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Abstract. We propose a new idea for public key quantum money and quan-

tum lightning. In the abstract sense, our bills are encoded as a joint eigenstate

of a fixed system of commuting unitary operators. We perform some basic
analysis of this black box system and show that it is resistant to black box

attacks. In order to instantiate this protocol, one needs to find a cryptograph-

ically complicated system of computable, commuting, unitary operators. To
fill this need, we propose using Brandt operators acting on the Brandt mod-

ules associated to certain quaternion algebras. We explain why we believe this
instantiation is likely to be secure.

1. Introduction

One of the main challenges to building a purely digital currency is that digital
information can be copied, allowing adversaries to duplicate bills or more generally
perform double spending attacks. Existing cryptocurrencies solve this problem by
maintaining a tamper-proof ledger of all transactions to ensure that the same bill
is not spent multiple times by the same actor. Essentially, in these schemes, money
is not represented by a digital token so much as a number on this decentralized
ledger.

Another idea for solving the bill copying problem is to make use of the quantum
no-cloning principle and taking advantage of the idea that quantum information
in general cannot be copied. A scheme to take advantage of this was proposed by
Wiesner in [31]. In his scheme, the bank prepared a quantum state that was an
eigenstate in a secret basis. The bank could verify the correctness of the state,
but it was information-theoretically impossible for an adversary without possession
of this secret to copy the state in question. Unfortunately, this scheme has the
disadvantage that one needs to contact the bank in order to verify the legitimacy
of a bill.

Since then, there has been an effort to develop schemes for public key quantum
money—that is, a scheme by which there is a publicly known protocol for checking
the validity of a bill. In such a system, the bank has a mechanism for producing
valid bills, and there is a publicly known mechanism that, with high probability,
non-destructively checks the validity of a given bill. It should be computationally
infeasible to produce n+1 valid bills, given access to n valid bills, without access to
the bank’s secret information. Such schemes can at best be computationally secure
rather than information theoretically secure, as it is a finite computational problem
to construct a quantum state that reliably passes the publicly known verification
procedure.
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There have been several proposals over the years for cryptographically secure
quantummoney. The scheme proposed by Aaronson in [1] was broken by Lutomirski
et al. in [19]. The scheme proposed by Farhi et al. in [11] was based on knot theory.
It did not have a security proof, and while it has not been broken, as pointed out by
Peter Shor in [27] it is not clear that many people have tried to attack it. The scheme
proposed by Aaronson and Christiano in [3] is based on hidden subspaces. While
the black box model was proved secure, the security of the proposed instantiation
using low degree polynomials was based on a non-standard assumption, and both
that assumption and the associated scheme have been broken [23, 2]. A fix by
Zhandry [32] showed that the Aaronson-Christiano scheme could be instantiated
if one has an efficient indistinguishability obfuscator, but the quantum security of
such obfuscators is unclear. Zhandry’s paper [32] also proposed a new quantum
money scheme, but the security of that scheme was called into question in a paper
of Roberts [25], which shows that the proof of security does not hold since the
hardness assumption is false.

1.1. Our contributions. We give a new proposal for public-key quantum money,
in which a note is a tensor product |ψ⟩ |ψ⟩ of a simultaneous eigenvector |ψ⟩ for a
finite set of commuting unitary operators U1, U2, . . . , Ut, and its serial number is
the vector of eigenvalues for |ψ⟩. One can easily verify such a state is a valid bill
and measure the corresponding eigenvalues of the Uj non-destructively. We show
(in Corollary 4.2 below) that this quantum money scheme is secure if the Uj are
implemented as oracles.

We also use these ideas to construct a scheme for quantum lightning (see [32]). As
noted in [32], quantum lightning has a number of applications, including not only
quantum money, but also verifiable randomness and blockchain-less cryptocurrency.

In order to implement our quantum money system securely, we need to instanti-
ate it with an explicit set of commuting operators U1, ..., Ut that are cryptograph-
ically complicated in the sense that solving Problem 3.1 below for these specific
operators is not much easier than solving it for black box operators defined on a
space of the same dimension. One might expect this to be the case for operators
Uj that are complicated enough that no algorithm can effectively take advantage of
knowing their structure. The task of finding such operators is exacerbated by the
fact that in order to be commuting operators, the Uj must be highly structured.

We propose using a collection of operators that comes from Brandt matrices
acting on Brandt modules associated to certain quaternion algebras. We reduce
the security of the instantiated scheme to the problem of finding a state of the form
|ψ⟩ |ψ⟩ |ψ⟩, where |ψ⟩ is a simultaneous eigenvector of the Brandt operators.

Our paper can be viewed as an extended version of Kane’s unpublished preprint
[16]. While the title of [16] refers to modular forms, the proposed scheme did not use
modular forms, but rather used quaternion algebras and Brandt operators, which
explains the change in title. In his March 27, 2020 lecture at the Simons Institute
for the Theory of Computing [27], Peter Shor listed Kane’s quantum money scheme
in [16] as one of very few quantum money proposals that has not yet been broken.

1.2. Our choice of operators. Quaternions have a long history and have been
well studied by mathematicians and physicists, ever since they were discovered
by Hamilton in 1843 (long before the advent of quantum computing or public
key cryptography). The Brandt matrices are well known in number theory. In
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particular, for a prime number N and prime numbers p, the Brandt matrices T (p)
are a collection of commuting, self-adjoint matrices on a complex vector space VN of
dimension approximately N/12, defined in §6.2 below. Our construction will make
use of unitary operators U = eiT (p)/

√
p. By the known theory of these operators, it

is natural to model them as if they were random (see Remark 6.17). This suggests
that any structure that comes from these objects may be hard to exploit, and that
our black box lower bounds might be indicative of their complexity.

Our instantiation could equally as well be described in the language of quaternion
algebras, the language of supersingular elliptic curves, or the language of modular
forms. Namely, there is an equivalence of categories between isomorphism classes
of supersingular elliptic curves over FN and classes of left ideals in a fixed maximal
order in a quaternion algebra of discriminant N (see for example [30, Chapter
42]). If p ̸= N , then the Brandt matrix T (p) acting on the vector space VN is the
adjacency matrix for the (directed) p-isogeny graph of supersingular elliptic curves
over FN . Isogenies of elliptic curves have been well studied by mathematicians for
many years. Such p-isogeny graphs of supersingular elliptic curves have recently
attracted significant attention from the cryptography community, as a possible
means to obtain cryptography secure against quantum attacks.

Further, the system of Brandt matrices T (p) is isomorphic to the system of Hecke
operators Tp acting on the space S2(Γ0(N)) of weight two cusp forms of level N
(see [24, 20]). Modular forms are spaces of highly symmetric analytic functions on
the upper half of the complex plane with a storied mathematical history, finding
applications in problems as diverse as the computation of partition numbers and
the proof of Fermat’s Last Theorem.

When one tries to efficiently compute with modular forms or with supersingular
elliptic curves, one in fact uses quaternion algebras and Brandt matrices, which is
why we phrase our instantiation in that language.

1.3. Outline. We give the black box version of our protocol in §2, the related
security problem in §3, and a proof of black box security in §4.

We construct a quantum lightning scheme in §5.
In §6 we give details of our instantiation using quaternion algebras. We give the

relevant parts of the theory of quaternion algebras in §6.1, using [30] as a reference.
We introduce Brandt matrices in §6.2, obtain canonical encodings of ideal classes
in §6.3 that help to make the Brandt matrices computationally tractable, and give
additional information about the Brandt operators in §6.4. We give an efficient
algorithm to produce a maximally entangled state in §6.5. The protocol is formally
instantiated in §6.6.

In §7 we discuss the security of the instantiation. In §7.1 we reduce the security
of the instantiation to the hardness of Problem 7.1, while Sections 7.2 to 7.6 give
possible avenues of attack and why we do not expect them to succeed.

2. The Black Box Protocol

A quantum money protocol consists of a set B of bills, an efficient verification al-
gorithm Verify, and an efficient minting algorithm Mint. The verification algorithm
takes as input public parameters PP and a candidate bill x, and outputs True if and
only if x ∈ B. The minting algorithm takes as input public and private parameters
and outputs a bill x ∈ B.
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Suppose V is an N -dimensional complex vector space, and U1, . . . , Ut are com-
muting unitary operators on V . Since the Uj ’s commute, there exists a simultaneous
eigenbasis {|ψi⟩}Ni=1. We assume that we have a real eigenbasis, where “real” means
fixed by complex conjugation. Let zij denote the eigenvalue of Uj associated to the
eigenvector |ψi⟩, that is, Uj |ψi⟩ = zij |ψi⟩. Note that the zij are complex numbers
with norm 1. Set vi = (zi1, . . . , zit), the vector of eigenvalues for |ψi⟩. The reader
should think of N as being exponential and t as being polynomial in a security
parameter.

Definition 2.1. If ε ∈ R>0, we say that an eigenbasis {|ψi⟩}i is ε-separated if
|vk − vj | ≥ ε in the L2-norm whenever j ̸= k.

Given an oracle that can compute controlled versions of the Uj , we present the
following quantum money protocol:

The public parameters consist of:

• an efficient digital signature algorithm and a verification key VK,
• an N -dimensional complex vector space V along with a computationally
feasible basis for V ,

• commuting unitary operators U1, U2, . . . , Ut on V that have a real eigen-
basis, and

• a positive real number ε.

Assume there is an ε-separated real eigenbasis {|ψi⟩}Ni=1. For each i, let vi be the
vector of eigenvalues for |ψi⟩, as above. Then a bill consists of a triple (|ψ⟩ , v, σ),
called respectively the note, serial number, and signature, given as follows:

• the note |ψ⟩ is |ψk⟩ ⊗ |ψk⟩ for some k,
• the serial number v is classical information providing an approximation
of vk to error less than ε/3, and

• σ is a digital signature of v signed with the signing key SK that corre-
sponds to the verification key VK.

The verification algorithm Verify(PP, (|ψ⟩ , v, σ)) is as follows:
(i) Verify the digital signature σ of v.
(ii) For each j = 1, ..., t, use phase estimation to verify that the note |ψ⟩ is

an eigenstate of Uj ⊗ IN and of IN ⊗ Uj with eigenvalues within ε/2 of
those given by the entries of the serial number v (where IN is the N ×N
identity matrix.

The minting algorithm Mint(PP,SK) is as follows:

(i) Prepare a maximally entangled state
1√
N

N∑
i=1

|ψi⟩ |ψi⟩ for V that is the

uniform superposition over all notes.
(ii) Apply phase estimation with Uj ⊗ IN for each j. Set |ψ⟩ to be the

resulting state, and set the jth entry of the serial number v to be an
approximation to the eigenvalue.

(iii) Set σ to be the digital signature of v with signing key SK.

Remark 2.2. There are a few important things to note about this protocol:

(i) The separation assumption implies that, up to scalar multiple, the eigen-
basis {|ψi⟩} is unique. Therefore the verification algorithm is correct.

(ii) If the bill is valid, verification does not change it.
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(iii) If the note was not an eigenstate of all the Uj ⊗ IN and IN ⊗ Uj before
applying the verification algorithm, it will be after the phase estimation
step.

(iv) Due to the assumed separation of {|ψi⟩}, every pair of bills that validate
for the same serial number must (after verification) have notes that are
the same eigenstate.

(v) If the serial number is required to be an appropriate unique rounding of
the eigenvalues of |ψi⟩ rather than merely an approximation, this looks
very much like a protocol for quantum lightning in the sense of [32], that
is, a mechanism that can produce and label one of a number of states but
for which it is hard even for an adversarial algorithm to produce multiple
copies of that state. We chose to use arbitrary approximations so that
one does not need to worry about precision errors if the true eigenvalues
are near the boundary between two different roundings. With some care,
this can be turned into a protocol for quantum lightning (see §5).

3. The Security Problem

What might an attack against this scheme look like? For quantum lightning, an
attack would require a method for producing two copies of the same bolt (in this
case a pair of identical eigenstates). We argue that any attack on our quantum
money protocol should be able to do this. In fact it is enough to note that having
four copies of the same eigenstate, one can throw away one to get three copies.
Thus, we base our security on the following problem:

Problem 3.1. Given N , a complex vector space V ∼= CN , and commuting unitary
operators U1, . . . , Ut on V that have a real eigenbasis, output a state of the form
|ψ⟩ |ψ⟩ |ψ⟩, where |ψ⟩ is an eigenvector of all the Uj .

The black box version of the problem is when the adversary only has black box
access to the Uj .

The formal hardness assumption associated to Problem 3.1 is given below in
Assumption 3.4. Corollary 3.6 shows that, given a secure signature scheme, security
of the quantum money protocol reduces to the Assumption.

Remark 3.2. Problem 3.1 is significantly different from the problem of producing
an eigenstate of the form |ψ⟩ |ψ⟩. To see this, first note that if each of {|ψ1⟩ , . . . , |ψN ⟩}
and {|ρ1⟩ , . . . , |ρN ⟩} is a real orthonormal basis for V , then

(3.1)

N∑
i=1

|ψi⟩ ⊗ |ψi⟩ =
N∑
i=1

|ρi⟩ ⊗ |ρi⟩

by Lemma A.1 in Appendix A. Suppose {|ψi⟩} is a real basis of eigenstates. Even if
the basis {|ψi⟩} is unknown, we can produce a state of the form |ψi⟩ |ψi⟩ by choosing
any real orthonormal basis {|ρi⟩} for V , computing the superposition

∑
|ρi⟩ |ρi⟩,

and then measuring with respect to the Ui ⊗Uj . So producing a double eigenstate
is easy. There is no relation analogous to (3.1) for triple eigenstates |ψi⟩ |ψi⟩ |ψi⟩,
and hence no efficient method for producing a triple eigenstate “from scratch”; for a
precise statement, see Lemma 4.4. Also, simply repeating the procedure for double
eigenstates and hoping to produce the same double eigenstate twice is unlikely to
succeed: the double eigenstate procedure produces |ψi⟩ |ψi⟩ for random i, and if N
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is sufficiently large then with high probability the states produced will be distinct.
See also §3.1.

We claim that any agent capable of attacking the black box protocol must be
capable of solving Problem 3.1. In particular, we consider three kinds of attacks on
the system:

(i) Attacks by the mint: This would apply for systems where the mint cre-
ates a public registry of valid serial numbers (or perhaps puts them into
a hash tree, publishing only the root). In such a system, the mint itself
might try to cheat by creating multiple copies of bills appearing in the
registry.

(ii) Attacks by others: An attacker given access to some number of valid bills
and perhaps a much larger number of valid serial number signatures finds
some procedure to spend more bills than they initially had access to.

(iii) Attacks on random instances: An attacker, for a random public/private
key pair for the digital signature scheme and making some number of
calls to a signing oracle, finds some procedure to spend more bills than
they initially had access to.

Theorem 3.3 shows that for our quantum money protocol, the three types of
attacks can be reduced to solving Problem 3.1. Note the similarity between its
proof and the security proof in [3, Theorem 14].

Theorem 3.3. (i) If an adversary using a quantum computer and given
the secret key to the signing protocol can in time T run a procedure
that with probability at least p produces n + 1 valid bills with at most n
total serial numbers among them, then the adversary can with constant
positive probability solve Problem 3.1 in time O(T/p).

(ii) If an adversary, given n bills and s uniformly random valid signatures of
serial numbers, but without access to the signing key, can in time T run a
procedure that with probability at least p produces n+1 bills that pass the
verification procedure, then the adversary in time O(T ) with probability
p can, given n+ s calls to an oracle for the signing algorithm, either:

• produce a new valid signature without access to the signing key, or
• solve Problem 3.1.

(iii) Suppose there is a quantum algorithm that for a random instantiation of
the quantum money protocol (i.e., a random choice of parameters for the
digital signature scheme, but without access to the signing key), given n
uniformly random bills and the signatures corresponding to s other uni-
formly random bills, can generate n + 1 valid bills in time T with prob-
ability p (with the probability taken over both the space of measurement
outcomes and the set of public key/private key pairs for the signature
scheme). Then either:

• there is a quantum algorithm that for a random instantiation of the
digital signature scheme and given n + s calls to an oracle for the
signing algorithm can in time O(T ) and with probability at least p

2
produce a new valid signature without access to the signing key, or

• there is a quantum algorithm that in time O(T+c(n+s)
p ) and with

probability at least 1
2 solves Problem 3.1, where c is the time required

to run the minting algorithm once.
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Proof. The argument for (i) is easy. By the pigeonhole principle, at least two of the
bills produced must have the same serial number. Given the separation between
the vi, this must mean that the notes in question are both of the form |ψi⟩ |ψi⟩ for
the same value of i. Using one and a half of these, the adversary (i.e., the mint) has
produced a state of the form |ψi⟩ |ψi⟩ |ψi⟩. Thus, in time T the adversary can solve
Problem 3.1 with probability at least p. Repeating O(1/p) times yields a constant
probability of success.

For (ii), the adversary can use the chosen signatures and the minting algorithm
to produce n + s valid bills x1, . . . , xn, y1, . . . , ys; namely, to produce a bill, the

adversary can produce a maximally entangled state
∑N
i=1 |ψi⟩⊗ |ψi⟩, measure with

respect to the operators I ⊗Uj for j ∈ {1, . . . , t}, and then sign the tuple of eigen-
values resulting from the measurements using a single call to the signing algorithm
(where N and t are as in Problem 3.1). For each k, let σk denote the signature for
bill yk. By hypothesis, using x1, . . . , xn, σ1, . . . , σs, the adversary with probability
at least p can in time T produce n + 1 bills that pass the verification procedure.
These bills along with y1, . . . , ys give n+s+1 valid bills. Thus either the adversary
has produced a valid signature that is not one of the original n + s signatures of
valid bills (thus producing a new signature without the private key), or at least two
of the n+ s+1 bills have the same serial number, which implies that the adversary
has three copies of the same eigenstate, and the adversary has solved Problem 3.1.

For (iii), the desired quantum algorithm first generates an instance of the quan-
tum money protocol, i.e., generates a public key/private key pair for the digital
signature algorithm. As in (ii), using n + s calls to the signature algorithm, the
algorithm with probability at least p either produces a new signature without using
the private key, or solves Problem 3.1. If the former holds with probability at least
p
2 , then the first conclusion holds. Now suppose that is not the case. Then the algo-
rithm solves Problem 3.1 with probability at least p/2. A solution to Problem 3.1
is independent of the signature keys. Repeat O(1/p) times with O(1/p) random
instances of the signature key pair to obtain the second conclusion. □

In Corollary 3.6, we show that our quantum money protocol is secure under the
following assumption.

Assumption 3.4. For all quantum circuits C that are of polynomial size in logN ,
the probability that C solves Problem 3.1 is negligible as a function of logN .

An equivalent formulation is that the expectation

E
U1,...,Ut

∑
|ψi⟩

| ⟨ψi| ⟨ψi| ⟨ψi|C(V,U1, . . . , Ut) |0⟩ |2


is negligible as a function of logN , where the expectation is over all commuting
unitary operators U1, . . . , Ut on V ∼= CN and the sum is over any fixed eigenbasis
{|ψi⟩} for the Uj .

The following definition, for which we follow [3, Definition 9], is the usual notion
of security for quantum money protocols.

Definition 3.5. Given a quantum money protocol, let CT be an algorithm that
on input the public parameters PP and a list of m = polylog(N) possibly entan-
gled alleged bills y1, . . . , ym, outputs the number of these that pass the validation
algorithm. The quantum money scheme is secure if the associated digital signature
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scheme is secure against existential forgeries, and for all quantum circuits C of
size polylog(N) that take as input valid bills x1, . . . , xn and signatures σ1, . . . , σs,
where n and s are polylog(N), and outputs a set of m = polylog(N) alleged bills,
the probability

Pr[CT(PP, C(PP, x1, . . . , xn, σ1, . . . , σs)) > n]

is a negligible function of logN , where the probability is taken over all sets of public
parameters, valid bills, and signed serial numbers.

Corollary 3.6. If the digital signature scheme used in the quantum money protocol
is secure against existential forgeries, and Assumption 3.4 holds, then the quantum
money protocol is secure.

Proof. Let CT be an algorithm that on input PP and a list of m = polylog(N)
possibly entangled alleged bills y1, . . . , ym, outputs the number of these that pass
the validation algorithm. Suppose there is a polynomial time quantum adversary
C for which, for infinitely many values of N ,

Pr[CT(PP, C(PP, x1, . . . , xn, σ1, . . . , σs)) > n] ≥ 1/f(logN)

for some positive polynomial f , where the xi are valid bills, the σj are valid signa-
tures, and n and s are polylog(N). By (iii) of Theorem 3.3, either there is a polyno-
mial time algorithm that, for infintely many N produces a new signature without
the signing key with probability at least 1/(2f(logN)) (violating the security of the
signature scheme) or there is a polynomial time algorithm that for infinitely many
N solves Problem 3.1 with probability at least 1

2 (violating Assumption 3.4). □

3.1. A
√
N attack. There is an obvious O(

√
N) time attack on Problem 3.1,

namely:

• Produce
√
N notes using the minting procedure, and

• Search for pairs of notes with serial numbers sufficiently close to each
other.

Each note is |ψi⟩ |ψi⟩ for a uniform random value of i. By the birthday paradox,

we expect to find a collision within the first O(
√
N) notes.

4. Black Box Security

One might worry about black box attacks against the proposed system, that is,
attacks on Problem 3.1 that do not make use of any special structure of V or the
Uj and only have black box access to the operators Uj . In this section we will prove
Theorem 4.1, which says that any such attack must have query complexity at least
Ω((N/ log(N))1/3). As a consequence, we show in Corollary 4.2 that Assumption 3.4
holds in the black box setting.

Let S1 denote the unit circle S1 := {z ∈ C : |z| = 1}. If D is a probability
distribution over (S1)t, then for each N , we obtain an induced probability distri-
bution over tuples of commuting N × N unitary operators (U1, . . . , Ut) by letting
{|ψi⟩} be a random real orthonormal basis of CN (under the Haar measure), letting
vi = (zi1, . . . , zit) be i.i.d. samples from D for i = 1, . . . , N , and defining Uj by the
equations Uj |ψi⟩ = zij |ψi⟩.

Theorem 4.1. Suppose D is any probability distribution over (S1)t such that with
probability 1, any finite number of samples chosen from D are distinct. Suppose C
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is a circuit consisting of standard gates and d controlled Uj gates. If d3 < N
16 logN

for all sufficiently large N , then C solves Problem 3.1 with probability O(d
3 log d
N ),

where the probability is taken over sets of operators U1, . . . , Ut chosen according to
D and with uniformly random real orthogonal eigenbasis.

We note that if D is the uniform distribution over (S1)t, then with high proba-
bility the eigenbasis will be ε-separated, and thus by Theorem 3.3 these instances
will provide quantum money secure against black box attacks. However, we note
that Theorem 4.1 applies in greater generality, so long as the eigenspaces of the
Ui are non-degenerate (if they are degenerate, the problem may be easier as there
will be many more vectors |ψ⟩ that constitute eigenvectors). In fact we will show
that a slight variation of Problem 3.1 (see Problem 4.3 below) that is equivalent for
non-degenerate eigenspaces is difficult unconditionally in the black box model.

Corollary 4.2. Assumption 3.4 holds and the quantum money protocol is secure,
if the adversary has only black box access to the Uj.

Proof. Suppose a circuit C with only black box access to the Uj has size d =

polylog(N). Then for N sufficiently large, d3 < N
16 logN . By Theorem 4.1, C

solves Problem 3.1 with probability < k d
3 log d
N for some positive constant k. Since

d = polylog(N), k d
3 log d
N is negligible as a function of logN , so Assumption 3.4

holds. The security of the quantum money protocol follows from Corollary 3.6. □

The proof of Theorem 4.1 will proceed in three steps:

(i) Replace Problem 3.1 with a refinement, Problem 4.3, that is equivalent
when the eigenspaces are one-dimensional.

(ii) Show that with degenerate eigenspaces (i.e., eigenspaces of dimension
greater than one), Problem 4.3 is impossible to solve with constant pos-
itive probability even with an unbounded number of queries (with prob-
ability of success depending on how degenerate the eigenspaces are).

(iii) Then define a family of input distributions parameterized by an integer
M so that when M is large we have ε-separation with high probability
and when M is small we do not. We use the bounds from (ii) to show
that the probability of success with small M is bounded and then use
the polynomial method to show that unless we make a large number of
queries, this implies that the probability of success is small even in the
range where we do have ε-separation.

4.1. Preliminary lemmas. Consider the following refinement of Problem 3.1:

Problem 4.3. Given N , a complex vector space V ∼= CN , and commuting unitary
operators U1, . . . , Ut on V , output a state of the form |ψi⟩ |ψi⟩ |ψi⟩ for some 1 ≤
i ≤ N , where {|ψi⟩} is a fixed secret real eigenbasis of V for the operators Uj .

When the eigenbasis is ε-separated, then Problems 4.3 and 3.1 are equivalent.
But if the eigenspaces are degenerate, then Problem 4.3 is impossible to solve. To
see this, suppose that a circuit attempting to solve Problem 4.3 outputs a state |ϕ⟩,
and think of the choice of basis {|ψi⟩} as a random variable. Then it suffices to show
that the probability that |ϕ⟩ has a large component in any |ψi⟩ |ψi⟩ |ψi⟩ direction is
small. We first consider the case of a single, totally degenerate eigenspace; we will
consider the general case in Claim 2 of the proof of Theorem 4.1 in §4.2 below.
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Lemma 4.4. If W is a complex vector space and |ϕ⟩ ∈W ⊗W ⊗W , then

E
{|ψi⟩} real orthonormal basis of W

[∑
i

| ⟨ψi| ⟨ψi| ⟨ψi| |ϕ⟩ |2
]
≤ 3

dim(W )
.

Proof. Let m = dim(W ). It suffices to show that

E
||ψ⟩|2=1

[
| ⟨ψ| ⟨ψ| ⟨ψ| |ϕ⟩ |2

]
≤ 3

m2
.

Rewrite |ψ⟩ as 1√
m

∑m
i=1 xi |ψi⟩ where {|ψi⟩} is a random real orthonormal basis

for W and xi are i.i.d. ±1 random variables. We claim that even after fixing the
|ψi⟩, the expectation over xi is at most 3/m2. In particular let

|ϕ⟩ =
∑

1≤i,j,k≤m

aijk |ψi⟩ |ψj⟩ |ψk⟩

where
∑

1≤i,j,k≤m |aijk|2 = 1. Then the expectation over xi is

1

m3 E
xi

[|
∑

1≤i,j,k≤m

aijkxixjxk|2].

Collecting like terms this is

1

m3 E
xi

[|
∑

1≤i<j<k≤m

(aijk + aikj + ajik + ajki + akij + akji)xixjxk

+

m∑
i=1

xi(aiii +

m∑
j=1,j ̸=i

(aijj + ajij + ajji))|2].

By orthogonality of the variables xixjxk and xi, this is

(4.1)
1

m3 E
xi

[
∑

1≤i<j<k≤m

|aijk + aikj + ajik + ajki + akij + akji|2

+

m∑
i=1

|aiii +
m∑

j=1,j ̸=i

(aijj + ajij + ajji)|2].

For each i, there are 3m − 2 terms in the sum aiii +
∑m
j=1,j ̸=i(aijj + ajij + ajji).

Thus by Cauchy-Schwartz, (4.1) is at most

1

m3

( ∑
1≤i,j,k≤m
i ̸=j ̸=k

6|aijk|2 + (3m− 2)

m∑
i=1

(
|aiii|2 +

m∑
j=1,j ̸=i

(|aijj |2 + |ajij |2 + |ajji|2)
))

.

Collecting terms, this is at most 1
m3

∑m
i,j,k=1(3m− 2)|aijk|2 ≤ 3

m2 , as desired. □

Our proof of Theorem 4.1 in §4.2 will make use of the following two lemmas.

Lemma 4.5. Suppose N,M ∈ Z>0, and M ≤ N
16 logN . With the probability taken

over the space of all functions h : [N ] → [M ], we have

Pr

(
#(h−1(j)) >

N

2M
for all j

)
≥ 1− 1

16N logN
.
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Proof. Fix j ∈ [M ]. For i ∈ [N ], define a random variable Xi by

Xi =

{
1 h(i) = j,

0 h(i) ̸= j.

The probability that Xi = 1 is 1
M , and the Xi are independent. Let X =

∑N
i=1Xi.

Observe that E
h
[X] = N

M . By the Chernoff bounds,

Pr

(
X ≤ N

2M

)
≤ e−

N
8M ≤ 1

N2
,

where the last inequality holds since M ≤ N
16 logN . By the union bound, we have

Pr
(
#(h−1(j)) ≤ N

2M
for some j

)
≤

M∑
j=1

Pr
(
X ≤ N

2M

)
≤ M

N2
≤ 1

16N logN
.

The claim now follows. □

Lemma 4.6. If i ∈ Z≥1, then

∣∣∣∣∣∏
j≥1
j ̸=i

(2j − 1)2

(2j − 1)2 − (2i− 1)2

∣∣∣∣∣ = O

(
1

i

)
.

Proof. Let f(z) :=
∏∞
j=1

(
1− z

(2j−1)2

)
= cos(π

√
z

2 ). Then∣∣∣∏
j≥1
j ̸=i

(2j − 1)2

(2j − 1)2 − (2i− 1)2

∣∣∣ = ∣∣∣ 1

(2i− 1)2f ′((2i− 1)2)

∣∣∣
= O

(
1

|(2i− 1) sin
(

(2i−1)π
2

)
|

)

= O

(
1

i

)
.

□

4.2. Proof of Theorem 4.1. Next, we use a quantum modification of the poly-
nomial method. Let C be any circuit consisting of standard gates and at most d
controlled Uj gates. We show that under the correct distributions over Uj , any cir-
cuit with d too small will be unable to distinguish the cases where the eigenspaces
of Uj are degenerate, and those where it is not.

Let v1, . . . , vN be i.i.d. samples from D, let {|ψi⟩} be a random real orthonormal
basis, and let (U1, . . . , Ut) be the operators determined by these choices. Since,
by hypothesis, N samples chosen from D are with high probability distinct, every
solution of Problem 3.1 is also a solution of Problem 4.3, and so the probability
that circuit C solves Problem 3.1 is

E
|ψi⟩,vi

[∑
i

| ⟨ψi| ⟨ψi| ⟨ψi|C(U1, . . . , Ut) |0⟩ |2
]
,

where the expectation is over all choices of real orthonormal basis {|ψi⟩} and tuples
of eigenvalues v1, . . . , vN . On fixing the eigenbasis |ψi⟩, each controlled Uj gate
becomes an operator with entries that are linear functions in the zij . Thus the
entries of C |0⟩ are degree d polynomials in the zij , and

∑
i | ⟨ψi| ⟨ψi| ⟨ψi|C |0⟩ |2 is
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a degree 2d polynomial in zij and zij . Taking an expectation over the eigenbasis
shows that the above expectation is of the form E

vi
[p(zij , zij)], where p is some

polynomial of degree at most 2d and vi = (zi1, . . . , zit).
For integersM , we define a slightly different probability distribution over the vi.

We let h : [N ] → [M ] be a function chosen uniformly at random, and let vi = uh(i)
where the uj are i.i.d. elements of D. We let

AM = E
h,vi

[p(zij , zij)]

where the h vary uniformly among functions [N ] → [M ] and the vi are distributed
as above, with vi = uh(i) and the uj distributed according to D.

There are several things worth noting about this distribution. First, it is easy to
see that our original probability of success is limM→∞AM . This is because for large
M , with high probability h has no collisions and therefore the distribution over the
vi is arbitrarily close in total variational distance to i.i.d. copies of D. Second, we
have the following:

Claim 1. For each N , there exists a polynomial qN (x) of degree at most 2d such
that AM = qN (1/M).

Proof. Since p(zij , zij) is a polynomial of degree at most 2d, to prove the claim it
suffices to show that if m is a monic monomial of degree e, then E

h,ui

[m(zij , zij)] is

a polynomial in 1/M of degree at most e. Write m(zij , zij) = m1(zij)m2(zij) with
m1 and m2 monic. Observe that

E
vi
[m(zij , zij)] =

{
1 if m1 = m2

0 if m1 ̸= m2.

Write uij for the jth component of ui. Given h, define a ring homomorphism
H : C[{zij}] → C[{uij}] by H(zij) = uh(i)j . Then E

h,ui

[m(zij , zij)] equals the

probability over the set of h’s that H ◦ m1 = H ◦ m2. If m1 = m2, then this
probability is 1. Now suppose that m1 ̸= m2. For k = 1 and 2, let

Bk = {zij : zij appears in mk with positive exponent}.

Since zijzij = 1 whenever zij ∈ S1, by cancelling such terms in m we may assume
that B1 ∩ B2 = ∅. Without loss of generality, |B1| ≥ |B2|. If t is a surjective map
B1 ↠ B2, say that h has collision type t if H(z) = H(t(z)) for all z ∈ B1. There is a
finite set T of collision types with the property that h has collision type in T if and
only if H ◦m1 = H ◦m2. The number of h having collision type in the set T is given
by an inclusion-exclusion formula. Each term in the inclusion-exclusion is given by
the number of h having collision type t for all t in some subset T ′ ⊆ T . For a given
collision type t ∈ T , the probability that h has type t is 1

M |B1| . The probability that

h has type t for every t ∈ T ′ is of the form K/Mf for some constant K and some
integer f . The maximum value of f occurs for the sets T ′ such that h has type t
for all t ∈ T ′ if and only if H|B1∪B2

is a constant, in which case f = |B1|+ |B2|−1.
Since |B1|+ |B2| ≤ e, Claim 1 follows. □

Claim 2. If M ≤ N
16 logN , then qN (1/M) = O(M/N).
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Proof. By the above discussion and Claim 1 we have:

(4.2) qN (1/M) = E
h,|ψi⟩,vi

[∑
i

| ⟨ψi| ⟨ψi| ⟨ψi|C(U1, . . . , Ut) |0⟩ |2
]
,

where the h vary uniformly over functions from [N ] to [M ], the vi are distributed
according to h and D as above, and the sets {|ψi⟩} vary over random real orthonor-
mal bases for V . Suppose M ≤ N

16 logN , and let h be a random function from [N ]

to [M ]. By Lemma 4.5, with probability at least 1 − 1
16N logN , for every j ∈ [M ]

we have #(h−1(j)) = Ω(N/M). Let Vj = span{|ψi⟩ : h(i) = j}, so that with
probability at least 1 − 1

16N logN we have dimVj = Ω(N/M). Fix both the values

of the uj and the spaces Vj . The Vj are eigenspaces for Uk with eigenvalues ujk.
The output of C depends only on the Vj and the uj , but not on which basis of Vj
is given by {|ψi⟩ : h(i) = j}. Thus the output is

∑
j aj |ϕj⟩ for some |ϕj⟩ ∈ V ⊗3

j

and
∑
j |aj |2 = 1. Therefore the right-hand side of (4.2) is

E
Vj ,uj

∑
j

|aj |2
[

E
|ψi⟩ given Vj

[ ∑
i:|ψi⟩∈Vj

| ⟨ψi| ⟨ψi| ⟨ψi| |ϕj⟩ |2
]]
.

Here, we vary over orthogonal decompositions V = ⊕Mj=1Vj , tuples of eigenvalues
uj , and real orthonormal bases {|ψi⟩} that are a union of real orthonormal bases
for the Vj . Note that h can be recovered from this data by defining h(i) = j if and
only if |ψi⟩ ∈ Vj . Thus varying over tuples ({|ψi⟩}, h, uj) is the same as varying
over tuples ({Vj}, {|ψi⟩} given Vj , uj), with an appropriate choice of distribution
on the latter tuples. By Lemma 4.4, with probability at least 1− 1

16N logN we have:

∑
j

|aj |2 E
|ψi⟩ given Vj

[ ∑
i:|ψi⟩∈Vj

| ⟨ψi| ⟨ψi| ⟨ψi| |ϕj⟩ |2
]
=
∑
j

|aj |2O(1/ dim(Vj))

= O(M/N).

By (4.2) we have qN (1/M) = O(M/N), as desired. □

We now proceed to prove Theorem 4.1. By Claim 1, for each N the probability
that C solves Problem 3.1 is limM→∞AM = qN (0), so it suffices to show that
qN (0) = O(d3 log(d)/N). Let C be as in the hypothesis, and take N large enough
that d3 < N

16 logN .

For i ∈ {1, . . . , 2d+ 1}, let

mi =
d3

(2i− 1)2
and Mi = ⌊mi⌋ ∈ Z.

Then Mi ≤ d3 < N
16 logN , so qN (1/Mi) = O(Mi/N) for each i by Claim 2.

Using standard polynomial interpolation, we have:

qN (0) =

2d+1∑
i=1

qN (1/Mi)
∏
j ̸=i

1/Mj

1/Mj − 1/Mi
.
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We begin by bounding these expressions if the Mj were replaced by mj :∣∣∣ ∏
j ̸=i,j≤2d+1

1/mj

1/mj − 1/mi

∣∣∣ = ∣∣∣ ∏
j ̸=i,j≤2d+1

(2j − 1)2/d3

(2j − 1)2/d3 − (2i− 1)2/d3

∣∣∣
=
∣∣∣ ∏
j ̸=i,j≤2d+1

(2j − 1)2

(2j − 1)2 − (2i− 1)2

∣∣∣ ≤ ∣∣∣∏
j ̸=i

(2j − 1)2

(2j − 1)2 − (2i− 1)2

∣∣∣,
where the final product is over all positive integers j. By Lemma 4.6, the latter
product is O(1/i). Since Mi = ⌊mi⌋, we have 1/Mi = 1/mi +O(1/m2

i ). Thus,∣∣∣∣∣∏
j ̸=i

1/Mj

1/Mj − 1/Mi

∣∣∣∣∣ =
∣∣∣∣∣∏
j ̸=i

1/mj +O(1/m2
j )

1/mj − 1/mi +O(1/m2
i + 1/m2

j )

∣∣∣∣∣
≤

∣∣∣∣∣∏
j ̸=i

1/mj

1/mj − 1/mi

∣∣∣∣∣∏
j ̸=i

(
1 +

O(1/m2
i + 1/m2

j )

|1/mi − 1/mj |

)

= O(1/i) exp

(∑
j ̸=i

O

(
i4 + j4

(i2 − j2)d3

))

≤ O(1/i) exp

(∑
j ̸=i

O

(
max(i, j)4

(max(i, j)|i− j|d3

))

≤ O(1/i) exp

(∑
j ̸=i

O

(
max(i, j)3

|i− j|d3

))
.

Now if i ≤
√
d, the terms with j ≤ 2i sum to at most O(1/d), and the larger terms

in the sum are O
(
j2

d3

)
, and therefore sum to O(1). If i ≥

√
d, then the terms are

O
(

1
|i−j|

)
, and thus sum to O(log(d)). This implies that

qN (0) =

2d+1∑
i=1

qN (1/Mi)
∏
j ̸=i

1/Mj

1/Mj − 1/Mi

=

√
d∑

i=1

qN (1/Mi)O(1/i) +

2d+1∑
i=

√
d

qN (1/Mi)O(log(d)/i)

=

√
d∑

i=1

O

(
Mi

Ni

)
+

2d+1∑
i=

√
d

O

(
log(d)Mi

Ni

)

=

√
d∑

i=1

O

(
d3

Ni3

)
+

2d+1∑
i=

√
d

O

(
d3 log(d)

Ni3

)
= O(d3 log(d)/N),

as desired. □

Remark 4.7. The bound in Theorem 4.1 is nearly tight. In particular, if we
assume ε-separation of the vi’s for the operators U1, . . . , Ut, then there is actu-
ally an algorithm for solving Problem 3.1 with constant probability in O(N1/3t/ε)
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queries, similar to the collision algorithm of [6]. The algorithm involves computing
N1/3 pairs |ψi⟩ |ψi⟩, then preparing N2/3 other maximally entangled states. These
maximally entangled states can be thought of as being in a superposition of all
combinations of N2/3 pairs tensored together. There is a reasonable probability
that one of these N2/3 pairs agrees with one of our N1/3 pairs, and we can find
the index of such a pair using Grover’s algorithm by measuring the eigenvalues of
only O(N1/3) of our pairs. In order to compute the eigenvalues to sufficient ac-
curacy takes only O(t/ε) queries each. Thus, this algorithm has query complexity
O(N1/3), although the full complexity is O(N2/3).

5. Quantum Lightning

Following [32], a quantum lightning protocol consists of:

• a storm Storm, which is a polynomial size quantum algorithm that on
input a security parameter, outputs a quantum state |ψ⟩ called a bolt,
and

• a quantum verification algorithm Verify that on input a bolt, outputs a
serial number if the bolt is “valid” (that is, is an output of Storm), and
outputs ⊥ if the bolt is not valid,

satisfying:

• the expected value of − log2 mins Pr[Verify(|ψ⟩) = s] is negligible as a
function of the security parameter, where s is a serial number, and where
the expectation is taken over all pairs (Storm,Verify) and valid bolts |ψ⟩,
and

• the expected value of 1−| ⟨ψ′|ψ⟩ |2 is a negligible function of the security
parameter, where the expectation is taken over all pairs (Storm,Verify)
and valid bolts |ψ⟩, and |ψ′⟩ is the state obtained by running Verify on
|ψ⟩.

As in [32, Definition 3.2], a quantum lightning scheme is secure if no polynomial
time adversary can, with non-negligible probability, produce two states such that
a verifier will read them as valid bolts with the same serial number.

It is shown in [32] that a protocol for quantum lightning can be turned into a
quantum money protocol with comparable security, along with some other appli-
cations.

We note that the joint eigenstates of our operators Uj have many of the properties
of quantum lightning. While there is a “storm” that can produce pairs of eigenstates
|ψ⟩ |ψ⟩, assuming the difficulty of Problem 3.1 it is computationally difficult to
produce two copies of this state. Furthermore, the state |ψ⟩ |ψ⟩ can be associated
with a serial number given by the vector of its eigenvalues with respect to the
Uj . Unfortunately, this does not quite match up with the definition in [32] of
quantum lightning, as these “serial numbers” can only be computed approximately.
To fix this, we round the eigenvalues to the nearest multiples of some small ε.
Unfortunately, this creates issues if the true eigenvalue is very close to halfway
between two such multiples. To fix this, we modify the storm to throw away bolts
that are too close to this boundary. To ensure that some eigenstates are not rejected
by this, we also randomize the boundary somewhat.

Our quantum lightning protocol is as follows:
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(i) Have a set of commuting operators U1, U2, . . . , Ut and some ε > 0 so that
for any distinct joint eigenstates |ψ⟩ and |ρ⟩ there is some i so that the
eigenvalues of Uj on |ψ⟩ and |ρ⟩ differ by at least 10ε.

(ii) Pick any δ satisfying ε/(10t) > δ > 0, and choose a complex number z
uniformly at random from the unit square.

(iii) Our storm generates a pair |ψ⟩ |ψ⟩ of joint eigenstates as in the minting
algorithm Mint and computes the eigenvalues {λi} of {Uj} on |ψ⟩. If the
real or imaginary parts of any λi + z are within δ of a multiple of ε/2,
the algorithm tries again.

(iv) Our verifier takes a state |x⟩ |y⟩ and measures the eigenvalues of each Uj
on |x⟩ and |y⟩ to error δ, giving {λi} and {µi}. If |λi−µi| > 2δ for any i,
it rejects the input. Otherwise, it rounds the real and imaginary parts of
λi + z to the nearest multiple of ε and returns the vector of these values
as the serial number.

Theorem 5.1. If we have an instantiation of the quantum money protocol of §2
with commuting unitary operators U1, . . . , Ut on an N -dimensional complex vector
space, and Assumption 3.4 holds for the Uj, then the associated quantum lightning
protocol is secure. Furthermore, the quantum lightning scheme is secure, without
any hardness assumptions, against an adversary that makes only polynomially many
black box calls to the Uj.

Proof. The storm returns an answer in a reasonable amount of time. This is because
for z chosen randomly and δ < ε/(10t), for any joint eigenstate |ψ⟩ there is at least
a constant probability over the randomness of z that none of the λi+ z have a real
or imaginary part within δ of some multiple of ε/2.

Since the verifier computes each λi to error δ, and since none of the λi + z are
within δ of a multiple of ε/2 for a bolt produced by the storm, on such a bolt the
verifier always returns the same serial number, and additionally the verifier returns
distinct serial numbers for distinct bolts. Further, since measuring the eigenvalue
of an eigenstate does not affect the state, the verifier only negligibly alters a bolt
produced by the storm.

For security, suppose that a polynomial-time adversary, with probability p, pro-
duces two bolts that a verifier reads as having the same serial number. After the
verifier is finished with them, the bolts will be in a state |ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩ for |ψi⟩
some joint eigenstate of the Uj . Furthermore, to produce the same serial num-
bers (and not be rejected), the eigenvalues of Uj on |ψi⟩ and |ψk⟩ must have real
and imaginary parts differing by at most ε for all i and k. By assumption, this
implies that |ψi⟩ = |ψk⟩ for all i, k. Throwing away the last register, this solves
Problem 3.1. If Assumption 3.4 holds, then p is negligible, proving security of the
quantum lightning scheme.

By Corollary 4.2 the scheme is unconditionally secure against an adversary that
only has black box access to the Uj . □

Using Zhandry’s derivation of quantum money from quantum lightning, Theo-
rem 5.1 can be used to give a quantum money system similar to the one described
in §2.
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6. Instantiation using Quaternion Algebras

Above, we discussed a quantum money protocol that depends on having access
to a number of black box, commuting operators. However, for our protocol to
be cryptographically secure, we will need to implement it using operators that
are cryptographically difficult to work with. This is a bit of an issue as most
easily computable sets of commuting operators will not be secure in this way. For
example, taking Uj to be the Pauli matrix on the jth qubit Zj gives an easy set of
commuting operators, but one for which it is easy to manufacture eigenstates (even
with specified eigenvalues). We come up with a hopefully secure set of commuting
operators using the theory of quaternion algebras.

6.1. Quaternion algebras. Before we discuss our implementation in detail, we
review some basic facts about quaternion algebras over the field Q of rational num-
bers, for which [30] can be used as a reference.

Definition 6.1. Given non-zero a, b ∈ Q, define H(a, b) as the ring

H(a, b) = Q+Qi+Qj +Qij = {α+ βi+ γj + δij : α, β, γ, δ ∈ Q}

with the relations i2 = a, j2 = b, and ji = −ij. We define a quaternion algebra
over Q to be any such ring H(a, b).

This definition of quaternion algebra over Q is not the standard one, but since
every quaternion algebra over Q is an H(a, b) for some a and b, we take this as
the definition. Note that H(a, b) has dimension four as a Q-vector space, and the
Hamilton quaternions are H(−1,−1).

For z = α + βi + γj + δij ∈ H(a, b) (with α, β, γ, δ ∈ Q), its conjugate is
z̄ := α− βi− γj − δij and its reduced norm is nrd(z) := zz̄.

By definition, a division algebra is a ring in which every non-zero element has a
multiplicative inverse. A quaternion algebra H over Q is ramified at a prime N if
the tensor product H⊗QQN of H with the field of N -adic numbers QN is a division
algebra (equivalently, is not the ringM2(QN ) of 2×2 matrices with entries in QN ).
We say H is ramified at ∞ if H ⊗Q R is a division algebra (equivalently, is not the
ring M2(R) of 2× 2 real matrices). An order O in H is by definition a subring that
is also a lattice (i.e., a finitely-generated Z-submodule such that OQ = H).

From now on, suppose N is a prime number and N ≥ 5. Let HN be the unique
quaternion algebra over Q ramified at N and ∞; Proposition 5.1 of Pizer [24] gives
explicit a and b such that HN = H(a, b). If N ≡ 1 (mod 6) let ON be the maximal
order given explicitly in Proposition 5.2 of Pizer [24], and if N ≡ 5 (mod 6) let

HN = H(−3,−N) and ON = Z+ Z 1+i
2 + Z j+ij

2 + Z i−ij
3 . (In particular, if N ≡ 7

(mod 12) then HN = H(−1,−N) and ON = Z+Zi+Z 1+j
2 +Z 1+ij

2 .) Then ON is
an N -extremal maximal order in HN , that is, a maximal order for which the unique
ideal of reduced norm N is principal (see [30, Chapter 21]).

A (left) fractional ideal of ON is by definition a (full-rank) lattice in HN that
is closed under left multiplication by elements of ON . Define the ideal class set
Cls(ON ) to be the set of fractional ideals of ON modulo right multiplication, i.e.,
modulo the equivalence relation defined by I ∼ J if and only if there exists z ∈ HN

such that I = Jz. The ideal class set Cls(ON ) is finite (see [30, Chapter 21]). If
I is a fractional ideal of ON , let [I] denote its ideal class, i.e., the set of fractional
ideals J of ON such that I = Jz for some z ∈ HN .
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If I is a left fractional ON -ideal, then the reduced norm nrd(I) is defined in [30,
§16.3], and satisfies IĪ = nrd(I)ON . If I ⊂ ON then nrd(I)2 = [ON : I] (see [30,
§16.4.8]).

The quaternion algebra H(a, b) embeds in R4 via the homomorphism of abelian

groups α + βi+ γj + δij 7→ (α, β
√
|a|, γ

√
|b|, δ

√
|ab|). Identifying H(a, b) with its

image, for all z ∈ H(a, b) we have nrd(z) = ∥z∥2, where ∥ · ∥ is the Euclidean norm
on R4. The image of ON and of any left fractional ideal of ON is a lattice in R4.
We thus may represent a fractional ideal by a Minkowski reduced basis. Since every
fractional ideal is a rank four lattice, given a Z-basis, a Minkowski reduced basis
can be computed in polynomial time [22]. In algorithms we specify a fractional
ideal by a Minkowski reduced basis for it.

6.2. Normalized Brandt operators T (p).

Definition 6.2. If I is a left fractional ON -ideal, define its right order

OI := {z ∈ HN : Iz ⊂ I}

and its weight wI := #(O×
I /{±1}) = 1

2#(O×
I ).

Then OI is a maximal order, and wI depends only on the ideal class [I]. In
Proposition A.8 in Appendix A we completely describe the wI . Our choices for the
maximal orders ON were designed to give Proposition A.8 a clean statement.

Suppose p is a prime not equal to N , and suppose I and J are non-zero fractional
ideals of ON . Define ap([I], [J ]) to be the number of fractional ideals I ′ ⊂ J such
that I ′ ∼ I and J/I ′ ∼= Z/pZ×Z/pZ. Let h = #Cls(ON ) and let T ′(p) be the h×h
matrix with [I], [J ]-entry ap([I], [J ]). The matrix T ′(p) is the p-Brandt matrix for

level N . The action of T ′(p) is self-adjoint for the pairing on CCls(ON ) given by〈
(x[I])[I], (y[I])[I]

〉
=
∑

[I]
1
wI
x[I]y[I] (see [30, §41.1.9]). Let W be the diagonal h×h

matrix whose [I], [I]-entry is
√
wI , and let T (p) =WT ′(p)W−1. Then the T (p) are

real symmetric matrices that commute which each other ([30, §41.1.10]), and thus
they have a simultaneous real eigenbasis. We call T (p) the normalized p-Brandt
matrix for level N . For example, if N ≡ 1 (mod 12), then T (p) = T ′(p).

Let VN be the subset of CCls(ON ) orthogonal (under the usual inner product)
to the vector (

√
wI)[I]. Then T (p) acts on CCls(ON ), preserves VN , and acts as a

self-adjoint operator for the usual inner product.
In order to use the operators T (p) in our quantum money scheme, we need to

make them computationally tractable. First, we will need to find a better way of
representing our ideal classes. While it is easy to give a single fractional ideal in
the class, it is important for us to find a canonical representation.

6.3. Canonical encoding. We next show how to obtain a canonical representation
of an ideal class.

Algorithm 6.3. INPUT: A prime number N ≥ 5, an N -extremal maximal order
ON in HN , and a left fractional ON -ideal I.

OUTPUT: A triple of integers (d, a, b) such that gcd(d, a, b) = 1 and b > a ≥ 0
and d ≥ 1.

(1) Apply a shortest vector algorithm such as Algorithm 2.7.5 of [8] to the
lattice I to produce an element z ∈ I of minimal non-zero reduced norm.

(2) Compute the ideal Jz :=
1

nrd(I)Iz̄.
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(3) Repeat steps (1) and (2) for each of the (at most six) z ∈ I of minimal
non-zero norm. Let J be the ideal Jz with lexicographically first encoding,
and compute m := nrd(J).

(4) Compute the image I ⊂ M2(Z/mZ) of J/mON under the isomorphism

fN,m : ON/mON
∼−→ M2(Z/mZ) from the algorithm of Proposition A.5

in Appendix A.
(5) Letting H ⊂ (Z/mZ)2 be the (cyclic) subgroup (of order m) generated by

the rows of all the elements of I, apply the algorithm of Proposition A.4
to obtain (d, c) ∈ Z2 that generates H and satisfies d | m and gcd(d, c) =
1.

(6) Compute b = m/d and a = c (mod b). Output (d, a, b).

We call the triple (d, a, b) obtained in this way the canonical encoding of the
ideal class of I. Theorem 6.4 below justifies the terminology and shows that the
algorithm works.

Theorem 6.4. In Algorithm 6.3, we have:

(i) mON ⊂ J ⊂ ON ;
(ii) N ∤ m;
(iii) H is a cyclic group of order m;
(iv) gcd(d, a, b) = 1;
(v) if inputs I and I ′ are in the same ideal class in Cls(ON ), then they output

the same triple (d, a, b), and produce the same J , I, and H;
(vi) if the same triple is output by inputs I and I ′, then [I] = [I ′], and I and

I ′ produce the same J , I, and H;
(vii) Algorithm 6.3 is a quantum polynomial-time algorithm.

Proof. If γ ∈ HN and I0 is a left fractional ON -ideal, then

(6.1) I0γ ⊂ ON if and only if γ ∈ I−1
0 = I0nrd(I0)

−1.

Since z̄/nrd(I) ∈ Īnrd(I)−1 = I−1, it follows that Jz = Iz̄/nrd(I) ⊂ ON , so
J ⊂ ON . Then 1 ∈ J−1 = J̄m−1 by (6.1), so m ∈ J , so mON ⊂ J , giving (i).

We claim that m is the minimum of the reduced norms of the integral ideals in
[I]. Say I ′ = Iγ. By (6.1), we have that Iγ ⊂ ON if and only if γ = ᾱ/nrd(I) with

α ∈ I. The reduced norm nrd(Iγ) = nrd(α)
nrd(I) is minimized when α is an element of

I of minimal non-zero reduced norm. The minimality of m follows.
Since ON is N -extremal, the Frobenius ideal of ON is principal; let π be a

generator. As in [30, 42.2.4], we have J = πrJ ′ for some r ∈ Z≥0 and some ideal
J ′ ⊂ ON satisfying N ∤ nrd(J ′). Then m = nrd(J) = Nrnrd(J ′) and J ′ ∈ [J ] = [I].
By the minimality of m we have N ∤ m, giving (ii).

If r is a divisor ofm, and r ̸= 1,m, then rON ̸⊂ J and J ̸⊂ rON . To see this, first
suppose J ⊂ rON . Then r−1J is an integral ideal in the ideal class of J , of strictly
smaller norm, contradicting the minimality of m. If rON ⊂ J , then r ∈ J , so by
(6.1) with J in place of I, the ideal Jr̄/m = Jr/m is integral. It is then an integral
ideal of strictly smaller norm in the ideal class of J , contradicting the minimality
of m. The map that sends a matrix to its rowspace induces a bijection from the
set of left ideals of M2(Z/mZ) to the set of subgroups of (Z/mZ)2 (Lemma A.6 in
Appendix A). It follows that r(Z/mZ)2 ̸⊂ H and H ̸⊂ r(Z/mZ)2 for all non-trivial
proper divisors r of m, from which one can show that the subgroup H must be
cyclic of order m, giving (iii).
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Since gcd(d, c) = 1, we have gcd(d, c, b) = 1. Since a ≡ c (mod b), we have (iv).
For (v), suppose that the inputs I and I ′ give J and J ′, respectively, in step (4)

of the algorithm. Since J ′ is an integral ideal in [I] with minimal norm, as shown
in the second paragraph of this proof there is an element z ∈ I of minimal non-zero
norm such that J ′ = Iᾱ/nrd(I). Therefore when running the algorithm on input
I, both J and J ′ appear in the list of ideals generated in step (3); by symmetry,
the same occurs with input I ′. Since both J and J ′ are lexicographically first, we
have J = J ′. Let H be as in step (5). By the last sentence of Proposition A.4 in
Appendix A, the integer d, and thus b, is uniquely determined. Suppose that (d, c)
and (d, c′) are two generators for H. Then there exists λ ∈ (Z/mZ)× such that
λ(d, c) = (d, c′) in H. Since λd ≡ d (mod m), we have λ ≡ 1 (mod b), so c ≡ c′

(mod b). Thus a is also unique.
For (vi), suppose that inputs [I] and [I ′] have the same output (d, a, b). The

groups H and H ′ from step (5) of the algorithm are both subgroups of (Z/mZ)2,
where m = db. The group H is generated by (d, c) for some c with a = c (mod b)
and gcd(d, c) = 1, and H ′ is generated by (d, c′) for some c′ with a = c′ (mod b) and
gcd(d, c′) = 1. By Lemma A.7 in Appendix A we have H = H ′. Since (by Lemma
A.6 in Appendix A) the map that sends a matrix to its rowspace induces a bijection
from the set of left ideals of M2(Z/mZ) to the set of subgroups of (Z/mZ)2, we
have I = I ′. Then J/mON = J ′/mON , so J = J ′ and [I] = [J ] = [J ′] = [I ′].

For (vii), the Z-rank of I is 4, so step (1) runs in polynomial time.
Viewed as lattices in R4, the index [ON : I] can be computed as the square root

of a ratio of determinants. Since nrd(I) =
√
[ON : I], the reduced norm in step (2)

can be computed in polynomial time.
In step (3), it is easy to compute all the elements of minimal non-zero norm from

one of them, since each I has at most six z of minimal non-zero norm. To see this,
observe that z, z′ ∈ I both have minimal norm if and only if z′ = uz for some unit
u ∈ O×

N . The proof of Proposition A.8 in Appendix A gives an explicit generator

for O×
N , which has order at most 6. If N ≡ 1 (mod 12), then O×

N = {±1}, so up to
sign there is a unique z ∈ I of minimal non-zero norm, and only one ideal Jz.

Thus all steps run in polynomial time, except that the invocation of Propo-
sition A.5 in step (4) might necessitate the use of a quantum polynomial-time
algorithm to factor m. □

Unfortunately, some triples (d, a, b) are not canonical encodings, as seen in the
following example. Fortunately, Algorithm 6.6 below enables one to detect when a
triple is not canonical.

Example 6.5. Let N = 23, so H23 = H(−3,−23) and O23 = Z+Z 1+i
2 +Z j+ij

2 +

Z i−ij
3 . Let α = 1+i

2 and β = α+ i−ij
3 = 3+5i−2ij

6 and I = (2, β). Then nrd(I) = 2,

and I, Iα, and Iα2 are the only ideals in [I] of minimal norm. Applying the

algorithm of Proposition A.5 gives the isomorphism O23/2O23
∼−→ M2(Z/2Z) that

sends α to [ 0 1
1 1 ] and β to [ 0 0

1 1 ]. The image of I (resp., Iα, Iα2) is the set of matrices
with row space generated by (1, 1) (resp., (1, 0), (0, 1)). It follows that exactly one of
(1, 1, 2), (1, 0, 2), and (2, 0, 1) (depending on which of I, Iα, Iα2 is lexicographically
first) can be a canonical encoding of an ideal class in Cls(O23).

Algorithm 6.6. INPUT: A prime N ≥ 5, a Z-bases (ω1, ω2, ω3, ω4) for a maximal
order ON in HN , and a triple of integers (d, a, b).
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OUTPUT: 1 if (d, a, b) is the canonical encoding of some fractional ideal of ON ,
along with an ideal J ⊂ ON whose canonical encoding is (d, a, b); 0 otherwise.

(1) If a ≥ b or a < 0 or d < 1 or b < 1 or gcd(d, a, b) > 1, output 0 and
stop.

(2) Apply Algorithm A.3 in Appendix A to compute an integer c such that
gcd(d, c) = 1 and c ≡ a (mod b).

(3) Set m = db. Apply the algorithm of Proposition A.5 in Appendix A to

obtain an isomorphism fN,m : ON/mON
∼−→ M2(Z/mZ), let π : ON →

ON/mON → M2(Z/mZ) be the composition of reduction mod N with
fN,m, and compute π(ωi) for each i.

(4) Compute xi ∈ Z such that
∑4
i=1 xiπ(ωi) = [ d c0 0 ].

(5) Compute α =
∑4
i=1 xiωi and compute a Z-basis for the ideal J ⊂ ON

generated by m and α.
(6) Apply Algorithm 6.3 to compute the canonical encoding (d′, a′, b′) of J .
(7) Output 1 and the ideal J if (d′, a′, b′) = (d, a, b), and otherwise output 0.

Proposition 6.7. Algorithm 6.6 is correct and runs in quantum polynomial time.

Proof. Suppose that I is a left fractional ideal of ON and suppose that (d, a, b) is
its canonical encoding. Let c, m = db, and J be as in Algorithm 6.6 with input
(d, a, b). To show correctness, by Theorem 6.4(v) it suffices to show that [I] = [J ].

Let J ′, c′, and H ′ = ⟨(d, c′)⟩ be as in steps (3) and (5) of Algorithm 6.3 with
input I. Let H be the subgroup of (Z/mZ)2 generated by (d, c). Then gcd(d, c) =
1 = gcd(d, c′) and c ≡ c′ (mod b). By Lemma A.7 in Appendix A we have H = H ′.

Since J (resp., J ′) is the inverse image, under the composition ON → ON/mON
∼−→

M2(Z/mZ), of the set of matrices whose rows are in H = H ′, we have J = J ′, so
[J ] = [J ′] = [I].

Steps (4) and (5) are linear algebra. All steps run in polynomial time, except
that steps (3) and (6) might necessitate the use of a quantum polynomial-time
algorithm to factor m. □

We will need to bound the size of m that we may need to deal with.

Lemma 6.8. Suppose z is an element of minimal non-zero norm in a fractional
ideal I for ON . Let J = 1

nrd(I)Iz̄ and m = nrd(J). Then m ≤
√
2
√
N .

Proof. Let λ1(I) denote the length of a shortest non-zero vector in the lattice I,
and let D denote the discriminant of I. By the Hermite bound we have λ1(I)

4 ≤
2|det(I)| = 2

√
D. But nrd(z) = λ1(I)

2, so nrd(z) ≤
√
2 4
√
D.

By Lemma 15.2.15 and Proposition 16.4.3 of [30] we have nrd(I) = 4
√
D/

√
N .

Thus m = nrd(z)/nrd(I) = nrd(z)
√
N/ 4

√
D ≤

√
2
√
N . □

6.4. Computation of normalized Brandt operators T (p). Given an ideal class
[J ], we will need to find the multiset of ideal classes [I] with non-zero ap([I], [J ])-
entries. This is relatively straightforward as we need to find I ⊃ J ⊃ pI that are
invariant under left multiplication by ON , or equivalently we need to find J/pI ⊂
I/pI that are invariant under ON/pON . It is a standard fact that the action of
ON/pON on I/pI is isomorphic to the action of M2(Z/pZ) on itself. Once such
isomorphisms are computed using the algorithm of Proposition A.5 in Appendix A,
the invariant elements of I/pI correspond to {A ∈ M2(Z/pZ) | Av = 0} for v
some non-zero element in (Z/pZ)2. Since these sets are invariant under scaling of
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v, there are exactly p + 1 such J ’s, and they are computable in a straightforward
manner. Furthermore, since J is a small index sublattice of I, from a reduced
basis of I it is relatively simple to compute a reduced basis for J and thus, the
appropriate canonical representation for [J ]. This allows us to compute the non-
zero entries of a row of the Brandt matrix T ′(p). Proposition A.8 in Appendix A
gives the wI , and hence the normalized Brandt matrix T (p). Then, using standard
Hamiltonian simulation algorithms, it is straightforward to approximate the action
of eiT (p)/

√
p on VN . By [4, Theorem 1], eiT (p)/

√
p can be computed with gate

complexity polynomial in p and log(N).
If p is small compared to N , then T (p) is a sparse matrix, since each column has

at most p+ 1 non-zero entries and the matrix is h× h with h = O(N/12).

6.5. Producing maximally entangled states. There is one additional difficulty
in implementing our scheme in this context. Namely, there is no obvious way to
produce a maximally entangled state for VN ⊗ VN . In this section, we provide an
efficient algorithm for doing this.

To produce this representation, first note that it suffices to produce a state that
is a uniform superposition of the representatives for the elements of Cls(ON ). To
do this, we begin by providing a different representation of such elements.

The following algorithm efficiently produces a superposition over canonical en-
codings of ideal classes.

Algorithm 6.9. INPUT: A prime number N ≥ 5 and an N -extremal maximal
order ON .

OUTPUT: Either a quantum state proportional to
∑

|d, a, b⟩, where (d, a, b)
varies over the canonical encodings of the elements in Cls(ON ), or else ⊥.

(1) Prepare a state |ψ⟩ proportional to
∑⌊

√
2N⌋

d=1
1√
d
|d⟩ .

(2) Apply to |ψ⟩ the linear map that sends |d⟩ to |d⟩ ⊗
(

1√
Cd

∑Cd

i=1 |i⟩
)⊗2

,

where Cd = ⌊
√
2N/d⌋, and call the resulting state |ψ1⟩.

(3) Writing f for a function that implements Algorithm 6.6, apply to |ψ1⟩ |0⟩
the operator that sends |d, a, b⟩ |0⟩ to |d, a, b⟩ |f(d, a, b)⟩, and call the re-
sulting state |ψ2⟩.

(4) Measure the last register of the quantum state |ψ2⟩. If the result is 0,
output ⊥. Otherwise, output |ψ2⟩.

If the algorithm outputs ⊥, we say it fails; otherwise we say it succeeds.

Theorem 6.10. Algorithm 6.9 succeeds with probability at least (1− 1
N ) 1

32π2 .

Proof. Step (1) can be implemented by first preparing the state 1√
M

∑M
m=1 |m⟩

where M := ⌊log2(
√
2N)⌋, then appending a zero qubit to this state and applying

the operator defined by

|m0⟩ 7→
2m+1∑
d=2m

[
1√
d
|d0⟩+

√
1

2m
− 1

d
|d1⟩

]
,

and then measuring the last qubit. If the result is 1, start over. If the result is 0,
step (1) has succeeded. One can compute that the success probability for step (1)
is at least 1

2 .
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For each d let C ′
d be the least power of 2 larger than Cd. To implement step

(2), consider the following procedure. First, apply the operator defined by |d0⟩ 7→
1√
C′

d

|d⟩
∑C′

d
i=1 |i⟩ . Define B(d, i) := 0 if i > Cd and B(d, i) := 1 if i ≤ Cd. Apply

the operator defined by |di⟩ 7→ |di⟩ |B(d, i)⟩ and measure the last register. If the
result is 0, reject and start over. Rejection occurs with probability ≤ 1

2 . If the

result is 1, discarding the last register leaves a state of the form 1√
Cd

|d⟩
∑Cd

i=1 |i⟩ .
Applying the above procedure twice produces the output of step (2). The success
probability for step (2) is ≥ 1

4 .
Step (2) outputs a state that approximates the uniform distribution of |d, a, b⟩

for (d, a, b) running over positive integers with da, db ≤
√
2N . By Lemma 6.8, these

triples include all the canonical encodings of elements of Cls(ON ). The number of
states in this distribution is thus

⌊
√
2N⌋∑
d=1

(√
2N

d

)2

≤ 2N

∞∑
d=1

1

d2
=
π2N

3
.

The number of triples (d, a, b) that are canonical encodings is #Cls(ON ) ≥ (N −
1)/12. Thus the success probability in step (4) is at least ((N − 1)/12)/(π2N/3) =
(1− 1

N ) 1
4π2 . The claim follows. □

Using Algorithm 6.9, we can next obtain a maximally entangled state by ap-
plying a controlled-NOT operator. We implement this in the next section in our
instantiation of the minting algorithm.

6.6. Instantiation of protocol. Algorithm 6.11 below is our instantiation of the
minting algorithm using normalized Brandt operators. Fix N , HN ,ON , and VN as
before, and choose primes p1, . . . , pt distinct from N . Let T (pj) be the normalized

pj-Brandt matrix for level N (as defined in §6.2) and let Uj = eiT (pj)/
√
pj . Recall

that §6.4 allows one to compute T (pj) and the action of Uj on VN . Let {|ψi⟩} be a si-
multaneous real eigenbasis for the Uj ’s. Fix ε for which {|ψi⟩} is ε-separated; based
on empirical evidence, ε = 1

4(log2N) should be a suitable choice, but see §6.7 for ad-

ditional discussion. Set the public parameters PP to be (N,HN ,ON , p1, . . . , pt, ε).
Let SK be a signing key for a fixed digital signature algorithm. The Mint algorithm
is as follows.

Algorithm 6.11. INPUT: PP,SK
OUTPUT: a uniformly random valid bill (|ψ⟩ , v, σ) with |ψ⟩ ∈ VN .

(1) Apply Algorithm 6.9 to obtain the superposition
∑

|d, a, b⟩, where the
sum is over all the canonical encodings of the elements of Cls(ON ).

(2) Append an ancillary register initialized to 0 and apply controlled-NOT
operators to obtain the quantum state

∑
(|d, a, b⟩ ⊗ |d, a, b⟩).

(3) Apply phase estimation with the operators Uj ⊗ Ih and Ih ⊗ Uj for
j = 1, . . . , t. Let |ψ⟩ be the resulting quantum state and v the tuple
of eigenvalues.

(4) If vj = ei(pj+1)/
√
pj for all j, output ⊥. Otherwise, let σ be the signature

of v, and output (|ψ⟩ , v, σ).

This instantiation of the minting algorithm is essentially the same as the black
box Mint algorithm of §2, except that it takes place in the subspace VN , not in all
of CCls(ON ).
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Theorem 6.12. The Mint Algorithm 6.11 has correct output with probability at
least 1

32π2 (1− 1
N )(1− 12

N ), and runs in quantum polynomial time.

Proof. The subspace VN is the orthogonal complement of the span of |ψ0⟩ :=∑
1
wI

|d, a, b⟩ , where the sum is over the canonical encodings of the elements of

Cls(ON ), and wI = #O×
I /{±1} where OI is the right order of any ideal I with

canonical encoding (d, a, b). As |ψ0⟩ is itself an eigenvector for the normalized
Brandt operators, in the minting protocol it suffices to check that the output is
not |ψ0⟩ ⊗ |ψ0⟩. (When N ≡ 1 (mod 12), then |ψ0⟩ ⊗ |ψ0⟩ is the maximally en-
tangled state as in Step 2 of Algorithm 6.11.) Since T (p) |ψ0⟩ = (p + 1) |ψ0⟩, we
have Up |ψ0⟩ = ei(p+1)/

√
p |ψ0⟩. By ε-separation, step (4) outputs ⊥ if and only if

|ψ⟩ = |ψ0⟩ ⊗ |ψ0⟩; otherwise, the output is a valid bill with a note in VN .
Step (1) succeeds with probability bounded below by 1

32π2 (1 − 1
N ), by Theo-

rem 6.10. The state proportional to
∑

(|d, a, b⟩⊗|d, a, b⟩) is a uniform superposition
of all of the eigenstates of the form |ψi⟩ ⊗ |ψi⟩. Since there are at least N/12 such
states, the probability of obtaining the state |ψ0⟩ ⊗ |ψ0⟩ is at most 12

N . The claim
follows. □

Remark 6.13. Our motivation for working in VN instead of CClsON is that |ψ0⟩⊗
|ψ0⟩ is an easy state to manufacture, so allowing this state to be a valid note would
permit easy attacks by the mint or by others as in §3.

The instantiation of the verification algorithm Verify is identical to the black box
algorithm of §2.

6.7. ε-separation. Our quantum money protocol instantiation requires that the
eigenbasis for the operators eiT (p)/

√
p be ε-separated. Table 1 in Appendix B gives

experimental data that suggests that the eigenbasis is ε-separated even for ε quite
large; for instance, ε = 1/(4 log2(N)) works for all N in Table 1, where we use
eiT (p)/

√
p for all primes p < log2(N).

For the normalized Brandt operators T (p), rather than eiT (p)/
√
p, Goldfeld and

Hoffstein [12] obtain ε-separation when the number of operators m is O(N logN),
and obtain a bound form that is polylog(N) if they assume a version of the Riemann
hypothesis. However, the ε is not explicit. Note that Goldfeld and Hoffstein, as
well as Serre’s result below, deal with the Brandt operators T ′(p), but since T (p)
and T ′(p) are similar, the eigenvalues are identical, and so these results apply to
T (p) as well.

Theorem 6.14 ([12], Theorems 3 and 2). Let N ≥ 5 be a prime. For each prime
p ̸= N , let T (p) be the normalized p-Brandt matrix for level N . Then:

(i) There exist a constant K = O(N logN) and ε > 0 such that if p1, . . . , pt
is the list of primes ≤ K with pi ̸= N , then every eigenbasis for the
operators T (p1), . . . , T (pt) is ε-separated.

(ii) If the Riemann hypothesis for Rankin-Selberg zeta functions holds, then
there exist a constant K = O((logN)2(log logN)4) and ε > 0 such that
if p1, . . . , pt is the list of primes ≤ K with pi ̸= N , then every eigenbasis
for the operators T (p1), . . . , T (pt) is ε-separated. If N > e15, one can
take K = 16(logN)2(log logN)4.

Proposition 6.15. Suppose p1 . . . , pt, N are distinct prime numbers with N ≥ 5.
Then every eigenbasis with respect to T (p1), . . . , T (pt) that is ε-separated for some
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ε > 0 is also an eigenbasis with respect to
{
e

i√
pj
T (pj)}

that is ε′-separated for some

ε′ such that 0 < ε′ = O(ε/
√

maxj{pj}).

Proof. Let Uj = e
i√
pj
T (pj)

and K = maxj{pj}. By Deligne’s proof of the Weil
conjectures [9], the eigenvalues of T (pj) lie in the interval [−2

√
pj , 2

√
pj ], so the

eigenvalues of 1√
pj
T (pj) lie in [−2, 2]. Let H = {z ∈ S1 | −2 ≤ arg(z) ≤ 2}.

The map on t-tuples ρ : [−2, 2]t → Ht given coordinate-wise by λ 7→ eiλ sends
tuples of eigenvalues for the 1√

pj
T (pj) to the corresponding tuple of eigenvalues for

the Uj . Since ρ−1 is Lipschitz continuous, there exists M > 0 such that for all
v1, v2 ∈ [−2, 2]t we have |v1 − v2| ≤M |ρ(v1)− ρ(v2)|. If v1 and v2 are two distinct
tuples of eigenvalues for 1√

pj
T (pj), then |v1 − v2| > 1√

pj
ε. It follows that with

respect to the Uj ’s our joint eigenbasis is ε
′-separated for ε′ = 1

M
√
K
ε. □

Fix primes p1, . . . pt. As before, for each prime N distinct from p1, . . . , pt, let
{vi,N}hi=1 be the set of vectors of eigenvalues for an eigenbasis for { 1√

pj
T (pj)}tj=1,

where T (pj) is the normalized pj-Brandt matrix for level N and h = #Cls(ON ).

On the interval [−2, 2], let µp denote the probability measure p+1
π · (1−x2/4)1/2

(
√
p+ 1√

p )
2−x2 dx.

Theorem 6.16 (Théorème 3, [26]). The distribution of vectors {vi,N}hi=1 ⊂ [−2, 2]t,

where N is a prime not equal to p1, . . . , pt, approaches the product measure
∏t
i=1 µpi

as N goes to infinity.

For p large, µp approaches the distribution 1
2π

√
4− x2dx. Thus the distribution

of the eigenvalues of the Uj = eiT (pj)/
√
pj in the subset of S1 with argument x ∈

[−2, 2] will approach the distribution 1
2π

√
4− x2dx. A more precise statement on

the distribution of eigenvalues is given in [21, Theorem 19].

Remark 6.17. In light of Theorem 6.16, a natural assumption is that the vi,N
act like independent random samples drawn from the distribution

∏t
i=1 µpi . Under

this assumption, if 0 < ε < 1, then for t larger than a sufficiently large multiple
of logN , with high probability the eigenbasis for the Uj is ε-separated. An open
question is how the eigenvectors of the Brandt matrices vary. If they also act
like independent random samples as N varies, then the operators Uj also act like
random (commuting) unitary operators.

7. Security of the Instantiation

As the operators Uj in the instantiation are no longer black box, one must now
consider additional attacks. In §§7.2–7.6 we note some of the most obvious attacks
on Problem 7.1, and reasons we do not expect them to work. In each case, instead
of an attacker with only black box access to the Uj we consider an attacker that
uses some property of the instantiation.

7.1. Security reduction. The following problem restates Problem 3.1 in the set-
ting of our instantiation.

Problem 7.1. Given a prime N ≥ 5, and operators Uj = eiT (pj)/
√
pj , where the

T (pj) are the normalized Brandt matrices acting on VN corresponding to distinct
primes p1, . . . , pt not equal to N , output a state of the form |ψ⟩ |ψ⟩ |ψ⟩, where |ψ⟩
is an eigenvector for all the Uj ’s.



26 D. M. KANE, S. SHARIF, AND A. SILVERBERG

The proof of Theorem 3.3 shows that our instantiation is secure if Problem 7.1
is hard and the digital signature algorithm is secure.

7.2. Use of other Uj. An attacker will have access not just to the Uj used in the

quantum money protocol but also to eiT (p)/
√
p for other primes p. Since the black

box lower bound from Theorem 4.1 does not depend on the number of operators,
its conclusion still holds, if one were to treat this larger set of operators as black
box operators.

7.3. Other powers of eiT (p)/
√
p. An attacker can apply arbitrary powers of the Uj ,

by computing eiγT (p)/
√
p for any γ ∈ R. The following modification of Theorem 4.1

shows this does not help.

Theorem 7.2. Suppose A is an algorithm that, on input a real number γ ∈ R
and a black-box unitary operator eT , outputs a black-box unitary operator that ap-
proximates eγT . Suppose D is any probability distribution over (S1)t such that with
high probability, any finite number of samples chosen from D are distinct. Then
any circuit consisting of standard gates and controlled A(γ, Uj) gates that solves
Problem 3.1 with constant positive probability for sets of operators U1, . . . , Ut cho-
sen according to D and with uniformly random real eigenbasis {|ψi⟩} must have
Ω((N/ log(N))1/3) controlled A(γ, Uj) gates.

The only difference between the proofs of Theorems 7.2 and 4.1 is that the calls
to A might give a different distribution D of eigenvalues. We may assume that the
γ chosen in Theorem 7.2 all satisfy 0 < γ ≤ 1. Then the distribution induced by
replacing each sample from D with its γth power for some 0 < γ ≤ 1 also has the
property that with high probability, any finite number of samples are distinct.

7.4. Sparse logarithms. The matrices T (p) are too large to be able to directly
compute their eigenvectors via classical algorithms from linear algebra. However,
the log(Uj) =

1√
pj
T (pj) used in our protocol are sparse operators. One could ask

whether one could use an HHL-like quantum algorithm [14] to find eigenvectors
(one cannot use HHL directly as the matrix used would not be invertible). Since
an HHL-like algorithm deals with eitT (p) for t ∈ R via Hamiltonian simulation,
rather than directly with the sparse matrices 1√

pT (p), security against such attacks

is covered by our black box lower bounds in Theorem 4.1.

7.5. Quantum state restoration. A technique in [10] was developed to break a
number of quantum money schemes that look superficially like ours. These schemes
use eigenstates of some operator H where the state itself has some clean (but
secret) product representation. In [10] it is shown that if we are given a state
|ψ⟩ = |ψA⟩ ⊗ |ψB⟩ ∈ VA ⊗ VB and can compute a measurement of whether we are
in state |ψ⟩, we can produce a duplicate of the state |ψB⟩ in time poly(dim(VB)).
If the supposedly secure state is a tensor product of many small pieces, this can be
used to recover the individual pieces one at a time.

We argue that it is extremely unlikely that the eigenstates in our algorithm can
be decomposed as such tensor products. In fact, it is extremely unlikely that there is
even any natural way to write VN as a tensor product. For suppose VN ∼=W1⊗W2.
For each Brandt operator T (p), the eigenvalues of T (p) acting on VN would be
products tij = λiρj , where the λi (respectively ρj) are the eigenvalues of T (p)
acting on W1 (respectively W2). These eigenvalues would then satisfy quadratic
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relations tijtkℓ = tkjtiℓ. Theorem 6.16 (due to Serre) suggests that the eigenvalues
of the T (p) act like random variables taken from the distribution µp and thus that
the eigenvalues satisfy the above quadratic relations with probability zero.

7.6. Modular forms and elliptic curves. As mentioned in §1.1, there is a well-
understood connection between Brandt operators and both modular forms and
supersingular elliptic curves. Since the most efficient way known to compute mod-
ular forms is to compute the eigenvalues of Brandt operators (see [5, 24, 30, 17]),
it seems unlikely that one could use modular forms to attack a protocol based on
quaternion algebras. We make this more precise below. We focus on modular forms,
but could equivalently phrase it using elliptic curves, via the equivalence given in
[20]. A reference for modular forms is [18].

To try to solve Problem 7.1, one could try to directly manufacture a specific
eigenstate |ψ⟩ three times in succession to obtain a solution to Problem 7.1. We
next consider two “direct manufacture” problems.

Cusp forms are typically encoded as power series f(q) =
∑∞
n=1 anq

n. We assume
that for polylog(N)-many primes p, polylog(N)-many bits of the coefficient ap
are specified. If f is a simultaneous eigenvector of all the Hecke operators Tp,
normalized so that a1 = 1, then the eigenvalue of Tp is ap. Such a cusp form f is
called an eigenform for the Hecke operators.

Problem 7.3. Given a prime N and a normalized eigenform f ∈ S2(Γ0(N)) for
the Hecke operators Tp with corresponding eigenvalue ap for all primes p, output a

simultaneous eigenstate |ψ⟩ of eiT (p)/
√
p for all primes p, such that the corresponding

eigenvalue is eiap/
√
p.

Problem 7.4. Given a prime N ≥ 5, complex numbers α1, . . . , αt, operators Uj =

eiT (pj)/
√
pj , where the T (pj) are the normalized Brandt matrices acting on VN

corresponding to distinct primes p1, . . . , pt not equal to N , and a promise that
there is a simultaneous eigenstate of U1, . . . , Ut such that Uj has eigenvalue αj for
each j, output such a simultaneous eigenstate |ψ⟩ of U1, . . . , Ut with eigenvalues
α1, . . . , αt, respectively.

No efficient algorithms are known to solve Problems 7.3 or 7.4.

Lemma 7.5.

(i) Every solution to Problem 7.3 is unique (up to scalar).
(ii) If every instance of Problem 7.4 with fixed choice of N and U1, . . . , Ut

as part of the input has a solution that is unique up to scalar, then every
eigenbasis for this choice of N,U1, . . . , Ut is ε-separated for some ε > 0.

(iii) Given N and U1, . . . , Ut, if there is an ε-separated eigenbasis for the
Uj’s for some ε > 0, then every solution to Problem 7.4 with these N
and U1, . . . , Ut as part of the input is unique (up to scalar).

Proof. For (i), fix an instance N and f =
∑
anq

n of Problem 7.3, and suppose
|ψ⟩ and |ψ′⟩ are simultaneous eigenstates for eiT (p)/

√
p with eigenvalue eiap/

√
p for

all primes p. Then for each prime p, the states |ψ⟩ and |ψ′⟩ are simultaneous
eigenvectors for the operators T (p). The eigenvalue for T (p) of |ψ⟩ is

ap
pj

+ 2πkp
for some kp ∈ Z. Since T (p) is an integer matrix, its eigenvalues, including ap, are
algebraic numbers. Therefore 2πkp is also algebraic, so kp = 0 for all p. Thus,
ap is the eigenvalue for the operator T (p) of |ψ⟩, and similarly of |ψ′⟩. By the
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multiplicity one theorem for weight two cusp forms of prime level, two normalized
eigenforms in S2(Γ0(N)) with the same eigenvalues for all the Hecke operators Tp
must be equal. Since the system of Hecke operators Tp acting on S2(Γ0(N)) is
isomorphic to the system of operators T (p) acting on VN , it follows that |ψ⟩ and
|ψ′⟩ are scalar multiples, giving (i).

For (ii), suppose {|ψi⟩}hi=1 is an eigenbasis that is not ε-separated for any ε,
with eigenvalues zij satisfying Uj |ψi⟩ = zij |ψi⟩ for i = 1, . . . , h and j = 1, . . . , t.
Then there exist k ̸= ℓ such that zkj = zℓj for all j. Set αj = zkj for each j.
Then |ψk⟩ and |ψℓ⟩ are linearly independent solutions to Problem 7.4, for the given
N,U1, . . . , Ut. This gives (ii).

For (iii), suppose {|ψi⟩}hi=1 is an ε-separated eigenbasis for some ε > 0, with
eigenvalues zij satisfying Uj |ψi⟩ = zij |ψi⟩, and suppose |ψ⟩ and |ψ′⟩ are two solu-
tions to Problem 7.4. Write |ψ⟩ =

∑
ci |ψi⟩ and |ψ′⟩ =

∑
c′i |ψi⟩ with ci, c

′
i ∈ C.

Applying Uj to both equations gives ciαj = cizij and c′iαj = c′izij for all i and j.
Choose k so that ck ̸= 0. Then αj = zkj for all j. Suppose i ̸= k. Since {|ψi⟩} is
ε-separated, there exists j such that zij ̸= zkj = αj . It follows that ci = c′i = 0 for
all i ̸= k. Thus both |ψ⟩ and |ψ′⟩ are non-zero multiples of |ψk⟩, giving (iii). □

In the next result, “with complexity T” for classical algorithms means in time
T , and for quantum algorithms means with gate complexity T .

Proposition 7.6. Suppose there are an algorithm B that on input N can solve
Problem 7.4 with complexity BN , and an algorithm C that on input N with com-
plexity CN outputs a positive number ε and a list of primes p1(N), . . . , ptN (N)

such that there is an ε-separated eigenbasis for {eiT (pj(N))/
√
pj(N)}tNj=1. Let gN,p be

the complexity of computing eiT (p)/
√
p. Then there is an algorithm that can solve

Problem 7.3 on input N with complexity BN + CN +
∑tN
j=1 gN,pj(N).

Proof. Given an instance (N, f) of Problem 7.3, run algorithm C with input N

to obtain ε > 0 and primes p1(N), . . . , ptN (N). Set Uj = eiT (pj(N))/
√
pj(N) and

αj = eiapj(N)/
√
pj(N), and run algorithm B with inputs N , α1, . . . , αtN , U1, . . . , UtN

to obtain output |ψ⟩. Suppose |ψ0⟩ is a solution to Problem 7.3; a solution exists
since VN acted on by the T (p) is isomorphic to S2(Γ0(N)) acted on by the Tp. For
each j the state |ψ0⟩ is an eigenvector for Uj with eigenvalue αj . By Lemma 7.5(iii),
|ψ⟩ is a non-zero scalar multiple of |ψ0⟩, so it is a solution to Problem 7.3.

For the complexity, algorithms B and C are each run once, and each Uj is
computed once. □

Theorem 6.14 and Proposition 6.15 guarantee that ε and p1(N), . . . , ptN (N) as
in the above proof exist. As in §6.4, each Uj can be computed via a quantum
algorithm with gate complexity that is polynomial in pj(N) and log(N).

Proposition 7.7. An adversary that can solve Problem 7.3 and has a simultaneous
eigenform f for the Hecke operators can solve Problem 7.1.

Proof. Solve Problem 7.3 with input f three times in succession. □

8. Conclusion

We have presented what seems to be a fairly efficient quantum money protocol.
As far as we know, there are no subexponential attacks on this protocol, so it
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should be possible to implement securely with only a few hundred qubits. We hope
that the ideas and techniques of this paper could be used for other problems in
cryptography and computer science. We also expect this paper to inspire work on
the associated computational algebra problems.
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u is a real unit vector, then κ(u ⊗ u) is the projection operator onto u. It follows
that both κ(

∑
ei⊗ei) and κ(

∑
fi⊗fi) are the identity map. The claim follows. □

The following two deterministic algorithms run in polynomial time.

Algorithm A.2. INPUT: Positive integers m, e, and r such that e | m and
gcd(r, e) = 1.

OUTPUT: k ∈ Z such that k ≡ r (mod e) and gcd(k,m) = 1.

(1) For i = 1, 2, . . . compute di := gcd(ei,m) until di = di+1, and fix that i.
(2) Compute and output k such that k ≡ r (mod di) and k ≡ 1 (mod m/di).

Note that gcd(di,m/di) = 1. The above algorithm runs in polynomial time since
i ≤ log2m.

Algorithm A.3. INPUT: Positive integers d, a, and b such that gcd(d, a, b) = 1.
OUTPUT: c ∈ Z such that c ≡ a (mod b) and gcd(d, c) = 1.

(1) Letting e = gcd(d, b), apply Algorithm A.2 to compute c′ ∈ Z such that
c′ ≡ a (mod e) and gcd(c′, d) = 1.

(2) Apply the Chinese Remainder Theorem to compute c ∈ Z such that c ≡ c′

(mod d) and c ≡ a (mod b).

Proposition A.4. There is a deterministic polynomial-time algorithm that, given
a positive integer m and a cyclic subgroup H ⊂ (Z/mZ)2 of order m, computes
(d, c) ∈ Z2 that generates H and satisfies d | m and gcd(d, c) = 1. The integer d is
the unique divisor of m such that (d, γ) generates H for some γ ∈ Z.

Proof. Theorem 2.6.9 of [7] gives a deterministic polynomial-time algorithm that
given m and H, produces (d′, c′) ∈ Z2 that generates H. Since H has order m
we have gcd(d′, c′,m) = 1. Let d = gcd(d′,m). Compute integers r, s such that
d = rd′ + sm. Letting e = m/d, then gcd(r, e) = 1. Apply Algorithm A.2 in
Appendix A to compute k ∈ Z such that k ≡ r (mod e) and gcd(k,m) = 1. Then
kd′ ≡ rd′ (mod md′/d), so kd′ ≡ rd′ ≡ d (mod m). Let c = kc′ (mod m). Then
(d, c) = k(d′, c′) generates H. Since d | m we have gcd(d, c) = gcd(d, c,m) = 1.
Since i ≤ log2m, the algorithm runs in polynomial time.

Projecting H onto the first component gives a cyclic subgroup of Z/mZ of order
m/d, for which d is the unique generator that divides m. □

The next result gives an algorithm to compute an isomorphism ON/mON
∼−→

M2(Z/mZ), whereON is a maximal order and the primeN ∤ m. For our purposes, it
is important that the algorithm produce the same isomorphism each time it is given
the same inputs N , ON , andm. The algorithm invokes a polynomial-time quantum
algorithm to factor m. As such, there is some small failure probability. After that,
it uses a classical polynomial-time algorithm due to Voight to deterministically
construct isomorphisms ON/p

rON
∼−→ M2(Z/prZ) for each prime divisor p of m,

where pr||m.

Proposition A.5. There is an algorithm in complexity class BQP that, given a
positive integer m, a prime N that does not divide m, a maximal order ON in HN ,
and a Z-basis for ON , produces an isomorphism

fN,m : ON/mON
∼−→M2(Z/mZ).
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Proof. Factor m (for example using Shor’s algorithm). For each prime divisor
p of m, with pr||m, apply Proposition 4.8 of [29] and the results mentioned in

the paragraph after Problem 4.9 of [29] to obtain an isomorphism ON/p
rON

∼−→
M2(Z/prZ). Then apply the Chinese Remainder Theorem. □

Lemma A.6. Fix m ∈ Z>0. Let f denote the map from the set of left ideals of
M2(Z/mZ) to the set of subgroups of (Z/mZ)2 induced by sending a matrix to its
rowspace. Then f is a bijection, and its inverse is the map g that sends a subgroup
H to the set of matrices whose rows are in H.

Proof. Suppose that H is a subgroup of (Z/mZ)2. The left action of M2(Z/mZ)
on H is by row operations, so if A ∈ M2(Z/mZ) and B ∈ g(H), then the rows of
AB are linear combinations of the rows of B, so AB ∈ g(H). Thus g(H) is a left
ideal, and fg is the identity.

To show that gf is the identity, suppose I is a left ideal of M2(Z/mZ) and let
H = f(I). Then I ⊂ g(H). To show g(H) ⊂ I, suppose (x, y) ∈ H. By the
definition of H, there are matrices A1, ..., Ar ∈ I and for each i a row ai of Ai such
that (x, y) =

∑r
i=1 ai. Left-multiplying Ai by [ 0 1

1 0 ] if necessary, we may assume that

ai is the top row of Ai. Then [ x y0 0 ] = [ 1 0
0 0 ]

∑r
i=1Ai ∈ I, and

[
0 0
x y

]
= [ 0 1

1 0 ] [
x y
0 0 ] ∈ I.

Since such matrices generate g(H), we have g(H) ⊂ I. □

Lemma A.7. Suppose that d, b ∈ Z>0, that c, c′ ∈ Z, that c = c′ (mod b), and
that gcd(d, c) = 1 = gcd(d, c′). Let m = db and suppose that H and H ′ are the
subgroups of (Z/mZ)2 generated by (d, c) and by (d, c′), respectively. Then H = H ′.

Proof. Since gcd(d, c) = 1, there exist integers x and y such that cx = 1 + dy.
Setting λ = 1 + x(c′ − c), then λc = c′ + yd(c′ − c), and since c′ ≡ c (mod b)
it follows that λc ≡ c′ (mod m) and λd ≡ d (mod m). Thus λ(d, c) = (d, c′) in
(Z/mZ)2, so H ′ ⊂ H. By symmetry, H ⊂ H ′, so H = H ′. □

Recall (Definition 6.2) that if I is a left fractional ON -ideal of the quaternion
algebra HN , then we let OI be its right order and we let wI = #(O×

I /{±1}) =
1
2#O×

I . An integral solution to x2 − 3y2 = −N can be found in polynomial time
by [28].

Proposition A.8. We have wI = 1 for all [I] ∈ Cls(ON ), with the following
exceptions:

(i) If N ≡ 5 (mod 12), then wI = 3 for all I ∈ [ON ].
(ii) If N ≡ 7 (mod 12), then wI = 2 for all I ∈ [ON ].
(iii) Suppose N ≡ 11 (mod 12). Let (a, b) ∈ Z2 be a solution to x2 − 3y2 =

−N . Let α := a
3b i +

1
3b ij and Ô := Z + 1+j

2 Z + αZ + α−αj
2 Z. Then

wI = 3 for all I ∈ [ON ], and wI = 2 for all I ∈ [ON · Ô].

Proof. Table 1.3 of [13] shows that wI = 1 for all [I], with the following exceptions:
when N ≡ 5 (mod 12) one ideal class satisfies wI = 3; when N ≡ 7 (mod 12) one
ideal class satisfies wI = 2; and when N ≡ 11 (mod 12) there are two ideal classes
[I] and [J ] such that wI = 3 and wJ = 2. If N ≡ 7 (mod 12) then i2 = −1 so
i ∈ O×

N has order 4, and hence wON
= 2. If N ≡ 5 (mod 6) then i2 = −3 so

1+i
2 ∈ O×

N has order 6, and hence wON
= 3. Now suppose N ≡ 11 (mod 12). One

can check that Ô is a maximal order, and Ô is the right order of the ideal ON · Ô.

We have α2 = −(a2+N)
3b2 = −1, so α ∈ Ô× has order 4 and hence wON ·Ô = 2. □
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See also [15], where ON is denoted O(3) when N ≡ 5 (mod 6), and Ô is denoted
O′(1).

Appendix B. ε-separation Data

Table 1. ε-separation for {eiT (p)/
√
p | p < log2(N)}

N ε

547 0.4824236848637427
557 0.7199773703667618
563 0.7553525215246627
569 0.9200347021863563
571 0.48205861423463164
577 0.40674046098264244
587 0.7982583121867862
593 0.9266761931828437
599 0.62563971482572
601 0.7182238262429224
607 0.7313809878961292
613 0.768492003890778
617 0.5983414655675874
619 0.6187541297546084
631 0.45419000886679206
641 0.43490142944562354
643 0.6346083766649872
647 0.7432521901131
653 0.5063114409620633
659 0.6777125171096566

N ε

12569 0.22159756788222007
12577 0.22690747823008486
12583 0.2774346724081338
12589 0.22865081262562248
12601 0.25482871813162855
12611 0.16451483770778993
12613 0.09017383560136713
12619 0.18211198468203824
12637 0.16246553818517484
12641 0.19366213429958556

20011 0.34309639146812015
20021 0.3536950173591149
20023 0.2610129987276544
20029 0.19283243271645334
20047 0.30798681044672843
20051 0.2711650765294632
20063 0.21456144876447153
20071 0.3506564319413416
20089 0.2942067355453101

For each prime N in Table 1, let p1, . . . , pt be the primes less than log2(N),
and set Uj = eiT (pj)/

√
pj . Letting |ψ1⟩ , . . . , |ψh⟩ ∈ VN be the simultaneous eigen-

vectors for the Uj ’s, we used Sage to compute the corresponding tuples of eigen-
values v1, . . . , vh, and the minimum Euclidean distance between pairs of tuples of
eigenvalues. In Table 1, the value ε is the minimum Euclidean distance |vi − vj |
for i ̸= j, and therefore is the largest value of ε for which the eigenbasis is ε-
separated. The Sage code we used to generate the table is publicly available at
https://github.com/ssharif/QuantumMoneyCode.
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