
Non-Malleable Vector Commitments
via Local Equivocability

Lior Rotem∗ Gil Segev†

Abstract

Vector commitments (VCs), enabling to commit to a vector and locally reveal any of its
entries, play a key role in a variety of both classic and recently-evolving applications. However,
security notions for VCs have so far focused on passive attacks, and non-malleability notions
considering active attacks have not been explored. Moreover, existing frameworks that may
enable to capture the non-malleability of VCs seem either too weak (non-malleable non-interactive
commitments that do not account for the security implications of local openings) or too strong
(non-malleable zero-knowledge sets that support both membership and non-membership proofs).

We put forward a rigorous framework capturing the non-malleability of VCs, striking a careful
balance between the existing weaker and stronger frameworks: We strengthen the framework of
non-malleable non-interactive commitments by considering attackers that may be exposed to
local openings, and we relax the framework of non-malleable zero-knowledge sets by focusing
on membership proofs. In addition, we strengthen both frameworks by supporting (inherently-
private) updates to entries of committed vectors, and discuss the benefits of non-malleable VCs in
the context of both UTXO-based and account-based stateless blockchains, and in the context of
simultaneous multi-round auctions (that have been adopted by the US Federal Communications
Commission as the standard auction format for selling spectrum ranges).

Within our framework we present a direct approach for constructing non-malleable VCs whose
efficiency essentially matches that of the existing standard VCs. Specifically, we show that any
VC can be transformed into a non-malleable one, relying on a new primitive that we put forth.
Our new primitive, locally-equivocable commitments with all-but-one binding, is evidently both
conceptually and technically simpler compared to multi-trapdoor mercurial trapdoor commit-
ments (the main building block underlying existing non-malleable zero-knowledge sets), and
admits more efficient instantiations based on the same number-theoretic assumptions.

∗Computer Science Department, Stanford University, 353 Jane Stanford Way, Stanford, CA 94305, USA. Email:
lrotem@cs.stanford.edu. Supported by a research grant from Protocol Labs.

†School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem 91904, Israel. Email:
segev@cs.huji.ac.il. Supported by the Israel Science Foundation (Grant No. 1336/22) and by the European Union
(ERC, FTRC, 101043243). Views and opinions expressed are however those of the author(s) only and do not necessarily
reflect those of the European Union or the European Research Council. Neither the European Union nor the granting
authority can be held responsible for them.

Contents

1 Introduction 1
1.1 Our Contributions . 2
1.2 Applications . 4
1.3 Overview of Our Approach . 5
1.4 Open Problems . 8
1.5 Paper Organization . 9

2 Preliminaries 9
2.1 Equivocable Commitment Schemes . 9
2.2 Vector Commitment Schemes . 11
2.3 One-Time Strongly-Unforgeable Signature Schemes 12
2.4 Universal One-Way Hash Functions . 13

3 Non-Malleable Vector Commitments 13
3.1 Existing Schemes Do Not Satisfy Our Notion . 16
3.2 Simple Attempts That Fail . 17

4 Locally-Equivocable Commitments with All-But-One Binding 17

5 Our Construction of a Non-Malleable Vector Commitment Scheme 20
5.1 The Construction . 21
5.2 Proof of Security . 22

6 Non-Malleable Dynamic Vector Commitments 33
6.1 Syntax, Correctness and Invisibility of Updates . 34
6.2 Dynamic Non-Malleability . 35
6.3 Extending Our Construction and its Proof of Security 36

References 37

A Non-Malleability of Merkle Trees in the Random-Oracle Model 41

B Constructions of Locally-Equivocable Commitments with All-But-One Binding 46
B.1 A Generic Construction . 46
B.2 An Efficient Construction Based on the Discrete Logarithm Assumption 48
B.3 An Efficient Construction Based on the RSA Assumption 50

1 Introduction

Vector commitments (VCs) [LY10, CF13] enable to non-interactively commit to a vector (x1, . . . , xq)
while offering the useful property of local opening: The committer can reveal any individual entry
xi without the overhead of revealing the entire vector. At the same time, VCs are also required to
be position binding: The committer should not be able to reveal any entry of an even maliciously-
committed vector to more than a single value.

The main measure of efficiency for VCs, which makes them extremely useful for a variety of ap-
plications but highly non-trivial to construct, is their succinctness: Both the size of the commitment
and the size of the local openings should be sublinear in the number q of elements in the committed
vector. Whereas the classic notion of a Merkle tree [Mer87] can be seen as a VC in which the size
of the commitment is independent of q and the size of local openings scales logarithmically with q,
Libert and Yung [LY10] and Catalano and Fiore [CF13] presented constructions in which both sizes
are independent of q.

Starting already with Merkle’s early work, VCs consistently play a key role in a wide range
of applications as a communication-efficient method for authenticating rather large amounts of
data by allowing users to retrieve small parts of the data alongside short proofs of authenticity.
Such applications include, for example, verifiable databases and authenticated data structures (e.g.,
[NN98, MND+04, BGV11, SvDJ+12, KSS+16, CFG+20]), zero-knowledge sets (e.g., [MRK03, LY10,
CRF+11, CHL+13]), cryptographic accumulators [BdM93] (which have many applications on their
own right – see for example [BP97, GR97, CL02, DKN+04, Ngu05, ABC+12, MGG+13, FVY14] and
the references therein), stateless blockchains (e.g., [STS99, Tod16, But17, BBF19, TAB+20]), and
succinct arguments (e.g., [Kil92, Mic94, BBF19, LM19, OWW+20]).

Non-malleable commitments. Another long line of research regarding commitment schemes,
initiated by the seminal work of Dolev, Dwork and Naor [DDN00], deals with the construction of non-
malleable commitments. Roughly speaking, a commitment scheme is non-malleable if an adversary
which receives a commitment to some value x, cannot produce a commitment to some “non-trivially
related” value x′. Non-malleable commitments have established themselves as instrumental in a
host of cryptographic tasks, especially those requiring to protect against man-in-the-middle attacks.
Numerous constructions of non-malleable commitments have been suggested over the years, satisfying
various flavors of security notions and achieving different efficiency tradeoffs, based on wide range
of cryptographic assumptions (e.g., [CIO98, DDN00, FF00, CKO+01, Bar01, CF01, PR05, PR08,
PPV08, LPV08, LP09, PW10, Wee10, LP11, GLO+12, GPR16, COS+17, Khu17] and the many
references therein).

This work: Non-malleable vector commitments. The fundamental importance of VCs and
of non-malleable commitments motivates the study of non-malleable VCs with the premise of sig-
nificantly strengthening the security and improving the efficiency of the wide range of applications
in which they play a key role. For example, non-malleable VCs would directly give rise to verifiable
databases, authenticated data structures and cryptographic accumulators offering non-malleability
guarantees. As additional, less direct examples, in Section 1.2 we discuss the benefits of using
non-malleable VCs as building blocks in the contexts of stateless blockchains and simultaneous
multi-round auctions.

However, the notion of non-malleable VCs has not yet been explored, and the existing framework
and constructions of standard non-malleable commitments do not take into account the significant
security implications of local openings. A closely-related notion, which has been thoroughly explored,
is that of non-malleable zero-knowledge sets (ZKS), introduced in the beautiful work of Gennaro and

1

Micali [GM06] (extending the notion of standard ZKS [MRK03]). Non-malleable ZKS can be seen
as a substantial strengthening of non-malleable VCs, supporting non-membership proofs in addition
to membership proofs. The work of Gennaro and Micali initiated an exciting line of research leading
to constructions of non-malleable ZKS based on gradually weaker assumptions and with increasingly
better parameters (see [LY10, CF13] and the references therein). However, these constructions rely on
the useful yet intricate notion of multi-trapdoor mercurial trapdoor commitments [GM06], specifically
tailored to support non-membership proofs (see also [CHL+13, CDV06] for basic background on
mercurial commitments). As prominent applications of VCs generally do not require non-membership
proofs (as we exemplify in Section 1.2), this raises the following question:

Can non-malleable VCs be constructed within a simplified framework
both conceptually (e.g., simpler and more intuitive notions)

and technically (e.g., direct and more efficient constructions)?

1.1 Our Contributions

Notion of non-malleability for VCs. We put forward a strong notion of non-malleability for
vector commitment schemes. Our framework strikes a careful balance between the weaker notion of
non-malleable non-interactive commitments [CIO98, CKO+01] and the considerably stronger notion
of non-malleable zero-knowledge sets [GM06]. Concretely, we generalize the notion of non-malleable
non-interactive commitments by incorporating the adversarial adaptivity and additional information
resulting from local openings. That is, the key difference from the notion of non-malleable non-
interactive commitments is that we aim at achieving non-malleability against adversaries which may
have already been exposed to several local openings. Looking ahead, this key difference is the reason
that simple attempts of combining VCs and non-malleable commitments do not seem to suffice for
realizing our notion (as we demonstrate in Section 3.2).

Warm-up: Merkle trees are non-malleable in the random-oracle model. As a first step
within our framework, we examine the non-malleability of existing vector commitments schemes
and observe that they are easily malleable (some of them by design in order to support public
updates). Then, as a warm-up towards our main result, we show that a Merkle tree does satisfy our
requirements when its underlying hash function is modeled as a random oracle [BR93] (and we show
that this does not generally hold in the standard model):

Theorem 1.1 (informal). Let H be a hash function and let treeVC be the Merkle tree vector com-
mitment scheme that is obtained via H. Then, treeVC is a non-malleable vector commitment scheme
when H is modeled as a random oracle.

Theorem 1.1 demonstrates the feasibility of realizing our notion of non-malleable vector com-
mitments via a direct construction whose proof is not explicitly based on multi-trapdoor mercurial
trapdoor commitments. However, the non-malleability of this construction heavily relies on the
random-oracle model and, more importantly, the construction has local openings whose size scales
logarithmically with the number q of elements in the committed vector.

Main result: Efficient non-malleable VCs via local equivocability. We present a direct
approach for constructing non-malleable VCs whose efficiency essentially matches that of the existing
standard VCs. Inspired by constructions of non-malleable zero-knowledge sets [GM06, LY10, CF13]
(and, more generally, of non-malleable cryptographic primitives [DDN00]), we show that any vector
commitment scheme can be transformed into a non-malleable one, relying on a new primitive that we

2

put forth. Our new primitive, locally-equivocable commitments with all-but-one binding, is evidently
both conceptually and technically simpler when compared to multi-trapdoor mercurial trapdoor
commitments, as we discuss below. We prove the following theorem:

Theorem 1.2 (informal). Any vector commitment scheme can be transformed into a non-malleable
one using: (1) a locally-equivocable commitment scheme with all-but-one binding, (2) a one-time
strongly-unforgeable signature scheme, and (3) a universal one-way hash family.

We note that our notions of non-malleability and our construction extend to accumulators
[BdM93]. Specifically, in our construction, the underlying VC can be replaced with an accumulator,
and the underlying locally-equivocable commitment scheme can be replaced with one that supports
an a-priori unbounded number of commitments (this is already the case with our number-theoretic
constructions).

Intuitive, simple & efficient: Locally-equivocable commitments with all-but-one bind-
ing. Our new notion of commitments is obtained by augmenting the standard notion of tag-based
commitments with the following two requirements:

• Local equivocability: A committer can generate several equivocal commitments with respect
to a single common-reference string.

• All-but-one binding: Equivocal commitments generated with respect to a predetermined
tag τ should be binding with respect to any other tag even when given the trapdoor associated
with τ .

This new notion is evidently both conceptually and technically simpler than the notion of multi-
trapdoor mercurial trapdoor commitments. From the conceptual perspective, it has a short and
intuitive description. This is evident not only from the above informal description, but also from the
fact that in addition to the standard setup, commitment and decommitment procedures, our notion
consists of only 3 additional procedures, whereas the notion of a multi-trapdoor mercurial trapdoor
commitment consists of 7 additional procedures (already in its non-vector variant) together with a
non-trivial number of correctness and security requirements.

From the technical perspective, on the one hand we observe that our new notion strengthens Fis-
chlin’s notion of identity-based trapdoor commitments [Fis01, Ch. 2.6]; whereas on the other hand we
nevertheless show that Fischlin’s highly-efficient number-theoretic constructions satisfy our strength-
ened notion [Fis01, Ch. 3.3]. Specifically, this yields constructions based on the discrete logarithm
assumption and on the RSA assumption, in which commitments consist of a single group element.
This should be contrasted with the known constructions of multi-trapdoor mercurial trapdoor com-
mitments based on the same assumptions in which commitments consist of two group elements. The
difference between producing one or two group elements might not be significant on its own, but
both in our construction and in those based on multi-trapdoor mercurial trapdoor commitments
the underlying commitment scheme is used for producing q commitments (where q is the number
of elements in the committed vector), and this translates into a more significant difference between
producing q and 2q group elements.

In addition to these highly-efficient number-theoretic constructions, we also present a construction
based on the existence of any standard commitment scheme (and thus based on the existence of any
one-way function [Nao91, HIL+99]). However, this construction is mainly of theoretical significance
as it supports only an a-priori bounded of number q of equivocal commitments, and the length of its
common-reference string is linear in this bound. Such guarantees still suffice for our non-malleable
vector commitment, but lead to somewhat impractical efficiency guarantees.

3

Extension: Non-malleable dynamic VCs. Catalano and Fiore [CF13] constructed VCs in
which individual entries of the committed vector can be updated publicly (i.e., without knowledge
of the committer’s private state). Such public updates, however, are inherently incompatible with
the motivation underlying the notion of non-malleability, and indeed with our definition of non-
malleable VCs. In light of this inherent limitation, we show that our framework and construction
can nevertheless support updates in a private manner, requiring knowledge of the private state
generated by the committer in order to update entries of the underlying vector.

We extend our definition of non-malleable VCs to support dynamic VCs as well, essentially
requiring that non-malleability is maintained even when the adversary receives a vector commitment
which has undergone adversarially-chosen updates. We then revisit our construction from Theorem
1.2 and show that if the underlying VC supports private updates,1 then so does our resulting non-
malleable VC (which is indeed non-malleable with respect to our extended definition).

Theorem 1.3 (informal). Any privately-updatable vector commitment scheme can be transformed
into a non-malleable privately-updatable one using: (1) a locally-equivocable commitment scheme with
all-but-one binding, (2) a strongly-unforgeable signature scheme, and (3) a universal one-way hash
family.

1.2 Applications

The notion of non-malleable commitments is over three decades old [DDN00], and has found a variety
of applications. Since our notion of non-malleable VCs strengthens this notion in the non-interactive
setting, it can be applied in any case in which non-interactive non-malleable commitments can be
used, while offering significant efficiency improvement via local openings. Specifically, VCs play a
key role in a wide range of applications both as an intermediate building block and as a direct
communication-efficient method for authenticating large amounts of data (allowing users to retrieve
small parts of the data alongside short proofs of their authenticity). Here, we focus our attention on
discussing the benefits of non-malleable VCs in the contexts of stateless blockchains and simultaneous
multi-round auctions.

Stateless blockchains. VCs are used as a direct communication-efficient method for authenticat-
ing large amounts of data in stateless blockchains both in the UTXOmodel (e.g., Bitcoin [Nak08]) and
in the account model (e.g., Ethereum [But14]).2 In both models, transactions and smart-contracts
consist of local opening of VCs, where the VCs represent a compressed version of a current state,
and are stored by validating parties. Their local openings are verified either as unspent transactions
in the UTXO model, or as account balances and various other user-specific properties in the ac-
count model (see for example, [BBF19, GRW+20, BBB+18, TAB+20], for extensive discussions and
additional related work – which is far beyond the context of our work).

In such scenarios, the basic security properties of VCs are generally insufficient in order to
guarantee cross-transaction independence (also known as transaction non-malleability [BCG+14]).
Specifically, in such highly interactive scenarios, attackers may indeed observe both VCs and local
openings, then manipulate the VCs to represent a malleated state (e.g., either in an implicitly-
malicious manner by issuing honest yet tailored transactions that lead to specific state updates, or in
an explicitly-malicious manner by potentially controlling to some extent some of the verifying par-
ties), and then produce local openings with respect to the malleated VCs – as captured by our notion

1Note that a VC which supports public updates trivially supports private updates.
2In fact, in some cases, accumulators are used instead of vector commitments. As noted about, our notions of

non-malleability and our construction apply also to accumulators.

4

for non-malleable VCs. Thus, relying on non-malleable VCs in the context of stateless blockchains
can significantly reduce both storage and communication while guaranteeing cross-transaction inde-
pendence.

Simultaneous multi-round auctions. One of the most classic and direct applications of (non-
malleable) commitments is that of sealed-bid auctions [DDN00], and in this context our notion
of non-malleable VCs seems particularly suitable for Simultaneous Multi-Round Auctions (SMRA)
[Bic17, Ch. 6]. Such auctions provide a widespread multi-round format for selling multiple items.
SMRAs were designed for the US Federal Communications Commission in the early 1990s, and since
then they have become the standard auction format for selling spectrum worldwide.

SMRAs proceed in rounds, where in each round some or all bidders bid for multiple items, and
each item may either be sold or not sold in each round depending of the specific rules of the auction
and the submitted bids. After each round is closed the auctioneer discloses which items were won,
who wins each of these items, and at what price. Depending on the specific rules of the auction,
there are differences in the level of information revealed about other bidders’ bids. In some cases
all bids are publicly revealed after each round, whereas in other cases only prices of the currently
winning bids are publicly revealed.

From the perspective of using vector commitments, submitting each bidder’s bids for all available
items in each round using a VC, and then publicly revealing local openings for the required (e.g.,
winning) bids according to the rules of the auction, can lead to significant communication savings
(at least in the case of spectrum ranges, the number of ranges may be rather large – although not
as large as in the context of using VCs for stateless blockchains). However, this enables a malicious
bidder to malleate vector commitments (i.e., bids) provided in earlier rounds or even in the same
round after having seen some of their local openings, and to generate a vector commitment (i.e., a
bid) to related values together with corresponding local openings at a later stage – as captured by
our notion of non-malleable VCs. Thus, relying on non-malleable VCs in the context of SMRAs can
significantly reduce communication while guaranteeing cross-round and cross-bid independence.

1.3 Overview of Our Approach

In this section we provide a high-level overview of our notion of non-malleability and of our main
construction of a non-malleable vector commitment scheme (Theorem 1.2). For brevity, the main
ideas underlying our additional results are described within the corresponding sections.

The starting point of our work is the notion of a vector commitment scheme VC = (VC.Setup,
VC.Commit,VC.Open,VC.Verify) [CF13] with the following syntax: The algorithms VC.Setup and
VC.Commit are invoked in order to produce a common-reference string crs, and in order to produce
a commitment vcom for a vector (x1, . . . , xq), respectively. In turn, the algorithms VC.Open and
VC.Verify are then invoked in order to produce a local opening πi for each entry i ∈ [q] of the
committed vector, and in order to verify it, respectively. In terms of security, a vector commitment
scheme should provide position binding, essentially asking that no efficient algorithm can generate
a commitment vcom together with two valid openings for the same entry i ∈ [q] corresponding to
different values xi and x′i. The main measure of efficiency for vector commitments, which makes
them non-trivial to construct, is their succinctness. This is captured by asking for upper bounds on
the sizes of the resulting commitments and local openings (e.g., asking that both sizes are nearly
independent of the length q of the committed vector). We refer the reader to Section 2.2 for the
formal description of the position binding and succinctness requirements.

5

Our notion of non-malleability. Based on the standard notion of non-malleability for non-
interactive commitment schemes [CIO98, CKO+01], any non-malleable vector commitment scheme
should at least satisfy the following informal property: An efficient adversary which receives a com-
mitment vcom to a vector ~x = (x1, . . . , xq), should not be able to produce (and then open) a vector
commitment v̂com to some vector ~̂x = (x̂1, . . . , x̂q) which is “non-trivially related” to ~x. However,
this property does not capture the adversarial adaptivity and additional information resulting from
local openings. Therefore, our notion of non-malleability for vector commitments asks that the above
property holds even when the adversary can request local openings for some of the entries of ~x before
deciding on v̂com, and then open only some of the entries ~̂x after obtaining local opening for all other
entries of ~x.

This is formalized by considering a “real” security experiment involving an adversary and an
“ideal” security experiment involving a simulator. At a high level, in the real experiment, the adver-
sary is provided with a commitment vcom to a vector ~x = (x1, . . . , xq), and is allowed to request local
openings (πi)i∈I for any subset I ⊆ [q] of the entries of ~x for producing a commitment v̂com. Then,
the adversary is provided with local openings for all other entries of ~x, and outputs local openings
(π̂j)j∈J for a subset J ⊆ [q] of the entries of a malleated vector (x̂1, . . . , x̂q) (although, note that
v̂com is not required to actually correspond to any such malleated vector). In the ideal experiment,
the simulator is provided only with a description of the distribution D from which ~x is sampled (i.e.,
without the commitment vcom) and the values (xi)i∈I (i.e., without the local openings (πi)i∈I), and
outputs malleated values (x̂j)j∈J .

The outputs of both experiments consist of the values (xi)i∈[q] and (x̂j)j∈[q], where in the real
experiment we replace with ⊥ each value x̂j for which either j /∈ J or π̂j does not properly verify,
and in the ideal experiment we replace with ⊥ each value x̂j for which j /∈ J . Our notion of non-
malleability then asks that for any efficient adversary there exists an efficient simulator such that
the outputs of the two experiments are computationally indistinguishable. We refer the reader to
Section 3 for our formal definition, and for an in-depth discussion of its various technical aspects
(including, the underlying distribution D, the relation between the sets I and J , and more).

Our main construction. Given any vector commitment scheme VC we transform it into a non-
malleable one as follows. In order to commit to a vector (x1, . . . , xq) we first sample a signing key
sk and a corresponding verification key vk for a one-time strongly-unforgeable signature scheme.
Then, for each i ∈ [q] we generate a commitment ci to the value xi using a locally-equivocable
commitment scheme LE with all-but-one binding (our newly-introduced primitive augmenting the
standard notion of tag-based commitments with two additional requirements). Each of these q
commitments is generated with respect to the tag τ = h(vk) for a universal one-way hash function
h. Then, we commit to the vector (c1, . . . , cq) using the underlying vector commitment scheme VC,
and output the resulting vector commitment vcom, the verification key vk and a signature σ on vcom
using the signing key sk.

In turn, for every i ∈ [q], a local opening of the value xi consists of the commitment ci and its
corresponding decommitment di, and of a local opening πi of the commitment ci with respect to
the vector commitment vcom. The verification algorithm first verifies the one-time signature σ, and
then verifies the decommitment di and the local opening πi. We refer the reader to Section 5 for a
formal description of our construction.

Note that from a foundational perspective, the required building blocks can all be based on the
existence of any vector commitment scheme. Specifically, any vector commitment scheme implies
the existence of a one-way function, which in turns implies the existence of a locally-equivocable
commitment scheme with all-but-one binding (see Section B.1), a one-time strongly unforgeable

6

signature scheme and a universal one-way hash family. In addition, from a more practical perspective,
the above building blocks can all be realized based on a variety of number-theoretic assumptions
leading to practical implementations (see, in particular, Sections B.2 and B.3 for practical number-
theoretic construction of locally-equivocable commitments with all-but-one Binding).

Focusing on the main measures of efficiency for vector commitments, namely the lengths of
resulting commitments and local openings, and the verification time of the local openings, we observe
the following:

• A commitment produced by our scheme consists of a commitment produced by the underlying
vector commitment scheme, and of a verification key and a signature which can be instantiated
with any practical strongly-unforgeable signature scheme3. Thus, the length of commitments
produced by our scheme is essentially dominated by that of the underlying vector commitment
scheme, which can be as short as a single group element.

• A local opening produced by our scheme consists of a local opening produced by the underlying
vector commitment scheme together with a commitment and a decommitment produced by
the underlying locally-equivocable commitment scheme with all-but-one binding. Relying on
existing constructions of vector commitment schemes and on our number-theoretic construc-
tions of locally-equivocable commitment schemes with all-but-one binding (see Section B.2 and
B.3), leads to local openings that are essentially as short as three group elements.

• The verification of a local opening produced by our scheme consists of a verification of a lo-
cal opening produced by the underlying vector commitment scheme, a decommitment of the
underlying locally-equivocable commitment scheme with all-but-one binding, and a signature
verification. Once again, relying on our number-theoretic constructions of locally-equivocable
commitment schemes with all-but-one binding and on practical signature schemes, this is dom-
inated by the verification time of the underlying vector commitment scheme.

Proving the security of our main construction. Recall that for proving the security of our
construction, we have to show that for any efficient adversary there exists an efficient simulator for
which the outputs of the above-mentioned real and ideal experiments are computationally indistin-
guishable. Given the informal flavor of the current exposition, we refer the reader to Section 5.2 for
an overview of the simulator’s description and of the indistinguishably of the two experiments (in
addition, of course, to the formal proof of security). For avoiding additional notation and various
additional technical details, here we focus only on the adversary’s behavior in the real experiment.

Consider an adversary A that is provided in the real experiment with a commitment vcom to
a vector ~x = (x1, . . . , xq). Recall that, in our construction, the commitment vcom is of the form
vcom = vcom0‖vk‖σ, where vcom0 is a commitment produced using the underlying vector commit-
ment scheme VC to the vector of commitments (c1, . . . , cq) produced using the locally-equivocable
scheme LE to (x1, . . . , xq) with respect to the tag h(vk) (for a universal one-way hash function h
included in the common-reference string), vk is a verification key for a one-time strongly-unforgeable
signature scheme, and σ is a signature on vcom0 produced using the corresponding signing key. The
adversary A requests local openings (πi)i∈I for some subset I ⊆ [q] of the entries of ~x, and produces
a commitment v̂com = v̂com0‖v̂k‖σ̂. Then, the adversary is provided with local openings for all
other entries of ~x, and outputs local openings (π̂j)j∈J for a subset J ⊆ [q]. Our proof considers the
following three cases (the first and second cases are straightforward, and the third case is the main
technical argument):

3See, for example, [BSW06, BS07] and the many references therein for a variety of practical strongly-unforgeable
signature schemes both in the random-oracle model and in the standard model.

7

• Case 1: v̂k = vk. This case reduces to the one-time strong unforgeability of the signature
scheme, unless v̂com0 = vcom0 or the signature σ does not verify properly (and in these cases
our simulator guarantees that the outputs of the real and ideal experiments are identical).

• Case 2: v̂k 6= vk but h(v̂k) = h(vk). This case reduces to the universal one-wayness of h.

• Case 3: h(v̂k) 6= h(vk). In this case we rely on the position binding of the underlying
vector commitment scheme VC, and on the equivocability4 and all-but-one binding of the
locally-equivocable scheme LE . Our main observation is that essentially any advantage that
may be obtained in the real experiment must follow from the adversary’s ability to choose the
values (x̂j)j∈J to which it opens the commitment v̂com after issuing v̂com. That is, any such
advantage must follow from the adversary’s ability to produce a commitment v̂com and then
to provide local openings to more than a single tuple of values (x̂j)j∈J . These local openings
are obtained by relying on the fact that generating c1, . . . , cq using the equivocation algorithms
of LE is indistinguishable from the real experiment and does not bind them to a single tuple
of values with respect to the tag τ = h(vk). Thus, we can rewind the adversary to obtain
corresponding local openings with respect to the tag τ̂ = h(v̂k). But, if A can open, say, the
j-th location of v̂com in two different ways, we show that this contradicts either the position
binding of VC or the all-but-one binding of LE .

1.4 Open Problems

Our framework and constructions lead to various open problems, and here we discuss two such
problems focusing on further extending our approach both in the context of vector commitments
and in the more general context of non-interactive non-malleable commitments.

Non-malleable subvector commitments. The recent works of Lai and Malavolta [LM19] and
of Boneh, Bünz and Fisch [BBF19] introduced the notion of VCs with subvector openings. These
are VCs which allow the committer to open k entries of the committed vector simultaneously, with
a proof whose length is sublinear in k. Our construction, being quite modular, does not seem to
support such concise openings, and an interesting open problem is to construct non-malleable VCs
that do support subvector openings. A possible starting point may be the recent work Gorbunov
et al. [GRW+20], presenting the notion of commitments with aggregatable proofs. Constructing
commitments which satisfy both this notion and our notion of local equivocability with all-but-one
binding would seem to enable the construction of non-malleable subvector commitments, using our
underlying approach for constructing non-malleable VCs.

Implications to non-malleable commitments. Finally, note that any non-malleable vector
commitment scheme is also a non-interactive non-malleable commitment scheme (when the vector
is of length 1). In that respect, our work presents a general and unified framework for constructing
non-interactive non-malleable commitments, capturing both the generic construction of Di Cresc-
cenzo, Ishai and Ostrovsky from any one-way function [CIO98] and the efficient number-theoretic
constructions of Di Cresccenzo, Katz, Ostrovsky and Smith [CKO+01]. As such, it may enable
to construct efficient non-interactive non-malleable commitments based on new assumptions (e.g.,
isogenies or lattice-based assumptions) by constructing equivocable tag-based commitments with
all-but-one binding based on such assumptions.

4In our formal proof, we actually rely on the equivocability guarantee earlier in order to enable the simulator to
invoke the adversary in the ideal experiment.

8

1.5 Paper Organization

The remainder of this paper is organized as follows. First, in Section 2 we present the basic notation
and standard cryptographic primitives that are used throughout the paper. In Section 3 we present
our framework for non-malleable VCs, show that existing VCs do not satisfy our requirements, and
demonstrate that simple attempts of combining VCs and non-malleable commitments do not suffice
for realizing our notion. In Section 4 we introduce our notion of a locally-equivocable commitment
scheme with all-but-one binding, and in Section 5 we present our construction of a non-malleable
VC and prove its security. In Section 6 we show that our framework and construction extend to the
dynamic setting. In Appendix A we show that a Merkle tree is a non-malleable VC in the random-
oracle model, and in Appendix B we present our constructions of locally-equivocable commitment
schemes with all-but-one binding.

2 Preliminaries

In this section we present the basic notions and standard cryptographic tools that are used in this
work. For an integer n ∈ N we denote by [n] the set {1, . . . , n}. For a distribution X we denote by
x← X the process of sampling a value x from the distribution X. Similarly, for a set X we denote
by x ← X the process of sampling a value x from the uniform distribution over X . A function
ν : N→ R+ is negligible if for any polynomial p(·) there exists an integer N such that for all n > N
it holds that ν(n) ≤ 1/p(n).

2.1 Equivocable Commitment Schemes

We rely on the standard notion of a (non-interactive) equivocable commitment scheme which can be
realized based on the existence of any one-way function [Nao91, CIO98]. An equivocable commit-
ment scheme over a domain X = {Xλ}λ∈N is a 5-tuple EQ = (EQ.Setup,EQ.Commit,EQ.Decommit,
EQ.Equiv1,EQ.Equiv2) of polynomial-time algorithms defined as follows:

• The algorithm EQ.Setup is a probabilistic algorithm that receives as input the security param-
eter λ ∈ N and outputs a common-reference string crs.

• The algorithm EQ.Commit is a probabilistic algorithm that receives as input the security pa-
rameter λ ∈ N, a common-reference string crs, an element x ∈ Xλ, and outputs a commitment
c and a decommitment d.

• The algorithm EQ.Decommit is a deterministic algorithm that receives as input the security
parameter λ ∈ N, a common-reference string crs, a commitment c and a decommitment d, and
outputs an element x ∈ Xλ or the rejection symbol ⊥.

• The algorithm EQ.Equiv1 is a probabilistic algorithm that receives as input the security pa-
rameter λ ∈ N, and outputs a common-reference string ĉrs, a commitment ĉ and a state st.

• The algorithm EQ.Equiv2 is a deterministic algorithm that receives as input the security pa-
rameter λ ∈ N, a state st and an element x ∈ Xλ, and outputs a decommitment d̂.

Correctness. We rely on the standard notion of correctness for commitment schemes. That is, for
any security parameter λ ∈ N and for any x ∈ Xλ it should hold that

Pr
[
EQ.Decommit(1λ, crs, c, d) = x

]
= 1,

where crs← EQ.Setup(1λ) and (c, d)← EQ.Commit(1λ, crs, x), and the probability is taken over the
internal randomness of all algorithms.

9

Equivocability. We rely on the following notion of equivocability [CIO98, CKO+01]:

Definition 2.1. A commitment scheme EQ = (EQ.Setup,EQ.Commit,EQ.Decommit,EQ.Equiv1,
EQ.Equiv2) over a domain X = {Xλ}λ∈N is equivocable if the following requirements hold:

• Equivocation correctness: For any λ ∈ N and x ∈ Xλ it holds that

Pr
[
EQ.Decommit(1λ, ĉrs, ĉ, d̂) = x

]
= 1,

where (ĉrs, ĉ, st) ← EQ.Equiv1(1
λ) and d̂ := EQ.Equiv2(1

λ, st, x), and the probability is taken
over the internal randomness of all algorithms.

• Equivocation indistinguishability: For any probabilistic polynomial-time algorithm A
there exists a negligible function ν(·) such that

AdvEquiv
EQ,A(λ)

def
=
∣∣∣Pr [Equiv

(0)
EQ,A(λ)

]
− Pr

[
Equiv

(1)
EQ,A(λ)

]∣∣∣ ≤ ν(λ)
for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} the experiment Equiv

(b)
EQ,A(λ) is defined

as follows:
1. (x, stA)← A(1λ).
2. crs0 ← EQ.Setup(1λ).
3. (c0, d0)← EQ.Commit(1λ, crs, x).
4. (crs1, c1, st1)← EQ.Equiv1(1

λ).
5. d1 = EQ.Equiv2(1

λ, st1, x).
6. b′ ← A(stA, crsb, cb, db).
7. Output b′.

Binding. We rely on the standard notion of computational binding for commitment schemes.

Definition 2.2. A commitment scheme EQ = (EQ.Setup,EQ.Commit,EQ.EQ.Decommit,EQ.Equiv1,
EQ.Equiv2) over a domain X = {Xλ}λ∈N is binding if for any probabilistic polynomial-time algorithm
A there exists a negligible function ν(·) such that

AdvBind
EQA

def
= Pr [BindEQ,A(λ) = 1] ≤ ν(λ)

for all sufficiently large λ ∈ N, where the experiment PosBindEQ,A(λ) is defined as follows:

1. crs← EQ.Setup(1λ)

2. (c, (d, x), (d′, x′))← A(1λ, crs).
3. Output 1 if the following conditions hold:

• x 6= x′ and x, x′ ∈ Xλ.
• EQ.Decommit(1λ, crs, c, d) = x.
• EQ.Decommit(1λ, crs, c, d′) = x′.

Otherwise, output 0.

10

2.2 Vector Commitment Schemes

We follow the notion of a vector commitment scheme as formalized by Libert and Yung [LY10]
and Catalano and Fiore [CF13]. As discussed in Section 1.1, we first consider the static setting (i.e.,
vector commitment schemes without updates), and then extend our approach to the dynamic setting
in Section 6.

Definition 2.3. A vector commitment scheme over a domain X = {Xλ}λ∈N is a quadruple VC =
(VC.Setup,VC.Commit,VC.Open,VC.Verify) of algorithms defined as follows:

• The algorithm VC.Setup is a probabilistic algorithm that receives as input the security param-
eter λ ∈ N and a polynomial q = q(λ) and outputs common-reference string crs.

• The algorithm VC.Commit is a probabilistic algorithm that receives as input the security pa-
rameter λ ∈ N, a common-reference string crs and a vector (x1, . . . , xq) ∈ (Xλ)q, and outputs
a commitment vcom and a state st.

• The algorithm VC.Open is a probabilistic algorithm that receives as input the security param-
eter λ ∈ N, a common-reference string crs, a commitment vcom, a state st and an index i ∈ [q],
and outputs a proof π.

• The algorithm VC.Verify is a deterministic algorithm that receives as input the security param-
eter λ ∈ N, a common-reference string crs, a commitment vcom, an index i ∈ [q], an element
x ∈ Xλ and a proof π, and outputs a bit b ∈ {0, 1}.

Correctness. A vector commitment scheme VC = (VC.Setup,VC.Commit,VC.Open,VC.Verify)
over a domain X = {Xλ}λ∈N is correct if for any λ ∈ N, for any polynomial q = q(λ), for any
vector (x1, . . . , xq) ∈ (Xλ)q, and for any index i ∈ [q], it holds that

Pr
[
VC.Verify

(
1λ, crs, vcom, i, xi, π

)
= 1
]
= 1,

where crs ← VC.Setup(1λ), (vcom, st) ← VC.Commit(1λ, crs, (x1, . . . , xq)) and π ← VC.Open(1λ, crs,
vcom, st, i); and the probability is taken over the randomness of all algorithms.

Security. Catalano and Fiore introduced the following notion of position binding for capturing the
security of vector commitment schemes.

Definition 2.4. A vector commitment scheme VC = (VC.Setup,VC.Commit,VC.Open,VC.Verify)
over a domain X = {Xλ}λ∈N is position binding if for any polynomial q = q(λ) and for any proba-
bilistic polynomial-time algorithm A there exists a negligible function ν(·) such that

AdvPosBind
VC,q,A

def
= Pr [PosBindVC,q,A(λ) = 1] ≤ ν(λ)

for all sufficiently large λ ∈ N, where the experiment PosBindVC,q,A(λ) is defined as follows:

1. crs← VC.Setup(1λ, q)

2. (vcom, i, xi, x
′
i, π, π

′)← A(1λ, q, crs).
3. Output 1 if the following conditions hold:

• xi 6= x′i.
• VC.Verify

(
1λ, crs, vcom, i, xi, π

)
= 1.

• VC.Verify
(
1λ, crs, vcom, i, x′i, π

′) = 1.
Otherwise, output 0.

11

Succinctness. The main measure of efficiency for vector commitments, which makes them non-
trivial to construct, is their succinctness. This may be captured by asking for upper bounds
`Commit(λ, q) and `Open(λ, q) on the size of the commitment and the size of the local openings,
respectively, as follows.

Definition 2.5. A vector commitment scheme VC = (VC.Setup,VC.Commit,VC.Open,VC.Verify)
over a domain X = {Xλ}λ∈N is (`Commit, `Open)-succinct if for any λ ∈ N, for any polynomial q = q(λ),
for any common-reference string crs produced by VC.Setup(1λ, q), for any vector (x1, . . . , xq) ∈
(Xλ)q, and for any commitment and state (vcom, st) produced by VC.Commit(1λ, crs, (x1, . . . , xq))
the following two requirements are satisfied:

• The bit-length of vcom is at most `Commit(λ, q).

• For any index i ∈ [q] and for any proof π produced by VC.Open(1λ, crs, vcom, st, i), the bit-
length of π is at most `Open(λ, q).

2.3 One-Time Strongly-Unforgeable Signature Schemes

We rely on the standard notion of a one-time strongly-unforgeable signature scheme, which is known
to exist based on the existence of any one-way function [Lam79, NY89, Rom90] (and thus, in partic-
ular, based on any of the number-theoretic assumptions that we consider in this paper). A signature
scheme is a tuple SIG = (Sig.Gen, Sig.Sign,Sig.Verify) of algorithms defined as follows:

• The algorithm Sig.Gen is a probabilistic algorithm that receives as input the security parameter
λ ∈ N and outputs a pair (sk, vk) of a signing key and a verification key.

• The algorithm Sig.Sign is a (possibly) probabilistic algorithm that receives as input a signing
key sk and a message m and outputs a signature σ.

• The algorithm Sig.Verify is a deterministic algorithm that receives as input a verification key
vk, a message m and a signature σ, and outputs a bit b ∈ {0, 1}.

In terms of correctness, the standard requirement for signature schemes asks that

Pr [Sig.Verifyvk(m,Sig.Signsk(m)) = 1] = 1

for every λ ∈ N and for every message m, where (sk, vk) ← Sig.Gen(1λ), where the probability is
taken over the internal randomness of all algorithms. In terms of security, we rely on the following
standard notion of one-time strong unforgeability.

Definition 2.6. A signature scheme SIG = (Sig.Gen, Sig.Sign, Sig.Verify) is one-time strongly un-
forgeable if for every probabilistic polynomial-time algorithm A there exists a negligible function ν(·)
such that

AdvForge
SIG,A(λ)

def
= Pr

[
ForgeSIG,A(λ) = 1

]
≤ ν(λ)

for all sufficiently large λ ∈ N, where the experiment ForgeSIG,A(λ) is defined as follows:

1. (sk, vk)← Sig.Gen(1λ).
2. (m, stA)← A(1λ, vk).
3. (m∗, σ∗)← A(stA, σ), where σ ← Sig.Signsk(m).
4. If Sig.Verifyvk(m

∗, σ∗) and (m∗, σ∗) 6= (m,σ) then output 1 and otherwise output 0.

12

2.4 Universal One-Way Hash Functions

We rely on the standard notion of universal one-way hash functions, which is known to exist based
on the existence of any one-way function [NY89, Rom90] (and thus, in particular, based on any
of the number-theoretic assumptions that we consider in this paper). A hash family from domain
X = {Xλ}λ∈N to range Y = {Yλ}λ∈N is a collection H = {H}λ∈N where each Hλ consists of functions
h : Xλ → Yλ. For simplifying our notation we let h← Hλ denote the process of sampling a function
h from Hλ without explicitly describing a sampling algorithm, where h denotes both the description
of the sampled function and its evaluation algorithm.

Definition 2.7. A hash family H from domain X = {Xλ}λ∈N to range Y = {Yλ}λ∈N is a universal
one-way hash family if for every probabilistic polynomial-time algorithm A there exists a negligible
function ν(·) such that

AdvUOWHF
H,A (λ)

def
= Pr [UOWHFH,A(λ) = 1] ≤ ν(λ)

for all sufficiently large λ ∈ N, where the experiment UOWHFH,A(λ) is defined as follows:
1. (x, st)← A(1λ).
2. h← Hλ.
3. x′ ← A(st, h).
4. If x 6= x′ and h(x) = h(x′) then output 1, and otherwise output 0.

3 Non-Malleable Vector Commitments

In this section we begin by presenting our notion of non-malleability for vector commitment schemes.
Then, in Section 3.1 we show that existing vector commitment schemes do not satisfy it (some of
them by design in order to support public updates). As mentioned in Section 1.1, the key difference
from the standard notion of non-malleable non-interactive commitments is that we aim at achieving
non-malleability even with respect to adversaries which have already been exposed to several local
openings. This key difference is the reason that simple attempts of combining VCs and non-malleable
commitments, that we discuss in Section 3.2, do not suffice for realizing our new notion.

Loosely speaking, a vector commitment scheme is non-malleable if an efficient adversary which
receives a vector commitment vcom to a vector ~x = (x1, . . . , xq), cannot produce (and open) a vector
commitment v̂com to some vector ~̂x = (x̂1, . . . , x̂q) which is “non-trivially related” to ~x. This property
should hold even when the adversary can request local openings for some of the entries of ~x before
deciding on v̂com; and open only some of the entries ~̂x. Definition 3.1 below uses the term “valid
distribution” which is formally clarified following the definition. As discussed in Section 1.1, we start
by considering the static setting of vector commitments without updates, and then, in Section 6, we
extend our approach to the dynamic setting.

Definition 3.1. A vector commitment VC = (VC.Setup,VC.Commit,VC.Open,VC.Verify) over a
domain X = {Xλ}λ∈N is non-malleable if for any polynomially-bounded integer q = q(λ) and for any
probabilistic polynomial-time algorithm A there exist a probabilistic polynomial-time algorithm S
such that the following holds:
For any probabilistic polynomial-time algorithm R and for any valid distribution D = {Dλ}λ∈N over
{(Xλ)q}λ∈N, there exists a negligible function ν(·) such that

AdvNM
VC,q,A,S,R,D(λ)

def
= |Pr [R (RealVC,q,A,D(λ)) = 1]− Pr [R (IdealVC,q,S,D(λ)) = 1]| ≤ ν(λ)

for all sufficiently large λ ∈ N, where the experiments RealVC,q,A,D(λ) and IdealVC,q,S,D(λ) are defined
as follows:

13

The Experiment RealVC,q,A,D(λ):

1. crs← VC.Setup(1λ, q).
2. (x1, . . . , xq)← Dλ.
3. (vcom, st)← VC.Commit(1λ, crs, (x1, . . . , xq)).
4. (I, stA)← A(1λ, crs, vcom) where I ⊆ [q].
5. πi ← VC.Open(1λ, crs, vcom, st, i) for each i ∈ [q].
6.
(
v̂com,J , stA

)
← A

(
stA, (xi)i∈I , (πi)i∈I

)
, where J ⊆ [q].

7. ((x̂j)j∈J , (π̂j)j∈J)← A
(
stA, (xi)i∈I , (πi)i∈I

)
, where I = [q] \ I.

8. If v̂com = vcom or if VC.Verify
(
1λ, crs, v̂com, j, x̂j , π̂j

)
= 0 for some j ∈ J , then output

((x1, . . . , xq), (⊥)q, I).
Otherwise, output ((x1, . . . , xq), (x̂1, . . . , x̂q), I), where x̂j = ⊥ for each j ∈ [q] \ J .

The Experiment IdealVC,q,S,D(λ):

1. (x1, . . . , xq)← Dλ.
2. (I, stS)← S(1λ,D).
3. (J , (x̂j)j∈J)← S(stS , (xi)i∈I).
4. Output ((x1, . . . , xq), (x̂1, . . . , x̂q), I) where x̂i = ⊥ for every i ∈ [q] \ J .

Succinctness. Recall that the main measure of efficiency for vector commitments, which makes
them non-trivial to construct, is their succinctness: Both the size of the commitment and the size of
the local openings should be sublinear in the number q of elements in the committed vector. That is,
the standard notion of vector commitments does not require any hiding guarantees [CF13], and thus
can be trivially satisfied if succinctness is not required (in this case a vector commitment scheme can
simply output the vector itself). When additionally requiring a vector commitment scheme to hide
all entries of the committed vector for which local openings were not provided, the task becomes
non-trivial even when succinctness is not required (since this introduces a selective decommitment
problem whenever an attacker can request local openings after having seen the commitment).

Our notion of non-malleability implies, in particular, such a hiding guarantee, and is therefore
non-trivial to realize even when succinctness is not required. Nevertheless, as discussed in Section 1.1,
the non-malleable vector commitments resulting from our transformation are essentially as succinct
as the existing standard vector commitments that do not require any hiding guarantees.

Valid distributions. Definition 3.1 considers valid distributions, and here we formally define this
notion. On the face of it, one can hope to consider all distributions that are samplable in polynomial
time. However, exactly as in case of non-malleable zero-knowledge sets [GM06], our notion of non-
malleable vector commitments faces a “selective decommitment” problem (since it considers attackers
which may be exposed to several adaptively-chosen local openings). One approach to overcome this
difficulty, which is the approach that we follow in this work, is to restrict our attention to considering
the natural subclass of all efficiently samplable distributions that was considered by Gennaro and
Micali [GM06]). This subclass consists of all distributions that are not only efficiently samplable,
but also all of their marginal distributions are efficiently samplable.

That is, we say that a distribution D = {Dλ}λ∈N over {(Xλ)q}λ∈N is valid if the following holds:
For every λ ∈ N, for every ~x = (x1, . . . , xq(λ)) in the support of Dλ, and for every subset I =
(i1, . . . , i|I|) ⊆ [q(λ)], it is possible to efficiently sample a vector ~y from the conditional distribution
Dλ|(∀i ∈ I : yi = xi). We denote the process of sampling the entries of ~y in I = [q] \ I by

14

(yj)j∈I ← D|(I, (xi)i∈I). Note that this requirement is fairly reasonable, and in particular, it is
satisfied by any product distribution D over (Xλ)q.

An alternative approach, as pointed out by Gennaro and Micali, is to rely on an underlying
commitment scheme that provides a certain form of security against selective decommitment attacks.
In their context, it seems that the underlying commitment scheme would have to be at least both
mercurial and provide security against selective decommitment attacks (realizing this alternative
approach for non-malleable zero-knowledge sets still remains an interesting open problem). Similarly,
in our context it would have to be at least locally equivocable with all-but-one binding (as we define
in Section 4) and provide security against selective decommitment attacks. We leave the exploration
of this alternative approach as an avenue for further research.

J cannot be chosen later. Note that we allow the adversaryA in the experiment RealVC,q,A,R,D(λ)
to choose the subset J at the latest stage possible. This is true because had we let A choose J
in Step 7 of the experiment, then A could have encoded information about (xj)j∈I within their
choice of J . For example, assume that we let the adversary choose J in Step 7 of RealVC,q,A,R,D(λ)
(after observing (xj)j∈I), and consider an adversary which chooses J to be of size 1 if the parity
of the bit-description of xj1‖ · · · ‖xj|I| is 1, and chooses J to be of size 0 if this parity is 0, where
I = {j1, . . . , j|I|}. Of course, this cannot be simulated, since the simulator never gets access to
xj1 , . . . , xj|I| .

Invalid openings. Whenever the adversary A provides an invalid opening for any index in J ,
then the output of the real experiment is set to be of the form ((x1, . . . , xq), (⊥)q, I). We argue that
this choice is indeed a necessary one. To see why that is the case, consider the following alternative
(and faulty) approach: For all j ∈ J for which A provides invalid openings set x̂j = ⊥, but for
all indices for which A provides valid openings, keep the x̂j ’s in the output of the experiment as is
(that is, as outputted by A in Step 7). The problem with this approach is that it effectively gives
A the power to choose J in Step 7 of the experiment, for example by outputting J = [q] in Step 6
and then providing valid openings for a different set J ′ ([q] in Step 7. As explained above, such
a definition cannot be satisfied, as it allows A to encode information about (xj)j∈I via the set of
validly-opened positions.

Letting J intersect I. At first glance, it might seem uncanny that we let the adversary choose
the set J such that it includes locations for which the adversary has seen openings before producing
v̂com (i.e., it intersects I). On the face of it, this allows for trivial attacks, since the adversary can
trivially commit, via v̂com, to values that are related to (xi)i∈I . However, Definition 3.1 “discounts”
such trivial attacks from the adversary’s advantage, by allowing the simulator to access values (xi)i∈I
as well.

Choosing I adaptively. We note that Definition 3.1 can be strengthened, by allowing the adver-
sary in RealVC,q,A,R,D(λ) to choose the set I in an adaptive manner. That is, to choose the indices
included in I one by one, each index being chosen after A has observed the values xi (and the
associated proof πi) for each previous chosen index i. Our construction in Section 5 remains secure
under this strengthened definition, and its proof of security readily extends to it.

Reusability. One might consider a strengthening of Definition 3.1, by providing the adversary
with many vector commitments vcom1, . . . , vcomk (and to local openings of their choice) to vectors
~v1, . . . , ~vk, and requiring that they cannot produce (and later open) a vector commitment v̂com to a

15

vector ~v which is non-trivially related to ~v1, . . . , ~vk. Such a strengthening is in line with the notion
of a reusable non-malleable non-interactive commitment scheme [DG03] and more generally, with
the notion of concurrent non-malleable commitments [DDN00]. We believe that our framework and
constructions can be generalized to support such a definition, and we leave this task to future work.

3.1 Existing Schemes Do Not Satisfy Our Notion

Merkle trees in the standard model. Consider the Merkle tree construction of vector commit-
ments with respect to a hash function h : {0, 1}2λ → {0, 1}λ. That is, a commitment vcom to a
vector ~x ∈ {0, 1}λ×q is the root of the binary hash tree whose left leaves (i.e., leaves which are left
children) are the values of ~x; the right leaves are assigned some predetermined arbitrary values; and
the value of each node is obtained by applying h to the concatenation of its children.5 In Appendix
A we present a formal description of this construction, and show that if h is modeled as a random
oracle, then this construction is indeed non-malleable per Definition 3.1. Alas, if h is instantiated via
a standard-model collision resistant hash function, this is not necessarily the case. Loosely speaking,
this is because the function h itself may be malleable.

As a concrete and simple example, consider the case in which h(z) = z1‖h′(z2‖ · · · ‖z2λ), where
z = z1‖ · · · ‖z2λ ∈ {0, 1}2λ and h′ : {0, 1}2λ−1 → {0, 1}λ−1 is a collision-resistant hash function. It
is not hard to verify that h is also collision resistant; but still, the vector commitment it induces is
malleable. In fact, this vector commitment is not even completely hiding: Consider the following
attacker which first request to see an opening of the first entry x1 of ~x (by outputting I = {1} in
Step 4 of the real experiment of Definition 3.1). This opening includes the value assigned to the
sibling of the parent of x1 (which is the parent of x2); denote this value by y = y1‖ · · · ‖yλ ∈ {0, 1}λ.
Then y1 is equal to the first bit of x2. This means that the adversary can commit from scratch
to some vector (x̂1, . . . , x̂q) such that the first bit of x̂2 is also y1 (and the other entries are chosen
arbitrarily), satisfying a non-trivial relation with ~x. This is just one simple example, and many more
examples exist for the malleability of standard-model instantiation of Merkle trees.

Algebraic constructions. More recent algebraic constructions of vector commitments turn out
to be malleable as well. To start, consider the constructions of Catalano and Fiore [CF13], based
on either the discrete logarithm assumption or the RSA assumption. In both of these construction,
a user commits to a vector ~x of integers, by computing vcom =

∏
i∈[q] g

xi
i , where g1, . . . , gq are

publicly-known group elements. It is not hard to see, that an attacker receiving vcom can produce
a commitment v̂com to any affinely-related vector a · ~x+ ~z, by computing vcoma ·

∏
i∈[q] g

zi
i .

Lai and Malavolta [LM19] recently generalized the constructions of Catalano and Fiore to Eu-
clidean rings (they also presented an additional construction in bilinear groups, which falls into the
same template as the constructions of Catalano and Fiore, and hence the same attack applies to
it). Concretely, they consider a module over a ring R, consisting of an Abelian group (G,×) and a
binary operation ◦ : R×G→ G. A vector commitment to a vector ~x ∈ X q is then computed by the
inner product

〈
~x, ~S

〉
= (x1 ◦ S1)× · · · × (xq ◦ Sq), where X ⊆ R is a subset satisfying some natural

property and ~S is a vector of publicly-known group elements. Unsurprisingly, the afore-described
attack easily generalizes to this construction as well. For any a ∈ R and z ∈ Rq, an attacker which
receies a commitment vcom to a vector ~x ∈ X q can compute a commitment to any affinely-related
vector a · ~x + ~z, where (+, ·) are the two ring operations, by computing (a ◦ vcom) ×

〈
~z, ~S

〉
. Note

that this attack works as long as a · ~x+ ~z lies in X .
5We embed the entries of ~x only as left leaves as to avoid trivial attacks. Doing so, the opening of say, the i-th

entry does not trivially reveal any other entries.

16

3.2 Simple Attempts That Fail

For obtaining an initial understanding of the challenges in constructing non-malleable vector com-
mitments, consider the following two constructions which are based on rather simple and direct
combinations of vector commitments and non-malleable commitments, and fail to satisfy Defini-
tion 3.1. In what follows, nmCOM is a standard non-malleable commitments scheme and VC is a
(potentially malleable) vector commitment scheme.

Applying nmCOM and then VC. As a first attempt, consider what happens when in order to
commit to some vector ~x, one first applies nmCOM locally to each entry of ~x to obtain q commitments
c1, . . . , cq; and then uses VC to commit to these commitments. The problem with this approach is that
VC might be malleable. For example, if VC appends a random bit to the end of each commitment,
then an adversary which receives a commitment vcom to a vector ~x produced using the approach
described above, can easily produce a different commitment v̂com to the same ~x by flipping the
last bit of vcom. It might be also the case that VC is malleable in the following sense: Given a
commitment vcom to a vector ~x produced using VC, it is easy to “replace” some of the entries of the
vector underlying vcom, resulting in a commitment to a related vector ~x′ which identifies with ~x on
some of its locations. If this is the case, then such an attack is also possible for the combined vector
commitment scheme which first applies nmCOM locally.6

Applying VC and then nmCOM. Consider a construction which, in order to commit to a vector
~x, first applies VC to produce a commitment vcom0 and commits to vcom0 using nmCOM to produce
a commitment vcom. Alas, this approach also does not meet Definition 3.1. The main issue is unique
to the setting of non-malleable vector commitments: Per Definition 3.1, an adversary can request
to see openings of individual entries of ~x before outputting their own commitment v̂com. These
openings must include in particular the intermediate commitment vcom0. Hence, if VC is malleable,
then the adversary, having observed vcom0 can come up with a different commitment v̂com0 with
respect to VC for some related vector ~x′. Then, the adversary can simply commit to v̂com0 using
nmCOM to produce the desired commitment v̂com.

4 Locally-Equivocable Commitments with All-But-One Binding

In this section we introduce our notion of a locally-equivocable commitment scheme with all-but-one
binding, which serves as one of the main building-blocks underlying our construction of a non-
malleable vector commitment scheme. Our notion is obtained by augmenting the standard notion
of a non-interactive tag-based commitment scheme with two additional requirements, namely local
equivocability and all-but-one binding.

In addition, we present both a somewhat theoretical realization of the our new notion based on
the existence of any one-way function, and two efficient number-theoretic realizations: A construction
based on the discrete logarithm assumption, and a construction based on the RSA assumption. In
both cases, the common-reference string consists of 2-3 group elements (in addition to the description
of the group), and a commitment consists of a single group element. As discussed in Section 1.1,
these number-theoretic constructions were described by Fischlin in his Ph.D. thesis [Fis01] (and also

6Another issue which may arise, is that nmCOM might not be concurrent non-malleable (see, for example,
[DDN00, PR05, PR08, LPV08] and the references therein). In this case, an adversary which observes some of the local
commitments and openings produced via nmCOM may be able to come up with nmCOM commitments to related val-
ues. This issue, however, can be relatively easily resolved by using a commitment scheme which offers non-malleability
even against adversaries which observe at most q commitments and openings.

17

used by Crescenzo, Katz, Ostrovsky and Smith [CKO+01] in their number-theoretic constructions of
non-malleable non-interactive commitment schemes7). Although our notion of a locally-equivocable
commitment scheme with all-but-one binding strengthens Fischlin’s notion of identity-based trapdoor
commitments (as we discuss below), we nevertheless show that these constructions satisfy our notion.
Our constructions are provided in Appendix B.

Formally, a locally-equivocable commitment scheme with all-but-one binding over a domain X =
{Xλ}λ∈N and a tag space T = {Tλ}λ∈N is a 6-tuple LE = (LE.Setup, LE.Commit, LE.Decommit,
LE.AltSetup, LE.Equiv1, LE.Equiv2) of polynomial-time algorithms defined as follows:

• The algorithm LE.Setup is a probabilistic algorithm that receives as input the security param-
eter λ ∈ N and a polynomially-bounded integer q = q(λ), and outputs a common-reference
string crs.

• The algorithm LE.Commit is a probabilistic algorithm that receives as input the security pa-
rameter λ ∈ N, a common-reference string crs, an element x ∈ Xλ, an index i ∈ [q] and a tag
τ ∈ Tλ, and outputs a commitment c and a decommitment d.8

• The algorithm LE.Decommit is a deterministic algorithm that receives as input the security
parameter λ ∈ N, a common-reference string crs, a commitment c, a decommitment d, an
index i ∈ [q] and a tag τ ∈ Tλ, and outputs an element x ∈ Xλ or the rejection symbol ⊥.

• The algorithm LE.AltSetup is a probabilistic algorithm that receives as input the security
parameter λ ∈ N and a polynomially-bounded integer q = q(λ), and outputs a state st0.

• The algorithm LE.Equiv1 is a probabilistic algorithm that receives as input the security param-
eter λ ∈ N a state st0, a polynomially-bounded integer q = q(λ) and a tag τ ∈ Tλ, and outputs
a common-reference string ĉrs, commitments ĉ1, . . . , ĉq and a state st1.

• The algorithm LE.Equiv2 is a deterministic algorithm that receives as input the security pa-
rameter λ ∈ N, an element x ∈ Xλ, an index i ∈ [q], a state st1 and a tag τ ∈ Tλ, and outputs
a decommitment d̂.

A commitment scheme as described above should satisfy the standard correctness requirement
of commitment schemes. That is, for any security parameter λ ∈ N, for any tag τ ∈ Tλ, for any
polynomially-bounded q = q(λ), for any i ∈ [q] and for any x ∈ Xλ it holds that

Pr
[
LE.Decommit(1λ, crs, c, d, i, τ) = x

]
= 1,

where crs ← LE.Setup(1λ, q) and (c, d) ← LE.Commit(1λ, crs, x, i, τ), and the probability is taken
over the internal randomness of all algorithms.

The following two definitions formally capture our local equivocability and all-but-one binding
requirements.

Definition 4.1 (Local equivocability). A commitment scheme LE = (LE.Setup, LE.Commit, LE.
Decommit, LE.AltSetup, LE.Equiv1, LE.Equiv2) over a domain X = {Xλ}λ∈N and a tag space T =
{Tλ}λ∈N is locally equivocable if the following requirements hold:

7Although Crescenzo et al. did not explicitly frame their construction as relying on an underlying equivocable
commitment scheme, we follow a somewhat more fine-grained abstraction via our local equivocability and all-but-one
binding properties.

8We note that the commitment and decommitment algorithms LE.Commit and LE.Decommit receive the index
i ∈ [q] as input for technical reasons that come up in our generic construction based on one-way functions (Appendix
B).

18

• Equivocation correctness: For any λ ∈ N, for any τ ∈ Tλ, for any polynomially-bounded
q = q(λ), for any i ∈ [q] and for any x ∈ Xλ it holds that

Pr
[
LE.Decommit(1λ, ĉrs, ĉi, d̂, i, τ) = x

]
= 1,

where (ĉrs, ĉ1, . . . , ĉq, st1)← LE.Equiv1(1
λ, LE.AltSetup(1λ), q, τ) and d̂ = LE.Equiv2(1

λ, x, i, st1),
and the probability is taken over the internal randomness of all algorithms.

• Equivocation indistinguishability: For any probabilistic polynomial-time algorithm A,
there exists a negligible function ν(·) such that for any polynomially bounded q = q(λ) it holds
that

AdvLocalEquiv
LE,q,A (λ)

def
= |Pr [IndParamLE,q,A,0(λ)]− Pr [IndParamLE,q,A,1(λ)]| ≤ ν(λ)

for all sufficiently large λ ∈ N, where for any bit b ∈ {0, 1} the experiment IndParamLE,q,A,b(λ)
is defined as follows:
1. (τ, x1, . . . , xq, stA)← A(1λ).
2. crs0 ← LE.Setup(1λ, q).
3. (c0,i, d0,i)← LE.Commit(1λ, crs, xi, i, τ) for each i ∈ [q].
4. st0 ← LE.AltSetup(1λ, q).
5. (crs1, c1,1, . . . , c1,q, st1)← LE.Equiv1(1

λ, st0, q, τ).
6. d1,i = LE.Equiv2(1

λ, xi, i, st1) for each i ∈ [q].
7. b′ ← A(stA, crsb, (cb,i)i∈[q], (db,i)i∈[q]).
8. Output b′.

Intuitively, the all-but-one binding property requires that an adversary which generates equiv-
ocable public parameters (via the LE.Equiv1 algorithm) using a tag τ of their choice, cannot break
the binding property with respect to these parameters and a different tag τ ′ 6= τ .

Definition 4.2 (All-but-one binding). A commitment scheme LE = (LE.Setup, LE.Commit, LE.
Decommit, LE.AltSetup, LE.Equiv1, LE.Equiv2) over a domain X = {Xλ}λ∈N and a tag space T =
{Tλ}λ∈N is all-but-one binding if for any probabilistic polynomial-time algorithm A there exists a
negligible function ν(·) such that for polynomially-bounded q = q(λ) it holds that

AdvABOBind
LE,q,A (λ)

def
= Pr

[
ABOBindLEq,A(λ) = 1

]
≤ ν(λ)

for all sufficiently large λ ∈ N, where the experiment ABOBindLEq,A(λ) is defined as follows:

1. (τ, stA)← A(1λ), where τ ∈ Tλ.
2. st0 ← LE.AltSetup(1λ, q).
3. ρ ← {0, 1}r, where r = r(λ) is the number of random coins used by LE.Equiv1 on security

parameter λ ∈ N.
4. (ĉrs, ĉ1, . . . , ĉq, st1) = LE.Equiv1(1

λ, st0, q, τ ; ρ).
5. (c, d, d′, i, τ ′)← A(stA, st0, ρ).
6. x = LE.Decommit(1λ, ĉrs, c, d, i, τ ′) and x′ = LE.Decommit(1λ, ĉrs, c, d′, i, τ ′).
7. Output 1 if τ ′ 6= τ , x 6= ⊥, x′ 6= ⊥ and x 6= x′. Otherwise, output 0.

19

Comparing our notion to identity-based and simulation-sound trapdoor commitments.
Having formally defined our notion of a locally-equivocable commitment scheme with all-but-one
binding, we can now compare it to Fischlin’s notion of an identity-based trapdoor commitment
scheme [Fis01, Ch. 2.6]. Both notions are obtained by augmenting the standard notion of a non-
interactive tag-based commitment scheme with equivocability and all-but-one binding requirements.
Our requirements, however, are more strict compared to those of Fischlin, both in terms of equivo-
cability and in terms of all-but-one binding.

First, in terms of equivocability, Fischlin asks for an equivocation algorithm that produces an
equivocable common-reference string and a single equivocable commitment which should be indis-
tinguishable from an honestly-generated common-reference string and an honestly-generated com-
mitment. However, for our construction of a non-malleable vector commitment scheme, producing a
single equivocable commitment seems insufficient. Thus, we ask for an equivocation algorithm that
produces an equivocable common-reference string and q equivocable commitments (where q = q(λ)
is any predetermined polynomial) which should be indistinguishable from an honestly-generated
common-reference string and an honestly-generated vector of q independent commitments. We note
that such a requirement does not necessarily follow from the case q = 1 due to potential dependencies
between the equivocable common-reference string and the single equivocable commitment that may
be efficiently identifiable when producing more than a single equivocable commitment (this is evident
in our generic construction based any non-interactive equivocable commitment scheme, where the
common-reference string grows with q).

Second, in terms of all-but-one binding, Fischlin asks that when generating an equivocable
common-reference string with respect to a predetermined tag τ , commitments with respect to all
other tags should still be binding even when given the trapdoor associated with τ . For our con-
struction we strengthen this requirements, and ask that commitments with respect to all other tags
should still be binding even when given the trapdoor associated with τ and the internal randomness
of the equivocation algorithm.

An additional related notion is that of a simulation-sound trapdoor commitment scheme, put
forth by Garay, MacKenzie, and Yang [GMY03], which can be seen as augmenting standard trapdoor
commitments [Rey01, Ch. A.5] with tags. Garay et al. also considered an enhanced binding property,
requiring that binding with respect to a tag τ should be preserved, even if the attacker can obtain
a single “fake” opening (using the trapdoor) for any commitment with respect to τ , as well as an
unbounded number of openings for any commitment with respect to any other tag τ ′ 6= τ . This notion
seems to be incomparable to our notion of locally-equivocable commitments with all-but-one binding.
First, the trapdoor in simulation-sound trapdoor commitments is a global trapdoor generated by the
honest parameters generation algorithm. There are no alternative procedures to generate equivocable
parameters and commitments, and the trapdoor is not tied to any particular tag. This means that
knowledge of the trapdoor allows one to open any (honestly generated) commitment to any value
they desires. Second, whereas in our enhanced binding property the attacker receives the trapdoor
associated with a tag τ of their choice, the attacker in the notion of Garay et al. does not receive the
trapdoor, but only openings computed using it (this is unavoidable, since knowledge of the trapdoor
in their notion allows the attacker to break binding with respect to all tags).

5 Our Construction of a Non-Malleable Vector Commitment Scheme

In this section we present our main construction (Section 5.1) and then prove its security (Section
5.2).

20

5.1 The Construction

Our construction relies on the following building blocks:

• A vector commitment scheme VC = (VC.Setup,VC.Commit,VC.Open,VC.Verify) over a domain
X = {Xλ}λ∈N (see Section 2.2).9

• A locally-equivocable commitment scheme with all-but-one binding LE = (LE.Setup, LE.Commit,
LE.Decommit, LE.AltSetup, LE.Equiv1, LE.Equiv2) over the domain X = {Xλ}λ∈N and a tag
space T = {Tλ}λ∈N (see Section 4) with tags of length t = t(λ) bits.

• A one-time strongly-unforgeable signature scheme SIG = (Sig.Gen,Sig.Sign,Sig.Verify) (see
Section 2.3). Let v = v(λ) denote the bit-length of the verification keys that are produced by
Sig.Gen(1λ).

• A universal one-way hash family H = {Hλ}λ∈N (see Section 2.4), where each Hλ consists of
functions mapping v(λ)-bit strings to t(λ)-bit strings for every security parameter λ ∈ N.

As discussed in Section 1.3, from a foundational perspective, the above building blocks can all
be based on the existence of any vector commitment scheme. Additional, from a more practical
perspective, the above building blocks can all be realized based on a variety of number-theoretic
assumptions leading to practical implementations.

Given the above building blocks, our construction of a non-malleable vector commitment scheme,
denoted nmVC = (nmVC.Setup, nmVC.Commit, nmVC.Open, nmVC.Verify), is defined as follows:

A non-malleable vector commitment scheme nmVC

nmVC.Setup(1λ, q):

1. Sample crsLE ← LE.Setup(1λ, q), crsVC ← VC.Setup(1λ, q) and h← Hλ.

2. Output crs = crsLE‖crsVC‖h.

nmVC.Commit(1λ, crs, (x1, . . . , xq)):

1. Parse crs as crsLE‖crsVC‖h.

2. Sample (sk, vk)← Sig.Gen(1λ) and compute τ = h(vk).

3. For each i ∈ [q] compute (ci, di)← LE.Commit(1λ, crsLE, xi, i, τ).

4. Compute (vcom0, st0)← VC.Commit(1λ, crsVC, (c1, . . . , cq)) and σ ← Sig.Signsk(vcom0).

5. Output (vcom, st), where vcom = vcom0‖vk‖σ and st = st0‖c1‖ · · · ‖cq‖d1‖ · · · ‖dq.

nmVC.Open(1λ, crs, vcom, st, i):

1. Parse crs as crsLE‖crsVC‖h, vcom as vcom0‖vk‖σ and st as st0‖c1‖ · · · ‖cq‖d1‖ · · · ‖dq.

2. Compute π0 ← VC.Open(1λ, crsVC, vcom0, st0, i).

3. Output π = ci‖di‖π0.

nmVC.Verify(1λ, crs, vcom, i, x, π):

1. Parse crs as crsLE‖crsVC‖h, vcom as vcom0‖vk‖σ and st as π as ci‖di‖π0.

2. Compute τ := h(vk).

3. Output 1 if all of the following conditions hold:

• Sig.Verifyvk(vcom0, σ) = 1.

9We emphasize that the security of our construction does not rely on VC providing any flavor of hiding or succinct-
ness, and this is discussed below in the overview of our proof.

21

• VC.Verify(1λ, crsVC, vcom0, i, ci, π0) = 1.

• LE.Decommit(1λ, crsLE, ci, di, i, τ) = x.

Otherwise, output 0.

Finally, we note that for simplifying our construction and its proof, the length of the secret state
st = st0‖c1‖ · · · ‖cq‖d1‖ · · · ‖dq produced by the commitment algorithm nmVC.Commit in the above
description depends linearly on q but this can be easily avoided whenever the committed vector
(x1, . . . , xq) is additionally provided. Specifically, given x1, . . . , xq, the entire sequence of values
c1, . . . , cq, d1, . . . , dq can be replaced with a single key K for a pseudorandom function PRF that
will allow the algorithm nmVC.Open to recompute any of these values when needed. Specifically,
instead of computing (ci, di) ← LE.Commit(1λ, crsLE, xi, i, τ) by feeding the algorithm LE.Commit
with a fresh random string ri ← {0, 1}∗, we can instead feed it with a pseudorandom string ri =
PRFK(crsLE, xi, i, τ) which is reproducible via knowledge of K and xi.

5.2 Proof of Security

The following theorem captures the security of our construction, showing that it satisfies our notion
of non-malleability for vector commitment schemes (recall Definition 3.1) based on the security
of its underlying building blocks: (1) a vector commitment scheme VC, (2) a locally-equivocable
commitment scheme with all-but-one binding LE , (3) a one-time strongly-unforgeable signature
scheme SIG, and (4) a universal one-way hash family H.

Theorem 5.1. For every probabilistic polynomial-time algorithm A and polynomial q = q(λ), there
exists a probabilistic polynomial-time algorithm SA such that the following holds: For any probabilistic
polynomial-time algorithm R, there are probabilistic polynomial-time algorithms B1,B2,B3,B4 and B5
such that

AdvNM
nmVC,q,A,SA,R,D(λ) ≤ AdvLocalEq

LE,q,B1(λ) +AdvForge
SIG,B2(λ) +AdvUOWHF

H,B3 (λ)

+2 ·
(
AdvABOBind

LE,q,B4 (λ) +AdvPosBind
VC,q,B5(λ)

)
for every λ ∈ N.

Proof overview. Our simulator SA first generates a vector commitment vcom to q equivocal
commitments c1, . . . , cq using the equivocation algorithms of LE (and using all other building blocks
honestly). It then invokes A on vcom to obtain the subset I from A, and outputs I as the simulator’s
output in Step 2 of the experiment IdealnmVC,q,SA,D(λ). The simulator receives the values (xi)i∈I ,
and provides A with the values (xi)i∈I along with proofs asserting their authenticity with respect
to vcom, where these proofs are produced using the algorithm LE.Equiv2 that enables to open each
ci to each xi. When A outputs a vector commitment v̂com along with a subset J , the simulator
needs to provide it with local openings of vcom to the locations in I. To do so, it samples values for
these locations from the conditional distribution (x̃j)j∈I ← D|(I, (xi)i∈I) (recall the discussion on
valid distributions from Section 3). The simulator then provides A with (x̃j)j∈I along with proofs
asserting their authenticity with respect to vcom (which, again, are produced via LE.Equiv2). Finally,
when A outputs values (x̂j)j∈J along with proofs for their authenticity with respect to v̂com, the
simulator SA outputs the same values (x̂j)j∈J .

In order to prove that the outputs of the experiments RealnmVC,q,A,D(λ) and IdealnmVC,q,SA,D(λ)
are computationally indistinguishable, we introduce a hybrid experiment HybridnmVC,q,A,D(λ). This

22

experiment is obtained from the real experiment RealnmVC,q,A,D(λ) with one modification: Similarly
to what the simulator SA does, the challenger now uses the equivocation algorithms of LE in order
to produce the common reference string crs and the vector commitment vcom given to A. Whenever
A is due to receive a value xi and a proof asserting its authenticity with respect to vcom (Steps 6
and 7 of the experiment RealnmVC,q,A,D(λ)), the challenger uses LE.Equiv2 to produce this proof.

The proof of Theorem 5.1 then proceeds in two steps. In the first step, we prove that

RealnmVC,q,A,D(λ) ≈c HybridnmVC,q,A,D(λ), (5.1)

while in the second step, we prove that

HybridnmVC,q,A,D(λ) ≈c IdealnmVC,q,SA,D(λ). (5.2)

The first step is fairly straightforward. The only difference between the two experiments considered
in Eq. (5.1) is in the way in which the public parameters, commitments and decommitments of LE
are generated (i.e., generating them honestly vs. using the equivocation algorithms of LE). But
according to Definition 4.1, no polynomial-time algorithm should be able to tell these two scenarios
apart. Hence, the success probability of A in the two experiments should be essentially the same.

The second step is more involved. Let h be the hash function included in the common-reference
string; denote vcom = vcom0‖vk‖σ where vcom is the vector commitment which A receives; and
denote v̂com = v̂com0‖v̂k‖σ̂ where v̂com is the vector commitment which A outputs. In order to
prove Eq. (5.2) we consider three separate cases:

• Case 1: v̂k = vk. This case reduces to the one-time strong unforgeability of SIG. Con-
ditioned on v̂com = vcom or Sig.Verify

v̂k
(v̂com0, σ̂) = 0, the outputs of the two experiments

considered in Eq. (5.2) are identically-distributed. Hence, any advantage that a distinguisher
might have must originate from the case v̂com 6= vcom and Sig.Verify

v̂k
(v̂com0, σ̂) = 1. But

since v̂k = vk, it means that (v̂com0, σ̂) 6= (vcom0, σ), in contradiction to the assumption that
SIG is one-time strongly unforgeable.

• Case 2: v̂k 6= vk but h(v̂k) = h(vk). This case reduces to the universal one-wayness of
H. The reduction is immediate from the observation that vk is chosen independently of h.

• Case 3: h(v̂k) 6= h(vk). In this case we use the position binding of VC and the all-but-
one binding of LE in order to bound the distinguishing advantage between the experiments
considered in Eq. (5.2) conditioned on the event h(v̂k) 6= h(vk). Technical details omitted,
the main observation is that the view of the adversary A in HybridnmVC,q,A,D(λ) is distributed
identically to the view of A in the simulation carried out by SA in IdealnmVC,q,SA,D(λ). Hence,
the commitment v̂com and the subset J that A outputs are also identically distributed in
both experiments. As a result, roughly speaking, any change in the output distribution of
HybridnmVC,q,A,D(λ) vis-à-vis the output distribution of IdealnmVC,q,SA,D(λ) must follow from
A’s ability to choose the values (x̂j)j∈J to which it opens the commitment v̂com after issuing
v̂com. That is, any advantage a distinguisher between these two outputs has must follow from
A’s ability to produce a commitment v̂com and then to provide local openings to more than
a single tuple of values (x̂j)j∈J . These local openings are obtained by relying on the fact
that generating c1, . . . , cq using the equivocation algorithms of LE does not bind them to a
single tuple of values with respect to the tag τ , and as a result we can rewind A to obtain
corresponding local openings with respect to the tag τ̂ . But, if A can open, say, the j-th
location of v̂com in two different ways, then there are two possibilities:

23

– Either it can open the j-th location of v̂com0 in two different ways, in contradiction to
the position binding of VC;

– or it can produce a commitment ĉj of the scheme LE with respect to the tag τ̂ = h(v̂k)

and open it in two different ways. But since we assumed here that h(v̂k) 6= h(vk), it holds
that τ̂ 6= τ , where τ is the tag with respect to which the equivocal common-reference
string was generated, in contradiction to the all-but-one binding of LE (recall Definition
4.2).

Finally, it should be noted that the security of our construction does not require any flavor of
hiding or succinctness from the underlying vector commitment VC. That is, our construction is
non-malleable even if the locally-equivocable commitments c1, . . . , cq are completely revealed to the
adversary. It is useful to consider, for example, the extreme case where the vector commitment
vcom0 for the vector (c1, . . . , cq) is simply the vector itself, and then to observe that the above proof
overview still applies.

Proof of Theorem 5.1. Let q = q(λ) be a polynomial, letD = {Dλ}λ∈N be a valid distribution over
{(Xλ)q}λ∈N, and let A be a probabilistic polynomial-time algorithm taking part in the experiment
RealnmVC,q,A,D(λ). Consider the following simulator SA:

The Simulator SA
Input: The security parameter λ ∈ N and a description of the distribution D.

1. Sample stequiv ← LE.AltSetup(1λ, q).

2. Sample (sk, vk)← Sig.Gen(1λ).

3. Sample h← Hλ and compute τ = h(vk).

4. Compute (ĉrsLE, ĉ1, . . . , ĉq, st1)← LE.Equiv1(1
λ, stequiv, q, τ).

5. Sample crsVC ← VC.Setup(1λ).

6. Compute (vcom0, st0)← VC.Commit(1λ, crsVC, (ĉ1, . . . , ĉq)).

7. Compute σ ← Sig.Signsk(vcom0).

8. Compute (I, stA)← A(1λ, ĉrsLE‖crsVC‖h, vcom0‖vk‖σ).

9. Output I as the output of the simulator SA in Step 2 of the experiment IdealnmVC,q,SA,D(λ), and
receive values (xi)i∈I as additional input.

10. For each i ∈ I:

(a) Compute d̂i = LE.Equiv2(1
λ, xi, i, st1, τ).

(b) Compute π0,i ← VC.Open(1λ, crsVC, vcom0, st0, i).

(c) Let πi = ĉi‖d̂i‖π0,i.

11. Compute
(
v̂com,J , stA

)
← A

(
stA, (xi)i∈I , (πi)i∈I

)
, where J ⊆ [q].

12. Sample (x̃j)j∈I ← D|(I, (xi)i∈I), where I = [q] \ I.

13. For each i ∈ I:

(a) Compute d̂i = LE.Equiv2(1
λ, x̃i, i, st1, τ).

(b) Compute π0,i ← VC.Open(1λ, crsVC, vcom0, st0, i).

(c) Let πi = ĉi‖d̂i‖π0,i.

24

14. Compute ((x̂j)j∈J , (π̂j)j∈J)← A
(
stA, (x̃i)i∈I , (πi)i∈I

)
.

15. If v̂com = vcom0‖vk‖σ or if there exists an index j ∈ J for which nmVC.Verify(1λ, ĉrsLE‖crsVC‖h,
v̂com, j, x̂j , π̂j) = 0, then output (J , (⊥)|J |) as the output of the simulator SA in step 3 of the
experiment IdealnmVC,q,SA,D(λ). Otherwise, output (J , (x̂j)j∈J).

Let R be a probabilistic polynomial-time distinguisher. We wish to bound the advantage

AdvNM
nmVC,q,A,SA,R,D(λ)

= |Pr [R (RealnmVC,q,A,D(λ)) = 1]− Pr [R (IdealnmVC,q,SA,D(λ)) = 1]| .

To that end, we introduce a hybrid experiment. The experiment, denoted HybridnmVC,q,A,D(λ), is
obtained from the real experiment RealnmVC,q,A,D(λ), with one difference: All parameters associated
with the locally equivocable commitment scheme with all-but-one binding LE given to A are gen-
erated using the equivocation algorithms LE.Equiv1 and LE.Equiv2 (instead of LE.Setup, LE.Commit
and LE.Decommit). In detail, the experiment is defined as follows:

The Experiment HybridnmVC,q,A,D(λ)

1. Sample stequiv ← LE.AltSetup(1λ, q).

2. Sample (sk, vk)← Sig.Gen(1λ).

3. Sample h← Hλ and compute τ = h(vk).

4. Compute (ĉrsLE, ĉ1, . . . , ĉq, st1)← LE.Equiv1(1
λ, stequiv, q, τ).

5. Sample crsVC ← VC.Setup(1λ).

6. Let crs = ĉrsLE‖crsVC‖h

7. Sample (x1, . . . , xq)← D.

8. Compute (vcom0, st0)← VC.Commit(1λ, crsVC, (ĉ1, . . . , ĉq)).

9. Compute σ ← Sig.Signsk(vcom0).

10. Compute (I, stA)← A(1λ, crs, vcom0‖vk‖σ).

11. For each i ∈ [q]:

(a) Compute d̂i = LE.Equiv2(1
λ, xi, i, st1, τ).

(b) Compute π0,i ← VC.Open(1λ, crsVC, vcom0, st0, i).

(c) Let πi = ĉi‖d̂i‖π0,i.

12. Compute
(
v̂com,J , stA

)
← A

(
stA, (xi)i∈I , (πi)i∈I

)
.

13. Compute ((x̂j)j∈J , (π̂j)j∈J)← A
(
stA, (xi)i∈I , (πi)i∈I

)
, where J ⊆ [q].

14. If v̂com = vcom or if there exists an index j ∈ J for which VC.Verify
(
1λ, crs, v̂com, j, x̂j , π̂j

)
= 0,

then output ((x1, . . . , xq), (⊥)q, I).
Otherwise, output ((x1, . . . , xq), (x̂1, . . . , x̂q), I), where for each j ∈ [q] \ J , x̂j = ⊥.

By the triangle inequality, it holds that

|Pr [R (RealnmVC,q,A,D(λ)) = 1]− Pr [R (IdealnmVC,q,SA,D(λ)) = 1]|
≤
∣∣Pr [R (RealnmVC,q,A,D(λ)) = 1]− Pr

[
R
(
HybridnmVC,q,A,D(λ)

)
= 1
]∣∣

+
∣∣Pr [R (HybridnmVC,q,A,D(λ)

)
= 1
]
− Pr [R (IdealnmVC,q,SA,D(λ)) = 1]

∣∣ .
25

The proof proceeds by bounding each of the above differences separately. This is captured by the
following two lemmata.

Lemma 5.2. There exists a probabilistic polynomial-time algorithm B1 such that∣∣Pr [R (RealnmVC,q,A,D(λ)) = 1]− Pr
[
R
(
HybridnmVC,q,A,D(λ)

)
= 1
]∣∣ ≤ AdvLocalEq

LE,q,B1(λ)

for every λ ∈ N.

Lemma 5.3. There exist probabilistic polynomial-time algorithms B2,B3,B4 and B5 such that∣∣Pr [R (HybridnmVC,q,A,D(λ)
)
= 1
]
− Pr [R (IdealnmVC,q,SA,D(λ)) = 1]

∣∣
≤ AdvForge

SIG,B2(λ) +AdvUOWHF
H,B3 (λ) + 2 ·

(
AdvABOBind

LE,q,B4 (λ) +AdvPosBind
VC,q,B5(λ)

)
for every λ ∈ N.

Theorem 5.1 follows immediately from Lemma 5.2 and Lemma 5.3.

Proof of Lemma 5.2. We construct an adversary B1 which, given a tuple (crsLE, c1, . . . , cq, d1,
. . . , dq), distinguishes between the case in which it was generated using the algorithms (LE.Setup,
LE.Commit, LE.Decommit) and the case in which it was generated using the algorithms (LE.AltSetup,
LE.Equiv1, LE.Equiv2), with advantage at least∣∣Pr [R (RealnmVC,q,A,D(λ)) = 1]− Pr

[
R
(
HybridnmVC,q,A,D(λ)

)
= 1
]∣∣ .

Concretely, for a security parameter λ ∈ N and a bit b ∈ {0, 1}, the algorithm B1 takes part in the
experiment IndParamLE,q,B1,b(λ) and is defined as follows:

1. Sample (sk, vk)← Sig.Gen(1λ), h← Hλ and (x1, . . . , xq)← D.
2. Compute τ = h(vk) and output τ and x1, . . . , xq as the adversary’s output in Step 1 of

IndParamLEq,B1,b(λ). In response, B1 receives from the challenger a common-reference string
crsLE, commitments c1, . . . , cq and decommitments d1, . . . , dq.

3. Invoke A and simulate to it either RealnmVC,q,A,R,D(λ) or HybridnmVC,q,A,R,D(λ) as follows:
(a) Sample crsVC ← VC.Setup(1λ) and (vcom0, st0) ← VC.Commit(1λ, crsvcom, (c1, . . . , cq)).

Compute σ ← Sig.Signsk(vcom0) and invoke (I, stA)← A(1λ, crsLE‖crsvcom‖h, vcom0‖vk‖σ).
(b) For each i ∈ [q] compute π0,i ← VC.Open(1λ, crsvcom, vcom0, st0, i), and set πi = ci‖di‖π0,i.
(c) Invoke

(
v̂com,J , stA

)
← A

(
stA, (xi)i∈I , (πi)i∈I

)
.

(d) Invoke ((x̂j)j∈J , (π̂j)j∈J)← A
(
stA, (xi)i∈I , (πi)i∈I

)
.

4. If v̂com = vcom or if there exists an index j ∈ J for which VC.Verify
(
1λ, crs, v̂com, j, x̂j , π̂j

)
=

0, then set RInput = ((x1, . . . , xq), (⊥)q, I).
Otherwise, set RInput = ((x1, . . . , xq), (x̂1, . . . , x̂q), I), where for each j ∈ [q] \ J , x̂j = ⊥.

5. Output b′ ← R(RInput).

Observe that if b = 0 (i.e., if B1 takes part in IndParamLE,q,B1,0(λ)) then B1 perfectly simulates
RealnmVC,q,A,D(λ) to A and hence

Pr [IndParamLE,q,B1,0(λ) = 1] = Pr [R (RealnmVC,q,A,D(λ)) = 1]

for each λ ∈ N. Similarly, if b = 1 (i.e., if B1 takes part in IndParamLE,q,B1,1(λ)) then B1 perfectly
simulates HybridnmVC,q,A,D(λ) to A and hence

Pr [IndParamLE,q,B1,1(λ) = 1] = Pr
[
R
(
HybridnmVC,q,A,D(λ)

)
= 1
]

26

for each λ ∈ N. This implies that∣∣Pr [R (RealnmVC,q,A,D(λ)) = 1]− Pr
[
R
(
HybridnmVC,q,A,D(λ)

)
= 1
]∣∣ ≤ AdvLocalEq

LE,q,B1(λ)

for every λ ∈ N, concluding the proof of the lemma.

Proof of Lemma 5.3. Let VKCopy be the event in which the verification key outputted by A as
part of the vector commitment v̂com is the same as the one included in the vector commitment given
to A as part of vcom. Let HashColl denote the event in which the verification key outputted by A as
part of v̂com is different than the one given to A in vcom, but the hash values of these two verification
keys under the hash function h chosen from Hλ are equal. Let DiffTags denote the event in which the
hash values of these two verification keys are distinct, and note that DiffTags = VKCopy ∨ HashColl.

Note that the view of the adversary A in the experiment HybridnmVC,q,A,D(λ) is distributed
identically to the view of the adversary A in the experiment IdealnmVC,q,SA,D(λ). In particular, this
means that Pr[DiffTags] is the same over both experiments, and thus∣∣Pr [R (HybridnmVC,q,A,D(λ)

)
= 1
]
− Pr [R (IdealnmVC,q,SA,D(λ)) = 1]

∣∣
≤
∣∣∣∣Pr [R (HybridnmVC,q,A,D(λ)

)
= 1

∧VKCopy

]
− Pr

[
R (IdealnmVC,q,SA,D(λ)) = 1

∧VKCopy

]∣∣∣∣ (5.3)

+

∣∣∣∣Pr [R (HybridnmVC,q,A,D(λ)
)
= 1

∧HashColl

]
− Pr

[
R (IdealnmVC,q,SA,D(λ)) = 1

∧HashColll

]∣∣∣∣ (5.4)

+

∣∣∣∣Pr [R (HybridnmVC,q,A,D(λ)
)
= 1

∧DiffTags

]
− Pr

[
R (IdealnmVC,q,SA,D(λ)) = 1

∧DiffTags

]∣∣∣∣ (5.5)

We bound each of the expressions in Eq. (5.3), (5.4) and (5.5) separately, using respective reductions
to the unforgeability of the signature scheme SIG, to the security of universal one-way hash family
H, and to either the position binding of VC or to the special binding property of the commitment
scheme LE . This is captured by the following three claims which settle the proof of Lemma 5.3.

Claim 5.4. There exists a probabilistic polynomial-time algorithm B2 such that∣∣∣∣Pr [R (HybridnmVC,q,A,D(λ)
)
= 1

∧VKCopy

]
− Pr

[
R (IdealnmVC,q,SA,D(λ)) = 1

∧VKCopy

]∣∣∣∣ ≤ AdvForge
SIG,B2(λ)

for every λ ∈ N.

Claim 5.5. There exists a probabilistic polynomial-time algorithm B3 such that∣∣∣∣Pr [R (HybridnmVC,q,A,D(λ)
)
= 1

∧HashColl

]
− Pr

[
R (IdealnmVC,q,SA,D(λ)) = 1

∧HashColll

]∣∣∣∣ ≤ AdvUOWHF
H,B3 (λ)

for every λ ∈ N.

Claim 5.6. There exist probabilistic polynomial-time algorithms B4 and B5 such that∣∣∣∣Pr [R (HybridnmVC,q,A,D(λ)
)
= 1

∧DiffTags

]
− Pr

[
R (IdealnmVC,q,SA,D(λ)) = 1

∧DiffTags

]∣∣∣∣
≤ 2 ·

(
AdvABOBind

LE,q,B4 (λ) +AdvPosBind
VC,q,B5(λ)

)
for every λ ∈ N.

27

We now turn to prove Claims 5.4, 5.5 and 5.6.

Proof of Claim 5.4. We construct an adversary B2 against the one-time strong unforgeability of
SIG. On input vk, where (sk, vk)← Sig.Gen(1λ), the algorithm B2 is defined as follows:

1. Invoke A(1λ) and simulate to it a partial execution of the experiment HybridnmVC,q,A,D(λ)
(equivalently, IdealnmVC,q,SA,D(λ)) using the verification key vk as follows:
(a) Sample stequiv ← LE.AltSetup(1λ, q), crsVC ← VC.Setup(1λ) and h ← Hλ, and set τ =

h(vk).

(b) Compute (ĉrsLE, ĉ1, . . . , ĉq, st1)← LE.Equiv1(1
λ, stequiv, q, τ), (x1, . . . , xq)← D, (vcom0, st0)

← VC.Commit(1λ, crsVC, (ĉ1, . . . , ĉq)).

(c) Output vcom0 as the output message of the adversary in Step 2 of ForgeSIG,A(λ). Receive
in response a signature σ ← Sig.Signsk(vcom0).

(d) Invoke (I, stA)← A(1λ, crs, vcom0‖vk‖σ), where crs = ĉrsLE‖crsVC‖h.
(e) For each i ∈ [q]:

i. Compute d̂i = LE.Equiv2(1
λ, xi, i, st1, τ).

ii. Compute π0,i ← VC.Open(1λ, crsVC, vcom0, st0, i).
iii. Set πi = ĉi‖d̂i‖π0,i.

(f) Invoke
(
v̂com,J , stA

)
← A

(
stA, (xi)i∈I , (πi)i∈I

)
.

2. Parse v̂com as (v̂com0, v̂k, σ̂). If v̂k = vk and (v̂com0, σ̂) 6= (vcom0, σ), then output (v̂com0, σ̂).
Otherwise, output ⊥.

Let VKForge denote the event in which (v̂com0, σ̂) 6= (vcom0, σ). Observe that B2 perfectly simu-
lates HybridnmVC,q,A,R,D(λ) (equivalently, IdealnmVC,q,SA,D(λ)) until the stage in which the simulation
terminates. Moreover, conditioned on VKCopy ∧ VKForge, the outputs of HybridnmVC,q,A,R,D(λ) and
of IdealnmVC,q,SA,D(λ) are identically distributed. Therefore,

AdvForge
SIG,B2(λ) = Pr

[
ForgeSIG,A(λ) = 1

]
≥ Pr [VKCopy ∧ VKForge]

≥
∣∣∣∣Pr [R (HybridnmVC,q,A,D(λ)

)
= 1

∧VKCopy ∧ VKForge

]
− Pr

[
R (IdealnmVC,q,SA,D(λ)) = 1
∧VKCopy ∧ VKForge

]∣∣∣∣
=

∣∣∣∣Pr [R (HybridnmVC,q,A,D(λ)
)
= 1

∧VKCopy

]
− Pr

[
R (IdealnmVC,q,SA,D(λ)) = 1

∧VKCopy

]∣∣∣∣ ,
concluding the proof of the claim.

Proof of Claim 5.5. We construct an adversary B3 against the universal one-way hash function
family H. On input 1λ, the algorithm B3 is defined as follows:

1. Sample (sk, vk)← Sig.Gen(1λ).
2. Set stB3 = (sk, vk) and output (vk, st) as the adversary’s output in Step 1 of the experiment

UOWHFH,B3(λ). In response, receive from the challenger a hash function h← Hλ.
3. Invoke A and simulate to it a partial execution of the hybrid experiment HybridnmVC,q,A,D(λ)

using the pair (sk, vk) as follows:

28

(a) Set τ = h(vk).
(b) Sample stequiv ← LE.AltSetup(1λ, q), (ĉrsLE, ĉ1, . . . , ĉq, st1) ← LE.Equiv1(1

λ, stequiv, q, τ),
and crsVC ← VC.Setup(1λ) and set crs = ĉrsLE‖crsVC‖h.

(c) Sample (x1, . . . , xq)← D, and compute (vcom0, st0)← VC.Commit(1λ, crsVC, (ĉ1, . . . , ĉq))
and σ ← Sig.Signsk(vcom0).

(d) Invoke (I, stA)← A(1λ, crs, vcom0‖vk‖σ).
(e) For each i ∈ [q]:

i. Compute d̂i = LE.Equiv2(1
λ, xi, i, st1, τ).

ii. Compute π0,i ← VC.Open(1λ, crsVC, vcom0, st0, i).
iii. Set πi = ĉi‖d̂i‖π0,i.

(f) Invoke
(
v̂com,J , stA

)
← A

(
stA, (xi)i∈I , (πi)i∈I

)
.

4. Parse v̂com as (v̂com0, v̂k, σ̂). If v̂k 6= vk and h(v̂k) = τ , then output v̂k as the output of the
adversary in Step 3 of the experiment UOWHFH,B3(λ). Otherwise, output ⊥.

Observe that B3 perfectly simulates HybridnmVC,q,A,D(λ) until the stage in which the simulation
terminates, and hence by the definition of the event HashColl, the probability that B3 outputs v̂k
such that v̂k 6= vk and h(v̂k) = τ is equal to Pr [HashColl], where the latter probability is taken over
the randomness of the challenger and A in a random execution of HybridnmVC,q,A,D(λ). Hence,

AdvUOWHF
H,B3 (λ) = Pr [UOWHFH,A(λ) = 1]

= Pr [HashColl]

≥ Pr
[
R
(
HybridnmVC,q,A,D(λ)

)
= 1 ∧ HashColl

]
. (5.6)

Since h, vk and v̂k are identically distributed in HybridnmVC,q,A,D(λ) and in IdealnmVC,q,SA,D(λ), the
same analysis implies that:

AdvUOWHF
H,B3 (λ) ≥ Pr [R (IdealnmVC,q,SA,D(λ)) = 1 ∧ HashColl] . (5.7)

Overall, Eq. (5.6) and (5.7) imply that∣∣∣∣Pr [R (HybridnmVC,q,A,D(λ)
)
= 1

∧HashColl

]
− Pr

[
R (IdealnmVC,q,SA,D(λ)) = 1

∧HashColll

]∣∣∣∣ ≤ AdvUOWHF
H,B3 (λ),

concluding the proof of the claim.

Proof of Claim 5.6. Let ε = ε(λ) denote the difference∣∣∣∣Pr [R (HybridnmVC,q,A,D(λ)
)
= 1

∧DiffTags

]
− Pr

[
R (IdealnmVC,q,SA,D(λ)) = 1

∧DiffTags

]∣∣∣∣ .
Recall that our goal is to construct probabilistic polynomial-time algorithms B4 and B5 such that

ε ≤ 2 ·
(
AdvABOBind

LE,q,B4 (λ) +AdvPosBind
VC,q,B5(λ)

)
for every λ ∈ N.

Let ValidOpen be the event in which nmVC.Verify(1λ, crs, v̂com, j, x̂j , π̂j) = 1 for all j ∈ J . Note
that over the simulation SA, it holds that ValidOpen is contained in the eventR (IdealnmVC,q,SA,D(λ)) =
1. Similarly, over the hybrid experiment, ValidOpen is contained in R

(
HybridnmVC,q,A,D(λ)

)
= 1.

Hence,

29

∣∣∣∣Pr [R (HybridnmVC,q,A,D(λ)
)
= 1

∧DiffTags

]
− Pr

[
R (IdealnmVC,q,SA,D(λ)) = 1

∧DiffTags

]∣∣∣∣
=

∣∣∣∣Pr [R (HybridnmVC,q,A,D(λ)
)
= 1

∧DiffTags ∧ ValidOpen

]
− Pr

[
R (IdealnmVC,q,SA,D(λ)) = 1
∧DiffTags ∧ ValidOpen

]∣∣∣∣ .
Assume without loss of generality that after Step 5 of the security experiment RealnmVC,q,A,D(λ)

the adversary A is deterministic (any random coins used by A after Step 5 can be included in the
state stA maintained by A). Let ω denote the random coins used by A, and consider the tuple
(crs, vk, ω, (xi)i∈I) that consists of the common-reference string crs generated by the simulator SA,
the verification key vk used by the simulator to generate vcom, the random coins ω on which A is
invoked, and the committed values (xi)i∈I corresponding to the locations in the subset I requested
by A. We call such a tuple (crs, vk, ω, (xi)i∈I) good if

Pr
[
∀j ∈ J : nmVC.Verify(1λ, crs, v̂com, j, x̂j , π̂j) = 1

∣∣∣(crs, vk, ω, (xi)i∈I)
]
≥ ε

2
,

where v̂com and J are the vector commitment and the subset of indices outputted by A in Step 11 of
the simulation (or Step 12 of the hybrid experiment HybridnmVC,q,A,D(λ)), and (x̂j , π̂j)j∈J are the local
openings outputted by A in Step 14 of the simulation (or Step 13 of the hybrid experiment). Note
that this probability is solely over the choice of (xi)i∈I , and it is identical in both IdealnmVC,q,SA,D(λ)
and in HybridnmVC,q,A,D(λ), as the view of A is identically distributed in both experiments. Let Good
be the event in which the tuple (crs, vk, ω, (xi)i∈I) is good. Then by the triangle inequality:∣∣∣∣Pr [R (HybridnmVC,q,A,D(λ)

)
= 1

∧DiffTags ∧ ValidOpen

]
− Pr

[
R (IdealnmVC,q,SA,D(λ)) = 1
∧DiffTags ∧ ValidOpen

]∣∣∣∣
≤
∣∣∣∣Pr [R (HybridnmVC,q,A,D(λ)

)
= 1

∧DiffTags ∧ ValidOpen ∧ Good

]
− Pr

[
R (IdealnmVC,q,SA,D(λ)) = 1
∧DiffTags ∧ ValidOpen ∧ Good

]∣∣∣∣
+

∣∣∣∣Pr [R (HybridnmVC,q,A,D(λ)
)
= 1

∧DiffTags ∧ ValidOpen ∧ Good

]
− Pr

[
R (IdealnmVC,q,SA,D(λ)) = 1

∧DiffTags ∧ ValidOpen ∧ Good

]∣∣∣∣ .
Note that conditioned on Good, the probability that the output of the experiment HybridnmVC,q,A,D(λ)
is not of the form ((x1, . . . , xq), (⊥)q, I) is at most ε/4. Observe that the same applies to the output
of IdealnmVC,q,SA,D(λ) as well. Hence, it holds that∣∣∣∣Pr [R (HybridnmVC,q,A,D(λ)

)
= 1

∧DiffTags

]
− Pr

[
R (IdealnmVC,q,SA,D(λ)) = 1

∧DiffTags

]∣∣∣∣ (5.8)

≤
∣∣∣∣Pr [R (HybridnmVC,q,A,D(λ)

)
= 1

∧DiffTags ∧ ValidOpen ∧ Good

]
− Pr

[
R (IdealnmVC,q,SA,D(λ)) = 1
∧DiffTags ∧ ValidOpen ∧ Good

]∣∣∣∣+ ε

2
.

Assume without loss of generality that

Pr

[
R
(
HybridnmVC,q,A,D(λ)

)
= 1

∧DiffTags ∧ ValidOpen ∧ Good

]
> Pr

[
R (IdealnmVC,q,SA,D(λ)) = 1
∧DiffTags ∧ ValidOpen ∧ Good

]
.

If this is not the case, then the rest of the proof is symmetric. As is the case for the event Good, it is
also the case that DiffTags ∧ ValidOpen occurs with equal probabilities in both HybridnmVC,q,A,D(λ)

30

and IdealnmVC,q,SA,D(λ). Hence, we can rewrite

Pr

[
R
(
HybridnmVC,q,A,D(λ)

)
= 1

∧DiffTags ∧ ValidOpen ∧ Good

]
− Pr

[
R (IdealnmVC,q,SA,D(λ)) = 1

∧DiffTags ∧ ValidOpen ∧ Good

]
(5.9)

=

Pr

R (HybridnmVC,q,A,D(λ)
)
= 1

∣∣∣∣∣∣
DiffTags

ValidOpen
∧Good

− Pr

R (IdealnmVC,q,SA,D(λ)) = 1

∣∣∣∣∣∣
DiffTags

ValidOpen
∧Good


·Pr [DiffTags ∧ ValidOpen ∧ Good]

≤ Pr

R (HybridnmVC,q,A,D(λ)
)
= 1 ∧R (IdealnmVC,q,SA,D(λ)) = 1

∣∣∣∣∣∣
DiffTags

ValidOpen
∧Good

 (5.10)

·Pr [DiffTags ∧ ValidOpen ∧ Good]

= Pr
[
R
(
HybridnmVC,q,A,D(λ)

)
= 1 ∧R (IdealnmVC,q,SA,D(λ)) = 0 ∧ DiffTags ∧ ValidOpen ∧ Good

]
,

where Eq. (5.10) follows from a union bound, and the probability is taken over the choice of the
tuple (crs, vk, ω, (xi)i∈I), the choice of (xi)i∈I and over the choice of (x̃i)i∈I (recall that these are
the surrogate values chosen by the simulator SA in Step 12 of the simulation).

For brevity, we denote the conjunction

R
(
HybridnmVC,q,A,D(λ)

)
= 1 ∧R (IdealnmVC,q,SA,R,D(λ)) = 0 ∧ DiffTags ∧ Good ∧ ValidOpen

by the event E. Then, From Eq. (5.9) and (5.8), we get that

Pr [E] ≥ ε

2
(5.11)

for infinitely many values of λ ∈ N.
We now present two adversaries B4 and B5 attempting to break the all-but-one binding of LE

and the position binding of VC, respectively. We will use Eq. (5.11) in order to prove that the sum
of their advantages is at least ε/2. The two algorithm are somewhat similar, so we start by defining
B4 in detail, and then describe how B5 is defined vis-à-vis B4. As B4 invokes the adversary A, we
remind the reader that we assume without loss of generality that A is deterministic after Step 5 of
RealnmVC,q,A,D(λ).

The Algorithm B4

Initial input: The security parameter λ ∈ N.

1. Sample (sk, vk)← Sig.Gen(1λ) and h← Hλ, and compute τ = h(vk).

2. Output τ as the tag outputted by the adversary in Step 1 of ABOBindLE,q,B4
(λ). At this point, the

challenger samples stequiv ← LE.AltSetup(1λ, q) and ρ ← {0, 1}r, where r = r(λ) is the number of
random coins used by LE.Equiv1 on security parameter λ ∈ N. The challenger then passes stequiv and
ρ to B4.

3. Compute (crscom, c1, . . . , cq, st1) = LE.Equiv1(1
λ, stequiv, q, τ ; ρ), sample crsVC ← VC.Setup(1λ), and set

crs = crsLE‖crsVC‖h.

4. Sample (x1, . . . , xq)← D.

5. Compute (vcom0, st0)← VC.Commit(1λ, crsVC, (c1, . . . , cq)) and σ ← Sig.Signsk(vcom0).

6. Sample ω ← {0, 1}r′ , where r′ = r′(λ) is the number of random coins used by A.

7. Compute (I, stA) = A(1λ, crs, vcom0‖vk‖σ;ω).

31

8. For each i ∈ [q]:

(a) Compute di = LE.Equiv2(1
λ, xi, i, st1, τ).

(b) Compute π0,i ← VC.Open(1λ, crsVC, vcom0, st0, i).

(c) Set πi = ci‖di‖π0,i.

9. Compute
(
v̂com,J , st′A

)
= A

(
stA, (xi)i∈I , (πi)i∈I

)
, where J ⊆ [q]. Parse v̂com as v̂com0‖v̂k‖σ̂, and

let τ̂ = h(v̂k).

10. Compute ((x̂j)j∈J , (π̂j)j∈J) := A
(
st′A, (xi)i∈I , (πi)i∈I

)
. Parse each π̂j as ĉj‖d̂j‖π̂0,j .

11. Sample (x̃j)j∈I ← D|(I, (xi)i∈I).

12. For each i ∈ I:

(a) Compute d̃i = LE.Equiv2(1
λ, x̃i, i, st1, τ).

(b) Compute π̃i = ĉi‖d̃i‖π0,i.

13. Compute
(
(x̂′j)j∈J , (π̂

′
j)j∈J

)
= A

(
st′A, (x̃i)i∈I , (π̃i)i∈I

)
.

14. Parse each π̂′j as ĉ′j‖d̂′j‖π̂′0,j , and verify that for each j ∈ J it holds that ĉ′j = ĉj . If this is not the
case, then output ⊥ and terminate.

15. Verify that τ̂ 6= τ , and that for each j ∈ J it holds that nmVC.Verify(1λ, crs, v̂com, j, x̂j , π̂j) = 1

and nmVC.Verify(1λ, crs, v̂com, j, x̂′j , π̂
′
j) = 1. If any of these conditions does not hold, output ⊥ and

terminate.

16. If there exists an index j∗ ∈ J such that x̂j∗ 6= x̂′j∗ , then output the quadruple (ĉj∗ , d̂j∗ , ĉ′j∗ , τ̂) as the
output of the adversary in Step 5 of the experiment ABOBindLEq,B4

(λ). If no such index exists, output
⊥ and terminate.

The adversary B5 attempting to break the position binding of VC is defined similarly to B4, but
with the following modifications:

• Instead of receiving stequiv and the randomness ρ used by LE.Equiv1 from the challenger (Step
4 of B4), B5 sample them on their own, where stequiv is sampled using LE.AltSetup.

• Instead of sampling crsVC (Step 3 of B4), B5 receives it from the challenger.
• B5 does not terminate in Step 14 if for some j ∈ J it holds that ĉ′j 6= ĉj .
• In Step 16 (if reached), B5 decides on their output as follows: If there exists an index j∗ ∈ J

such that ĉ′j∗ 6= ĉj∗ , then output (v̂com0, j
∗, ĉ′j∗ , ĉj∗ , π̂

′
0,j∗ , π̂0,j∗) as the output of the adversary

in Step 3 of the position binding security experiment PosBindVCq,B5(λ), and otherwise output ⊥
(if more then one such j∗ exist, choose one arbitrarily).

Let DiffCom denote the event in which there exists an index j∗ ∈ J such that ĉ′j∗ 6= ĉj∗ , defined
over a random execution of B4 or of B5 (observe that the commitments (ĉj)j∈J and (ĉ′j)j∈J are
identically distributed in both executions). On the one hand, for every λ ∈ N it holds that

AdvPosBind
VC,q,B5(λ) = Pr

[
PosBindVCq,B5(λ) = 1

]
≥ Pr [E ∧ DiffCom] . (5.12)

This holds since v̂com0 is distributed as in the experiments HybridnmVC,q,A,D(λ) and IdealnmVC,q,SA,D(λ),
the pairs (ĉj , π̂0,j)j∈J are distributed as in the experiment HybridnmVC,q,A,D(λ) and the pairs (ĉ′j , π̂

′
0,j)j∈J

are distributed as in IdealnmVC,q,SA,D(λ). Moreover, by definition, whenever DiffCom occurs, there
exists an index j∗ ∈ J such that ĉ′j∗ 6= ĉj∗ .

32

Assume without loss of generality thatR always outputs 0 on input of the form ((x1, . . . , xq), (⊥)q, I)
(note that any distinguisher can be transformed into such a distinguisher without affecting its ad-
vantage). In this case, whenever the event R

(
HybridnmVC,q,A,D(λ)

)
= 1∧ValidOpen (which contains

the event E) occurs, it means in particular that

VC.Verify(1λ, crsvcom, v̂com0, j, ĉj , π̂0,j) = 1

and
VC.Verify(1λ, crsvcom, v̂com0, j, ĉ′j , π̂

′
0,j) = 1

for every j ∈ J . In particular, this holds for j∗, implying that indeed PosBindVCq,B5(λ) = 1.
On the other hand, for every λ ∈ N it holds that

AdvABOBind
LE,q,B4 (λ) = Pr

[
ABOBindLEq,B4(λ) = 1

]
≥ Pr

[
E ∧ DiffCom

]
. (5.13)

As before, v̂com0 is distributed exactly as in the experiment HybridnmVC,q,A,D(λ) and in the experi-
ment IdealnmVC,q,SA,D(λ), the pairs (ĉj , π̂0,j)j∈J are distributed as in the experiment HybridnmVC,q,A,D(λ)

and the pairs (ĉ′j , π̂
′
0,j)j∈J are distributed as in the experiment IdealnmVC,q,SA,D(λ). In addition, the

event

R
(
HybridnmVC,q,A,D(λ)

)
= 1 ∧R (IdealnmVC,q,SA,R,D(λ)) = 0 ∧ ValidOpen ∧ DiffTags

implies that there exists at least one index j∗ ∈ J for which x̂j∗ 6= x̂′j∗ and x̂j∗ , x̂
′
j∗ 6= ⊥. The event

DiffCom means that for every j ∈ J it holds that ĉj = ĉ′j . The event R
(
HybridnmVC,q,A,D(λ)

)
=

1∧ValidOpen further means that for every j ∈ J , it holds that LE.Decommit(1λ, crsLE, ĉj , d̂j , τ̂) = x̂j

and that LE.Decommit(1λ, crsLE, ĉ
′
j , d̂
′
j , τ̂) = LE.Decommit(1λ, crsLE, ĉj , d̂

′
j , τ̂) = x̂′j . This holds in

particular for j∗. Finally, DiffTags implies that τ̂ 6= τ . Hence, in this case, ABOBindLEq,B4(λ) = 1.
Taking Eq. (5.12) and (5.13) together with Eq. (5.11), immediately implies Claim 5.6.

6 Non-Malleable Dynamic Vector Commitments

In this section we show that our framework for non-malleable vector commitment schemes, as well
as our construction, extend to a useful notion of non-malleable dynamic vector commitments (i.e.,
vector commitments that support updates).

The framework of Catalano and Fiore [CF13] considers vector commitments that can be updated
publicly (i.e., without knowledge of the committer’s private state): Any user with knowledge of the
value xi at the i-th location of the committed vector can update the commitment with respect to this
location. Such public updates, however, are inherently incompatible with the motivation underlying
the notion of non-malleability (and are, in particular, ruled out by Definition 3.1). Specifically,
vector commitments supporting public updates are malleable, as they enable an adversary receiving
a vector commitment vcom to produce a vector commitment v̂com to a related vector by updating
one or more of its coordinates.

In light of this inherent limitation, we show that our framework and construction can nevertheless
support updates in a private manner. That is, updating a vector commitment requires knowledge of
the private state generated by the committer alongside the initial generation of the vector commit-
ment. This inherently-limited, yet still useful, form of updates disables any attack via the update
procedure as described above, since an adversary does not have access to the private state of the
vector commitment.

33

It should be noted that knowledge of the private state may enable to trivially update a vector
commitment by recomputing it from scratch. The efficiency of such a trivial update procedure,
however, depends (at least) linearly of the length of the entire committed vector. Thus, our main
challenge in this setting is to support private updates in a completely local manner.

In what follows, in Section 6.1 we introduce the syntax and correctness requirement of dynamic
vector commitments when adapted to support private updates, and introduce an additional property
of vector commitments on which we rely for extending our construction (and which is satisfied by
existing constructions). Then, in Section 6.2 we extend our notion of non-malleability to consider
private updates, and in Section 6.3 we show that our construction and its proof of security can be
extended as well.

6.1 Syntax, Correctness and Invisibility of Updates

A dynamic vector commitment scheme VC with private updates includes, in addition to the four
algorithms specified in Section 2, an update algorithm VC.Update. This is a probabilistic polynomial-
time algorithm that receives as input the security parameter λ ∈ N, a common-reference string crs,
a commitment vcom, a state st, an index i ∈ [q] and a value x ∈ Xλ, and outputs an update
commitment vcom′ and an updated state st′.

Correctness. A dynamic vector commitment scheme VC = (VC.Setup,VC.Commit,VC.Open,VC.
Verify,VC.Update) over a domain X = {Xλ}λ∈N is correct if for any λ ∈ N, if for any polynomials q =
q(λ) and u = u(λ), for any vector

(
x
(0)
1 , . . . , x

(0)
q

)
∈ (Xλ)q, for any sequence of pairs

(
x
(j)
ij
, ij

)
j∈[u]

∈

(Xλ × [q])u, and for any index i ∈ [q], it holds that

Pr
[
VC.Verify

(
1λ, crs, vcomu, i, x

∗
i , π
)
= 1
]
= 1,

where:

1. crs← VC.Setup(1λ).

2. (vcom0, st0)← VC.Commit
(
1λ, crs,

(
x
(0)
1 , . . . , x

(0)
q

))
.

3. (vcomj , stj)← VC.Update(1λ, crs, vcomj−1, stj−1, ij , x
(j)
ij

) for j = 1, . . . , u.

4. x∗i
def
= x

(j)
ij

for the maximal j ∈ [u] for which ij = i, and x∗i
def
= x

(0)
i if no such j exists.

5. π ← VC.Open(1λ, crs, vcomu, stu, i).

Invisibility of updates. For extending our construction to the adaptive setting, we rely on the
following natural property of vector commitments, to which we refer as invisible updates, and which is
satisfied by the constructions of Catalano and Fiore [CF13]. Roughly speaking, this property requires
that a vector commitment and its local openings that are obtained via a sequence of updates is
computationally indistinguishable from a newly generated vector commitment and its local openings.
We note that the constructions of Catalano and Fiore in fact satisfy this property in a perfect
information-theoretic sense.

Definition 6.1. A dynamic vector commitment scheme VC = (VC.Setup,VC.Commit,VC.Open,VC.
Verify,VC.Update) over a domain X = {Xλ}λ∈N has invisible updates if for any polynomial q = q(λ)
and for any probabilistic polynomial-time algorithm A there exists a negligible function ν(·) such
that

AdvInvisUpdts
VC,A (λ)

def
=
∣∣∣Pr [InvisUpdts

(0)
VC,A(λ)

]
− Pr

[
InvisUpdts

(1)
VC,A(λ)

]∣∣∣ ≤ ν(λ)
34

for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} the experiment InvisUpdts
(b)
VC,A(λ) is defined

as follows:

1. crs← VC.Setup(1λ).

2.
((

x
(0)
i

)
i∈[q]

,
(
x
(j)
ij
, ij

)
j∈[u]

, stA

)
← A(1λ, crs).

3. vcom
(0)
0 ← VC.Commit

(
1λ, crs,

(
x
(0)
1 , . . . , x

(0)
q

))
.

4.
(

vcom
(0)
j , st

(0)
j

)
← VC.Update

(
1λ, crs, vcomj−1, stj−1, ij , x

(j)
ij

)
for each j = 1, . . . , u.

5. vcom(0) := vcom
(0)
u and st(0) := st

(0)
u .

6.
(
vcom(1), st(1)

)
← VC.Commit(1λ, crs, (x∗1, . . . , x

∗
q)), where x∗i

def
= x

(j)
ij

for the maximal j ∈ [u]

for which ij = i, and x∗i
def
= x

(0)
i if no such j exists.

7. π(0)i ← VC.Open
(
1λ, crs, vcom(0), st(0)

)
and π(1)i ← VC.Open

(
1λ, crs, vcom(1), st(1)

)
for i ∈ [q].

8. b′ ← A
(

stA, vcom(b),
(
π
(b)
i

)
i∈[q]

)
.

9. Output b′.

6.2 Dynamic Non-Malleability

The following definition naturally extends Definition 3.1 to consider adversaries that may receive
a vector commitment which is produced by a sequence of updates. For simplicity, the following
definition considers non-adaptive updates. However, we note that it naturally extends to the case of
adaptive updates (and so does our construction’s proof of security).

Definition 6.2. A dynamic vector commitment VC = (VC.Setup,VC.Commit,VC.Open,VC.Verify,
VC.Update) over a domain X = {Xλ}λ∈N is dynamically non-malleable if for any polynomials q = q(λ)
and u = u(λ) and for any probabilistic polynomial-time algorithm A there exist a probabilistic
polynomial-time algorithm S such that the following holds: For any probabilistic polynomial-time
algorithm R and for any valid distribution D = {Dλ}λ∈N over {(Xλ)q × (Xλ × [q])u}λ∈N, there exists
a negligible function ν(·) such that

AdvNM
VC,q,A,S,R,D(λ)

def
= |Pr [R (RealVC,q,A,D(λ)) = 1]− Pr [R (IdealVC,q,S,D(λ)) = 1]| ≤ ν(λ)

for all sufficiently large λ ∈ N, where the experiments RealVC,q,A,D(λ) and IdealVC,q,S,D(λ) are defined
as follows:

The experiment RealVC,q,A,D(λ):

1. crs← VC.Setup(1λ, q).

2.
((

x
(0)
i

)
i∈[q]

,
(
x
(j)
ij
, ij

)
j∈[u]

)
← Dλ.

3. (vcom0, st0)← VC.Commit
(
1λ, crs,

(
x
(0)
1 , . . . , x

(0)
q

))
.

4. (vcomj , stj)← VC.Update
(
1λ, crs, vcomj−1, stj−1, ij , x

(j)
ij

)
for each j = 1, . . . , u.

5. For each i ∈ [q], set x∗i := x
(j)
ij

for the maximal j ∈ [u] for which ij = i, and x∗i := x
(0)
i if

no such j exists.
6. πi ← VC.Open(1λ, crs, vcomu, stu, i) for each i ∈ [q].
7. (I, stA)← A(1λ, crs, vcomu) where I ⊆ [q].

35

8.
(
v̂com,J , stA

)
← A

(
stA, (x

∗
i)i∈I , (πi)i∈I

)
where J ⊆ [q].

9. ((x̂j)j∈J , (π̂j)j∈J)← A
(
stA, (x

∗
i)i∈I , (πi)i∈I

)
, where I = [q] \ I.

10. If v̂com = vcom or if VC.Verify
(
1λ, crs, v̂com, j, x̂j , π̂j

)
= 0 for some j ∈ J , then output(

(x∗1, . . . , x
∗
q), (⊥)q, I

)
.

Otherwise, output
(
(x∗1, . . . , x

∗
q), (x̂1, . . . , x̂q), I

)
, where x̂j = ⊥ for each j ∈ [q] \ J .

The experiment IdealVC,q,S,D(λ):

1.
((

x
(0)
i

)
i∈[q]

,
(
x
(j)
ij
, ij

)
j∈[u]

)
← Dλ.

2. For each i ∈ [q], set x∗i := x
(j)
ij

for the maximal j ∈ [u] for which ij = i, and x∗i := x
(0)
i if

no such j exists.
3. (I, stS)← S(1λ,D).
4. (J , (x̂j)j∈J)← S(stS , (x

∗
i)i∈I).

5. Output
(
(x∗1, . . . , x

∗
q), (x̂1, . . . , x̂q), I

)
where x̂i = ⊥ for every i ∈ [q] \ J .

Valid distributions. Any distribution D = {Dλ}λ∈N over the domain {(Xλ)q × (Xλ × [q])u}λ∈N
induces a distribution D∗ = {D∗λ}λ∈N over {(Xλ)q}λ∈N in the following natural manner; in order to
sample a vector according to D∗λ:

1. Sample
((

x
(0)
i

)
i∈[q]

,
(
x
(j)
ij
, ij

)
j∈[u]

)
← Dλ.

2. For each i ∈ [q], set x∗i := x
(j)
ij

for the maximal j ∈ [u] for which ij = i, and x∗i := x
(0)
i if no

such j exists.
3. Output (x∗1, . . . , x∗q).

We say that a distribution D = {Dλ}λ∈N is valid, if the induced distribution D∗ is valid according
to our definition from Section 3. That is, if for every λ ∈ N, for every ~x = (x1, . . . , xq(λ)) in the
support of D∗λ, and for every subset I = (i1, . . . , i|I|) ⊆ [q(λ)], it is possible to efficiently sample a
vector ~y from the conditional distribution D∗λ|(∀i ∈ I : yi = xi). We denote the process of sampling
the entries of ~y in I = [q] \ I by (yj)j∈I ← D∗|(I, (xi)i∈I).

6.3 Extending Our Construction and its Proof of Security

In order to augment our construction from Section 5 with private updates, we first rely on any
standard strongly-unforgeable signature scheme instead of on any one-time strongly-unforgeable
signature scheme. Then, we define an additional update algorithm (the remaining four algorithms of
nmVC remain unchanged) by relying on the update algorithm of the underlying vector commitment
scheme VC. On input (1λ, crs, vcom, st, i, x), the algorithm nmVC.Update is defined as follows:

1. Parse crs as crsLE‖crsVC‖h, vcom as vcom0‖vk‖σ and st as st0‖c1‖ · · · ‖cq‖d1‖ · · · ‖dq.
2. Compute (ci, di)← LE.Commit(1λ, crsLE, x, i, τ) where τ = h(vk).
3. Compute (vcom0, st′0)← Update(1λ, crsVC, vcom0, st0, i, ci) and σ ← Sig.Signsk(vcom0).
4. Output (vcom′, st′), where vcom′ = vcom0‖vk‖σ and st′ = st′0‖c1‖ · · · ‖cq‖d1‖ · · · ‖dq.

Extending the proof of Theorem 5.1. In order to extend the proof of Theorem 5.1 to prove
that nmVC is dynamically non-malleable (i.e., that it satisfies Definition 6.2), there are two technical
adjustments that need to be made:

36

• Whenever we sample from the distribution D, this now a distribution over (Xλ)q × (Xλ × [q])u

rather than over (Xλ)q. In particular, this applies to the definition of the hybrid experiment
HybridnmVC,q,A,D(λ) (Step 7); the definition of algorithm B1 (Step 1) in the proof of Lemma 5.2;
the definition of algorithm B2 (Step 1(b)) in the proof of Claim 5.4; the definition of algorithm
B3 (Step 3(c)) in the proof of Claim 5.5; and in Claim 5.6 – in the definition of the algorithm
B4 (step 8) and in the corresponding step of the algorithm B5.

• In all places where we sample from the conditional distribution D|(I, (xi)i∈I) (recall Section
3), we now need to sample from the conditional distribution D∗|(I, (x∗i)i∈I), where D∗ is the
induced distribution over the final values x∗1, . . . , x∗q as defined above. Concretely, this should
be done in the definition of the simulator SA (Step 12), and in Claim 5.6 – in the definition of
the algorithm B4 (step 16) and in the corresponding step of the algorithm B5.

References

[ABC+12] J. H. Ahn, D. Boneh, J. Camenisch, S. Hohenberger, abhi shelat, and B. Waters. Com-
puting on authenticated data. In Proceedings of the 9th Theory of Cryptography Con-
ference, pages 169–191, 2012.

[Bar01] B. Barak. How to go beyond the black-box simulation barrier. In Proceedings of the
42nd Annual IEEE Symposium on Foundations of Computer Science, pages 106–115,
2001.

[BBB+18] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs:
Short proofs for confidential transactions and more. In Proceedings of the IEEE Sym-
posium on Security and Privacy, pages 315–334, 2018.

[BBF19] D. Boneh, B. Bünz, and B. Fisch. Batching techniques for accumulators with appli-
cations to IOPs and stateless blockchains. In Advances in Cryptology – CRYPTO ’19,
pages 561–586, 2019.

[BCG+14] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza.
Zerocash: Decentralized anonymous payments from bitcoin. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 459–474, 2014.

[BdM93] J. Benaloh and M. de Mare. One-way accumulators: A decentralized alternative to
digital signatures. In Advances in Cryptology – EUROCRYPT ’93, pages 274–285,
1993.

[BGV11] S. Benabbas, R. Gennaro, and Y. Vahlis. Verifiable delegation of computation over large
datasets. In Advances in Cryptology – CRYPTO ’11, pages 111–131, 2011.

[Bic17] M. Bichler. Market Design: A Linear Programming Approach to Auctions and Match-
ing. Cambridge University Press, 2017.

[BP97] N. Barić and B. Pfitzmann. Collision-free accumulators and fail-stop signature schemes
without trees. In Advances in Cryptology – EUROCRYPT ’97, pages 480–494, 1997.

[BR93] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for design-
ing efficient protocols. In Proceedings of the 1st ACM Conference on Computer and
Communications Security, pages 62–73, 1993.

37

[BS07] M. Bellare and S. Shoup. Two-tier signatures, strongly unforgeable signatures, and fiat-
shamir without random oracles. In Proceedings of the 10th International Conference on
Theory and Practice of Public-Key Cryptography, pages 201–216, 2007.

[BSW06] D. Boneh, E. Shen, and B. Waters. Strongly unforgeable signatures based on compu-
tational Diffie-Hellman. In Proceedings of the 9th International Conference on Theory
and Practice of Public-Key Cryptography, pages 229–240, 2006.

[But14] V. Buterin. Ethereum: A next-generation smart contract and decentralized application
platform. Available at https://ethereum.org/en/whitepaper/, 2014.

[But17] V. Buterin. The stateless client concept, 2017. Available at https://ethresear.ch/t/
the-stateless-client-concept/172.

[CDV06] D. Catalano, Y. Dodis, and I. Visconti. Mercurial commitments: Minimal assumptions
and efficient constructions. In Proceedings of the 3rd Theory of Cryptography Conference,
pages 120–144, 2006.

[CF01] R. Canetti and M. Fischlin. Universally composable commitments. In Advances in
Cryptology – CRPYTO ’01, pages 19–40, 2001.

[CF13] D. Catalano and D. Fiore. Vector commitments and their applications. In Proceedings of
the 16th International Conference on Practice and Theory in Public-Key Cryptography,
pages 55–72, 2013.

[CFG+20] M. Campanelli, D. Fiore, N. Greco, D. Kolonelos, and L. Nizzardo. Incrementally
aggregatable vector commitments and applications to verifiable decentralized storage.
In Advances in Cryptology – ASIACRYPT ’20, pages 3–35, 2020.

[CHL+13] M. Chase, A. Healy, A. Lysyanskaya, T. Malkin, and L. Reyzin. Mercurial commitments
with applications to zero-knowledge sets. Journal of Cryptology, 26(2):251–279, 2013.

[CIO98] G. D. Crescenzo, Y. Ishai, and R. Ostrovsky. Non-interactive and non-malleable commit-
ment. In Proceedings of the 30th Annual ACM Symposium on the Theory of Computing,
pages 141–150, 1998.

[CKO+01] G. D. Crescenzo, J. Katz, R. Ostrovsky, and A. D. Smith. Efficient and non-interactive
non-malleable commitment. In Advances in Cryptology – EUROCRYPT ’01, pages 40–
59, 2001.

[CL02] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to efficient
revocation of anonymous credentials. In Advances in Cryptology – CRYPTO ’02, pages
61–76, 2002.

[COS+17] M. Ciampi, R. Ostrovsky, L. Siniscalchi, and I. Visconti. Four-round concurrent non-
malleable commitments from one-way functions. In Advances in Cryptology – CRYPTO
’17, pages 127–157, 2017.

[CRF+11] D. Catalano, M. D. Raimondo, D. Fiore, and M. Messina. Zero-knowledge sets with
short proofs. IEEE Transaction on Information Theory, 57(4):2488–2502, 2011.

[DDN00] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM Journal on
Computing, 30(2):391–437, 2000.

38

https://ethereum.org/en/whitepaper/
https://ethresear.ch/t/the-stateless-client-concept/172
https://ethresear.ch/t/the-stateless-client-concept/172

[DG03] I. Damgard and J. Groth. Non-interactive and reusable non-malleable commitment
schemes. In Proceedings of the 35th Annual ACM Symposium on the Theory of Com-
puting, pages 426–437, 2003.

[DKN+04] Y. Dodis, A. Kiayias, A. Nicolosi, and V. Shoup. Anonymous identification in ad hoc
groups. In Advances in Cryptology – EUROCRYPT ’04, pages 609–626, 2004.

[FF00] M. Fischlin and R. Fischlin. Efficient non-malleable commitment schemes. In Advances
in Cryptology – CRYPTO ’00, pages 413–431, 2000.

[Fis01] M. Fischlin. Trapdoor commitment schemes and their applications. PhD Thesis,
University of Frankfurt (available at https://www.math.uni-frankfurt.de/~dmst/
research/phdtheses/mfischlin.dissertation.2001.html), 2001.

[FVY14] C. Fromknecht, D. Velicanu, and S. Yakoubov. A decentralized public key infrastructure
with identity retention. Cryptology ePrint Archive, Report 2014/803, 2014.

[GLO+12] V. Goyal, C.-K. Lee, R. Ostrovsky, and I. Visconti. Constructing non-malleable com-
mitments: A black-box approach. In Proceedings of the 53rd Annual IEEE Symposium
on Foundations of Computer Science, pages 51–60, 2012.

[GM06] R. Gennaro and S. Micali. Independent zero-knowledge sets. In Proceedings of the
33th International Colloquium on Automata, Languages and Programming, pages 34–
45, 2006.

[GMY03] J. A. Garay, P. MacKenzie, and K. Yang. Strengthening zero-knowledge protocols using
signatures. In Advances in Cryptology – EUROCRYPT ’03, pages 177–194, 2003.

[GPR16] V. Goyal, O. Pandey, and S. Richelson. Textbook non-malleable commitments. In
Proceedings of the 48th annual ACM Symposium on Theory of Computing, pages 1128–
1141, 2016.

[GR97] R. Gennaro and P. Rohatgi. How to sign digital streams. In Advances in Cryptology –
CRYPTO ’97, pages 180–197, 1997.

[GRW+20] S. Gorbunov, L. Reyzin, H. Wee, and Z. Zhang. Pointproofs: Aggregating proofs for
multiple vector commitments. In Proceedings of the 27th ACM Conference on Computer
and Communications Security, pages 2007–2023, 2020.

[HIL+99] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from
any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

[Khu17] D. Khurana. Round optimal concurrent non-malleability from polynomial hardness. In
Proceedings of the 15th Theory of Cryptography Conference, pages 139–171, 2017.

[Kil92] J. Kilian. A note on efficient zero-knowledge proofs and arguments. In Proceedings of
the 24th Annual ACM Symposium on Theory of Computing, pages 723–732, 1992.

[KSS+16] J. Krupp, D. Schröder, M. Simkin, D. Fiore, G. Ateniese, and S. Nürnberger. Nearly
optimal verifiable data streaming. In Proceedings of the 19th International Conference
on Practice and Theory in Public-Key Cryptography, pages 417–445, 2016.

[Lam79] L. Lamport. Constructing digital signatures from a one way function. Technical Report
SRI-CSL-98, SRI International Computer Science Laboratory, 1979.

39

https://www.math.uni-frankfurt.de/~dmst/research/phdtheses/mfischlin.dissertation.2001.html
https://www.math.uni-frankfurt.de/~dmst/research/phdtheses/mfischlin.dissertation.2001.html

[LM19] R. W. F. Lai and G. Malavolta. Subvector commitments with application to succinct
arguments. In Advances in Cryptology – CRYPTO ’19, pages 530–560, 2019.

[LP09] H. Lin and R. Pass. Non-malleability amplification. In Proceedings of the 41st annual
ACM Symposium on Theory of Computing, pages 189–198, 2009.

[LP11] H. Lin and R. Pass. Constant-round non-malleable commitments from any one-way
function. In Proceedings of the 43rd annual ACM symposium on Theory of computing,
pages 705–714, 2011.

[LPV08] H. Lin, R. Pass, and M. Venkitasubramaniam. Concurrent non-malleable commitments
from any one-way function. In Proceedings of the 5th Theory of Cryptography Conference,
pages 571–588, 2008.

[LY10] B. Libert and M. Yung. Concise mercurial vector commitments and independent zero-
knowledge sets with short proofs. In Proceedings of the 7th Theory of Cryptography
Conference, pages 499–517, 2010.

[Mer87] R. C. Merkle. A digital signature based on a conventional encryption function. In
Advances in Cryptology – CRYPTO ’87, pages 369–378, 1987.

[MGG+13] I. Miers, C. Garman, M. Green, and A. D. Rubin. Zerocoin: Anonymous distributed
e-cash from bitcoin. In IEEE Symposium on Security and Privacy, pages 397–411, 2013.

[Mic94] S. Micali. CS proofs. In Proceedings of the 35th Annual IEEE Symposium on the
Foundations of Computer Science, pages 436–453, 1994.

[MND+04] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, and S. G. Stubblebine. A
general model for authenticated data structures. Algorithmica, 39(1):21–24, 2004.

[MRK03] S. Micali, M. O. Rabin, and J. Kilian. Zero-knowledge sets. In Proceedings of the 44th
Annual IEEE Symposium on Foundations of Computer Science, pages 80–91, 2003.

[Nak08] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Available at https:
//bitcoin.org/bitcoin.pdf, 2008.

[Nao91] M. Naor. Bit commitment using pseudorandomness. Journal of Cryptology, 4(2):151–
158, 1991.

[Ngu05] L. Nguyen. Accumulators from bilinear pairings and applications. In Topics in Cryp-
tology – CT-RSA ’05, pages 275–292, 2005.

[NN98] M. Naor and K. Nissim. Certificate revocation and certificate update. In Proceedings of
the 7th USENIX Security Symposium, pages 217–228, 1998.

[NY89] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic appli-
cations. In Proceedings of the 21st Annual ACM Symposium on Theory of Computing,
pages 33–43, 1989.

[OWW+20] A. Ozdemir, R. Wahby, B. Whitehat, and D. Boneh. Scaling verifiable computation
using efficient set accumulators. In Proceedings of the 29th USENIX Security Symposium,
pages 2075–2092, 2020.

40

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

[PPV08] O. Pandey, R. Pass, and V. Vaikuntanathan. Adaptive one-way functions and applica-
tions. In Advances in Cryptology – CRYPTO ’08, pages 57–74, 2008.

[PR05] R. Pass and A. Rosen. Concurrent non-malleable commitments. In Proceedings of the
46th Annual IEEE Symposium on Foundations of Computer Science, pages 563–572,
2005.

[PR08] R. Pass and A. Rosen. New and improved constructions of nonmalleable cryptographic
protocols. SIAM Journal on Computing, 38(2):702–752, 2008.

[PW10] R. Pass and H. Wee. Constant-round non-malleable commitments from sub-exponential
one-way functions. In Advances in Cryptology – EUROCRYPT ’10, pages 638–655,
2010.

[Rey01] L. Reyzin. Zero-knowledge with public keys. PhD Thesis, Massachusetts Institute of
Technology (available at https://www.cs.bu.edu/~reyzin/phd-thesis.html), 2001.

[Rom90] J. Rompel. One-way functions are necessary and sufficient for secure signatures. In
Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, pages 387–
394, 1990.

[STS99] T. Sander and A. Ta-Shma. Auditable, anonymous electronic cash. In Advances in
Cryptology – CRYPTO ’99, pages 555–572, 1999.

[SvDJ+12] E. Stefanov, M. van Dijk, A. Jules, and A. Opera. Iris: a scalable cloud file system
with efficient integrity checks. In Proceedings of the 28th Annual Computer Security
Applications Conference, pages 229–238, 2012.

[TAB+20] A. Tomescu, I. Abraham, V. Buterin, J. Drake, D. Feist, and D. Khovratovich. Ag-
gregatable subvector commitments for stateless cryptocurrencies. In Proceedings of the
12th International Conference on Security and Cryptography for Networks, pages 45–64,
2020.

[Tod16] P. Todd. Making UTXO set growth irrelevant with low-latency delayed TXO commit-
ments, 2016. Available at https://petertodd.org/2016/delayed-txo-commitments.

[Wee10] H. Wee. Black-box, round-efficient secure computation via non-malleability amplifica-
tion. In Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer
Science, pages 531–540, 2010.

A Non-Malleability of Merkle Trees in the Random-Oracle Model

In this section we show that a Merkle tree is a non-malleable static vector commitment scheme in the
random-oracle model. Our notion of a non-malleable vector commitment scheme (recall Definition
3.1) naturally extends to the random-oracle model by allowing the scheme itself and the adversary A
to issue random-oracle queries10, whereas the simulator S, the distribution D and the distinguisher
R remain standard-model algorithms.

10Thus the output of RealVC,q,A,D(λ) is a random variable also over the randomness of the oracle.

41

https://www.cs.bu.edu/~reyzin/phd-thesis.html
https://petertodd.org/2016/delayed-txo-commitments

Notation. For integers t ≥ 1 and i ∈ {0, . . . , 2`−1} we denote by 〈i〉` the `-bit binary representation
of i. For a string s ∈ {0, 1}∗ we denote by sibling(s) the string obtained from s by flipping its least-
significant bit, by parent(s) the string obtained from s by chopping off its least-significant bit (that
is, parent(s) is one bit shorter than s), and by LSB(s) its least-significant bit.

The construction. Let H = {Hλ}λ∈N be a hash function such that each Hλ : {0, 1}2λ → {0, 1}λ
for every λ ∈ N. In what follows, for simplicity of presentation we assume that q = 2d for some
integer d.

A tree-based vector commitment scheme treeVC

Setup(1λ, q):

1. Output ⊥.

Commit(1λ, crs, (x1, . . . , xq)):

1. Sample k ← {0, 1}λ, and for each i ∈ [q] compute ri = H(k‖ 〈i〉λ).

2. For each i ∈ [q] let h〈2i−2〉log(q)+1
= xi and h〈2i−1〉log(q)+1

= ri.

3. For each ` = log(q), . . . , 1 and i = 0, . . . 2` − 1 compute h〈i〉` = H(h〈i〉`‖0‖h〈i〉`‖1).

4. Output (vcom, st) where vcom = H(h0‖h1) and st = k.

Open(1λ, crs, vcom, st, i):

1. Let k = st and for each j ∈ [q] compute rj = H(k‖ 〈j〉λ).

2. For each j ∈ [q] let h〈2j−2〉log(q)+1
= xi and h〈2j−1〉log(q)+1

= ri.

3. For each ` = log(q), . . . , 1 and i = 0, . . . 2` − 1 compute h〈i〉` = H(h〈i〉`‖0‖h〈i〉`‖1).

4. πlog(q)+1 = ri and ilog(q)+1 = i.

5. For each ` = log(q), . . . , 1:

(a) Let i` = parent(i`−1).

(b) Compute π` = hsibling(〈i`〉`).

6. Output π = πlog(q)+1‖ · · · ‖π1.

Verify(1λ, crs, vcom, i, x, π):

1. Parse π as πlog(q)+1‖ · · · ‖π0.

2. Let hLlog(q)+1 = x, hRlog(q)+1 = πlog(q)+1 and ilog(q) = parent(〈i〉log (q)+1).

3. For each ` = log(q), . . . , 1:

(a) Compute v` = H(hL`+1‖hR`+1).

(b) If LSB(i`) = 0, then let hL` = v` and hL` = π`. Otherwise, let hL` = π` and hL` = v`.

(c) Let i`−1 = parent(i`).

4. If H(hL1‖hR1) = vcom then output 1, and otherwise output 0.

Theorem A.1. If H is modeled as a random oracle, then for any algorithm A issuing at most
p = p(λ) queries to the oracle, there exists an algorithm S whose running time is polynomial in that

42

of A, such that for every algorithm R it holds that

AdvNM
treeVC,q,A,S,R,D(λ) <

p2 + 10 · p · q + 24 · q2 + 1

2λ − p− 4 · q

for every λ ∈ N.

Proof. Let A be an algorithm issuing at most p = p(λ) oracle queries and let D = {Dλ}λ∈N be a
valid distribution over

{(
{0, 1}λ

)q}
λ∈N. Assume without loss of generality that A does not issue the

same query more than once, and that when receiving a proof π for the ith element xi (in Step 6 or
7 of the experiment RealtreeVC,q,A,D(λ)), it executes VerifyH(1λ,⊥, vcom, i, xi, πi) where vcom is the
commitment which A receives as input in Step 5 of the experiment. Note that this adds at most 2q−1
oracle queries to A, as this is the number of inner nodes in the tree. Further assume without loss
of generality, that for each j ∈ J (where J is the set outputted by A in Step 6 of the experiment),
A executes VerifyH(1λ,⊥, v̂com, j, x̂j , π̂j), where v̂com is the commitment outputted by A in Step 6
of RealtreeVC,q,A,R,D(λ), and for each j ∈ J , x̂j and π̂j are the element and the corresponding proof
outputted by A in Step 7. This also adds at most 2q − 1 oracle queries to A.

Consider the following simulator S:

The Simulator S
Input: The security parameter λ ∈ N and a description of the distribution D.

1. Construct the tree, except for the leaves which are left children (which hold the values x1, . . . , xq):

(a) Sample k ← {0, 1}λ, and for i ∈ [q], sample ri ← {0, 1}λ and set h〈2i−1〉log(q)+1
:= ri.

(b) For each ` = log(q), . . . , 1 and for each i = 0, . . . , 2` − 1 sample h〈i〉` ← {0, 1}
λ.

(c) Sample vcom :← {0, 1}λ.

2. Compute a proof πi for each location i ∈ [q]:

(a) πi,log(q)+1 := h〈2i−1〉log(q)+1
and ilog(q)+1 := i.

(b) For ` = log(q), . . . , 1:

i. i` := parent(i`−1).
ii. πi,` := hsibling(〈i`〉`).

(c) πi := πi,log(q)+1‖ · · · ‖πi,1.

3. Invoke (I, stA) ← AH(1λ,⊥, vcom), while simulating the oracle H to A, answering each query z ∈
{0, 1}2m for some m ∈ N as follows (ignore odd-length queries):

• If z = k‖ 〈i〉λ for some i ∈ [q], then reply with H(z) = ri.
• If z = hs‖0‖hs‖1 for some t ∈ [log(q)] and s ∈ {0, 1}t, then reply with H(z) = hs.
• Otherwise, sample y ← {0, 1}m and reply with H(z) = y.

Record all query-answer pairs in a set Q.

4. Set stS := (vcom, stA,Q), output (I, stS) as the output of the simulator in Step 2 of the experiment
IdealtreeVC,q,S,R,D(λ), and receive (xi)i∈I in response from the challenger. If for any i ∈ I, there exists
a value y ∈ {0, 1}λ such that (xi‖ri, y) ∈ Q, then output ⊥ and terminate.

5. Sample (x̃j)j∈I ← D|(I, (xi)i∈I). If for any j ∈ I, there exists a value y ∈ {0, 1}λ such that
(x̃j‖rj , y) ∈ Q, then output ⊥ and terminate.

6. Invoke
(
v̂com,J , stA

)
← AH

(
stA, (xi)i∈I , (πi)i∈I

)
, while simulating the oracle H to A, answering

each query z ∈ {0, 1}2m for some m ∈ N as in Step 3 with the following modifications:

43

• If z = xi‖ri for some i ∈ I, then reply with H(z) = h〈parent(i)〉log(q) .

• If z = x̃i‖hri for some i ∈ I, then reply with H(z) = h〈parent(i)〉log(q) .

7. Invoke ((x̂j)j∈J , (π̂j)j∈J)← AH
(
stA, (x̃i)i∈I , (πi)i∈I

)
, simulating the oracle H to A as in Step 6.

8. Output (J , (x̂j)j∈J) as the simulator’s output in step 3 of the experiment IdealtreeVC,q,S,R,D(λ).

Let R be an algorithm. We now turn to analyze AdvNM
treeVC,q,A,S,R,D(λ). Let p′ = p+4q− 2, and

let Collision denote the event, defined over the experiment RealtreeVC,q,A,D(λ), in which A issues two
oracle queries z, z′ ∈ {0, 1}λ such that H(z) = H(z′). By a standard birthday bound argument,

Pr [Collision] ≤
(
p′
)2 · 2−λ. (A.1)

For each j ∈ [q], let Guessj denote the event in which A outputs J and v̂com without having queried
(before outputting J and v̂com) a complete proof in the tree whose root is v̂com for some element
x̂j in the j-th location. That is, the complementing event Guessj is the event in which there is a
value x̂j ∈ {0, 1}λ and a proof π̂j ∈ {0, 1}λ·(log(q)+1) such that:

• VC.VerifyH(1λ,⊥, v̂com, j, x̂j , π̂j) = 1; and

• A issued all queries made by the computation VerifyH(1λ,⊥, v̂com, j, x̂j , π̂j) before outputting
J and v̂com.

Denote by Guess the event in which there exists at least one index j ∈ J for which Guessj holds.
Assume without loss of generality thatR always outputs 0 on inputs of the form ((x1, . . . , xq), (⊥)q, I)
(observe that any distinguisher can be transformed to a distinguisher for which this holds without
affecting its advantage). Note that

Pr [R (RealtreeVC,q,A,D(λ)) = 1|Guess] ≤ p′ · 2−λ. (A.2)

This is the case, since the event Guess occurring means that there exists a j ∈ J for which Guessj
holds, and (by our assumption) the event R (RealtreeVC,q,A,D(λ)) = 1 is contained inside the event
in which VerifyH(1λ,⊥, v̂com, j, x̂j , π̂j) = 1. But in order for the verification VerifyH(1λ,⊥, j, x̂j , π̂j)
to pass conditioned on Guessj , it must be the case that exists some value y ∈ {0, 1}λ, determined
by the view of A when outputting v̂com, and there exists a z ∈ {0, 1}λ such that H(z) was queried
by A after outputting v̂com (recall that A does not issue the same query twice); and H(z) = y. For
each query z′ made by A after outputting v̂com, it holds that Pr [H(z) = y] = 2−λ. Eq. (A.2) then
follows by a union bound over all queries made by A after outputting v̂com.

Let kHit denote the event in which A queries the oracle for k‖ 〈i〉λ for some i ∈ [q]. For each
j ∈ [p′], let kHitj denote the event in which a query of the form k‖ 〈i〉λ (for some i ∈ [q]) is queried
within the first j queries of A, and note that

Pr [kHit] = Pr [kHit1] +

p′∑
j=2

Pr
[
kHitj

∣∣kHitj−1
]

≤ 1

2λ
+

p′∑
j=2

1

2λ − j + 1
(A.3)

≤ p′

2λ − p′ + 1
, (A.4)

44

where inequality (A.3) follow from the fact that if kHitj−1 occurs, then conditioned on the view of
A before the j-th query, the value of k is uniformly distributed in a set of size at least 2λ − j + 1.

Let rHit denote the event in which for some i ∈ I, A queries the oracle with a query y‖ri before
receiving the proofs (πi)i∈I . By total probability, it holds that:

Pr [rHit] ≤ Pr
[
rHit

∣∣kHit
]
+ Pr [kHit]

≤ Pr
[
rHit

∣∣kHit
]
+

p′

2λ − p′ + 1

≤ q · p′

2λ − p′ + 1
+

p′

2λ − p′ + 1
(A.5)

≤ 2 · q · p′

2λ − p′ + 1
. (A.6)

Inequality (A.5) follows by a similar argument to that used to derive inequality (A.4).
Putting everything together, it holds that

AdvNM
treeVC,q,A,S,R,D(λ)

= |Pr [R (RealtreeVC,q,A,D(λ)) = 1]− Pr [R (IdealtreeVC,q,S,D(λ)) = 1]|
≤
∣∣Pr [R (RealtreeVC,q,A,D(λ)) = 1

∣∣Collision ∧ Guess ∧ rHit
]

(A.7)

−Pr
[
R (IdealtreeVC,q,S,D(λ)) = 1

∣∣Collision ∧ Guess ∧ rHit
]∣∣

·Pr
[
Collision ∧ Guess ∧ rHit

]
+ |Pr [R (RealtreeVC,q,A,D(λ)) = 1 ∧ (Collision ∨ Guess ∨ rHit)]

− Pr [R (IdealtreeVC,q,A,D(λ)) = 1 ∧ (Collision ∨ Guess ∨ rHit)]|

≤ max

{
Pr [R (RealtreeVC,q,A,D(λ)) = 1 ∧ (Collision ∨ Guess ∨ rHit)] ,
Pr [R (RealtreeVC,q,A,D(λ)) = 1 ∧ (Collision ∨ Guess ∨ rHit)]

}
(A.8)

where inequality (A.7) is by total probability, and follows also from the fact that the event Collision∧
Guess∧rHit is determined by the view ofA, which is identically distributed in both RealtreeVC,q,A,R,D(λ)
and in the experiment simulated by S to A. In particular, Pr

[
Collision ∧ Guess ∧ rHit

]
is equal in

both experiments. In order to prove inequality (A.8), we argue that

Pr
[
R (RealtreeVC,q,A,D(λ)) = 1

∣∣Collision ∧ Guess ∧ rHit
]

= Pr
[
R (IdealtreeVC,q,S,D(λ)) = 1

∣∣Collision ∧ Guess ∧ rHit
]
.

This is true since conditioned on Colliosion ∧ Guess, the view of A when outputting v̂com uniquely
determines the values (x̂j)j∈J which A can output in Step 7 of RealtreeVC,q,A,D(λ). Moreover, con-
ditioned on rHit, the view of A after Step 7 is independent of the values (xi)i∈I . Hence, the joint
distribution of

(
(xi)i∈[q], (x̂j)j∈J

)
in the experiment simulated by S to A is equal to the joint distri-

bution of
(
(xi)i∈[q], (x̂j)j∈J

)
in RealtreeVC,q,A,D(λ).

By the rule of replacement, the union bound and total probability, it holds that

Pr [R (RealtreeVC,q,A,D(λ)) = 1 ∧ (Collision ∨ Guess ∨ rHit)]

≤ Pr [R (RealtreeVC,q,A,D(λ)) = 1|Guess] + Pr [Collision] + Pr [rHit]

≤
(
p′
)2 · 2−λ + 2−λ +

2 · q · p′

2λ − p′ + 1

≤ (p′)2 + 1 + 2 · q · p′

2λ − p′ + 1
.

45

The same analysis can be used to prove that

Pr [R (IdealtreeVC,q,A,D(λ)) = 1 ∧ (Collision ∨ Guess ∨ rHit)]

≤ (p′)2 + 1 + 2 · q · p′

2λ − p′ + 1
.

Plugging in p′ = p+ 4 · q − 2 < p+ 4 · q to Eq. (A.8), we get that

AdvNM
treeVC,q,A,S,R,D(λ) <

p2 + 10 · p · q + 24 · q2 + 1

2λ − p− 4 · q
.

This concludes the proof of Theorem A.1.

B Constructions of Locally-Equivocable Commitments with All-But-One Bind-
ing

B.1 A Generic Construction

Our generic construction of a locally-equivocable commitment scheme with all-but-one binding relies
on any non-interactive equivocable commitment scheme (see Section 2.1). Such a scheme can be
constructed based on the minimal assumption that one-way functions exist [Nao91, CIO98], and
therefore this holds for our generic scheme as well. It should be noted, however, that our generic
scheme is mainly of theoretical significance (e.g., due to the somewhat impractical yet polynomial
length of its common-reference string), and the reader is referred to our number-theoretic construc-
tions for practical alternatives.

Let EQ = (EQ.Setup,EQ.Commit,EQ.Decommit,EQ.Equiv1,EQ.Equiv2) be an equivocable com-
mitment scheme over a domain X = {Xλ}λ∈N. For any polynomial t = t(λ) we construct a
locally-equivocable commitment scheme with all-but-one binding LE = (LE.Setup, LE.Commit, LE.
Decommit, LE.AltSetup, LE.Equiv1, LE.Equiv2) over the domain X and the tag space T = {Tλ}λ∈N,
where Tλ = {0, 1}t(λ) for any λ ∈ N.

A locally-equivocable commitment scheme LE

LE.Setup(1λ, q):

1. For each (i, j, b) ∈ [q]× [t]× {0, 1} sample crsi,j,b ← EQ.Setup(1λ).

2. Output crs = (crsi,j,b)(i,j,b)∈[q]×[t]×{0,1}.

LE.Commit(1λ, crs, x, i, τ):

1. Parse crs as (crsi,j,b)(i,j,b)∈[q]×[t]×{0,1}.

2. For each j ∈ [t] compute (cj , dj)← EQ.Commit(1λ, crsi,j,τj , x).

3. Output (c, d) where c = c1‖ · · · ‖ct and d = d1‖ · · · ‖dt.

LE.Decommit(1λ, crs, c, d, i, τ):

1. Parse crs as (crsi,j,b)(i,j,b)∈[q]×[t]×{0,1}, c as c1‖ · · · ‖ct and d as d1‖ · · · ‖dt.

2. For each j ∈ [t] compute xj = EQ.Decommit(1λ, crsi,j,τj , cj , dj).

3. If x1 = · · · = xt 6= ⊥ then output x1 and otherwise output ⊥.

LE.AltSetup(1λ, q):

46

1. For each (i, j) ∈ [q]× [t] sample crsi,j ← EQ.Setup(1λ).

2. Output st0 = (crsi,j)(i,j)∈[q]×[t].

LE.Equiv1(1
λ, st0, q, τ):

1. Parse st0 as (crsi,j)(i,j)∈[q]×[t].

2. For each (i, j) ∈ [q]× [t] compute (ĉrsi,j,τj , ĉi,j , sti,j)← EQ.Equiv1(1
λ) and set ĉrsi,j,1−τj = crsi,j .

3. For each i ∈ [q] let ĉi = ĉi,1‖ · · · ‖ĉi,t and sti = sti,1‖ · · · ‖sti,t.

4. Let ĉrs = (ĉrsi,j,b)(i,j,b)∈[q]×[t]×{0,1} and st = st1‖ · · · ‖stq.

5. Output (ĉrs, ĉ1, . . . , ĉq, st).

LE.Equiv2(1
λ, x, i, st, τ):

1. Parse st as st1‖ · · · ‖stq and sti as sti,1‖ · · · ‖sti,t.

2. For each j ∈ [t] compute d̂i,j = EQ.Equiv2(1
λ, x, sti,j).

3. Output d̂i = d̂i,1‖ · · · ‖d̂i,t.

The following theorem establishes the security of the above generic construction:

Theorem B.1. Let EQ be an equivocable commitment scheme over a domain X = {Xλ}λ∈N. Then,
for any polynomial t(λ), the scheme LE is a locally-equivocable commitment scheme with all-but-one
binding over the domain X and the tag space T = {Tλ}λ∈N, where Tλ = {0, 1}t(λ) for any λ ∈ N.

Proof. In order to show that the scheme LE is locally equivocable and all-but-one binding (recall
Definitions 4.1 and 4.2), we first observe that the local equivocability of LE follows immediately from
the equivocability of EQ. Specifically, the equivocation correctness of LE follows directly from that
of EQ, and the equivocation indistinguishability of LE follows via a standard hybrid argument from
that of EQ. We therefore focus on proving that LE is all-but-one binding.

Let q = q(λ) be a polynomial, and let A be a probabilistic polynomial-time algorithm that
participates in the experiment ABOBindLEq,A(λ). We show that there exists a probabilistic polynomial-
time algorithm B such that

AdvABOBind
LE,q,A (λ) ≤ q · t ·AdvBind

EQ,B(λ)

for every λ ∈ N. Consider the following probabilistic polynomial-time algorithm B, which on input
(1λ, crs) is defined as follows:

1. Invoke (τ, stA)← A(1λ).
2. Sample i∗ ← [q] and j∗ ← [t].
3. For each i ∈ [q] \ {i∗} and for each j ∈ [t] compute (ĉrsi,j,τj , ĉi,j , sti,j) ← EQ.Equiv1(1

λ) and
sample ĉrsi,j,1−τj ← EQ.Setup(1λ).

4. For each j ∈ [t]\{j∗} compute (ĉrsi∗,j,τj , ĉi∗,j , sti∗,j)← EQ.Equiv1(1
λ) and sample ĉrsi∗,j,1−τj ←

EQ.Setup(1λ).
5. Sample (ĉrsi∗,j∗,τj∗ , ĉi∗,j∗ , sti∗,j∗)← EQ.Equiv1(1

λ) and set ĉrsi∗,j∗,1−τj∗ = crs.
6. (c, d, d′, i′, τ ′)← A(stA, st0, ρ), where st0 =

(
crsi,j,1−τj

)
(i,j)∈[q]×[t] and ρ is the concatenation of

all random coins used in all invocations of EQ.Equiv1 in Steps 3− 5.
7. If i′ 6= i∗ or τj∗ = τ ′j∗ , then output ⊥ and terminate.

47

8. Compute x = LE.Decommit(1λ, ĉrs, c, d, i′, τ ′) and x′ = LE.Decommit(1λ, ĉrs, c, d′, i′, τ ′), where
ĉrs = (ĉrsi,j,b)(i,j,b)∈[q]×[t]×{0,1}. If x = ⊥, x′ = ⊥ or x = x′ then output ⊥ and terminate.

9. Parse c as c1‖ · · · ‖cj , d as d1‖ · · · ‖dj and d′ as d′1‖ · · · ‖d′j .
10. Output (cj∗ , dj∗ , d′j∗).

We turn to bound AdvBind
EQ,B(λ). Let Hit denote the event in which i′ = i∗ or τj∗ 6= τ ′j∗ , and let

SuccessA denote the event in which τ ′ 6= τ , x 6= ⊥, x′ 6= ⊥ and x 6= x′ (where x and x′ are as defined
in Step 8). Since B perfectly simulates the experiment ABOBindLEq,A(λ) to A, it holds that

Pr [SuccessA] = Pr
[
ABOBindLEq,A(λ) = 1

]
= AdvABOBind

LE,q,A (λ).

Whenever Hit and SuccessA occur, it holds that dj∗ and d′j∗ are decommitments which open cj∗

to x and to x′, respectively, with respect to the common reference string crs given as input to B.
Moreover, in this case it holds that x 6= ⊥, x′ 6= ⊥ and x 6= x′. Hence, for every λ ∈ N it holds that

AdvBind
EQ,B(λ) = Pr [Hit ∧ SuccessA]

= Pr [Hit|SuccessA] · Pr [SuccessA]

≥ 1

q · t
·AdvABOBind

LE,q,A (λ), (B.1)

where (B.1) follows from the fact that conditioned on SuccessA, it holds in particular that τ ′ 6= τ .
Hence, there exists at least one index j̃ ∈ [t] for which τj̃ 6= τ ′

j̃
, and this index is independent of the

choice of j∗.

B.2 An Efficient Construction Based on the Discrete Logarithm Assumption

Let GroupGen be a probabilistic polynomial-time group-generation algorithm that receives as input
the security parameter λ ∈ N and outputs a triplet (G, p, g), where G is a cyclic group of order p that
is generated by g, and p is a λ-bit prime number. The following construction of a locally-equivocable
commitment scheme with all-but-one binding is based on the hardness of the discrete logarithm
problem relative to GroupGen. The scheme’s domain space and tag space are both Zp (they can both
be set, for example, to {0, 1}λ−1 when injectively embedded into Zp in order to depend only on the
security parameter λ).

A locally-equivocable commitment scheme LEDL

LEDL.Setup(1λ, q):

1. Sample (G, p, g)← GroupGen(1λ) and x2, x3 ← Zp.

2. Let g1 = g, g2 = gx2 and g3 = gx3 .

3. Output crs = (G, p, g1, g2, g3).

LEDL.Commit(1λ, crs, x, i, τ):

1. Parse crs as (G, p, g1, g2, g3).

2. Sample r ← Zp and compute c = (gτ1 · g2)
x · gr3 .

3. Output (c, d) where d = (x, r).

LEDL.Decommit(1λ, crs, c, d, i, τ):

1. Parse crs as (G, p, g1, g2, g3) and d as (x, r).

48

2. Compute c′ = (gτ1 · g2)
x · gr3.

3. If c′ = c then output x and otherwise output ⊥.

LEDL.AltSetup(1λ, q):

1. Sample (G, p, g)← GroupGen(1λ) and x3 ← Zp.

2. Let g1 = g and g3 = gx3 .

3. Output st0 = (G, p, g1, g3).

LEDL.Equiv1(1
λ, st0, q, τ):

1. Parse st0 as (G, p, g1, g3).

2. Sample u1, . . . , uq, y ← Zp.

3. Compute g2 = gp−τ1 · gy3 and let ĉrs = (G, p, g1, g2, g3).

4. For each i ∈ [q] compute ĉi = gui
3 , and let st1 = (u1, . . . , uq, y).

5. Output (ĉrs, ĉ1, . . . , ĉq, st1).

LEDL.Equiv2(1
λ, x, i, st1, τ):

1. Parse st1 as (u1, . . . , uq, y).

2. Compute r̂ = ui − y · x.

3. Output d̂ = (x, r̂).

The following theorem establishes the security of the above construction:

Theorem B.2. Assuming the hardness of the discrete logarithm problem relative to GroupGen, the
scheme LEDL is a locally-equivocable commitment scheme with all-but-one binding.

Proof. In order to show that the scheme LEDL is locally equivocable and all-but-one binding (recall
Definitions 4.1 and 4.2), we first observe that it satisfies the equivocation correctness requirement
since

(gτ1 · g2)
x · gr̂3 = (gp1 · g

y
3)
x · gui−y·x3 = gui3 = ĉi.

In addition, one can easily verify that for any algorithm A and for any integer q = q(λ), the views
of A in the experiments IndParamLEDL,q,A,0(λ) and IndParamLEDL,q,A,1(λ) are identically distributed,
and hence the scheme LEDL satisfies the equivocation indistinguishability requirement. We therefore
focus on proving that LEDL is all-but-one binding based on the hardness of the discrete logarithm
problem.

Let q = q(λ) be a polynomial, and let A be a probabilistic polynomial-time algorithm that partic-
ipates in the experiment ABOBindLEDL

q,A (λ). We show that there exists a probabilistic polynomial-time
algorithm B such that

AdvABOBind
LEDL,q,A(λ) ≤ Pr [B (G, p, g, gz) = z]

for every λ ∈ N, where (G, p, g) ← GroupGen(1λ) and z ← Zp. Consider the following probabilistic
polynomial-time algorithm B, which on input (1λ,G, p, g, h) where h = gz is defined as follows:

1. Invoke (τ, stA)← A(1λ).
2. Sample u1, . . . , uq, y ← Zp.
3. Set g1 = g, g3 = h and g2 = gp−τ1 · gy3 .

49

4. Set st0 = (G, p, g1, g3), ĉrs = (G, p, g1, g2, g3), and for each i ∈ [q] set ĉi = gui3 .
5. Invoke (c, d, d′, i, τ ′)← A(stA, st0, (u1, . . . , uq, y)). Parse d as (x, r) and d′ as (x′, r′).
6. If any of the following conditions holds, output ⊥ and terminate:

• τ = τ ′.
• x = x′.
• c 6= (gτ

′
1 · g2)x · gr3 or c 6= (gτ

′
1 · g2)x

′ · gr′3 .
7. Output z′ = (τ ′ − τ) · (x− x′) · (y · x′ − y · x+ r′ − r)−1.

We now analyze the success probability of the algorithm B in computing the discrete logarithm
z of h = gz. Let SuccessA denote the event in which τ 6= τ ′, x 6= x′, c = (gτ

′
1 · g2)x · gr3 and

c = (gτ
′

1 · g2)x
′ · gr′3 . Since B perfectly simulates the experiment ABOBindLEDL,q,A(λ) to A, it holds

that
Pr [SuccessA] = Pr [ABOBindLEDL,q,A(λ) = 1] = AdvABOBind

LEDL,q,A(λ).

Moreover, conditioned on SuccessA, it holds that

(gτ
′

1 · g2)x · gr3 = c = (gτ
′

1 · g2)x
′ · gr′3 .

Using the identity g2 = gp−τ1 · gy3 , we get

g
(τ ′−τ)·x
1 · gx·y+r3 = g

(τ ′−τ)·x′
1 · gx·y+r

′

3 .

Rearranging, it holds that

g
(τ ′−τ)·(x−x′)
1 = gy·x

′−y·x+r′−r
3 . (B.2)

To conclude the proof, note that conditioned on SuccessA, it holds that (τ ′ − τ) · (x− x′) 6= 0, since
τ ′ 6= τ and x′ 6= x. Therefore, Eq. (B.2) implies that y · x′− y · x+ r′− r is non-zero and is therefore
invertible in Zp. Hence, Eq. (B.2) can be rewritten as

g3 = g
(τ ′−τ)·(x−x′)·(y·x′−y·x+r′−r)−1

1 = gz
′

1 .

Recall that g1 = g and g3 = h, and therefore gz′ = h. In other words, conditioned on SuccessA, the
algorithm B computes the discrete logarithm of h with respect to g with probability 1.

B.3 An Efficient Construction Based on the RSA Assumption

Let ModGen be a probabilistic polynomial-time modulus-generation algorithm that receives as input
the security parameter λ ∈ N and outputs a pair (N, e), where N is the product of two λ-bit primes
and gcd(e, φ(N)) = 1. The following construction of a locally-equivocable commitment scheme with
all-but-one binding is based on the hardness of the RSA problem relative to ModGen. The scheme’s
domain space and tag space are both Ze where (N, e)← ModGen(1λ).

A locally-equivocable commitment scheme LERSA

LERSA.Setup(1λ, q):

1. Sample (N, e)← GroupGen(1λ) and g, h← Z∗N .

2. Output crs = (N, e, g, h).

LERSA.Commit(1λ, crs, x, i, τ):

50

1. Parse crs as (N, e, g, h).

2. Sample u← Z∗N and compute c = (gτ · h)x · ue

3. Output (c, d) where d = (x, u).

LERSA.Decommit(1λ, crs, c, d, i, τ):

1. Parse crs as (N, e, g, h) and d as (x, u).

2. Compute c′ = (gτ · h)x · ue.

3. If c′ = c then output x and otherwise output ⊥.

LERSA.AltSetup(1λ, q):

1. Sample (N, e)← ModGen(1λ) and g ← Z∗N .

2. Output st0 = (N, e, g).

LERSA.Equiv1(1
λ, st0, q, τ):

1. Parse st0 as (N, e.g).

2. Sample v1, . . . , vq, w ← Z∗N .

3. Compute h = we/gτ and let ĉrs = (N, e, g, h).

4. For each i ∈ [q] compute ĉi = vei , and let st1 = (v1, . . . , vq, w).

5. Output (ĉrs, ĉ1, . . . , ĉq, st1).

LERSA.Equiv2(1
λ, x, i, st1, τ):

1. Parse st1 as (v1, . . . , vq, w).

2. Compute û = vi/w
x.

3. Output d̂ = (x, û).

The following theorem establishes the security of the above construction:

Theorem B.3. Assuming the hardness of the RSA problem relative to ModGen, the scheme LERSA
is a locally-equivocable commitment scheme with all-but-one binding.

Proof. In order to show that the scheme LERSA is locally equivocable and all-but-one binding (recall
Definitions 4.1 and 4.2), we first observe that it satisfies the equivocation correctness requirement
since

(gτ · h)x · ûe = we·x ·
(vi
wx

)e
= vei = ĉi.

In addition, one can easily verify that for any algorithm A and for any integer q = q(λ), the views of
A in the experiments IndParamLERSA,q,A,0(λ) and IndParamLERSA,q,A,1(λ) are identically distributed,
and hence the scheme LERSA satisfies the equivocation indistinguishability requirement. We therefore
focus on proving that LERSA is all-but-one binding based on the hardness of the RSA problem.

Let q = q(λ) be a polynomial, and let A be a probabilistic polynomial-time algorithm that partici-
pates in the experiment ABOBindLERSAq,A (λ). We show that there exists a probabilistic polynomial-time
algorithm B such that

AdvABOBind
LERSA,q,A(λ) ≤ Pr

[
B
(
1λ, N, e, g

)
= g1/e

]
for every λ ∈ N, where (N, e) ← ModGen(1λ) and g ← Z∗N . Consider the following probabilistic
polynomial-time algorithm B, which on input (1λ, N, e, g) is defined as follows:

51

1. Invoke (τ, stA)← A(1λ).
2. Sample v1, . . . , vq, w ← Z∗N .
3. Compute h = we/gτ .
4. Set st0 = (N, e, g), ĉrs = (N, e, g, h), and for each i ∈ [q] set ĉi = vei .
5. Invoke (c, d, d′, i, τ ′)← A(stA, st0, (v1, . . . , vq, w)). Parse d as (x, u) and d′ as (x′, u′).
6. If any of the following conditions holds, output ⊥ and terminate:

• τ = τ ′.
• x = x′.
• c 6= (gτ

′ · h)x · ue or c 6= (gτ
′ · h)x′ · (u′)e.

7. Compute integers a and b such that a ·e+b ·(τ ′−τ) ·(x−x′) = 1. Such integers are guaranteed
to exist and can be found efficiently using the extended Euclidean algorithm since, as we will
later show, if this step is reached then it must be the case that e and (τ ′ − τ) · (x − x′) are
relatively prime.

8. Output z = ga ·
(
wx′ ·u′
wx·u

)b
.

We turn to bound the advantage of the algorithm B in computing the e-th root of g modulo N . Let
SuccessA denote the event in which τ 6= τ ′, x 6= x′, c 6= (gτ

′ · h)x · ue and c 6= (gτ
′ · h)x′ · (u′)e. Since

B perfectly simulates the experiment ABOBindLERSA,q,A(λ) to A, it holds that

Pr [SuccessA] = Pr [ABOBindLERSA,q,A(λ) = 1] = AdvABOBind
LERSA,q,A(λ).

Observe that conditioned on SuccessA, it is the case that

(gτ
′ · h)x · ue = c = (gτ

′ · h)x′ · (u′)e,

and since h = we/gτ , it holds that

g(τ
′−τ)·x · (wx · u)e = g(τ

′−τ)·x′ ·
(
wx
′ · u′

)e
This in turn implies that

g(τ
′−τ)·(x−x′) =

(
wx
′ · u′

wx · u

)e
. (B.3)

Observe that conditioned on SuccessA, it holds τ ′ 6= τ and x′ 6= x. Since τ, τ ′, x, x′ ∈ Ze, this
means that (τ ′− τ) · (x−x′) is coprime to e. This implies that there exist integers a and b such that
a · e+ b · (τ ′ − τ) · (x− x′) = 1 and these are found by B in Step 7. Hence, it holds that

ze = ga·e ·

(
wx
′ · u′

wx · u

)b·e
= ga·e+b·(τ

′−τ)·(x−x′)

= g.

In other words, conditioned on SuccessA, the algorithm B computes the e-th root of g with probability
1.

52

	Introduction
	Our Contributions
	Applications
	Overview of Our Approach
	Open Problems
	Paper Organization

	Preliminaries
	Equivocable Commitment Schemes
	Vector Commitment Schemes
	One-Time Strongly-Unforgeable Signature Schemes
	Universal One-Way Hash Functions

	Non-Malleable Vector Commitments
	Existing Schemes Do Not Satisfy Our Notion
	Simple Attempts That Fail

	Locally-Equivocable Commitments with All-But-One Binding
	Our Construction of a Non-Malleable Vector Commitment Scheme
	The Construction
	Proof of Security

	Non-Malleable Dynamic Vector Commitments
	Syntax, Correctness and Invisibility of Updates
	Dynamic Non-Malleability
	Extending Our Construction and its Proof of Security

	References
	Non-Malleability of Merkle Trees in the Random-Oracle Model
	Constructions of Locally-Equivocable Commitments with All-But-One Binding
	A Generic Construction
	An Efficient Construction Based on the Discrete Logarithm Assumption
	An Efficient Construction Based on the RSA Assumption

