Simulation-Based Bi-Selective Opening Security
for Public Key Encryption

Junzuo Lai', Rupeng Yang?, Zhengan Huang?®, and Jian Weng!

1 College of Information Science and Technology, Jinan University,

Guangzhou, China
laijunzuo@gmail.com, cryptjweng@gmail.com

2 Department of Computer Science, The University of Hong Kong,
Hong Kong, China
orbbyrp@gmail . com

3 Peng Cheng Laboratory, Shenzhen, China
zhahuang.sjtu@gmail.com

Abstract. Selective opening attacks (SOA) (for public-key encryption,
PKE) concern such a multi-user scenario, where an adversary adaptively
corrupts some fraction of the users to break into a subset of honestly
created ciphertexts, and tries to learn the information on the messages
of some unopened (but potentially related) ciphertexts. Until now, the
notion of selective opening attacks is only considered in two settings:
sender selective opening (SSO), where part of senders are corrupted and
messages together with randomness for encryption are revealed; and re-
ceiver selective opening (RSO), where part of receivers are corrupted and
messages together with secret keys for decryption are revealed.

In this paper, we consider a more natural and general setting for selective
opening security. In the setting, the adversary may adaptively corrupt
part of senders and receivers simultaneously, and get the plaintext mes-
sages together with internal randomness for encryption and secret keys
for decryption, while it is hoped that messages of uncorrupted parties
remain protected. We denote it as Bi-SO security since it is reminiscent
of Bi-Deniability for PKE.

We first formalize the requirement of Bi-SO security by the simulation-
based (SIM) style, and prove that some practical PKE schemes achieve
SIM-Bi-SO-CCA security in the random oracle model. Then, we suggest
a weak model of Bi-SO security, denoted as SIM-wBi-SO-CCA security,
and argue that it is still meaningful and useful. We propose a generic
construction of PKE schemes that achieve SIM-wBi-SO-CCA security in
the standard model and instantiate them from various standard assump-
tions. Our generic construction is built on a newly presented primitive,
namely, universal, hash proof system with key equivocability, which may
be of independent interest.

Keywords: Public Key Encryption, Multi-User Security, Selective Open-
ing Security, Simulation-Based Security, Chosen-Ciphertext Security

1 Introduction

Public key encryption (PKE) is a fundamental tool to protect messages
sent over a public channel. Usually, a PKE scheme is used in an open
system with multi-users. The system contains multiple, say n, users, each
with a public key/secret key pair, i.e., there are n public keys in the
system. Anyone (even not registered in the system) can send messages
over the public channel to a user securely via encrypting the message
under the user’s public key. Thus, each public key will be used for multiple,
say k, times during the lifetime of the system.

Selective Opening Attacks. Currently, the standard security for P-
KE schemes is the so-called “Chosen-ciphertext attack (CCA) security”,
which allows the attacker to learn the decryption of its selected cipher-
texts. Generally, PKE schemes are designed to guarantee security of all
messages in the system against a CCA attacker under the assumption
that internal status of all users are properly protected. This assumption,
however, will be challenged in some real-world scenarios:

— The attacker may corrupt the senders and learn their messages and
the encryption randomness.

— The attacker may corrupt the receivers and learn their secret keys.
With the receivers’ secret keys, the attacker is able to decrypt all
ciphertexts sent to the receivers and obtain the messages.

While it is hopeless to protect those opened messages, one natural ques-
tion is whether the unopened messages are still well protected. The above
attacks are called selective opening attacks. Surprisingly, it is proved that
standard security notion (i.e., CCA security) is not able to guarantee se-
curity against selective opening attacks (SO security) [2,19,18].

The notion of SO security for PKE was firstly formalized by Bellare
et al. [3] at EUROCRYPT 2009. To date, two settings have been con-
sidered for SO security: sender corruption [3] and receiver corruption [2].
In the sender corruption setting, part of senders are corrupted, with the
corruption exposing their coins and messages. In the receiver corruption
setting, part of receivers are corrupted, with corruption exposing their se-
cret, keys and messages. We denote SO security in the sender-corruption
setting and in the receiver-corruption setting by SSO security and RSO
security, respectively.

Furthermore, for each setting, there are two types of definitions for
SO security: indistinguishability-based (IND) SO security and simulation-
based (SIM) SO security. IND-SO security requires that no efficient ad-

versary can distinguish the uncorrupted users’ ciphertexts from the en-
cryption of fresh messages, which are sampled according to a conditional
probability distribution (conditioned on the opened ciphertexts, which
means the ciphertexts of the corrupted parties). In other words, IND-
SO security requires that the considered message distributions should be
efficiently conditionally re-samplable [3]. SIM-SO security requires that
anything, which can be computed efficiently from the ciphertexts, the
opened messages as well as the corrupted information, can also be com-
puted efficiently only with the opened messages. SIM-SO security imposes
no limitation on the message distributions.

Motivations. Previous works on SIM-SO-CCA secure PKE schemes on-
ly provide either sender selective opening security [3,10,17,21,27,15,26,28,22],
or receiver selective opening security [2,13,24,20,12,33]. However, it is
rarely possible to predict whether the attacker will corrupt the senders
or the receivers beforehand in practice. Moreover, most of the previous
works about RSO security only focused on the single-challenge setting,
i.e., each public key can only be used once to produce a single ciphertext.
This is very unrealistic in practice.?

Based on the above facts, the following question is raised naturally:
How to define security models to capture the practical requirements of
selective opening security in the multi-user scenario, and provide secure
PKE schemes in the new models?

Our Contributions. In this paper, for a multi-user system with multi-
ple public keys where each public key will be used multiple times, we give
a new security definition of SO security, denoted as SIM-Bi-SO-CCA se-
curity. In the security model, the adversary may adaptively corrupt some
fraction of senders and receivers simultaneously, and get the plaintex-
t messages together with internal randomness for encryption and secret
keys for decryption, while it is hoped that messages of uncorrupted par-
ties remain protected. (The definition is reminiscent of Bi-Deniability [30]
for PKE.) We prove that some practical PKE schemes achieve SIM-Bi-
SO-CCA security in the random oracle model.

Then, we suggest a weak model of SIM-Bi-SO-CCA security, denoted
as SIM-wBi-SOy-CCA security (k € N), where (i) the adversary has to
specify whether it is going to corrupt the senders or the receivers after
receiving the public keys and before seeing the challenge ciphertexts, and

4 Very recently, Yang et al. [33] formalized the notion of RSO security in the multi-
challenge setting. But their work only considers the receiver corruption setting.

(ii) if the adversary chooses to corrupt some fraction of the receivers, it
is just allowed to corrupt the receivers whose public keys are employed
for encryption at most k times. We stress that the weak model is still
meaningful and useful because it provides the original SIM-SSO-CCA se-
curity and SIM-RSO-CCA security simultaneously. Furthermore, we show
that SIM-wBi-SOg-CCA security is strictly stronger than SIM-SSO-CCA
security and SIM-RSO-CCA security. We also stress that the recently
proposed SIM-RSO;-CCA security notion [33] is a special case of our
SIM-wBi-SOx-CCA security.

Finally, we propose a generic construction of PKE that achieves SIM-
wBi-SOx-CCA security in the standard model and instantiate it from
various standard assumptions. Our generic construction is built on a new
variant of hash proof system (HPS), which should additionally satisfy the
universal,; property and key equivocability. The technical overview of
the generic construction is given in Sec. 4.1. We also explore the existence
of universalgy; HPS with key equivocability and provide instantiations
from either the DDH assumption or the DCR assumption.

Related works. Since proposed by Bellare et al. in [3], selective opening
secure PKE has been extensively studied.

For SSO security, Bellare et al. in [3] firstly showed that any lossy
encryption is IND-SSO-CPA secure. IND-SSO-CCA secure PKE schemes
were constructed from All-But-N lossy trapdoor functions [14] or All-
But-Many lossy trapdoor functions [17,26,5,22]. If this lossy encryption
has an efficient opener, then the resulting PKE scheme can be proven to
be SIM-SSO-CCA secure as shown in [3]. Fehr et al. [10] showed an ap-
proach, employing extended hash proof system and cross-authentication
code (XAC), to build SIM-SSO-CCA secure PKE schemes. As pointed out
in [21], a stronger property of XAC is needed to make the proof rigorous.
Following this line of research, a generic construction of SIM-SSO-CCA
seucre PKE, from a special kind of key encapsulation mechanism (KEM)
and a strengthened XAC, was proposed in [27] and then extended to
achieve tight security in [28]. As showed in [15,16], some practical PKE
constructions also enjoy SIM-SSO-CCA security.

For RSO security, Hazay et al. [13] showed that SIM-RSO-CPA secure
PKE can be built from non-committing encryption for receiver (NCER)
[6], and IND-RSO-CPA secure PKE can be built from a tweaked variant
of NCER. IND-RSO-CCA secure PKE schemes were proposed in [24].
SIM-RSO-CCA secure PKE was constructed using indistinguishability
obfuscation (iO) in [23], and constructed based on standard computation-

al assumptions in [12,20]. Recently, Yang et al. [33] formalized the notion
of multi-challenge RSO security (RSOy, security), proved that SIM-RSO
security is not enough to guarantee SIM-RSOj security (k > 1), and
showed SIM-RSO-CPA/CCA secure PKE constructions.

Roadmap. In the rest part of this work, we give some preliminaries in
Sec. 2. We introduce the formal definitions for SIM-Bi-SO-CCA security
and SIM-wBi-SO-CCA security (k € N), and show that SIM-wBi-SO-
CCA security is strictly stronger than SIM-SSO-CCA and SIM-RSO-CCA
security in Sec. 3. Next, we introduce the main building block, namely,
universal, HPS with key equivocability, and present a generic construc-
tion of PKE scheme that achieves SIM-wBi-SOy-CCA security in the
standard model in Sec. 4. Finally, we show that some practical PKE
schemes achieve SIM-Bi-SO-CCA security in the random oracle model,
in Sec. 5.

2 Preliminaries

Notations. Throughout this paper, let A € N denote the security pa-
rameter. For n € N, let [n] denote the set {1,2,--- ,n}. For a finite set S,
we use |S| to denote the size of S; we use s <— S to denote the process of
sampling s uniformly from S. For a distribution Dist, z < Dist denotes
the process of sampling x from Dist.

We use boldface to denote vectors, e.g., x. We use x[i] to denote the
i-th component of x.

For a probabilistic algorithm A, let R 4 denote the randomness space
of A. We let y < A(x;r) denote the process of running .4 on input = and
inner randomness r € R 4 and outputting y. We write y < A(z) for y +
A(z;r) with uniformly chosen r € R 4. We write PPT for probabilistic
polynomial-time. For a function f()\), we write that f(\) < negl()\) if it
is negligible.

For two distributions Dist; and Disty, the statistical distance between
Dist; and Dists is defined as

X1+ Disty X2+ Distg

A(Disty, Disty) := %Z\ Pr [X;i=z]—- Pr [Xo=2z].

We say that Dist; and Disty are statistically indistinguishable (denoted
by Dist; ~ Dists), if A(Disty, Disty) is negligible.

Collision-resistant hash. We recall the definition of collision-resistant
hash function here.

Definition 1. (Collision-resistant hash function). A family of collision-
resistant hash function H, with domain Dom and range Rge, is a family

of functions having the following property: for any PPT algorithm A, its
advantage Adv%f{A()\) = Pr[H « H;(z,2') + AH) : 2 # 2/ AH(z) =
H(z')] is negligible.

Efficiently samplable and explainable domain. In this paper, some
of the domains are required to be efficiently samplable and explainable
[10]. We recall its definition as follows.

Definition 2. (Efficiently samplable and explainable domain). We
say that a domain Dom is efficiently samplable and explainable, if there
are two PPT algorithms (Sample, Explain):

— Sample(Dom;7): On input a domain Dom with uniformly sampled r <
Rsample; Sample outputs an element which is uniformly distributed
over Dom.

— Explain(Dom, z): On input Dom and x € Dom, Explain outputs r which
is uniformly distributed over the set {r € Rsample | Sample(Dom;r) =

This notion can be relaxed by allowing a negligibly small error probabil-
ity (which includes that sampling algorithms may produce near-uniform
output).

Cross-authentication code. The notion of /-cross-authentication code
(XAC) was proposed by Fehr et al. [10], and later adapted to strong and
semi-unique XAC in [25].

Definition 3. (/-Cross-authentication code). For ¢ € N, an {-cross-
authentication code (£-XAC) XAC, associated with a key space XK and
a tag space X7, consists of three PPT algorithms (XGen, XAuth, XVer).
Algorithm XGen(1?) generates a uniformly random key K € XK, deter-
ministic algorithm XAuth(K7y,--- , Ky) produces a tag T' € X'T, and de-
terministic algorithm XVer(K,T') outputs b € {0, 1}. The following prop-
erties are required:

e Correctness: For all i € [{], failxac(\) := Pr[XVer(K;, XAuth(K7,
, K;y)) # 1] is negligible, where K1, --, K, < XGen(1") in the
probability.

e Security against impersonation and substitution attacks: Advg\/{g

and AdvisS()) as defined below are both negligible: Advitab(A) :=

max Pr[K < XGen(1}) : XVer(K,T') = 1], where the max is over all

i€l and T € XT, and

K; + XGen(1%)

T TN\
SUB()) .— - Noin)
Advyac(A) = zll"?jXF Pr ;/;XQF;P;((KJ)JEV]) "XVer(K;,T') =1’

where the max is over all i € [¢], all K4; == (K;); € XK' and all
possibly randomized functions F : XT — XT.

Definition 4. (Strong and semi-unique (-XAC). For ¢ € N, we say
that an £-XAC XAC is strong and semi-unique, if it has the following two
properties:

e Strongness: There is a PPT algorithm ReSamp, which takes i €
[(], K4 and T as input (where Ki,---,K; < XGen(1*) and T =
XAuth((Kj)jciq)) and outputs K7, such that K; and K; are statisti-
cally indistinguishable, i.e.,

StDxac (M) == A(K], K;)

LS Pl = KI(K 4, T)] PrlK = K| (KT
KeXK

is negligible, where the probabilities are taken over K; «+ XGen(1*),
conditioned on (K;,T'), and the randomness of ReSamp.

e Semi-uniqueness: The key space XK can be written as g x K.
Given a tag T € XT and K, € K,, there is at most one K} € K such
that XVer((K,, K3),T) = 1.

3 Bi-SO Security for PKE

Previous security notions of SOA for PKE only consider either sender
corruption setting or receiver corruption setting. We consider a more
natural and general setting for selective opening security. In the setting,
the adversary may adaptively corrupt part of senders and receivers si-
multaneously. We denote it as Bi-SO security since it is reminiscent of
Bi-Deniability [30] for PKE.

For a multi-user system with multiple public keys where each public
key will be used many times, we firstly give the most natural security

(A

notion of Bi-SO security, denoted as SIM-Bi-SO-CCA security. Then, we
suggest a weak model of SIM-Bi-SO-CCA security, denoted as SIM-wBi-
SOx-CCA security (k € N). The weak model is still meaningful and useful
because it provides the original SIM-SSO-CCA security and SIM-RSO-
CCA security simultaneously. Finally, for completeness, we show that
SIM-wBi-SO-CCA security is strictly stronger than SIM-SSO-CCA and
SIM-RSO-CCA security.

3.1 Security Definitions

Simulation-based Bi-SO security. In the Bi-SO setting, some of the
senders and some of the receivers may be corrupted simultaneously, and
each public key may be used to encrypt multiple messages. The formal
definition is as follows.

Definition 5. (SIM-Bi-SO-CCA). We say that a PKE scheme PKE =
(Setup, Gen, Enc, Dec)® is SIM-Bi-SO-CCA secure, if for any PPT adver-
sary A, there exists a PPT simulator S, such that for any PPT distin-
guisher D,

SIM-Bi-SO-CCA i-SO-real
AdVPIKE,E\,S,D (A) = |P1"[D(EXP]§KE,A “N) =1]

— Pr[D(Exppigs ' (A)) = 1]]

is negligible, where both Explgkégfeal()\) and Expg’&%’%‘ideal()\) are defined
mn Fig. 1.

Note that in the real experiment, the total number of public keys
and the times that each public key is used for encryption are completely
determined by the adversary.

Remark 1 One can generalize both SIM-Bi-SO-CCA and SIM-wBi-SOy-
CCA security to a new version that the adversary is allowed to make
multiple selective opening queries adaptively. We stress that all the PKE
constructions presented in this paper also achieve the generalized security.

5 Note that both SIM-Bi-SO-CCA and SIM-wBi-SO;-CCA security capture the se-
curity requirements in a multi-user scenario, where multiple public/secret key pairs
are involved. In this setting, some global information is needed to be generated by
a global algorithm Setup, as done in previous works about multi-user security, such
as [1].

BxpB%)]
pp < Setup(1?); n:=0 (M, 51) ¢ SpimttiRec(1A)
C=0; (M,s1) A" (pp) M = (my,-- ,m,) < M
M = (mi,--- ,my) < M len := ((|m7 |, [m7[1]}, -, |m:“mﬂ]|)l6[7z])
For i =1 to n: (Zs,Ir, s2) < Sa(len, s1)
For 7 =1 to |m,|: out < S3((m;[4]) (i, j)ezs, (Mi)iezy, S2)
ri[j] < R Return (M, M, Zs,Ig,out)
ci[j] « Enc(pki, m;[j]; r:[j])
C:=CcU{(icifj])} SimMkRec():
(IS7IR, 82) < A[Q’ec((ch o 7Cn)7 81)
out < A5((rs[7], mil5]) i,y ezs» ni=n+l
(ski,m;)iczy, 52) Return L
Return (M, M,Zs,Zg,out)
Dec(i, c):
MiRec(): If (¢ >n) vV ((i,c) € C): return L
n:=n+1; (pkn, skn) < Gen(pp) Return Dec(ski, c)
Return pk,,

Fig.1 Experiments for defining SIM-Bi-SO-CCA security of PKE. In these two ex-
periments, we require that Zg C {(4,7) | ¢ € [n],j € [|m;]]} and Zg C [n].

Simulation-based weak Bi-SO security. Now we introduce a weak
model of SIM-Bi-SO-CCA security, which we denote as SIM-wBi-SOy-
CCA security (k € N). The differences between these two security models
are that in the real experiment of SIM-wBi-SO;-CCA security: (i) the
adversary has to specify whether it is going to corrupt some fraction of
the senders or the receivers, before seeing the challenge ciphertexts; (ii) if
the adversary chooses to corrupt some fraction of the receivers, it is just
allowed to corrupt the receivers whose public keys are used for encryption
at most k times. The formal definition is as follows.

Definition 6. (SIM-wBi-SO,-CCA). For any k € N, we say that a
PKE scheme PKE = (Setup, Gen, Enc, Dec) is SIM-wBi-SOy-CCA secure,
if for any PPT adversary A, there exists a PPT simulator S, such that
for any PPT distinguisher D,

SIM-wBi-SO4-CCA -SO-
AdVPKE,Vj\,é,D g (A) = \PT[D(EXPIVDVEIE,?JM()\)) =1]

— Pr[D(Expfe s (V) = 1]|

is negligible, where both Exp‘ﬁ,”,%i_‘fﬁ,jeal(/\) and Exp‘gE‘E'SOkldeal()\) are de-

fined in Fig. 2.

] ExppL Y (V)
pp < Setup(1?); n:=0 (B, M, 51) + SpimiRec(1)
C=0; (B,M,s1)+ A" (pp) M :=(my, - ,my) + M
M :=(my,-- ,mp) < M len := ((lmi], [mi[1]|,--- , [mi[m]{]|)ie(m))
For i =1 to n: (Z, s2) « Sz2(len, s1)
For j =1 to |my|: If 8 =10: Open:= (m;[j])i, ez
r;[j] < R If 8=1: Open:= (m;)iez
ci[j] + Enc(pk;, m;[j];r:[4]) out + S3(Open, s2)
C:=CU{(icij])} Return (8, M, M, Z, out)

(Z,52) < A3*((c1, -+ ,€n), 51)
If 3= 0: Open := (r;[j], m;[j]);,j)ez SimMkRec():
If 8=1: Open := (ski,m;)iez

out < Agec(Open’ 52) n:=n-+1
Return (8, M, M, Z, out) Return L
MkRec(): Dec(i,c):

If (i >n) VvV ((i,¢) €C): return L

n:=n+1; (pkn, skn) < Gen(pp)
Return Dec(sk;, c)

Return pk,,

Fig. 2 Experiments for defining SIM-wBi-SO,-CCA security. Here in both
Expyn iokreal()\) and Exp‘gféﬁ%ideal()\), we require that (i) € {0,1}, and (ii) when
B=0,ZC{(i,j)]i€n],j€[m]]}, and when 8=1,Z C {i € [n] | |m;| < k}.

In both ExpWBl SO 1”eal()\) and ExpWBI SO-ideal(\) we use B = 0 (resp.
g =1) to represent "that adversary A/snnulator S chooses to corrupt
some of the senders (resp. receivers). We stress that in ExpWBI SO real()\),
when A; outputs 8 = 0, the parameter k puts no restrictions on sender
corruptions Z; and when A; outputs 8 = 1, A is allowed to corrupt the
receivers whose public keys are used for encryption at most k times (i.e.,
T cC{i€n]]|m; <k}).

Note that the original SIM-SSO-CCA security [14,10] and SIM-RSO-
CCA security [12,20] are both special cases of SIM-wBi-SO;-CCA securi-
ty. Specifically, the original SIM-SSO-CCA security is SIM-wBi-SO,-CCA
security when A; always outputs 5 = 0 and queries the MkRec oracle on-

10

ly once®, and the original SIM-RSO-CCA security is SIM-wBi-SO;-CCA
security when A; always outputs § =1 and |m;| =--- = |m,| =1 (note
that the latter implicitly suggests £ = 1). Hence, for a SIM-wBi-SO-
CCA secure PKE scheme, it achieves the original SIM-SSO-CCA and
SIM-RSO-CCA (and even SIM-RSOy-CCA) security simultaneously.

Very recently, Yang et al. [33] introduced an enhanced security notion
of RSO, SIM-RSOy-CCA security (k € N), for PKE. We notice that
their SIM-RSO;-CCA security is a special case of SIM-wBi-SO,-CCA
security as well. Specifically, SIM-RSO-CCA security is SIM-wBi-SOy-
CCA security when A; always outputs § = 1.

3.2 Separation of SIM-wBi-SOg-CCA and SIM-SSO-CCA &
SIM-RSO-CCA

Now we show that SIM-wBi-SO;-CCA security is strictly stronger than
SIM-SSO-CCA security and SIM-RSO-CCA security. Our conclusion is
derived from the fact that SIM-wBi-SOx-CCA security implies SIM-SSO-
CCA and SIM-RSO-CCA security simultaneously, and SIM-SSO-CCA
and SIM-RSO-CCA security do not imply each other. Actually, we have
stronger conclusions:

(1) Supposing that the k-Linear assumption holds (k € N), SIM-SSO-
CCA security does not imply SIM-RSO-CPA security;

(2) Supposing that the DDH or DCR assumption holds, SIM-RSO-CCA
security does not imply SIM-SSO-CPA security.

SIM-SSO-CCA+SIM-RSO-CPA. Bellare et al. [2] introduced the
notion of decryption verifiability for PKE, and showed that assuming the
existence of a family of collision-resistant hash functions, which can be
constructed under the discrete-logarithm assumption [11], any decryption-
verifiable PKE scheme is not SIM-RSO-CPA secure [2, Theorem 5.1]7.
Informally, a PKE scheme PKE = (Setup, Gen, Enc,Dec) is called
decryption-verifiable, if it is infeasible to generate (pk, sko, sk1, ¢, mo, mq)
such that (i) mo # mq, (ii) both sky and sk; are valid secret keys cor-
responding to pk, and (iii) Dec(skog,c) = mg and Dec(ski,c) = mq. We

5 The SIM-SSO-CPA security notion presented in [4] allows the adversary to query
the MkRec oracle multiple times.

" Both [2, Theorem 5.1] and [2, Theorem 4.1] only hold in the the auxiliary input model
(i.e., in the experiments defining SIM-RSO-CPA and SIM-SSO-CPA security, both
the adversary and the simulator get an auxiliary input). So do our counterexamples
in this section. These counterexamples may be modified with the technique proposed
in [2, Sec. 6] to drop the auxiliary inputs.

11

note that (i) and (iii) implicitly suggest that skg # ski. In other words,
for any PKE scheme, if each of its public key uniquely determines its
corresponding secret key, then it must be decryption-verifiable.

We notice that the k-Linear-based SIM-SSO-CCA secure PKE scheme
proposed by Liu and Paterson [27] is such a decryption-verifiable P-
KE scheme. Generally, a public key of the x-Linear-based Liu-Paterson
scheme is of the form (g¥, (g“”",g“”"“e,g”ﬁ@)ge[m]), where ¢ is a generator
of a cyclic group G of prime order ¢ and (y, (zg, g, B9)oc|x]) € (Zg)3r T+,
and the corresponding secret key is (v, Bg,ﬂ?;ly)ge[,ﬂ. It’s obvious that
the public key uniquely determines its corresponding secret key. So the
k-Linear-based Liu-Paterson scheme is decryption-verifiable. According
to [2, Theorem 5.1], we conclude that assuming the existence of a fam-
ily of collision-resistant hash functions, the x-Linear-based Liu-Paterson
scheme is not SIM-RSO-CPA secure.

For completeness, we recall the formal definition of decryption verifi-
ability [2] and the k-Linear-based Liu-Paterson scheme [27] in Appendix
B and C respectively.

SIM-RSO-CCA=SIM-SSO-CPA. As pointed out in [2, Theorem
4.1], the DDH-based Cramer-Shoup scheme [7] is not SIM-SSO-CPA se-
cure. On the other hand, Huang et al. [20] and Hara et al. [12] showed
that this PKE scheme (for single-bit message) achieves SIM-RSO-CCA
security. This fact suggests that when the DDH assumption holds, SIM-
RSO-CCA security does not imply SIM-SSO-CPA security. With similar
analysis, this conclusion can be extended to the case that the DCR as-
sumption holds.

4 PKE with SIM-wBi-SO-CCA Security

In this section, we propose a PKE scheme achieving SIM-wBi-SOx-CCA
security. We firstly introduce a new primitive, universal, HPS with key
equivocability for any polynomially bounded function x, and provide con-
crete constructions for it from the DDH assumption and the DCR, assump-
tion respectively. Then, with this new primitive as a building block, we
show our PKE construction and prove that it meets SIM-wBi-SO,-CCA
security in the standard model.

In order to make our idea more understandable, we firstly provide a
technique overview before going into the details.

12

4.1 Technique Overview

In the real experiment of SIM-wBi-SO,-CCA security, the bit 5 is used
to indicate whether the adversary wants to corrupt some fraction of the
senders (8 = 0) or the receivers (f = 1), and the adversary does not
specify the value of 3 until it sees public keys (pk;);c[,) via querying the
oracle MkRec. Hence, to prove SIM-wBi-SO;-CCA security, when 8 = 0,
we need to somehow generate malformed ciphertexts for (pk;);c(,), such
that they can be opened in the sense of SSO (i.e., exposing the messages
and the corresponding randomness to the adversary); and when g = 1,
we need to somehow generate malformed ciphertexts for (pk;);c[n), such
that they can be opened in the sense of RSO (i.e., exposing the messages
and the corresponding secret keys to the adversary).

Our scheme, encrypting ¢-bit messages, is inspired by the works of
[10,21,25]. The public/secret key pair is ¢ pairs of public and secret keys
(i-e., (hpky, hsky),eq) of a hash proof system (HPS) HPS [8]. Informal-
ly, to encrypt a message m = (my,---,my) € {0,1}%, the encryption
algorithm sets that for each v € [¢],

fm,=0: 2, + &; K, <+ Ky
Ifm,=1: x, <+ L; K, =PubEv(hpk,,z,,wy)
where £L C X and & are both finite sets generated with a hard subset

membership problem, PubEv is the public evaluation algorithm of HPS,
w~ is a witness for x, € £, and Ky, is the range of PubEv. Then, we

use a strengthened cross-authentication code (XAC) to “glue” xq,--- ,xp
together, obtaining a XAC tag T'. So the generated ciphertext correspond-
ing to m is ¢ = (x1,--- ,x¢,T). To decrypt a ciphertext ¢ = (x1,--- ,xp,

T), the decryption algorithm firstly computes that (/X = SecEv(hsk,,
T))yef, Where SecEv is the secret evaluation algorithm of HPS, and
then for each v € [¢], sets m., = 1 if and only if T is verified correctly by
K, (via the verification algorithm of XAC).

Now we turn to the security proof. In order to prove SIM-wBi-SOg-
CCA security, we need to construct a PPT simulator S, such that the
ideal experiment and the real experiment are indistinguishable. In partic-
ular, we need to generate some malformed ciphertexts (before seeing the
real messages), such that they are computationally indistinguishable from
the real challenge ciphertexts, and meanwhile can be efficiently opened
according to the value of 5.

If B = 0, we need to generate malformed ciphertexts ¢ = (z1,--- , zy,
T'), and then open them according to the real messages m = (mq,--- ,my),

13

by providing random coins which can be used to encrypt the real mes-
sages to recover the malformed ciphertexts. We generate the malformed
ciphertexts with encryptions of £ ones, i.e., for each v € [{], ., <~ L C X
and K., = PubEv(hpk,, z~,wy) C Kgp,. Hence, after generating these mal-
formed ciphertexts, to open a ciphertext, for each v € [f], if the real
message bit m, = 1, the random coin (i.e., w,) employed to generate (z-,
K.) can be returned directly; if m, = 0, return the random coin which
is generated by explaining x,, as a random element sampled from X', and
explaining K, as a random key sampled from g,

Now, we show that a real challenge ciphertext can be substituted
with the malformed ciphertext without changing the adversary’s view
significantly. For v =1 to ¥,

1) We modify the decryption procedure of the decryption oracle, such
that it does not make use of hsk.,. More specifically, for a decryption
query ¢ = (2, ,xp,T"), if L, ¢ L, the decryption oracle directly
sets m, = 0. The statistical properties of HPS and strengthened XAC
guarantee that this modification does not change the adversary’s view
significantly.

2) If m, = 0, the randomly sampled K is replaced with K, = SecEv(hsk,,
x). The perfect universality of HPS guarantees that this change is
imperceptible to the adversary.

3) If my = 0, K, is updated again via the resampling algorithm of
strengthened XAC. The statistical property of strengthened XAC
guarantees that this modification does not change the adversary’s view
significantly.

4) The decryption procedure of the decryption oracle is changed to work
with the original decryption rules. The statistical properties of HPS
and strengthened XAC guarantee that this modification is impercep-
tible to the adversary.

5) If my =0, z, < L instead of uniformly sampling from &". The under-
lying subset membership problem of HPS guarantees that this change
is also imperceptible to the adversary.

Note that these substitutions only consider the situation that a single
public key is used to encrypt a single message. Fortunately, we can extend
it to the situation that there are n public keys (for any n € N), and each
public key is employed to encrypt multiple messages.

If B = 1, we need to generate malformed ciphertexts, and then open
them according to the real messages, by providing valid secret keys which
can be used to decrypt the malformed ciphertexts to obtain the messages.

14

Note that a public key of this scheme is of the form pk = (hpky,---,
hpky), and the corresponding secret key is sk = (hsky,-- - , hsky). Hence,
informally, what we need is to generate a malformed ciphertext without
seeing the message, such that for any message m = (mq,---,my) € {0,
1}¥, we can generate some secret key sk’ = (hsk],--- ,hsk)) satisfying
that (i) sk’ is a valid secret key corresponding to pk (i.e., for all v € [¢],
hsk!, is a valid HPS secret key corresponding to hpk-); (ii) decrypting the
malformed ciphertext with sk’ will lead to m.

We try to generate such a malformed ciphertext ¢ = (1, , 24, T).
For each v € [{], if x, € £ (with a witness w,), all the HPS secret
keys corresponding to hpk. will lead to the same IN(V = PubEv(hpk, z,
wy) = K,. In other words, for any fixed ciphertext (---,z,---,T), no
matter what the secret key is, the decryption of this ciphertext will lead
to the same m,. So it’s impossible to open the malformed ciphertext
successfully when m, = 1 —m,,. Hence, our malformed ciphertexts focus
on the case ¢ = (x1,- -+ ,x¢,T) that 1, -+ ,z, € X'\ L. On the other hand,
if K is uniformly sampled, it seems unlikely to decrypt the ciphertext to
recover the original message when m, = 1 due to the property of XAC. So
our malformed ciphertexts further focus on the case ¢ = (z1, -, x4, T)
that for all v € [(], x, € X'\ £ and K, = SecEv(hsk,,).

We stress that in the real experiment of SIM-wBi-SO;-CCA security,
the adversary is just allowed to corrupt the receivers whose public keys
are used for encryption at most k times. So for simplicity, here we only
consider the case that pk = (hpky,--- , hpky) is used to encrypt ezactly
k messages (i.e., m; = (mj1, -+ ,mje) € {0,1}* (j € [k])). More specif-
ically, for each v € [{], hsk, is used k times (note that we use sk to
generate the malformed ciphertexts), generating k ciphertext parts (i.e.,
K, = SecEv(hsk,,x1), -+ , Ky~ = SecEv(hsk,xj)). In other words,
to generate the k£ malformed ciphertexts, for each v € [¢], we need to

(i) compute SecEv(hsk,,x1~),- - ,SecEv(hsky,xy) for some xq,,---,
xy € X'\ L before seeing the messages;

(ii) generate a HPS secret key hsk’, such that SecEv(hsk.,z;) = SecEv(hsk,,
Tj) if mj, = 1, and SecEv(hsk,z;,) # SecEv(hsk,,x;) if m;, =
0.

However, there is no algorithm for HPS which can generate two HPS se-
cret keys (i.e. hsk, and hsk’) meeting the above requirements. Therefore,
we introduce the following new property, which we call “key equivocabil-
ity”, of HPS. Informally, we require that there is an efficient algorithm
SampHsk and a trapdoor td, such that for any zq,--- ,z, € X \ L, the

15

following two distribution ensembles, Dist§ and Dist}, are statistically in-
distinguishable:

Distlg :={(hsk, Ky, -, K, hpk:)’hsk‘ «— SK; hpk = p(hsk);
Vi e k] :
Kj — ,Csp if m; = 0;
K; = SecEv(hsk,zj) if mj =1}, (1)
Dist? : = {(hsk/, K1, , K, hpk:)|hsk «— SK; hpk = u(hsk);
(Kj = SecEv(hsk:, xj))je[k];
hsk' < SampHsk(hsk, td, {z;} ;i) }(2)

We stress that this property requires that no information about hsk be-
yond hpk is leaked. Similar to the proof of case § = 0, we introduce a
modification to the decryption oracle before employing the key equivo-
cability of HPS in order to make sure that nothing about hsk beyond
hpk is leaked. For any decryption query (f,---,z),T") and any =, if
x'v € X'\ L, the decryption oracle sets m, = 0 directly. However, we note
that in the SIM-wBi-SOg-CCA security model, each public key is used to
encrypt k£ messages. As a result, hsk may be employed k times, i.e., to
compute SecEv(hsk,z1),- - ,SecEv(hsk,zy) for some zy,- -+, x. So the
perfect universality, of HPS [8] is not enough to guarantee that the modi-
fication to the decryption oracle is imperceptible to the adversary. To solve
this problem, we introduce another property, perfect universalityyy1, for
HPS. Roughly speaking, HPS is called perfectly universaly 1, if for any
x1, - ,xpy1 € X\ L and any K’ € Ky, even given (hpk,SecEv(hsk,
x1),- -+ ,SecEv(hsk, xy)), the probability that SecEv(hsk,z1) = K’ is
ﬁ‘.
| pWith the help of this new variant of HPS, we can use algorithm
SampHsk to open the aforementioned equivocable ciphertexts ¢ = (7,
-, ¢, T) where for each v € [{], x, € X\ £ and K, = SecEv(hsk., z-),
successfully. Now, we show that a real challenge ciphertext can be sub-
stituted with the malformed ciphertext without changing the adversary’s
view significantly. A high-level description of the substitution is presented
as follows.

1) We use the secret keys to generate the challenge ciphertexts, instead
of the public keys. The statistical property of HPS guarantees that
this change is imperceptible to the adversary.

2) All the = (j € [k],y € [¢]) are sampled from X \ £, instead of being
sampled from £ (when m;, = 1). The underlying subset membership

16

problem of HPS guarantees that this change is also imperceptible to
the adversary.
3) Note that sk = (hsky,--- , hsky) is employed to encrypt m; = (m; 1,
- ,m;z) € {0,1} (j € [k]), and specifically, for each v € [¢], hsk., is
used to handle my,---,my, as shown in Fig. 3. For each v € [/],
employ hsk, to compute Kj, when m;, = 0 (for all j € [£]). The
key equivocability of HPS guarantees that this modification does not
change the adversary’s view significantly.

sk v = (hsky, o hskp 1)

my = (myg,i e myp)

ms, = (My q,i e , my,)

S N ¢)
Fig. 3 Relations among sk and my,--- ,my

4.2 Universal, Hash Proof System with Key Equivocability

Now we introduce the main building block, namely, universal,, HPS with
key equivocability, for any polynomially bounded k, and show concrete
constructions for it.

The definition. For any polynomially bounded function k, we provide
a definition of universal, HPS with key equivocability, which enhances
the standard HPS [8] with key equivocability and universal, property. It
works on a strengthened version of subset membership problem SSMP,
which defines some additional languages and provides a trapdoor to rec-
ognize elements from these languages.

Definition 7 (Strengthened Subset Membership Problem). A strength-
ened subset membership problem (SSMP) SSMP consists of five PPT al-
gorithms (SSmpG, SSmpX, SSmpL, SSmpLS, SSmpChk):

— SSmpG(1*, k): On input 1* and polynomially bounded k > 0, algorith-
m SSmpG outputs a system parameter prm and a trapdoor td. The
parameter prm defines 2k + 2 sets (X, L, Ly, , Lok), where X is an

17

efficiently recognizable finite set, L C X, and Ly, --- , Lo, are distinct
subsets of X \ L. For simplicity of notation, we write

prm = (X, L, Ly, ..., Log)

when employing HPS for SSMP to construct PKE schemes.
— SSmpX(prm): On input prm, SSmpX outputs a uniformly chosen x<—X.
— SSmpL(prm): On input prm, SSmpL samples x<—L with randomness
w € RssmpL, and outputs (x,w). We say that w is a witness for x € L.
— SSmpLS(prm, i € [2k]): On input prm and i € [2k], SSmpLS outputs a
uniformly chosen x;<L;.
— SSmpChk(prm, td, z): On input prm, td and x, SSmpChk outputs an
integer [0, 2k] or an abort symbol L.

Also, it satisfies the following properties:

— Hardness. For alli € [2k], for any PPT distinguisher D, the follow-
ing advantages are all negligible,

AdngSAMRg?'Dl’i()\) = |Pr[D(prm,zx) = 1] — Pr[D(prm, z;) = 1]|,

Advsémpp i (A) := [Pr[D(prm, w.) = 1] — Pr[D(prm, z;) = 1]|,

where the probabilities are over prm < SSmpG(1*, k), zx < SSmpX(prm),
(2, w) + SSmpL(prm), and x; + SSmpLS(prm,i). &
— Sparseness. The probability

Sparsgyp(\) := Pr[(prm, td) < SSmpG (1}, k); zx + SampX(prm) : zx € L]

1s negligible.

— Explainability. The finite set X is an efficiently samplable and ex-
plainable domain (as defined in Definition 2).

— Sampling Correctness. Let (prm,td) < SSmpG(1*, k). Then the
distributions of the outputs of SSmpX(prm), SSmpL(prm), and SSmpLS(prm,
i) (i € [2k]) are statistically indistinguishable from uniform distribu-
tions over X, L and L; (i € [2k]) respectively.

— Checking Correctness. For any (prm,td) generated by SSmpG, if
x € L, then SSmpChk(prm,td,z) = 0; if there exists i € [2k] s.t.
x € L;, then SSmpChk(prm,td, z) = i; otherwise, SSmpChk(prm,td,
x)=1.

8 Note that a hard SSMP is also a hard SMP, since a simple hybrid argument shows

that for any PPT distinguisher D, |[Pr[D(prm,zx) = 1] — Pr[D(prm,zz) = 1]| <
Advighp,p,1 (A) + Advsgip 51 (A)-

18

Remark 2 The additional trapdoor, gemerated by SSmpG, will also be
used in the key equivocability property (see Definition 10) of HPS.

Definition 8 (Hash Proof System [8]). A hash proof system HPS for
a SSMP SSMP consists of three PPT algorithms (PrmG, PubEv, SecEv):

— PrmG(prm): Given prm, which is generated by SSmpG(1*, k) and de-
fines 2k + 2 sets (X, L, L1,...,Lox), algorithm PrmG outputs a pa-
rameterized instance prmins := (Kgp, SIC, PIC, Ay, 1), where Kgp, SK,
PK are all finite sets, Ay : X — Ksp is a family of hash functions
indexed with secret hash key hsk € SK, and p : SK — PK is an
efficiently computable function.

— SecEv(hsk,x): On input hsk € SK and x € X, the deterministic secret
evaluation algorithm SecEv outputs a hash value K = Apgp(z) € Ksgp.

— PubEv(hpk, z,w): On input hpk = p(hsk) € PK, x € L and a witness
w for x € L, the deterministic public evaluation algorithm PubEv
outputs a hash value K = Apgp() € Kgp.

Also, it should be

— Projective. For any hsk € SK and any x € L with witness w, the
hash value Apgi(z) is uniquely determined by hpk = p(hsk) and z,
concretely, we require that SecEv(hsk,x) = PubEv(hpk, z,w).

— Perfectly Universal. For all prm generated by SSmpG(1%), all pos-
sible prmins < PrmG(prm), all hpk € PK, all x € X \ L, and all
K € Ksp, the probability Pr[Apep(x) = K | p(hsk) = hpk] = lClsp’
where the probability is over hsk + SK.

Definition 8 is the same as the original definition of HPS in [8]. In our
PKE construction, we further require that Ky, is efficiently samplable and
explainable. Besides, we require HPS to have the following two properties.

Definition 9 (Perfectly Universal,). For any polynomial k, we say
that HPS is perfectly universal., if for all prm generated by SSmpG(1*,
k), all possible prmins <— PrmG(prm), all hpk € P, all pairwise different
x1,- T € X\ L, and all Ky, , K, € Kgp,

p(hsk) = hpk 1
Apsi(x1) = K, -+, Apgr(@i—1) = K1 [Kspl?

Pl“ [Ahsk(x,i) = I(,.i

where the probability is over hsk + SK.

19

Definition 10 (Key Equivocability). We say that HPS is key equiv-
ocable, if there is a PPT algorithm SampHsk, which takes (hsk,td,x1,

-, Xog) as input and outputs another secret key hsk', such that for all
possible (prm,td) < SSmpG(1*, k), all possible prmins = (Ks,, SK, PK,
Ay,) < PrmG(prm), all permutations P : [2k] — [2k], and all (w1, ,
wor) € X2F satisfying that x; € Lp;), A(Disto, Dist1) is negligible, where
Distg and Disty are defined in Fig. 4.

hsk < SK; hpk = p(hsk) hsk < SK; hpk = p(hsk)
Fori=1to k: For i =1 to 2k :
K; = SecEv(hsk, ;) K; = SecEv(hsk, ;)
Fori=k+1 to 2k : hsk' < SampHsk(hsk,td, 1, ,xa2;)
K; + Ksp Return (hsk’, hpk, K1, -+, Kox)
Return (hsk, hpk, K1, -+ , Kai)

Fig.4 Distributions for defining key equivocability of HPS.

Instantiation from DDH. Now we present our instantiation of universal,
HPS with key equivocability from the DDH assumption. The definition
of the DDH assumption will be recalled in Appendix A.

Let A be the security parameter and let k, k be positive integers that
are polynomial in A. Let G be a multiplicative cyclic group of prime
order ¢ and let g be a generator of G. Let I' : G?**1 — ngH be an
injective function, which can be extended from the injective function in
the constructions of HPS in [8] directly.

We construct a strengthened subset membership problem SSMP; =
(SSmpG, SSmpX, SSmpL, SSmpLS, SSmpChk) as follows:

— SSmpG. On input a security parameter A and an integer k, the param-
eter generation algorithm first samples a;<Z, and computes g; = g%
for i € [2k + 1]. Then it sets:

X = {ul,.. oy U2k41 | Vi € [2k+ 1],uz~ € G}

L={gV, . 9op+1 | w € Zg}
and for ¢ € [2k], it sets:

_ w1 W2k+1 / /
‘C’i_{gl v 9ok |waw Ganw#wa

20

for

w; = w',Vj € 2k + 1)\ {i}, w; = w}

The public parameter prm = (G, ¢, ¢, 91, - .., g2k+1) and the trapdoor
td = (al, cee ,a2k+1)

SSmpX. On input a public parameter prm = (G, q,9,91,- -, 92k+1);
the algorithm samples u;«G for i € [2k+ 1] and outputs z = (uy,. ..,
U2kt1)-

SSmpL. On input a public parameter prm = (G, q, 9,91, -, g2k+1)s
the algorithm samples w<Z, and outputs z = (g¥’,...,9%,,,) and
the witness w.

SSmpLS. On input a public parameter prm = (G, q,9,91,-- -, 92k+1)
and an integer i € [2k|, the algorithm samples w<Z, and w'<Zg s.t.
w # w'. Then it computes u; = g for j € [2k + 1]\{i} and u; = g
and outputs (ug, ..., usk+1)-

SSmpChk. On input a public parameter prm = (G, q, 9,91, - -, 92k+1);
a trapdoor td = (al,...,a2k+1),l and x = (uy,...,usk+1), the algo-

rithm first computes v; = u?j for j € [2k 4+ 1]. Tt outputs 0 if
V] = V2 = ... = vUggt1. It outputs j if there exists some j € [2k]
st. v, = vy for all 3,7 € [2k]\{j} and v; # vgr41. Otherwise, it

outputs L.

Also, we construct the HPS HPS; = (PrmG, PubEv, SecEv, SampHsk)
SSMP; as follows:

PrmG. On input a public parameter prm = (G,q,9,91,---,92k+1),

the algorithm defines Ky, = G, SK = Z((fkﬂ)mx(%ﬂ), and PK =
GQRE+1)xx

Then for any hsk = (Shi ;) ne[2k+1),iclx),je2k+1] € SK and any z = (u1,
.. Ugky1) € X, it defines the map A from SK x X to Ky, as

i—1
Sh,i,j &
Apsi(z) = 11 uy
he[2k+1]i€[k],jE[2k+1]

where (a1, ..., agrt1) = I'(x). Also, for any hsk = (Sh.i ;) he[2h+1),ic[],je[2k+1] €
SK, it defines the map p from SK to PK as

p(hsk) = (Prineperiicr = ([1 957" neprtiicr
JE[2k+1]

SecEv. On input a secret key hsk = (spj)nhefor+1),iclx],je2k+1] € SK
and © = (uy,...,u9k4+1) € X, the secret evaluation algorithm outputs
K = Apgp (l‘)

21

— PubEv. On input a public key hpk = (pn.i)hefor+1),iclx) € PK, = (u1,

..., Ugk+1) € L and a witness w, the public evaluation algorithm com-
i—1

putes (ay, ..., az41) = I'(x) and outputs K = []),ciop41]ie4 p;f"iah
— SampHsk. On input a secret key hsk = (spij)he[2k+1],ic[x],je[2k+1]> @
trapdoor td = (a1, ..., ask+1), and 2k inputs (zp = (ug,1, - . . ,u(72k+1))ée[2k],

the algorithm works as follows:

1. For ¢ € [2Fk], it computes p[¢] = SSmpChk(prm, td, z,).

2. It outputs L if there exists ¢ € [2k] s.t. p[¢] € [2k] or there exist
distinct ¢, lo € [2K] s.t. p[l1] = p[la].

3. For h € 2k +1],i € [s],j € {p[L],...,p[k]}, it sets s} ; . = sp; ;-

4. For h € 2k + 1],i € [k],j € {plk + 1],...,p[2k]}, it samples
Shii$Lq-

5. For h € [2k + 1],7 € [k, it sets sﬁm%ﬂ = (Zje[2k+1] ajSh,ij —
Eje[Qk] ajslh,i,j) : a2_k1+1'

6. It outputs hsk’ = (Slh,i,j)he[2k+1],ie[n},je[2k+1}-

Theorem 1. Assuming the DDH assumption holds, SSMP1 is a strength-
ened subset membership problem with hardness, sparseness, explainability,
and correctness.

Theorem 2. HPS; is a perfect universal, HPS with key equivocability.

Proofs of Theorem 1 and Theorem 2 are provided in Appendix D.

Instantiation from DCR. We present our instantiation of universal,
HPS with key equivocability from the DCR assumption as follows. The
definition of the DCR assumption will be recalled in Appendix A.

Let A be the security parameter and let k, k be positive integers that
are polynomial in A\. We construct a strengthened subset membership
problem SSMPy = (SSmpG, SSmpX, SSmpL, SSmpLS, SSmpChk) as fol-

lows:

— SSmpG. On input a security parameter \ and an integer k, the parame-
ter generation algorithm first samples primes p’, ¢',p,¢ s.t. p =2p' +1
and ¢ = 2¢’ + 1. Then it computes N = pg and N’ = p'q¢’. Let
Zy2 = Gn - Gy - Gg - T, where Gy, Gy, G2, T are defined as in
Appendix A. Define X = Gy - Gys - T and L. = Gpr - T. Define
X : Zy2 — Zy as x(a) = |a/N|. Let I : X%¢ — ijk\,zﬂ be an
injective function, which can be extended from the injective fjunction
in the constructions of HPS in [8] directly. Also, let g € Z}, be a fixed
generator of L.

22

for

Then it sets:
X ={u,...,ug | Vj € [2k],u; € X},
L={g",....,9"% |Vj € [2k],r; € Zan},
and for i € [2k], it sets:
Li=A{ui,... uy |u; € X\L,Vj € 2k]\{i},7; € Zonr,uj =g }.

The public parameter prm = (N, g) and the trapdoor td = N'.
SSmpX. On input a public parameter prm = (N, g), the algorithm

samples u;j<X for j € [2k] and outputs x = (uy,. .., us).

SSmpL. On input a public parameter prm = (N, g), the algorithm
samples 7;4Z| /2| for j € [2k] and outputs x = (¢™,...,¢"*) and
the witness (r1,...,79).

SSmpLS. On input a public parameter prm = (N, g) and an integer
i € [2k], the algorithm samples ;<7 y/o for j € [2k]\{i} and u;«-X.
Then it computes u; = ¢’ for j € [2k]\{i} and outputs z = (uq, ...,
UQk).

SSmpChk. On input a public parameter prm = (N, g), a trapdoor
td = N, and z = (u1, ..., ug), the algorithm first computes v; = u?N/
for j € [2k]. It outputs 0 if v1 = vo = ... vg = 1. It outputs j if there
exists j € [2k] s.t. v, = 1 for all y € [2k]\{j} and v; # 1. Otherwise,
it outputs L.

Also, we construct the HPS HPS; = (PrmG, PubEv, SecEv, SampHsk)
SSMP5 as follows:

PrmG. On input a public parameter prm = (NN, g), the algorithm de-
fines Kgp = Zy, SK = Z(L%?/Xz(f)x(%), and PK = L(2k)*(x)x(2k) Then
for any hsk = (Shij)nef2r)icln),je2r] € SK and any z = (uq,...,
ugy) € X, it defines the map A from SKC x X to Ky as

N
Apsk(z) = x(1T u M)

he|[2k],i€[k],jE[2K]

where (1, ..., aor) = I'(x). Also, for any hsk = (sh) hefor) iclx],jel2k] €
SIKC, it defines the map p from SK to PK as

Shﬁi,j)

p(sk) = (ph,i,j)he[%],ie[n],je[2k] = (g he[2k] i€[k],j€[2k] -

23

— SecEv. On input a secret key hsk = (Snij)ne(2k)ic[x],je[2k) € SK and
x = (u1,...,ug) € &, the secret evaluation algorithm outputs K =
Ahsk’(m)'

— PubEv. On input a public key hpk = (pnij)nepor)icix]jei2k] € PK,
x = (u1,...,ug) € L and a witness (r1,...,r9), the public eval-
uation algorithm computes (aq,...,a9;) = ['(x) and outputs K =

i
X neir icin jeion Priy -

— SampHsk. On input a secret key hsk = (Sph.i.j)hef2r] ic(s] je[2k]> & trap-
door td = N', and 2k inputs (z¢ = (ug1, - - -, we,2k))refor]» the algorithm
works as follows:

1. For ¢ € [2Fk], it computes p[¢] = SSmpChk(prm, td, z/).

2. It outputs L if there exists ¢ € [2k] s.t. p[f] &€ [2k] or there exist
distinct £y, o € [2Kk] s.t. p[1] = p[la).

3. For h € [2k],i € [s],j € {p[l].. ... p[k]}, it sets s}, ;. = sni ;-

4. For h € [2k],i € [k],j € {p[k+1],...,p[2k]}, it samples t«Zy and
uses the Chinese remainder theorem to compute s”hZ ; € Zonn s.t.
Sﬁmﬁj =t mod N and S%,i,j = sp,,; mod 2N".

5. It outputs hsk’ = (s}, ; ;) ne(2k] iclx],je[2k]-

Theorem 3. Assuming the DCR assumption holds, SSMPy is a strength-
ened subset membership problem with hardness, sparseness, explainability,
and correctness.

Theorem 4. HPS, is a perfect universal, HPS with key equivocability.

Proofs of Theorem 3 and Theorem 4 are similar to proofs of Theorem
1 and Theorem 2. So, we omit the details here. Note that SSMPy only
achieves a statistical sampling correctness while SSMP; achieves a perfect
sampling correctness.

4.3 SIM-wBi-SO,-CCA Secure PKE Construction

For any polynomially bounded function & > 0, we propose a PKE scheme
achieving SIM-wBi-SOx-CCA security. Our construction is built from a
perfectly universalyy; HPS with key-equivocability, and a strong and
semi-unique XAC. The details are as follows.

Let SSMP = (SSmpG, SSmpX, SSmpL, SSmpLS, SSmpChk) be a hard
SSMP. Let HPS = (PrmG, PubEv, SecEv, SampHsk) be a perfectly universaly
and key equivocable HPS for SSMP, such that all the Ky, generated by
PrmG can be written as K, x Kp. For £ € N and any prmins = (Kp,
SK,PK, Ay, i) generated by PrmG, let XACpimins = (XGen, XAuth, XVer,
ReSamp) be a strong and semi-unique (¢4 1)-XAC with key space XK =

24

Ksp = Ko x Ky, and tag space X7, and Hprmins : (X XP/C)Z — Ky be a fam-
ily of collision-resistant hash functions. Our PKE scheme PKE = (Setup,
Gen, Enc, Dec) (for ¢-bit messages) is defined in Fig. 5.

Setup(1?) :

(prm := (X, L, L1, , Lox), td) < SSmpG(1*, k)

prmins = (KCop = ICa x Ky, SKC, PKC, A(y, 1) <= PrmG(prm); H <= Hpmmins; Ko < Ka
Return pp := (prm, prmins, H, K,)

Gen(pp) :

Parse prmins = (KC,p, SK, P, T, A(y, 1)

(hskq)vere) (SK)% (hpky = p(hsks))vere; Pk = (hky)yeia; sk = (hsky)yele
Return (pk, sk)

Enc(pk = (hpky)yefg,m) :

Parse m = (m1,--- ,m¢) € {0,1}*
ri= (r’(YX)vr’(y]C),w’y)we[Z] — (RSSme X 7—\)rSampIe X 7—\)ISSmpL)e
Fory=1to¢:

Ifm,=0: 2z, + SSme(prm;rE,X)); K, + Sample(lCSp;TE,K))
If my = 1: &y <= SSmpL(prm; w,); K, = PubEv(hpk,, z,, w,)
Ky = H(pk,x1,- - ,20); Kop1 = (Ka, Kp); T = XAuth(K1, -+, K¢g1)
Return ¢ = (x1,- -+ ,xe, T)
Dec(sk = (hsky)yep,c = (21, ,2¢,T)) :
Ky =H(pk,z1, -+ ,x1)

If XVer((K., K),T) =0: Ty = -+ =m, = 0; return m = (M1, ,my)
Fory=1to¢:

K., = SecEv(hsky,x); i, = XVer(K.,,T)
Return m = (1, -+ - ,Te)

Fig.5 Construction of PKE.

Correctness. For v € [(], if m, = 1, then K., = K, by completeness of
HPS, so m, = Xver(K,,v,T) = 1 except with probability failxac(\) by
correctness of XAC. On the other hand, if m, = 0, subset sparseness of
SSMP and perfect universality of HPS guarantee that with overwhelming
probability, K. is uniformly random, even given pk,c and m. In this
case, m, = XVer(K.,T) = 0 except with probability Adv&l\ﬁlé()\). So,

correctness of PKE follows by a union bound over v € [].

Security. Formally, we have the following theorem, the formal proof of
which will be given in Appendix E.

25

Theorem 5. For any polynomial function k > 0, PKE is SIM-wBi-SO-
CCA secure.

5 PKE with SIM-Bi-SO-CCA Security

In [15], Heuer et al. showed that a generic construction of DHIES [32]
meets SIM-SSO-CCA security in the random oracle model. In this section,
we show that a variant of the generic construction actually achieves SIM-
Bi-SO-CCA security in the random oracle model.

Building blocks. We simply recall the definitions of key encapsulation
mechanism (KEM) and message authentication code (MAC) as follows.

Key Encapsulation Mechanism. A KEM scheme, associated with a ses-
sion key space Kxgm and a ciphertext space Ckgm, is a tuple of PPT
algorithms KEM = (KemGen, Encap, Decap). The key generation algo-
rithm KemGen takes 1% as input, and outputs a public/secret key pair
(pk, sk). The encapsulation algorithm Encap takes pk as input, outputs
(K,c) € Kkem X Ckem- The decapsulation algorithm Decap, taking sk
and ¢ as input, outputs a value in Kxgm U {L}. Standard correctness is
required. Similar to [15], without loss of generality we assume that Encap
uniformly samples K < Kxem. We also assume that |[Kxem| > 2* and
ICkem| > 22,

We say that KEM has unique encapsulations, if for any (pk, sk) gen-
erated by KemGen, and for any ciphertexts ¢, ¢’ satisfying Decap(sk, c) =
Decap(sk,d) # L, c=¢.

The security notion, one-way security in the presence of a plaintext-
checking oracle (OW-PCA security) [29], is recalled in Appendix F.

Message Authentication Code. A MAC scheme, associated with a key
space Kmac, is a tuple of PPT algorithms MAC = (MacGen, Auth, Verf).
The key generation algorithm MacGen takes 1* as input and outputs a key
K € Kpac- The authentication algorithm Auth takes K and a message m
as input, outputs a tag t. On input (K, m,t), the verification algorithm
Verf outputs a bit ¥’ € {0,1}. Standard correctness is also required here.

MAC is called deterministic, if Auth is deterministic. For a determin-
istic MAC, MAC is called injective, if Auth is an injective function (i.e.,
for any K € Kmac and any m # m/, Auth(K, m) # Auth(K,m’)).

The security notion of strong unforgeability under one-time chosen
message attacks (SUF-OT-CMA security) is recalled in Appendix F.

PKE Construction. Let KEM = (KemGen, Encap, Decap) be an OW-

PCA secure KEM scheme, having unique encapsulations, associated with

26

Setup(1*) :
Return pp := 1*
Gen(pp = 17) :
(pk*e™ sk*e™) <« KemGen(1*); pk := pkFe™; sk := (pk™°™, sk*™)

Return (pk, sk)
kkem

Enc(pk =p m) :
74 Rencap; (K, ™) = Encap(pk*“™;r); (K*V™, K™) = Hro(K)
Y™ = K™ @ my; t = Auth(K™C (pkFem cbem csvm))
Return ¢ = (c"°™, ¢*¥™, t)

Dec(sk = (pk*e™, sk*™), ¢ = (cF*™, c¥™ 1))
K = Decap(sk*e™, c*™); (K*'™, K™") = Hro(K)
If Verf(K™, (pkFe™, cke™ ¢5¥™) 1) = 0: return L

—=sym

Returmnm=c"Y" @ K

Fig. 6 Construction of PKEk.m.

a session key space Kkem and a ciphertext space Ckgm, where Encap uni-
formly samples K, [Kkem| > 2* and |Ckem| > 2*. Let MAC = (MacGen,
Auth, Verf) be a deterministic, injective MAC scheme, associated with a
key space Kmac, achieving sUF-OT-CMA security. Let Hro : Kxem — {0,
1}5 X Kmac be a hash function. Our PKE scheme PKEk_ = (Setup, Gen,
Enc, Dec), associated with a message space {0, 1}, is defined in Fig. 6.

The correctness analysis of this scheme is trivial. Now we turn to its
security analysis. Formally, we have the following theorem. Note that, in
our construction, a valid ciphertext contains a tag ¢t generated on (pk*e™,
ckem ¢sym) where in [15], the tag ¢ is only generated on c*¥™. We stress
that this crucial modification makes our construction achieve SIM-Bi-SO-
CCA security. The intuition for the security proof and details are given
in Appendix G.

Theorem 6. If KEM has unique encapsulations and is OW-PCA secure,
MAC is deterministic, injective and sUF-OT-CMA secure, and Hgro is
modeled as a random oracle, then PKEk.m is SIM-Bi-SO-CCA secure in
the random oracle model.

Acknowledgment. We thank Fangguo Zhang for the helpful discussions.
We appreciate the anonymous reviewers for their valuable comments.
References

1. Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryption in
a multi-user setting: Security proofs and improvements. In EUROCRYPT, pages

27

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

259-274. Springer, 2000.

Mihir Bellare, Rafael Dowsley, Brent Waters, and Scott Yilek. Standard security
does not imply security against selective-opening. In FUROCRYPT, pages 645—
662. Springer, 2012.

Mihir Bellare, Dennis Hofheinz, and Scott Yilek. Possibility and impossibility
results for encryption and commitment secure under selective opening. In EURO-
CRYPT, pages 1-35. Springer, 2009.

Mihir Bellare and Scott Yilek. Encryption schemes secure under selective opening
attack. Cryptology ePrint Archive, Report 2009/101, 2009. https://eprint.
iacr.org/2009/101.

Xavier Boyen and Qinyi Li. All-but-many lossy trapdoor functions from lattices
and applications. In CRYPTO, pages 298-331. Springer, 2017.

Ran Canetti, Shai Halevi, and Jonathan Katz. Adaptively-secure, non-interactive
public-key encryption. In TCC, pages 150-168. Springer, 2005.

Ronald Cramer and Victor Shoup. A practical public key cryptosystem prov-
ably secure against adaptive chosen ciphertext attack. In CRYPTO, pages 13-25.
Springer, 1998.

Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for
adaptive chosen ciphertext secure public-key encryption. In EUROCRYPT, pages
45-64. Springer, 2002.

Ronald Cramer and Victor Shoup. Design and analysis of practical public-key en-
cryption schemes secure against adaptive chosen ciphertext attack. SIAM Journal
on Computing, 33(1):167-226, 2003.

Serge Fehr, Dennis Hotheinz, Eike Kiltz, and Hoeteck Wee. Encryption schemes
secure against chosen-ciphertext selective opening attacks. In EUROCRYPT, pages
381-402. Springer, 2010.

Oded Goldreich. Foundations of cryptography: volume 2, basic applications. Cam-
bridge university press, 2009.

Keisuke Hara, Fuyuki Kitagawa, Takahiro Matsuda, Goichiro Hanaoka, and
Keisuke Tanaka. Simulation-based receiver selective opening cca secure pke from
standard computational assumptions. In Security and Cryptography for Networks,
pages 140-159. Springer, 2018.

Carmit Hazay, Arpita Patra, and Bogdan Warinschi. Selective opening security
for receivers. In ASIACRYPT, pages 443-469. Springer, 2015.

Brett Hemenway, Benoit Libert, Rafail Ostrovsky, and Damien Vergnaud. Lossy
encryption: Constructions from general assumptions and efficient selective opening
chosen ciphertext security. In ASTACRYPT, pages 70-88. Springer, 2011.

Felix Heuer, Tibor Jager, Eike Kiltz, and Sven Schige. On the selective opening
security of practical public-key encryption schemes. In PKC, pages 27-51. Springer,
2015.

Felix Heuer and Bertram Poettering. Selective opening security from simulatable
data encapsulation. In ASTACRYPT, pages 248-277. Springer, 2016.

Dennis Hofheinz. All-but-many lossy trapdoor functions. In EUROCRYPT, pages
209-227. Springer, 2012.

Dennis Hofheinz, Vanishree Rao, and Daniel Wichs. Standard security does not im-
ply indistinguishability under selective opening. In TCC, pages 121-145. Springer,
2016.

Dennis Hofheinz and Andy Rupp. Standard versus selective opening security:
Separation and equivalence results. In T'C'C, pages 591-615. Springer, 2014.

28

https://eprint.iacr.org/2009/101
https://eprint.iacr.org/2009/101

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Zhengan Huang, Junzuo Lai, Wenbin Chen, Man Ho Au, Zhen Peng, and Jin Li.
Simulation-based selective opening security for receivers under chosen-ciphertext
attacks. Designs, Codes and Cryptography, 87(6):1345-1371, 2019.

Zhengan Huang, Shengli Liu, and Baodong Qin. Sender-equivocable encryption
schemes secure against chosen-ciphertext attacks revisited. In PKC, pages 369-385.
Springer, 2013.

Dingding Jia and Benoit Libert. So-cca secure pke from pairing based all-but-many
lossy trapdoor functions. Designs, Codes and Cryptography, 89(5):895-923, 2021.
Dingding Jia, Xianhui Lu, and Bao Li. Receiver selective opening security from
indistinguishability obfuscation. In INDOCRYPT, pages 393—410. Springer, 2016.
Dingding Jia, Xianhui Lu, and Bao Li. Constructions secure against receiver selec-
tive opening and chosen ciphertext attacks. In CT-RSA, pages 417-431. Springer,
2017.

Junzuo Lai, Robert H. Deng, Shengli Liu, Jian Weng, and Yunlei Zhao. Identity-
based encryption secure against selective opening chosen-ciphertext attack. In
EUROCRYPT, pages 77-92. Springer, 2014.

Benoit Libert, Amin Sakzad, Damien Stehlé, and Ron Steinfeld. All-but-many
lossy trapdoor functions and selective opening chosen-ciphertext security from lwe.
In CRYPTO, pages 332-364. Springer, 2017.

Shengli Liu and Kenneth G. Paterson. Simulation-based selective opening cca
security for pke from key encapsulation mechanisms. In PKC, pages 3-26. Springer,
2015.

Lin Lyu, Shengli Liu, Shuai Han, and Dawu Gu. Tightly sim-so-cca secure public
key encryption from standard assumptions. In PKC, pages 62-92. Springer, 2018.
Tatsuaki Okamoto and David Pointcheval. React: Rapid enhanced-security asym-
metric cryptosystem transform. In CT-RSA, pages 159-174. Springer, 2001.
Adam O’Neill, Chris Peikert, and Brent Waters. Bi-deniable public-key encryption.
In CRYPTO, pages 525—542. Springer, 2011.

Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In EUROCRYPT, pages 223—-238. Springer, 1999.

Ron Steinfeld, Joonsang Baek, and Yuliang Zheng. On the necessity of strong
assumptions for the security of a class of asymmetric encryption schemes. In
ACISP, pages 241-256. Springer, 2002.

Rupeng Yang, Junzuo Lai, Zhengan Huang, Man Ho Au, Qiuliang Xu, and Willy
Susilo. Possibility and impossibility results for receiver selective opening secure pke
in the multi-challenge setting. In ASIACRYPT, pages 191-220. Springer, 2020.

A Cryptographic Assumptions

The DDH Assumption. Let G be a cyclic group of prime order ¢ with
a generator g. The DDH assumption requires that it is hard to distinguish
(g“,gb,gc) and (g“,gb,g“b), where a, b, c<Z,.

The DCR Assumption. Now, we recall the Decision Composite Resid-
uosity (DCR) assumption [31] and some useful facts about it shown in

18].

Let p,q,p’,q be primes such that p = 2p' +1 and ¢ = 2¢' + 1. Let

N = pq and N’ = p'q’. Then the group Z3,, can be decomposed as the

29

direct product Gy - Gyr - Go - T, where Gps and Gy are cyclic groups
of order N’ and order 2 respectively; Gy is a cyclic group of order N
generated by ¢ = (1 + N) mod N?; and T is the order-2 subgroup of
Z2 generated by (—1 mod N?). Note that £* = (1+aN) mod N? for
ae{0,1,--- N}

The DCR assumption requires that it is hard to distinguish a random
element in Z7, and a random element in Gy - Gg - T.

Next, define X = Gy - Gyr - T. The set X is an efficiently samplable
and explainable domain, where the sample algorithm and the explain
algorithm work as follows:

— Sample: The sample algorithm proceeds as follows:
1. For i € [1,160]:

(a) z<Zp-
(b) If the Jacobi symbol () = 1: output .
2. Output L.
— Explain: on input an element x € X, the explain algorithm proceeds
as follows:

1. Set r to be an empty string.
2. For i € [1,160]:
(a) Sample b«{0,1}.
(b) If b= 1, append z to r and outputs r.
(¢) Otherwise, sample an element x'<Zy= s.t. the Jacobi symbol
(””N/) = —1 and append 2’ to r.
3. Output 1.

Note that as |Z|*—i|2| = 1/2, the expected repetition in the sample algorithm
is about 2 and the probability that the sample algorithm outputs L is
21%, which is negligible. Also, it is easy to see the probability that the
explain algorithm outputs L is also 21%, which is negligible.

Also, define x : Zy2 — Zy as x(a) = |a/N|. For any fixed z € X
X(2£°) is uniform in Zy if c+<Zy.

Finally, define . = Gy - T. It is easy to create a generator g for
L by first sampling a random element u € Z3, and then computing
g = —p*N. Besides, the DCR assumption implies that a random element
in X is computationally indistinguishable from a random element in L.

B The Definition of Decryption Verifiability

We recall the definition of decryption verifiability for PKE, which is pro-
posed in [2].

30

Let PKE = (Setup, Gen, Enc,Dec) be a PKE scheme. A decryption
verifier for PKE is a deterministic polynomial-time algorithm V), which
takes (1%, pp, pk, sk,c,m) as input and returns a single bit b € {0,1}.
We require that for all A € N, all pp generated by Setup(1?*), all (pk, sk)
generated by Gen(pp), all r € R, and all valid message m € {0,1}*,

V(l)‘, pp, pk, sk, Enc(pk, m;r),m) = 1.

V is called canonical if V(1*, pp, pk, sk, Enc(pk, m;r), m) always returns
(Dec(sk, Enc(pk,m;r)) = m).

Definition 11. (Decryption verifiability)[2]. We say that a PKE scheme
PKE = (Setup, Gen, Enc, Dec) is decryption-verifiable with decryption ver-
ifier V, if for any PPT adversary A,

AQvERE STA(A) 1= Pr[ExppRg 54 (A) = 1]

is negligible, where EXPEQ‘EX}?&(A) is defined in Fig. 7.

Exppe vou (V)

pp < setup(l/\)7 (pk, C, Mo, M1, Sk07 Skl) — A(pp)
bo < V(1*, pp, pk, sko, c,mo); br < V(1*, pp, pk, sk1, ¢, m1)
Return ((bo = 1) A (b1 = 1) A (mo # ma))

Fig. 7 Experiment for defining decryption verifiability (with decryption verifier V) for
PKE.

Bellare et al. [2, Theorem 5.1] pointed out that any decryption-verifiable
PKE scheme is not SIM-RSO-CPA secure. We recall their conclusion as
follows.

Theorem 7. [2, Theorem 5.1] Let PKE = (Setup, Gen, Enc, Dec) be a P-

KE scheme. Assuming the existence of a family of collision-resistant hash
functions H, there exists a PPT adversary A’, such that for any PPT sim-

ulator S, there is a PPT distinguisher D' satisfying that Advgﬁgﬁgﬁ spr(A)
> 1 — negl()\) for a negligible function negl(\).”

9 The advantage AvaR,%g f ?4"/\, s.p(A), whose subscript includes H, is the advantage

of the SIM-RSO-CCA adversary A’ in the auxiliary input model [2]. We refer the
readers to [2] for the formal definition and the details.

31

C The k-Linear-Based Liu-Paterson PKE Scheme in [27]

In this appendix, we recall the k-Linear-Based SIM-SSO-CCA secure P-
KE scheme, which was proposed by Liu and Paterson in [27].

Let G be a cyclic group of prime order ¢ and g be a generator of
G. Let F': G* — (ICp)* be an injective function, where s € N and K, is
some key space. Let XAC = (XGen, XAuth, XVer, ReSamp) be a strong and
semi-unique (¢ + 5)-XAC with key space XK = K, = K, x K and tag
space XT. Let Htcr : G — Z4 be a family of target collision-resistant
hash functions for some k € N. The k-Linear-based Liu-Paterson scheme
PKELp = (Setup, Gen, Enc, Dec) (for ¢-bit messages) [27] is recalled in Fig.
8.

D Deterred Proofs for the Instantiation in Sec. 4.2

We provide the proof for Theorem 1 and Theorem 2 in this section.

Proof. For any i € [2k], indistinguishability between a uniform element in
L and a uniform element in £; comes from the DDH assumption directly;
also, indistinguishability between a uniform element in X and a uniform
element in £; can be reduced to the DDH assumption by a simple hybrid
argument. For a uniform x in &X', the probability that it falls in £ is only
1/¢*F, which is negligible. It is easy to see that X and Ksp are efficiently
samplable and explainable. Also, it is easy to check that SSmpChk and
the sampling algorithms are correct. Thus, SSMP; is a strengthened sub-
set membership problem with hardness, sparseness, explainability, and
correctness.

Next, we prove that HPS; is a projective and perfect universal, HPS
with key equivocability.

Projective. For any hsk = (s j)ne[er+1),icn]je2k+1] € SK and any
= (97,95 93r11) € L, let hpk = (phi)nefprti)icls] = H#(hsk) and

32

Setup(1*) :

Hrcr < H1cr; (Kay, 5 Ka,) + (Ka)®

Return pp := (F,Hrcr, (Kays -+, Kay), (G,4q,9))
Gen(pp) :

Yy Zq; h:=g¥

For 6 =1 to k :

—1
(0,6, B80) « (Zq)3; g9 = g%0; wp :=x, y; ug:=g5?; vg:=gh?

pk := (h, (g0, ue,v0)oc(x)); sk = ((ag, Bos wo)oe(x]> PK)
Return (pk, sk)

Enc(pk = (h, (90, u8,v0)9c[x]), ™) :

Parse m = (mq,--- ,my) € {0,1}¢
Fory=1to ¢:
Ifmy=0:
Ky K (o1, Tynt1) < (Zg)"5 Yy = (g™t -+, g7 rontt)
Ifmy=1:
ForO=1tor: 1,94 Zg; Cyp:= gg”’e
ty :=Hror(Cy,1, s Cyn); Ty o= Hg=1(“?”6)r7’9
K’Y = hrry,1+-~-+'r—y,n; Py 1= (C’Yyl" o 10%5’7‘—“%)
(Kbyso o s Kp,) = F(1,- 0 sbe); Kopr = (Kays Kby); o5 Kogs = (Ka,, Kb,)
T = XAuth(Ky, -+, Kpys)
Return ¢ = (Y1, ,4¢, T)
Dec(sk,c= (Y1, ,9¢,T)) :
Fory=1tofl: my:=0
(?bu' o 7?55) = F(wlv' e ,W); ?13-&-1 = (thv?bl)? B fl-&-s = (Kasafbs)
If Ay (XVer(Kpyy, T) = 1) :
Fory=1to ¢:
Parse 1y = (Cy,1, " , Cy,n, TTy)
by = HTCR(C%lv U 7C’Yy'i)

U5 1 (cy0)0tvtPo Lyt Ty, =0
Else: Ky =[[p_;(cy,0)®0; Ty = XVer(K,,T)

Return m = (mq, -+ ,My)

Fig.8 Construction of PKELp.

(a1,...,aop41) = I'(2), then

Apsi(z) = H u;h’” “n

he[2k+1],i€[k],j€[2k+1]

_ wesp o)t

he[2k+1]i€[k],j€[2k+1]

_ H (H g;h,i,j)w-ozijl

he[2k+1]i€[k] jE[2k+1]

i—1
= H (phﬂ-)w.ah

he2k+1],i€(K]

1

33

which is determined by hpk and x, and is exactly the output of PubEv on
input hpk,r and w.

Perfect Universal,,. For any hpk = (phi)nejok+1),iclx) € PK, any dis-
tinct (.%'g = (Ugyl, Ce ,u€’2k+1))ge[ﬂ] S (X\L‘)K, and any (K@)ge[ﬁ] S ’Cgp, we
show that

wu(hsk) = hpk, 1

Pr | Ay k) = Ky - ’
r h k(x) Ahsk(xl) = Kl, ce 7Ahsk(xn—1) = Ky1 ’ICS;D|

—1 -1
First, as x, € X\L, there exists ji, jo € [2k + 1] that UZ% # uZJ§2.
Without loss of generality, we assume j; = 1 and jo = 2. Next, we will
prove the following stronger argument

p(hsk) = hpk, 1
Pr | Apsi(xr) = Kpt Apsi(w1) = K, Apsp(p-1) = K1 | = Kol
hsk = (%, %, 8035+ - - » Shyi,2k+1) he[2k+1]i[x] °
(3)

Let py; = g and let b s = b, ;= (X je (3 p 1) @ 5nig) for b € [2k+1],
i € [k]. Also, for £ € [k]:

— Let ug; = g¥%* and ugy = g“¢>. Note that a] 'wy1 # ay w2

— Let ap = (g1, .-, p24+1) = I'(x4). Here, a_gllyé oy, for any 0y # 0.
sh,i, ‘Ozl_
— Let K = KZ/(Hhe[2k+1],i€[n],j€[3,2k+1} Up 70") and define Kj = g*.

Then, we can transform Equation (3) into

(Wit Y pepph] e (Shit - Qp)]
+ W2 - Zh€[2k+1},ie[n](5h,i,2 : O‘:hl) = %k
Pr _ 1
Vh € [2k + 1], € [K],bn,; = a15p,i1 + a28ni2 |Kspl
Ve € [k—1], 20 =wen - Zhe[QkH],ie[n](Sh,iJ 'O‘Z_hl) ,
i F w2 Ypephr) i (Shi2 - o)] "
4

where the probability is taken over the random choice of (s 1, Sh.i,2) he[2k+1],i€[x]
Let zp = 2¢ — wgiay" - 2 hef2k+1) iels] (Onsi - 0‘;,_;11) and Ay = wep —

wg,lal_lag, note that A, # 0. Then for all ¢ € [k] that A, # 0, let

z; = z;/As. Then, we can transform Equation (3) into

i—1
Zhe[zkﬂ],ie[n](shm : O‘Z,h) =z 1
Pr

VOE [k —1] st Ag# 0,3 peoni]iefs) (Shi2 - aﬁl) =2

34

where the probability is taken over the random choice of (sp i 2) he[2r-+1],i€[x]-
Define vpp, = (1, app, - - ,azgl) and define vy = (ve1| ... [|ve2k+1)-

Since o, # ay for £ € [k — 1], we have v, linear independent of (vq, ...,

v,—1), and Equation (5) follows. This completes the proof of perfect universal,..

Key Equivocability. Let hsk = (Sh.ij)hej2k+1],iclx],je[2k+1] D€ @ random
secret key in SKC. Let hpk = (ph.i)hej2kt1),iclx] = #(hsk). Let (z, = (ug1,

- Ug2k+1))eel2k) De elements from different £;, and w.l.o.g., we assume
that xzy € L, for ¢ € [2k]. Then we can write

L = (giuéa s 79%1,9;%79;117 s 7g;U]§+1)7

where wy and wy are distinct integers in Z,, and define Ay = w) — wy.
Let (ag1,...,0uk+1) = I'(z¢) for £ € [2k]. Let hsk’ < SampHsk(hsk, td,
T1,...,Tok) and write it as hsk’ = (s}, ; ;)near+1)ic(x] jef2k+1)- Then for
h € [2k + 1],i € [k], we have

— Shij = Shy; for j € [k];
= ShjLq for j € [k +1,2Kk];
/ _ ! —1
= Shi2k+1 = (Zje[%—f—l] AjShyig — Zje[%] ajsh,i,j) “Ooky1-
First, note that

pi(hsk’) H gj ") hel2k+1]i€lx]
je[2k+1]

(g=9€2R 411 %0t Y og 1] i

(nge[2k+1] @ %hi)
= hpk.

he2k+1],i€[k]

Also, for ¢ € [K],

i—1
Sh,ij "%
Ky = 11 Uy,
he2k+1),i€([k],j€[2k+1]

i—1 i—1
B Ag-shieayy, We Sh,i,j°0 1,
= | | (9@ : | | 9;)

he[2k+1],i€(x] JE[2k+1]

Apsnaeag, weap!
- H (9 Phi)

he2k+1],i€(K]
1—1

Agsy e'aﬂl WeGp p,
= I Yo Phg)

he2k+1],i€(x]

35

—1

’ i—1 / i
o Agsp ;0 WeSp 5%, h
= (9@ : 9;)

he[2k+1]),i€(k] JE[2k+1]
i—1
_ H Shii On
= Uy g
he2k+1]i€[k],j€[2k+1]
= Apsir (0).

Thus, (hsk,hpk, K1,...,Ky) and (hsk’, hpk, K1, ..., K) are identically
distributed.

Next, we will show that (K11, ..., Kok) is uniform in IC’sfp given (hsk’,
hpk, K1,...,K}). For all £ € [k + 1, 2k],
a1
K= [e

he2k+1),i€(k],j€[2k+1]

i—1 i—1
- Agspiecy WerSh,i,5 0 g,
= | | (9) | | 9;)

he2k+1],i€(k] JE[2k+1]
Ag-sh7i7g~ai71 wg-aFl
= 11 @ s)
he2k+1],i€(K]
which are uniformly distributed in Ky, since each (spik+1,---,5hi2k) 1S
uniform in Z]; and is independent of (hsk’, hpk, K1, ..., K}). This com-
pletes the proof of key equivocability. O

E Deterred Proof of Theorem 5

Proof (of Theorem 5). For any PPT adversary A, in the real experiment

ExngiE'%l;real()\), we denote the challenge ciphertexts and their corre-

sponding messages by (c})ic[, and (mj);c),), respectively. More specif-
ically, for each i € [n] and j € [lmj[], we write m[j] = (mj;, -,

% wr - *(X *(IC * T ¥
m;;e) € {0, 1}, ri[j] = (ri,g-ﬁ),ri,gﬁ), Wi i)vef and ¢ilj] = (270,
z ., TF.). For each i € [n], j € [[m}|] and v € [{], we write K/

i,J,0) 71,5 4,5,
Ky, = H(pki, =} ; 1, ,xi’jve) and K7, 4 = (Ka,Kbﬂ-’j) similarly. For

each i € [n], we write pk; = (hpkiy) e, and sk; = (hskiy) e In
Expgﬁgﬂ?;eal()\), we additionally define a finite set Z,, as follows. At the
beginning of this game, let Zo, := (), and when A submits its selective
opening query Z, update that Zo, = 7.

Without loss of generality, we assume that A always makes ¢q de-
cryption queries and n MkRec queries, where ¢ and n are both some
polynomial functions.

36

We proceed in a series of games.
Game Gg: Gy is the real experiment ExpWBl‘Sf?kreal(/\), ie.,

GO _ EXprl SO- real()\)' (6)

Game Gi: Gj is the same as Gy, except that we abort this game (with
output L) as soon as there exists some (¢,7y) # (',7') such that hsk; , =
hsk; . By a union bound, we obtain that for any PPT distinguisher D,

né(nl — 1)

[Pr[D(G1) = 1] = PrD(Go) = 1]| < =

(7)
Game Go: Gy is the same as G, except for the decryption oracle.
Specifically, if A submits a decryption query (i,c = (z1,--- ,z¢,T)), such
that there exists some j € [|m;|] satisfying that (27, -, 27,,) # (21,

xy) and H(pk‘l,:nml,--- ,{L‘;j’g) = H(pki,x1,- -+ ,x¢), then we abort
thls game (with output L). Since H is collision-resistant, we derive that
for any PPT distinguisher D,

[Pr[D(Gz) = 1] = Pr[D(G1) = 1| < Advig} 4, (A) (8)

for a suitable PPT adversary Apy.
From now on, for each game we consider two cases: § =0 and § = 1.
We firstly look at the case of g = 0.

Game G3p—o: Ggp—o is the same as Gy when § = 0, except that

we abort this game (with output L) as soon as there exist some (7', j',
7)) # (i",5",7") such that T i1y = Tiy jun. By a union bound, we
obtain that for any PPT distinguisher D,

nkl(nkl — 1
[PriD(Gayao) = 1]~ PD(G) =11 5 =0]] < "HEE=2 (0
where k 1= max; ; |m}|.
Game G?LLO): For convenience, we write that
G{11,0) == G3|p=0- (10)
Now, for any i € [n] and j € [|m}[], let
Glij+10) = Glio; (11)
Glit1,1,0) = Gijm:1,0) (12)
as follows.

and for any ~ € [{], we consider game G?z‘,j,'y)

37

Game G(; ;) (i € [n],j € [[m]|],y € [{]): G{;;) isthesameas Gf; ;,),

except for the generation and the related selective opening procedure of
(] ;s KZ*J), which corresponds to ¢ [j] = (2], - i;)- Specif-

ically, in sz i)’

’ 1]6)

o During the generation of (¥y K7.): The challenger samples w} . . <

iy Bigay LIy
RssmpL, and computes x . . < SSmpL(prm;w and K. = PubEv
(hpk;

B4,y) i5J,Y
iys Tp j s Wi j), 0O matter whether my ,is 0 or 1.

e To answer the selective opening query Z: If (i,5) ¢ Z, the selec-

tive opening procedure in Gf i) is the same as that in sz‘,jpy—l)‘
So we only need to consider the case that (i,7) € Z. We assume
that m”w = 0 (otherwise Gy and Gy, ;5 4y are identical). For
any (i, 7) € T satistying that (i, 5’) # (4,7), the challenger extract-
s and generates the corresponding randomness as that in sz‘ -1
Ty
T7;), and com-

Then, the challenger samples wy ijy < RssmpL, computes 7

Epram(X,:clH) updates K7, < ReSamp(%K” Lo

putes 7 g’ff) < Explain(XK, K,). (“gﬁ),ﬁgﬁ),@f‘”) is the random-

ness (for (7, 7)) returned to the adversary.
Now, we present the following lemma with a postponed proof.
Lemma 1. For any i € [n], any j € [|m}|], any v € [¢], and any PPT
distinguisher D,
Pr[D(G(; ;) =18 =0] = Pr[D(G{; ;1)) = 1|8 =0]| Pr[3 = 0] < negl(A).
With the above lemma and Eq. (10)-(12), we obtain that
Gajp—0 = Gfr,r,o) NN G?r,r,e)
= Glon ® ® Glimily = G20 X~ Glojm o (13)

Game Gyp_o: Let Gyjp—g := G‘En I [,0)" So we have that for any PPT
distinguisher D,

|Pr[D(Gyjp—0) = 1] — Pr[D(Gsjs—0) = 1]| Pr[8 = 0] < negl(\). (14)

Next, we turn to the case of 7 = 1.
Game G3p—;: Ggyp=; is the same as Gy when § = 1, except that

(¢})iefireln]||m* <k} are generated with (ski)ic(ie[n)|jm*|<k}, instead of
(pki)ie{ile[nmmmgk}. Specifically, during the generation of (C;‘k)ie{i’e[n]ﬂm; <k}
in Ggjg=y, for all i € {i’ € [n] | [m}| <k}, all j € [[mj|] and all y € [£], if

38

m; ;. =1, then the challenger computes K, = SecEv(hsk;,z];), in-
stead of PubEv(hpk:Z v T3 W 7) The projective property of HPS guar-

antees that the view of A in Ggg—; are identical to that in G2 when
8 = 1. So we derive that

G3|5:1 = G2 (when ﬁ = 1). (15)

Note that the modification introduced in G; ensures that during the
generation of (c);cjn in Gyjp=1, for all i € {i’ € [n] | |mj| < k} and all
v € [l], hsk; is employed at most k times, and for any ¢ € {¢/ € [n] |
lm}| > k}, hsk; has never been used.

Game G3p-1: Ggzqp=1 is the same as Ggg—, except for the sam-
pling process of (z] ;.)ic(ir €ln)l[m | <k} jelm? | vele) during the generation
Of()ze{z G[n]Hm |<k}- In Gs. 1/8=1> for all ¢+ € {’L S [] ‘]mf,| < k‘} and
j € [mj[], 27,4, -, 2}, are all sampled from L;, no matter whether

mj ;. (where v € [{]) is 1 or 0. Specifically, during the generation of

(Cf)ie{i’e[n]\\mj,\gk} in G3.1|5:17 (xf,m)ie{i'e[n}\|m;,|gk},je[|m;-*\]m/e[z] are sam-
pled as shown in Fig. 9.

For i € {7 € [n] | [my] < k},
For j =1 to |mj]|,
For y=1to ¢,
x7 ;o < SSmpLS(prm, j)

Fig.9 The sampling process of (x} kA ,y)ze{2 "€[n]|jm?, |<k},j€[lm} [],vE[L in Gg. 1|8=1-

A simple hybrid argument shows that for any PPT distinguisher D,
[Pr[D(G31jp=1) = 1] — Pr[D(Gyjp=1) = 1]| Pr[B = 1]
< nkl(Advsgupp (V) + Advigiien (V))- (16)

Game G331 Gzgp=1 is the same as G 13—1, except for the decryp-

tion oracle. In G 23—1, for any decryption query (i,c = (21, -+ ,z¢,T))
satisfying ((i,¢) ¢ C)AN(i ¢ Zop) N2 € {7 € [n] | Im}| < k}), where
C denotes the set of the challenge ciphertexts and their corresponding
public keys (in Fig. 2), the challenger firstly checks whether XVer((K,,
H(pk;, x1,---, z¢)),T) = 0. If so, it sets that m; = --- = my = 0 and
returns m = (my, - - ,my). Otherwise, for each v € [¢], the challenger sets
my =0 directly if o ¢ L, and behaves just as in Gy q3=1 if 2, € £ (i.e.,
it computes K., = SecEv(hsk;~,z-) and sets m., = XVer(K ., T)).
We present the following lemma with a postponed proof.

39

Lemma 2. For any (even unbounded) distinguisher D,

Pr[Dy(Gyo)p=1) = 1] — Pr[Dy(Gy1jp=1) = 1]| < qal max{Adviiac (), Advac (A)}-
(17)

Note that the decryption oracle in Gy 95— is ineflicient, and it doesn’t
leak any information on hsk; , beyond hpk; , for any i € {i’ € [n] | jm};| <
k} and any v € [4].

Game GZI,O,O): For convenience, we write that

G7("1,070) = G3.2\ﬁ:1~ (18)

Note that in game G o, for any i € {¢' € [n] | [m}| < k}, sk; =
(hskiy)yelq is used to encrypt

m:[l} = (m:,l,lv e 7mz<,1,£)7

mer'ﬂ] = (m;|mj\,17 T 7m2<,|mf|,f)'
More specifically, for any v € [¢], hsk; , is employed to handle

* * *
My 14T 245 mi,\mﬂ,’y'

For all i € {i’ € [n] | jm}| > k}, let

G?1,i—1,o) = GZl,i—l,l) == G?Li—l,é) = G?l,i,o)v (19)
and for all i € {i’ € [n] | |m}| < k}, let
?1,1‘,0) = GZI,Z’—I,Z)' (20)

Now for any i € {7 € [n] | |m}| < k} and any v € [{], we consider
game Gfl’iflﬁ) as follows.
Game G, ; ;. (i € {i" € [n] | |m}| < k},~ € [€]): Note that for each j €
Hm*|] we write ¢} [j] = (27, -+, 2], T};), where T}"; = XAuth(K},
KZ*] Z+1) Game G7("1 i—1,7) is the same as G(l i—1y—1)> except for the

generation and the corresponding selective opening procedure of (Kz* 147

’K;jlmﬁlﬁ)’ Specifically, in Gzl,iflﬁ)’
o During the generation of (Kjy .- K*Im*lv) For all j € [Jm}|],
if mj;., = 0, the challenger computes K, = SecEv(hsk; -, x quf)

instead of uniformly sampling K iy from K.

40

e To answer the selective opening query L: If i ¢ T, the selective opening

procedure in Gzl,ifl,v) is the same as that in Gfl’i717771). So we only

need to consider the case that ¢ € Z. The challenger firstly generates

(Yiys o > Yi2ky) as follows: for each j € [|m}]],
- 1fm” =1 then it sets y; j = xf’jq, and y; j k. < SSmpLS(prm,
J+k);
- if mlkj)v = 0, then it sets y; j 1y = 27 ., and y; j < SSmpLS(prm,
J+

and for each j € {{m}| +1,--- ,k} (if jm}| < k),
- it sets that y; ;4 <= SSmpLS(prm, j) and y; j4k~ < SSmpLS(prm,
Jj+k).
Then, the challenger computes

hsk; ., < SampHsk(hsk; ., td, yi 1, 5 Yi2k),

and updates hsk;, = hsk:’7 (which means that from now on, the
challenger will use the updated hsk; , to answer the selective opening
query and the decryption queries).

Key equivocability of HPS guarantees that for any (even unbounded)
distinguisher D;,

Pr[Ds(G’("LFM)) =1]— Pr[DS(G’("Lmel)) =1]| < negl(A). (21)
Therefore, we obtain that

S
~
~

~ Gfl,l,e)
G(1 2,0) %R Gfl,k,é)' (22)

Game G333—1: Let G3zp=1 = Gfl,k,e)' Combining Eq. (20)-(22), we
derive that for any (even unbounded) Ds

Gs215=1=Gl100) ® - = G100 = G110

|Pr[Dy(G335=1) = 1] — Pr[Ds(G395=1) = 1]| < negl()). (23)

We emphasize that in Gg, 3lp=15 for all i € {7 € [n] | Im}| < k}, all
j € [|mj|] and all v € [{], K, , is computed with the original hsk; , when
m;; ., =0, and if i € Z, sk; = (hskiq,-- -, hsk;) will be updated.

Game Gypp—1: Gyp=1 is the same as Gg3/3=1, except that the decryp-

tion oracle works with the original decryption rule. In other words, in
Gy|g=1, for any decryption query (i,c = (x1,---,2¢,T)), the challenger
firstly checks whether XVer((K,, H(pki,x1,--- ,2¢)),£+1,T) = 0. If so, it
sets that m; = --- = my = 0 and returns m = (my, - ,my). Otherwise,

41

for each v € [f], the challenger computes K., = SecEv(hsk;,x.), sets
my = XVer(K,~,T), and finally returns m = (my, - - - ,my).

We present the following lemma, the proof of which is the same as
that of Lemma 2.

Lemma 3. For any (even unbounded) distinguisher D,
[Pr[Dy(Guypp=1) = 1] = Pr[Ds(Gs35-1) = 1]| < gal max{Adviac (1), Adviad (M)}
(24)
Notice that the decryption oracle in game Gyjg—; is efficient again.
Combining Eq. (16), (17), (23) and (24), we derive that for any PPT
distinguisher D,
|Pr[D(Gyjp=1) = 1] — Pr[D(Gy-1) = 1]| Pr[8 = 1]
< |Pr[D(Gy15=1) = 1] — Pr[D(Ggjp—1) = 1]| Pr[f = 1]
+ |Pr[D(G3.05=1) = 1] = Pr[D(Gy.15—1) = 1]|
+ |Pr[D(Gs.318-1) = 1] = Pr[D(G35—1) = 1]|
+ |Pr[D(Gyjp=1) = 1] = Pr[D(Gy35-1) = 1]|
< nkC(Advigup'p (V) + Advigup D (V)
+ 2¢4¢ max{AdvEE (), AdVERE (M)} + negl(\). (25)

Now, we can construct a PPT simulator S as shown in Fig. 10.1°
Obviously,

ExppE s r ™ (A) (when 8 = 0) = Gy g, (26)
Ex PIVDVEIE_%OkIdeaI()\) (when 3 =1) = Gy (27)
So we can write that
G4 — EXPWBI SO- 1dea1()\). (28)
Combining Eq. (9), (14), (15) and (25), we obtain that
|Pr[D(G2) = 1] — Pr[D(G4) = 1]|
= |(Pr[D(Gq) =1|=0]Pr[8 =0]+Pr[D(Gz) =1]| 8 =1]Pr[g =1))

— (Pr[D(G4) = 1| B =0]Pr[8 = 0] + Pr[D(G4) = 1 | B = 1] Pr[8 = 1))
(29)

10 Tn Fig. 10, for consistency we abuse the notation “n” by using it to mean the current
number of receivers in the game simulated by S, analogous to Fig. 2.

42

S?ikaReC(l >:
(prm = (X, £, L1, , L), td) « SmpG(1*)
prmins = (Ksp = Ka X Kp, SK, PK, Ay, p) = PrmG(prm); H <= Hpmins; Ka Ka
pp := (prm, prmins, H, K4); n:=0; C:=0; (B, M,s1) + AMkRec "¢ (pp)
If 3 (i,7) # (i',7) s.t. hski ~ = hsk;, v abort
51 := (PP (PKis 5Kki)ig[n]> C) By M, 51)
Return (8, M, 31)
Sa(len = ((Im7 |, £);c[n]), 51 = (PP, (Pki, 5ki)icn], C, B, M, 51)) :
For i =1 to n:

For j =1 to |mj|:
For v =1 to £:

If 3 =0:
w;,j,w RssmplL; IZJ, < SSmpL(prm; wl g ’Y) K;j’ = PubEv(hpk;, ,y,zl Gy Wi j«’Y)
IfB =1
If |m?*| < k:
I:,j,—y <+ SSmpLS(prm, j); K;j, = SecEv(hsk; ~, z] Tiy)
If l/m}| > k:
X K
If m;jﬁ =0: (r :(J ’Y)’TZ,(J',’Y)) “— RSSme(;)RSampIeQ z:,j,'y < SSmpX(prm; rl b ’Y))’
*
K-Zk,j,»y < Sample(Ksp; 7y R “r)
Hmy ;. =1 wj ;. Rssmpl; T} j, SSmpL(prm; wy ; |);
*
B3y T = PubBv(hpki y, @7 j > w3 5)
Ky ;5 =Hpks, i 51, v% 5.2 Kz g1 = (Ko, Kp ;)
TS, = XAuth(Kl AU K[011 [J] = (] 1, 2] 50T €= CU{G,] 1D}
If (B = 0)/\ ERGIF SRR (2”7]” ¥ stz At = @5y i)i abort
(Z,s2) « A¥°((cf, -+ ,ch), 51); 52 = (pp, (pk'LvSki)'iE[n]v) B, (01, s, e),82)
Return (Z, 32)
SS<<m*[.]>(1,J)€IY’S‘2) : % When 8 =0
Parse (m}[j] = (m7 1, smi,) € (0,13 ¢ jyer
For (i,j) € I:
For v =1 to £:
If mj Gy =0 Afj]’"’ < RsSmpL; 18*—3 “— Explain(X m*’j’V);A*
Kz(/c)w — ReSamp(v, K ;o T7 505 Ki gy = K7 j o5
e .
i iy +— Explaln(X]C(K; 3y ’Y))
- P
Umi ;=1 ©f ;0 =wi; i 75 < RssampXi 77 5,5 ¢ Rsample
())
wlil = 5 7 RN w'v’w fd el
out « ABE(Fr (5], m?) i.yyezs 52)
Return out
33(<m*)zelv§2) : , % When 8 =1
Parse (m[j] = (m{ ;1. mi;0) € {0.1})iex je(im?)

For i € I:
For v =1 to £:
For j =1 to |mJ|[:
If ml Gy = 1y iy = :Cz J,"{’ Yi,j+k,~ < SSmpLS(prm, j + k)

If mj Gy =00 Yijqk,y = z; Gy Yigy SSmpLS(prm, j + k)
If |m}| < k:

For j = |mj |+ 1 to k: y; j o SSmpLS(prm, 5); i jitk,~ < SSmpLS(prm, j + k)
hsk} .+ SampHsk(hski ~, td, Yi 1,45 s Y 2k,y); hski~y = hsk]

ski = (hski ~)yele
out < A¥°((sk;, m}) ez, 52)
Return out

(The description of oracles MkRec and Dec will be given in Fig. 11).

Fig.10 Construction of simulator S.

= [(Pr[D(G2) =1 |8 =0]Pr[3=0] + Pr[D(Gg) =1| 8 =1]Pr[g =1])
— (Pr[D(Gyjp=o) = 1] Pr[B = 0] + Pr[D(Gyp=1) = 1] Pr[B = 1])|

43

MkRec() :
1 <+ SimMkRec(); n:=n+1; (pkn = (hpkn,y),ye[[], skn = (hsknyfy),ye[[]) <+ Gen(pp)
Return pkp
Dec(i,c = (x1, -+ ,xp,T)) :
If (i > n)V ((i,¢) € C): return L
Parse sk; = (hSki,'y)'ye[[Ky, = H(pk;, z1, ,.’L‘e)
I3 € (ImIl], st (w1,- - 20) # (24100 o)
If XVer((Ka, Kp), £+ 1, T)—Om1:~»-: =
For v =1 to £:
K. = SecEv(hsk; ~,z~); M~ = XVer(K~, T)
Return m = (myq, - ,my)

¢) and Ky = Kj ;1 abort

i,4,€
0; return m = (M, - ,My)

Fig. 11 The oracles MkRec and Dec provided by simulator § in Fig. 10.

< |Pr[D(Ga) = 1| f = 0] — Pr{D(Gy50) = 1]| Pr[= 0]

+|Pr[D(Ge)=1|8=1]— Pr[D(G4|ﬁ:1) :~1H Pi[ﬁ =1] (31)

< (|Pr[D(Ggip—0) = 1] — Pr[D(Gyjp—o) = 1]| + W)Pr[ﬁ = 0]

+ Pr['D(G3|5:1) =1]— Pr[D(G4|5:1) =1]|Pr[p = 1]~ B (32)
< |Pr[D(Ggj=0) = 1] — Pr[D(Gyjp—o) = 1]| Pr[3 = 0] + ”M(;ﬁj_l)

+ | Pr[D (G3|5 1)=1]— r[D(G4|5:1) = 1]|Pr[f = 1] (33)
< negl(A) + ”M“;"f‘) + nke(AavBARP (1) + AavEARDZ (1)

+ 2¢4¢ max{AdvAE (N), AdVSRE(A)} + negl(\) (34)
< MHORED) b har PR) + aeDE)

+ 24 max{AQvRIE (), Av$RE (V) + negl M), (35)

where k = max} , lm}|. Eq. (29)-(31) are trivial. Eq. (32) is justified by
Eq. (9) and (15). Eq. (33) is trivial. Eq. (34) is obtained via Eq. (14) and
(25). Eq. (35) is trivially obtaind from Eq. (34).

Hence, combining Eq. (6)-(8), (28) and (35), we obtain that for any
PPT distinguisher D,

SIM-wBi-SO- CCA(N

Advpye 45D

= |PrDEpERESOr (V) = 1] — PrD(ExpERED 4 () = 1]
= [Pr[D(Go) = 1] — Pr[D(Gy) = 1]

< [PH[D(Gy) = 1] — Pr[D(Gy) = 1] + "D yau0m

2’SIC’ prm|n57-/4 ()\)

< nkl(nkl — 1)
- 2L
+ 2¢4¢ max{AdvAE (), AdVERE (M)} + negl(\)

né(nl — 1) CR
W + AdVHprmins»AH ()\)7

+ nk(Advigupp () + Adveguip s (1))

which is negligible.
Now we catch up with the proof of Lemma 1 and Lemma 2.

Proof (of Lemma 1). We prove this lemma with another series of games.

Game G“(SZ.((;.)W_I): For convenience, we write that
5(0) _
Gia-1) = Gliga-1- (36)
Game G?i(i')'y—l): Gfi(?v_l) is identical to G“E’Z.((;),y_l), except that if (i,
j) € T and m; ;. = 0, instead of returning the original (r:g-/\,‘/y),r:g-’?)

to answer the selective opening query, the challenger returns (Explain(&X’,

z};.)s Explain(XK, K7)). Obviously,

s(1) _ 50
G(iyjfy_l) o G(i,j,'y—l)' (37)
s(1)

Game G*? . G? . ,
(17.]7’7_1)

(1)} P gm—1) 18 identical to G

cryption oracle. In game G?Z’%‘?W—D’ for any decryption query (i,c¢ = (x1,

-, xp,T)) satisfying that ¢ < n and (i,¢) ¢ C, the challenger firstly
checks whether XVer((K,, H(pk;, x1,--- ,x)), T) = 0. If so, it sets that
my = --- =my = 0 and returns m = (my,--- ,my). Otherwise, the chal-
s(1)

lenger sets M~ = 0 directly if z, ¢ £, and behaves just as in G(im; 1)

if z, € L (i.e., compute K. = SecEv(hsk; ,x~) and set m., = XVer(K,
T)); for any 4" # ~, the challenger generates 7,/ as in G?ﬁ)vil).
s(2)

Note that the decryption oracle in G(Z. ir—1) is inefficient, and it does-
n’t leak any information on hsk; - beyond hpk; .

Let BADZ(??7 (resp. BADg}j),v) denote the event that in game sz‘(,i‘?w—l)
s(1)

(resp. Gr(Z i 7_1)), adversary A submits a decryption query (i,¢ = (1, -,
x¢,T)), such that i <mn, (i,¢) ¢ C, XVer((Kq, H(pk;, z1,- -+ ,2¢)),T) =1,

€, = XV T) = 1 ot Gy G

are identical as long as the respective events BADl(-Qj)V and BADilj . do not

except for the de-

45

occur, and that Pr[BAD(2) | = Pr[BAD(l)]. So for any (even unbounded)

0.3, 03,7
distinguisher D;,
s(2 s(1
Pr[Dy(G{ 7.) = 1] = Pr[Dy(G{)) =1]| < Pr[BAD) 1.

Since x, ¢ L and HPS is perfectly universal,y;, from A’s point
of view, K, = SecEv(hsk;.,x,) is uniformly distributed over Ky, =
XIC. Thus, security against impersonation attacks of XAC guarantees
that the probability that m., = XVer(K.,,T) = 1 is at most Adviac()).
Considering that A always makes g4 decryption queries, we have that
Pr[BAD,E?ﬂ] < qgAdviME(N). Hence,

s(2 s(1
PrDy(G{) =1] = Pr[Dy(GLY). 1)) = 1]| < qahdv}AC (V). (38)

Game G ((,J)'y 1} G‘zi(?j?,yil) is the same as G?Z.(?Wil), except for the gen-

eration of K, during the generation of ¢ ;. Specifically, in G?l.(?vfl), if

mj ;. = 0,set K, = SecEv(hsk; ,z] ;) and the corresponding random

coin of K/, is opened as Explain(X'KC, Kmv)

Note that when m} iin =0, x oy I8 uniformly sampled from X. Sub-
set sparseness of SSMP implies that z iy ¢ L with probability 1 —
Sparggyp(A). When 27, ¢ L, perfect universality, ; of HPS guaran-

tees that K7, is uniformly distributed over Kyp, which is the same as

that in Gf@‘(?)v—l)' Hence, for any (even unbounded) distinguisher Dg,

PrDy(G{7.) =1] = Pr[Dy(G{7)) = 1]| < Spargsup(A). (39)

Game GZ() _)} : In this game, we modify the generation of K, | again.
Specifically, if m} ;= 0, after generating ¢} ; = (zF Tt Zﬂ,Tz*J)
above, the challenger further updates K7, a

K} < ReSamp(v, K[, .., T};).

Note that in this case, the corresponding opened random coin of K/, i

actually Explain(XKC,ReSamp(y, K7, .. T}';))-
Strongness of XAC guarantees that the updated K;]7 in G(Z(])7 1)

5(3)

and the one in G(ijw_l) are statistically indistinguishable, even given

K}, ., and T7;. In other words, we have that for any (even unbounded)
distinguisher D;,
s(4 s(3
Pr{D,(G{) 1) =1] = Pr[Dy(G]).) =1]| < seDFREN (), (40)

46

where StD{ARN () is defined in Definition 4, which is actually the statis-
tical distance between the K, | in G“(g@.) 1) and the one in Gr((j)7 -
Game G(Z(J)7 1} Gf@‘(?v—l) is the same as G((4) _1y except that the de-

cryption oracle works with the original decryption rule. In other words,

in G?z(?j?wfl)’ for any decryption query (i,c = (z1,---,x,T)) satisfying
that ¢ <n and (i,c) ¢ C, the challenger firstly checks whether XVer((K,,
H(pk;, x1,--- ,x)), T) = 0. If so, it sets that m; = --- = my = 0 and
returns m = (M, - ,my). Otherwise, for any 4/ € [¢], the challenger

computes K., = SecEv(hsk; ./, x), sets m, = XVer(K.,,T), and re-
turns m = (ml, -, TTg).

5(5)

Notice that the decryption oracle in game G (i) is efficient again.

l,j,’y—l
Similarly, let BAD(B.), (resp. BADE J),Y) denote the event that in game
?53)771) (resp. G(fj),y 1)), adversary A submits a decryption query (i,

c=(x1, - ,2¢T)), such that i < n, (i,c) ¢ C, XVer((Kq, H(pks, 1, ,

20)),T) =1, 2, ¢ £ and 7, = XVer(K,,T) = 1. Note that G\),

and G(() _y) are identical as long as the respective events BADZ(j)y and

BAD()7 do not occur, and that Pr[BAD() A= Pr[BADE?v] So for any
(even unbounded) distinguisher Dq,

s(5 s(4 4
Pr[D(G;)) =1] - Pr[D,(G".) =1]| < Pr[BADL) |.

We present the following claim with a postponed proof.
Claim 1. Pr[BAD!Y | < ¢y max{AdviE (), AdvsE(\)}.

Hence, we have that

PrDy(G)) =1] = Pr[Dy(G)) =1]

(7”]’771) (17]7’771
< qumasx{AaviZ(\), AdvSRE (V) . (41)
Game G(Z(J)7 1} G?(E;'?w—l) is the same as G(() _1y except that during
the generation of ¢} [j], the challenger computes z y SSampL(prm wy ;. 7)

no matter Whether my . is 1 or 0. We stress that 1f my iy = = 0, the cor-

0,57
responding random coin of z} ; returned to A is Explain(X, z7 ; 7) since
s(1)

i1 Hence, we obtain that for any

4,4,y
the modification introduced in G(
PPT distinguisher D,

PrD(GL.) =1]8=0-Pr[D(G]".) =1]8=0]|Pt[3=0]

47

HARD-1 HARD-2
< AdVsMPp Degyp (M) T+ AAVSSMP Decyp (M) (42)

where Dsgup is a suitable PPT adversary built based on A (more specif-
ically, if Aj returns S = 1, Dsgmp returns a uniformly chosen b'; else,
Dssmp simulates one of the two games Gf(i)vf and G 5(6)))

1) (6,571
Game G((?V % G?'(?v—l) is the same as G((J)«, 1) except for the gen-
eration of KZ*]7 when mwv = 0. Specifically, in G(m _1) itm;, =0,
the challenger computes K, = PubEv(hpk; -, ij’wzjry)’ instead of

SecEv(hsk; -, x} 0 w) The projective property of HPS guarantees that the
view of A in G‘(SZ.(’j?V_l) are identical to that in Gr((’])7 -
Note that
—_ 5
So combining Eq. (36)-(43) finishes the proof of Lemma 1.
What remains is to prove Claim 1.

Proof (of Claim 1). Note that BAD() ., denotes the event that in G?M)W 1)

A submits a decryption query (i,c = (xl, -+ ,xp,T)), such that i <n, (i,
c) ¢ C, XVer((Kq, H(pki,x1,--- ,2¢)),T) =1, 2y ¢ L and M = XVer(?W,
T)=1.

If z # a7 o the perfect universality, ,; of HPS implies that K, =
SecEv(hsk;,xy) is uniformly distributed over Cy, from A’s point of
view, since the only possible information A has on hsk; , beyond hpk;, is

K}, . and K], is not equal but related to SecEvl(hsk; , z} ;) in game

G:W 1 (note that Kl*JV has been updated with algorithm ReSamp in

G?Z.(A;),Y_l)). In this case, the probability that BADE?},Y occurs is at most

qaAdviaC ().

If 2 = 2}, and T = T, then (1, ,x0) # (xf’j,l,"- 795;]‘,[)
(otherwise (i,c) € C). Because game Gg excludes hash collisions, we have
that K # Ky, i Semi-uniqueness of XAC guarantees that m; = -+ =
(4)

my = 0, so in this case, BAD,; does not occur.
Tjn but T # T, then K, = SecEv(hskiy, z7;), and

BAD(]),y occurs only if XVer(K.,,T) = 1. Note that in this case, what

A knows about hsk;, beyond hpk; - is given by (K}, KT ;) and
. Since K7, is computed with ReSamp(~, K, ;ﬁ,Y,T”) A’s informa-
tlon about hsk;, beyond hpk; , is actually from K 2y and 7T7;. Hence,

for each decryption query, the probability that A generates a T #* 7

If v, = x;

48

such that XVer(K.,T) = XVer(SecEv(hski,,z};,),T) = 1 is at most
Adv3YB()). So in this case, the probability that B/—\DE J)’Y occurs is at
most gzAdv§RE ().

Therefore, Pr[BADE]),Y] < ggmax{AdviME()), AdvSR2(\)}. 0
O

Proof (of Lemma 2). Let BAD3 o (resp. BAD3 1) denote the event that in
game Ggojg—1 (resp. G jjp=1), A submits a decryption query (i ¢ Zop,
¢ = (x1, -+ ,2¢,T)) ¢ C such that there is some v € [{] satisfying that
z, ¢ L but m, = 1. Note that Gss—; and Gz 3—; are identical as
long as the respective events BAD3 2 and BAD3; do not occur, and that
Pr[BAD3.2] = Pr[BAD31]. So for any (even unbounded) distinguisher D,

| Pr[Ds(Gs25=1) = 1] = Pr[Ds(Gs1jp=1) = 1] [< Pr[BAD3o]. (44)

Now we compute Pr[BAD3 3.

For any 6 € [¢4] and any v € [{], let BADgf; denote the event that the
x~ of A’s 6-th decryption query (i,c = (z1,--- ,2¢,T)) makes BAD3 2 oc-
cur for the first time. So we have Pr[BAD3 2] < 3 (5. ciguix (g PTBADS]].

Fix (0,7) € [q4) x [¢]. For A’s 6-th decryption query (i,c = (z1,--- ,
x¢, T)), we assume that ., ¢ L (as necessary for BADgf;). Let F; denote
the event that x., ¢ {z , ;“|m*‘ s F2 denote the event that x, =

;. and T = T, for some j' € [|m]|], and F3 denote the event that

Ty =} for some j" € [lmi|] but T # T7;,. Thus,

1,7

il

Pr[BADgf;] Pr[BADS|F1] - Pr[F1] + Pr[BADS]|Fo] - Pr[Fy)
+ Pr[BADS |Fs] - Pr[Fs]. (45)

* *
When z., ¢ {xi’17,y,"' s} |y

universalg 1, K, = SECEv(hsk; -, z-) is uniformly distributed over Ky, =
XK from A’s point of view. Thus, security against impersonation attacks
of XAC guarantees that the probability that m, = XVer(K.,T) = 1 is at
most Adviat ()). So we have

} and = ¢ L, since HPS is perfectly

Pr[BAD}]|F1] < AdvEAE (V). (46)
When there is some j' € [jm|] such that z, = 332] and T' = T;:j"

considering that the decryption oracle does not return J_ we derive that
(@1, ,we) # (@] j 50+, %] ;1). Because of the modification introduced

49

in Gg, K # K {;i .Since T' =T /> semi-uniqueness of XAC implies that

Pr[XVer((K,, K;),T) = 1] = 0. Hence,

Pr[BAD; 7 |F2] = 0. (47)
0,5y but T' # Tifj”
our reasoning is as follows. We note that K., = SecEv(hsk;,z,) is u-

niformly distributed from A’s point of view (when ignoring T7';), since
Ty =2 € L and i ¢ Zop. Hence, security against substitution attacks

When there is some j' € [|m}|] such that =, = =}

g’y —
of XAC guarantees that the probability that m, = XVer(K,,T) =1 is at

most Adv§S2(\). In other words, we have

Pr[BADSJ|Fs] < AdviRC(A). (48)
Combining Eq. (45)-(48), we derive that
Pr[BAD43] = Pr[BADY]|F1] - Pr[F1] + Pr[BAD}]|Fs] - Pr[Fs)

= max{Adviac (A), Adviag (V) }. (49)
Therefore,
Pr(BADso] <) Pr[BAD}]] < gaf max{Adviac (M), AdviRE(A)}. O
(6,7)€lgal x[€] 0

F Security Notions for KEM and MAC

We recall the notion of one-way security in the presence of a plaintext-
checking oracle (OW-PCA security) [29] for KEM, and the notion of
strong unforgeability under one-time chosen message attacks (sUF-OT-
CMA security) for MAC as follows.

Definition 12. (OW-PCA for KEM)[29]. We say that a KEM scheme
KEM = (KemGen, Encap, Decap) is OW-PCA secure, if for any PPT ad-
versary A, the advantage Adv%gﬁEA()\) = Pr[Exp(K)l\E’K;l%JA()\) = 1] is
negligible, where experiment Exp&)gji‘cA()\) is defined in Fig. 12.

We write that CoIIPKKEM’n(l)‘) = Pr[3i # ', s.t. pk; = pky ¢ (pka,
sk1) < KemGen(1*),--- | (pky, sk,) < KemGen(1*)]. Tt is obvious that a
PPT adversary A can be constructed, such that

2
Adviehi 4 (V) 2 L CollPKkemq(1%).

In other words, OW-PCA security guarantees that CoIIPKKEM,n(lA) is
negligible.

50

B O B O O
(pk, sk) < KemGen(1*) K < MacGen(1*); b’ :=0
(K*,c*) + Encap(pk) (m, s1) + AT (1Y)
K + A% (pk, c*) t + Auth(K,m); (m*,t*) « AT (¢, s1)
Return (K < K™) If (Verf(K, m*,t*) = 1) A((m™,t") # (m,t)):
b =1
Check(K, ¢): Return v’

Return (Decap(sk, c) < K) VERF(m, t):

B < Verf(K,m,t); Return 8

Fig.12 Experiment for defining OW-PCA security of KEM, and experiment for
defining sUF-OT-CMA security of MAC

Definition 13. (sUF-OT-CMA for MAC). We say that a MAC scheme
MAC = (MacGen, Auth, Verf) is sSUF-OT-CMA secure, if for any PPT ad-
versary A, the advantage AdvigAcOr “MA(N) 1= Pr[ExpiiicOf “MA(N) =

1] is negligible, where experiment Expﬁ}JEC‘&T‘CMA()\) is defined in Fig. 12.

G Deterred Proof of Theorem 6

We provide an intuition of our proof here. In order to prove SIM-Bi-
SO-CCA security, we need to provide adversary A with some message-
independent dummy ciphertexts (c7,--- ,c}), and then open them to the
real messages. We proceed in a series of games.

The key point is that for any ¢ € [n] and j € [|m}|], c:;ym = K:jym ®
m?[j], i.e., given c;-kjym and K Z* 27, my[j] is fixed. Hence, after generating
the dummy ciphertext c}[j] for A and before A submits a selective open-
ing query (Zg,Zg) such that (i,j) € Zg or i € Ir, we need to block A’s
random oracle query on K7 ;, and decryption query on (@', (ko™ csvm 1))
satisfying Decap(sk:f,em,ckem) = K7, since any such call would assign a
value to K3, (We stress that it’s possible that ¢’ # i but meanwhile
Decap(ski]iem,ckem) = K;;. That’s why we require that the MAC tag
should be generated on a KEM ciphertext, a SE ciphertext and the pub-
lic key of KEM.) Hence, from game Gg on, we will abort once A submits

the above decryption query before querying the random oracle on K;,.

51

Note that if A did not query the random oracle on K, before, K7
is still uniformly distributed. So the probability of abort is neghglble be—
cause of SUF-OT-CMA security of MAC. Then from game G4 on, we will
abort if A queries the random oracle on K7 ;. The probability of abort is
also negligible due to OW-PCA security of KEM

Proof (of Theorem 6). For any PPT adversary A, in the real experiment
Expgﬁgégﬁj()\), we denote the challenge ciphertexts and their correspond-
ing messages by (c})ic, and (m]);c[n), respectively. More specifically,
for each i € [n] and j € [[m}|], we write c[j] = (cj?em,cijm,tfj) We

write rj[j], K, K;3?™ and K7 similarly. For each i € [n], we write

pk; = pkfem, and sk; = (pkfem, skfem). Again, we stress that in the real
experiment Expgkggﬁj()\), for any i € [n], pk; is employed to encrypt
|mY| messages (i.e., m/[1],--- ,m}[|m}|]).

In Fig. 13, denote by HASH; (resp. HASHs) the random-oracle interface
of A; (resp. Az and A3), and denote by Decy (resp. Decs) the decryption-
oracle interface of Ay (resp. Ay and A3).

Without loss of generality, we assume that after receiving ((r}[j],
m;[j]) i j)ezs, (8ki, m])iezy), the adversary (i.e., Asz) will always query
the random oracle Hgrp on

o K foreach (i,]) € Ig, where K is from (K7 ;, ¢;%™) < Encap(pk;*™;
i [7);

e K,;; = Decap(sk;,cike™) for each i € Zg and j € [|m}|].

(2 1,]

We also assume that after receiving (sk;, m});cz,, A will not query the
decryption oracle on any (7', -) satisfying i’ € Zg. Note that this is also
without loss of generality, because A can decrypt the ciphertexts with
sk; by itself.

Let gq (resp. ¢.) denote the total number of decryption queries (resp.
random-oracle queries) made by A. We write k := max;; |m;|. We stress
that k is not a fixed value, and it is totally determined by .A.

Since Hro is modeled as a random oracle, we assume that the chal-
lenger maintains a local array Ly and employs it to keep track of issued
calls (either by the game or A) of Hro[]. Specifically, for a query K,
the random oracle returns Hro(K) = (K", K™%) if there is an en-
try (K, (K*Y™, K™%)) € Ly, otherwise it samples (K*Y™, K™%) « {0,
1} x Kmac, adds (K, (K™, K™%)) to Ly, and returns (K*Y™, K™ac)
(we write Hro (K) := (K'Y, K™%) and implicitly assume an update op-
eration Ly := Ly J{(K, (K™, K™%))} to happen in the background).

Now, we proceed in a series of games.

52

Games [Go-G1], (G1-G4), [G2-Gy |[G3-G4l| (G4,

pp = 1 « Setup(l*); n:=0; C:=0; (M,s1) + .AXIIMSH1 MiRec,Decy (pp)

If 34 #4, s.t. pk,’fem = pk?/em: abort

M := (m7,--- ,m}) + M

For i =1 to n:

For j =1 to |mj[:
7 [j] < Rencaps (K7, cfRe™) « Encap(pkfe™;r} [5])
[If (K7 ;,-) € Ly: AbortEARLY:=true; abort]

If 3 (i, 5") # (", 5"7), s.t. K:,)j, = Kj*,,vj,,: abort

For ¢ =1 to n:

For j =1 to |mj|:

2 B 2
[(KT7™ Ki7e) = Hro (K7 ,)s e’ ™ = K57 @ mil]| (efs!™ Ki7e€) « {0,1}¢ x Kuac
£, = Auth(K; 708, (pkFem™, ciRem 7o) el] = (ef =™, ef 5™ 45 ;)5 € = C U {(i, e} i)}

! 4 St
HASH5 ,Deco ,, 4 7 o 7 o
(Zs,ZR,s2) + A, ((ei)ien)» 51)

(Hro (K] ;) = (5™ @ milil KIT*N) s jyexs UG lTeTr Telimz Ny

HASHg ,Dec . .
out — Ay 22 (e 5], mi) (5, jyezg (ski m])iezy» s2)
Return (M, M,Zg,IRr,out)

HASH1 (K) :

If (K,-) & Lp: (KV™, K™°) « {0,1}¢ x Kmac; Hro(K) := (K*V™, K™2°)
Return Hro (K)

HASHp (K) :
If (K,-) ¢ Ly:
If K = K:, I for some i’ € [n] and j’ € Hm:,”

i :
* _ xsy *mac
Hro (K7 ;) = (¢ ; ivj
Else:

(U™, K9 (0,1} x Kyacs Hro(K) = (KU, Kmae)
Return Hro (K)

MkRec() :

n=n++1; (pk,ﬁem, sk,ﬁem) — KemGen(lA); pky = pkﬁem; sky = (pkzem, skzem)
Return pk,

Decy (i, (cFem, csvm 4y ;

If (i > n) v (@, (cFe™, c5Y™ 1)) € C): return L

K = Decap(sklem, ckemy; (KY™ ' K™) = Hashy (K)
If Verf(K'™¢, (pkf/'”", chkem c®Y™) t) = 0: return L

Return m = %YM @ K°Y™

Deca i/, (cKem™ cs¥m 1))

If (i > n) v ((@,(cFe™, c5Y™ 1)) € C): return L
K = Decap(sk:.",em, ckem)

[1f (K e (&7, lic€nljellmi}NACK,) ¢ Lu): return L
(?sy'/n R ?’HL(I/C) — HASH2 (?)
If Verf(K'™¢, (pkf,'”", ckem, c®Y™) t) = 0: return L

Return m = %YM @ K°Y™

Fig.13 Games Go-G4 in the proof of Theorem 6.

Game G_i: G_; is the real experiment Expgfiég'h;ejl()\), ie.,

G_1 = Exppieo i (). (50)

53

Game Gg: Gy is the same as G_1, except that we abort this game (with
output 1) as soon as there are some i # i’ such that pkfem = pkik,em,
or there are some (i,7) # (7,j') such that K7, = K .. Since Encap
uniformly samples K, by a union bound, we derive that for any PPT

distinguisher D,

nk(nk — 1)

2[Kem|

nk(nk — 1)
2A+1

[Pr[D(Go) = 1] — Pr[D(G_1) = 1]| < CollPKkem.»(1*) +

n

<5 (51)

< SAdvduteR (\) +
for a suitable PPT adversary Acon, where k= max; ; |m}|.

Game Gi: Game G is the same as Gg, except that we abort this game
(with output L) as long as AbortEARLY occurs. Let AbortEARLY; denote
the event that A; submits a random-oracle query K such that later there
is some K7, (for some i’ € [n] and j' € [lm}[]), generated by Encap,
satisfying K*, j= K. Let AbortEARLY, denote the event that A; sub-
mits a decryptlon query (i" (ckem, c®¥™ t)) such that later there is some
K (for some i’ € [n] and j" € [lm}|]), generated by Encap, satisfying
Decap(s kzkem ckemy = K}, ;;.Obviously, AbortEARLY occurs if and only if
AbortEARLY1 or AbortEARLYg occurs.

Since Encap unlformly samples the session keys, for any ¢ € [n] and
any j € [|m;|], K; is uniformly sampled. Note that .A; makes its random-
oracle queries and decryption queries before seeing the challenge cipher-
texts (ci,- -+, cy,), So it has no information about K for any i € [n] and
any j € [|m]|]. Therefore, we derive that for any PPT distinguisher D,

| Pr[D(G1) = 1] — Pr[D(Gg) = 1]| < Pr[AbortEARLY]| 4+ Pr[AbortEARLY3)]
i nk + i nk
- 2 (-1 ot 22 — (60— 1)

(52)

where k = max] ; [m|.

Game Gg: Game Go is the same as Gi, except that (i) the procedures
YRS KFP) = Hro(K); o™ = K™ @ mi[j]” are replaced
with “(c; woyni ,Kmee) {0,131 x Kyac” for all i € [n] and j € [Jmf]],
(i) “(Hro(K7,) = (¢ i oML KT yers Ut ez jetmen) 25

added the generation of the answer to the selective opening query, and

54

(iii) if A2 and A3 submits a random-oracle query K such that (K, -) ¢ Ly
and K = K}, ;, for some i’ € [n] and j' € [|m][], the challenger sets that
Hro(K};) = (i7" @ mj[j], Ki7), as shown in Fig. 13.

We claim that for any (even unbounded) distinguisher Dj,

Pr[Ds(Gz) = 1] = Pr[Dys(G1) = 1]. (53)

The reasons are as follows. Assuming neither AbortEARLY| nor AbortEARLY
happens in Gg, for any i € [n] and j € [|mj], (K73, K;7) is uni-

0.
formly and independently distributed when A; outputs (M, 81) Hence,
for each i € [n] and j € [jmj[], ;" = K3'" @ m{[j] is also uni-

k,kem *kem *SYm

formly distributed, and ¢} ; is a valid tag of (p NN) under

a key from the uniform dlstrlbutlon Consequently, during the genera-

tion of (c},---,c;), for each ¢ € [n] and j € [|m}|], the challenger can
sample (c; 7™, K}7"*) uniformly and compute ¢} ; using K;7"*, without
changing the dlstrlbutlon of (¢f, - ,c’). In order to keep HRO con51sten—

, if Az queries the random oracle on K = K, ;, for some i’ € [n] and
J' € [Im}]] (resp. submits a selective opening query (Zs,Zg)), the chal-
lenger sets that Hro (K7 /) = (c*,sy,m S mj [j'], K;"7¢) (resp. sets that for
all (i,) € Zs U{(i,5) | i € I, € [[mi[]}, Hro(K7;) = (7™ @ my[j],
K[77¢)). Therefore, we obtain Eq. (53).

Game Ggj: Let BAD denote the event that Ay or A3z submits a decryption
query (', (k™ ¢3¥™ 1)) such that for K = Decap(skik,em, ckem), there is
some (i, 5") satisfying that

(i) i € [n] and j” € [jm},|],
1 ro(K) has not yet been programmed, an
ii) Hro(K) h b og) d, and
(i) (", (cFem, cvm 1)) ¢ C) A (K = K) A (Verf(KEmse, (phn, cem
M)) = 1).

Note that without loss of generality, we have already assumed that after
receiving (skj, m});cz,,, the adversary will not query the decryption oracle
on any (;, -) satisfying i € Ig. So if the decryption query (¢, (cFe™, csv™,
t)) is made by As, then i’ ¢ Zg. Obviously game Gg is the same as G,
except that we abort this game (with output L) as long as BAD occurs.

Now we present the following lemma with a postponed proof.

Lemma 4. There is a sUF-OT-CMA adversary Auac attacking MAC,
such that

Pr[BAD] < nkAdvigaco A (N),

where k = max; , |[m;|.

55

Hence, for any PPT distinguisher D,
[Pr[D(G3) = 1] — Pr[D(Gs) = 1]| < Pr[BAD] < nkAdvijacot A (N). (54)

Game Gy: In this game, a new abort condition is added (as shown in Fig.
13). Specifically, if A or A3 submits a random-oracle query K = K
for some i’ € [n] and j' € [|m}|] when (K,-) ¢ Ly, then the challenger
raises the event AbortH and aborts (with output L). Again, we present
the following lemma with a postponed proof.

Lemma 5. There is an OW-PCA adversary Axem attacking KEM, such
that for any PPT distinguisher D,

IPr[D(Gy) = 1] — Pr[D(G3) = 1]| < kiAdvidduigs, (V). (55)

where k = max]_; |m!| and n is a polynomially upper bound of the number
of receivers that adversary A creates.

Now, we construct a PPT simulator S for A, as shown in Fig. 14. We
also let & maintain a local array Ly and use it to keep track of issued
calls (either by the game of A). Obviously S simulates G4 perfectly for
A, so we derive that

EXPbKE s (V) = Ga. (56)
Therefore, combining Eq. (50)-(56), we derive that for any PPT dis-
tinguisher D,

SIM-Bi-SO-CCA
AdVpKE, o ASD (A

= |Pr[D(ExpBkeo 4 (N)) = 1] — Pr[D(ExpBieoidedl () = 1]
= |Pr[D(G_1) = 1] — Pr[D(Gy) = 1]|
nk(nk — 1) nkq, nkqq
P TR, TP g
+ nEAdvi}f,fC&TM'ACCMA(A) + n’l%Adv‘@meKﬁM (\)

n OW-PCA
< SAdvgem A, (M)

for two suitable OW-PCA adversaries Acon, Akem and a suitable sUF-
OT-CMA adversary Amac, where k = max]" ; |mJ|.
We catch up with the proofs of Lemma 4 and Lemma 5.

Proof (of Lemma 4).
Based on A, we construct a PPT adversary Amac as shown in Fig.
15 and Fig. 16, where we use VERF to denote Apmac’s verification oracle.

56

SSimiRe (1))
pp = 1% « Setup(1*); n:=0; C:=0; (M,s1) ATSHl HMeReeDeC1 ()
If 34 #4, s.t. pk?em = pkf,em: abort
51 := ((Pki> ski)ig[n)> ™ C, L, M, s1); Return (M, 51)

Sa(len = ((Im7 |, £);¢(n]), 51) ¢
For i =1 to n:
For j =1 to |m:\
7 [j] Rencapi (K], e7e™) « Encap(pkfe™; v} [5])
If (K;j, -) € Ly: AbortEARLY:=true; abort
If3 (i, 5") # G, 57), st K o= K, o abort
For i = 1 to n:

For j =1 to |mJ|:

4 c k ke
(€50™ KETme) {0,110 x Kyac: 1] = Auth(K7T0, (pkEem, cphem creumy)
. ke s . .
eilg] o= (efkem, e 4x) ¢ = e U {(i el i)}

HasH ,D.

(Ts: IR, s2) < Ay 27%2((e])iens 51)

S2 = ((Pki, ski)iemn), (v7 9], € 9], K7 50 K?,Tac)ie[n],jE[lmz\]’"’ C,Lu, M, Zs, IR, s1)
Return (Zg,ZR, S2)

S3((mi i) i, jyezg, (M))iezy,52)
* — ksym [*mac - —
(HRO(K'L,]')*(CI-J- © mj [J],Ki,j >>(i,j)€zsU{(Lj)liGIR,jGHm;fH}
HASHg ,Decq ¢

out + Ag (75, m7 D 4,5)ezgr (ski-m)iez g, s2); Return out

HASH; (K) :
I (K,) ¢ Lu: (K*U™, K™9¢) {0, 1} x Kyacs Hro (K) i= (K°¥™, K™ac)
Return Hro (K)

HASH (K) :
It (K,) ¢ Ly:
If K=K}, 4t for some i’ € [n] and j’ € [Im7[]: AbortH := true; abort
Else: (K59™, K™Y (0,1} x Kync; Hro (K) = (K5¥m, grmaey
Return Hro (K)

MkRec() :
i . — . kem kem Ay. — kem, — kem kem
SimMkRec(); n = mn 4 1; (pkj®"™, sk} ") < KemGen(17); pkp := pk®""; skpn := (pk; ", sk ™)
Return pky,

Decy (i/, (ckem, YT 1))
If (i > n) Vv ((i, (cFe™, Y™ 1)) € C): return L
K= Decap(ski.c,cm, ckcm); (K*Y™ K™*) = HasH; (K)
If Verf(K ¢, (pki.",em, chem Y™y) = 0: return L

Return m = c5Y™ @ K°Y™

Decy (i’, (cFE€™, cSY™ 1)) :
If (i > n) Vv ((i, (cFe™, Y™ 1)) € C): return L
K= Decap(skf,"‘m, ckem)
If (K € {K'i*,j i€ [n],j€[lm]})A(K,)¢ Ly): return L
(K°Y™ K™%°) = HASHa (K)
If Verf(K ¢, (plcf,em, ckem csYmy 4y = 0: return L

Return m = c5Y™ @ K Y™

Fig. 14 Simulator S = (S1,82,S83) in the proof of Theorem 6.

o7

Adversary A‘,{fxpcyl(lx) :

(m*,t%) 1= (L, L); pp=1> « Setup(1*); n:=0; C:=0; (M,s]) Ay
If 34 5 i, s.t. pkfe™ = pkFe™: abort

M := (mj, -+ ,m}) < M; i+ [n]; j <+ [lmZ]]

HASH1 ,MkRec, Decl(o)

For i =1 to n:
For j =1 to |mj|:
v} [j] < Rencaps (K J,c*kem) — Encap(pkkem,r E2))
If (KL],) € Ly: AbortEARLY:=true; abort
3,5 # G5 ”) st K = =K o+ abort

ST (0,1} i (phEe, crhem, sy
i i 7,5 i,3
51 5= ((m*, %), (35), (Pki» ski)ie(n)> (07 6], K7 5o et Be™) g n) sele © ~~y ,n,C, Ly, M, M, s1)

Return (m, 371)

Adversary A‘,{}fi{: 5(t,51):

1= B ef[] = (e, eI 4) ¢ = C U {(F,eX ()
For i € [n]\ {i}:

For j =1 to |m|:
(ep3¥™, KFmae) « {0,1} x Kyacs t]

*kSY
c~~
i J

= Auth(K;To°, (pkkem, crkem oxoumy)

i,J i, »J i,j
e i) = (v*’“"‘,c:;‘;y””,t;p; c=cu{(iec;li}
For j € [|m¥[]\ {7}:
(€370, KZ74¢) « {0, 1} X Kacs £ = Auth(KFH0C, (pECT, cThem, c22Tm))
1,7 sJ B 3] K2
Cli) = (ehem, e ™ er)y ¢ = Cu{(G e i)}

1,
HasHo D
(Zs,Zr,s2) HA 2 ec2((C1 jieln],jelk]> 51)
If ((i,5) € Zg) V (z € Zr): ABORT-Null := true
(Hro (K7 ;) = (ej 3™ @ milil KIF) (i, yezs UL/ 3/ €T 37 €llm?, 1}
HASHg Decy ((px (), K

out « Ay mi i, j)ezg (ki mililiezy je(my) 52)

Return (m*,t*)

HASHq (K) :
If (K,-) ¢ Ly: (K*V™, K™%) « {0,1}* x Kyac; Hro (K) = (K*¥™, k™)
Return Hro (K)

HASH2 (K) :
It (K,) ¢ Ly:
If K = K i for some i’’ € [n] and j"/ € Hm:,,”:
It (¢, 5 l) # (%J): HRO(K://’]-//) = (C*/s/ym @S m; //[1, K:/T/rj;/(;)
If (i', ") = (i,7): ABORT-Null := true
Else:

(KU, K™¢) (0,1} x Kwac; Hro (K) = (K7™, K™%¢)
Return Hro (K)

MkRec() :
n=n+1; (pkﬁcm, Slechm) — KemGen(l’\); pky = pkﬁcm; sky = (pkﬁem, Slechm)

Return pkp

(The procedures of the decryption oracles Dec; and Decy are given in Fig. 16.)

Fig.15 Adversary Amac = (Awmac,1, Amac,2) attacking MAC.

For each i € [n] and each j € [|m]|], denote by BAD; ; the event BAD
which is caused by the query (i, (¢**™, ¢*¥™, t)) satisfying Decap(skik,em,

o8

Decy (i’ (ckcm7 YT)
If (i' > n) Vv (@@, (cke™, c5Y™ t)) € C): return L
K= Decap(sk?,em, ckem); (KY™ K™) = HASHy (K)
If Verf(K'™?¢, (pk?,“m, ckem ¢sYmy ¢) = 0: return L

Return m = c¢5Y™ @ K°Y™

Deca (i, (ck’ﬁm7 YT) ¢
If (i > n) Vv ((i', (cFe™, Y™ 1)) € C): return L
K = Decap(sk?,em, ckem)
1t (K = Ky s for some i/ € [n], " € [[m,[1}) A (K.) & Lu):
If (i, ") # (i, 9):
(®*V™ R™*) = nastiy (K)
If Verf(K'™?¢, (pk?,em, ckem csymy 4y = 0: return L
Return m = ¢5Y™ @ K°Y™
Else:
If VERF((pk?,em, ckem esymy 4y = 1.
(m*, t%) = ((pkke™, cFem, "™y 1); ABORT-RETURN := true
Else:
Return L

Fig.16 The decryption oracles provided by Amac in Fig. 15.

ckem) = K} ;. Thus we have Pr[BAD] < >71" leil’:l Pr[BAD; ;]. We al-
so introduce two special events, ABORT-Null and ABORT-RETURN (as
shown in Fig. 15 and Fig. 16), and require that when ABORT-Null (resp.
ABORT-RETURN) is set true, Ayac immediately terminates the simula-
tion and returns (L, L) (resp. (m*,t*)) as its final output.

Now we compute Pr[BAD; ;] for each ¢ € [n] and each j € [|m}]|].

Firstly, we note that if neither ABORT-Null nor ABORT-RETURN is
set true, then Ayac perfectly simulates game Go for A.

Secondly, ABORT-RETURN is set true only if (K;*-]v,) ¢ Ly (ie.,
ABORT-RETURN is set true only if neither A nor the gﬁme has queried
the random oracle on K = K;*-jv) Hence, the termination incurred by
ABORT-Null will not influence the probability of ABORT-RETURN =
true. In other words, if we introduce the same event ABORT-RETURN in
Go, then Pr]JABORT-RETURN] in Gy is the same as PrJABORT-RETURN]
in the game simulated by Apmac.

Thirdly, note that for any fixed ¢ € [n] and any fixed j” € [jm},|],
BAD;~ j» occurs if and only if ABORT-RETURN occurs when (fzv, :;V) 18 fized
to be (i",7"). In other words,

PT[BADi//7j//] = Pr{ABORT_RETURN ’ (LE) — (i”,jﬂ)].

When ABORT-RETURN is set true, (m*,) = ((pkhem, ckem, csym))
and VERF(m*, t*) = 1. If ¢/ # 4, we derive that pkhem £ pk;fem because of

59

the change introduced in Gg. So

v Ix k k k k ~
(m*,t*) — ((pki/em’c em7csym)’t) ?é ((pk;em7 :Jemv :jym) t~J) (m,t).

If i/ = i, since (i', (k™ ¢sv™ 1)) ¢ C and (i, *kem, :jym,t;fj)) € C, we

?
derive that (cFem, csvm, t) # (cf’;em, :Sym,f%‘ ~), Wthh also implies

(m*, 1) = ((pkE™, 5™, V™), 1) # ((pkE™, ’jm jjym),t~5) (m, 1).
Therefore,
AdviiAc O OMA()) = Pr[ABORT-RETURN].

Hence, we obtain that

Pr[BAD]
n |m
<)) Pr[BAD;,]
=1 j=1
n |m*|
=>) Pr[ABORT-RETURN | (i,) = (i,)]
i=1 j=1
<nky_ Z Pr[ABORT-RETURN | (7, 7) = (i,)] Pr[(i,5) = (,4)]
i=1 j=1

< nk Pr[ABORT-RETURN]
= nkAdviac 4 MR (N),

where k = max; ; [mJ|. 0

Proof (of Lemma 5). G4 and Gs are identical except that AbortH = true,
i.e., for any PPT distinguisher D,

IPr[D(Gy) = 1] — Pr[D(G3) = 1]| < Pr[AbortH].

Assmue that n is a polynomially upper bound of the number of re-
ceivers that adversary A creates. We show an OW-PCA adversary Akgwm,
attacking KEM, in Fig. 17 and Fig. 18. We introduce three special events
ABORT-RETURN, AbortHg,;; and ABORT-Null, and require that when any
one of these three events is set true, Axgm immediately terminates the
simulation and returns the current K as its final output.

60

Adversary A&hg’,\cllk ;:I::kem,) :

K:=1; i+« [A]; pp=1" « Setup(1*)
ni=0; Ci= 05 (M, s1) « APSTIRECDEL (o)
If 7 > n: ABORT-Null := true
If 34 #4, s.t. pk?em = pkf/em: abort
M := (mj,---,m}) + M; j < [Im¥]]
For i € [n]\ {i}:
For j =1 to |m}|:
5[] < Rencapi (K7, cf5™) Encap(pkf™; v} [5])
If (K?,j’ -) € Ly: AbortEARLY:=true; abort
For j € [[mZ[]\ Gk
7 [] = Rencaps (K7 ;5 c55°™) = Encap(pk7 ™ r7[5])
If (Kfj, -) € Ly: AbortEARLY:=true; abort
skem
i]
If 3 (K,) € Ly, s.t. Check(K, c%%ﬁm) = 1: abort

= c*

13 (i, 5") # 6", 5"7), s.t. K o= K, jir: abort
For i =1 to n:
For j =1 to |mj|:
(e; ™ Kiee) « {o, 1} % Kacs t7 ; = Auth(K[7e¢, (pkFem, Cfﬁem,
il = (efkem, e s¥™ 15); ¢ = Ccu{G, e i}
HASH9 ,Dec
(Ts IR, s2) + Ay 27 2((c])ign]s 51)
If ((i,7) € Zg) V (¢ € IR): abort

SR

(Hro (K7 ;) = (e7 3™ @ milil KIT") (i jyezs UL /)i €T g, €llm?, 1}

HASHo ,D wrs . P .
out + Ay 272 ((rf[5], m] 1D, 5)ezg > (ski, mj [J])ing,jE“mzHy s2)
Return K

HASH; (K) :
If (K,) & LH¢ (Ksym’Kme) P {07 1}1@ x KMAC? HRO(K) = (Ksy’NL’K’"L(Lu)
Return Hro (K)

HASHg (K) :

If (K,-) ¢ Ly:
If K = K:,,‘j,, for some (i, ") # (i, 7): AbortHg,; := true
If Check(K,c*) = 1:

K = K; ABORT-RETURN := true

If 3(c®¥™, (K*Y™, K™*)) € Hpqtcn, s.t. Check(K, c®¥™) = 1: Hro(K) = (K¥™, K™*°)
Else: (KSU™, K™%) « (0,1} x Kmac; Hro (K) = (KSV™, K™ac)

Return Hgo (K)

MkRec() :
n=n-4+1
Ifn =7 pkﬁem = ;;Ekem; pkyn 1= pk:fi"‘m

Else: (pk:ﬁem, skﬁem) “— KemGen(l’\); pkn = pkﬁem; sky = (pk:ﬁem, skzﬁem)
Return pk,

(The procedures of the decryption oracles Dec; and Decy are given in Fig. 18.)

Fig. 17 Adversary Akem attacking KEM.

Now we take a look at adversary Aggm in Fig. 17 and Fig. 18.

61

Decy (i/, (ckcm, YT)
If (i > n) Vv ((i, (cFe™, Y™ 1)) € C): return L
If i/ # i
K = Decap(sklem, ckemy; (K3V™ K™¢) = HasHy (K)
If i =4
If 3(K,-) € Ly, s.t. Check(K, cFe™) = 1:
K =K; (K°¥™ K™*) = HAsH, (K)
Else:
(K™ RK™) « {0,1} x Kyac; Add (cFe™, (K™, K™%)) to Hparen
If Verf(K ™€, (pkf,em’, ckem csY™Y) 4) = 0: return L

Return m = ¢5Y™ @ K°Y™

Decy (i, (cFe™, Y™) :

If ((i, (<™, eV) e C) v (i € I}E): return L

If i/ # i
K = Decap(skf,em, chem)
1 (K € {K7, |i€[nl,j € (Imil], (is5) # DD A (R,) & Lu): return L
If ((Check(K,c*) =1) A ((K,-) ¢ Ly): return L
(V™ K™Y — Hashy ()
If Verf(K'™?¢, (pkf,em, ckem csYmy 4) = 0: return L

Return m = c5Y™ @ K°Y™

If i/ =1
If3 K € {K]; |i€nljelm]ll (@5 # (i 3)} st (Check(K,cP*™) = 1) A ((K,-) & Ln):
Return L

If (cke™ = c*) A (V(K,) € Ly, Check(K,c®™) = 0): return L
If 3(K,-) € Ly, s.t. Check(K, cFe™) = 1:
K=K; (K™ K™*) = HASHz (K)
If Verf(K™¢, (pkf,em, ckem csymy 4y = 0: return L
Return m = Y™ @ K°Y™
Else:
(K°V™, K™) « {0,1} x Kyac; Add (cPe™, (K™, K™%%)) to Hyaren
If Verf(K'™¢, (pkf/em, chem Yy ¢) = 0: return L

Return m = %YM @ K°Y™

Fig.18 The decryption oracles provided by Akem in Fig. 17.

. ~kem ~ ~ . :
Upon receiving (pk ,c*), where ¢* is an encapsulation of some key

K* that Akgm aims to find out, Akgm runs A as A is run in G4, except
for the following differences:

(1) At the beginning, Akgm samples a random i [n]. If i > n, then
ABORT-Null is set true. Obviously,

Pr[-ABORT-Null] = Prfi < n] = % (57)

From now on, when ABORT-Null # true, we write that I#G?) = {(i",

i) 11" € [nl, 5" € [m3], (i, 5") # (i, 7))
(2) Note that when ABORT-Null # true, Axem successfully sets that pks =

—~kem k ~ ~
pk and clifm := c*, where j < Hm;*\]

62

(3) When ABORT-Null # true, since Akgm knows all the (zg)(w)el g

and can access to the Check(-, -) oracle, it can check by itself whether

there exist (i',j') # (i, ;) such that K, ,, = Kj ;u, as in Gq.

(4) When ABORT-Null # true, if A submits a selective opening query
(Zs,Zr) such that (N' ~') € Zg or i € Ig, then Agkgm apparently has
guessed (; 7) wrong and aborts the simulation immediately. That’s
because when (z j) € Zg or i € I, AbortH will not happen anymore.
So this termination will not affect the probability that AbortH occurs.

(5) If A; submits a decryption query (', (cF¢™, ¢*¥™ 1)) to Decy:

- If i’ # 1, Akem can compute K = Decap(skke™, cem) by itself.

Again, since Akem knows all the (K7;) (i e €T3 and can access

to the Check(-,-) oracle, it can check whether K € {K}; | i €
[n],7 € [|m}]]} and whether (K,-) ¢ Ly. So it can answer this
decryption query directly by itself.

- If —7 Akem cannot compute K = Decap(sk:k6m kem) since it
does not have skiem = skfem In order to obtain (K™, K™*)

Akem firstly checks Whether “J(K,-) € Ly, s.t. Check(K, cFem) =

1”7 or not. If so, then K = K, thus Akem can finish the remain-

ing decryption procedures as in Gy4. If not, we make use of the

“oracle patching technique” from [9]. Specifically, Axgm samples

(K™ K™Y « {0,1}¢ x Kwmac, uses the keys to answer the de-

cryption query, and meanwhile maintains a dedicated list Hpgcn,

adding (cFem, (Ksym,Fmac)) to Hpaten- Then Akem can finish the
remaining decryption procedures.

(6) When ABORT-Null # true, if Ay or Ag submits a decryption query

(3!, (k™ c5¥™ 1)) to Deco:
- If 7&; Akem can compute K = Decap(s kkem ckem) by itself.

Again, since Akem knows all the (K;), DET 5 and can access

to the Check(-,-) oracle, it can check whether K € {K}; | i €

[n],7 € [lm}]]} and whether (K,-) ¢ Ly. So it can answer this
decryption query directly by itself.

)

- If i’ =4, Akem needs to check whether “(K € {K}, | i € [n],j €
[mf|]}) A ((K,-) ¢ Ly)” without computing K = Decap(sklfem,
ckem™). We notice that Axgm knows all the (K:‘])(Z N5 and can

) 2 1,7

access to the Check(-,) oracle, so it can check if “(K € { K5 | (i,

Jj) € I;é(?,})})/\((*) & Ln)” by checking if “3 K € {K}; | i 6 [n],

j € [mif].(i,5) # (i.5)} st (Check(K, ™) = 1) A ((K') ¢
Ly)”. On the other hand, since KEM has unique encapsulations,

63

Akem can check if “(K = K;*;) A ((K,-) ¢ Ly)” by checking if

“(ckem = ¢*) A (V(K,-) € Ly, Check(K,c*™) = 0)”. Therefore,
Akem can finish the procedures “if (K € {K7; 1i€nje
[m#]}) A ((K,-) ¢ Ly)” when i’ =7 in Gy.

Next, in order to obtain (Fsym, Fmac), Axkewm firstly checks whether
“J(K,-) € Ln, s.t. Check(K, cF™) = 17 or not. If so, then K = K,
thus Akem can finish the remaining decryption procedures as in
G 4. If not, we make use of the “oracle patching technique” from [9].
Akem samples (Fsym,Fmac) + {0,1}* x Kmac, uses the keys to
answer the decryption query, and meanwhile maintains a dedicat-
ed list Hpaten, adding (ckem, (?Sym,ﬁmc)) to Hpaten- Then Akem
can finish the remaining decryption procedures

In order to keep the responses to the random-oracle queries and
to the decryption-oracle queries consistent, on each random-oracle
query K (to HASHy(-)) satisfying (K, -) ¢ Ln, Akem checks whether
there is an entry (¢¥™, ([?sym, I?mac)) € Hpatcn such that Check(XK,
¢Fem) = 1: if there is such an entry, then Agkgm sets Hro(K) =
(IA(Sym,IA(m“C); otherwise, Axem generates Hro(K) as before.

Note that when assuming ABORT-Null # true, the probability that
AbortH occurs in the experiment simulated by Akgm for A (denoted as
Ggim) is the same as that in Gy, and that

AdvRn 4e, () = Pr[ABORT-RETURN]

1
> — Pr[AbortH | in Ggin]
nk

1
= — " Pr[AbortH | in Gy
nkn

1
= — Pr[AbortH],
kn

where k = max] ; |m}|. Therefore, for any PPT distinguisher D,

[Pr[D(Gy) = 1] — Pr[D(G3) = 1]| < Pr[AbortH] < kRAdvRRn g, (V)

64

	Simulation-Based Bi-Selective Opening Security for Public Key Encryption
	Introduction
	Preliminaries
	Bi-SO Security for PKE
	Security Definitions
	Separation of SIM-wBi-SOk-CCA and SIM-SSO-CCA & SIM-RSO-CCA

	PKE with SIM-wBi-SOk-CCA Security
	Technique Overview
	Universal Hash Proof System with Key Equivocability
	SIM-wBi-SOk-CCA Secure PKE Construction

	PKE with SIM-Bi-SO-CCA Security
	Cryptographic Assumptions
	The Definition of Decryption Verifiability
	The -Linear-Based Liu-Paterson PKE Scheme in LP15
	Deterred Proofs for the Instantiation in Sec. 4.2
	Deterred Proof of Theorem 5
	Security Notions for KEM and MAC
	Deterred Proof of Theorem 6

