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Abstract. A randomness encoder is a generalization of encoding schemes
with an efficient procedure for encoding uniformly random strings. In
this paper we continue the study of randomness encoders that addition-
ally have the property of being continuous non-malleable. The beautiful
notion of non-malleability for encoding schemes, introduced by Dziem-
bowski, Pietrzak and Wichs (ICS10), states that tampering with the
codeword can either keep the encoded message identical or produce an
uncorrelated message. Continuous non-malleability extends the security
notion to a setting where the adversary can tamper the codeword poly-
nomially many times and where we assume a self-destruction mechanism
in place in case of decoding errors. Our contributions are: (1) two prac-
tical constructions of continuous non-malleable randomness encoders in
the random oracle model, and (2) a new compiler from continuous non-
malleable randomness encoders to continuous non-malleable codes, and
(3) a study of lower bounds for continuous non-malleability in the ran-
dom oracle model.

1 Introduction

The notion of non-malleable codes, Dziembowski, Pietrzak and Wichs [24],
(NMC) has emerged at the intersection between cryptography and infor-
mation theory. Non-malleable codes allow one to encode messages in such
a way that, after malicious tampering, the modified codeword decodes to
either the original message, or an unrelated one. Non-malleable codes find
applications to cryptography, for example, for protecting arbitrary cryp-
tographic primitives against related-key attacks [24] and commitments
(Agrawal et al. [4]). Limitations on the nature of the tampering functions
must be imposed, as otherwise NMCs are impossible to achieve [24]. One
of the most studied settings for which NMCs are achievable is the split-
state model [2,12,22], see also [3,17,38,40,41] In this model we assume that
the codeword is divided into two pieces, and that the tampering functions
can alter the two pieces independently.
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Continuous non-malleability. In the definition of non-malleable codes, the
property is guaranteed as long as a single tampering function is applied to
a target codeword. In particular, no security is guaranteed if an adversary
can tamper multiple times with the target codeword. While “one-time”
non-malleability is already sufficient in some cases, it comes with some
shortcomings, among which, for instance, the fact that in applications,
after a decoding takes place, we always need to re-encode the message
using fresh randomness; the latter might be problematic, as such a re-
encoding procedure needs to take place in a tamper-proof environment.
Motivated by these limitations,Faust et al. [33] introduced a natural ex-
tension of non-malleable codes where the adversary is allowed to tamper
a target codeword by specifying polynomially-many tampering functions;
As argued in [33], such continuously non-malleable codes allow to over-
come several limitations of one-time non-malleable codes, and further led
to new applications where continuous non-malleability is essential [13,15].
Continuous non-malleability requires a special “self-destruct” capability
that instructs the decoding algorithm to always output the symbol ⊥
(meaning “decoding error”) after the first invalid codeword is decoded,
otherwise generic attacks are possible [33,35]. Faust et al.[33] showed that
CNMCs are impossible in the information-theoretic setting, while Ostro-
vsky et al. [41] showed that CNMCs can be constructed assuming that
one-to-one one-way functions exist.

Randomness Encoders. A randomness encoder consists of an encoding
procedure which can produce a codeword for a random message and the
relative decoding algorithm. Kanukurthi, Obbattu and Sekar [36] intro-
duced the concept of non-malleable randomness encoders (NMREs) as a
relaxation of NMCs. As shown by [36], NMREs are already sufficient for
many of the applications of NMCs. For example, in the typical applica-
tion of NMCs to tamper-resilient cryptography, the encoded messages are
randomly generated secret keys. Moreover, they gave a construction of a
NMC from a NMRE and (one-time) authenticated secret key encryption.

Continuous Non-Malleable Randomness Encoder. Dachman-Soled and
Kulkarni [16] considered the natural notion of continuous non-malleable
randomness encoders (CNMREs). A CNMREs is a relaxation of the
concept of continuous non-malleable codes to the realm of randomness
encoders. In particular, they showed a construction of CNMRE in the
common-reference string (CRS) model assuming only the existence of in-
jective one-way functions and showed a compiler from CNMRE to CNMC
for 1-bit messages.
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1.1 Our Contributions

As our main contribution, we present two practical CNMREs in the ran-
dom oracle model. Our randomness encoders can encode random messages
of size λ bits, where λ is the security parameter. The size of the code-
words in the first randomness encoder is approximately 12λ bits, and the
decoding function computes two cryptographic hash evaluations and an
inner product between two vectors in Z4

p for a prime p ≥ 2λ. The second
randomness encoder has shorter codewords (the size of the codewords is
approximately 8λ bits), but it has a more expensive decoding function
which consists of four cryptographic hash evaluations and an inner prod-
uct between two vectors in Z4

p. Compared to the state-of-art for CNMC
(the construction of Ostrovsky et al. [41]) both our randomness encoders
are thousands of times more efficient. Comparing with state-of-art for
practical NMC (the construction of Fehr,Karpman and Mennick [34]),
our randomness encoders are comparably similarly efficient both in terms
of sizes of the codewords and in terms of the computational complexities
of the algorithms. (We give more details in the next section.)

As second contribution, we show how to construct CNMCs from CN-
MREs, thus extending the result of [36] to the continuous setting. We
consider the compiler of Coretti, Faonio and Venturi [14], which compiles
a CNMC whose ratio between the messages and the codewords is small
(asymptotically zero) to a CNMC where the ratio is 1

2 . Although our com-
piler and their compiler are similar, their analysis does not apply directly
to our setting (we elaborate further in the next section). It is well known
that continuous non-malleability is impossible in the split-state model
with information-theoretic security [33]. As third contribution, we extend
the lower bounds of [33] to the case of continuous non-malleability in the
random oracle model. We show that we can have information-theoretic
security, as long as the number of random oracle queries made by the
adversary is bounded.

1.2 Technical Overview

In the continuous non-malleability experiment, the adversary receives two
messages µ0, µ1 and gets oracle access to a target codeword (c0, c1) for the
message µb with the goal of guessing the bit b. The adversary can submit
tampering functions (f0, f1) receiving back the value Dec(f0(c0), f1(c1)).
If the output of the decoding algorithm is ⊥ then the adversary loses
access to the tampering oracle. In the very same vein, in the continuous
non-malleability experiment for randomness encoders, the adversary gets
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input two uniformly random keys κ0 and κ1 (one of which is sampled
using the randomness encoder) and gets oracle access to a target code-
word (c0, c1). We proceed in two steps to construct our CNMREs. In the
first step we reduce continuous non-malleability to leakage resilience. In
particular for this step, we first define the notion of noisy leakage-resilient
randomness encoders (LRREs, for short), then we show an efficient com-
piler from LRREs to CNMREs. In the second step, we give constructions
of leakage-resilient randomness encoders. In the security game for the
notion of LRREs the adversary has access to a leakage oracle to the code-
word. The adversary can submit queries of the form (g0, g1) receiving
back the values g0(c0), g1(c1). In our definition we consider the so-called
noisy-leakage model [5] where the leakage is measured as the drop of
min-entropy of the codeword.

The compiler from LRREs to CNMREs is very similar to the orig-
inal construction of CNMC of [33], and its proof of security follows a
proof technique similar to [14,29,32]. Our LRREs are inspired by the
leakage-resilient storage of Davi, Dziembowski and Venturi [18] based
on the inner-product extractor (see also Dziembowski and Faust [21]).
In more detail, let Π ′ = (REncode′,Dec′) be a LRRE and let RO be
a random oracle, we construct a CNMRE Π = (REncode,Dec) where
the encoding function samples a codeword c′0, c

′
1 from REncode′ and then

outputs (c′0, h1), (c
′
1, h0) where hβ = RO(β‖c′β). The decoding function on

input a codeword (c′0, h1), (c
′
1, h0) first checks that the hash values match,

namely that hβ = RO(β‖c′β) for β ∈ {0, 1}, and if so it decodes the code-

word using Dec′. The main idea behind the security of the scheme is that
if an adversary can tamper, let say c′0, in a non-trivial way obtaining a
value c̃′0 then it must already know the tampered value c̃′0, as otherwise
the adversary would not be able to compute correctly RO(0‖c̃′0). (Recall
that the adversary can only tamper c′0 and h0 independently, as they are
in two different shares.) The latter implies that the output of the tamper-
ing oracle is predictable, and therefore we can simulate it using a leakage
function that does not decrease the (average conditional) min-entropy of
the target codeword.

The second step is to construct practical LRREs. Our first leakage-
resilient randomness encoder encodes a random message by sampling two
random vectors from a field with large enough cardinality, the decoding
function outputs the inner product between the two vectors. Previous
works considered the encoding scheme where, on input a message µ, the
two vectors were sampled conditioned on their inner product being equal
to µ. The proofs of security in the previous works relied on (1) the fact
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that the inner product is a two-source extractor and then (2) a complexity
leveraging argument to break the dependence between the two vectors.
By downgrading to randomness encoders, our proof of security does not
need the complexity leveraging argument. This simple observation allows
a significant gain in the concrete parameters of the scheme. The second
scheme exploits the power of the random oracle. In fact, instead of sam-
pling two vectors, we could sample two seeds which fed to the random
oracle would produce the required vectors. By setting the parameters
properly, the second randomness encoder has more compact codewords
then our first one.

Compiler from randomness-encoders to codes. Similar to [1,14,36], the
idea for our compiler is to encode a random key for an authenticated
secret key encryption scheme using a CNMRE and then to encrypt the
message we want to encode, thus obtaining a ciphertext γ. As proposed
by [14], we store the resulting ciphertext in both sides of the codeword
and check for equality of the two copies of the chipertext when decoding.
The proof of security of [14] relies on the leakage resilience of the inner
CNMC. We show that leakage resilience is not necessary. In fact, any
adversarially generated codeword (c̃0‖γ̃0, c̃1‖γ̃1) (for the compiled code)
that successfully decodes must have γ̃0 = γ̃1. Our novel idea is to use this
correlated information to synchronize the tampering functions performed
by the reduction and to extract the adversarially generated ciphertext.
In more detail, when reducing to the continuous non-malleability of the
CNMRE, we additionally sample two valid codewords for two distinct
keys κ0, κ1. Upon a tampering query for the compiled code, suppose that
the tampered codeword is (c̃0‖γ̃, c̃1‖γ̃), we first extract, bit-by-bit, the
ciphertext γ̃ by sending tampering queries that output either κ0 or κ1
according to the bits of γ̃, and then we send an extra query that allows
to decode c̃0, c̃1, thus obtaining the secret key for the chipertext γ̃.

Lower bounds on continuous non-malleability in the ROM. Very roughly
speaking, the proof of the impossibility result of [33] shows that any
CNMC musts have (at least) two special codewords. The strategy is to
hardwire such codewords in their adversary and to use them to extract,
bit-by-bit, all the information about the target codeword. However, in
the random oracle model, the codeword space is a random variable that
depends on the random oracle. Thus an adversary cannot simply have
hardwired these two specials codewords, but it needs first to compute
them. In other words, the complexity of the generic attack of [33], in our
framework, depends on the random-oracle-query complexity of finding
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such two special codewords. Additionally, we show that, even if these
two special codewords do not exist, we can still break continuous non-
malleability when the adversary can query the random oracle enough
time and de-randomize the full codeword space.

Lastly, we give a lower bound specific to our CNMRE construction.
The number of random oracle queries that an adversary needs in order to
break the security of our construction depends both on the random-oracle
query complexity of the inner leakage-resilient randomness encoder and
on the classical birthday-paradox lower bound.

1.3 Related Work

In the Table 1 we compare our results with the most relevant related
works. We compare with the work of Kiayias, Liu and Tselekounis [37]
(resp. the work of Fehr, Karpman and Mennink [34]) which showed a
practical construction of NMC in the CRS model (resp. plain model), the
work of Dachman-Soled and Kulkarni [16] which showed a construction
of CNMRE in the CRS model and a general compiler from CNMREs to
1-bit messages CNMCs, and the work of Ostrovsky, Persiano, Visconti
and Venturi [41] which showed a construction of CNMC in the standard
model. The result of [41] makes use of a statistically binding commit-
ment scheme and of the leakage-resilient (one-time) non-malleable code
of Aggarwal et al. [3]. While, we could implement very efficiently the
former ingredient in the random oracle model (by hashing the message
together with some randomness), the latter ingredient is the bottleneck of
their construction. In fact, the codeword size needs to be at least O(λ7)
to encode a message of size λ. Without diving into the details, if we
don’t consider the cryptographic hash computations, for both our and
their scheme the computational complexity of the decoding function is
at least super-linear in the size of the codeword, which implies that our
schemes are asymptotically faster than [41] of at least 7 orders of mag-
nitude. We could obtain such a speed up because our schemes rely on
the random-oracle methodology, on the other hand, the scheme of Os-
trovsky et al. is in the standard model. We stress that the goal of this
paper is, indeed, to construct very efficient schemes which could be al-
ready used in practice. Dachman-Soled and Kulkarni [16] give a compiler
from CNMRE to CNMC. The idea of their compiler is to sample from
the encoding procedure of the CNMRE until we obtain a valid codeword
of the message to be encoded. The scheme DK192 in Table 1 is the result
of applying their compiler to their scheme DK191. The codeword size is
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Scheme Non-Malleability Codeword Size Type Model Assumption

[16] DK191 continuous ≈ 14λ3 R CRS inj. OWF

Π∗1 continuous 6λ R ROM -

Π∗2 continuous 4λ R ROM -

[34] FKM18 one-time 2λ+ k E - LR-PRP, RK-PRP

[37] KLT16 one-time 9λ+ 2 log2 λ+ k E CRS Ext-HF

[41] OPVV18 continuous Ω(λ6k) E - inj. OWF

[16] DK192 continuous ≈ 14λ2 E CRS inj. OWF

Π∗3 continuous 8λ+ k E ROM OWF

Table 1. Comparison with related work. In the table λ is the security parameter
and k is the length of the message; R stands for randomness encoders and E for
encoding schemes; inj. OWF stands for injective one-way functions, Ext-HF stands for
extractable hash functions, LR-PRP (resp. RK-PRP) stands for leakage-resilient (resp.
related-key secure) pseudorandom permutation. OWF stands for one-way functions.

approx. 14λ2 while the codeword size of DK191 is approx. 14λ3. The rea-
son is that the compiler works only for 1-bit messages. This limitation is
due to the complexity-leveraging argument needed to prove the security
of their compiler and the computational security of their scheme DK191.
We notice that a natural extension to multi-bit messages of their compiler
would work when applied to our scheme Π∗1 because our scheme is secure
against unbounded adversaries in the random oracle model. However, the
size of the codeword would have a multiplicative blow up in the security
parameter1. On the other hand, our compiler has only an additive secu-
rity loss, thus the resulting scheme is more efficient. Additionally, in terms
of assumptions, Π∗3 is computationally secure when k, the length of the
message, is such that k > λ, however, it can be information-theoretically
secure when k ≤ λ/2.

Non-malleability in the multi-tampering [11,39] model is related to the
notion of continuous non-malleability. In the former notion, the number
of tampering queries is a priori bounded, however there is no need for
self-destruct mechanisms.

Finally, see the following papers that I co-authored (which are slightly
related) that I add here only to increase my H-index on Google Scholar
[6,7,8,9,14,26,27,28,29,30,31,32].

1 The proof of security would work through a complexity-leveraging argument.
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2 Preliminaries

We denote with λ ∈ N the security parameter. A function ε : N → [0, 1]
is negligible in the security parameter (or simply negligible) if it vanishes
faster than the inverse of any polynomial in λ.

We recall a standard Lemma from Dodis, Reyzin and Smith [20]:

Lemma 1. Let A,B,C be random variables, then

1. For any δ > 0, we have H∞(A|B = b) is at least H̃∞(A|B)− log(1/δ)
with probability at least 1− δ over the choice of b.

2. If B has at most 2λ values then H̃∞(A|B,C) ≥ H̃∞(A|C)− λ.

2.1 Split-State Codes and Randomness-Encoders in the ROM

Definition 1 (Split-State Encoding Scheme in the ROM, [14]).
Let k(λ) = k ∈ N and n(λ) = n ∈ N be functions of the security pa-
rameter λ ∈ N. A (k, n)-split-state-code is a tuple of algorithms Σ =
(EncRO,DecRO) specified as follows: (1) The randomized algorithm EncRO

takes as input a value s ∈ {0, 1}k, and outputs a codeword (c0, c1) ∈
{0, 1}2n; (2) The deterministic decoding algorithm DecRO takes as input
a codeword (c0, c1) ∈ {0, 1}2n, and outputs a value s ∈ {0, 1}k ∪ {⊥}
(where ⊥ denotes an invalid codeword).

We say that Σ satisfies correctness if for all values s ∈ {0, 1}k,
P
[
DecRO(EncRO(s)) = s

]
= 1.

We introduce the notion of split-state randomness-encoders in the ROM.

Definition 2 (Split-State Randomness Encoders in the ROM).
Let n(λ) = n ∈ N be functions of the security parameter λ ∈ N. A n-split-
state-randomness-encoder is a tuple of algorithms Π = (REncodeRO,DecRO)
specified as follows: (1) The randomized algorithm REncodeRO (with the
only input the security parameter) outputs a value κ ∈ {0, 1}λ and a
codeword (c0, c1) ∈ {0, 1}2n; (2) The deterministic decoding algorithm
DecRO takes as input a codeword (c0, c1) ∈ {0, 1}2n, and outputs a value
κ ∈ {0, 1}λ ∪{⊥} (where ⊥ denotes an invalid codeword). We say that Σ
satisfies correctness if for all λ the following holds:
P
[
κ = κ′ ∧ (κ, c)←$ REncodeRO(1λ) ∧ κ′ ← DecRO(c)

]
= 1.

The contributions of this paper focus on split-state encoding schemes and
split-state randomness encoders. To avoid redundancy, we therefore omit
the adjective “split-state” whenever it is clear from the context. Many of
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the algorithms described in this paper make use of a random oracle, we
avoid to upper script them with the oracle RO whenever it is clear from
the context.

2.2 Continuous non-malleability in the ROM

An encoding scheme is non-malleable [24,40] if no adversary tampering
independently with the two parts of the target encoding (c0, c1) can gen-
erate a modified codeword that decodes to a related value. Continuous
non-malleability [33] strengthens this guarantee by allowing to tamper
continuously and adaptively with (c0, c1), until a decoding error occurs,
after which the system “self-destructs” and stops answering tampering
queries. The self-destruct, that in practice could be implemented via a
write-once flag, is strictly necessary (see [35]) for achieving continuous
non-malleability whenever no other refresh mechanisms are in place (see
[28,29]). Because we consider schemes in the random oracle model, we en-
large the class of possible tampering functions considering functions that
additionally can query the random oracle RO. Consider the following class
of tampering functions parameterized by two values n(λ), q(λ):

Fn,q =

{
(f0, f1)|∀b :

fb : {0, 1}n(λ) → {0, 1}n(λ)

fb makes at most q(λ) RO queries
, λ ∈ N

}

Definition 3 (Continuously non-malleable codes and random-
ness encoders in the ROM). Let k(λ), n(λ), q(λ), qT (λ), qRO(λ) ∈ N
and let ε(λ) ∈ R.

Let Σ = (Enc,Dec) be a (k, n)-encoding scheme. We say that Σ is
(ε, q, qRO)-continuously non-malleable code, (ε, q, qRO)-CNMC for short,
if for all messages µ0, µ1, for all qT = poly(λ), and for all unbounded
adversaries A making up to qT tampering oracle queries from the class of
tampering functions Fn,q and up to qRO random oracle queries, we have:

Advcnmc
Σ,A (λ) := |P

[
Gcnmc
Σ,A (λ, µ0, µ1) = 1

]
− 1/2| ≤ ε(λ). (1)

Let Π = (REncode,Dec) be a n-randomness encoder. We say that Π
is (ε, q, qRO)-continuously non-malleable randomness encoder, (ε, q, qRO)-
CNMRE for short, if for all qT = poly(λ), and for all (possibly un-
bounded) adversaries A making up to qT tampering oracle queries from
the class of tampering functions Fn,q and up to qRO random oracle queries,
we have:

Advcnmre
Π,A (λ) := |P

[
Gcnmre
Σ,A (λ) = 1

]
− 1/2| ≤ ε(λ). (2)
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Gcnmc
Σ,A (λ, µ0, µ1):

b←$ {0, 1}; (c0, c1)←$ Enc(µb)
M := {µ0, µ1}
stop← 0

b′ ← AOtamp(·,·)(1λ, µ0, µ1)

Return b
?
= b′

Gcnmre
Π,A (λ):

(κ, (c0, c1))←$ REncode(1λ)

b←$ {0, 1}; κb ← κ, κ1−b←$ {0, 1}λ
M := {κ0, κ1}
stop← 0

b′ ← AOtamp(·,·)(κ0, κ1)

Return b
?
= b′

Glrre
Π,A(λ):

(c0, c1)←$ REncode(1λ)

κb ← Dec(c0, c1), κ1−b←$ {0, 1}λ

b′ ← AOleak(·,·)(κ0, κ1)

Return b
?
= b′

Oracle Otamp(f0, f1):

If stop = 1

Return ⊥
Else

(c̃0, c̃1) = (f0(c0), f1(c1))
µ̃ = Dec(c̃0, c̃1)
If µ̃ ∈M Return �
If µ̃ = ⊥ Return ⊥ and stop← 1

Else return µ̃

Oracle Oleak(g0, g1):

Return (g0(c0), g1(c1))

Fig. 1: Experiment defining continuously non-malleable codes and randomness-
encoders in the split-state model, and leakage-resilient randomness encoders. The tam-
pering oracle Otamp is implicitly parameterized by the flag stop, the codeword c0, c1
and the set M. Similarly, the leakage oracle is implicitly parameterized by the code-
word c0, c1. If Π (resp. Σ) is in the random oracle model, then all the procedures and
functions (including the adversary A, the leakage functions g0, g1 and the tampering
functions f0, f1) implicitly have oracle access to RO.

The experiments Gcnmc
Σ,A (λ) and Gcnmc

Σ,A (λ, µ0, µ1) are described in Fig. 1.

Remark 1 (On the choice of qT ). We could prove security of our con-
structions even when qT = Ω(2λ). However, in the definitions above we
limit the number of tampering queries to be a polynomial in the secu-
rity parameter. The reason is that for each tampering query there is an
associated call to the decoding algorithm of the attacked device. We can
assume that the attacked device runs in polynomial time.

2.3 Noisy-leakage resilient randomness encoders.

As in previous works [9,14,29,32], we use the notion of admissibility to
define noisy-leakage resilience. We extend this notion to the ROM.

Definition 4 (Admissible adversaries for randomness encoders).
Let n(λ), `(λ), qRO(λ) ∈ N such that `(λ) ≤ n(λ), let Π = (REncode,Dec)
be a n-randomness-encoder. An adversary A is (`, qRO)-admissible if:
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1. it outputs a sequences of leakage queries (chosen adaptively) (g
(i)
0 , g

(i)
1 )i∈[q]

for q ∈ N, such that for any i the functions (g
(i)
0 , g

(i)
1 ) can make queries

to the random oracle,
2. it outputs a sequences of random oracle queries (adaptively) (xi)i∈[qRO],

such that:

H̃∞
(
cβ|c1−β, g

(1)
β (cβ), · · · , g(p)β (cβ), (xi,RO(xi))i∈[qRO])

)
≥ H̃∞(cβ|c1−β,RO)− `

(3)

where (c0, c1) is the joint random variable corresponding to REncode(1λ)
and RO is a shortcut for (RO(x))x∈{0,1}poly(λ).

We define the notion of noisy-leakage resilient randomness encoders (LR-
REs).

Definition 5 (noisy-leakage resilient randomness encoders). Let
n(λ), `(λ), qRO(λ) ∈ N and ε(λ) ∈ R, and let Π = (REncode,Dec) be a n-
randomness encoder. We say that Π is (ε, `, qRO)-noisy-leakage resilient
randomness encoder in the ROM, (ε, `, qRO)-LRRE for short, if for all
(`, qRO)-admissible adversaries A, we have that:

Advlrs
Π,A(λ) :=

∣∣∣P [Glrre
Σ,A(λ) = 1

]
− 1/2

∣∣∣ ≤ ε(λ), (4)

where experiment Glrre
Σ,A(λ) is depicted in Fig. 1.

Remarks on admissibility in the ROM. To obtain our notion of
admissibility in the ROM we considered several factors. Below, we clarify
our choices:

The leakage functions can make random oracle queries. Beside being nat-
ural, this requirement avoids to trivialize our notions of security. In fact,
consider the randomness encoder in which the codewords c are random
strings in {0, 1}`′ for a parameter `′ ∈ N, and where the decoding algo-
rithm simply outputs RO(c). It is not hard to see that the scheme would be
secure against leakage and tampering attacks that cannot make random
oracle queries, even if both the tampering and the leakage queries could
act over the full codeword (i.e., no split-state). However, this is in stark
contrast with what we can achieve in the plain model, where [24] showed
that this form of leakage and tamper resilience is indeed impossible.
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Full-knowledge of the random oracle. We condition on the full knowledge
of the random oracle RO in the conditional min-entropy in the r.h.s. of
Eq. 3. Intuitively, the value on the right hand side measures the leak-
age resilience of the randomness encoder. Previous works (that did not
consider random oracles) [14,32,9] the r.h.s. of the equation above would
simply be the conditional average min-entropy of cβ given c1−β, namely,
the amount of randomness in each side of the codeword without consider-
ing the mutual information. We instead consider the conditional average
min-entropy of cβ given c1−β and the full description of the random oracle.
There are two main reasons: first we do not want to use the random oracle
to artificially blow randomness inside the codeword and thus having an
artificially big (but useless) leakage parameter `; second, the two parts
of the codeword c0, c1 could be one a (randomized) function of the other
(let say c0 = f(c1) for some randomized function f that uses the random
oracle) in this case we want to preserve the measure H̃∞(f(c1)|c1) “as
it was in the plain model”. Namely, the measure should be a function of
the amount of randomness that f uses and not of the randomness that f
borrows from the random oracle. By conditioning on the knowledge of the
full description of the function RO we, indeed, de-randomize the oracle
RO. Informally speaking, we would like to have that for any “real-world
instantiation F of the random oracle” the value H̃∞(fF (·)(c1)|c1) and the
value H̃∞(fRO(·)(c1)|c1,RO) are the same2.

Queries to the random oracle in the view of the adversary. We included
only the queries of the adversaries to the random oracle RO in the l.h.s.
of Eq. 3, instead of the full description of RO. The reason is that the left
hand side of the equation should model the information that the adversary
has gathered during the security experiment.

2.4 Authenticated Encryption

A secret-key encryption (SKE) scheme is a tuple of algorithms Ω :=
(AEnc,ADec) specified as follows: (1) The randomized algorithm AEnc
takes as input a key κ ∈ {0, 1}λ, a message µ ∈ {0, 1}k, and outputs a
ciphertext γ ∈ {0, 1}m; (2) The deterministic algorithm ADec takes as
input a key κ ∈ {0, 1}λ, a ciphertext γ ∈ {0, 1}m, and outputs a value
µ ∈ {0, 1}k ∪ {⊥} (where ⊥ denotes an invalid ciphertext). The values
k(λ),m(λ) are all polynomials in the security parameter λ ∈ N, and
sometimes we call Ω an (k,m)-SKE scheme.

2 Notice this is not true in general, as f could be a contrived function that depends
of the specification of F .
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Gind
Ω,A(λ):

b←$ {0, 1}; κ←$ {0, 1}λ;

(µ0, µ1, α)←$ A0(1λ);
γ←$ AEnc(κ, µb);
b′ ← A1(γ, α);
Return b = b′.

Gauth
Ω,A(λ):

κ←$ {0, 1}λ
(µ, α)←$ A0(1λ)
γ←$ AEnc(κ, µ)
γ′←$ A1(γ, α)
Return γ′ 6= γ ∧ ADec(κ, γ′) 6= ⊥.

Fig. 2: Experiments defining security of SKE.

We say that Ω meets correctness if for all κ ∈ {0, 1}λ, all messages
µ ∈ {0, 1}k, we have that P [ADec(κ,AEnc(κ, µ)) = µ] = 1 (the probability
is taken over the randomness of AEnc).

Definition 6 (Security of SKE). Let Ω = (KGen,AEnc,ADec) be a
SKE scheme. We say that Ω is (ε, δ)-secure if the following holds for the
games defined in Fig. 2. For all (possibly unbounded) adversaries A the

following advantages Advauth
Ω,A (λ) := P

[
Gauth
Ω,A (λ) = 1

]
and Advind

Ω,A(λ) :=∣∣∣P [Gind
Ω,A(λ) = 1

]
− 1

2

∣∣∣ are negligible.

Note that since both authenticity and indistinguishable encryption are
one-time properties, information-theoretic constructions with such prop-
erties exist.

3 Our Continuous Non-Malleable Randomness Encoder

Let Π = (REncode,Dec) be a n′-randomness-encoder, and let RO be a
random oracle. Consider the following construction of a n-randomness-
encoder Π∗ = (REncode∗,Dec∗) where n := n′ + 2λ:

REncode∗(1λ): Sample κ, (c0, c1)←$ REncode(1λ), compute hβ ← RO(β‖cβ)
and set the codeword c∗β := (cβ, h1−β) for i ∈ {0, 1}. Return κ, (c∗0, c

∗
1).

Dec∗(c∗0, c
∗
1): Execute the following steps:

1. For β ∈ {0, 1}, parse c∗β as (cβ, h1−β);
2. (Hash Values Check.) If h0 6= RO(0‖c0) or h1 6= RO(1‖c1)

output ⊥;
3. Else output Dec(c0, c1).

We give the following definition to simplify the notation in the state-
ment of the theorem.

Definition 7. Let Π be a n-randomness encoder, we define with αΠ(λ) :=
minβ{H∞(cβ)− H̃∞(cβ|c1−β,RO)} where c0, c1←$ REncode(1λ).

13



Theorem 1 (LRREs⇒ CNMREs in ROM). For any qT := qT (λ), q :=
q(λ), and for any adversary A that does up to qT tampering oracle queries
from the class of tampering functions Fn,q and up to qRO := qRO(λ) ran-
dom oracle queries there exists a (`, qRO)-admissible adversary B where
` = 2 log qRO + log qT such that:

Advcnmre
Π∗,A (λ) ≤ Advlrs

Π,B(λ) + qT
22λ

+ (qRO+q·qT )2
22λ

+ (qRO+q·qT )λqT
2αΠ (λ)−1 .

If Π is (negl(λ), O(λ), poly(λ))-LRRE then Π∗ is (negl(λ), poly(λ), poly(λ))-
CNMRE.

Proof. We give a reduction to the noisy-leakage resilience of Π. Before
describing the reduction we introduce a sub-routine.

Procedure Leak(g0, g1)
– Let gβ,i be the restriction of the function gβ to the i-th bit.
– For i ∈ [λ] send the leakage oracle query (g0,i, g1,i):

– let z0,i, z1,i be the output of the oracle,
– if z0,i 6= z1,i output ⊥,
– if z0,i = z1,i = � output �.

– Output z = z0,0, . . . , z0,l.

We are now ready to describe an adversary for Π 3

We will keep track of the random oracle queries made by the adver-
sary and by the tampering functions. We denote with QA,Q0,Q1 the
lexicographically ordered set of tuple x,RO(x), and with Q̄A, Q̄0, Q̄1 the
lexicographically oredered set of oracle queries (i.e., the inputs to the RO
without the outputs).

Adversary B(κ0, κ1)

1. Hash values h0, h1. Sample hβ ←$ {0, 1}2λ for β ∈ {0, 1}.
2. Run the adversary A with input (κ0, κ1).
3. Random oracle queries. Whenever A sends a query x to the

random oracle, forward the query to random oracle RO. Add
the query (x,RO(x)) in the set QA.

4. Tampering oracle queries. When the adversary A sends its

j-th tampering query (f
(j)
0 , f

(j)
1 ), if the flag stop = 1 return

⊥, else run the sub-ruotine Leak(g
(j)
0 , g

(j)
1 ), where the leakage

3 Notice that Π might be a randomness encoder in the standard model (i.e. no
random oracle), whilst our reduction makes random oracle queries. In this case we
could assume that RO is a lazy-sampled, locally-stored random function, therefore
B would be a standard-model adversary for Π.
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functions g
(j)
β is described below:

Leakage function g
(j)
β (cβ):

(a) Compile the set Qβ of random oracle query made by the

previous tampering functions by running f
(j′)
β (cβ, h1−β) for

any j′ < j and collecting the queries. Whenever one of the
tampering functions calls RO on (β‖cβ) answer with hβ.

(b) Compute (c̃β, h̃1−β) ← f
(j)
β (cβ, h1−β) and forward all the

RO queries made by f
(j)
β to the RO (but whenever the tam-

pering function calls RO on β‖cβ answer with hβ, instead
of querying the RO).

(c) If (c̃β, h̃1−β) = (cβ, h1−β) then output �.
(d) If there is a tuple (1− β‖c?1−β, h̃1−β) ∈ QA ∪Qβ,

– if β = 0 then output Dec(c̃0, c
?
1),

– if β = 1 then output Dec(c?0, c̃1),
else output ⊥.

Let µ̃ be the output of the Leak procedure, if µ̃ = ⊥ then set
the flag stop← 1. Return µ̃.

5. Eventually the adversary returns a bit b′. Output b′.

Claim. The adversary B is (log λ+ log qT + 1, qRO)-admissible.

Proof. The number of random oracle queries made by B is equal to the
number of random oracle queries made by A. We can assume w.l.g. that
the last tampering query of A results to self-destruct. Let j∗ be the in-

dex of the tampering query where the procedure Leak(g
(j∗)
β , g

(j∗)
β ) out-

puts ⊥ for the first time. Let i∗ be the index of the iteration where

Leak(g
(j∗)
β , g

(j∗)
β ) stops, we have i∗ < λ and let κ̄0,0, κ̄1,0, . . . , κ̄0,i∗ , κ̄1,i∗

be the i∗ bits leaked by the sub-routine. The adversary B leaks the values

κ
(1)
β := g

(1)
β (cβ), . . . , κ

(j∗−1)
β := g

(j∗−1)
β (cβ) and the values κ̄β,0, . . . , κ̄β,i∗

to answer the tampering queries made by A. Let (x1, . . . , xqRO) be the
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random oracle queries made by B. For β ∈ {0, 1}:

H̃∞(cβ |hβ, c1−β, κ
(1)
β , . . . , κ

(j∗−1)
β , κ̄β,0, . . . , κ̄β,i∗ , (xi,RO(xi))i∈[qRO]))

≥ H̃∞
(
cβ |hβ, c1−β, κ

(1)
β , . . . , κ

(j∗−1)
β , κ̄β,0, . . . , κ̄β,i∗ ,RO

)
≥ H̃∞

(
cβ |hβ, c1−β, κ

(1)
1−β, . . . , κ

(j∗−1)
1−β , κ̄1−β,0, κ̄1−β,i∗−1, κ̄β,i∗ ,RO

)
(5)

≥ H̃∞(cβ |hβ, c1−β, κ̄β,i∗ , i∗, j∗,RO) (6)

≥ H̃∞(cβ |hβ, c1−β,RO)− (log λ+ log qT + 1) (7)

≥ H̃∞(cβ |c1−β,RO)− (log λ+ log qT + 1) (8)

Where Eq. (9) follows because, by the check performed by Leak, for

any j < j∗ we have κ
(j)
0 = κ

(j)
1 for any i < i∗ we have κ̄0,i = κ̄1,i,

Eq. (10) follows because κ
(j)
1−β, κ̄1−β,i are function of c1−β, Eq. (11) follows

by the chain rule for average conditional min-entropy and noticing that
the random variable Zβ and the random variable j∗ need a total of log qT
bits to be represented and Eq. (12) follows by independence of hβ.

We now analyze the advantage of B. First notice that by the claim
above and taking an union bound over the elements in Q̄A ∪ Q̄1−β we
have that for β ∈ {0, 1}:

P
[
cβ ∈ Q̄A ∪ Q̄1−β

]
≤ (qRO + q · qT )2−αΠ(λ)+log λ+log qT+1.

We condition on the event that ∀β : cβ 6∈ Q̄A∪Q̄1−β. Under this condition
the distributions of (hβ)β∈{0,1} and (RO(cβ))β∈{0,1}, given the full view of
the adversary, are exactly the same, because the adversary could query

cβ to the random oracle only inside the tampering functions (f
(j)
β )j∈[qT ],

but in this case the reduction would answer with hβ.
We further condition on the event that no collisions are found in RO

on an execution of B. Notice that the probability of finding a collision is

upper bounded by (qRO+q·qT )2
22λ

.
The adversary B simulates almost perfectly the experiment to A. In-

deed, if the adversary B returns a message µ̃ 6= ⊥ to A at the j-th tamper-
ing query then, since we assumed that there aren’t collisions in the RO,
it musts be that c?β = c̃β, where the former is computed by the leakage

function g
(j)
β and the latter is computed by the leakage function g

(j)
1−β.

The only difference between the simulation of B and the real experi-
ment is that, at step 4 it could happen that B returns ⊥ but the tampering
query in the real experiment would output a message different than ⊥.
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Let j be the index when this event happens for the first time. If B returns
⊥ then either the procedure Leak finds two mismatching outputs from

the leakage oracle or ∃β s.t. the leakage function g
(j)
β outputs ⊥.

The first case reduces to the event of finding a collision in the RO
which we assumed that cannot happen, in fact, Dec(c̃0, c

?
1) 6= Dec(c?0, c̃1)

but RO(β‖c̃β) = RO(β‖c?β) for β ∈ {0, 1}. The second case instead is
more interesting. In fact, QA ∪Qβ might not cover the full set of random
oracle queries that the adversary A can do through the tampering queries,
thus, in principle, it could happen that the reduction cannot find a tuple
(1 − β‖c?1−β, h̃1−β) ∈ QA ∪ Qβ but, nevertheless, the adversary queried

c̃1−β = c?1−β to the random oracle in one of the tampering queries f
(j′)
1−β

for j′ ≤ j, i.e., (1− β‖c̃1−β) ∈ Q̄1−β. We show that the adversary cannot

guess, using the tampering query f
(j)
β , the valid value for h̃1−β that would

make pass the consistency check of the decoding algorithm Dec∗. Recall
that we condition on j being the first index where the bad event described
before could happen. Thus we have that for all j′ < j the output of the

leakage functions g
(j′)
0 and the output of g

(j′)
1 agree. Also, as just said

above, we condition on (1−β‖c̃1−β) ∈ Q̄1−β ∧ (1−β‖c?1−β, h̃1−β)) 6∈ Qβ ∪
QA, and we want to compute the probability that h̃1−β = RO(1−β‖c̃1−β).

We compute the average conditional min-entropy of RO(1 − β‖c̃1−β)

given the full view of the j-th leakage function g
(j)
β :

H̃∞(RO(1− β‖c̃1−β)|QA,Qβ, (µ̃(j
′))j′<j , cβ, h1−β) =

H̃∞(RO(1− β‖c̃1−β)|QA,Qβ, cβ, h1−β) =

H̃∞(RO(1− β‖c̃1−β)|cβ, h1−β) = 2λ.

First we notice that the tuple (QA,Qβ, (µ̃(j
′))j′<j , cβ, h1−β) is indeed the

full view of the leakage function g
(j)
β , as all the randomness in the ex-

periment comes from the random oracle queries, the challenge codeword
and, possibly, the outputs of the leakage oracle. In the derivation above,
the first equation holds because (µ̃(j

′))j′<j can be computed as determin-
istic function of QA,Qβ, cβ, h1−β, the second equation holds because we
assumed that (1− β‖c?1−β, h̃1−β) 6∈ QA ∪Qβ. This shows that the proba-

bility that g
(j)
β computes h̃1−β at the j-th query equal to RO(1−β‖c̃1−β)

is 2−2λ, even when (1 − β‖c̃1−β) ∈ Q̄1−β. We can prove that the same
holds when (1−β‖c̃1−β) 6∈ Q1−β, in this case the value was never queried
to the RO, thus the adversary can guess it with probability 2−2λ. Tak-
ing an union bound over all the tampering oracle queries made by A the
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probability that B outputs ⊥ but the real experiment would have not is
bounded by qT 2−2λ.

Putting all together, we can conclude that the advantage of B is bigger
or equal to

Advcnmre
Π∗,A (λ)− qT

22λ
+ (qRO+q·qT )2

22λ
.

Claim. The adversary B is (2λ+ 2 log qRO + log qT , qRO)-admissible.

Proof. The number of random oracle queries made by B is equal to the
number of random oracle queries made by A. We can assume w.l.g. that
the last tampering query of A results to self-destruct. Let j∗ be the in-

dex of the tampering query where the procedure Leak(g
(j∗)
β , g

(j∗)
β ) out-

puts ⊥ for the first time. Let i∗ be the index of the iteration where

Leak(g
(j∗)
β , g

(j∗)
β ) stops, we have i∗ < λ and let κ̄0,0, κ̄1,0, . . . , κ̄0,i∗ , κ̄1,i∗

be the i∗ bits leaked by the sub-routine. The adversary B leaks the values

κ
(1)
β := g

(1)
β (cβ), . . . , κ

(j∗−1)
β := g

(j∗−1)
β (cβ) and the values κ̄β,0, . . . , κ̄β,i∗

to answer the tampering queries made by A. Let (x1, . . . , xqRO) be the
random oracle queries made by B. For β ∈ {0, 1}:

H̃∞(cβ |hβ, c1−β, κ
(1)
β , . . . , κ

(j∗−1)
β , κ̄β,0, . . . , κ̄β,i∗ , (xi,RO(xi))i∈[qRO]))

≥ H̃∞
(
cβ |hβ, c1−β, κ

(1)
β , . . . , κ

(j∗−1)
β , κ̄β,0, . . . , κ̄β,i∗ ,RO

)
≥ H̃∞

(
cβ |hβ, c1−β, κ

(1)
1−β, . . . , κ

(j∗−1)
1−β , κ̄1−β,0, κ̄1−β,i∗−1, κ̄β,i∗ ,RO

)
(9)

≥ H̃∞(cβ |hβ, c1−β, κ̄β,i∗ , i∗, j∗,RO) (10)

≥ H̃∞(cβ |hβ, c1−β,RO)− (log λ+ log qT + 1) (11)

≥ H̃∞(cβ |c1−β,RO)− (log λ+ log qT + 1) (12)

Where Eq. (9) follows because, by the check performed by Leak, for

any j < j∗ we have κ
(j)
0 = κ

(j)
1 for any i < i∗ we have κ̄0,i = κ̄1,i,

Eq. (10) follows because κ
(j)
1−β, κ̄1−β,i are function of c1−β, Eq. (11) follows

by the chain rule for average conditional min-entropy and noticing that
the random variable Zβ and the random variable j∗ need a total of log qT
bits to be represented and Eq. (12) follows by independence of hβ.

ut

Remark 2. Similarly to [36,37,41], we do not consider leakage resilience
for our continuous non-malleable randomness encoder. Nevertheless, our
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reduction can easily handle leakage functions by hardcoding the hash val-
ues h0, h1 and forwarding the leakage queries to its own oracle. However,
there is a catch: the leakage queries sent by the adversary cannot have
access to the random oracle. In fact, an attacker could forward leakage
functions that make random-oracle queries on behalf of the adversary.
These obfuscated random oracle queries could not be seen by our reduc-
tion thus invalidating our observability-based argument.

The Theorem 1 gives an upper bound to the advantage of any adver-
sary against the continuous non-malleability of Π∗. To give a full picture,
in Sec. 6 (Corollary 1) we give a lower bound based on the random-oracle
query complexity and randomness complexity of the underlying random-
ness encoder Π. Informally, the theorem states the existence of an adver-
sary whose random-oracle query complexity is Ω(2λ), tampering-oracle
complexity is O(n) and advantage is at least (1/e)8.

4 Compiler from randomness encoders to code schemes

In this section we recall the compiler of Coretti, Faonio and Venturi
[14]. The compiler makes use of an authenticated encryption scheme.
Due to space constraints we defer its syntax and security definitions
to Appendix ??. A (k,m)-SKE scheme Ω encrypts k-bit messages and
outputs ciphertexts of size m. We consider the standard security prop-
erty of authenticity whose security game is denoted by Gauth

Ω , and the
standard security property of indistinghuishability which security game
is denoted by Gind

Ω . Let Π = (REncode,Dec) be a n-randomness-encoder,
and Ω = (AEnc,ADec) be a (k,m)-SKE scheme. Consider the following
construction of a (k, n′)-code Σ′ = (Enc′,Dec′), where n′ := m+ n.

Enc′(s): Upon input a value s ∈ {0, 1}k, compute c0, c1←$ REncode(1λ),
let κ← Dec(c0, c1), and compute γ←$ AEnc(κ, s); return c′0, c

′
1 where

c′β = (cβ, γ) for β ∈ {0, 1}.
Dec′(c′0, c

′
1): Parse c′β := (cβ, γβ) for β ∈ {0, 1}. If γ0 6= γ1, return ⊥ and

self destruct; else let κ̃ = Dec(c0, c1). If κ̃ = ⊥, return ⊥ and self
destruct; else return the same as ADec(κ̃, γ0).

The difference between the compiler Σ described above and the compiler
of [14] is that our compiler starts from a CNMRE, while their construc-
tion starts from a noisy-leakage-resilient CNMC. In particular, their proof
strategy relies on the noisy-leakage resilience of the underlying CNMC
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while our proof strategy does not. A similar strategy to ours was re-
cently used by Brian, Faonio and Venturi in the context of continuous
non-malleable secret sharing schemes [10].

Theorem 2. For any adversary A which makes at most qT := qT (λ)
tampering oracle queries there exist adversaries B which makes at most
(m+1) ·qT tampering oracle queries, and adversaries B′ and B′′ such that

Advcnmc
Σ,A (λ) ≤ 2Advcnmre

Π,B (λ) + qT ·Advauth
Ω,B′(λ) + Advind

Ω,B′′(λ).

Proof. The proof proceeds by a sequence of hybrid experiments. We as-

sume, w.l.o.g., that P
[
Gcnmc
Σ,A (1λ, µ0, µ1) = 1

]
≥ 1

2 . We underline in gray

the differences between consecutive hybrids. Fix µ0, µ1 and let H1(1
λ) be

the same as Gcnmc
Π,A (1λ, µ0, µ1) but where:

– The target codeword is generated by computing c0, c1←$ REncode(1λ),
setting κ1 ← Dec(c0, c1), sampling κ0←$ {0, 1}λ and computing the
chipertext γ←$ AEnc(κ0, s);

– At each tampering query, let f = (f0, f1) be the tampering function
sent by the adversary and compute, let (c̃β, γ̃β) = fβ(c′β) for β ∈
{0, 1}. The decoding algorithm checks if Dec(c̃0, c̃1) = κ1, if this is
the case (and if γ̃0 = γ̃1) then it decrypts the tampered ciphertext γ̃0
using the key κ0.

Consider the following reduction:

Adversary B(1λ, κ0, κ1):
1. Sample a random bit b∗ and set γ ← AEnc(κ0, µb∗). Compute

an auxiliary codewords c
(α)
0 , c

(α)
1 ← REncode(1λ) such that

Dec(c
(0)
0 , c

(1)
1 ) = Dec(c

(1)
0 , c

(0)
1 ) = ⊥ and let κ(α) ← Dec(c

(α)
0 , c

(α)
1 )

for α ∈ {0, 1}. Start the adversary A(1λ, µ0, µ1), set the flag
stop← 0.

2. Random oracle queries. Whenever A sends a query x to the
random oracle, forward the query to random oracle RO.

3. Tampering oracle queries. When the adversary A sends its

j-th tampering query (f
(j)
0 , f

(j)
1 ), if the flag stop = 1 return ⊥

else consider the following tampering function:

Tampering function f j,iβ (cβ):

(a) Compute (c̃β, γ̃β)← f
(j)
β (cβ, γ);
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(b) Let α be the i-th bit of γ̃β, return c
(α)
β .

For i ∈ [m] send the tampering query (f j,i0 , f j,i1 ) and:

– If the tampering oracle outputs κ(α) then set αi ← α;
– Else the tampering oracle outputs ⊥ then return ⊥ to A.

Let γ̃ = (α0, . . . , αm−1). Consider the tampering function f ′β(cβ)

that computes (c̃β, γ̃)← f
(j)
β (cβ, γ) and outputs c̃β.

Send the tampering query (f ′0, f
′
1) and obtain κ̃.

– If κ̃ = ⊥ return ⊥ to A and set the flag stop← 1,
– if κ̃ = � then set κ̃← κ0,
– compute µ̃← ADec(κ̃, γ̃) if µ̃ = ⊥ then set the flag stop←

1 and return ⊥ to A else return µ̃.

4. Eventually the adversary return a bit b′, return b∗ = b′.

Claim. P
[
Gcnmc
Σ,A (1λ, µ0, µ1) = 1

]
≤ 2Advcnmre

Π,B (1λ) + P
[
H1(1

λ) = 1
]
.

Proof (of the Claim). It is sufficient to prove that P
[
Gcnmre
Π,B (1λ, µ0, µ1) = 1|b = 0

]
=

P
[
Gcnmc
Σ,A (1λ) = 1

]
, P
[
Gcnmre
Π,B (1λ, µ0, µ1) = 0|b = 1

]
= P

[
H1(1

λ) = 1
]
. First

we notice that at step 1 of B, the reduction samples two auxiliary code-

words c(0) and c(1) such that Dec(c
(0)
0 , c

(1)
1 ) = Dec(c

(1)
0 , c

(0)
1 ) = ⊥. If such

constraint does not hold then we can break the non-malleability of Σ
by applying Thm. 5. Also notice that, assuming that the constraint does
not hold, then the advantage of the reduction to non-malleability of Σ is
tighter than the advantage of B. Thus we assume that the condition holds.
Independently of the challenge bit b, the adversary B simulates perfectly
the tampering oracle queries. In fact, if the j-th tampering oracle query

of A, on input the tampering function (f
(j)
0 , f

(j)
1 ), outputs ⊥ then either

(1) the ciphertexts γ̃0 and γ̃1 are different or (2) Dec(c̃0, c̃1) = ⊥ or (3)
ADec(κ̃, γ̃0) = ⊥. If the event (1) happens, let i be the first index where
the ciphertexts γ̃0 and γ̃1 differ, the tampering query (f j,i0 , f j,i1 ) returns

either c
(0)
0 , c

(1)
1 or c

(1)
0 , c

(0)
1 which makes B to return ⊥ to A. In the event

(2) happens, then B would receive ⊥ from the tampering oracle query
with input (f ′0, f

′
1). If the event (3) happens, then by definition of B, it

would return ⊥ to A.

On the other hand, if the j-th tampering oracle query of A outputs a
message µ̃ 6= ⊥ then, by inspection of B, it is easy to show that B would
return the same message µ̃ to A.

Finally notice that if b = 0 then the target codeword for Π encodes κ0,
thus the codeword (c0, γ), (c1, γ) is distributed exactly as the output of
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Enc′. Else, if b = 1 the target codeword for Π encodes κ1 so the codeword
is distributed exactly as generated by H1.

Let H2 be the same as H1 but where for any tampering query (f0, f1)
let (c̃0, γ̃), (c̃1, γ̃

′) be the tampered codeword as computed by the tam-
pering oracle, if Dec(c̃0, c̃1) = κ1 and γ̃ 6= γ then the hybrid H2 directly
returns ⊥ and self destructs else, if Dec(c̃0, c̃1) = κ1 and γ̃ = γ, it directly
returns �. It is easy to show that, by reduction to the authenticity of Ω,
the advantages of H2 and H3 are negligibly close.

Let H3 be the same as H2 but where the ciphertext in the target
codeword is computed as γ ← AEnc(κ0, 0

k). We can show that, by reduc-
tion to the indistinguishability of Ω, the advantages of H2 and H3 are
negligibly close. Finally, it is easy to show that the advantage in H3 is
1
2 . ut

5 Our Leakage-Resilient Randomness Encoders

We give two constructions Π1 and Π2 of LRREs, due to space constraints
the proofs of security of Π1 and Π2 appear in the full version [25]. Notably
the randomness encoder Π2 has optimal leakage parameter, namely the
leakage parameter is only λ bits smaller than the size of the codeword.

Let p be a prime such that p ≥ 2λ and let m ∈ N. Consider the
following (m log p)-randomness-encoder Π1 = (REncode1,Dec1):

REncode1(1
λ): Sample column vectors x0,x1←$ Zmp . Output c0, c1 where

cβ is the binary representation of xβ
Dec1(c0, c1): Parse cβ as a vector xβ ∈ Zmp . Return the binary represen-

tation of xT0 · x1 ∈ Zp.

Theorem 3. Let ` ≤ m log p, for any q, the Π1 scheme is (O(2−λ), `, q)-
noisy-leakage resilient for ` ≤ (m + 1) log p/2 − 2λ. In more detail, for
any (`, q)-admissible adversary A: Advlrs

Π1,A(λ) ≤ 2−(m−1) log p/2+`.

The theorem follows easily from the following two lemmas. The first
lemma proves that the inner product over large field is an average case
two-source extractor. the lemma is taken from Dodis et al. [19] (Lemma
B.2 in full version). The second lemma was proved by Dziembowski and
Pietrzak [23].

Lemma 2. Let u be uniformly random over Zp, for any unbounded dis-
tinguisher D, any random variables x0,x1 ∈ Zmp ,Z ∈ {0, 1}∗ such that x0
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and x1 are independent conditioned on Z:

|P
[
D(xT0 ·x1,Z) = 1

]
− P [D(u,Z) = 1] | ≤ 2((m+1) log p−`0−`1)/2.

where `β = H̃∞(xβ|Z).

The second lemma proves that independence is maintained even after
split-state leakage.

Lemma 3. Let x0 and x1 be two independent random variables. For any
adversary z ← AOleak((x0,x1),·,·), the random variables (x1|z) and (x0|z)
are independent.

Proof (of Thm. 3). First notice that the randomness encoder Π1 does not
use the random oracle, so queries to the random oracle have no impact
in our security analysis. Recall that in the game Glrre

Π1,A
the adversary

receives two keys κ0 and κ1, it has leakage oracle access to the codeword
and it outputs a bit. Consider the hybrid experiment H that is identical
to Glrre but where both the key κ0 and κ1 are chosen uniformly at random
from {0, 1}λ. It is not hard to see that P [H = 1] = 1

2 . We show that the
distribution Glrre

Π1,A
and the distribution H are statistically close.

Let Z be the state of A before it outputs its guess. W.l.o.g. the state
contains all the leakage oracle queries and answers and all the randomness
used by A. By Lemma 3 we have (x0|Z) and (x1|Z) are independent,
moreover for β ∈ {0, 1} : H̃∞(xβ|Z) ≥ m log p− `, thus by Lemma 2 the
theorem follows.

ut

Let (m− 1) log p/2 ≥ n and let RO be a random oracle4 with output Zmp .
Consider the following n-randomness-encoder Π2 = (REncode2,Dec2).

REncode(1λ): Sample and output c0, c1←$ {0, 1}n.
Dec(c0, c1): Compute xi ← RO(ci) for i ∈ {0, 1} and return the binary

representation of xT0 · x1.

Theorem 4. Let ` + λ ≤ n, for any qRO(λ) ∈ N, the encoding scheme
Π2 is (O(2−λqRO), `, qRO)-noisy-leakage resilient. In more detail, for any
(`, qRO)-admissible adversary A: Advlrs

Π2,A(λ) ≤ 2`−n(2qRO + 2).

The idea for the proof is that the adversary can either leak from ci or di-
rectly from RO(ci). The former kind of leakage cannot give any advantage
to the adversary, since the adversary should be able to guess n − ` ≥ λ
bits to obtain any information about RO(ci), the latter form of leakage is
protected by the same argument of the leakage resilience of Π1.

4 It can be easily realized using a RO′ with codomain {0, 1}2λ.
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Proof. We reduce to the security of Π1. Consider the hybrid experiment
HA equivalent to the Glrre

Π2,A
experiment but where the output of the

experiment is a random bit if A queries the random oracle either on c0 or
on c1.

Claim. |P
[
Glrre
Π2,A

(λ) = 1
]
− P [HA(λ) = 1] | ≤ 2qRO2`−n

Proof. The two experiments proceed exactly the same until the bad event
that the adversary A queries the random oracle on c0 or on c1 happens. Let
us call such event Bad . Therefore we need only to bound the probability
of Bad. Let Badi,b the event that A queries cb at its i-th query to RO.

P [Bad] ≤
∑

i∈[qRO],b∈{0,1}

P [Badi,b] ≤ 2qRO max
i,b

P [Badi,b]

Let zi be the state of the adversary at the i-th query (which includes
also all the random-oracle queries made), by the definition of average

conditional min-entropy we have that P [Badi,b] ≤ 2−H̃∞(cb|zi). In fact,
we can define a predictor that runs A with state set to zi and outputs
as its own guess the random oracle query made by A. By the (`, qRO)-
admissibility of A we have that H̃∞(cb|zi) ≥ H̃∞(cb|c1−b,RO)− ` = n− `.

Claim. For any (`, qRO)-admissible A there exists an (`, 0)-admissible A′

such that: |P [HA(λ) = 1]− 1|/2 = Advlrs
Π1,A′(λ).

Proof. Let A′ be the adversary that simulates A and keeps the list Q
of random oracle queries made by A. Additionally, A′ samples a random
function H with domain {0, 1}n and co-domain Zmp and answers the ran-
dom oracle query of A using H. (Notice that A′ does not need to be effi-
ciently computable.) Also, A′ samples two random values c0, c1←$ {0, 1}n.
Whenever the adversary A sends a leakage oracle query (g0, g1) the adver-
sary A′ sends the leakage oracle query (g′0, g

′
1) where the leakage functions

g′β for β ∈ {0, 1} are defined below:

Leakage function g′β(x):

– Run gβ(cβ);
– Upon random oracle query z from gβ if z = cβ then return x

else return H(z) to gβ.
– Output what gβ does.

Eventually A outputs its guess b, the adversary A′ first checks that cβ 6∈ Q
for β ∈ {0, 1}, if so it returns a random bit else A′ returns b.
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Notice that A′ simulates perfectly the hybrid experiment as long as
neither c0 nor c1 are queried to the random oracle by A. In fact, if we
condition on ∀β : cβ 6∈ Q then the adversary A′ is running the hybrid
experiment H with the random oracle H′(x) that answers H(x) if x 6∈
{c0, c1}, with x0 if x = c0 and with x1 if x = c1, where (x0,x1) is
the challenge codeword for A′. On the other hand, when this bad event
happens the adversary A′ will surely outputs a random bit, as the hybrid
experiment does.

Putting the claims together, by the triangular inequality, and because of
the relation (m−1) log p/2+λ ≥ n we have the statement of the theorem.

ut

5.1 Instantiations

We present two instantiations for our continuous non-malleable random-
ness encoders. By joining together the results of Thm. 1 and Thm. 3 we
obtain a (m log p + 2λ)-randomness-encoders scheme Π∗1 with concrete
security being:

max
A

Advcnmre
Π∗1 ,A

(λ) ≤ exp(−(m− 1) log p/2 + log λ+ log qT + 1)

+ qT+(qRO+q·qT )2
22λ

+ (qRO+q·qT )λqT
2m log p−1 .

For concreteness, suppose that an adversary can make qRO + q · qT = 240

random-oracle queries and qT = 220 tampering-oracle queries, then to
have ≈128-bits of security we need to set (m−1) log p ≥ 312 and p ≥ 2128,
for example we can set we m = 2 and p ≥ 2312. Instantiating the random
oracle using SHA256 then the codeword size would be approximately
2 × 880 bits. The time complexity of the decoding algorithm would be
approximately the same as two SHA256 functions plus an inner-product
between two vectors in Zmp . Our second instantiation is derived by joining

together the results of Thm. 1 and Thm. 4. We obtain a n+λ-randomness-
encoders scheme Π∗2 with concrete security being:

max
A

Advcnmre
Π∗2 ,A

(λ) ≤ exp(−n+ log λ+ log qT + log qRO + 2)

+ qT+(qRO+q·qT )2
22λ

+ (qRO+q·qT )λqT
2m log p−1 .

Assuming the same setup of before, to get ≈128-bits of security we need to
set n ≥ 128+69. Using SHA256 the codeword size would be approximately
2×453 bits. The time complexity of the decoding algorithm would be the
same of 8 SHA256 functions. In particular, the size of the codeword is in
total only ≈ 7 times bigger than the size of the derived key.
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6 Lower Bounds for CNMREs in the ROM

Definition 8. Given a n-randomness encoder Π, an algorithm A is a
(ε, qRO)-finder for Π if A(1λ) makes at most qRO(λ) random oracle queries
and if:

P

[
⊥ 6= Dec(c0, c1) 6= Dec(c0, c

′
1) 6= ⊥

(c0 = c′0) ∨ (c1 = c′1)
: (c0, c1, c

′
0, c
′
1)← ARO(1λ)

]
≥ ε(λ)

In the next theorem first we show that the existence of a finder is sufficient
to break continuous non-malleability, then we show that even if there is
no finder, we still can break continuous non-malleability given enough
random oracle queries.

Theorem 5. Let n(λ) ∈ N and let Π be a n-randomness encoder:

1. If there exists a (ε, qRO)-finder for Π then for any ε
2 ≥ δ > 0, Π is

not a ( ε2 − δ, 0, qRO)-CNMRE. Namely, there exists an adversary A′

making up to qRO random oracle queries and n+ 1 tampering queries
from Fn,0, such that ε

2 ≤ Advcnmre
Π,A′ (1λ).

2. Suppose that Enc(1λ) makes at most qEncRO (λ) random oracle queries
and uses r(λ) random bits. If for any ε, q′RO, there does not exist a
(ε, q′RO)-finder then for any δ > 0 any qRO, q such that qRO + q ≥
2r · qEncRO the scheme Π is not a (1/2 − δ, q, qRO)-CNMRE. Namely,
there exists an adversary A′ making up to qRO random oracle queries
and 1 tampering query from Fn,q such that Advcnmre

Π,A′ (1λ) = 1/2.

Proof (Sketch). For the first part of the theorem let the adversary A′

first run the finder algorithm. For simplicity, let us assume that the finder
outputs a tuple (c0, c1, c

′
0, c
′
1) where c0 = c′0. If the output of the finder

is not valid then the adversary A′ outputs a random bit. Else, for i =

0, . . . , n − 1 sends the tampering query (f
(i)
0 , f

(i)
1 ) where f

(i)
0 returns c0

and f
(i)
1 (c∗1) returns either c1 or to c′1 depending on the on the i-th bit

of c∗1. After this process, the adversary can extract in full the value c∗1 of
the target codeword, thus it can send a last tampering query that breaks
non-malleability. It is clear that the adversary wins the game Gcnmre with
probability at least ε+ (1− ε)12 .

For the second part of the theorem, for simplicity we consider first the
case where q = 0. Since no finder exists, then for any c0 there exists unique
c1 such that (c0, c1) ∈ {Enc(1λ; ρ) : ρ ∈ {0, 1}r}. Thus the the adversary
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A′ can compile a bijection L0 such that L0(c0) = c1, also let L1 be the
inverse of L0. To compile such bijections the adversary A′ needs at most
2r · qEncRO random oracle queries. Then given such bijections, the adversary
sends the tampering queries f0, f1 where fβ(cβ) computes c1−β ← Lβ(cβ),
decodes κ← Dec(c0, c1), and if κ = κ0 sets the codeword to ⊥, else leaves
the codeword untouched. It is clear that the adversary wins the game
Gcnmre with probability 1.

For the case q > 0, we can consider an adversary that computes
first partially the bijection L0 using the budget of random-oracle queries
qRO and then finishes to computes the bijection L0 using the budget of
random-oracle queries that the tampering function can use.

Corollary 1. Let Π = (REncode,Dec) be a randomness-encoder where
REncode(1λ) makes up to qREncodeRO (λ) queries to the random oracle and
uses at most r(λ) bits of randomness, and Dec makes up to qDec

RO (λ) queries
to the random oracle. Also, let Π be (ε, `, 2r(qREncodeRO +qDec

RO ))-noisy leakage
resilient in the ROM, for any ε, ` where ` ≥ 2.

Consider Π∗ be our CNMRE from Sec. 3 instantiated with the ran-
domness encoder Π. There exists an adversary A that makes up to 2r(qREncodeRO +
qDec
RO )+2λ random oracle queries and up to n+1 tampering oracle queries

from Fn+2λ,0 such that:

(1/e)((
1
2−ε)2

λ−1)2/22λ−1

≤ Advcnmre
Π∗,A (λ).

In particular, when ε(λ) ∈ negl(λ) then (1/e)8 ≤ Advcnmre
Π∗,A (λ).

Proof. We describe an ((1/e)((
1
2−ε)2

λ−1)2/22λ−1

, 2r(qREncodeRO + qDec
RO ) + 2λ)-

finder for Π∗.

Finder FRO(1λ):

1. Compute for any c0 the set E(c0) = {c1|∃ρ : (c0, c1) = Π.EncRO(1λ; ρ)};
2. Compute for any c0 the setM(c0) = {Π.Dec(c0, c1)|c1 ∈ E(c0)};
3. Find c∗0 such that |M(c∗0)| = maxc0 |M(c0)|;
4. Find c

(1)
1 , c

(2)
1 ∈E(c∗0) such thatRO(c

(1)
1 )=RO(c

(2)
2 ) andΠ.Dec(c∗0, c

(1)
1 ) 6=

Π.Dec(c∗0, c
(2)
1 ).

5. If such tuple does not exist output ⊥,
else output (c̄0, c̄1, c̄

′
0, c̄
′
1) such that:

c̄0 = c̄′0 := (c∗0,RO(c
(1)
1 )) c̄1 := (c

(1)
1 ,RO(c∗0)) c̄′1 := (c

(2)
1 ,RO(c∗0)).

We analyzes the probability that the finder outputs a valid triplet.

27



Claim. For any ε(λ) ∈ R, `(λ) ∈ N, if Π is a (ε, `, 2r(qREncodeRO + qDec
RO ))-

noisy-leakage resilient randomness encoder then |M(c∗0)| ≥ (12 − ε)2
λ.

Proof (of the Claim). Suppose that for any c0 we have |M(c0)|<(12−ε)2
λ.

Consider the following attacker against noisy-leakage resilience.

Adversary B(κ0, κ1):

1. Send the leakage function that on input c0 outputs:

– 1 if κ1 ∈M(c0) but κ0 6∈ M(c0),
– 0 if κ0 ∈M(c0) but κ1 6∈ M(c0),
– ⊥ if κ0 ∈M(c0) and κ1 ∈M(c0).

let b′ be the output of the leakage function;
2. If b′ = ⊥ output a random bit, else output b′.

Let b be the challenge bit, the probability of κ1−b ∈ M(c0) is strictly
smaller than (12 − ε)2

λ/2λ. Notice that κb ∈M(c0), thus the adversary B
successfully guesses the challenge bit whenever the output of the second
leakage function is not ⊥. We can conclude that the advantage of B is
strictly greater then ε.

By the claim above there exists at least (12 − ε)2
λ different values c1 that

decodes correctly with c∗0 and whose decoded messages are pairwise differ-
ent. Thus applying the birthday-paradox bound the probability that the

finder successfully outputs a valid tuple is at least (1/e)((
1
2−ε)2

λ−1)2/22λ−1

.
Finally, notice that the number of random oracle queries made by F are:

– 2r(qEncRO + qDec
RO ) to compute the sets E(c0) for any c0;

– At most 2λ to compute the step 4.

By applying Theorem 5 point 1 we have the statement of the theorem.
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