
A Systematic Approach and Analysis of Key
Mismatch Attacks on Lattice-Based NIST

Candidate KEMs

Yue Qin1,2,6, Chi Cheng1,2,3,�, Xiaohan Zhang1, Yanbin Pan4,
Lei Hu5, and Jintai Ding6,7

1 China University of Geosciences, Wuhan, 430074, China
{chengchi}@cug.edu.cn

2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China,
3 Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic

Technology, Guilin 541004, China.
4 Key Laboratory of Mathematics Mechanization, Academy of Mathematics and

Systems Science, Chinese Academy of Sciences
5 State Key Lab of Information Security, Institute of Information Engineering,

Chinese Academy of Sciences
6 Ding Lab, Yanqi Lake Beijing Institute of Mathematical Sciences and Applications,

Beijing, China
7 Yau Mathematical Sciences Center, Tsinghua University ?

Abstract. Research on key mismatch attacks against lattice-based KEMs
is an important part of the cryptographic assessment of the ongoing NIST
standardization of post-quantum cryptography. There have been a num-
ber of these attacks to date. However, a unified method to evaluate these
KEMs’ resilience under key mismatch attacks is still missing. Since the
key index of efficiency is the number of queries needed to successfully
mount such an attack, in this paper, we propose and develop a system-
atic approach to find lower bounds on the minimum average number of
queries needed for such attacks. Our basic idea is to transform the prob-
lem of finding the lower bound of queries into finding an optimal binary
recovery tree (BRT), where the computations of the lower bounds be-
come essentially the computations of a certain Shannon entropy. The
optimal BRT approach also enables us to understand why, for some
lattice-based NIST candidate KEMs, there is a big gap between the the-
oretical bounds and bounds observed in practical attacks, in terms of
the number of queries needed. This further leads us to propose a generic
improvement method for these existing attacks, which are confirmed by
our experiments. Moreover, our proposed method could be directly used
to improve the side-channel attacks against CCA-secure NIST candidate
KEMs.

? Yue Qin, Chi Cheng, Xiaohan Zhang, Yanbin Pan, Lei Hu, Jintai Ding, A Systematic
Approach and Analysis of Key Mismatch Attacks on Lattice-Based NIST Candidate
KEMs, in proceedings of ASIACRYPT 2021, Tibouchi and H. Wang (Eds.): LNCS
13093, pp. 92-121, 2021. https://doi.org/10.1007/978-3-030-92068-5_4

https://doi.org/10.1007/978-3-030-92068-5_4

2 Y. Qin et al.

1 Introduction

The Diffie-Hellman (DH) key exchange [24] and its Elliptic Curve counterpart
have played a fundamental role in many standards, such as Transport Layer Se-
curity (TLS) and IP security (IPSec), securing communications over the Internet.
However, these public key primitives based on number theoretic problems would
be broken if quantum computers become practical. Due to the rapid progresses
in quantum technology [32], the transition from the currently used public key
cryptographic blocks to their post-quantum counterparts has become urgent.

Since February 2016, NIST has begun the call for post-quantum crypto-
graphic algorithms from all over the world [44]. The goal of post-quantum cryp-
tography standardization is to establish cryptographic systems that are secure
against both quantum and classical computers, integrating with existing com-
munication protocols and networks [19]. There are 17 public key encryption
(PKE) or key encapsulation mechanism (KEM) candidates in the second round
[2], among which 9 are based on lattices [1]. On the third-round list, there are
still 3 lattice-based KEMs out of the 4 finalists [45].

Most of these candidates follow a similar structure: First a chosen-plaintext
attack (CPA) secure construction is proposed, and then it is converted into a
chosen-ciphertext attack (CCA) secure one using some transformation such as
the Fujisaki-Okamoto (FO) transformation [29]. We have to point out that there
is no security guarantee on the CPA secure ones when the public key is reused.
However, first, it is an important part of the cryptographic assessment of these
candidates to understand their key-reuse resilience in even misuse situations.
Secondly, all LWE-based KEMs in Rounds 2 and 3 of the NIST standardization
use an FO transform to achieve IND-CCA security. By doing so, the private key
security is provided for only one party, while the other party is required that his
secret key should be fully disclosed. What’s more, the full re-encryption in the
FO transform is typically the main cost during decapsulation, which makes it less
efficient than the IND-CPA version. To improve the efficiency, there have been
many efforts in designing various authenticated key exchanges using the CPA
version without FO transform. In these cases, key reuse is no doubt essential.
Therefore, analysis of the key reuse resilience of these CPA-secure schemes makes
sense. Finally, as shown in [23,50], side-channel information can be employed
to successfully mount similar chosen-ciphertext attacks against the CCA-secure
ones in an efficient way. Therefore, the line of research focusing on the key reuse
attacks against the CPA secure ones is important and has been actively studied.

Research on the security of IND-CPA secure public-key cryptosystem in the
case of key reuse can be dated back to 1998, when Bleichenbacher considered
the security of the RSA PKCS#1 [15]. After that, similar attacks have been
proposed against several public key cryptosystems including the Diffie-Hellman
key exchange [33,43]. There are two kinds of key reuse attacks against lattice-
based key exchange. One is the signal leakage attack, which employs the ad-
ditional signal information in the shared key reconciliation between two par-
ties. The other key reuse attack is called key mismatch attack, which launches
the attack by simply knowing whether the shared two keys match or not. In

A Systematic Approach of Key Mismatch Attacks 3

[25], Ding, Alsayigh and Saraswathy first launched signal leakage attacks to the
key exchange protocol in [28] by using the leaked information about the secret
key from the signal messages. Then, a signal leakage attack is proposed in [39]
against the reconciliation-based NewHope-Usenix protocol [6]. Just recently in
[14], Bindel, Stebila and Veitch proposed an improved signal leakage attack and
further showed how to apply their method to an authenticated scheme in [26].

The idea of key mismatch attack on lattice-based key exchange is first pro-
posed by Ding, Fluhrer and Saraswathy [27] against the one-pass case of the
protocol in [28]. In a key mismatch attack, a participant’s public key is reused
and its private key is recovered by comparing whether the shared keys between
two participants match or not. In [10], Bauer et al. proposed a key mismatch at-
tack against NewHope KEM [3], which is further analyzed and improved by Qin,
Cheng, and Ding [48]. In [46], Okada, Wang, and Takagi improved the method
in [48] to further reduce the number of queries. The work of [49] gave a simi-
lar key mismatch attack on Kyber. In [31] a key mismatch attack was proposed
against LAC, requiring up to 8 queries for each coefficient. Recently, Zhang et al.
proposed an efficient method to launch key mismatch attacks on NTRU-HRSS
[55], which can recover the complete secret key with a probability of 93.6%.

Although there have been a number of key reuse attacks on the lattice-based
key exchange schemes, a fundamental problem is still open: Can we find a unified
method to evaluate the key reuse resilience of NIST candidates against key mis-
match attacks? Since the key index of the efficiency of these attacks is the number
of queries (matches and mismatches) needed to successfully mount such attacks,
a unified method to find bounds with fewest queries for all the candidates is ap-
pealing. In Eurocrypt 2019, Băetu et al. tried to answer this problem, but most
of their result is related to a limited number of the first-round candidates which
did not enter into the second round [9]. In a recent work of Huguenin-Dumittan
and Vaudenay [37], they proposed similar key mismatch attacks on only some
of the lattice-based second-round candidates, Kyber-512, LAC-128, LightSaber,
Round5 (HILA5 [11]) and Frodo640. But no unified theoretical bound is given in
their work. Therefore, a big picture about the evaluation of key reuse resilience
of these candidates is still missing.

Contributions. In this paper, we propose and develop a systematic ap-
proach to find the lower bounds on the minimum average number of queries
needed for mounting key mismatch attacks, which further motivates us to pro-
pose a generic improvement method that is not only suitable for CPA-secure
KEMs, but also for side-channel attacks against CCA-secure KEMs. The main
contributions of this paper include:

– We propose a unified method to find lower bounds for all the lattice-based
NIST candidate KEMs. Our basic idea is to convert the problem into finding
an optimal binary recovery tree (BRT). By using the technique of Huffman
coding, we successfully build the optimal BRT and get the bounds. Further
analysis shows that the calculation of these bounds becomes essentially the
computation of a certain Shannon entropy, which means that on average one

4 Y. Qin et al.

cannot find a better attack with fewer queries than our bound in the full key
recovery.

– According to our proposed bound, in terms of number of needed queries,
there is still a huge gap between the bound and practical attacks against
some candidates such as NewHope, FrodoKEM, and Saber [46,37,48]. The
introduction of the optimal BRT approach enables us to understand causes
of these gaps, guiding us to select proper parameters to improve the practical
attacks. Compared to the existing results in [37] and [46], we have improved
attacks against Frodo640 and LightSaber with 71.99% and 27.93% reduced
number of queries respectively, which is also confirmed by our experiments.

– Our improved method could be directly used to further optimize the effi-
ciency of side-channel attacks against CCA-secure NIST candidate KEMs.
For example, we can reduce the needed number of queries (or traces) from
2560 to 1183 for Kyber512.

– From the analysis of our proposed attacks, we find that the ranges of the
coefficients in the secret key and the corresponding occurrence probabilities,
as well as the employment of Encode/Decode functions are the three most
important factors in evaluating their key reuse resilience. More specifically,
larger ranges of the coefficients increase the needed number of queries. On
the other side, encoding/decoding several coefficients at one time reduces
the number of queries needed.

2 Preliminaries

2.1 Lattice-based key encapsulation mechanisms

In [21], Cramer and Shoup introduced the notion of KEM. Generally, a KEM con-
sists of three algorithms: a probabilistic polynomial-time (PPT) key generation
algorithm KEM.Gen, a PPT encryption algorithm KEM.Enc, and a determin-
istic polynomial-time decryption algorithm KEM.Dec.

The main difficulty in constructing a lattice-based DH-like key exchange
protocol is how to effectively reconcile errors to negotiate a consistent shared key.
In [28], Ding, Xie, and Lin first proposed a “robust extractor” to reconcile the
errors, in which one of the participants needs to send an additional signal message
to the other party, so that the two participants can agree on a shared key. Ding,
Xie, and Lin’s schemes base their security on the Learning with Errors (LWE)
problem and Ring LWE problem. The latter can be seen as the polynomial
version of the former. In [47] Peikert proposed a KEM using a similar error
correction mechanism, and then in [17] the reformulated key exchange proposed
by Bos et al. has been integrated into TLS. More and more lattice-based KEMs
have been proposed since then. For example, in NIST’s second-round list, there
are FrodoKEM [4], NewHope [5,3], LAC [40], Kyber [16,7], Threebears [34],
Round5 [8], Saber [22], NTRU [18] and NTRU Prime [13]. Recently, NIST [45]
has announced the third-round finalists, among which the lattice-based KEMs
include Kyber, NTRU and Saber. NIST also announced two alternate lattice-
based candidates: FrodoKEM and NTRU Prime.

A Systematic Approach of Key Mismatch Attacks 5

We can roughly divide the existing lattice-based KEMs into two categories.
The first category is in line with the work of Regev [51], Lyubashevsky-Peikert-
Regev [41], and lattice-based key exchange scheme proposed by Ding, Xie and
Lin [28]. The other is NTRU [35] and NTRU Prime [12].

In Fig. 1 we present the meta structure of the CPA-secure KEMs in the first
category of the NIST second-round candidates, in which

Fig. 1: The structure of CPA-secure LWE-based KEM

– R be some ring equipped with the multiplication ◦.
– a is generated by a public seed and pseudorandom function.

– The distribution χ is chosen to be the discrete Gaussian distribution or the
central binomial distribution Bη whose sample is generated by

∑η
i=1(ai−bi),

where ai and bi are independently uniformly randomly sampled from {0, 1}.
When we say a sample is chosen according to χ, we mean every component
is chosen randomly according to χ.

– The Encode and Decode process is not necessary but usually employed. A
typical code isD−v lattice code with v = 2 or 4 that encodes every coefficient
into v coefficients. We list the Encode and Decode functions in Algorithm 1.

– The Compress/Decompress function is usually used to decrease the com-
munication cost. A typical compress function transforms a coefficient from
module q to module p by

Compressq(c[i],p) = dc[i] · p/qc (mod p),

6 Y. Qin et al.

Algorithm 1 The Encode and Decode functions for the D-v lattice code

� Encode(m, v)
Input: m← {0, 1}λ, v
Output: k
1: for i = 0 to λ− 1 do
2: for j = 0 to v − 1 do
3: k[i · v +j] = m[i] · q−1

2

4: end for
5: end for
6: Return k

� Decode(k, v)
Input: k← {0, q−1

2
}vλ, v

Output: m′

7: for i = 0 to λ− 1 do

8: if
v−1∑
j=0

|k[i · v + j]− q−1
2
| < v·q

4
then

9: m′[i] = 1
10: else
11: m′[i] = 0
12: end if
13: end for
14: Return m′

and the decompress function operates in an opposite way:

Decompressq(c̄[i],p) = dc̄[i] · q/pc.

Next, we describe the MLWE-based Kyber in details.

Kyber. Kyber is on the third-round list of the NIST competition, and regarded
as one of the most promising ones for the final standard. In Kyber the authors
have warned about the harm of key reuse, but in practice there may still be
some users who ignore the warnings and try to create one. So it is reasonable to
assume that Kyber has a CPA-secure version to evaluate its key reuse resilience.

Fig. 2 shows pseudo-code for a possible instantiation of the CPA-secure Ky-
ber, which directly invokes the three functions of Kyber.CPAPKE in [7]: Ky-
ber.CPAPKE.KeyGen(), Kyber.CPAPKE.Enc() and Kyber.CPAPKE.Dec().

In Kyber.CPAPKE.KeyGen(), Alice first generates a matrix a ∈ Rk×kq . Here

Rq represents the ring Zq[x]/(xN + 1), where N = 256 and q = 3329. Another
parameter k is set to be 2, 3 or 4, which is in accordance with the three different
security levels. That is, Kyber512, Kyber768, and Kyber1024, respectively. In
Kyber all the secret keys and error vectors are sampled from a centered binomial
distribution Bη. In Kyber512 η = 3, and in Kyber768 and Kyber1024 η = 2.
Here Bη is generated using

∑η
i=1(ai − bi), where ai and bi are independently

randomly sampled from {0, 1}.

NewHope. Similarly, we present a CPA-secure version of NewHope in Fig. 3,
which also includes three parts. Here Rq is the residue ring Zq[x]/(xN + 1) with
N = 512 in NewHope512 and 1024 in NewHope1024. The parameter q is always
set as 12289.

A Systematic Approach of Key Mismatch Attacks 7

Fig. 2: The CPA version of Kyber

Alice Bob
1. ⊲Kyber.CPAPKE.KeyGen()
1.1 Generate matrix a ∈ Rk×k

q

1.2 Sample sA, eA ∈ Bk
η 2. m

$←− {0, 1}256
1.3 PA ←− a ◦ sA + eA 3. ⊲Kyber.CPAPKE.Enc(PA,m)

1.4 Output: (sA,PA)
PA−−−−−−−→ 3.1 Generate matrix a ∈ Rk×k

q

3.2 Sample sB , eB ∈ Bk
η, e

′
B ∈ Bη

3.3 PB ←− aT ◦ sB + eB
5. ⊲Kyber.CPAPKE.Dec(sA,PB , c1, c2) 3.4 vB ←− PT

A ◦ sB + e′B +Decompressq(m, 2)
5.1 uA ←− Decompressq(c1, 2

dPB) 3.5 c1 ←− Compressq(PB , 2
dPB)

5.2 vA ←− Decompressq(c2, 2
dvB)

(PB ,c1,c2)←−−−−−−−− 3.6 c2 ←− Compressq(vB , 2
dvB)

5.3 m′ ←− Compressq(vA − sTA ◦ uA, 2) 3.7 Output: (c1, c2)
5.4 Output: m′ 4. KB ← H(m||(PB , (c1, c2)))
6. KA ← H(m′||(PB , (c1, c2)))

Fig. 3: The CPA version of NewHope

Alice Bob
1. ⊲NewHope.CPAPKE.KeyGen()
1.1 Generate matrix a ∈ Rq

1.2 Sample sA, eA ∈ B8 2. m
$←− {0, 1}256

1.3 PA ←− a ◦ sA + eA 3. ⊲NewHope.CPAPKE.Enc(PA,m)

1.4 Output: (sA,PA)
PA−−−−−→ 3.1 Generate matrix a ∈ Rq

3.2 Sample sB , eB , e
′
B ∈ B8

3.3 PB ←− a ◦ sB + eB
3.4 vb ←− H1(m)

5. ⊲NewHope.CPAPKE.Dec(sA,PB , c̄) 3.5 k←−Encode(vb)
5.1 c′ ←− Decompress(c̄) 3.6 c←− PA ◦ sB + e′B + k

5.2 k′ ←− c′ −PB ◦ sA
(PB ,c̄)←−−−−−− 3.7 c̄←− Compress(c)

5.3 vA ←− Decode(k′) 3.8 Output: (PB , c̄)
5.4 Output: vA 4. KB ←− H2(vb||(PB , c̄))

6. KA ← H2(vA||(PB , c̄))

8 Y. Qin et al.

2.2 Model of key mismatch attacks

In a key mismatch attack, Alice’s public key PA is reused. The adversary A
impersonates as Bob to recover the secret key of Alice with the help of an Oracle
that can decide if the two shared keys match or not.

More precisely, to show how the attack works, we build an Oracle O that
simulates Alice’s KEM.Dec part. As shown in Algorithm 2, the Oracle O’s input
P includes the parameters PB , c̄ chosen by the adversary and the shared key
KB . The output of O is 1 or 0. To be specific, with the received PB , c̄, O calls
the function Dec(P) and gets the shared key KA as the return. If the shared
keys KA and KB match, O outputs 1, otherwise the output is 0.

Algorithm 2 The Oracle and key mismatch attack

� Oracle O(P)
Input: P := (PB , c̄, KB)
Output: 0 or 1
1: KA ← KEM.Dec(PB , c̄)
2: if KA = KB then
3: Return 1
4: else
5: Return 0
6: end if

� key mismatch attack
Input: Alice’s PA and Oracle O
Output: 0 or 1
7: s′A ← AO(PA)
8: if s′A = sA then
9: Return 1

10: else
11: Return 0
12: end if

3 Lower bounds for the average number of queries for
the key mismatch attacks

For the key mismatch attacks on lattice-based KEMs, the adversary A’s goal
is to recover each coefficient of Alice’s secret key sA by accessing the oracle O
multiple times.

For simplicity, we assume the adversary recovers Alice’s secret key sA one
coefficient block by one coefficient block. A coefficient block can be either one
coefficient of sA or a subset of all the coefficients of sA. Usually, for KEMs that
do not employ Encode/Decode functions, such as Kyber, a coefficient block is
set to be only one coefficient. For KEMs that employ Encode/Decode functions,
such as NewHope, a coefficient block contains v coefficients of sA where v is
defined as in Algorithm 1, since one coefficient relates to v coefficients of sA.

Note that the number of the queries to the oracle is obviously a key index
to evaluate the efficiency of the attack. In fact, even in practice, the bottleneck
of the efficiency of the attacks is also to determine if the two shared keys match
or not. Therefore, it is important to indicate the optimal lower bound of the
number of queries to mount a mismatch attack successfully.

A Systematic Approach of Key Mismatch Attacks 9

3.1 Lower bound by optimal binary recovery tree

In this subsection, we describe how to find the bounds of key mismatch attacks,
which can be regarded as a problem of finding a binary tree with minimum
weighted depth.

Recall that the adversaryA recovers Alice’s secret key sA one coefficient block
by one coefficient block, where a coefficient block can be either one coefficient
of sA or several coefficients of sA. Let S = {S0,S1, · · · ,Sn−1} be the set of all
the possible values for one coefficient block. For example, the coefficients of sA
in Kyber are drawn from {−2,−1, 0, 1, 2}. Since there are no Encode/Decode
functions, we try to recover the coefficients of sA one by one and hence S =
{−2,−1, 0, 1, 2}. In LAC, the coefficients of sA are selected from {−1, 0, 1}.
Since D-2 lattice is used to encode, we would like to recover every coefficient
block which contains 2 coefficients of sA due to the decryption, which yields
that S = {(0, 0), (0, 1), (1, 0), (−1, 0), (0,−1), (1, 1), (−1,−1), (1,−1), (−1, 1)}.

For any coefficient block sbA of sA, denote by Pi the probability that sbA = Si
where sA is generated from the distribution χ, that is, Pi = Prob(sbA = Si|sA ←
χ) for i = 0, 1, · · · , n− 1. Without loss of generality, we assume that P0 ≥ P1 ≥
· · · ≥ Pn−1. Then, it holds that

∑n−1
i=0 Pi = 1.

In a key mismatch attack, the adversary A needs to query the Oracle with
properly selected parameters for several times to recover every coefficient block,
which may be Si with probability Pi. Denote by Qi the number of queries A
needs to determine the coefficient block when it is exactly Si. Then the aver-
age (expected) number of queries required to recover one coefficient block is
obviously:

EA(S) =

n−1∑
i=0

PiQi.

Our goal is to minimize EA(S) by running over the set of all possible attack
strategies under our model.

Binary recovery tree. Our key idea to get a lower bound of minimum of E(S)
is to associate every attack with a binary recovery tree (BRT).

Define the BRT associated with S = {S0,S1, · · · , Sn−1} as below: it is a
rooted binary tree with a root node and n leaf nodes, where every Si occupies
a leaf node. For every node that has child nodes, denote by 1 its left child node
and by 0 its right child node.

Note that to recover any coefficient block for any attack, the adversary A
can get a binary sequence of returned values from the Oracle. Denote by s̄i the
corresponding returned binary sequence when the coefficient block is exactly Si.
It is obvious that each coefficient block Si can be recovered by a unique binary
sequence s̄i and for any i 6= j, s̄i must not be the prefix of s̄j . Otherwise, it
would not suffice to identify Si uniquely. This means that we can construct a
BRT TA associated with S = {S0,S1, · · · , Sn−1}, where for every i, the binary
string consisting of the nodes on the path from the root node to the leaf node

10 Y. Qin et al.

Si is exactly the binary sequence s̄i. The length of s̄i is of course Qi as defined
above, also known as the depth depthTA

(Si) of leaf node Si. Then

EA(S) =

n−1∑
i=0

PiQi =

n−1∑
i=0

Pi · depthTA
(Si).

It seems still hard to find the minimum of EA(S) since we should consider all
the binary recovery trees corresponding to the possible attacks under our model.
However, it presents an obvious way to compute a lower bound of the minimum,
just by enlarging the set of BRTs corresponding to the attacks to the set of all
the possible BRTs.

Then, we can transform the problem of finding the lower bound of the optimal
value of EA(S) to the problem of finding a binary recovery tree to minimize

E(S) =

n−1∑
i=0

Pi · depthT (Si).

We call the tree with the minimum weighted depth, i.e. minE(S), the optimal
BRT. Therefore, it is enough to construct an optimal BRT to find the lower
bound for recovering the secret key with fewest number of queries.

A well known method to find the optimal binary recovery tree is the Huff-
man coding [36,38]. The basic idea of Huffman coding is to combine two symbols
with the lowest probabilities in each step. Specifically, we first find the two Si’s
with the lowest probabilities, for example, Pn−1 and Pn−2. Then the problem has
transformed into solving the problem with n−1 weights {P0, P1, . . . , Pn−3, Pn−2+
Pn−1}. By repeating this process, we can finally solve the problem and find the
optimal BRT to get minE(S) in time O(n log n), as well as the E(#Queries).

Therefore, our proposed method for calculating the bound can be summa-
rized as follows: First, list S0,S1, . . . ,Sn−1 and their corresponding probabilities
{P0, P1, . . . , Pn−1} in the descending order. Then, construct the optimal BRT
using Huffman coding. The constructed optimal BRT leads us to the minE(S)
and the E(#Queries). The process of building the Huffman code to obtain the
corresponding minE(S) is shown in Algorithm 3.

To prove our main theorem, we first present the following lemma, which is a
special case of the famous Kraft inequality (See Theorem 5.2.2, [20]).

Lemma 1. (Kraft equality) For any n ≥ 1, (depthT (S0), · · · ,depthT (Sn−1)) is
the sequence of depths in a rooted binary tree if and only if

n−1∑
i=0

2−depthT (Si) = 1. (1)

Further, we obtain the following result.

Theorem 1. In our key mismatch attack model, the proposed method finds
bounds for minimum average number of queries in launching the key mismatch

A Systematic Approach of Key Mismatch Attacks 11

Algorithm 3 Huffman codes

� Building a Huffman Tree
Input: P0, · · · , Pn−1

Output: HuffTree T
1: for i = 0→ n− 1 do
2: Insert leafnode T [i]
3: T [i].weight = P [i]
4: end for
5: for i = 0→ n− 1 do
6: for j = 0→ n+ i− 1 do
7: Find two nodes x1 and x2 with

the smallest weight and no parent
8: end for
9: Combine x1 and x2, and insert the

new node into T [n+ i]
10: end for

� Huffman Coding
Input: HuffTree T
Output: Huffman code C
11: E(S) = 0
12: for i = 0→ n− 1 do
13: C[i].length = 0
14: j = i
15: while T[j].parent exist do
16: if T [j].lchild = j then
17: C[i].code[C[i].length] = 0
18: else
19: C[i].code[C[i].length] = 1
20: end if
21: C[i].length+ +
22: j = T [j].parent
23: end while
24: E(S)+ = C[i].length ∗ T [i].weight
25: end for

attacks. To be precise, given S = {S0,S1, · · · ,Sn−1} and its corresponding prob-
abilities {P0, P1, · · · , Pn−1} in each lattice-based KEM, minE(S) calculated by
the optimal BRT is a lower bound for the minimum average number of queries.
Moreover, set H(S) the Shannon entropy for S, then we have

H(S) ≤ min E(S) < H(S) + 1.

Proof. Our first result comes from the facts in Section 5.8 of [20]. That is, it is
impossible to find any other code with a lower expected length than the code
constructed by Huffman coding. To obtain the min E(S), we use the Lagrange
multipliers. From Lemma 1, we let

L =

n−1∑
i=0

Pi · depthT (Si) + λ(

n−1∑
i=0

2−depthT (Si) − 1).

By differentiating with respect to depthT (Si) and letting the derivative be
0, we have

∂L

∂depthT (Si)
= Pi − λ · 2−depthT (Si) loge 2 = 0.

That is 2−depthT (Si) = Pi

λ loge 2 . Substituting this into Equation (1), we obtain∑n−1
i=0

Pi

λ loge 2 = 1. Thus we have λ loge 2 = 1, which leads to Pi = 2−depthT (Si).

Therefore, the optimum solution occurs when depthT (Si) = d− log2 Pie. Here

12 Y. Qin et al.

dxe means the smallest integer greater than or equal to x, due to the fact that
depthT (Si) should be integers. Since x ≤ dxe < x + 1, we then conclude that
H(S) ≤ min E(S) < H(S) + 1.

In [9], it has been proved that H(S) ≤ min E(S). From our perspective, this
can be easily obtained from the optimality of Huffman codes.

Remark 1. One may have the idea that it is safe to implement the CPA-secure
version and reuse the keys fewer times than the proposed bound. In fact it is
still dangerous to do so, even reusing the key far below the bound. First of all,
our bound is on the average number of needed queries, which means that there
may exist attacks with fewer number of queries for certain keys. Secondly, what
we talk about is recovering the full key, but obviously the recovery of the partial
key also leaks information about the key, significantly decreasing the bit-security.
Therefore, it is still not safe to reuse the keys in a CPA-secure KEM.

3.2 Lower bounds for key mismatch attacks on NIST candidates

Lower bounds for Kyber In this subsection, we take Kyber1024 as an
example to show how to find the optimal BRT to get the bound. Kyber1024
uses centered binomial distribution Bη with η = 2 and has no Encode/Decode
functions, which means S = {−2,−1, 0, 1, 2}. We set S0 = 0, S1 = 1, S2 = −1,
S3 = 2 and S4 = −2.

Fig. 4: Finding the optimal BRT for Kyber1024 by using Huffman coding

As shown in Fig. 4, we first list the occurrence probabilities of Si in the
descending order. Since S3 and S4 occur with the smallest probabilities, we create
a subtree that contains them as leaf nodes. By repeatedly doing so, finally we
can get an optimal BRT as also shown in Fig. 4. The corresponding s̄ represents
how to encode each Si, while ls̄ is the code length.

The resulting minE(S) = 2.125, which is the minimum number of queries
needed for recovering each coefficient. Note that the Shannon entropy H(S) is

H(S) =

4∑
i=0

Pilog
1

Pi
= 2.03,

A Systematic Approach of Key Mismatch Attacks 13

which is in accordance with our Theorem 1. Hence, the bounds for recovering
the full private key of Kyber768 and Kyber1024 with η = 2 are 1632 and 2176,
respectively. Similarly, it can be concluded that the bound is 1216 for Kyber512
with η = 3.

Lower bounds for NewHope. One of the main differences between Kyber and
NewHope is that Kyber does not use Encode/Decode functions, while NewHope
uses both Encode/Decode and Compress/Decompress functions. In NewHope,
the secret key is sampled from centered binomial distribution Bη with parameter
η = 8, so the coefficients of the secret key are integers in [−8, 8].

Table 1: Lower bounds for key mismatch attacks on lattice-based NIST KEMs.

Schemes
sA & e Encode Comp

Unknowns
E(#Queries)

Ranges Decode Decomp Bounds
NewHope512

[-8,8] X X
512 1568

NewHope1024 1024 3127
Kyber512 [-3,3]

/ X
512 1216

Kyber768
[-2,2]

768 1632
Kyber1024 1024 2176
LightSaber [-5,5]

/ X
512 1412

Saber [-4,4] 768 1986
FireSaber [-3,3] 1024 2432
Frodo640 [-12,12]

/ X
5120 18,227

Frodo976 [-10,10] 7808 25,796
Frodo1344 [-6,6] 10,752 27,973
NTRU hps4096821

[-1,1] / /

821 1369
NTRU hrss701 701 1183
NTRU Prime sntrup857 857 1574
NTRU Prime ntrulpr857 857 1553

Recall that NewHope512 uses D-2 Encode/Decode functions, while in NewHope-
1024 D-4 Encode/Decode functions are used. Therefore, in NewHope512, Si =
(si,1,si,2) where si,1, si,2 ∈ [−8, 8]. In total there are 289 possibilities about
each Si. So here we let n = 289. Then, we can also build the optimal BRT
for NewHope512 using Huffman coding, and the minE(S) = 6.124. Since we
can recover two coefficients in sA at one time, the resulted E(#Queries)=1568.
For NewHope1024, there are a total of 83, 521 possible Si, that is, n = 83, 521.
Similarly, we have E(#Queries)= 3127 for NewHope1024.

Lower bounds for other NIST Candidates. Similarly, we can obtain bounds
for other LWE-based KEMs as well as NTRU and NTRU Prime in the second
category. In Table 1, we present the lower bounds for key mismatch attacks

14 Y. Qin et al.

against the following second or third round NIST candidates: NewHope, Kyber,
FrodoKEM, Saber, NTRU and NTRU Prime. For every candidate, we report the
ranges of sA & e and the number of unknowns, and whether the Encode/Decode
and Compress/Decompress functions are employed (X) or not (/). We also report
the minimum average number of queries in our proposed bounds. For other NIST
candidate KEMs, we report their results in Table 7 in Appendix A.

4 Improved key mismatch attacks on NIST candidates

We would like to point out that for some KEMs, there is still a huge gap in
terms of number of queries between our theoretical bound and practical attacks,
such as Frodo640. Since we have built an optimal BRT for each KEM, in the
following we show how the optimal BRT helps us improve the practical attacks.

4.1 Improved practical attacks on Kyber

We take Kyber1024 as an example to show how to launch the practical key mis-
match attack. First, we build an Oracle that simulates Alice’s Kyber.KEM.Dec(),
the same as that in Algorithm 2. The inputs of the oracle O are PB , (c1, c2)
and KB .

In a key mismatch attack, Alice’s public key PA is reused, and the goal of the
adversary A is to recover Alice’s secret key sA. Therefore, A needs to choose the
appropriate parameters PB and (c1, c2) to access O, so that he can determine sA
based on O’s return. Without loss of generality, assume that A wants to recover
sA[0]. We next show the basic idea of our attack.

First of all, A selects a 256-bit m as (1,0, · · · , 0). Then he sets PB = 0,
except PB [0] =

⌈
q
32

⌋
. After calculating c1 = Compressq(PB , 2

dPB), A sets
c2 = 0, except that c2[0] = h, where h will be determined later.

With (c1, c2), the Oracle calculates uA = Decompressq(c1, 2
dPB), vA =

Decompressq(c2, 2
dvB) and

m′[0] = Compressq((vA − sTAuA)[0], 1) =

⌈
2

q

(
vA[0]− (sTAuA)[0]

)⌋
mod 2.

Since vA[0] =
⌈
q
32h
⌋

and (sTAuA)[0] = sTA[0]uA[0] = sTA[0]
⌈
q
32

⌋
, it holds that

m′[0] =
⌈

2
q

(⌈
q
32h
⌋
− sTA[0]

⌈
q
32

⌋)⌋
mod 2.

Therefore, it allows us to determine sTA[0] by choosing proper value for h.
For example, by letting h = 8, we have the following result: If sTA[0] ∈ [−2,−1],
m′[0] = 1, then the oracle will output 1. Otherwise, if sTA[0] ∈ [0, 2], m′[0] = 0,
then the oracle outputs 0. In this way, we can distinguish which subinterval (or
subset) sTA[0] belongs to by only one query. Similarly, by choosing a different
value for h, we may determine another subinterval that sTA[0] belongs to. Once
the intersection of the determined subintervals has only one element, we can
determine the value of sTA[0] exactly. However, our goal is to query the Oracle
as few as possible, which asks us to choose h more carefully.

A Systematic Approach of Key Mismatch Attacks 15

From the optimal BRT in Section 3.2, to approach the bound we need to
determine Si with high occurrence probability with as few numbers of queries as
possible. In fact, this also suggests us the ideal way to choose h, that is, choosing
h such that the oracle outputs different values when sTA[0] belongs to different
sets of descendants, left or right, for every node in the optimal BRT. Of course,
such h may not exist. However, the optimal BRT does reveal some clues.

Following the optimal BRT, we show how to choose h for every State in
our improved attack and how the States change according to the output of the
Oracle in Kyber512, Kyber768 and Kyber1024, respectively in Table 2. Our key
mismatch attack always starts from State 1, and then the choice of h in the next
State depends on the current Oracle’s output. In each State, when the adversary
gets a returned value from the Oracle, he can narrow the range of sA[0] until the
exact value of sA[0] is determined.

Table 2: The choice of h and the States

State 1 State 2 State 3 State 4

Kyber512

h 2 3 4 1

O → 0 State 2 State 3 sA[0] = 2 sA[0] = −1

O → 1 State 4 sA[0] = 0 sA[0] = 1 sA[0] = −2

Kyber768

h 4 5 6 3

O → 0 State 2 State 3 sA[0] = 2 sA[0] = −1

O → 1 State 4 sA[0] = 0 sA[0] = 1 sA[0] = −2

Kyber1024

h 8 9 10 7

O → 0 State 2 State 3 sA[0] = 2 sA[0] = −1

O → 1 State 4 sA[0] = 0 sA[0] = 1 sA[0] = −2

Table 3: Si and its
corresponding s̄, ls̄

i 0 1 2 3 4
Si 0 1 -1 2 -2
s̄ 01 001 10 000 11
ls̄ 2 3 2 3 2

As an example, we show how the adversary A determines sA[0] for Kyber1024
in details.

1. The key mismatch attack starts from State 1, and A sets h = 8 first. Then
{S0,S1,S2,S3,S4} can be divided into two parts based on the returned value
of the first oracle:
– If O → 0: sA[0] belongs to {S0,S1,S3}, and goes to State 2.
– If O → 1: sA[0] belongs to {S2,S4}, and State 4 will be executed.

2. If A comes to State 2, he goes on setting h = 9:
– If O → 0: sA[0] belongs to {S1,S3}, then goes to State 3.
– If O → 1: A can determine sA[0] = S0 = 0.

3. In State 3, A sets h = 10:
– If O → 0: A determines sA[0] = S3 = 2.
– If O → 1: A determines sA[0] = S1 = 1.

4. When A is in State 4, he sets h = 7:
– If O → 0: A finds that sA[0] = S2 = −1.
– If O → 1: A finds that sA[0] = S4 = −2.

Based on the above process, we can construct s̄, ls̄ for {S0,S1,S2,S3,S4},
as shown in Table 3. For example, if sA[0] = S1 = 1, we come to State 1 first,
and the oracle outputs 0. Then we go to State 2 and the oracle outputs 0. Now
we are in State 3 and the output is 1. Therefore we can get s̄ = 001. We can
see that in this way we decide Si with larger occurrence probability by as fewer

16 Y. Qin et al.

queries as possible. We can also observe that the way we find s̄ is similar to our
optimal BRT.

Similarly, to recover sA[i] when i 6= 0, A only needs to set PB = 0 except
PB [n− i] = −

⌈
q
32

⌋
at first.

Now we can calculate the average number of queries needed to recover each
coefficient in sA as 3

8 × 2 + 1
4 × (2 + 3) + 1

16 × (2 + 3) = 2.31. Therefore, the
corresponding numbers of average queries needed in Kyber1024 and Kyber768
are 2365.44, 1774.08 respectively. Similarly, we can get the average number of
queries on Kyber512, which is 1312.06. Compared with the bound in Table 1,
there is only a gap less than 9%.

In [49], the authors proposed three different methods to perform key mis-
match attacks on Kyber. For their best method, the queries are 2475, 1855 and
1401. Therefore, our improved practical key mismatch attack on Kyber is better
than that in [49].

4.2 Improved key mismatch attacks on Saber

There are three versions of Saber, the LightSaber, Saber, and FireSaber. Here
we take the attack on FireSaber as an example. The attacks on LightSaber and
Saber are similar. The adversary chooses PB = h and cm = k, and the selection
of each hi/ki (i = 1, . . . , 10 in LightSaber; i = 1, . . . , 8 in Saber; i = 1, . . . , 6 in
FireSaber) is shown in Table 4.

Table 4: Selection of hi/ki in the practical key mismatch attacks on Saber

i 1 2 3 4 5 6 7 8 9 10

LightSaber 2/60 1/69 1/35 1/23 0/50 0/40 2/30 2/20 2/15 2/12

Saber 4/28 3/37 3/36 3/18 3/12 4/27 4/13 4/9

FireSaber 17/7 16/2 16/4 8/125 4/95 2/76

The following procedure shows how to use hi/ki in Table 4 to recover sA[0].

1. We set h = h1 and k = k1 first, then Si (i = 0, . . . , 6) can be divided into
two parts based on the returned value of the first Oracle:
– If O → 0: sA[0] belongs to {S1,S3,S5}, and turn to step 4.
– If O → 1: sA[0] belongs to {S0,S2,S4,S6}, then step 2 and step 3 will

be executed.
2. If the oracle returns 1 when we set h = h1 and k = k1, then we set h = h2

and k = k2 :
– If O → 0: We can determine sA[0] = S0.
– If O → 1: sA[0] belongs to {S2,S4,S6}, and go to step 3.

3. Next, we select different parameters h = h3, k = k3 and h = h4, k = k4 (the
specific values of hi/ki are shown in Table 4) and repeat operations in step
2 until we can know which of {S2,S4,S6} is equal to sA[0].

A Systematic Approach of Key Mismatch Attacks 17

4. Similarly, we select different parameters h = h5, k = k5 and h = h6, k = k6

in Table 4 and repeat operations in steps 2 and 3 until we can know which
of {S1,S3,S5} is sA[0].

4.3 Improved key mismatch attacks on FrodoKEM

There are three versions of FrodoKEM, the Frodo640, Frodo976, and Frodo1344.
Here we take the attack on Frodo1344 as an example. The attacks on Frodo640
and Frodo976 are similar. In Frodo1344, Si ∈ [−6, 6], the selection of hi (i ∈
[0, 12]) is shown in Table 5.

Table 5: Selection of hi in practical key mismatch attacks on FrodoKEM
i 1 2 3 4 5 6

hi 212 212 − 2 212 − 1 212 − 3 212 − 4 212 − 5

i 7 8 9 10 11 12

hi 212 − 6 212 − 7 212 − 8 212 − 9 212 − 10 212 − 11

Next, we introduce how to use hi in Table 5 to recover sA[0].

1. We set h = h1 first, then Si(i ∈ [0, 12]) can be divided into two parts based
on the returns value of the first Oracle:
– If O → 0: sA[0] belongs to {S0,S2,S4,S6,S8,S10,S12}, and then step 2

and step 3 will be executed.
– If O → 1: {S1,S3,S5,S7,S9, S11}

2. If the oracle returns 0 when we set h = h1, then we set h = h2:
– If O → 0: We can determine sA[0] = S0.
– If O → 1: sA[0] belongs to {S2,S4,S6,S8,S10,S12}, then we will proceed

step 3.
3. Next, we select different parameter h = h2, · · · , h7 (the specific values of hi

are shown in Table 5. Repeat operations in step 2 until we can know which
of {S2,S4,S6,S8,S10,S12} is sA[0].

4. Similarly, we select different parameter h = h8, · · · , h12 in Table 5 and repeat
operations in steps 2 and 3 until we can know which of {S1,S3,S5,S7,S9,
S11} is sA[0].

4.4 Improved practical attacks on other NIST candidates

Similarly, we can also improve the key mismatch attacks on NewHope, LAC, and
Round5. The details are given in Appendix B, where we show how the adversary
chooses the parameters in each scheme, and how to determine sA according to
the returns of the oracle.

An interesting question is, can we construct an attack to force the Oracle to
output the string that is exactly the same as suggested by the optimal BRT? In

18 Y. Qin et al.

this way, certainly we can find an optimal practical attack that reaches the the-
oretical lower bound. Unfortunately, due to the restriction of concrete schemes,
we may not find such parameters to launch the attack since they may not exist
at all. For example, if we want to achieve the lower bounds against Kyber1024
using Huffman coding, we need to select the parameter K2 according to Fig. 4,
in this way the range of the secret key is divided into two sub-intervals: {0, 1}
and {−1, 2,−2}. However, in our improved practical attacks, the parameter K2

we choose can only divide the range of the secret key into two adjacent sub-
intervals, namely {−2,−1} and {0, 1, 2}, or {−2,−1, 0} and {1, 2}. This is the
reason why the number of queries needed in our improved practical attacks is
close to the bound, but not exactly the same.

5 Improved side-channel assisted chosen ciphertexts
attacks on CCA-secure NIST KEM candidates

As described above, the CPA-secure KEM candidates are vulnerable to key reuse
attacks. However, it is well known that the NIST candidates are CCA-secure by
applying some well-known transformation such as FO transformation [29]. To
be specific, FO transform mainly consists of two parts. First, Alice decrypts
Bob’s ciphertext c̄ to obtain m′ and a seed by calling KEM.CPA.Dec. Then she
re-encrypts m′ and the seed to get c′. If c̄ = c′, she continues to calculate the
shared key, otherwise she rejects the ciphertext c̄. This mechanism of decrypting
and then re-encrypting in the CCA-secure KEM protects the validity of the
ciphertext, returning failure when an invalid ciphertext is detected. Thus Alice
always rejects these malicious chosen ciphertexts and the adversary cannot gain
any meaningful information, which also means that our attacks above will not
work when these cryptosystems are correctly deployed. However, at CHES 2020,
Ravi et al. [50] showed that chosen ciphertexts attacks on CCA-secure NIST
candidate KEMs can also be launched with the help of side channel information.
Therefore, our proposed method can be directly used to further improve the
efficiency of these attacks.

Ravi et al.’s key observation is that, we can use the side channel information
to bypass the restrictions of FO transform to obtain useful match or mismatch
information about decryption outputs of chosen ciphertexts, making it possible
to successfully attack CCA-secure cryptosystems. In other words, Ravi et al.’s
chosen ciphertext attack is almost the same as the key mismatch attack, except
that the adversary can actively know whether the shared message matches or
not by physically accessing to devices performing decapsulation.

In Ravi et al.’s side-channel attack (SCA), they mainly utilize Welch’s t-test
based template approach [30], which consists of two stages. The first is the pre-
processing stage including how to generate a template for each class, while the
second stage involves the template matching operation. In the first stage, we
need to collect 50 measurements of T = T0 ∪ T1. Here, T0 and T1 correspond
to the failure and success of KEM.CCA.Dec(), respectively. To get T0, we di-
rectly set m′ = 0 instead of calling the decryption part KEM.CPA.Dec() in

A Systematic Approach of Key Mismatch Attacks 19

Algorithm 4 The Oracle and SCA-assisted chosen ciphertext attack

� Oracle Os(P,m0,m1)
Input: P := (c1, c2), m0, m1

Output: 0 or 1
1: W ← SCA(KEM.CCA.Dec(P))
2: if Γ0 ≥ Γ1 then Return 1
3: else Return 0
4: end if

� Chosen ciphertext attack
Input: Alice’s PA and Oracle Os
Output: 0 or 1
5: s′A ← AOs(PA)
6: if s′A = sA then Return 1
7: else Return 0
8: end if

KEM.CCA.Dec(), and then collect the corresponding 50 measurements. Sim-
ilarly, we can get T1 by setting m′ = {1, 0, . . . , 0}. Then we calculate their

respective means denoted as m0 = (
∑50
i=1 T0[i])/50 and m1 = (

∑50
i=1 T1[i])/50.

In the second stage, according to the results of m0 and m1, when we collect
a wave W from KEM.CCA.Dec(), we can distinguish which class the wave W
belongs to. Specifically, we need to compute the sum-of-squared difference Γ∗ of
the wave W with m∗ as follows:

Γ0 = (W −m0)
T · (W −m0) , Γ1 = (W −m1)

T · (W −m1) .

If Γ0 ≥ Γ1, W belongs to Γ1, otherwise it belongs to Γ0. When W belongs
to Γ0, we know that m′ = 0, which is the same as the principle of the mismatch
situation in the key mismatch attack aforementioned. Similarly, if W belongs to
Γ1, it is consistent with the match situation in key mismatch attack.

Based on the above analysis, we can build an Oracle Os that simulates Al-
ice’s KEM.CCA.Dec part, which is depicted in Algorithm 4. In the following we
take Kyber1024 as an example to show our detailed attacks. But we need to
emphasize that our method is applicable to other CCA-secure NIST candidates.
For Kyber1024 we choose the parameters (c1, c2) exactly the same as listed in
Table 2, to launch our chosen ciphertext attack. Here we show how the adversary
A determines sA[0] = 0 with only 2 queries, and the rest are similar.

In the pre-processing stage,A collects two sets of 50 measurements in advance
and computes their respective means. Then A gets two means m0 and m1. For
the chosen ciphertext attack stage, starting from State 1 in Table 2, A sets
PB = 0 except PB [0] =

⌈
q
32

⌋
. After computing c1 = Compressq(PB , 2

dPB), A
sets c2 = 0, except that c2[0] = 2 at the first time. If the first output of Os is 0,
then State 1 switches to State 2. Next, A sets c2[0] = 3, if the second output of
Os is 1 and A can determine sA[0] = 0.

In summary, our improved attack can be applied to attack CCA-secure NIST
KEM candidates just as Ravi et al.’s chosen ciphertexts attack.

However, Ravi et al. had to brute-forcedly select the parameters, which is not
efficient for secret key with larger coefficients. Therefore, our proposed optimal
BRT approach can be directly used to select better parameters and significantly
reduce the needed number of queries with high efficiency. Specifically, Ravi et

20 Y. Qin et al.

al. only gave the detailed description of attacks against Kyber512 in the second
round, where the secret key sA is sampled from centered binomial distribution
Bη with η = 2. Thus, in their attack the needed queries for each coefficient is
5. Since n = 256, k = 2, the total number of queries for Kyber512 is 2560. In
order to make a fair comparison with their results, we also apply our improved
attack to the second round of Kyber. By adopting our proposed optimal BRT
approach, we only need 1182.72 queries on average, reducing the number of
queries by 53.79% correspondingly. Secondly, in Ravi et al.’s attack, to retrieve
coefficient −2 the selected parameters (c1, c2) = (415, 3). Through our analysis
415 is too large, which is the reason why their attack cannot succeed with a
100% probability.

In our paper we consider Kyber in the third round, where the private key of
Kyber512 ranges from -3 to 3. All the results can be found at Table 6.

Similarly, we can also improve Ravi et al.’s method with our improved key
mismatch attacks on other NIST candidates. In [50], for NewHope512, and
NewHope1024, the total number of queries is 6945 and 26624, respectively. Ac-
cording to our results in Table 6, we reduce the number of queries for NewHope512
and NewHope1024 by 76.1% and 88.06%, respectively.

In [54], there is another interesting side-channel attack, namely the fault-
injection attack, against the NIST KEMs. We find that their main idea is to
construct a plaintext-checking oracle by injecting a fault first and then recover
the private key by employing the key mismatch attack directly. Hence, we believe
our results can also be applied to improve their attacks.

6 Experiments

In this section, we conduct experiments on the above improved attacks to confirm
their correctness and efficiency. All our improved key mismatch attacks are im-
plemented on a desktop equipped with two 3 GHz Intel Xeon E5-2620 CPUs and
a 64 GB RAM. Our code is based on the C reference implementations of the NIST
candidates, and we have made it public8. Note that first our attack is against the
CPA-secure KEMs for Kyber, we directly call the Kyber.CPAPKE.KeyGen() to
launch the attack. For schemes like Saber and FrodoKEM, we remove the FO
transform in their CCA version. Since the improved key mismatch attacks and
the SCA-assisted selection ciphertext attack share similar processes on the NIST
candidate KEMs, as shown in Algorithm 5, we use Kyber1024 as an example to
illustrate the details of these attacks.

In the experiment we generate 1000 different secret keys sA and recover them
separately. We use queries to represent the number of times the adversary needs
to access the oracle to recover a complete sA. The experimental results given in
Table 6 are the average number of times the adversary needs to access the oracle
to recover these 1000 different sA.

In Table 6, we present our experimental results. For each scheme, we list the
lower bound of the minimum average number of queries by our BRT method,

8 https://github.com/AHaQY/Key-Mismatch-Attack-on-NIST-KEMs

A Systematic Approach of Key Mismatch Attacks 21

Algorithm 5 Pseudocode of improved key mismatch attack on Kyber1024

� Generate reused key pair
1: (sA,PA) ← Kyber.CPA.Gen()
� Recover sA

2: Set m = 0, except m[0] = 1
3: Set queries = 0
4: for i = 0 → 3 do
5: for j = 0 → 255 do
6: Set PB = 0
7: if j = 0 then
8: PB [0] =

⌈
q
32

⌋
9: else

10: PB [256− j] = −
⌈
q
32

⌋
11: end if
12: c1 = Compressq(PB , dPB)
13: Set round = 0
14: while round < 4 do

15: round ++
16: Set c2 = 0, except c2[0] = h
17: t = O(c1, c2)
18: queries ++
19: if A recovers sA[i][j] then
20: Break
21: else Continue
22: end if
23: end while
24: if round == 4 then
25: Cannot recover sA[i][j]
26: end if
27: end for
28: end for

Table 6: Key mismatch attacks against lattice-based NIST KEMs.

E(#Queries)

Schemes Lower Our improved attacks
Existing

Bounds Theory Experiments

Kyber512 1216 1312 1311 1401 (Round 2)[49]

Kyber768 1632 1774 1777 1855 [49]

Kyber1024 2176 2365 2368 2475 [49]

LightSaber 1412 1460 1476 2048 [37]

Saber 1986 2091 2095 -

FireSaber 2432 2642 2622 -

Frodo640 18,227 18,329 18,360 65,536[37]

Frodo976 25,796 26,000 26,078 -

Frodo1344 27,973 29,353 29,378 -

NewHope512 1568 1660 1660 -

NewHope1024 3127 3180 3180 3197 [52]

22 Y. Qin et al.

the expected number of queries for our improved attacks (Bold), the average
number of queries for our improved attacks in our experiments, as well as the
number of queries of other existing results (Italic). We use “-” to mean that no
result is given.

It can be seen that our improved attacks approach the lower bound in most
cases and our experiments almost perfectly match the theoretical results in our
improved attack. That is, the difference between the improved attack and our
experiments is less than 1.2%. As we can see in Table 6 , the experimental results
of our improved approach are very close to the theoretical bounds. In general,
there is less than 8.2% gap between our experiments and the theoretical bounds.

Compared with other existing attack, we can see that our improved attack
on Kyber is slightly better than that in [49], since for Kyber the gap between
the lower bounds and practice is small. For Frodo640 and LightSaber, we have
reduced the number of queries by 71.99 % and 27.93%, respectively, compared
to the results in [37]. Our result on NewHope1024 is slightly better than that
of [52]. For LAC256, we greatly decrease the number of queries in comparison
with the work of Wang et al. [53]. Using our improved method, the results of
LAC128 and LAC192 are also better than the current results [31,53]. The details
are shown in Appendix B.

7 Conclusion and discussions

In this paper, we have developed a unified method to calculate the minimum
number of required queries in launching key mismatch attacks against lattice-
based NIST candidate KEMs. The bound is calculated through constructing
an optimal BRT, which is further used to guide us in improving the practical
attacks. By using BRT method, our improved attack can significantly reduce
the needed number of queries. An interesting problem is whether our proposed
method applies to the similar attacks against other post-quantum cryptosystems
such as HQC, which also advance to the third round of NIST’s PQC standard-
ization progress.

From the analysis of our proposed attacks, we find that the ranges of the
coefficients in the secret key and their corresponding probabilities, as well as
the employment of Encode/Decode functions are the most important factors in
evaluating their key mismatch resilience. More specifically, the larger the range
of the coefficients, the more queries are needed. For example, neither Kyber nor
Saber use the Encode/Decode functions, and their number of unknowns are the
same, the only difference is the range of their coefficients in secret keys. The
range of coefficients in Saber is larger than that of Kyber, which leads to more
queries in recovering Saber’s secret key.

The occurrence probabilities corresponding to the coefficients are another
factor. For example, for LAC192 and LAC256, the only difference between them
is the occurrence probabilities corresponding to the coefficients. More specifically,
in LAC192 the occurrence probability of 0 is greater than that of 0 in LAC256,
and the probability of other coefficients is less than that in LAC256. This results

A Systematic Approach of Key Mismatch Attacks 23

in larger number of queries needed to recover the secret keys of LAC256 than that
in LAC192. Whether or not the Encode/Decode functions are used also affects
the number of queries needed. NewHope512 and NewHope1024 use D-2 and D-4
functions, respectively, which allows them to recover two and four coefficients at
the same time. This also greatly reduces the number of queries needed to recover
the coefficients. However, we need to emphasize that these factors only increase
complexities of launching the key mismatch attack, but cannot stop the attack.

Acknowledgments

Chi Cheng is the corresponding author. The authors would like to thank Michael
Naehrig, Muyan Shen, and the anonymous reviewers for their kind help. The
research in this paper was partially supported by the National Natural Sci-
ence Foundation of China (NSFC) under Grant no.s 62172374, 61672029, and
61732021, and Guangxi Key Laboratory of Trusted Software (no. KX202038).
Y. Pan was supported by National Key Research and Development Program of
China (No. 2018YFA0704705) and NSFC (No. 62032009). J. D. would like to
thank CCB Fintech Co. Ltd for partially sponsoring the work with grant No.
KT2000040.

References

1. Ajtai, M.: Generating hard instances of lattice problems. In: Proceedings of the
twenty-eighth annual ACM symposium on Theory of computing. pp. 99–108. ACM
(1996)

2. Alagic, G., Alagic, G., Alperin-Sheriff, J., Apon, D., Cooper, D., Dang, Q., Liu,
Y.K., Miller, C., Moody, D., Peralta, R., et al.: Status Report on the First Round of
the NIST Post-Quantum Cryptography Standardization Process. US Department
of Commerce, National Institute of Standards and Technology (2019), https://
nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8240.pdf.

3. Alkim, E., Avanzi, R., Bos, J., Ducas, L., de la Piedra, A., Pöppelmann, T.,
Schwabe, P., Stebila, D.: Newhope: Algorithm specification and supporting doc-
umentation - version 1.03 (2019), https://newhopecrypto.org/data/NewHope_

2019_07_10.pdf.

4. Alkim, E., Bos, J., Ducas, L., Longa, P., Mironov, I., Naehrig, M., Nikolaenko,
V., Peikert, C., Raghunathan, A., Stebila, D.: Frodokem learning with errors key
encapsulation: Algorithm specification and supporting documentation. In: Submis-
sion to the NIST post-quantum project (2019) (2019), https://frodokem.org/

files/FrodoKEM-specification-20190702.pdf.

5. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Newhope without reconcil-
iation. IACR Cryptology ePrint Archive (2016), https://www.cryptojedi.org/

papers/newhopesimple-20161217.pdf.

6. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange–
a new hope. In: 25th USENIX Security Symposium (USENIX Security 16). pp.
327–343 (2016)

https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8240.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8240.pdf
https://newhopecrypto.org/data/NewHope_2019_07_10.pdf
https://newhopecrypto.org/data/NewHope_2019_07_10.pdf
https://frodokem.org/files/FrodoKEM-specification-20190702.pdf
https://frodokem.org/files/FrodoKEM-specification-20190702.pdf
https://www.cryptojedi.org/papers/newhopesimple-20161217.pdf
https://www.cryptojedi.org/papers/newhopesimple-20161217.pdf

24 Y. Qin et al.

7. Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck,
J.M., Schwabe, P., Seiler, G., Stehlé, D.: Crystals-kyber: Algorithm specification
and supporting documentation (version 2.0). In: Submission to the NIST post-
quantum project (2019) (2019), https://pq-crystals.org/kyber.

8. Baan, H., Bhattacharya, S., Fluhrer, S., Garcia-Morchon, O., Laarhoven, T.,
Player, R., Rietman, R., Saarinen, M.J.O., Tolhuizen, L., Torre-Arce, J.L., et al.:
Round5: merge of round2 and hila5 algorithm specification and supporting doc-
umentation. In: Submission to the NIST post-quantum project (2019) (2019),
https://round5.org/Supporting_Documentation/Round5_Submission.pdf.

9. Băetu, C., Durak, F.B., Huguenin-Dumittan, L., Talayhan, A., Vaudenay, S.:
Misuse attacks on post-quantum cryptosystems. In: Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques. pp. 747–776.
Springer (2019)

10. Bauer, A., Gilbert, H., Renault, G., Rossi, M.: Assessment of the key-reuse re-
silience of newhope. In: Cryptographers’ Track at the RSA Conference. pp. 272–
292. Springer (2019)

11. Bernstein, D.J., Bruinderink, L.G., Lange, T., Panny, L.: Hila5 pindakaas: on the
cca security of lattice-based encryption with error correction. In: International
Conference on Cryptology in Africa. pp. 203–216. Springer (2018)

12. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: Ntru prime:
reducing attack surface at low cost. In: International Conference on Selected Areas
in Cryptography. pp. 235–260. Springer (2017)

13. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: Ntru prime:
round 2. In: Submission to the NIST post-quantum project (2019) (2019), https:
//ntruprime.cr.yp.to/nist/ntruprime-20190330.pdf.

14. Bindel, N., Stebila, D., Veitch, S.: Improved attacks against key reuse in learn-
ing with errors key exchange. IACR Cryptology EPrint Archive (2020), https:

//eprint.iacr.org/2020/1288.pdf.
15. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the rsa

encryption standard pkcs# 1. In: Annual International Cryptology Conference. pp.
1–12. Springer (1998)

16. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Seiler, G., Stehlé, D.: Crystals-kyber: a cca-secure module-lattice-
based kem. In: 2018 IEEE European Symposium on Security and Privacy (Eu-
roS&P). pp. 353–367. IEEE (2018), https://eprint.iacr.org/2017/634.

17. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for
the tls protocol from the ring learning with errors problem. In: 2015 IEEE Sym-
posium on Security and Privacy. pp. 553–570. IEEE (2015)

18. Chen, C., Danba, O., Hoffstein, J., Hülsing, A., Rijneveld, J., Schanck, J.M.,
Schwabe, P., Whyte, W., Zhang, Z.: Ntru algorithm specifications and support-
ing documentation. Submission to the NIST post-quantum project (2019) (2019)

19. Chen, L., Jordan, S., Liu, Y.K., Moody, D., Peralta, R., Perlner, R., Smith-Tone,
D.: Report on post-quantum cryptography. US Department of Commerce, National
Institute of Standards and Technology (2016)

20. Cover, T.M.: Elements of information theory. John Wiley & Sons (1999)
21. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption

schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Com-
puting 33(1), 167–226 (2003)

22. D’Anvers, J.P., Karmakar, A., Roy, S.S., Vercauteren, F.: Saber: Mod-lwr based
kem algorithm specification and supporting documentation. In: Submission to

https://pq-crystals.org/kyber
https://round5.org/Supporting_Documentation/Round5_Submission.pdf
 https://ntruprime.cr.yp.to/nist/ntruprime-20190330.pdf
 https://ntruprime.cr.yp.to/nist/ntruprime-20190330.pdf
https://eprint.iacr.org/2020/1288.pdf
https://eprint.iacr.org/2020/1288.pdf
https://eprint.iacr.org/2017/634

A Systematic Approach of Key Mismatch Attacks 25

the NIST post-quantum project (2019) (2019), https://www.esat.kuleuven.be/
cosic/publications/article-3055.pdf.

23. D’Anvers, J.P., Tiepelt, M., Vercauteren, F., Verbauwhede, I.: Timing attacks on
error correcting codes in post-quantum schemes. In: Proceedings of ACM Workshop
on Theory of Implementation Security Workshop. pp. 2–9 (2019)

24. Diffie, W., Hellman, M.: New directions in cryptography. IEEE transactions on
Information Theory 22(6), 644–654 (1976)

25. Ding, J., Alsayigh, S., Saraswathy, R., Fluhrer, S., Lin, X.: Leakage of signal func-
tion with reused keys in rlwe key exchange. In: 2017 IEEE International Conference
on Communications (ICC). pp. 1–6. IEEE (2017)

26. Ding, J., Branco, P., Schmitt, K.: Key exchange and authenticated key exchange
with reusable keys based on rlwe assumption. IACR Cryptology EPrint Archive
(2020), https://eprint.iacr.org/2019/665.pdf.

27. Ding, J., Fluhrer, S., Rv, S.: Complete attack on rlwe key exchange with reused
keys, without signal leakage. In: Australasian Conference on Information Security
and Privacy. pp. 467–486. Springer (2018)

28. Ding, J., Xie, X., Lin, X.: A simple provably secure key exchange scheme based
on the learning with errors problem. IACR Cryptology EPrint Archive (2012),
https://eprint.iacr.org/2012/688.pdf.

29. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric en-
cryption schemes. In: Annual International Cryptology Conference. pp. 537–554.
Springer (1999)

30. Gilbert Goodwill, B.J., Jaffe, J., Rohatgi, P., et al.: A testing methodology for
side-channel resistance validation. In: NIST non-invasive attack testing workshop.
vol. 7, pp. 115–136 (2011)

31. Greuet, A., Montoya, S., Renault, G.: Attack on lac key exchange in misuse situa-
tion. IACR Cryptology EPrint Archive (2020), https://eprint.iacr.org/2020/
063.

32. Gyongyosi, L., Imre, S.: A survey on quantum computing technology. Computer
Science Review 31, 51–71 (2019)

33. Hall, C., Goldberg, I., Schneier, B.: Reaction attacks against several public-key
cryptosystem. In: Information and Communication Security. pp. 2–12. Springer
(1999)

34. Hamburg, M.: Post-quantum cryptography proposal: Threebears. In: Submission
to the NIST post-quantum project (2019) (2019), https://www.shiftleft.org/
papers/threebears/threebears-spec.pdf.

35. Hoffstein, J., Pipher, J., Silverman, J.H.: Ntru: A ring-based public key cryp-
tosystem. In: International Algorithmic Number Theory Symposium. pp. 267–288.
Springer (1998)

36. Huffman, D.A.: A method for the construction of minimum-redundancy codes.
Proceedings of the IRE 40(9), 1098–1101 (1952)

37. Huguenin-Dumittan, L., Vaudenay, S.: Classical misuse attacks on nist round
2 pqc. In: International Conference on Applied Cryptography and Network Se-
curity. pp. 208–227. Springer (2020), https://link.springer.com/chapter/10.

1007/978-3-030-57808-4_11.

38. Knuth, D.E.: The art of computer programming, vol. 3. Pearson Education (1997)

39. Liu, C., Zheng, Z., Zou, G.: Key reuse attack on newhope key exchange protocol.
In: International Conference on Information Security and Cryptology. pp. 163–176.
Springer (2018)

https://www.esat.kuleuven.be/cosic/publications/article-3055.pdf
https://www.esat.kuleuven.be/cosic/publications/article-3055.pdf
https://eprint.iacr.org/2019/665.pdf
https://eprint.iacr.org/2012/688.pdf
https://eprint.iacr.org/2020/063
https://eprint.iacr.org/2020/063
https://www.shiftleft.org/papers/threebears/threebears-spec.pdf
https://www.shiftleft.org/papers/threebears/threebears-spec.pdf
https://link.springer.com/chapter/10.1007/978-3-030-57808-4_11
https://link.springer.com/chapter/10.1007/978-3-030-57808-4_11

26 Y. Qin et al.

40. Lu, X., Liu, Y., Jia, D., Xue, H., He, J., Zhang, Z., Liu, Z., Yang, H., Li, B.,
Wang, K.: Lac: Lattice-based cryptosystems algorithm specification and supporting
documentation. In: Submission to the NIST post-quantum project (2019) (2019),
https://eprint.iacr.org/2018/1009.pdf.

41. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques. pp. 1–23. Springer (2010)

42. Mehlhorn, K.: Nearly optimal binary search trees. Acta Informatica 5(4), 287–295
(1975)

43. Menezes, A., Ustaoglu, B.: On reusing ephemeral keys in diffie-hellman key agree-
ment protocols. International Journal of Applied Cryptography 2(2), 154–158
(2010)

44. Moody, D.: Post Quantum Cryptography Standardization: Announce-
ment and outline of NIST’s Call for Submissions. PQCrypto 2016,
Fukuoka, Japan (2016), https://csrc.nist.gov/Presentations/2016/

Announcement-and-outline-of-NIST-s-Call-for-Submis.

45. Moody, D., Alagic, G., Apon, D.C., Cooper, D.A., Dang, Q.H., Kelsey, J.M., Liu,
Y.K., Miller, C.A., Peralta, R.C., Perlner, R.A., et al.: Status Report on the Second
Round of the NIST Post-Quantum Cryptography Standardization Process. US
Department of Commerce, National Institute of Standards and Technology (2020),
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf

46. Okada, S., Wang, Y., Takagi, T.: Improving key mismatch attack on newhope with
fewer queries. IACR Cryptol. ePrint Arch. 2020, 585 (2020)

47. Peikert, C.: Lattice cryptography for the internet. In: International workshop on
post-quantum cryptography. pp. 197–219 (2014)

48. Qin, Y., Cheng, C., Ding, J.: A complete and optimized key mismatch attack
on nist candidate newhope. In: European Symposium on Research in Computer
Security. pp. 504–520. Springer (2019)

49. Qin, Y., Cheng, C., Ding, J.: An efficient key mismatch attack on the nist sec-
ond round candidate kyber. IACR Cryptology EPrint Archive (2019), https:

//eprint.iacr.org/2019/1343.

50. Ravi, P., Roy, S.S., Chattopadhyay, A., Bhasin, S.: Generic side-channel attacks
on cca-secure lattice-based pke and kems. IACR Transactions on Cryptographic
Hardware and Embedded Systems pp. 307–335 (2020)

51. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. Journal of the ACM 56(6), 1–40 (2009)

52. Vacek, J., Václavek, J.: Key mismatch attack on newhope revisited. Tech. rep.,
Cryptology ePrint Archive, Report 2020/1389 (2020)

53. Wang, K., Zhang, Z., Jiang, H.: Key recovery under plaintext checking attack
on lac. In: International Conference on Provable Security. pp. 381–401. Springer
(2020)

54. Xagawa, K., Ito, A., Ueno, R., Takahashi, J., Homma, N.: Fault-injection attacks
against nist’s post-quantum cryptography round 3 kem candidates. IACR Cryp-
tology EPrint Archive (2021), https://ia.cr/2021/840

55. Zhang, X., Cheng, C., Ding, R.: Small leaks sink a great ship: An evaluation of
key reuse resilience of pqc third round finalist ntru-hrss. ICICS2021 (Accepted)
(2021), https://ia.cr/2021/168

https://eprint.iacr.org/2018/1009.pdf
https://csrc.nist.gov/Presentations/2016/Announcement-and-outline-of-NIST-s-Call-for-Submis
https://csrc.nist.gov/Presentations/2016/Announcement-and-outline-of-NIST-s-Call-for-Submis
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://eprint.iacr.org/2019/1343
https://eprint.iacr.org/2019/1343
https://ia.cr/2021/840
https://ia.cr/2021/168

A Systematic Approach of Key Mismatch Attacks 27

A Bounds for other candidates

We list our lower bounds for key mismatch attacks against LAC, Round5 and
Three Bears in Table 7. For each scheme, we give the ranges of coefficients, num-
ber of unknowns, and whether the Encode/Decode and Compress/Decompress
are employed or not. We also report the average number of queries in our pro-
posed bounds.

Table 7: Key mismatch attacks against LAC, Round5 and Three Bears

Schemes
sA & e Encode Comp

Unknowns
E(#Queries)

Ranges Decode Decomp Bounds
LAC128

[-1,1] X /
512 553

LAC192 1024 1106
LAC256 1024 1398

Round5 R5ND 1
[-1,1] / X

618 722
Round5 R5ND 3 786 1170
Round5 R5ND 5 1018 1446

BabyBear [-1,1]
/ X

320 520
MamaBear [-2,2] 320 680
PapaBear [-3,3] 320 738

B Improved practical key mismatch attacks

In this section, according to the proposed bounds, we discuss how to launch the
practical key mismatch attacks on NewHope, LAC and Round5.

B.1 Improved key mismatch attacks on NewHope

In a key mismatch attack on NewHope, we build an Oracle O to simulate the
process of NewHope.KEM.Dec(). The inputs of O are (PB , c) and KB . The
Oracle honestly executes the decryption to get KA. Then it, compares KA and
KB , if they are equal, it returns 1, otherwise it returns 0.

As far as we know, the best practical key mismatch attack on NewHope1024
given in [52] needs 3197 queries, which is still higher than our theoretical bound
3127. Based on it, we propose a method that can further decrease the number
of queries to 3180. Here we take NewHope1024 as an example to show how to
launch the attack.

Main idea. Our improved attack method is on the basis of Mehlhorn’s Rule
II in Nearly Optimal Binary Search Tree [42], i.e., for every given probability
range, we always select the root in a way that the differences between sums of
weights of its left subtree and right subtree are as small as possible.

28 Y. Qin et al.

In a key mismatch attack, we assume that Alice’s public key PA is always
reused, and the adversary A’s target is to get the secret key sA of Alice. In order
to achieve the target, A needs to set proper parameters.

Recall that NewHope1024 uses D-4 encoding, which means 4 coefficients
sA[i], sA[i+256], sA[i+512], sA[i+768] are operated at a time. We assume that
the adversary A wants to recover the i-th quadruplet, then he needs to properly
select vb, and parameters (PB , c).

In our improved attack, in Step 1 by precomputing the probabilities of all
the quadruplets, along with the outputs of Oracle corresponding to selected
parameters (PB , c̄) and all the quadruplets, A can choose the proper parameters
which relate each quadruplet to a leaf node in a binary tree. Finally, in Step 2
by repeatedly querying the Oracle and getting the corresponding sequence of
returned values, A can decide the quadruplets.

Step1: The pre-computation phase. In this step, the adversary A needs to
compute the probabilities of all the quadruplets, along with the outputs of Oracle
corresponding to selected parameters (PB , c) and all the quadruplets which is
denoted as OA, and constructs a corresponding binary recovery tree.

In the following, we construct the corresponding nearly optimal binary recov-
ery tree T . Here, a nearly optimal binary tree means a binary tree in which the
sum of the probabilities of quadruplets of the left subtree and the right subtree
should be as equal as possible. We require T to be nearly optimal since in this
way we can recursively divide all the possible quadruplets into almost equal two
parts with lower time complexity.

We set the sum of the probabilities of quadruplets of a non-leaf node’s left
subtree and the right subtree as p0 and p1, respectively. The nearly optimal
binary recovery tree T should satisfy the following properties.

1. For each non-leaf node, its corresponding p0 and p1 should be as equal as
possible.

2. For each non-leaf node, if the Oracle returns 0, it corresponds to the left
subtree of the current node, otherwise it corresponds to its right subtree.

First, we traverse the precomputing OA to find one appropriate parameter
P = (PB , c) which satisfies the above two properties. The construction of tree
T starts from the root node with index i = 0. After obtaining the appropriate
parameter P , we insert the root node and P into the 0-th position in T . Then
we recursively build the left subtree and the right subtree for the root node,
respectively. Finally, all the possible quadruplets are stored in the leaf nodes,
and parameters PB and c are stored in the non-leaf nodes.

Step2: The recovery phase. In this step, the adversary A tries to decide the
quadruplet according to the precomputed binary tree T .

We show how the adversary A decides the i-th quadruplet in Algorithm 6.
Specifically, A first starts from the root node of the precomputed binary tree
T , and sets P as the parameters stored in the root node. Then, he accesses the
Oracle, if it returns 0, A accessed the left subtree of the root node, otherwise A

A Systematic Approach of Key Mismatch Attacks 29

Algorithm 6 Determining each quadruplet

Input: T
Output: the quadruplet
1: Set node = T.root
2: while node is not a leaf node do
3: Set P the parameter stored in the
node

4: v = Oracle(P)
5: if v = 0 then

6: node = node.leftnode
7: else
8: node = node.rightnode
9: end if

10: end while
11: Return the quadruplet stored in the

node

accessed the right subtree of the root node. Next, A repeats the following two
steps until the current node he accesses is a leaf node.

1. A judges whether the current node is a leaf node, and if it is, he directly
returns the value of the quadruplet stored in the node. Otherwise, he sets P as
the parameters stored in the current node, and accesses the Oracle again.

2. If the Oracle returns 0, he sets node = node.leftnode, otherwise node =
node.rightnode.

Parameter choices: The total number of queries depend on the precomputed
binary tree T . Recall that in Step1, when we construct the binary tree T , we
need to compute the probabilities of all the quadruplets and OA, the latter
is associated with selected parameters (PB , c), thus the selected parameters
determines the number of queries.

Table 8: The relationship between g, success probability of Hypothesis 1, and
average number of queries on NewHope1024

g [0,383] [384,512] [384,534] [384,768] [384,819]
Success probability (%) 100 99.999 99.999 94.577 85.811

E(#Queries) 3574.953 3179.215 3206.605 3174.853 3174.085

Hypothesis 1. The adversary A sets vb = {1, 0, 0, . . . , 0}, PB = gx−i, c =∑3
j=0 ((lj + 4) mod 8)x256j. Then the goal of A is to choose (PB , c) such that

va = Decode(Decompress(c−PB ◦ sA)) = {b, 0, 0, . . . , 0}, where b ∈ {0, 1}.

Moreover, while selecting parameters (PB , c), A needs to guarantee that
Hypothesis 1 holds with nearly 100% probability. Otherwise when the output of
Oracle is 0, A does not know whether the mismatch is due to the 0-th position
or other positions.

In order to get the best parameter, we traverse and compute the success rate
of Hypothesis 1 through the whole value interval of g, and show the relationship

30 Y. Qin et al.

among g ∈ [0, 819], the success probability of Hypothesis 1 and the average
number of queries in Table 8 above. Considering the success probability and
the number of queries, we finally decide the optimal interval of parameter g, i.e.
[384, 512]. In Step2, while selecting parameter g ∈ [384, 512], the average number
of queries needed by the adversary to get each quadruplet is 12.41881, and there
are 256 unknown quadruplets in a secret key sA. Therefore, in total we need
3179.21536 queries to completely recover sA.

B.2 Improved key mismatch attacks on LAC

Although there are three versions of LAC with different security levels, the pa-
rameters in the proposed key mismatch attacks are the same. In the attack, the
adversary needs to modify three parameters: eB [0], e′B [vb− 1] and e′B [2vb− 1].
Here, vb = lv = 400, and lv is a parameter set in LAC. And next we will show
how to recover sA[0].

1. We set eB [0] = 124, e′B [vb − 1] = 1 and e′B [2vb − 1] = 1 first, then
{S0,S1,S2,S3,S4,S5,S6,S7,S8} can be divided into two parts based on
the returned value of the first Oracle:

– If O → 0: sA[0] belongs to {S3,S4,S5,S6,S7,S8}, next step 2, step 3
and step 5 will be executed.

– If O → 1: sA[0] belongs to {S0,S1,S2}, then go to step 4 and step 5.

2. If the oracle returns 0 in step 1, then we set eB [0] = 124, e′B [vb− 1] = 0 and
e′B [2vb− 1] = 0:

– If O → 0: sA[0] belongs to {S5,S6,S7,S8}, next step 3 will be proceeded.
– If O → 1: sA[0] belongs to {S3,S4}, and next turn to step 5.

3. If the oracle returns 0 in step 2, then we set eB [0] = 63, e′B [vb− 1] = 63 and
e′B [2vb− 1] = 63:

– If O → 0: sA[0] belongs to {S7,S8}, next go to step 5.
– If O → 1: sA[0] belongs to {S5,S6}, next go to step 5.

4. If the oracle returns 1 in step 1, then we set eB [0] = 125, e′B [vb− 1] = 0 and
e′B [2vb− 1] = 0:

– If O → 0: sA[0] belongs to {S1,S2}, then turn to step 5.
– If O → 1: We can determine sA[0] = S0.

5. Similarly we only need to distinguish the two coefficients in {S7,S8}, {S5,S6},
{S3,S4}, and {S1,S2}. As long as the appropriate parameters are selected,
only one query is needed.

B.3 Improved key mismatch attacks on Round5

Round5 does not use D-2 Encode/Decode functions. Although there are three
different versions of Round5 R5ND with different security levels, their attack
process is the same, except that the parameters PB = h (h = h1 or h2) chosen
by the adversary are different. Specifically, the adversary selects h1/h2 as 44/-44,
120/-120 and 144/113, and the process of recovering sA[0] is shown as follows.

A Systematic Approach of Key Mismatch Attacks 31

1. We set h = h1 first, then {S0,S1,S2} can be divided into two parts based
on the returned value of the first Oracle:
– If O → 0: We can determine sA[0] = S2.
– If O → 1: sA[0] belongs to {S0,S1}.

2. When h = h1, if the oracle returns 0 then we go on setting h = h2:
– If O → 0: sA[0] = S0.
– If O → 1: sA[0] = S1.

	A Systematic Approach and Analysis of Key Mismatch Attacks on Lattice-Based NIST Candidate KEMs

