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Abstract—Many recent studies focus on dynamic searchable
encryption (DSE), which provides efficient data-search and data-
update services directly on outsourced private data. Most en-
cryption schemes are not optimized for update-intensive cases,
which say that the same data record is frequently added and
deleted from the database. How to build an efficient and secure
DSE scheme for update-intensive data is still challenging. We
propose UI-SE, the first DSE scheme that achieves single-round-
trip interaction, near-zero client storage, and backward privacy
without any insertion patterns. UI-SE involves a new tree data
structure, named OU-tree, which supports oblivious data updates
without any access-pattern leakage. We formally prove that UI-
SE is adaptively secure under Type-1− backward privacy, which
is stronger than Type-1 backward privacy proposed by Bost et al.
in CCS 2017. Experimental data also demonstrate UI-SE has low
computational overhead, low local disk usage, and high update
performance on scalable datasets.

Index Terms—Backward Privacy, Cloud Computing, Dynamic
Searchable Encryption, Forward Privacy, Oblivious RAM.

I. INTRODUCTION

A. Background and Motivations

Nowadays, most companies and users outsource their pri-
vate data to the cloud for convenience and ubiquitous services.
However, the cloud servers perhaps can be broken by hackers
due to security vulnerabilities and untrusted network man-
agers. To address these, the researchers proposed searchable
encryption (SE) that encrypts the private data in a way that
still allows the user to search on encrypted data directly [1].
To update the data, they also proposed dynamic searchable
encryption (DSE), which allows the user to update outsourced
encrypted data efficiently and privately [2].

A DSE scheme involves two parties, the user (the client) and
the cloud (the server). Assume the user is trusted, and the cloud
is untrusted. The cloud always wants to break the user’s private
data in any data searches and data updates. The user initially
outsources an encrypted index to the cloud for data searching
and updating, where the index can map any search queries
into a set of encrypted file identifiers. Current studies show
that forward and backward privacy is necessary for a DSE
scheme [3]. The forward privacy says that any data updates
should appear no correlations with the historical search queries
and update queries. If a DSE scheme does not achieve forward
privacy, the adaptive file injection attack proposed in [4] can
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easily break the DSE scheme. The backward privacy says
that any data searches should have no correlations with the
historical deleted entries. If a DSE scheme does not achieve
backward privacy, a search query will reveal the timestamps of
the historically deleted data, which are perhaps very important
to the user.

Consider the following usage scenario. To delete a user from
a financial trading system, most banks do not directly remove
the user from the database. They only mark the user record as
deleted. When the user comes back, the banks add the user to
the database again. If the same user record has been frequently
removed and added, this scenario is called update-intensive. In
other words, all new updates only mark the existing records
as inserted or deleted after database initialization, and there
are no actual deletions. Our target is to build an efficient
and secure update-intensive DSE scheme that achieves both
forward privacy and backward privacy.

B. Limitations of Prior Art

Most backward-private DSE schemes do not consider the
update-intensive cases. There are three parameters to describe
the update length. For any updates to keyword w, the number
of entries matching keyword w is labelled with aw, the number
of real files containing keyword w is denoted by nw, and
the number of entries matching keyword w, when the index
is initialized, is described as cw. For example, assuming an
encrypted database consists of only one keyword-identifier pair
(w, 1) after initialization, and this pair has been alternately
added and deleted 10000 times each, we have aw = 20000,
cw = 1, and nw = 0.

In TIFS 2020 [5], He et al. proposed a backward-private
scheme CLOSE-FB using a fish-bone data structure to record
every data updates. Unfortunately, the fish bone can not
support intensive modifications since its efficiency is linear
in aw. The structure can be updated only in a fixed number
of times. In TDSC 2019 [6], Li et al. introduced an efficient
DSE solution Khons whose search complexity is proportional
to only nw. However, Khons has unscalable client-side storage
that contains a large set of chain headers.

Many DSE schemes [7] achieve small-client storage and
backward privacy by employing the state-of-the-art ORAM,
OMAP proposed in [8]. However, OMAP still suffers from
O(logN) client-server interactions and O(log2N) communi-
cation bandwidth per query, where N is the database size, the
total number of keyword-identifier pairs.
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TABLE I
COMPARISONS OF SMALL-CLIENT DSE SCHEMES ON UPDATE-INTENSIVE CASES

Scheme Search Update CS BPComputation Communication RT Computation Communication RT

TWORAM [9] O(aw logN + log3N) O(aw logN + log3N) 2
∼
O(log2N)

∼
O(log3N) 2 O(1) -

QOS [10] O(nw log iw + log2m) O(nw log iw + log2m) O(logm) O(log3N) O(log3N) O(logN) O(1) (I, III)
SDd [10] O(aw + logN) O(aw + logN) 1 O(log3N) O(log3N) O(logN) O(1) (I, II)

CLOSE-FB [5] O(aw + CLen) O(aw) 1 O(CLen) O(1) 1 O(1) (I, II)
Orion [7] O(nw log2N) O(nw log2N) O(logN) O(log2N) O(log2N) O(logN) O(1) (I, I)

UI-SE O(cw logN) O(cw logN) 1 O(logN) O(logN) 1 O(1) (I, I−)
N is the number of keyword-identifier pairs, and m is the number of distinct keywords. nw is the number of real files containing keyword w, aw is the
number of entries matching keyword w, iw is the number of insertions, and cw the number of entries matching keyword w when the index is initialized.
aw ≥ iw ≥ cw ≥ nw . RT denotes the number of interaction round trips. CS denotes client storage. BP denotes backward privacy. Update complexity is
given per keyword-identifier pair. CLen is a constant value that denotes the maximum number of updates.

C. Proposed Approach

To address all the above challenges, instead of adopting an
oblivious RAM, we proposed an oblivious-update tree (OU-
tree) structure to achieve backward privacy, small client-side
storage, and single-round-trip interaction. The OU-tree puts
the keyword-identifier pairs into the leaves and organizes the
frequent updates into the leaf-to-root paths. Any update only
accesses a leaf-to-root path whose leaf identifier is always in
random distribution. Any search retrieves a leaf-to-root path
that contains all the updates of the corresponding keyword.
Even if the same keyword-identifier pair is updated frequently,
the accessed nodes are always of a fixed size. With the OU-
tree, the search efficiency is linear in only cw instead of aw.
The OU-tree does not rely on any large client-side storage
structures, such as local chain headers [6], since choosing an
update path does not depend on anything.

D. Our Contributions

Our contributions are summarized as follows:
1) We propose UI-SE, the first update-intensive DSE scheme

that achieves single-round-trip interaction, small-client stor-
age, and insertion-pattern-hiding backward privacy.

2) We propose OU-tree, a new tree structure that supports
efficient oblivious updates without relying on any ORAMs.

Table I lists the comparisons of typical small-client DSE
schemes on update-intensive cases. TWORAM [9], QOS [10],
SDd [10] and Orion [7] are ORAM-based DSE schemes. As
for backward privacy, we only quantify the index accessing
leakage.

II. RELATED WORK

Searchable encryption was first introduced by Song et al. in
2000 [11]. Curtmola et al. proposed the widely-used adaptive
security definition in [1]. Dynamic searchable encryption first
appeared in [2]. DSE provides many features, such as conjunc-
tive queries [12], [13], range queries [14], Boolean queries
[15], [16], fuzzy queries [17], [18], and graph queries [19].
Many subsequent works focused on the studies of forward
privacy of DSE schemes [3], [7], [12], [20]–[23]. Almost all
recent works rely on a client-side per-keyword map that stores
the keyword states to improve DSE security [3], [7], [12],
[21], [24], [25]. This structure is a heavy burden for resource-
constrained devices.

An approach to eliminating the client-side per-keyword
map is to employ a low-computation oblivious RAM, such
as Path ORAM [26], [27], OMAP [8], and multi-server S3-
ORAM [28]. Many ORAMs are not suitable for DSE due to
heavy computational overhead and large data-block size, such
as Onion Ring ORAM [29], whose block size reaches 300
KB. TWORAM [9] achieves small data-block size, single-
round-trip access, and small-client storage. Unfortunately,
TWORAM relies on heavy garbled circuits [30], [31] that act
as the practical bottleneck in performance. Liu et al. proposed
an ORAM-based DSE scheme that wants to hide the size
pattern [32].

Current studies showed that DSE schemes still suffer from
many kinds of access-pattern-based attacks [4], [33]–[35]. One
approach to reducing the access-pattern leakage is to employ
the ORAMs [7], or shuffle the accessed locations in data reads
and writes like this work.

Other encrypted searches include homomorphic encryption
[36], order-preserving encryption [37], and secure multi-party
computation [38].

III. NOTATIONS AND DEFINITIONS

In this section, we recall the encryption protocols and the
security definitions, such as adaptive security and forward
and backward privacy, which regularly appear in current DSE
schemes.

A. DSE Protocols

Result-revealing. A result-revealing DSE scheme is a user-
cloud protocol, whose file-identifier results generated by a
search query are directly exposed to the cloud for retrieving
data files. The file identifier is a bit string that uniquely
represents the data file. The advantage of result-revealing SE
is that the cloud can handle the data-search work in a single-
round interaction (not single-round-trip).
Result-hiding. A result-hiding DSE scheme is a user-cloud
protocol, whose file-identifier results generated by a search
query are hidden from the cloud. The advantage of result-
hiding DSE is that it helps the DSE scheme achieve backward
privacy at the cost of client-side computation.
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B. Privacy Definitions

We summary the privacy in DSE schemes: search pattern,
full query pattern, update pattern, insertion pattern, size pat-
tern, etc.
Search/full query pattern. Let Q be a sequence of search
or update queries issued so far after index initialization. Each
query has the form of (i, search, w) or (i, op, (w, id)), where
(i, search, w) denotes the i-th search tuple for keyword w, and
(i, op, (w, id)) denotes the i-th update (addition or deletion)
with a keyword-identifier pair (w, id). The search pattern
sp(w) and the full query pattern qp(w) are defined as follows,

sp(w) = {i|(i, search, w) ∈ Q}
qp(w) = {(i, op)|(i, search, w) ∈ Q or (i, op, (w, id)) ∈ Q},

where op =⊥, add, or del for a search, an addition, or a
deletion, respectively. The search pattern is the repetition of
the search tokens. The full query pattern includes not only the
search pattern, but also the timestamps and the corresponding
operation names of the historical updates.
Update pattern. The update pattern up(w) induced by a
search or an update query is defined as follows,

up(w) = {(i, op)| (i, op, (w, id)) ∈ Q}.

The update pattern is a part of the full query pattern. If
an update query reveals the search pattern, this leakage is
disastrous [4]. Therefore, most schemes allow only up(w)
leakage of the update query.

We also recall some notations used in prior works,
HistDB(w), TimeDB(w), Updates(w), and DelHist(w):

HistDB(w) = {(i, id)|(i, add, (w, id)) ∈ Q },
T imeDB(w) = {(i, id)|(i, add, (w, id)) ∈ Q

and ∀j, (j, del, (w, id)) /∈ Q},
Updates(w) = {i|(i, add, (w, id)) ∈ Q

or (i, del, (w, id)) ∈ Q},
DelHist(w) = {(i, j)|∃id : (i, add, (w, id)) ∈ Q

and (j, del, (w, id)) ∈ Q}.

HistDB(w) is a sequence of file identifiers added to the
database with their corresponding timestamps. TimeDB(w)
is a sequence of identifiers of files containing w, excluding
the deleted identifiers, together with the timestamps when they
are inserted. Updates(w) is a sequence of update timestamps.
DelHist(w) is a sequence of pairs, whose second entry is
the deletion timestamp on w, and whose first entry is the
corresponding insertion time.
Insertion pattern. The insertion pattern ip(w) is defined as
follows,

ip(w) = {i|(i, add, (w, id)) ∈ Q
and ∀j, (j, del, (w, id)) /∈ Q}.

Size pattern. The size pattern Size(w) reveals the number of
matched entries from the index for w.

C. Security Definitions

Adaptive security. We adopt the adaptive-security definition,
proposed in CCS 2006 [1], and modified by [2] and [24] for
DSE. A DSE scheme is said to be L-adaptively-secure if and
only if for any probabilistic polynomial-time (PPT) adversary
A, who can adaptively query the random oracle for search
and update tokens, there exists a simulator S such that the
execution of S(L) and the execution of A are computationally
PPT indistinguishable. The adaptive security guarantees that
even if the adversary A can choose keywords for attacks
adaptively (CKA2), A learns nothing from the index except
L. CKA2 differs from the nonadaptively choosing keywords
for attacks (CKA) [39].
Forward privacy. An L-adaptively-secure index-based DSE
scheme is forward-private if and only if the update leakage
function LUpdate can be written as

LUpdate(op, w, id) = L′(op),

where id denotes the identifier of the newly added file, w the
updated keyword, and L′ is a stateless function.

We consider only the leakage induced by accessing the
encrypted index. Data-file retrieving as well as its leakage
analysis are not our focus. A forward-private index means that
its addition and deletion reveal no query patterns other than
the operation name.
Backward privacy. Let Π be an L-adaptively-secure DSE
scheme parameterized by two leakage functions LUpdate and
LSearch. Π is said to be BP-(x, y)-private if the leakage level
of data queries satisfies the following definition:

x = I : LUpdate(op, w, id) = L′(op)
x = II : LUpdate(op, w, id) = L′(op, w)

y = I : LSearch(w) = L′′(sp(w), T imeDB(w))

y = II :

LSearch(w) = L′′(sp(w), T imeDB(w), Updates(w)))

y = III :

LSearch(w) = L′′(sp(w), T imeDB(w), DelHis(w))

y = I− : LSearch(w) = L′′(sp(w), Size(w))
(1)

where L′ and L′′ are stateless functions.
Type-I update leakage contains nothing except the operation

name. Type-II update leakage has the update pattern. Type-I
search leakage allows the leakage of when the same keyword
w is searched, and the file identifiers matching w with the
insertion timestamps, excluding the deleted identifiers. Type-
II search leakage further allows when all the updates on w
happen. Type-III search leakage further allows the leakage
of which deletion update cancels which insertion update.
According to the Bost et al.’s backward privacy definition [3],
BP-(I, I) is called backward privacy with insertion pattern,
BP-(*, II) is called backward privacy with update pattern,
and BP-(*, III) is called weak backward privacy. According
to the forward-privacy definition, BP-(I, I) and BP-(I, II) can
be viewed as achieving both forward and backward privacy.
Note that a DSE scheme that has LUpdate does not imply the
existence of LSearch, and vice versa.
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Backward privacy without insertion patterns. We give a
straightforward definition that is slightly stronger than BP-
(I, I). If the search leakage contains nothing of the insertion
patterns, it is denoted as Type-I−. BP-(I, I−) is called back-
ward privacy without insertion patterns, assuming the update
leakage is also Type-I. BP-(I, I−) allows the leakage of the
search pattern and the size pattern on search queries.

The definition (1) differs from the Bost et al.’s backward-
privacy definition [3] whose leakage function does not
explicitly contain the search pattern. Note that given
TimeDB(w), the adversary can not deduce sp(w).
For example, consider the following access sequence,
((1, add, id1, {w1}), (2, search, w1), (3, search, w1)).
The leakage of the second search appears the same
as the first according to TimeDB(w), but the second
search contains more leakage than the first. That is,
TimeDB(w1)(2) = TimeDB(w1)(3) = {(1, id1)}, yet
L(2)Search(w1) 6= L(3)Search(w1), where each (i) denotes
the i-th time. Therefore, sp(w) should be explicitly included
in the leakage definition of backward privacy.

We note that forward privacy is not a necessity of backward
privacy. Consider the following awkward encryption scheme,
named AS, which consists of three algorithms, AS={Setup,
Search, Update}. In the setup stage, the user saves the un-
encrypted database DB locally. In the update stage, the user
encrypts the keyword by a CPA-secure private-key algorithm
and uploads it to the cloud. The user also saves the updates
into DB. In the search stage, the user queries DB locally. It
is easy to see that AS is adaptively BP-(II, ⊥)-secure since the
search leaks nothing. It has backward privacy but no forward
privacy.

IV. OU-TREE: AN OBLIVIOUS-UPDATE TREE

In this section, we propose OU-tree, a new tree structure for
highly-intensive keyword-identifier updates, such as frequently
adding or deleting an existing (w, id) pair. The advantage of
OU-tree is that it supports efficient updates without any access
patterns.

A. OU-tree

An L-height oblivious-update tree (OU-tree) is an encrypted
full binary tree containing 2L−1 tree nodes with the following
properties.

1) Elements in any tree node are triplets that have the form
of (w, id, v), where (w, id) is a keyword-identifier pair,
and v = 1 or 0 denotes a version, inserted or deleted,
respectively.

2) Each internal node can hold a set of Z triplets at most.
Each leaf has at most R triplets.

3) Any keyword-identifier pair in the tree has at most L
different versions that follow a leaf-to-root path. The
new version is always near the root.

4) In the initial stage, all the leaves randomly store a set of
keyword-identifier pairs, and all the internal nodes are
initially empty.

Figure 1 shows a 3-height OU-tree example. In the ini-
tial stage, the leaves store all the keyword-identifier pairs

(a,1,1) (a,2,1)

Initializing an OU-tree

(b,2,1) (c,2,1)

L=3

Fig. 1. An initialized-OU-tree example.

{(a, 1), (b, 2), (a, 2), (c, 2)} that belong to two data files,
where (a, 2, 1) denotes (a, 2) is inserted and (a, 2, 0) for
deletion of (a, 2). All the internal nodes are initially empty.
Thus, if all the leaves initially save N keyword-identifier pairs
that are the whole database, and if all the internal nodes occupy
O(N) empty-triplet space, the tree requires storage space of
O(N) since the tree is balanced.

The OU-tree uses the following user-cloud protocol to hold
the frequently updated keyword-identifier pairs. In the initial
stage, the user initializes and encrypts an OU-tree, and then
puts it into the cloud. In the update stage for updating a
keyword-identifier pair (w, id), instead of directly accessing
this pair, the user randomly chooses a leaf-to-root path and
inserts a new triplet (w, id, v) into this path. Each (w, id)
perhaps has many update versions. If (w, id) has been fre-
quently added and deleted, only the latest version that nears the
root is necessary, and other obsolete versions, if possible, can
be removed though they perhaps still exist in the tree. More
specifically, the protocol works with the following algorithms
{Setup, WritePath, ReadPath}.
Setup. Setup is an algorithm that converts an unencrypted
inverted index DB into an initialized OU-tree, as shown in
Algorithm 1. Let F be a keyed collision-resistant hash function
modelled as a random oracle, K be a user’s secret key, L be
the height of the tree, any keyword-identifier pair (w, id) will
map to a leaf, denoted

MapLeaf(w, id)
def
= FK(w||id)%2L−1,

where leaf identifier ranges from 0 to (2L−1 − 1). Given an
unencrypted inverted index DB containing a set of keyword-
identifier pairs, the algorithm puts any triplet (w, id, 1) into
the leaf whose identifier is MapLeaf(w, id). All the leaf
nodes are padded with dummy values to the same size R
and are encrypted by an RCPA-secure private-key encryption
algorithm. With the above approach, the OU-tree is initialized.

Algorithm 1 Setup an OU-tree.
Setup(DB)

1) initialize an empty L-height OU-tree T .
2) for all (w, id) in DB

a) leaf ← FK(w||id)%2L−1

b) put (w, id, 1) into the leaf node leaf .
3) encrypt all the leaves of T .
4) return T

WritePath. WritePath is an algorithm to mark a keyword-
identifier pair as inserted or deleted, as shown in Algorithm
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2. Given an input triplet (w, id, v), the algorithm uses the
following steps to mark (w, id) as v obliviously. 1) The user
randomly generates a leaf identifier leaf ∈ [0, 2L−1 − 1]. 2)
The cloud sends the whole leaf -to-root path to the user. 3)
For any (w′, id′) in the path, the user removes all the obsolete
keyword-identifier pairs related to (w′, id′), and saves only one
latest version that nears the root. 4) All the remaining triplets
are put into the local stash Stash. 5) The user writes the orig-
inal input (w, id, v) into Stash for rebuilding the path later. 6)
All the triplets will be evicted to the path with two conditions.
One condition is that for any (w′′, id′′, v′′) in Stash, it should
be evicted to the overlapped nodes of the leaf ′′-to-root path
and leaf -to-root, where leaf ′′ = MapLeaf(w′′, id′′). The
other condition is that all the triplets are stacked from bottom
to top along the path sequentially. In an extreme case, if the
path is full, some triplets remain in the local stash, but our
experiments in the last section show that the probability of
the stash size exceeding can be negligible. All the tree nodes
in the path are padded with dummy values to the same size
Z. Finally, the user encrypts the path using the RCPA-secure
private-key encryption algorithm and uploads the whole path.
The new triplet (w, id, v) is obliviously put into the tree with
these steps.

In Algorithm 2, CrossLevel(leaf, leaf ′) denotes the level
of the intersection node of the leaf -to-root path and the leaf ′-
to-root path. For example, in Figure 3, CrossLevel(C,D) =
2. CrossLevel(leaf, leaf ′) ≤ i means that the current triplet
can be evicted to the i-th level. The intuition behind this update
algorithm is that even if leaf is randomly chosen, the new-
version keyword-identifier pair can still be accurately retrieved
later through reading the (MapLeaf(w, id))-to-root path.

Algorithm 2 Update an OU-tree.
WritePath(w, id, v)

1) leaf ← random(0, 2L−1 − 1)
2) download the leaf -to-root path
3) decrypt and put all the triplets into the Stash. For any

different-version pairs, only the pair that nears the root
is saved, and the other versions are discarded.

4) write ((w, id), v) into Stash
5) create L empty nodes, ND1 = {}, · · · , NDL = {}.
6) for i = L to 1

a) for all ((w′, id′), v′) in Stash
i) if CrossLevel(MapLeaf(w′, id′), leaf) ≤ i

and NDi is not full,
A) put (w′, id′, v′) into NDi

B) remove ((w′, id′), v′) from Stash
C) if NDi is full, break

7) encrypt {NDL, NDL−1, · · · , ND1} and send them to
the cloud

8) the cloud overwrites the existing leaf -to-root path

Figure 2 shows an example of how to update an OU-tree.
Assuming Node A, Node B, and Node C have the triplet
(a, 2, 1) each, and the triplet that nears the root is always the
fresh one. To delete (a, 2), instead of directly removing it
from the leaves, the user inserts (a, 2, 0) with the following

(a,2,1)

WritePath((a,2),0)

A

B

C D

Obliviously delete (a,2)

A

B

C D

(a,2,1)

(a,2,1)

(a,2,0)

(a,2,1)

Fig. 2. Data updates in an OU-tree.

ReadPath(a,2)

Read pairs from an OU-tree

A

B

C D

(a,2,0)

(a,2,1)

A

B

C D
(a,2,0)

Fig. 3. Data reads in an OU-tree.

steps. First, the user randomly chooses a leaf identifier for
insertion. Note that the randomly accessed leaf helps the
access algorithm achieve obliviousness. Assuming Node D
has been chosen, the access path is {A,B,D}. Second, the
tree removes (a, 2, 1) in both Node A and Node B since they
are obsolete. Third, the tree inserts (a, 2, 0) into Node B. Note
that directly touching Node C is not allowed now since this
will violate the access-pattern constrain, and the triplet can be
inserted into only Node B or Node A.
ReadPath. ReadPath is an algorithm to test whether a (w, id)
has been deleted from the tree or not. Given a leaf identifier
leaf generated by MapLeaf(w, id), the cloud sends the
whole leaf -to-root path to the user, who then decrypts the tree
nodes and reads the desired file identifier. The user removes
all the historical version (w, id) pairs, writes the latest version
(w, id, v) into the leaf node, and reencrypts the whole leaf -
to-root path.

Algorithm 3 Read from an OU-tree.
ReadPath(w, id)

1) leaf ←MapLeaf(w, id)
2) decrypt the leaf -to-root path
3) read v with (w, id) from the node that is the nearest

to the root
4) set v as the result
5) remove (w, id, 0) and (w, id, 1) from the path
6) write (w, id, v) into the leaf node
7) reencrypt the path

Figure 3 illustrates an example of how to read from an OU-
tree. Assume MapLeaf(a, 2) = C. Given the pair (a, 2), the
algorithm touches Nodes {A,B,C}. If there exist two triplets
{(a, 2, 1), (a, 2, 0)} in the path, only the triplet (a, 2, 0) that
nears the root is saved, and it will be moved into leaf C.
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The number of updates
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Fig. 4. The number of versions of the same pair.

(a,2,0)

WritePath((a,3),0)

A

B

C D

Obliviously delete (a,3)

A

B

C D

(a,2,1)

(a,2,1)

(a,2,0)

(a,2,1)(a,3,1) (a,3,1)

(a,3,0)

E E

Fig. 5. Data updating and shuffling.

B. Efficiency Analysis

How many versions of a pair do exist in the tree? Intuitively,
for any (w, id), the tree can hold at most L versions for
this pair since the tree is L-height. We perform the following
experiment to observe how many versions of a pair exist in
the tree.

Consider that the pair has been updated s times. On the
x-th updates, the number of versions of (w, id) is denoted
by V s,L

w,id(x). Figure 4 illustrates the relationship between
the number of updates and V 10000,16

w,id (x). The pair has been
updated 10000 times. As x grows larger, there are more
versions in the tree with a considerable probability. In the
average case, there are 6 versions in the tree if L = 16 and
s = 10000.

In reality, there are fewer versions than those of the ex-
periments. We observe two facts. 1) Any update on (w′, id′)
((w′, id′) 6= (w, id)) will reduce the number of versions
of (w, id) only if the updated leaf-to-root path is near the
MapLeaf(w, id)-to-root path. For example, in Figure 5, the
update ((a, 3), 0) on the path (A,B,D) rebuilds Nodes A and
B. (a, 2, 0) is moved into Node B, and (a, 2, 1) is deleted.
2) Any read on (w, id) will reduce the number of versions
of (w, id) to 1 since all the obsolete versions are removed.
Therefore, the probability of the tree being full is negligible.

( )( )

( )( )

( )( )

( )( ) ( )( ) ( )( ) ( )( )

(Stash) User

Cloud

Oblivious-Update TreeEncrypted Inverted Index

( ) ( ) ( )

( ) ( ) ( ) ( )

Token

Fig. 6. A design overview.

V. UI-SE: AN UPDATE-INTENSIVE BACKWARD-PRIVATE
DSE SCHEME

A. A Design Overview

Recall that the user should first know both the keyword
and the identifier to read a value from an OU-tree. If the user
knows only the keyword, how to read all the related identifiers?
To address this, we store the OU-tree leaves into a new data
structure, the encrypted inverted index (EII), which converts
a keyword query to a set of accessing leaves. With EII and
OU-tree, a new backward-private DSE scheme, named UI-SE,
is proposed.

UI-SE is a three-tuple DSE scheme of UI-SE=(UI-Setup,
Search, Update). UI-Setup is to build an index for later data
outsourcing, Search is for keyword queries, and Update is to
insert or delete an existing keyword-identifier pair frequently.

UI-SE involves three fundamental storage structures, an EII,
an OU-tree, and a stash, as shown in Figure 6. The EII is
a static data structure. After initialization, the EII is always
unchanged. The OU-tree is a dynamic data structure that
supports highly-intensive updates. Assuming these structures
have been set up, a keyword query works as follows. The user
sends a keyword token constructed from the keyword to the
cloud. And then, a set of leaf identifiers is matched from EII.
These leaves are used to download a set of leaf-to-root paths.
The user decrypts the paths at the client-side, reads the final
results, reencrypts the paths, and uploads the new paths. The
local stash is designed for temporary data shuffling. For any
updates, the algorithm touches only the OU-tree instead of the
EII. Thus, no update pattern is revealed due to the oblivious
access algorithm of the OU-tree.

B. UI-SE: An Update-Intensive DSE Scheme

WriteMap/ReadMap. To illustrate UI-SE, we first introduce
two subprocedures, WriteMap and ReadMap. They are used to
write/read from the enrypted inverted index that is stored in a
hash table map. WriteMap is a procedure to encrypt and write
(w, id) into map, as shown in Algorithm 4. Let H1 and H2

be two different collusion-resistant hash functions modeled as
random oracles, F be the keyed pseudorandom function, and
K be the secret key. The identifier id is encrypted by an RCPA-
secure private-key encryption algorithm into the encrypted
form of eid. Given a randomized unique input var, the algo-
rithm first computes key ← H1(var) and mask ← H2(var).
Next, the (w, id) pair is mapped to var′ ← FK(w||id), which
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is a new randomized unique value used in the next time. The
encrypted key-value pair (key,mask⊕ (var′||eid)) is written
into the hash table.

Algorithm 4 Two subprocedures for accessing an EII.
WriteMap(map, var, w, id)

1) key ← H1(var)
2) mask ← H2(var)
3) var′ ← FK(w||id)
4) encrypt id into eid by an RCPA-secure algorithm
5) map[key] ← mask ⊕ (var′||eid), assuming map is

stored globally.
6) return var′

ReadMap(map, var)

1) key ← H1(var)
2) mask ← H2(var)
3) (var′, eid)← map[key]⊕mask
4) return (var′, eid)

ReadMap is an algorithm to read a tuple from the EII, as
shown in Algorithm 4. Given map and an input var, the
algorithm returns map[H1(var)]⊕H2(var), whose left part is
var′ the value to decode the next tuple, and whose right part
is eid the encrypted file identifier. ReadMap is the counterpart
of WriteMap.

Algorithm 5 Set up a UI-SE index.
UI-Setup(DB)

1) for all w in DB.W
a) var ← FK(w)
b) for all id in DB(w)

i) var ←WriteMap(map, var, w, id)

2) invoke tree← OU -tree.Setup(DB)
3) return (map, tree)

UI-Setup. Given an unencrypted inverted index DB that
constructed from a set of files, the user locally sets up an
EII and an OU-tree, as shown in Algorithm 5. Let DB.W
be the set of keywords that can be queried, and DB(w)
be the set of identifiers of the files containing keyword
w. For any keyword w in DB.W and for any (w, id) in
DB(w), the user stores all the (w, id) pairs through repeatedly
invoking var ←WriteMap(map, var, w, id). The first entry
is var ← FK(w), which can be viewed as the chain header.
After the EII initialization, the user invokes tree ← OU -
tree.Setup(DB) to build the tree. The user then outsources
(map, tree) to the cloud.
Searching for a keyword. Searching for a keyword consists
of three steps, reading the encrypted identifiers from the EII,
reading the updates from the OU-tree, and reencrypting the
accessed paths of the tree, as shown in Algorithm 6.

Given the chain header var ← FK(w), the cloud retrieves
all the leaves through repeatedly invoking (var, eid) ←
ReadMap(map, var). This step outputs two collections, one
is the set of encrypted file identifiers D, whose length equals
cw = |D|, and the other collection is the set of leaf identifiers,

Algorithm 6 A search protocol.
Search(w)

1) User: var ← FK(w); send it to the cloud;
2) Cloud: T ← {}, D ← {}
3) while var 6=⊥ do

a) (var′, eid)← ReadMap(map, var)
b) D ← D

⋃
eid

c) leaf = var′%2L−1

d) put the leaf -to-root tree nodes into T
e) var ← var′

4) send {D,T} to the user
5) User:
6) decrypt D for generating a set of file identifiers D′

7) decrypt T and get an unencrypted small tree T ′

8) T ′′ ← {}
9) for all id in D′

a) leaf ←MapLeaf(w, id)
b) read the latest (w, id) from T ′, and get v.
c) If v = 1, output one final result id.
d) remove (w, id, 0) and (w, id, 1) from the leaf -to-

root path of T ′.
e) write (w, id, v) into node leaf of T ′.
f) reencrypt the path nodes and store the reencrypted

tree nodes into T ′′.
10) upload T ′′ for replacing the old paths

which correspond to a set of leaf-to-root paths T . Recall that
in an OU-tree, any (w, id) is mapped to its leaf by invoking
MapLeaf(w, id), which equals FK(w, id)%2L−1. T contains
all the updates on w. The cloud sends (D,T ) to the user.

The user gets a set of file identifiers by decrypting D. These
are not the final results since some identifiers perhaps have
been marked as deleted in the index. The user should decode
T to test which identifiers are deleted. For any returned pair
(w, id), the user invokes OU -tree.ReadPath(w, id) to test
whether the pair is deleted or not. Since all the related paths are
downloaded and stored locally, this algorithm is independent
of the cloud. The user outputs a set of filtered identifiers that
are the final results, saves only the latest versions, and re-
encrypts the paths by the RCPA-secure private-key algorithm.

Updating a pair. To update a pair (w, id) as in-
serted or deleted, the user only needs to invoke OU -
tree.Update(w, id, v) API with v = 1 for addition and v = 0
for deletion, as shown in Algorithm 7. The latest pair will be
written into the tree on a randomly chosen path.

Algorithm 7 Update a frequently-accessed pair
Update(op, (w, id))

1) if op = add,
invoke tree.Update(w, id, 1);

2) if op = del,
invoke tree.Update(w, id, 0);
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C. Single-Round-Trip Protocol

In the UI-SE search and update protocols, the user should
always upload the final encrypted paths to the cloud for
nodes replacing. This reencryption will lead to three-round
interactions. Fortunately, the last communication packet that
contains a set of new paths can be folded into the next query.
Therefore, the protocols are completed in a single-round-trip
user-cloud interaction.

VI. SECURITY ANALYSIS

UI-SE security is quantified by the leakage function, L =
{LSetup

UI ,LSearch
UI ,LUpdate

UI }, where each is for describing the
leakage in the setup stage, the search stage, and the update
stage, respectively. LSetup

UI = {L,N}, where L is the height of
the OU-tree, and N is the total number of keyword-identifier
pairs in the inverted index. We focus the study on LUpdate

UI

and LSearch
UI .

A. Update-Leakage Analysis

UI-SE has two main components, the encrypted inverted
index (EII) and the OU-tree. Since the EII can be viewed as
a static index, no update leakage from the EII is generated.
The updates on the OU-tree are always oblivious. This is
because 1) any update always accesses a random leaf-to-root
path, and 2) all the tree nodes are encrypted by the RCPA-
secure algorithm that guarantees the encrypted contents are
indistinguishable from random. Since addition and deletion use
the same access algorithm, the operation reveals only whether
the name is a search or an update. From the above analysis,
the update leakage function is written as

LUpdate
UI (op, w, id) = {op},

where op = add or del, and (w, id) is a pair for the update.

B. Search-Leakage Analysis

Given a query token FK(w), the cloud can use it
to search the EII and obtain an array of key-value tu-
ples {(k1, v1), (k2, v2), · · · , (kcw , vcw)}. From the OU-tree,
the cloud learns {k1%2L−1, · · · , kcw%2L−1}, but no other
knowledge is gained. All the above knowledge equals
{(k1, v1), (k2, v2), · · · , (kcw , vcw)} since L is a constant.
We only need to consider the leakage generated from the
adaptively-secure inverted index. Since each vi has two parts
(ki+1 : eidi), where eidi is the i-th encrypted file identifier,
the cloud’s knowledge equals {(k1, eid1), · · · , (kcw , eidcw)}.
Assuming each keyword has been queried many times, the
leakage of this approach is just the search pattern. The random-
ized encrypted identifiers still guarantee that no correlations
of two different keyword queries are exposed. From the above
analysis, we have the search leakage function

LSearch
UI (w) = (sp(w), cw),

where sp(w) is the search pattern, and cw is the size pattern,
the number of identifiers of files containing w when the index
is initialized.

C. Backward Privacy without Insertion Patterns
According to LUpdate

UI and LSearch
UI , UI-SE achieves forward

and backward privacy on the BP-(I, I−) level.
Theorem 5.1 UI-SE reveals no insertion patterns.
Proof: For any (w, id) pair, even it has been frequently added
and deleted, the token FK(w) always matches the fixed-length
entries in the EII and the fixed-length path in the OU-tree. cw
entries in the EII and Θ(cw logN) tree nodes are accessed.
Since some nodes in the path have been reencrypted by the
randomized encryption algorithm after any update, and the
historical update paths are in random distribution, the search
does not reveal the historical insertion time. Thus, UI-SE is
forward and backward private without the insertion pattern,
which is stronger than the BP-(I, I) privacy. Since LSetup

UI

and LUpdate
UI are negligible compared to the search leakage,

the leakage function is written as L ≈ {LSearch
UI }. Formally,

security is defined as follows.
Theorem 5.2 (Adaptive security). Assuming F is a pseudoran-
dom function, H1 and H2 are modeled as random oracles, and
there exists an RCPA-secure algorithm, then UI-SE is (sp(w),
cw)-secure under an adaptive adversary.
Proof: Assume there exists an adversary A, who owns
the ability to adaptively query the random oracle for any
tokens according to the DSE scheme. A wants to break
the encryption protocol through issuing search queries and
update queries. Consider such a simulator S, who is given
L = {LSetup

UI ,LSearch
UI ,LUpdate

UI } to adaptively simulate A’s
operations, including searches, additions, and deletions. S uses
the following steps to simulate A.

In the index initialization stage, the adversary A has an
encrypted index (map, tree), and S also sets up a simulated
index (map∗, tree∗) by using random values according to
(L,N) leakage.

In the update stage, A adaptively queries the random oracle
for an update token. A creates an update query that will access
a randomly-chosen leaf-to-root path Pup. Since S knows there
is an update query, S also creates a simulated update query
that will access a randomly-chosen leaf-to-root path P ∗up.

In the search stage, A adaptively queries the random oracle
for a search token. Let the token be tk ← FK(w). If the same
token has been issued j times, S adaptively simulates it j
times since S has sp(w). S creates a simulated search token
tk∗ using a random value.

Consider the search in the encrypted inverted index. As-
sume that A successfully obtains an array of key-value tu-
ples ((k1, v1), (k2, v2), · · · , (kcw , vcw)) from map, an array
of encrypted file identifiers (eid1, · · · , eidcw), and an ar-
ray of encrypted variables (var1, · · · , varcw), where each
ki = H1(vari), vi = H2(vari) ⊕ (vari+1||eidi), and
var1 = tk. S also randomly chooses a sequence of key-
value pair ((k∗1 , v

∗
1), (k∗2 , v

∗
2), · · · , (k∗cw , v

∗
cw)) from map∗,

randomly generates an array of encrypted file identifiers
(eid∗1, · · · , eid∗cw), and randomly generates an array of vari-
ables (var∗1 , · · · , var∗i ), where var∗1 = tk∗. S now pro-
grams the random oracles H1 and H2. Let each k∗i =
H1(var∗i ), v∗i = H2(var∗i ) ⊕ (var∗i+1||eid∗i ). Finally, A out-
puts a set of results (eid1, eid2, · · · , eidcw), and S also outputs
a set of results (eid∗1, eid

∗
2, · · · , eid∗cw).
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Consider the search in the OU-tree. A uses
(var1, · · · , varcw) to access the tree. A outputs a sequence
of tree paths {P1, · · · , Pcw}, where each Pj is a sequence of
leaf-to-root nodes whose leaf identifier equals varj%2L−1.
S also outputs a sequence of tree paths {P ∗1 , · · · , P ∗cw},
where each P ∗j is a sequence of leaf-to-root nodes whose leaf
identifier equals var∗j%2L−1. After the access, A replaces
the accessed nodes with new paths according to the protocol,
and S also replaces the accessed nodes with random values.

Due to the psedurandom function, tk and tk∗ are
PPT computationally indistinguishable. Due to the RCPA-
secure encryption algorithm, (map, tree) and (map∗, tree∗),
Pup and P ∗up, {P1, · · · , Pcw} and {P ∗1 , · · · , P ∗cw}, and
{eid1, · · · , eidcw} and {eid∗1, · · · , eid∗cw} are PPT computa-
tionally indistinguishable. These implies that A learns nothing
except L. Therefore, UI-SE is L-secure under the adaptive
adversary with BP-(I, I−) backward privacy, where L ≈
(sp(w), cw).

VII. EXPERIMENTS AND EVALUATIONS

A. Experimental Methodologies
We conduct the experiments on a desktop computer

equipped with a Core(TM) i9-10850K CPU 3.60GHz and
64 GB DDR4 memory. All the testing cases are coded in
C++ 17. AES is for symmetric encryption, and Blake2b is
for pseudorandom computation. The experiments randomly
generate a set of databases that reach 1E8 pairs.

The leaf capacity R is set to a fixed small value. Since F
is a pseudorandom function, all the keyword-identifier pairs
are nearly uniformly distributed in the leaves. Thus, the leaf
capacity R can be set to a small value to hold all the keyword-
identifier pairs. In the experiments, R is less than 7, and L is
set to (L ≈ (log2N + 4)), where the additional height is used
for providing more space for insertions.

For simplicity, let aw = a(w) be the number of updates on
w, and cw = c(w) be the number of keyword-identifier pairs
for w when the index is initialized. Assume the index is fully
loaded into the memory. All communication time is ignored
in the experiments. All testing cases create only one thread.

B. Experimental Data
Node size. Let t1 be the number of empty triplets of the
internal nodes, t2 be the number of dummy triplets of the
internal nodes, and t3 be the number of real triplets of the
internal nodes. The vacancy rate α is evaluated by

α =
t1 + t2

t1 + t2 + t3
.

TABLE II
THE VACANCY RATE ON UPDATE-INTENSIVE CASES.

Updates L Z α
1 4, 000 13 4 86.70%
2 40, 000 13 4 85.46.%
3 400, 000 13 4 85.04%
4 4, 000, 000 13 4 85.48%
5 4, 000 13 6 91.13%
6 40, 000 13 6 90.67%
7 400, 000 13 6 90.30%
8 4, 000, 000 13 6 90.21%

The experimental data in Table II prove that the node size
Z = 4 is enough for an OU-tree to provide much free
space. The experiments are handled by updating the keyword-
identifier pairs repeatedly after index initialization. Z = 4
denotes each internal node has at most four triplets. Even
if the tree has been updated 4, 000, 000 times, there is still
85.48% free space if Z = 4. This is because the shuffle
algorithm always tries to remove the obsolete versions as
much as possible. After the removals, the tree still has enough
room to hold the new updates. The newly inserted pairs will
be moved into the leaves by the shuffle algorithm when the
random write accesses the leaves.
Stash size. The experiment data in Table III prove that UI-
SE achieves near-zero client-side storage. The maximum stash
size is the maximum of the stash used during a sequence of
updates. The average stash size is near-zero most of the time,
even if the pairs have been highly intensively updated. Note
that if Z = 1, in the experiments, the maximum stash size can
reach 400 or higher. Therefore, Z = 4 is a suitable parameter
for highly intensive updates.

TABLE III
THE STASH SIZE.

Updates L Z Average stash size Maximum stash size
1 400, 000 13 4 1 15
2 4, 000, 000 13 4 1 16
3 400, 000 13 6 1 13
4 4, 000, 000 13 6 1 13
5 400, 000 20 4 2 16
6 4, 000, 000 20 4 2 19

Index-construction time. The experimental data in Table IV
prove that the OU-tree-based index can be efficiently set up.
Since the index achieves the optimal index size O(N), the
index-construction speed reaches 199, 848 pairs/s when L =
28 and Z = 4 if N = 2E7. Setting up the whole index takes
only 100 seconds, assuming the file-preprocess time is not
considered.

TABLE IV
INDEX-INITIALIZATION EXPERIMENTS.

N L Z Speed (pair/s) Insertion time (s)
1 2E5 21 4 263,289 0.8
2 2E6 24 4 241,948 8.3
3 2E7 28 4 199,848 100.1
4 2E5 21 6 237,586 0.8
5 2E6 24 6 218,941 9.1
6 2E7 28 6 183,157 109.2

Update time/bandwidth. The experimental data in Figure 7
show that an update takes only several milliseconds even if
the number of keyword-identifier pairs reaches 50 million.
The line of ‘Z=4’ in the figure is more efficient than that
of ‘Z=6’. This is because a small tree node means less work
for encryption.

The experimental data in Figure 8 show that the update
bandwidth is in several KB even if the number of keyword-
identifier pairs reaches 50 million. Each triplet occupies 48
bytes after encryption in the experiment, and each tree node
contains Z = 4 triplets. If the height of the tree is 30, the
communication bandwidth equals approximately 6 KB.
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the keyword.
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Search time. The experimental data in Figure 9 prove that
search time has no correlations with a(w), the number of
updates on keyword w. Even if the keyword has been updated
50,000 times, the search time remains unchanged, where
c(w) = 50 means that there are 50 keyword-identifier pairs
for w when the index is initialized, and so on.

The experimental data in Figure 10 prove that UI-SE
achieves worst-case sublinear search complexity on scalable
datasets. The search time has correlations with only two
factors, c(w) and logN . These experiments are conducted
on ten different indexes. The time cost grows slowly with
the number of keyword-identifier pairs increasing. This is
reasonable since the larger the database, the higher the OU-
tree.

C. Compared with Other Backward-Private Schemes

We compare UI-SE with other typical small-client
backward-private DSE schemes: SDd [10], CLOSE-FB [5],
and Orion [7].

SDd and CLOSE-FB leak update patterns in the search
queries. A search reveals their historical update timestamps
about this keyword. That is, they achieve only BP-(I, II)
privacy. SDd and CLOSE-FB are not suitable for highly
intensive updates since their search time is linear in a(w).

The oblivious map (OMAP) based DSE schemes, Orion and
SDd, suffer from the inherent defects of not only O(logN)
client-server interactions, but also O(log2N) communication
overhead per update. These defects limit their potential usages
on cloud-hosted network applications.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we gave UI-SE, a new DSE scheme that sup-
ports highly intensive updates. The construction involves a new
OU-tree structure, whose advantage is that the tree supports
insertion-pattern-hiding backward-private updates. We focused
the study on updating existing keyword-identifier pairs in the
index. To update non-existing pairs, one can combine the
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traditional data structures, such as the fish-bone structure [5],
with the OU-tree to support various kinds of data queries.
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