. For this C̃, it holds
that C̃[τi] = (xi, ci, πi) such that πi verifies and E(τi, C̃) = 0. This means that ci must be of the
form TLP.PGen(αi) where OWP(αi) = τi. The reduction simply runs TLP.Solve(ci) and outputs αi
as a preimage of τi. This means that the reduction succeeds with advantage at least ε/Q. Reduction
needs to run A and then run TLP.Solve, which runs in time polynomial in 2λ

ρ
for some small

constant ρ. Thus, this takes O(2λS) time as λS = λ.

8.4 Construction of Sometimes Extractable Equivocal Commitments

In this section, we present our construction of a sometimes extractable equivocal commitments.

79

First, we specify the various class of adversary that we will handle in this scheme. Refer to
Definition 24 for these notations. Let λ, µ, t be three parameters involved where λ ∈ N, µ = λΘ(1)

and t ∈ λΩ(1)(log log λ)−1
.

Definition 25 (Complexity Parameters for SEE). Consider the following complexity classes as a
function of λ, µ, t:

• CD : consists of all circuits of any polynomial depth and size polynomial in 2λ.

• εD : is set to 2−λ.

• CA will be set to all circuits of size 2µ.

The rest of this section is devoted to proving the following theorem.

Theorem 9. Assume that the following assumptions hold:

• A time lock puzzle as in Definition 4 exist,

• subexponential SXDH,

then, there exist a SEE with the properties listed in Definition 24 as per parameters described in
Definition 25.

Used Primitives. To build this primitive, we make use of the following primitives and instantiate
them with the following parameters. These instantiated parameters for the primitives we use are
loose for what we require.

One-Way Permutation in NC1: We require a one way permutation OWP. We assume that OWP
is secure against adversaries of size polynomial in 2λOWP , with advantage bounded by 2−λOWP , where
λOWP is the security parameter of the one-way permutation. Let the function be described as
OWP : {0, 1}` → {0, 1}` where ` = `(λOWP) is some polynomial in λOWP. We set λOWP = 2µ and
` = `(µ). We additionally require that this function is computable in NC1. Such a function can be
constructed assuming the subexponential time hardness of DDH over Z∗p as group exponentiation in

Z∗p is in NC1 [BCH86].

Sender Equivocal Oblivious Transfer: We require a sender equivocal oblivious transfer OT =
(OT1,OT2,OT3) satisfying the properties in Definition 7. We will set λot = 2λ, and assume that the
receiver security holds against adversaries of size polynomial in 2λot and with maximum advantage
of 2−λot . Such an OT can be built assuming subexponential time and advantage hardness of
SXDH [NP01].

Time Lock Puzzle: We require a time lock puzzle as in Definition 4. The TLP satisfies the
following parameters.

• λTLP = 2λ,

• tTLP = min(t,
√
µ). Looking ahead, for our MrNISC, we use t = λΘ(1)(log log λ)−1

, in which case
tTLP = t.

• The function D(tTLP) = 2t
ε
TLP for some constant ε > 0.

80

Therefore, TLP with these parameters ensures the security against adversary of size polynomial
in 2λTLP and depth bounded by 2t

ε
TLP with the advantage bounded by 2−λTLP . Further, Solve can be

run by a circuit of depth poly(2tTLP , λTLP).

Equivocal Garbled Circuits: We require a garbling scheme Gb = (Garble,Eval,GbEquiv) as
described in Definition 8 for NC1 satisfying the properties of correctness and equivocation. The
security parameter will be set as ` defined above.

Construction. We describe the construction next. In the construction, we omit the security
parameters. We also exhibit how by building a bit commitment. To commit to longer messages,
Com2,C described below is repeated in parallel.

Com1,R(bR ∈ {0, 1}`) : Parse bR = (b1, . . . , b`). Compute the following:

• Compute ot1,i ← OT1(bi; ri) for i ∈ [`] using independent randomness ri,

• Compute Z ← TLP.PGen(bR, r), where r = (r1, . . . , r`) used for generating ot1 messages
above,

• Output com1,R = (ot1,1, . . . , ot1,`, Z).

Com1,C(bC ∈ {0, 1}`) : Compute and output com1,C = OWP(bC).

Com2,C(com1,R, com1,C ,m ∈ {0, 1}; r′, {r′i}i∈[`]) : Parse com1,R = (ot1,1, . . . , ot1,`, Z). Let H =

H[com1,C ,m] : {0, 1}` → {0, 1} be the circuit that takes as input b ∈ {0, 1}`. It checks that
OWP(b) = com1,C and if so, it outputs m and 0 otherwise. Run the following steps.

• Run Garble(H; r′)→ Γ, Lab,

• Compute ot2,i = OT2(ot1,i, Lab0,i, Lab1,i; r
′
i) for i ∈ [`].

• Output com2,C = Γ, {ot2,i}i∈[`].

Remark 4. The opening of com2,C consist of (m, r′, r′1, . . . , r
′
`).

We now argue the properties of the scheme.

Indistinguishability of com1,R: The indistinguishability property follows from the security of
TLP and OT. We show this by indistinguishable hybrids. The first hybrid corresponds to the
case when com1,R is generated using bR, whereas the last hybrid corresponds to the case com1,R is
generated using 0`.
Hybrid0 : In this hybrid, we compute com1,R = (ot1,1, . . . , ot1,`, Z) where: ot1,i = OT1(bi; ri) for
i ∈ [`] and Z = PGen((bR, r)).

Hybrid1 : This hybrid is the same as the previous one except that we compute com1,R = (ot1,1, . . . , ot1,`, Z)
where: ot1,i = OT1(bi; ri) for i ∈ [`] and Z = PGen((0`, r′)) where r′ is independently sampled.

Claim 19. For any adversary A, of size polynomial in 2λ and depth bounded by any polynomial
poly(λ), it holds that:

|Pr[A(Hybrid0) = 1]− Pr[A(Hybrid1) = 1]| ≤ 2−(λTLP=2λ)

81

This claim follows from the security of TLP. TLP is secure against adversaries of size polynomial
in 2λTLP , and depth D(tTLP) ≥ 2t

ε
TLP ∈ λω(1). Thus one can form a reduction, distinguishing these

two hybrids to breaking the security of TLP. Since λTLP = 2λ, the claim holds.

Hybrid2 : This hybrid is the same as the previous one except that we compute com1,R = (ot1,1, . . . , ot1,`, Z)
where: ot1,i = OT1(0; ri) for i ∈ [`] and Z = PGen((0`, r′)) where r′ is independently sampled.

Claim 20. For any adversary A, of size polynomial in 2λot, it holds that:

|Pr[A(Hybrid1) = 1]− Pr[A(Hybrid2) = 1]| ≤ ` · 2−2λ

This claim follows from the security of OT. OT is secure against adversaries of size polynomial
in 2λot with an advantage 2−λot . We make ` intermediate hybrids in which we switch one by one
ot1,i to be computed using 0 instead of bi. Each intermediate hybrid is indistinguishable with an
advantage 2−λot . Since λot = 2λ, the claim holds.

Hybrid3 : This hybrid is the same as the previous one except that we compute com1,R = (ot1,1, . . . , ot1,`, Z)
where: ot1,i = OT1(0; ri) for i ∈ [`] and Z = PGen((0`, r)) where r is the randomness to compute
{ot1,i}i∈[`].

Claim 21. For any adversary A, of size polynomial in 22λ and depth bounded by any polynomial
poly(λ), it holds that:

|Pr[A(Hybrid2) = 1]− Pr[A(Hybrid3) = 1]| ≤ 2−2λ

This claim follows from the security of TLP. TLP is secure against adversaries of size 2λTLP , and
depth D(tTLP) ∈ λω(1). Thus one can form a reduction, distinguishing these two hybrids to breaking
the security of TLP. Since λTLP = 2λ, the claim holds.

Summing up, these three hybrids prove the required claim.

Verifiability of com1,C : This property is straightforward to observe. Observe that Com1,C(b) =
OWP(b). Since OWP has verifiable range of {0, 1}`, therefore com1,C is verifiable.

Extraction when bR = bC : This property is also straightforward to observe and follows from
the perfect correctness of OT, and the garbling scheme Gb. We define the Dec∗ function. Dec∗(bR,
r, com1,C , com1,R, com2,C) : This algorithm parses bR = (b1, . . . , b`), com1,R = (ot1,1, . . . , ot1,`, Z),
r = (r1, . . . , r`) and com2,C = (Γ, ot2,1, . . . , ot2,`). It does the following:

• Run Lab′bi,i ← OT3(ot2,i, bi, ri) for i ∈ [`],

• Output m̂← Eval(Γ, {Lab′bR}).

The correctness is straightforward to observe. Parse r′ = (r′, r′1, . . . , r
′
`). Let Γ, Lab = Garble(H; r′)

where H[Com1,C(bR),m] for some message m. Let com1,R = (ot1,1, . . . , ot1,`, Z) where ot1,i =
OT1(bi, ri) and ot2,i = OT2(ot1,i, Lab0,i, Lab1,i; r

′
i) for i ∈ [`]. Our first observation is that Lab′bi,i =

Labbi,i for all i ∈ [`] due to perfect correctness of OT. Therefore m̂ = Eval(Γ, {LabbR}). Due to
perfect correctness of garbled circuit we have that Eval(Γ, {LabbR}) = H[Com1,C(bR),m](bR). This
is equal to m, by definition of H.

82

Hard to force bR = bC by adversaries in CA. This follows from the reduction to the security
of OWP and the fact that Solve runs in time polynomial in 2tTLP . Let A be an adversary that wins
in the security game for this property and is of the size polynomial in 2µ with an advantage more
than 2−µ. Then, we show how to build a reduction that runs in size polynomial in 2λOWP and wins
in breaking the security of OWP with the same advantage.

• The reduction receives as input com1,C = OWP(b) for a randomly chosen b← {0, 1}`.

• The reduction sends to the adversary A, com1,C and receives com1,R formatted as ot1,1(b′1, r
′
1),

. . . , ot1,`(b
′
`, r
′
`), Z = PGen(b′, r′).

• The reduction solves Z using a circuit size polynomial in poly(2tTLP) ≤ 2
µ
2 and recovers b′, r′.

• It outputs b′ if com1,C = OWP(b′).

Note that the view of A is identical to the view in the required security property of Com. If A
produces com1,R using b′ that equals to the random challenge b, then the reduction successfully
recovers it by breaking TLP in time 2µ/2. If the size of the adversary A is polynomial in 2µ, the size
of the reduction is also polynomial in 2 · 2µ which is a contradiction as λOWP = 2µ.

Equivocation with bR 6= bC . We describe our algorithm S and then prove that it runs in time
polynomial 2tTLP and satisfies the equivocation property.

S(com1,R, com1,C , r
′,m) : Parse com1,R = (ot1,1, . . . , ot1,`, Z), com1,C = Com1,C(bC) and com2,C =

Γ, {ot2,i}i∈[`]. Recall, how are each of the strings generated in the equivocation game. com1,R is gen-
erated by computing: For i ∈ [`], ot1,i = OT1(bR,i; ri) using some randomness ri and Z is generated
by computing PGen(bR, r = (r1, . . . , r`)). Receiver’s randomness may be arbitrarily chosen. For the
committer, com2,C is generated honestly by committing to 0 using honestly generated randomness
r′. Parse r′ = (r′, r′1, . . . , r

′
`). Γ, Lab is computed as Garble(H[com1,C , 0]; r′). Then we compute

ot2,i = OT2(ot1,i, Lab0,i, Lab1,i; r
′
i) for i ∈ [`]. Finally com2,C = (Γ, {ot2,i}i∈[`]). Thus to equivocate,

compute the following steps:

• Run Solve(Z) = (bR, r).

• Equivocate Garbled Circuit: Run GbEquiv(Γ, LabbR , H[com1,C ,m],bR)→ (Lab′, s) where Lab′

is the new set of labels and s is the randomness that explains Garble(H[com1,C ,m]; s)→ Γ, Lab′.
Further Lab′bR = LabbR .

• Equivocate ot2: For i ∈ [`], compute si = OT.Equiv(bR,i, ri, ot2,i, r
′
i, Lab

′
0,i, Lab

′
1,i).

• Output (m, com1,R, com1,C , com2,C , s = (s, s1, . . . , s`)).

The run time of the simulator above is polynomial in 2tTLP which is polynomial in 2t as per the setting
of the parameters. The proof of security is immediate and follows from the equivocation property of
the garbled circuit and OT. We show this by identical hybrids. The first hybrid corresponds to the
case when m is committed, and the last hybrid corresponds to the simulator, where 0 is committed
first and then equivocated to m.

Hybrid0 : In this hybrid, compute com2,C(com1,R, com1,C ,m; r′). Output (m, com1,R, com1,C , com2,C ,
r′).

Hybrid1 : In this hybrid, we use the equivocation of the garbled circuit property. First generate
Γ, Lab← Garble(H[com1,C , 0]; r′). Observe that H[com1,C , 0](bR) = H[com1,C ,m](bR) = 0. There-
fore, due to the equivocation property of the garbled circuits, we can compute GbEquiv(Γ, LabbR

83

, H[com1,C ,m],bR) → (Lab′, s). We set com2,C = Γ and {ot2,i = OT2(ot1,i, Lab
′
0,i, Lab

′
1,i; r

′
i)}i∈[`].

Output (m, com1,R, com1,C , com2,C , (s, r
′
1, . . . , r

′
`)).

The two distributions above are identical due to the equivocation property of the garbled circuits.

Hybrid2 : In this hybrid, we use the equivocation property of OT. We first generate ot2,i =
OT2(ot1,i, Lab0,i, Lab1,i; r

′
i) for i ∈ [`]. Then, since com1,R consists of OT1 messages corresponding to

bR 6= bC , we can equivocate ot2,i as follows. We run si = OT.Equiv(bR,i, ri, ot2,i, r
′
i, Lab

′
0,i, Lab

′
1,i).

This can be done because Lab′bR,i,i = LabbR,i,i. Thus at the end of this we have randomness si
such that ot2,i = OT2(ot1,i, Lab

′
0,i, Lab

′
1,i; si) = OT2(ot1,i, Lab0,i, Lab1,i; r

′
i). Output of this hybrid is

(m, com1,R, com1,C , com2,C , s) where s = (s, s1, . . . , s`).
This hybrid is identical to the previous hybrid due to the security of OT.

9 Construction of Reusable Statistical ZK arguments with Some-
times Statistical Soundness

In this section, we construct our zk protocol. Before we do that, we give an overview of this
construction.

9.1 Overview

This section gives a brief overview of the zk construction. Recall that we want to construct a
two-round (delayed instance) zk with SPS simulation. A the same time, the second message by
the prover is still subject to perfect soundness with some probability over the first round messages.
Further, the first round should be reusable across sessions.

Our starting point is the SPS ZK protocol/statistical ZAP arguments of [BFJ+20, GJJM20].
The protocol relies on the following primitives:

• A correlation intractable hash function H(K, ?)→ {0, 1}` [CCH+19, PS19],

• A two-round statistically hiding sometimes extractable commitment Com = (Com1,R,Com2,C)
[KK19],

A (somewhere) statistically correlation intractable function is associated with an algorithm FakeGen
that takes as input a polynomial time computable function f : {0, 1}`in → {0, 1}`, and outputs a key
Kf , for which there does not exist in input x ∈ {0, 1}`in such that H(Kf , x) = f(x). These functions
can be built from LWE or circular secure FHE (we use the circular secure FHE construction, and
instantiate the circular secure FHE using subepxonentially secure iO and SXDH). Further, the key
generated by FakeGen Kf hides f computationally.

A two-round statistically hiding sometimes extractable commitment scheme on the other hand,
has the following structure.

• In the first round, the receiver samples a bR ∈ {0, 1}µ and computes and outputs com1,R =
Com1,R(bR; rR).

• In the second round, the committer samples bC ∈ {0, 1}µ randomly, and outputs any number
of commitments bC , {com2,C,i = Com2,C(bC , com1,R,mi)}i∈[T].

The protocol has the following property. If bR 6= bC (or if com1,R is not well-formed as per
the protocol), then, the honestly generated commitments com2,C , statistically hide the messages
{mi}i∈[T]. On the other hand, if, bR = bC , then there exists an efficient algorithm Dec such that:

84

Dec(bR, rR, com2,C,i) = mi for i ∈ [T] is binding for com2,C,i (Dec always output a valid message;
further this message is biding even when com2,C,i is ill formed). Further, an honest receiver can
ensure that bC = bR with probability at least Ω(2−µ). To an adversarial polynomial-time committer,
the view is indistinguishable from the view when bC 6= bR. The works of [KKS18] showed that such
commitments can be built from assumptions such as LWE or DDH.

Once we have these primitives, then the SPS ZK protocol of [BFJ+20], follows the following
template. Let (x,w) be the isntance witness pair.

• In the first round, the verifier chooses bV ← {0, 1}µ, and outputs zk1,P = (com1,R,K) where
com1,R = Com1,R(bV) and K ← H.FakeGen(f) for some function f described later,

• In the second round, the prover samples bP ← {0, 1}µ, and then computes com2,C,i =
Com2,C(bP , com1,R, ai; r

′
i) for i ∈ [N] where (a1, . . . , aN) are the values committed to during

a special Σ protocol9 for proving x. Then,

– The prover runs H(K, (x,bP , com2,C)) = e,

– Outputs commitments com2,C = {com2,C,i}i∈[N] along with openings com2,{ai, r′i}i∈Set
where Set is the set dictated by the challenge e of the Σ protocol.

The statistical WI property follows from the fact that when bP 6= bV , then com2,C are
statistically hiding. One needs more work to prove that it is actually SPS ZK by using an
inefficient equivocator of com2,C with a simulator of the Σ protocol. For the soundness property,
observe that when bV = bP , then the commitments are binding to the value computed by
Dec(bV , rR, ?) where rR is used to compute com1,R. We exploit this to set f as follows. We
set f to be the function that computes e∗ = BadChallenge(x, a1, . . . , aN) where (a1, . . . , aN)
is recovered by running Dec(bV , rR, ?).

Perfect Soundness Mode. The protocol above does not have a perfect soundness mode. However,
it turns out that in the simultaneous message model, there is a straightforward modification of the
protocol above that gives us a perfect soundness mode. The modification is described as follows.

• In the first round, the verifier outputs zk1,V = (com1,R,K) as before, but the prover outputs
zk1,P = bP in the clear.

• In the second round, the prover outputs as before, but using bP displayed in the first round
itself.

The reason why this protocol has a perfect soundness mode is that bP is displayed in the first round
itself, and so the first round already determines if the prover can cheat in the second round or not.
Unfortunately, this naive approach fails in our setting where the same prover first message can
be used repeatedly with multiple verifiers/receivers. In fact, it even fails when an honest prover
interacts with a rushing malicious verifier. If such a verifier sees bP , then it can choose bV = bP ,
which will put the prover in the perfect soundness mode, and its proofs will no longer be simulatable.

9As an example, think of it as the Blum’s Hamiltonicity Protocol. As in the construction of NIZK from
LWE[CCH+19, PS19], it suffices to use a parallel repetition of a sigma protocol for NP with i) 1/2-special soundness,
ii) efficient BadChallenge computation.

85

Fixing Zero-Knowledge: A different criteria for soundness mode Imagine if we could
modify the criteria for the soundness mode as follows. In this model, zk1,P is α = OWP(bP) for a
one-way permutation as opposed to bP in the clear, and zk1,V is as before, com1,R = Com1,R(bV). As
before, perfect soundness must hold if bV = bP and perfect zero-knowledge otherwise. This high-level
approach appears to make sense, as intuitively a verifier must compute com1,R = Com1,R(OWP−1(α))
to violate soundness.

To work this idea out in the reusable setting, we must tackle one more issue. We need to make
sure that zk2,P must not reveal information about bP as in the reusable setting, one can choose zk′1,V
after seeing a second message zk2,P used in some other session (which might contain information
about bP). We make this intuition formal by this abstraction called “Sometimes Extractable
Equivocal Commitments” or SEE. For the rest of the section, assume that the verifier’s first message
is “well-formed,” and we expect the zero-knowledge property to hold only when this is the case. We
will fix this issue later.

Sometimes Extractable Equivocal Commitments. A SEE scheme consists of three algorithms
(Com1,R,Com1,C ,Com2,C) and is a commitment scheme that captures the issues pointed above in
the simultaneous message model. In the first round,

• The receiver chooses bR and computes and outputs com1,R = Com1,R(bR; r),

• The committer chooses bC and computes and outputs com1,C = Com1,C(bR) deterministically.
Further, the image of com1,C is verifiable in that it is essentially a one-way permutation.

In the second round, the committer outputs Com2,C(com1,R, com1,C ,m; r′). We want mostly similar
properties as before (with a few additional properties): If bR = bC , then the commitment is fully
extractable and perfectly binding (even when com2,C is not well formed), where as when bR 6= bC ,
then com2,C is statistically hiding. In fact, when com1,R is well formed and bR 6= bC , then the
commitment com2,C should be efficiently equivocable.

To deal with the issues of reusability described above, it should be computationally hard for
an adversarial receiver to create a well-formed commitment of com1,R = Com1,R(bC) where bC is
chosen by the committer even, after seeing com1,C . Further, an honest receiver could always ensure
that bR = bC where bC is used in com1,C with a decent probability Ω(2−µ).

Plugging in this commitment scheme with a correlation intractable hash function gives rise to
the following zk protocol.

• In the first round, the verifier outputs zk1,V = (Com1,R(bV ; r),K) as before and the prover
outputs zk1,P = Com1,C(bP).

• In the second round, the prover computes com2,C,i = Com2,C(com1,R, com1,C , ai; r
′
i) for i ∈ [N]

where (a1, . . . , aN) are the values committed to during a special Σ protocol. Then,

– The prover runs H(K, (x, com1,R, com1,C , com2,C)) = e,

– Outputs commitments com2,C = {com2,C,i}i∈[N] along with openings com2,{ai, r′i}i∈Set
where Set is the set dictated by the challenge e of the Σ protocol.

Observe that now, the protocol has a perfect soundness mode, namely when bP = bV . Further,
the verifier message is reusable across multiple prover sessions as the soundness holds with the
same probability Ω(2−µ) across multiple sessions. On the other hand, the prover’s first message
zk1,V = Com1,C(bV) is also reusable with different verifiers, as it is computationally hard to produce
com1,R = Com1,R(bV) with the bP = bV . Assuming verifier’s messages are well-formed, we can

86

simulate the zk by equivocating the commitment. Two issues need discussion. The first concerns
with the required complexity hierarchy for our MrNISC and the second, with the fact that in the
arguments above, we did not show zero-knowledge against adversaries that output non-well formed
first messages (because commitment equivocation only works if com1,R is well-formed).

Issue with Complexity Hierarchy wrt MrNISC. In the bigger scheme of things with other
primitives in the MrNISC scheme, we are also using a receiver-assisted one-round CCA commitment
(CCA), and that protocol is intimately tied with the zk we are trying to build. As pointed out in
Section 2.1.4, on the one hand, we need the zk to be sound against circuits that can perform CCAVal;
on the other hand, CCA commitments need to be secure against circuits that are capable of running
zk SPS simulator. This might feel like a deadlock, so we introduce a new axis of hardness.

We will use commitments CCA which are secure against circuits of some quasipolynomial size
such that CCA.CCAVal runs in polynomial depth but size 2λ

c
for c > 0. In the zk we build:

• Soundness holds against adversaries of poly(λ) depth and size 2λ
c2 for c2 > c.

• The zk simulator can be implemented by a circuit of quasipolynomial size/and depth Tzk,S
against which CCA security holds.

We incorporate time-lock puzzle-like properties in our two round statistically hiding extractable
commitment scheme and hence the zk protocol. To do this, within zk1,V , we add a time-lock puzzle
encrypting secret information that allows one to equivocate com2,C generated with respect to com1,R

in zk1,V .

Summing up. Summing up, as a first step we build an SEE scheme described above with. Below
we list all the properties. The only new addition to what was described before is that com2,C can
be equivocated in polynomial time given the opening bR, r of com1,R = Com1,R(bR; r).

• Extractability: If com1,R = Com1,R(bR; r) and com1,C = Com1,C(bR; rR), then com2,C =
Com2,C(com1,R, com1,C ,m) is polynomial time extractable using Dec algorithm. The result of
Dec(bR, rR, com2,C) must be a valid message string and should be binding even when com2,C

is not well-formed. This property is identical to the one described before.

• Equivocability: If com1,R = Com1,R(bR; r) and com1,C = Com1,C(bC) where bC 6= bR,
then there exists a polynomial time algorithm SEE.S that takes as input bR, r, com2,C ,m, r

′

where com2,C = Com2,C(com1,R, com1,C , 0, r
′) and outputs an opening s′ such that com2,C =

Com2,C(com1,R, com1,C ,m; s′). Further, com2,C , s
′,m generated this way is identical to the

case when com2,C was a commitment of m and s′ was its opening. This is stronger than
statistical indistinguishability. This property is useful because one can encrypt (bR, r) as a
part of zk1,P using a time-lock puzzle, which will help the zk simulator.

• Indistinguishability of bR: We require that an com1,R = Com1,R(bR) hides bR. Further,
for any computationally bounded committer bC = bR with a probability of 2−Ω(µ). We also
require that the distribution of transcripts when this event happens are indistinguishable from
when this event does not happen.

• Hard to force bR = bC : We require that a computationally bounded adversarial receiver
given com1,C = Com1,C(bC) for a randomly chosen bC cannot come up with com1,R =
Com1,R(bC) with all but negligible probability.

87

We build such an SEE scheme relying on DDH assumption over Z∗p in Section 8.4.
Once we have such a commitment scheme, we can solve all problems, except we need to control

the circuit size that runs zk.S by a quasi-polynomial sized circuit. Our main idea to get around this
is to use a time-lock puzzle. We add Z = TLP(bV , r) to zk1,V . The TLP parameters are set so that
a quasipolynomial sized circuit breaks it, but it is secure against all circuits of polynomial depth of
size 2λ

c
.

Therefore in our modified protocol:

• In the first round, the verifier outputs zk1,V = (Z = TLP(bV , r),Com1,R(bV ; r),K) and the
prover outputs zk1,P = Com1,C(bP).

• In the second round, the prover computes com2,C,i = Com2,C(com1,R, com1,C , ai; r
′
i) for i ∈ [N]

where (a1, . . . , aN) are the values committed to during a special Σ protocol. Then,

– The prover runs H(K, (x, com1,R, com1,C , com2,C)) = e,

– Outputs commitments com2,C = {com2,C,i}i∈[N] along with openings com2,{ai, r′i}i∈Set
where Set is the set dictated by the challenge e of the Σ protocol.

This is useful, and in particular, we can now simulate zk by first breaking Z to learn bV , r and
then using the equivocator of the commitments and the simulator of the Σ protocol to simulate the
second message.

In our construction, to make the construction mode modular, we incorporate the TLP aspect
in the SEE scheme (see Section 8.4) and not in our zk protocol. In our commitment scheme, the
equivocation property is required to hold only against a receiver which generates com1,R using the
honest algorithm (although with adversarial randomness). This brings us to our last issue.

One Last Issue. This solves all the issues, except that the simulator fails if a verifier does not
generate com1,R as per the specification of the protocol. Indeed, Z may not be a time lock puzzle
and give the randomness needed by the simulator to equivocate com2,C . To fix this issue, the
verifier now supplies a simultaneous message non-interactive distributional indistinguishability proof
NIDI (see Section 8.1 for details about NIDI), proving that the verifier messages are well-formed
as in the protocol described above. This soundness property of this proof system guarantees that
the verifier messages are well-formed, which is helpful for the simulator, and the distributional
indistinguishability guarantees that zk1,V generated using bV is computationally indistinguishable
from zk1,V , generated using 0µ. Analyzing the protocol and setting up parameters requires some
care, and we describe it formally next.

9.2 Construction

In this section, we construct a reusable statistical ZK arguments with sometimes statistical soundness
(henceforth denoted by zk = (ZKProve1,ZKVerify1,ZKProve2,ZKVerify2)) as defined in Section 5.1.
We now give the parameters associated with various adversary classes that we will guarantee security
for. We will then follow it up with the parameters for the underlying primitives we use. Let λ be
the security parameter for zk.

Definition 26 (Parameters of zk). We achieve zk for the following parameters.

• For the soundness property the parameters (Csound, εsound,1, εsound,2) we achieve will be as
follows. Csound consists of circuits with any poly(λ) depth Boolean circuits of size bounded by
any polynomial in 2λ. We will set εsound,1 = 2−` = Ω(2−`µ) for some polynomial `(λ) and
εsound,2 = 2−λ. `µ is defined when we define the parameters for SEE scheme.

88

• For the zero knowledge, CS , Czk, εS are set as follows. CS is the complexity class of the simulator.
CS consists of circuits of size 2λ

ρ
for some parameter ρ ∈ Θ(1) log log λ−1, which can be chosen

as a parameter to the scheme. We will also set Czk, which is the class of the zero-knowledge
verifier to be the same as Csound of poly(λ) depth circuits of size polynomial in 2λ. εS will be
set as 2−λ.

The rest of this section is devoted to proving the following theorem.

Theorem 10. Assume that the following assumptions hold:

• A subexponentially secure indistinguishability obfuscator exists,

• A time lock puzzle as in Definition 4 exist,

• and subexponential DDH over both Z∗p and asymmetric pairing groups.

Then, there exists a reusable statistical ZK argument with sometimes statistical soundness as
defined in Definition 14. For this scheme, the complexity parameters are defined in Definition 26.

Used Primitives. We make use of the following primitives and instantiate them with the following
parameters. These instantiated parameters for the primitives we use are loose for what we require.

NIDI Arguments: We require a NIDI scheme (Definition 19) as per the following specifications.
Such a NIDI uses two security parameters λNIDI,S and λNIDI,D. We set λNIDI,S = λ. We set CNIDI,S to
consist of all adversaries of size polynomial in 2λNIDI,S . We set εNIDI,S = 2−λNIDI,S . For this choice of
λNIDI,S = λ, let `NIDI(λ) be the length of τ ’s used in the scheme. We set λNIDI,D as a polynomial in
λ. This polynomial will ensure that the distributions we use, on input λNIDI,D satisfy the following
parameters:

• CNIDI,D consists of all circuits of depth poly(λ) and size polynomial in 2λ.

• εNIDI,D = 2−`NIDI·`µλ. (`µ is defined along with the instantiation for the sometimes extractable
equivocal scheme).

Further, this setting will ensure that:

• CNIDI,DI = CNIDI,D.

• εNIDI,DI = O(εNIDI,D2`NIDI).

As shown in Theorem 8, this can be constructed assuming subexponential security of iO, a time
lock puzzle scheme (Definition 4), and subexponential SXDH.

Sometimes Extractable Equivocal Commitments: We use three parameters λcom, µcom, and
tcom, as follows.

• We set µcom = λ. This ensures that CA,com consists of all circuits of size polynomial in 2λ. Let
`µ(λ) be the length of the challenges bR to support this.

• We set tcom = λρ. This ensures the commitments are extractable in size polynomial in 2tcom .

• We set λcom = `NIDI(λ)`µ(λ)λ. This choice ensures that Ccom,D consists of all circuits of size
polynomial in 2λcom and depth polynomial in λcom. This ensures εcom,D = 2−λcom .

89

As shown in Theorem 9, can be constructed assuming subexponential security of iO, a time lock
puzzle scheme (Definition 4), and subexponential DDH over Z∗p and asymmetric pairing groups.

Σ-protocol: We use a statistically sound Σ protocol for NP, which is a parallel repetition of the
following basic protocol. Assume that the length of the instance is a fixed polynomial in λ. We will
build our zk protocol for the same length instances.

• The first message Σ1(x,w) by the prover consists of non-interactive commitments of some
messages a1, . . . , aN ∈ {0, 1}N(λ). We define Σ.SampFirst to mean the algorithm that outputs
a1, . . . , aN .

• In the second round, the verifier outputs a bit e ∈ {0, 1}.

• In the third round, the prover outputs z which consists of opening of some subset of the
commitments based on the challenge bit e. Verifier accepts or rejects based on the transcript.

The protocol satisfies several different properties. The first property is related to soundness, and
the second property is related to zero-knowledge.

• When x is unsatisfiable, then given any a1 . . . , aN an accepting proof of at most one out of
two choices of e ∈ {0, 1} can exist. We call this the BadChallenge. We assume that computing
BadChallenge can be done by an NC1 function Bad that takes x and a1, . . . , aN as the input.

• The protocol satisfies honest-verifier zero knowledge property. That is, given e ∈ {0, 1}, for
any x, one can efficiently sample Σ.S(e, x)→ z′ = Set, {a′i}i∈Set. The protocol ensures that
the distribution of {a′i}i∈Set, e is identical to the case when a1, . . . , aN were committed to using
an honest proof and then the prover gives out (z = Set, {ai}i∈Set, e).

Looking ahead, we will compile such a protocol to a zk. The commitment we will use is sometimes
extractable equivocal commitments.

Correlation Intractable Hash Function: We require a CI hash function H = (FakeGen,Eval)
(see Definition 6). We set λci = `NIDI · `µλ. This ensures that the hash keys corresponding to two
functions are distinguishable to circuits of size polynomial in Cci = 2λci with advantage at most
εci = 2−λci . Finally, for this choice of parameters, there exists a polynomial `ci(λci) such that the
security holds for functions of bounded depth (say λci) with `ci(λci) output bits. We use this as the
parallel repetition parameter for the Σ protocol.

This can be constructed assuming subexponential circular-secure fully-homomorphic encryp-
tion [CCH+19], which in turn can be constructed from subexponentially-secure indistinguishability
obfuscation and a circularly secure perfectly rerandomizable encryption [CLTV15]. A circularly
secure perfectly rerandomizable encryption can be built using SXDH [BHHO08].

Distribution DbR : For bR ∈ {0, 1}`µ , we define the distribution DbR as follows.

• Sample com1,R ← Com1,R(bR; r).

• Sample K ← H.FakeGen(f [bR, r]), where f : {0, 1}∗ → {0, 1}`ci is a function described below.

Observe that for any two b1 and b2 in {0, 1}`µ , Db1 and Db2 are O(`µ · (2−λci + 2−λcom)) =
O(2−`µ·`NIDI·λ) indistinguishable to circuits of depth polynomial in λ but size 2λcom . Let LNIDI denote

90

the language supporting these distributions Db for all b.

Function f : {0, 1}∗ → {0, 1}`ci : takes as input (x, com1,C , com1,R, com2,C = (com2,C,1, . . . , com2,C,N ·`ci)).

• It partitions com2,C into `ci chunks. Each chunk is (com2,C,j·N+1, . . . , com2,C,(j+1)N) for
j ∈ [0, `ci − 1].

• It decrypts each chunk using Com.Dec using its private state bR, r. Let us say that each chunk
decrypts to ajN+1, . . . a(j+1)N . If any of the decyption fails, we set it to be the 0 string of
required length.

• Then it computes Bad(x, ajN+1, . . . a(j+1)N) = ej+1.

• Finally it outputs e = (e1, . . . , e`ci).

We now describe our construction.

Construction:

ZKProve1(1λ) : Compute the following steps.

• Sample τ ← {0, 1}`NIDI and bP ← {0, 1}`µ .

• Compute com1,C = Com1,C(bP).

• Output zk1,P = (τ, com1,C).

ZKVerify1(1λ) : Compute the following steps.

• Sample bV ← {0, 1}`µ .

• Compute Π← NIDI.P(DbV).

• Output zk1,V = Π.

ZKProve2(zk1,V , zk1,P , x, w) : Compute the following steps.

• Parse zk1,V = Π and zk1,P = (τ, com1,C).

• Run (com1,R,K) = NIDI.V(τ,Π). If the verification fails, output ⊥ and stop proceeding.
Otherwise, follow the next steps.

• Depending on x,w sample `ci repetitions of Σ.SampFirst. Namely, for j ∈ [`ci], compute
(a(j−1)N+1, . . . , ajN)← Σ.SampFirst.

• For k ∈ [N`ci], compute com2,C,k = Com2,C(com1,R, com1,C , ak; sk) for a freshly chosen
sk. Let com2,C = {com2,C,k}k∈[N`ci].

• Run e = H.Eval(K, (x, com1,C , com1,R, com2,C)).

• For j ∈ [`ci] determine Setj , the set of commitments to be opened for jth repetition, as
per challenge bit ej . Let Set be the union of these sets.

• Output com2,C along with e and openings z = {ak, sk}k∈Set.

ZKVerify2(zk1,V , zk1,P , zk2,P , x) : Compute the following steps.

• Parse zk1,V = Π, zk1,P = (τ, com1,C) and zk2,P = (com2,C , e, z = {ak, sk}k∈Set).
• Compute (com1,R,K) = NIDI.V(τ,Π) and check if e = H.Eval(K, (x, com1,C , com1,R, com2,C)).

91

• Check if z = {ak, sk}k∈Set are valid openings of {com2,C,k}k∈Set.
• Finally verify that {ak}k∈Set as a valid third message of `ci parallel repetition of Σ

protocol according to e and instance x.

• Output 1 if every verification above succeeds, else output 0.

Remark 5. We assume that the prover always outputs a valid first message zk1,P . This can
be ensured as follows. If the first message is either not given out, or if one of τ and com1,C is
not valid, then we interpret τ = 0`NIDI and com1,C = Com1,C(0`µ).

We now argue various properties involved.

Completeness. Completeness is straightforward to argue and follows from perfect completeness
of NIDI, perfect correctness of the SEE, and perfect completeness of the Σ protocol.

9.3 Soundness

We now argue soundness. We first define the “soundness mode” and then argue all three properties.

Perfect Soundness Mode. In order for a proof to verify, zk1,P = (τ, com1,C) needs to be
verifiable. In particular, there must exist bP such that com1,C = Com1,C(bP) (where bP is as chosen
by the prover, or 0`µ if the prover aborts, or outputs a non-well formed message). In the soundness
game on the other hand, the verifier is honest and chooses bV ← {0, 1}`µ and sets Π = NIDI.P(DbV).
We define the perfect soundness mode to be the mode when bP = bV .

Lemma 18. When bP = bV , then there does not exist an accepting proof of any x /∈ L.

Proof. When bP = bV , then consider any accepting proof say (com2,C , e, {ak, sk}Set). Observe that
e = H.Eval(K,x, com1,C , com1,R, com2,C). Note that K is generated by using FakeGen algorithm
with input the function f , which uses bV and randomness r to decrypt all the commitments
{com2,C,k}k∈[`ciN]. Let us say that this decryption results in {a′k}k∈[`ciN]. Due to the correctness
of the decryption/extraction of SEE, ak = a′k for every k ∈ Set as the adversary opens it in the
proof. Now, when x /∈ L, the Σ protocol ensures that there is atmost one ebad such that {a′k}k∈[`ciN]

can lead to a valid proof. This ebad is computed by the function f . The perfect CI property of H
ensures that e 6= ebad. On the other hand, if the adversary gives a valid proof for e, then e = ebad.
This is a contradiction.

We now analyze the frequency of the perfect soundness mode.

Lemma 19. For any honest polynomial time verifier V , and a cheating prover P ∗ in Csound, the
soundness mode holds with probability at least Ω(2−`µ).

Proof. We prove this by a simple reduction to the security of distributional indistinguishability of
NIDI.P(DbV). We show this using a hybrid argument.

Hybrid0 : In this hybrid, the challenger samples randomly bV and outputs zk1,V as NIDI.P(DbV).
Then, the prover outputs zk1,P = τ, com1,C . The challenger outputs 1 if com1,C = Com1,C(bV).

Hybrid1 : In this hybrid, the challenger samples randomly bV . It also samples randomly b′

and outputs zk1,V as NIDI.P(Db′). Then, the prover outputs zk1,P = τ, com1,C . The challenger
outputs 1 if com1,C = Com1,C(bV).

92

To prove the claim, our first observation is that soundness mode holds when Hybrid0 outputs 1.
Second, observe that the probability that Hybrid1 outputs 1 is exactly 2−`µ . Our claim follows from
the fact that for any adversary A ∈ Csound, it holds that these two hybrids are indistinguishable
with advantage bounded by εNIDI,DI . This is due to the security of NIDI and the indistinguishability
property of the distribution Db′ for a random b′ from DbV . Thus, the claim holds.

We now argue indistinguishability of the soundness mode property.

Lemma 20. The construction of zk satisfies (Csound, εsound,2) indistinguishability of soundness mode
property with εsound,2 = O(εNIDI,DI2

`µ).

Proof. Let P ∗ be a cheating prover in Csound, and V be an honest verifier in the soundness experiment.
Let E be the distribution of the transcript. Let E1 denote the distribution of transcript when the
soundness mode holds, and E0 denote the distribution of transcript when the soundness mode does
not hold. Let A be any adversary in Csound. Then, we want to bound the following probability.

p =

∣∣∣∣∣Pr[A(e) = 1|e← E0]− Pr[A(e) = 1|e← E1]

∣∣∣∣∣
Every instance of e consists of zk1,V and zk1,P output by the cheating prover. Let S denote the
set of elements in the range of Com1,C(?). There are exactly 2`µ elements in this set. For every
s ∈ S, we define E0,s to be the collection of transcripts in E0 where the verifier submits s as com1,C .
Likewise, we define E1,s to be the collection of transcripts in E1 where the verifier submits s as
com1,C . Thus, due to triangle inequality we have that:

p <
∑
s∈S

∣∣∣∣∣Pr[A(e) = 1 ∧ zk1,P = s|e← E0,s]− Pr[A(e) = 1 ∧ zk1,P = s|e← E1,s]

∣∣∣∣∣.
To prove the claim it suffices to show that for every s ∈ S,∣∣∣∣∣Pr[A(e) = 1 ∧ zk1,P = s|e← E0,s]− Pr[A(e) = 1 ∧ zk1,P = s|e← E1,s]

∣∣∣∣∣ < O(εNIDI,DI).

To this end, assume towards contradiction that there exist s∗ such that.∣∣∣∣∣Pr[A(e) = 1 ∧ zk1,P = s∗|e← E0,s∗]− Pr[A(e) = 1 ∧ zk1,P = s∗|e← E1,s∗]

∣∣∣∣∣ = ε1.

We will use this to attack the indistinguishability of NIDI with the probability ε1. We will show
that if this happens, then we can build a reduction using A that is also in Csound, that distinguishes
NIDI.P(Db0) from NIDI.P(Db1) with an advantage ε1 where b1 = Com−1

1,C(s∗) and b0 is uniformly

sampled from {0, 1}`µ \ Com−1
1,C(s∗). The reduction works as follows.

• Obtain the challenge NIDI proof Π.

• Send Π to the prover P ∗. Prover outputs τ, s. If s = s∗, then output A(Π, τ, s), otherwise
output ⊥.

If Π is generated using b0, then the transcript is not in the soundness mode when P ∗ outputs s∗,
whereas if Π is generated using b1, then the transcript is in soundness mode when P ∗ outputs s∗.
Observe that the advantage of the reduction is exactly equal to ε1. Therefore, ε1 ≤ εNIDI,DI as per
the parameters set, which is a contradiction.

93

9.4 Zero-Knowledge

We now argue the zero-knowledge properties of the protocol. We begin by describing our simulator,
zk.S and then argue why the security holds. The simulator will run in time polynomial in 2λ

ρ
.

zk.S(zk1,V , zk1,P , x): Compute the following steps.

• Parse zk1,V = Π and zk1,P = (τ, com1,C).

• Run (com1,R,K)← NIDI.V(τ,Π). If the verification fails, output ⊥. Else, continue.

• Compute com2,C by setting com2,C,k = Com2,C(com1,R, com1,C , 0; r′k) for k ∈ [N · `ci]. Then
set com2,C = {com2,C,k}.

• Run e← H.Eval(K, (x, com1,C , com1,R, com2,C)).

• Run the simulator of Σ protocol on input x and e, and receive {ak}k∈Set.

• Equivocate com2,C,k for k ∈ Set. That is, compute SEE.S(com1,R, com1,C , r
′
k, ak) → sk for

k ∈ Set. Output ⊥ if the equivocation fails.

• Set z = {ak, sk}k∈Set and output zk2,P = (com2,C , e, z).

We now argue why the security property holds. Our first observation is that there is a simple criteria
when the distribution zk.S(zk1,V , zk1,P , x) is identical to ZKProve2(zk1,V , zk1,P , x, w). In the zero-
knowledge game zk1,P is generated honestly containing (τ, com1,C = Com1,C(bP)) for a randomly
chosen bP . Now consider zk1,V consisting of a NIDI proof Π. Let (com1,R,K)← NIDI.V(τ,Π). Since
the cheating verifier is of depth poly(λ) and size polynomial in 2λ and NIDI is sound against such
adversaries, it holds that one of the scenarios must happen:

• Either NIDI.V outputs ⊥,

• or, if NIDI.V outputs com1,R,K, it must happen that com1,R = Com1,R(bV) for some bV , or
else the verifier violates soundness which is computationally hard.

We will show first that when Com1,C(bV) 6= Com1,C(bP) of if V outputs ⊥, then the simulator above
produces an identical distribution to the honest proving algorithm. When, this does not happen,
the verifier must either:

• Break soundness of NIDI, or,

• Force zk1,P = Com1,C(bV) which is hard due to the security of SEE.

This will finish the analysis.

Lemma 21. Let (x,w) be a valid instance-witness pair. Let zk1,P = (τ, com1,C = Com1,C(bP)). Let
zk1,V = Π be such that either:

• NIDI.V(τ,Π) = ⊥, or,

• NIDI.V(τ,Π) = com1,R,K, where com1,R = Com1,R(bV). for bV 6= bP .

Then, (zk1,V , zk1,P , zk2,P = zk.S(zk1,V , zk1,V , x)) is identically distributed to (zk1,V , zk1,P , zk2,P =
ZKProve2(zk1,V , zk1,V , x, w)) where the randomness is only over the generation of proof zk2,P .

94

The proof of this is immediate. If NIDI.V(τ,Π) = ⊥ then, both algorithms output ⊥, which is
identically distributed. In the case of the second criteria, the proof is also immediate. It follows
from the equivocation property of the commitment scheme and honest verifier zero-knowledge of
SEE. We show it by three hybrids where the first hybrid corresponds to the actual proof, and the
last hybrid corresponds to the simulator.
Hybrid0: In this hybrid, run as in the honest algorithm to compute zk2,P : sample {ak}k∈[N`ci] as in
the Σ protocol and then commit them to compute com2,C . Apply H on com2,C to derive e, and
then open the commitments to {ak}k∈Set honestly.
Hybrid1: In this hybrid, we make the following change to generate zk2,P : we sample {ak}k∈[N`ci] as
in the Σ protocol but then commit 0′s instead of {ak} to compute com2,C . Then, we apply H on
com2,C to derive e. At the opening time, we open these commitments by using SEE.S to equivocate
these commitments to open to {ak}k∈Set.

Note that since com1,C 6= com1,R, the distribution of these two hybrids are identical due to
equivocation property of SEE.

Hybrid2: In this hybrid, we make the following change to generate zk2,P : we generate com2,C by
committing to 0′s. Then, we apply H on com2,C to derive e. At the opening time, we first sample
{ak}k∈Set using the honest verifier simulator of Σ protocol, and then open the commitments of 0 by
using SEE.S to {ak}k∈Set.

This hybrid corresponds to zk.S. Note that due to the security of the Σ protocol, the last two
hybrids are identical.

The lemma above solves our problems completely, except that we must ensure that the conditions
for when the distributions are not identical outlined above do not happen in the zero-knowledge
security game.

We show this using a hybrid argument. The first hybrid corresponds to the case of the honest
experiment. The last hybrid corresponds to the simulated experiment.

Hybrid0 : This hybrid corresponds to the experiment where the responses are made using the honest
ZKProve2 algorithm. Throughout, parse zk1,P = (τ, com1,C).

Hybrid1 : This hybrid is the same as before, except that we abort if the cheating verifier queries
(xi, wi, zk1,V,i = Πi) such that NIDI.V(τ,Πi) = (com1,R,i,Ki) where com1,R,i = Com1,R(bV,i) such
that Com1,C(bV,i) = com1,C .

Note that the above two hybrids are statistically close. This is because V ∗ is an adversary of
polynomially bounded depth and size polynomial in 2λ. The commitment scheme SEE ensures
that any adversary of polynomial depth, and size bounded by 2λcom � 2λ cannot produce com1,R

with this property with advantage more than 2−λcom � 2−λ. Thus, probability of abort is less than
2−λcom . We also make a note that the challenger for this hybrid can be run in time polynomial in
2tcom = 2λ

ρ
. This is to break open com1,R.

Hybrid2 : This hybrid is the same as before, except that we abort if the cheating verifier queries
(xi, wi, zk1,V,i = Πi) such that NIDI.V(τ,Πi) = (com1,R,i,Ki) where com1,R,i 6= Com1,R(bV,i; ri).

Note that the above two hybrids are statistically close. This is because if there is a cheating
verifier V ∗ of depth poly(λ) and size polynomial in 2λ that produces distinguishable hybrids, then
we can build a reduction of size polynomial in 2λ that violates soundness of NIDI. The reduction
responds to the queries as in Hybrid1. It also needs to run to respond to the queries to determine
aborting conditions as in Hybrid1. It can do so, by brute-force opening of com1,R,i, which can be done
by a circuit of size 2tcom=λρ . Since NIDI is sound against adversaries of size polynomial 2λNIDI � 2λ

95

with advantage less than 2−λ, these two hybrids are statistically close (unless the reduction wins in
the soundness game).

Hybrid3 : This hybrid is the same as before, except that we simulate zk2,P responses.
These hybrids are identical due to Lemma 21.

References

[ABG+21] Amit Agarwal, James Bartusek, Vipul Goyal, Dakshita Khurana, and Giulio Malavolta.
Two-round maliciously secure computation with super-polynomial simulation. In TCC,
pages 654–685, 2021.

[ACJ17] Prabhanjan Ananth, Arka Rai Choudhuri, and Abhishek Jain. A new approach to
round-optimal secure multiparty computation. In CRYPTO, pages 468–499, 2017.

[AJJM21] Prabhanjan Ananth, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta. Unbounded
multi-party computation from learning with errors. In EUROCRYPT, pages 754–781,
2021.

[AJL+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan,
and Daniel Wichs. Multiparty computation with low communication, computation and
interaction via threshold FHE. In EUROCRYPT, pages 483–501, 2012.

[AJW11] Gilad Asharov, Abhishek Jain, and Daniel Wichs. Multiparty computation with low
communication, computation and interaction via threshold FHE. Cryptology ePrint
Archive, Report 2011/613, 2011. https://eprint.iacr.org/2011/613.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition
and bootstrapping for SNARKS and proof-carrying data. In STOC, pages 111–120,
2013.

[BCH86] Paul Beame, Stephen A. Cook, and H. James Hoover. Log depth circuits for division
and related problems. SIAM J. Comput., 15(4):994–1003, 1986.

[BFJ+20] Saikrishna Badrinarayanan, Rex Fernando, Aayush Jain, Dakshita Khurana, and Amit
Sahai. Statistical ZAP arguments. In EUROCRYPT, pages 642–667, 2020.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO,
pages 1–18, 2001.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM,
59(2):6:1–6:48, 2012.

[BGJ+16] Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, Vinod Vaikuntanathan,
and Brent Waters. Time-lock puzzles from randomized encodings. In ITCS, pages
345–356, 2016.

[BGJ+17] Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Dakshita Khurana, and Amit
Sahai. Round optimal concurrent MPC via strong simulation. In TCC, pages 743–775,
2017.

96

https://eprint.iacr.org/2011/613

[BGMM20] James Bartusek, Sanjam Garg, Daniel Masny, and Pratyay Mukherjee. Reusable
two-round MPC from DDH. In TCC, pages 320–348, 2020.

[BGSZ22] James Bartusek, Sanjam Garg, Akshayaram Srinivasan, and Yinuo Zhang. Reusable
two-round MPC from LPN. In PKC, pages 165–193, 2022.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). In STOC,
pages 1–10, 1988.

[BHHO08] Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky. Circular-secure
encryption from decision diffie-hellman. In CRYPTO, pages 108–125, 2008.

[BHP17] Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou. Four round secure compu-
tation without setup. In TCC, pages 645–677, 2017.

[BJKL21] Fabrice Benhamouda, Aayush Jain, Ilan Komargodski, and Huijia Lin. Multiparty
reusable non-interactive secure computation from LWE. In EUROCRYPT, pages
724–753, 2021.

[BKP18a] Nir Bitansky, Yael Tauman Kalai, and Omer Paneth. Multi-collision resistance: a
paradigm for keyless hash functions. In STOC, pages 671–684, June 2018.

[BKP18b] Nir Bitansky, Yael Tauman Kalai, and Omer Paneth. Multi-collision resistance: a
paradigm for keyless hash functions. In STOC, pages 671–684, 2018.

[BL18] Nir Bitansky and Huijia Lin. One-message zero knowledge and non-malleable commit-
ments. In TCC, pages 209–234, 2018.

[BL20] Fabrice Benhamouda and Huijia Lin. Mr NISC: Multiparty reusable non-interactive
secure computation. In TCC, pages 349–378, 2020.

[BMR90a] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols (extended abstract). In STOC, pages 503–513. ACM Press, 1990.

[BMR90b] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols (extended abstract). In STOC, pages 503–513, 1990.

[BN00] Dan Boneh and Moni Naor. Timed commitments. In Advances in Cryptology - CRYPTO,
pages 236–254, 2000.

[BPS06] Boaz Barak, Manoj Prabhakaran, and Amit Sahai. Concurrent non-malleable zero
knowledge. In FOCS, pages 345–354, 2006.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally secure
protocols (extended abstract). In STOC, pages 11–19, 1988.

[CCG+20] Arka Rai Choudhuri, Michele Ciampi, Vipul Goyal, Abhishek Jain, and Rafail Ostrovsky.
Round optimal secure multiparty computation from minimal assumptions. In TCC,
pages 291–319, 2020.

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D.
Rothblum, and Daniel Wichs. Fiat-shamir: from practice to theory. In STOC, pages
1082–1090, 2019.

97

[CLP10] Ran Canetti, Huijia Lin, and Rafael Pass. Adaptive hardness and composable security
in the plain model from standard assumptions. pages 541–550. IEEE Computer Society
Press, 2010.

[CLTV15] Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Obfuscation of
probabilistic circuits and applications. In TCC, pages 468–497, 2015.

[COSV17] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Round-optimal
secure two-party computation from trapdoor permutations. In TCC, pages 678–710,
2017.

[DJMW12] Yevgeniy Dodis, Abhishek Jain, Tal Moran, and Daniel Wichs. Counterexamples to
hardness amplification beyond negligible. In TCC, pages 476–493, 2012.

[DKP21] Dana Dachman-Soled, Ilan Komargodski, and Rafael Pass. Non-malleable codes for
bounded parallel-time tampering. In CRYPTO, pages 535–565, 2021.

[FGKS22] Rex Fernando, Yuval Gelles, Ilan Komargodski, and Elaine Shi. Maliciously secure
massively parallel computation for all-but-one corruptions. In CRYPTO, 2022.

[FKPS21] Cody Freitag, Ilan Komargodski, Rafael Pass, and Naomi Sirkin. Non-malleable
time-lock puzzles and applications. In TCC, pages 447–479, 2021.

[GGJS12] Sanjam Garg, Vipul Goyal, Abhishek Jain, and Amit Sahai. Concurrently secure
computation in constant rounds. In EUROCRYPT, pages 99–116, 2012.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and
its applications. In STOC, pages 467–476, 2013.

[GJJM20] Vipul Goyal, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta. Statistical zaps
and new oblivious transfer protocols. In EUROCRYPT, pages 668–699, 2020.

[GKLW21] Rachit Garg, Dakshita Khurana, George Lu, and Brent Waters. Black-box non-
interactive non-malleable commitments. In EUROCRYPT, pages 159–185, 2021.

[GMPP16] Sanjam Garg, Pratyay Mukherjee, Omkant Pandey, and Antigoni Polychroniadou. The
exact round complexity of secure computation. In EUROCRYPT, pages 448–476, 2016.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In STOC, pages 218–229,
1987.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof
systems. Journal of Cryptology, 7(1):1–32, 1994.

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-
founded assumptions. In STOC, pages 60–73, 2021.

[JLS22] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from LPN

over $\mathbb {F} p$, dlin, and prgs in nc0. In EUROCRYPT, pages 670–699, 2022.

[Khu21] Dakshita Khurana. Non-interactive distributional indistinguishability (NIDI) and
non-malleable commitments. In EUROCRYPT, pages 186–215, 2021.

98

[KK19] Yael Tauman Kalai and Dakshita Khurana. Non-interactive non-malleability from
quantum supremacy. In CRYPTO, pages 552–582, 2019.

[KKS18] Yael Tauman Kalai, Dakshita Khurana, and Amit Sahai. Statistical witness indistin-
guishability (and more) in two messages. In EUROCRYPT, pages 34–65, 2018.

[KMO14] Susumu Kiyoshima, Yoshifumi Manabe, and Tatsuaki Okamoto. Constant-round black-
box construction of composable multi-party computation protocol. In TCC, pages
343–367, 2014.

[KO04] Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party computation. In
CRYPTO, pages 335–354, 2004.

[KOS03] Jonathan Katz, Rafail Ostrovsky, and Adam Smith. Round efficiency of multi-party
computation with a dishonest majority. In EUROCRYPT, pages 578–595, 2003.

[KS17] Dakshita Khurana and Amit Sahai. How to achieve non-malleability in one or two
rounds. In FOCS, pages 564–575, 2017.

[LPS17] Huijia Lin, Rafael Pass, and Pratik Soni. Two-round and non-interactive concurrent
non-malleable commitments from time-lock puzzles. In FOCS, pages 576–587, 2017.

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In SODA, pages
448–457, 2001.

[Pas03] Rafael Pass. Simulation in quasi-polynomial time, and its application to protocol
composition. In EUROCRYPT, pages 160–176, 2003.

[PPV08] Omkant Pandey, Rafael Pass, and Vinod Vaikuntanathan. Adaptive one-way functions
and applications. In CRYPTO, pages 57–74, 2008.

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain)
learning with errors. In CRYPTO, 2019.

[RSW96] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release crypto,
1996. Technical report, MIT, Cambridge, MA, USA.

[SV97] Amit Sahai and Salil P. Vadhan. A complete promise problem for statistical zero-
knowledge. In FOCS, pages 448–457, 1997.

[Wee10] Hoeteck Wee. Black-box, round-efficient secure computation via non-malleability
amplification. In FOCS, pages 531–540, 2010.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
FOCS, pages 162–167, 1986.

99

	Introduction
	Our Results
	Notable Building Blocks
	Putting Things Together

	On the Necessity of iO
	Related Work

	Technical Overview
	The MrNISC Protocol
	Solving Challenge 1: How do we get a ``statistically-sound'' SPS ZK?
	Solving Challenge 2: How do we avoid non-interactive non-malleability?
	Solving Challenge 3: How do we get reusability?
	Putting things together

	Preliminaries
	Indistinguishability Obfuscation
	Witness Encryption
	Time Lock Puzzles
	Correlation Intractable Hash Functions
	Sender Equivocal Oblivious Transfer
	Equivocal Garbled Circuits for NC1

	MrNISC Syntax and Security
	Main Building Blocks
	Reusable Statistical ZK Arguments with Sometimes-Statistical Soundness
	One-Round Simultaneous-Message CCA-Non-Malleable Commitments

	Malicious-Secure MrNISC
	Proof of Security
	The Simulator
	The Hybrids
	Indistinguishability Between Hybrid0 and Hybrid1
	Indistinguishability Between Hybrid1 and Hybrid2
	Proving Indistinguishability of the Remaining Hybrids

	Construction of One-Round CCA-Non-Malleable Commitments
	A High-Level Overview
	The Construction and Security Proof
	Security Proof
	Indistinguishability between Hybrid4, and Hybrid4,+1

	Removing One-Tag Restriction

	Primitives used for Constructing Our Zero-Knowledge Protocol
	Non-Interactive Distributional Indistinguishability
	Sometimes Extractable Equivocal Commitments
	Construction of NIDI
	Overview of NIDI
	The Formal Construction

	Construction of Sometimes Extractable Equivocal Commitments

	Construction of Reusable Statistical ZK arguments with Sometimes Statistical Soundness
	Overview
	Construction
	Soundness
	Zero-Knowledge

