
Special Soundness in the Random Oracle Model

Douglas Wikström

KTH Royal Institute of Technology
dog@kth.se

September 20, 2021

Abstract. We generalize the knowledge extractor for constant-round special sound
protocols presented by Wikström (2018) to a knowledge extractor for the corre-
sponding non-interactive Fiat-Shamir proofs in the random oracle model and give
an exact analysis of the extraction error and running time.
Relative the interactive case the extraction error is increased by a factor ` and
the running time is increased by a factor O(`), where ` is the number of oracle
queries made by the prover.
Through carefully chosen notation and concepts, and a technical lemma, we ef-
fectively recast the extraction problem of the notoriously complex non-interactive
case to the interactive case. Thus, our approach may be of independent interest.

1 Introduction

Zero knowledge proofs and proofs of knowledge. Zero knowledge proofs were dis-
covered by Goldwasser, Micali, and Rackoff [10]. They allow a prover to interactively
convince a verifier that a statement is true without disclosing anything else. A related
notion discovered by Bellare and Goldreich [5], are proofs of knowledge. In such pro-
tocols the prover not only shows that a statement is true, but that it holds a witness of
this fact.

The completeness of a protocol is the probability that it completes successfully
when both parties follow the protocol on a valid common input. The soundness error
of a protocol is the probability that a malicious prover convinces an honest verifier that
a false statement is true.

If there is an extraction algorithm such that for every prover and every statement
a witness is output in expected time (over the internal randomness of the extractor)
poly/(∆ − ε), where ∆ is the probability that the honest verifier is convinced and ε
is the knowledge error, then the protocol is called a proof of knowledge. Thus, the
knowledge error is an upper bound on the probability that a prover convinces a verifier
without knowing a witness.

The extractor may rewind and complete multiple executions from any point of the
execution, i.e., it treats the prover as a deterministic oracle. A knowledge error ε implies
a soundness error of at most ε, since the analysis of the knowledge extractor may be
seen as a probabilistic proof [1]. Due to the efficiency requirement on the extractor the
reverse implication does not hold. Readers are referred to [9] for a thorough discussion
of variations of these notions.

Special soundness. A three-message public-coin protocol [10,3] is defined to be special
sound if a witness can be computed efficiently from two accepting transcripts with a
common first prover message, but distinct verifier messages. This notion was introduced
by Cramer et al. [7] as a generalization of a property of Schnorr’s proof of knowledge
of a discrete logarithm [11].

In the generalization of Wikström [12] a (2r + 1)-round protocol is special sound
if: (1) the ith verifier message is chosen uniformly at random from the ground set Si of
a matroid Mi for i ∈ [r], and (2) a witness can be computed from a tree of accepting
transcripts such that for each i ∈ [r] and each node at depth i− 1 the verifier messages
form a basis of Mi. Matroids capture independence abstractly, but examples from the
literature include inequality [11] or linear independence [4].

Fiat-Shamir heuristic. Recall that a public coin protocol may be converted into a non-
interactive protocol using the Fiat-Shamir transform [8]. This replaces each verifier
message by the output of a hash function evaluated on the common input and the current
partial transcript. This is important in practice to reduce the number of rounds.

The Fiat-Shamir heuristic suggests that we may analyze such protocols by replacing
the hash function by a random oracle. The random oracle model was generalized and
formalized by Bellare and Rogaway [6]. When we analyze the protocol in the random
oracle model we are effectively assuming that it suffices to consider adversaries which
treats the hash function as if it was ideal and never inspects its definition.

However, the adversary may still exploit the fact that it may query the random oracle
repeatedly on inputs of its choice. This enables it to probe a tree of partial executions
until it can extend at least one interaction with the random oracle to a complete accept-
ing transcript that it outputs as its non-interactive proof.

Grafting protocols. It is more convenient to think of the interaction between the prover
and the random oracle as a grafting protocol where the prover may extend the execution
from any previous existing verifier message by grafting a new branch, i.e., a reply, to
a verifier message. The verifier is easily adapted correspondly to give the prover this
ability. An execution is then considered to be accepting if any path from the root to a leaf
in the resulting tree of transcripts, corresponding to a transcript of the basic protocol, is
accepting.

We stress that neither party rewinds to a previous point in the execution; branches
are grafted to the existing tree of executions which remains part of the view. Further-
more, the branches are added in a particular order by the prover, i.e., each prover-verifier
message exchange is associated with an integer index. This means that an execution of
the grafting protocol may be identified with a topologically ordered subtree of the tree
of all possible executions of the basic protocol.

Provided that the verifier messages have high entropy the computation of a Fiat-
Shamir proof is statistically close in distribution to the execution of the corresponding
grafting protocol. Thus, we study knowledge extraction for grafting protocols.

1.1 Contribution

It is well known [11] that if a prover convinces a verifier with probability ∆ in a
three-message special sound protocol, then a witness can be extracted in expected time

2

p/(∆− ε), where p is polynomial and ε is the knowledge error. Wikström [12] gener-
alized the notion to constant-round special sound protocols and gave an exact and tight
bound. The concrete contribution of this work is a corresponding theorem for grafting
protocols.

Theorem 1 (Informal). Let (P,V) be a (2r+1)-message (M1, . . . ,Mr)-special sound
protocol with soundness error εS and knowledge error εK for a knowledge extractor
that for any instance and prover that convinces the verifier with probability ∆ > εK ,
for a constant c is expected to execute the protocol c/(∆− εK) times.

Then its (2` + 1)-message grafting protocol (G[P],G[V]) has soundness error `εS
and knowledge error `εK for a knowledge extractor that for any instance and prover
that convinces the verifier with probability ∆ > `εK is expected to execute the grafting
protocol 4 · 3r+1` · c/(∆− `εK) times.

In applications we may often choose parameters of the protocol to reduce the sound-
ness and knowledge errors by a factor of 1/`. Thus, in practice the Fiat-Shamir trans-
form causes a loss of roughly log `+O (1) bits of security.

A careful choice of notation and concepts, and a technical lemma, allow us to effec-
tively reduce the problem of constructing an extractor to the combinatorial problem of
finding an accepting basis in a suitably defined matroid tree, but the distribution of the
verifier messages is influenced by the adversary and not necessarily uniform. The main
technical challenge is to prove that this distribution can be sampled efficiently. Apart
from this the analysis from [12] applies mutatis mutandi.

Remark. Attema, Fehr, and Klooss recently informed us, that a few months after our
discovery, they independently discovered a theorem similar to our main theorem. Inter-
estingly, their work is based on Attema et al. [2], while we rely on the work of Wik-
ström [12]. Thus, in future work we hope to understand the strengths and weaknesses
of both approaches.

1.2 Proof Strategy

Grafting protocols. We first formalize the computation of a non-interactive Fiat-Shamir
proof, based on a special sound protocol, as the execution of a grafting protocol. In
such protocols the verifier allows the prover to repeatedly: (1) spawn a new execution
of the basic protocol, or (2) extend an existing partial execution of the basic protocol by
grafting an additional round to it.

Thus, at any point during execution the transcript may be viewed as a tree of partial
executions that grows one edge for each round. We stress that the prover may choose the
location of each grafted round and that this may depend on both the structure of the tree
and the verifier messages seen so far. The verifier accepts if there exists an embedded
accepting transcript of the basic protocol corresponding to a path from the root to a leaf.

This captures the computation of a Fiat-Shamir proof faithfully except that the
prover may only execute a round after the previous rounds have been executed, i.e.,
it is effectively restricted to queries to the random oracle that do not amount to guessing
any reply correctly. The entropy of verifier messages is typically high in applications,

3

and applying the Fiat-Shamir transform at all to a round with small entropy is pointless.
Thus, for such protocols a prover can only guess correctly with exponentially small
probability, and the grafting protocol is essentially a faithful model.

Extraction problem for grafting protocols. An extractor for a special sound protocol
repeatedly, and recursively: (1) samples an accepting transcript, and (2) samples other
accepting transcripts from a prefix of the first. If this fails within reasonable time it
gives up and rewinds before restarting the recursive procedure. Additionally, the verifier
messages at a given depth are sampled such that the children of each node form a basis
of a matroid determined by the protocol.

An extractor that treats the prover as a blackbox must rewind it to extract a suit-
able tree of transcripts. Rewinding is easy to visualize for interactive protocols, but
for a grafting protocol this means that leaves are pruned in the reverse order in which
they were grafted to the tree of partial executions. Furthermore, when the protocol is
executed with fresh randomness from a partial grafting transcript the tree of partial
transcripts may regrow into a differently shaped tree and not only have different verifier
messages associated with the nodes.

To understand the added complexity in the extraction problem for grafting protocols
it is worthwhile to consider an embedded accepting transcript in a grafting transcript.
To rewind the execution of the embedded execution to a given round requires rewinding
the execution of the grafting protocol.

The problem is that even if we complete an accepting execution from the rewinded
state there is no guarantee that the resulting embedded accepting transcript is a comple-
tion of the prefix of the original embedded accepting transcript. Indeed, the prover may
spawn a new execution of the special sound protocol, or graft additional rounds to any
of the existing partial executions to form a new embedded accepting transcript.

Linearization and grafted sequences. The prover messages are a deterministic function
of the verifier messages induced by the prover, which means that we can view: (1) the
entire protocol execution, and (2) the verdict of the verifier as a single predicate and
focus on the verifier messages.

The added complexity that comes with a tree of partial transcripts is partially super-
ficial, since the the actual execution of the grafting protocol proceeds linearly and the
transcript is simply a list of messages that appears in topological order with respect to
the tree if we encode the position of a grafted round as an integer index.

Furthermore, although each index for grafting a round is adversarially controlled,
it is a deterministic function of the verifier messages thus far in the execution. Thus,
the distribution of the list of verifier messages is induced by the prover and can be
efficiently sampled. We call the sequence of verifier messages that is generated by this
process a grafted sequence.

Shadow sequences and sampling. From a complete accepting grafted sequence z of the
verifier we know the positions of the verifier messages belonging to the corresponding
embedded accepting transcript, and the corresponding prover messages can be com-
puted deterministically.

4

Thus, given a grafted sequence z, we can partition it into a shadow sequence of
the form (w1, . . . , wr), where wi ends with the ith verifier message of the embedded
transcript (except wr which is slightly different). We call this a shadow sequence, since
prefixes are not stable under the addition of elements. More precisely, suppose that z is
a grafted sequence with shadow sequence w, and that the shadow prefix w[i] equals the
prefix z[k] if we concatenate its components. If z′ is a grafted sequence with prefix z[k],
then the prefix w′[i] of its shadow sequence may have no common elements with w[i].

We may still think of each shadow element wi as sampled from a ground set of a
shadow matroid M∗i , which inherits the essential combinatorical structure from the cor-
responding matroid Mi of the special sound protocol, but the distribution is influenced
by the prover.

If we from any prefix w[i] of an accepting shadow sequence w with reasonable
probability could sample a complete shadow sequence w′, then we would have reduced
the extraction problem for grafting protocols to that of basic special sound protocols,
i.e., the analysis from [12] would apply with minor syntactical changes.

Sampling shadow sequences. Unfortunately, we can only sample grafted sequences
directly. Suppose thatw is the shadow sequence of grafted sequence z and that the prefix
w[i] corresponds to a prefix z[k] of z. Then if a randomly sampled z′ conditioned on
z′[k] = z[k] is accepting with probability∆we can certainly sample an accepting grafted
sequence z′ from the prefix z[k] in time roughly 1/∆, but in general the probability that
its shadow sequence w′ satisfies w′[i] = w[i] may be arbitrarily low.

Similarly, if we ignore the requirement on acceptance, and focus on keeping the
prefix of the shadow sequence it is not hard to see that a random prefix can be extended
with conditional probability roughly 1/` throughout the recursive process.

We show that both properties can be maintained simultaneously throughout an exe-
cution with constant probability of failure in each step of the process and thereby allow
sampling accepting shaddow sequences that extend the prefixes that appear in the algo-
rithm. Thus, the difference between the extraction problem for a special sound protocol
and its grafting protocol is surprisingly small.

2 Background

We need a number of definitions and concepts from [12]. Recall that a matroid M =
(S, I) consists of a ground set S and a set I of subsets of S that is closed downwards
and satisfy the independent set exchange property. A basis is a set B ∈ I such that
B ∪ {x} 6∈ I for every x ∈ S \ B. The rank rank(M) of a matroid is the unique
maximal number of elements in a basis. The span of a set A is defined by span(A) =
{x ∈ S | rank(A ∪ {x}) = rank(A)}. A flat is a set which is its own span. Section F
provides explicit definitions. Throughout di denotes the rank of Mi.

A matroid tree ({v0},M1, . . . ,Mr), where v0 is an arbitrary singleton, represents
the set of verifier messages in a special sound protocol as well as the independence
relations needed from a set of accepting transcripts to allow computation of the witness.
A subtree is a basis if for each node at depth i− 1 its children form a basis of Mi.

5

Definition 1 (Matroid Tree). The matroid tree associated with a list of matroids M =
({v0},M1, . . . ,Mr) is the vertex-labeled rooted unordered directed tree of depth r such
that: the root is labeled v0 and every node at depth i−1 has edges to |Si| children which
are uniquely labeled with the elements of the ground set Si.

Definition 2 (Basis). A basis of a matroid tree M of depth r is a maximal subgraph
such that for every i ∈ [r] the set of children of every node at depth i − 1 is a basis of
Mi.

The subdensity captures the fraction of elements of the ground set which is outside a
flat. This was introduced in [12] to allow analysis of protocols where verifier messages
are chosen from a subset of the algebraic structure which defines the independence sets.

Definition 3 (Subdensity). Let M = (S, I) be a matroid of rank d. Then its ith sub-
density is ωM,i if |A|/|S| ≤ ωM,i for every flat A of rank i − 1, and it has maximal
subdensity ωM = ωM,d.

After abstracting the execution of a protocol and the verdict of the verifier as a
predicate ρ on verifier messages the extraction problem amounts to finding a basis of
a matroid tree. Let S = ×i∈[r]Si and ∆ρ(M) = Pr [ρ(v) = 1], where v is sampled
uniformly over a matroid tree M.

Definition 4 (Accepting Basis Extractor). A probabilistic polynomial time algorithm
Xκ parametrized by κ ∈ {0, 1}∗ is a (εκ,Dκ(∆))-accepting basis extractor with ex-
traction error εκ for a matroid tree M, where Dκ(∆) for fixed κ is a family of distri-
butions on N parametrized by ∆ ∈ [0, 1], if for every M-predicate ρ : S → {0, 1}
and ∆ρ(M) ≥ ∆0 > εκ: X ρ(·)κ (M, ∆0) outputs a ρ-accepting basis of M, where the
distribution of the number of ρ(·)-queries is bounded by Dκ(∆0).

3 Grafting Protocols

Before we introduce grafting protocols we need some notation. The ith message of
the prover is a pair (pi, ai), where pi is the index of a previous verifier message onto
which the new branch is grafted and ai is a prover message of the basic protocol. The
verifier always sends its next challenge message immediately, so there is no need for an
additional index for the verifier’s messages. One round of interaction is therefore always
a triple (pi, ai, vi+1), where pi = 0 if the prover starts a fresh execution of the basic
protocol. Every path in the tree of partial executions of the basic protocol then has the
form (aj1−1, vj1 , . . . , aji−1, vji), where pji = ji−1, i.e., it is an embedded transcript
of the basic protocol. To ensure that the distribution of verifier messages is correct, the
grafting verifier keeps state and samples each message from the appropriate set.

3.1 Functions of Transcripts

After each prover message during an execution of the grafting protocol on common in-
put x the current transcript has the form

(
x, (p1, a1, v2), . . . , (pi−1, ai−1, vi), (pi, ai)

)
for some i. We call this a truncated transcript and denote it by t[i], where t may be a
complete or truncated transcript itself. This allows us to define a natural depth function.

6

Definition 5 (Depth Function). The depth function δ takes a truncated transcript of a
grafting protocol as input and is defined by

δ(t[i]) =

{
1 if pi = 0

1 + δ(t[pi]) otherwise .

When the truncated transcript is clear from the context we abuse notation and simply
write δ(pi) to mean δ(t[i]).

Definition 6 (Index Function). The index function ι(·) takes a truncated transcript of
a grafting protocol as input and is defined by ι(t[i]) = (j1, . . . , jd), where d = δ(t[i]),
jd = pi, and jl = pjl+1

for l = d− 1, . . . , 1.

These functions merely gives a way to refer to the unique embedded partial tran-
script that was most recently extended by a round of interaction. Finally, we introduce
notation for extracting the embedded transcript itself using the index function.

Definition 7 (Path Projection). The path projection τ(·) takes a truncated transcript
of a grafting protocol as input and is defined by

τ(t[i]) = (x, aj1−1, vj1 , . . . , ajd−1, vjd , ai) , where (j1, . . . , jd) = ι(t[i]) .

Note that if d = r, then the embedded transcript is complete and is either accepting
or rejecting.

3.2 Grafting Verifier

We give an explicit transformation of a public coin verifier into a grafting verifier for
completeness. It is implicit that it rejects if an index pi provided by the prover is invalid,
i.e., if there does not exist a verifier message with the index pi in the existing partial
transcript onto which a round can be grafted.

Without loss of generality we assume that the verifier sends exactly ` messages and
that the prover’s final message corresponds to a final reply of an accepting execution of
the basic protocol, if any exists at all.

Definition 8 (Grafting Verifier). If (P,V) is a (M1, . . . ,Mr)-special sound protocol,
then on common input x its `-grafting verifier G[V] proceeds as follows:

1. Initialize an empty table T [·, ·].
2. For i = 0, . . . , `− 1:

(a) Wait for a message (pi, ai) from the prover.
(b) If T [pi, ai] 6= ∅, then set vi+1 = T [pi, ai], and otherwise choose vi+1 ∈ Sδ(pi)

randomly, set T [pi, ai] = vi+1, and hand vi+1 to the prover.
3. Wait for a message (p`, a`) from the prover.
4. Return the verdict V

(
τ(x, (pi, ai, vi+1)i∈[0,`−1], p`, a`)

)
of the verifier V .

7

Each verifier message is chosen from the ground set associated with the appropriate
round in the basic protocol due to the depth function. To avoid grafting more than once
at a given index with the same prover message the verifier uses a table. This mirrors the
same property of a random oracle, i.e., once sampled it returns the same output every
time it is queried on the same input.

We are interested in malicious provers which graft branches during the execution,
but for completeness we describe in Section D the corresponding honest prover which
is merely a wrapper of the honest prover of the basic protocol.

3.3 Grafting Protocols vs Non-interactive Fiat-Shamir Proofs

We may interpret the execution of a grafting protocol as the prover computing a Fiat-
Shamir proof in the random oracle model using a random oracle RO as follows. Rela-
tive to the current truncated transcript t[c] a prover message (pi, ai) with i ≤ c uniquely
identifies an embedded transcript τ(t[i]). For this embedded transcript the next veri-
fier message vi+1 is independently and uniformly distributed in the appropriate matroid
ground set and sampled exactly once.

When the min entropy of the verifier message in each round is high this is essentially
equivalent to the computation of a Fiat-Shamir proof, where the next verifier message
is defined by vi+1 = RO(τ(t[i])). Indeed, if the min entropy η is high, then the proba-
bility that a prover queries the random oracle in advance at a point partially defined by
random verifier messages that it has not yet received is bounded by `2−η .

In general we cannot expect that it is infeasible to: (1) determine if a prover message
is likely to be part of an accepting execution, or (2) use re-randomization to generate
arbitrarily many such prover messages from one. This means that a prover can probe up
to ` verifier messages. Thus, if the min entropy is not exponentially smaller than 1/` the
protocol may loose all soundness, i.e., it is unwise to apply the Fiat-Shamir transform
at all.

4 Grafted Sequences

Recall that in [12] the extraction problem is reduced to the problem of extracting an
accepting basis of a matroid tree relative a prover predicate that captures both the exe-
cution of the protocol and the verdict of the verifier.

We proceed similarly to abstract the extraction of a tree of transcripts of a grafting
protocol which correspond to an accepting basis tree in the basic protocol, but in our
case the distribution of verifier messages depends on the prover.

A grafting function determines, from the list of verifier messages so far, at which
point an additional branch is grafted to a sequence, i.e., given a sequence as input it
outputs an integer index of an existing element in the sequence. This abstracts the choice
made by the prover in a grafting protocol. A depth function makes explicit the depth at
which a branch is grafted.

Definition 9 (Grafting Function). A function f such that f(∅) = 0 and f(z1, . . . , zi) ∈
[0, i] for every z1, . . . , zi ∈ {0, 1}∗ and every i ∈ N is a grafting function.

8

Definition 10 (Depth Function). The depth function δf of a grafting function f is
defined as follows:

δf (z1, . . . , zi) =

{
1 if f(z[i]) = 0

1 + δf (z[f(z[i−1])]) otherwise .

A grafted sequence is an abstraction of a transcript of a grafted protocol where the
verifier messages are explicit, and the prover messages are implicit.

Definition 11 (Grafted Sequence). An (M, f)-grafted sequence of length `, where
M = (M1, . . . ,Mr) is matroid tree with Mi = (Si, Ii) is a sequence z = (z1, . . . , z`)
such that δf (z[i−1]) ≤ r and zi ∈ Sδf (z[i−1]) for every i ∈ [`]. We denote the set of
(M, f)-grafted sequences of length ` by GM,f,`.

Similarly to how we extracted indices from a grafted protocol transcript we extract
indices of the verifier messages of an (implicitly defined) embedded truncated transcript
of the basic protocol. It is not meaningful to define a path projection since the prover
messages are defined by the complete grafted sequence.

Definition 12 (Index Function). The index function ιf takes a grafted sequence z ∈
GM,f,` as input and outputs indices (j1, . . . , jd) defined by j′ = f(z), d = δf (z[j′]),
jd = j′, and ji = f(z[ji+1−1]) for i = d− 1, . . . , 1.

4.1 Shadow Sequences

We introduce shadow sequences and shadow matroids as a conceptual step to emphasize
the similarity with the analysis in [12].

Definition 13 (Shadow Sequence). If z is a grafted sequence overGM,f,`, (j1, . . . , jd) =
ιf (z), j0 = 0, andwi = (zji−1+1, . . . , zji) for i ∈ [1, d−1], andwd = (zjd−1+1, . . . , z`),
then σf (z) = (w1, . . . , wd) is its shadow sequence.

The last shadow element ends at index ` and not index jd, so there may be some
additional elements beyond the last embedded verifier message of the basic protocol.
This is necessary, but it does not impact the analysis technically.

For every grafted sequence z there is a shadow sequence w = σf (z) and we may
view a predicate ρ over grafted sequences as a predicate ρ∗ over shadow sequences. The
last component of the ith shadow element is an element from Si. Thus, the ith shadow
element is contained in the following matroid.

Definition 14 (Shadow Matroid). If M = (S, I) is a matroid, then its shadow matroid
M∗ = (S∗, I∗) is defined by S∗ = {0, 1}∗ × S × {0, 1}∗ and letting C be an indepen-
dence set in I∗ if and only if B = {b | (a, b, c) ∈ C} is an independence set in I and
|C| = |B|.

Intuitively, we would like to think of a shadow sequence as a redundant represen-
tation of a list of verifier messages in the basic special sound protocol, but the pre-
fixes/postfixes influence the implicitly defined prover messages and the output of the
grafting function, so this remains an intuitive view.

9

4.2 Grafting Function and Predicate of a Prover

We define a grafting function in terms of a grafting protocol and use the definition of
a prover predicate from [12], which is restated below with adapted notation for easy
reference.

Definition 15 (Grafting Function of Prover). The grafting function f [P∗,V] of P∗
for an `-grafting protocol of a public-coin protocol (P,V) and common input x is de-
fined as follows: On input z = (z1, . . . , zi), simulate (P∗,G[V]) using z as the random
tape for G[V] until P∗ outputs its ith message (pi, ai) and output pi.

Definition 16 (Prover Predicate). The prover M-predicate ρ[P∗,V, x] of P∗ for the
`-grafting protocol of a public-coin protocol (P,V) and common input x is defined by
ρ[P∗,V, x](z) = 〈P∗,G[V]z〉(x), where z = (z1, . . . , z`).

4.3 Random Grafted Sequences

Suppose that M = (M1, . . . ,Mr) is a matroid tree and let f be a grafting function.
A random variable over GM,f,` representing the verifier messages of an execution of a
grafting protocol is readily defined by stipulating that each verifier message is uniformly
and independently distributed over a ground set identified by the depth function.

Definition 17 (Random Grafted Sequence). The distribution of a random grafted se-
quence Z over GM,f,` is defined by PZi|Z[i−1]

(
·
∣∣z[i−1]) = |Sδf (z[i−1])|−1.

Although each element Zi is uniformly and independently distributed, the sequence
is not necessarily uniformly distributed, since the choice of ground set is determined
by previous elements and the grafting function. Consequently, the distribution of the
shadow sequence W = σf (Z) is not necessarily uniform.

5 Random Shadow Sequences

In each recursive call of the extractor the probability that the current prefix of a shadow
sequence leads to an accepting sequence is assumed to be some quantity∆, but we must
also be able to efficiently sample extensions of the prefix.

The problem is that even if the prefix has probability ∆ to lead to an accepting
grafted sequence it may be the case that the resulting grafted sequence does not have
the same prefix as a shadow sequence. Indeed, partitioning of the grafted sequence
into a shadow sequence is determined by the grafted sequence as a whole. Conversely,
if we focus on sampling a shadow sequence with a given prefix, then the acceptance
probability under this conditioning may be significantly lower than ∆. Thus, we must
prove that a random prefix has both properties at once with reasonable probability. We
formalize the property we need below.

Definition 18 (Extendable Shadow Prefix). Let M = (M1, . . . ,Mr) be a matroid
tree, let f be a grafting function, let Z be a random grafted sequence over GM,f,`,

10

define J = ιf (Z), and W = σf (Z), and let ρ : GM,f,` → {0, 1} be a predicate. Define
for every i ∈ [0, r − 1], w ∈ [W[i]], and β ∈ (0, 1):

ζρw = Pr
[
ρ(Z) = 1

∣∣Z[k] = w
]

(1)

θρw = Pr
[
Ji = k

∣∣ρ(Z) = 1 ∧ Z[k] = w
]

(2)

ξρ(w,∆, β) =
(
ζρw ≥ ∆ ∧ θρw ≥ β2/`

)
. (3)

We can always sample a complete grafting sequence Z starting with w[i] and if
ξρ(w[i], ∆, β) = 1, then we have ρ(Z) = 1 ∧ Ji = k with probability at least β2∆/`.
Below we show that this implies ρ∗(W) = 1 and W[i] = w[i]. Thus, we need roughly
`/(β2∆) sampled grafted sequences starting from w[i] to find an accepting shadow
sequence starting from w[i]. We maintain a sufficient acceptance probability by appli-
cation of the following well known lemma, which is proven in Section E.

Lemma 1 (Markov Conditioning). If H = (X,Y) is a random variable, E is an
event in [H], δx = PrH [E |X = x], and PrH [E] ≥ ∆, then PrH [δX < α∆ |E] ≤ α.

5.1 Coinciding Indices

It should be clear that if z and z′ share a prefix z[k] corresponding to a prefix w[i] of the
shadow sequence w of z, and the ith element of the shadow sequence w′ of z′ end at
index k, then w′[i] = w[i].

Lemma 2 (Pinching). For every z, z′ ∈ GM,f,` and every i ∈ [1, r−1], with j = ιf (z)
and w = σf (z), and similarly for j′ and w′, we have

z′[ji] = z[ji] and j′i = ji =⇒ j′[i] = j[i] and w′[i] = w[i] .

Proof. If we define pt = f(z[t−1]) for t ∈ [`] and similarly for p′t and z′[t−1], then by
assumption p′[i] = p[i]. Thus, if j′i = ji, then j′[i] = j[i] which implies that w′[i] = w[i].

Suppose that we sample a grafted sequence z and let w[i] be a prefix of its shadow
sequencew, which viewed as a prefix of the grafted sequence has the form z[k] for some
k. If we sample a fresh completion z′[k+1,`] of z[k], and define w′ = σf (z[k], z

′
[k+1,`])

and j′ = ιf (z[k], z
′
[k+1,`]), then Lemma 2 says that it is sufficient to require that j′i = ji

to guarantee that w′[i] = w[i]. The next lemma is used to prove that over the random
choice of w[i] this happens with reasonable probability.

Lemma 3 (Coinciding Indices). Let Z = (Z1, . . . , Z`) be a random variable, let ι :
[Z] → [0, ` − 1] be a function, define K = ι(Z), X = (Z1, . . . , ZK), and let Y
be independently distributed with PY |X (· |x) = PZk+1,...,Z`|X (· |x), where x has
length k. If we define θx = Pr [ι(X,Y) = k |X = x], then for every β ∈ (0, 1/2):

Pr
[
θX < β2/`

]
≤ 2β . (4)

11

Proof. By definition we have

PX,K (x, k) = PZ[k]|K (x |k)PK (k) , (5)

where it is understood that PX,K (x, k) = 0 if the length of x is not equal to k. Thus, to
sample x we may: sample a length k, sample z[k] as a prefix of a complete sequence z
conditioned on ι(z) = k, and set x = z[k]. Furthermore, from independence we have

Pr [ι(X,Y) = k |X = x] = Pr
[
ι(Z) = k

∣∣Z[k] = x
]

(6)

which means that θx = Pr
[
ι(Z) = k

∣∣Z[k] = x
]
.

If we let β ∈ (0, 1) and define B = {k | PK (k) < β/`}, then we trivially have
Pr [K ∈ B] <

∑
k∈[0,`−1] β/` = β. For every k 6∈ B we have Pr [ι(Z) = k] =

Pr [K = k] ≥ β
` from the definitions of K and the set B. For k 6∈ B and every

α ∈ (0, 1) Lemma 1 then implies that

Pr
[
θZ[k]

< αβ/`
∣∣ι(Z) = k

]
≤ α , (7)

which implies that

Pr [θX < αβ/`] =
∑

k∈[0,`−1]

PK (k) Pr
[
θZ[k]

< αβ/`
∣∣ι(Z) = k

]
(8)

≤ Pr [K ∈ B] +
∑
k 6∈B

PK (k) Pr
[
θZ[k]

< αβ/`
∣∣ι(Z) = k

]
(9)

≤ β + α
∑
k 6∈B

PK (k) ≤ α+ β . (10)

The proof is completed by setting α = β.

5.2 Extendable Shadow Sequence

The following theorem follows from the two lemmas above and the union bound.

Theorem 2 (Extendable Shadow Sequence). Let M = (M1, . . . ,Mr) be a matroid
tree, let f be a grafting function, let Z be a random grafted transcript over GM,f,`, and
define J = ιf (Z) and W = σf (Z). Let ρ : GM,f,` → {0, 1} be a predicate. For every
i ∈ [r − 1], w ∈ [W[i−1]] such that ζρw ≥ ∆, α ∈ (0, 1), and β ∈ (0, (1− α)/2).

Pr
[
ξρ(W[i], α∆, β) = 1

∣∣ρ∗(W) = 1,W[i−1] = w
]
≥ 1− α− 2β . (11)

Proof. We define the random variable (Ji, X), by

PJi,X (·) = PJi,W[i]|W[i−1]
(· |w) (12)

In other words,X effectively captures the distribution of the ith shadow element and its
ending index conditioned on the i− 1 previous shadow elements in w. Next we define
H = (X,Y) by defining an independently distributed random variable Y

PY |X (· |x) = PZ[k+1,`]|Z[k]
(· |x) . (13)

12

The random variable Y represents the sampling of a completion of a grafting sequence
starting with x. Finally, we define K = #(X), i.e., K is the index of what we expect
to be the last element of the ith element of the shadow sequence.

By assumption Pr [ρ(H) = 1] ≥ ∆. Thus, if we define ζρx = Pr [ρ(H) = 1 |X = x],
then from Lemma 1 we have the bound Pr [ζρX < α∆ |ρ(H) = 1] ≤ α. If we define
θρx = Pr [Ji = k |ρ(H) = 1 ∧X = x], where k is the length of x, then Lemma 3 im-
plies that Pr

[
θρX < β2/`

∣∣ρ(H) = 1
]
≤ 2β. The union bound finally gives

Pr [θρX ≥ α∆ ∧ ζ
ρ
X ≥ β |ρ(H) = 1] ≥ 1− α− 2β , (14)

which concludes the proof.

6 Accepting Basis Extractor for Shadow Sequences

To construct an extractor for grafting protocols we first show that shadow sequences
can be sampled. This trivially gives a basic extractor and a basic sampler of shadow
sequences corresponding to the basic algorithms in [12]. The recursive extractor follows
by syntactic changes, since it is is defined in terms of the expected value and tail bound
for each recursive call and the tail bounds do not change.

6.1 Shadow Sampler

Theorem 2 says that from a suitable prefix w[i] of shadow sequences we can sample a
complete accepting shadow sequence w that keeps the prefix intact, but we also need to
ensure thatwi+1 ∈M∗i+1\span(B∗), whereB∗ is the shadow version of an independent
set B ∈ Ii+1, to ensure that we end up with a basis of M∗. This can be accomplished
by sampling every grafting element at depth i+1 from Ii+1 \ span(B) instead of from
Ii+1. There are at most ` such elements in a sequence so the statistical distance between
this modified distribution and the original is at most `ωMi+1

. Theorem 2 then implies
the following lemma, which is proven in Section B for completeness.

Lemma 4 (Shadow Sampler). There exists a sampler Sf,ρα1
of shadow sequences such

that for every grafting function f , predicate ρ, andα1 ∈ (0, 1), and any input (M, w[i], B,∆0)

such that ξρ
(
w[i], ∆0, β0

)
= 1 with ∆0 > `ωMi+1

:

1. the distribution of the number of calls to ρ is bounded by Geo(β2
0∆
′
1/`), and

2. the output w has prefix w[i], ρ∗(w) = 1, and wi+1 ∈Mi+1 \ span(B∗), and
Pr
[
ξρ
(
w[i+1], ∆1, β1

)
= 1
]
≥ β1,

where ∆′1 = ∆0 − `ωMi+1
, ∆1 = α∆′1, and β1 = 1

3 (1− α1):

We need to change the syntax slightly to accomodate for prefixes needed to sample
correctly, but the shadow sampler makes it trivial to construct a basic sampler Sf,ρα that
from an extendable prefix samples the next shadow element conditioned on acceptance.
We similarly denote by Bf,ρα the basic extractor for shadow sequences that takes an
input w[r−1] and invokes the shadow sampler dr times with the parameter α, storing the
new elements in an initially empty set B∗, to find accepting a set of transcripts with the
prefix w[r−1] such that their rth elements form a basis over M∗r .

13

6.2 Accepting Basis Extractor

The recursive extractor Rκ[R], parametrized by a parameter κ, and making recursive
calls to R, is virtually identical to that in [12], since it is defined in terms of expected
values and tail bounds of a recursive call or the basic extractor. Analytically the situation
is equivalent to the original analysis of the basic strategy except for three changes: (1)
`ωMi replaces the subdensity ωMi , (2) we loose a factor 3 for each recursive call due
to the threefold use of the union bound, and (3) the expected running time of the basic
extractor increases by a factor of `/(1 − αr−1)2. Thus, if we set νi = 1/αi, then we
may simply restate the main theorem from [12] with these changes, but we provide a
proof in Section C.

We consider families of distributions D(s,∆) parametrized by s ∈ N+ and ∆ ∈
[0, 1], which satisfy a tail bound of the form Pr

[
X ≥ kµD(s,∆)

]
≤ tDs(k), where X

is distributed according to D(s,∆) and µD(s,∆) is the expected value of D(s,∆). For
compound geometric distributions we have tCGs (k) = e−(k−1−ln k)s from [12].

Theorem 3 (Extractor). For every ν1, . . . , νr−1 ∈ (1,∞) with νi ≥ νi+1 there exist
parameters κi = (αi, λi) such that the algorithm Xκ = Rκ1

[Rκ2
[· · ·Rκr−2

[B] · · ·]],
is a (ε0,Dκ(∆0))-accepting basis extractor for shadow matroid tree of M where:

ε0 = `
∑
i∈[r]

ωMi
∏

j∈[i−1]

νj (extraction error) (15)

µD0(∆0) ≤ ` ·
c0
∏
j∈[r] dj

∆0 − ε0
(expected number of queries) (16)

tD0

d1
(k) ≤ tCGd1(k) for k > 1 , (tail bound) (17)

where the constant c0 is defined by

c0 = 3r+1 ν2r−1
(νr−1 − 1)2

∏
i∈[r−1]

ν2i
(νi − 1)

· min
ki∈(0,1)

{
ki

hCG

di
(ki)

}
. (18)

7 Interpretation

We refer the reader to [12] for an in depth intuitive interpretation of the overall recursive
formulas. To see that the extraction error ε0 is tight up to a factor r first recall that it
upper bounds the soundness error. Then consider a protocol such that: (1) guessing the
verifier message of the special sound protocol in any round is necessary to convince the
verifier of a false statement, and (2) that the prover can determine if a guess is correct
before the execution is continued. For such a protocol the soundness error is roughly
ε =

∑r
i=1 ωMi . In the grafting protocol the prover may probe any round independently

with ` queries, so the soundness error is bounded by `maxi∈[r]{ωMi} ≥ ε0/r.
When ∆0 � ε0 the factor ` in the extraction error can be ignored and if we set

νi = 2 the running time is 4 · 3r+1` times the running time in the interactive case.
Consider a prover that effectively executes the basic special sound protocol without

14

grafting any forks until the (r−2)th round where it probes `−r−3 round r−1 messages
before completing the last round in exactly one randomly chosen partial execution. Then
forking in round r − 2 requires roughly ` samples. Thus, the factor ` is necessary and
the running time is relatively tight up to a factor 4 · 3r+1.

To summarize, our results show that for any constant r and any (2r + 1)-message
special sound protocol the application of the Fiat-Shamir heuristic comes at a cost of
a factor ` in extraction error and O (`) extraction time, respectively, but with the same
type of distribution as in the interactive case. In practice the matroid subdensities can
typically be decreased by a factor of 1/` by a different choice of parameters for the pro-
tocol and cancel the effect on the extraction error at modest cost in efficiency. Thus, the
loss of security from the application of the Fiat-Shamir heuristic in practice is typically
no more than log `+O (1) bits of security which is intuitively appealing.

References

1. N. Alon and J. H. Spencer. The Probabilistic Method, Third Edition. Wiley-Interscience
series in discrete mathematics and optimization. Wiley, 2008.

2. T. Attema, R. Cramer, and L. Kohl. A compressed $\varsigma $-protocol theory for lattices.
In T. Malkin and C. Peikert, editors, Advances in Cryptology - CRYPTO 2021 - 41st Annual
International Cryptology Conference, CRYPTO 2021, Virtual Event, August 16-20, 2021,
Proceedings, Part II, volume 12826 of Lecture Notes in Computer Science, pages 549–579.
Springer, 2021.

3. L. Babai. Trading group theory for randomness. In R. Sedgewick, editor, Proceedings of the
17th Annual ACM Symposium on Theory of Computing, May 6-8, 1985, Providence, Rhode
Island, USA, pages 421–429. ACM, 1985.

4. M. Bellare, J. A. Garay, and T. Rabin. Fast batch verification for modular exponentiation
and digital signatures. In K. Nyberg, editor, Advances in Cryptology - EUROCRYPT ’98, In-
ternational Conference on the Theory and Application of Cryptographic Techniques, Espoo,
Finland, May 31 - June 4, 1998, Proceeding, volume 1403 of Lecture Notes in Computer
Science, pages 236–250. Springer, 1998.

5. M. Bellare and O. Goldreich. On defining proofs of knowledge. In E. F. Brickell, editor,
Advances in Cryptology - CRYPTO ’92, 12th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 16-20, 1992, Proceedings, volume 740 of Lecture
Notes in Computer Science, pages 390–420. Springer, 1992.

6. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In D. E. Denning, R. Pyle, R. Ganesan, R. S. Sandhu, and V. Ashby, editors, CCS
’93, Proceedings of the 1st ACM Conference on Computer and Communications Security,
Fairfax, Virginia, USA, November 3-5, 1993., pages 62–73. ACM, 1993.

7. R. Cramer, I. Damgård, and B. Schoenmakers. Proofs of partial knowledge and simplified
design of witness hiding protocols. In Y. Desmedt, editor, Advances in Cryptology - CRYPTO
’94, 14th Annual International Cryptology Conference, Santa Barbara, California, USA,
August 21-25, 1994, Proceedings, volume 839 of Lecture Notes in Computer Science, pages
174–187. Springer, 1994.

8. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In A. M. Odlyzko, editor, Advances in Cryptology - CRYPTO ’86, Santa
Barbara, California, USA, 1986, Proceedings, volume 263 of Lecture Notes in Computer
Science, pages 186–194. Springer, 1986.

15

9. O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press, New
York, NY, USA, 2000.

10. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof
systems. SIAM J. Comput., 18(1):186–208, 1989.

11. C. Schnorr. Efficient signature generation by smart cards. J. Cryptology, 4(3):161–174,
1991.

12. D. Wikström. Special soundness revisited. IACR Cryptol. ePrint Arch., 2018:1157, 2018.

A Definitions

We recall the definitions introduced in [12].

Definition 19 (Accepting Basis). A basis B of a matroid tree M is ρ-accepting for an
M-predicate ρ if ρ(v) = 1 for each path v of maximal length in B.

Definition 20 (Accepting Transcript Tree). A rooted unordered directed tree T with
vertex labels `(·) is an accepting transcript tree for V if every leaf has depth r and
for every path (u0, . . . , ur) in T : (vu0

, au0
, . . . , vur , aur) is accepting, where `(ui) =

(vui , aui).

Definition 21 (Challenge Tree). The challenge tree V(T) of an accepting transcript
tree T with vertex labels `(·) has the same nodes and vertices, but labels defined by
`′(u) = v, where `(u) = (v, a).

Definition 22 (Special Soundness). A (2r + 1)-message public coin-protocol (P,V)
is
(
(M1, . . . ,Mr), p

)
-special-sound for an NP relation R, where Mi = (Si, Ii) is a

matroid, if the ith message of V is chosen randomly from Si, and there exists a witness
extraction algorithm W that given an accepting transcript tree T such that V(T) is
basis subtree of ({x},M1, . . . ,Mr) outputs a witness w such that (x,w) ∈ R in time p.

B Proof of Lemma 4

The extractor in [12] repeatedly samples complete lists of accepting verifier messages
with a slight bias to guarantee independence properties. We intend to essentially execute
the original extractor with a shadow predicate ρ∗ over a shadow matroid tree M∗.

The original analysis assumes that the lists of verifier messages are sampled uni-
formly from a matroid, but what is actually necessary for the analysis to work is that
they are sampled identically as in the protocol. Thus, nothing prevent us from invoking
a modified extractor for our shadow matroid tree, provided that the verifier messages
are sampled with the right distribution. Consider the following algorithm.

Definition 23 (Grafted Sequence Sampler). The grafted sequence sampler Zf takes
as input a tuple (M, `, z, b, B), where f is a grafting function, M = (M1, . . . ,Mr) is a
matroid tree with Mi = (Si, Ii), z ∈ GM,f,k, and B ∈ Ib is not a basis and proceeds
as follows.

1. For i = k + 1, . . . , `:

16

(a) Compute d = δf (z) and sample zi randomly, in Sd \ span(B) if d = b, and in
Sd otherwise.

(b) Append zi to z.
2. Return z.

The running time of the algorithm is, apart from sampling in the complement of
span(B), identical to executing the protocol, i.e., its running time corresponds to eval-
uating the predicate ρ if we ignore the cost of sampling verifier messages.

The algorithm is used below to sample an accepting shadow sequence which has a
prefix w[i−1] and we need wi to not be contained in a set B∗ ∈ I∗b , but at the time of
sampling the grafted elements we do not know which sample from Si will determine
independence in I∗b . Thus, we make sure that all grafted elements from Sb that make up
wi are from Sb \B instead, where B is the projection of B∗ to their middle elements. It
may seem that this approach introduces an unnecessarily large error in the distribution
of the output, i.e., roughly `ωMb instead of ωMb , but this seems unavoidable. Next we
use the grafted sequence sampler to implement a shadow sampler.

Definition 24 (Shadow Sampler). The shadow sampler algorithm Wf,ρ, where f is
a grafting function and ρ is a predicate, takes as input a tuple (M, `, w[i], B), where
M = (M0, . . . ,Mr) is a matroid tree, ρ : GM,f,` → {0, 1}, w[i] is a prefix of a shadow
sequence corresponding to a grafted sequence z[k] ∈ GM,f,k, and B ∈ Ii+1 is not a
basis. Repeat:

1. Compute z = Zf (M, `, z[k], i+ 1, B) and set j = ιf (z) and w′ = σf (z).
2. If ρ(z) = 1 and ji = k, then return w′.

Let z be the grafted sequence sampled by Wf,ρ such that w′ = σf (z) is returned,
and set j = ιf (z). By construction w[i] is a prefix of w′ viewed as grafted sequences
and it only returns if ji = k. Thus, Lemma 2 implies that w′[i] = w[i]. Furthermore,
Wf,ρ only returns if ρ(z) = 1 which implies that ρ∗(w′) = 1. Finally, every element
from Si+1 is sampled from the subset Si+1 \B, which implies that wi+1 ∈ S∗i+1 \B∗.
This proves the first claim.

If ξρ(w[i], ∆0, β0) = 1, then in each iteration the probability of returning is at least
β2
0∆0/`. Thus, the distribution of the number of calls to ρ is bounded according to the

second claim. The third claim follows directly from Theorem 2.

C Proof of Theorem 3

We now have the subroutines needed to derive a recursive extractor from the construc-
tion in [12] almost by syntactic changes. The only essential difference is that all al-
gorithms need the complete prefix of a partial shadow sequence as input to sample
completions with the right distribution.

We need to modify the notion of an accepting basis extractor to allow for the addi-
tional parameter ` and the parameter β from Theorem 2.

17

Definition 25 (Accepting Basis Extractor). A probabilistic polynomial time algorithm
Xκ parametrized by κ ∈ {0, 1}∗ is a (εκ,D

`
κ(∆,β))-accepting basis extractor with ex-

traction error εκ for the matroid tree M′ = ({w[i]},M∗i+1, . . . ,M∗r), where D`κ(∆,β)
for fixed κ is a family of distributions on N parametrized by ` ∈ N, ∆ ∈ [0, 1],
β ∈ (0, 1), if for every grafting function f and predicate ρ : GM,f,` → {0, 1} the
following holds.

If∆i > εκ, βi > 0, and ξρ(w[i], ∆i, βi) = 1, thenX f,ρκ (M, `, w[i], ∆i, βi) outputs a
ρ-accepting basis of M′, where the distribution of the number of ρ(·)-queries is bounded
by D`κ(∆i, βi).

Definition 26 (Recursive Extractor). Let M = (M1, . . . ,Mr) be a matroid tree and
assume that R is a (εi,D

`
i(∆,β))-accepting basis extractor for matroid trees of the

form ({w[i]},M∗i+1, . . . ,M∗r). The recursive extractor Rκ[R], where κ = (αi, λi) and
αi, λi ∈ (0, 1) proceeds as follows on input (M, `, w[i−1], ∆i−1, βi−1).

1. Set ∆i = αi(∆i−1 − `ωMi), βi =
1
3 (1− αi), k = kDi(λi), and µ = µD`i(∆i,βi)

.
2. Set B∗ = ∅ and T = ∅.
3. While |B∗| < di:

(a) Compute w = Sf,ραi (M, `, w[i−1], B
∗, ∆i−1, βi−1).

(b) Extract subtree t = Rf,ρ(M, `, w[i], ∆i, βi), but interrupt the execution and
set t = ⊥ if it attempts to make more than kµ queries.

(c) If t 6= ⊥, then set B∗ = B∗ ∪ {wi} and T = T ∪ {t}.
4. Return the accepting basis tree T .

The following lemma and corollary follows mutatatis mutandi from the correspond-
ing proof in [12], where we use indices to illustrate the similarity with the original
recursive formulas.

Lemma 5 (Recursive Extractor). The algorithmRκ[R] is a (εi−1,D
`
i−1(∆i−1, βi−1))-

accepting basis extractor, where εi−1 = εi/αi + `ωMi and

GD`i−1(∆i−1,βi−1)(z) =

di∏
i=1

GGeo(βiλi)
(
GGeo(β2

i−1∆i−1/`)(z)z
kDi (λi)µD`

i
(∆i,αi)

)
, (19)

defined by βi = 1
3 (1− αi) and ∆i = αi(∆i−1 − `ωMi).

Corollary 1 (Recursive Extractor). The distribution D`i−1(∆,β) satisfies

µD`i−1(∆i−1,βi−1) =
3di

(1− αi)λi

(
`

β2
i−1∆i

+ kDi(λi)µD`i(∆i,αi)

)
(20)

t
Di−1

di
(k) ≤ tCGdi(k) for k ∈ (1,∞) . (21)

If β2
i−1 ≥ β2

i αi, then the term `/(β2
i−1∆i) can be dropped by observing that the

initial sample can be reused in the recursive call and recursive calls are slightly more
expensive. When βi = 1

3 (1−αi) this is always the case, since (1−αi−1)2 ≥ αi(1−αi)2
for αi−1, αi ∈ (0, 1).

Thus, the only change in the expected value compared to the basic case in [12] is a
factor of three in each recursive call (and there are r − 1 levels of recursion), and that
the expected value for the basic extractor is increased by a factor of 32`/(1 − αr−1)2.
Setting νi = 1/αi gives the theorem.

18

D Grafting Prover

An honest grafting prover obviously does not need the liberty to graft additional branches
to an execution.

Definition 27 (Grafting Prover). If (P,V) is a (M1, . . . ,Mr)-special sound protocol,
then on common input x, and private input w such that (x,w) ∈ R, the grafting prover
G[P] proceeds as follows.

1. Start a simulation of P on input (x,w) and when it outputs a message a0, hand
(0, a0) to the verifier.

2. For i = 1, . . . , r:
(a) Wait for a message vi from the verifier.
(b) Continue the simulation of P on input vi, until it outputs a message ai, hand

(i, ai) to the verifier.

E Omitted Proofs

Proof (Lemma 1). We have E [1/δX |E] =
∑
x∈[X] Pr [X = x |E] /δX = 1/Pr [E] ≤

1/∆. Markov’s inequality then implies Pr [δX < α∆ |E] = Pr [1/δX > 1/(α∆) |E] ≤
α.

F Basic Definitions

Definition 28 (Matroid). A matroid is a pair (S, I) of a ground set S and a set I ⊂ 2S

of independence sets such that:

1. I is non-empty,
2. if A ∈ I and B ⊂ A, then B ∈ I , and
3. if A,B ∈ I and |A| > |B|, then there exists an element a ∈ A \ B such that
{a} ∪B ∈ I .

Definition 29 (Submatroid). Let (S, I) be a matroid and S′ ⊂ S. The submatroid
induced by S′ is the pair (S′, I ′) defined by I ′ = I ∩ 2S

′
.

Definition 30 (Basis). Let (S, I) be a matroid. A set B ∈ I such that B ∪ {x} 6∈ I for
every x ∈ S \B is a basis.

Definition 31 (Rank). The rank of a matroid (S, I) is the unique cardinality of each
basis in I .

Definition 32 (Rank of Set). Let (S, I) be a matroid and A ⊂ S. The rank rank(A) of
A is the rank of the submatroid induced by A.

Definition 33 (Span and Flats). Let (S, I) be a matroid and A ⊂ S. The span of A
is defined by span(A) = {x ∈ S | rank(A ∪ {x}) = rank(A)} and A is a flat if
span(A) = A.

19

	Special Soundness in the Random Oracle Model

