Do you feel a chill? Using PIR against chilling effects for
censorship-resistant publishing®

Miti Mazmudar
University of Waterloo
Waterloo, ON, Canada

miti.mazmudar@uwaterloo.ca

ABSTRACT

Peer-to-peer distributed hash tables (DHTs) rely on volunteers to
contribute their computational resources, such as disk space and
bandwidth. In order to incentivize these node operators of privacy-
preserving DHTs, it is important to prevent exposing them to the
data that is stored on the DHT and/or queried for. Vasserman et
al’s CROPS aimed at providing plausible deniability to server nodes
by encrypting stored content. However, node operators are still
exposed to the contents of queries. We provide an architecture
that uses information-theoretic private information retrieval to effi-
ciently render a server node incapable of determining what content
was retrieved in a given request by a user. We illustrate an integra-
tion of our architecture with the aforementioned system. Finally,
we simulate our system and show that it has a small communication
and performance overhead over other systems without this privacy
guarantee, and smaller overheads with respect to the closest related
work.

KEYWORDS

Censorship-resistant publishing, query privacy, private information
retrieval

1 INTRODUCTION

Censorship-resistant systems allow users access to online content
when direct access to such content is restricted by a nation-state
adversary, namely a censor. For instance, Tor [9] is an anonymity
network that supports users in accessing websites that are censored
by nation-states. Censorship-resistant publishing systems allow
publishers to submit their work onto multiple servers, also called
nodes, such that a censor cannot take down or tamper with the
published content. Several censorship-resistant publishing systems
have been proposed to date, such as Vasserman et al.’s CROPS [32],
Waldman and Maziéres’ Tangler [34] and Stubblefield and Wallach’s
Dagster [30].

Node operators within the censor’s region of influence may be
legally obliged to report any prohibited content that is stored on
their machines, or that is requested by users in queries. Many node
operators would thus rather not learn the content that they are
storing or the content of the queries that they are receiving. For in-
stance, the Signal messaging app is designed to minimize the types
of users’ data and metadata that are stored in the Signal servers, so
that obliging with legislative requests for users’ data can only cause
minimal privacy harms to its users [27]. The aforementioned sys-
tems support node operators in plausibly denying any knowledge
of the content that they store, by encrypting chunks of publishers’

*This is an extended version of our paper that appeared in the 20th ACM Workshop
on Privacy in the Electronic Society (WPES ’21) [22].

Stan Gurtler
University of Waterloo
Waterloo, ON, Canada

tmgurtler@uwaterloo.ca

Ian Goldberg
University of Waterloo
Waterloo, ON, Canada

iang@uwaterloo.ca

documents and storing key material separately from these chunks.
Within Vasserman et al’s CROPS, these chunks are indexed by
hashes of keywords that describe the document. However, as the
keywords’ hashes are exposed in clients’ queries, these node op-
erators can no longer plausibly deny knowing what content was
queried.

Censorship-resistant publishing systems have largely focused on
securing the supply of documents for users. Frequently, the goal is
to ensure that for each document, at least one server is available to
provide any user a copy of that document. As long as node operators
learn what document was requested, a censor may coerce them into
revealing this information. Consequently, node operators may be
discouraged from contributing their storage and bandwidth for such
systems. Users who recognize this flaw may not allow themselves to
even seek documents — a form of self-censorship known as a chilling
effect. In these cases, censorship-resistant publishing systems have
still failed to make the document available to all users, because
they did not secure the demand of documents. Thus, exposing the
contents of queries to node operators disincentivizes both node
operators and users from using these types of systems.

Private information retrieval (PIR) is designed to solve the prob-
lem of retrieving a row from a database on a server, without re-
vealing the index of that row to the server. Information-theoretic
PIR (IT-PIR) in particular typically requires multiple replicas of the
database. The user sends different queries to each server holding
a replica, such that as long as less than a threshold fraction of the
servers collude, they do not learn anything about the contents of
the query, and the user can reconstruct the desired row from the
servers’ responses [8, 12].

To motivate our key insights on using PIR within censorship-
resistant publishing systems, we examine their structure. Censorship-
resistant publishing systems are commonly built atop structured
peer-to-peer (P2P) networks, as they support redundancy and do
not suffer from a single point of failure. (Tor onion services, in
contrast, do not afford these two properties, as we will discuss in
Section 4, and are orthogonal to our goals. We remark that we do
not aim to provide client anonymity, but rather plausible deniabil-
ity for node operators.) Even though individual nodes can store
content cheaply, for the two aforementioned reasons, structured
P2P networks remain relevant today for developing decentralized
file storage and routing systems, such as IPFS [15]. Structured P2P
networks link peer nodes’ identifiers to the content that they store
and use distributed hash tables (DHTs) for routing search and in-
sertion queries. DHTs, such as Kademlia [21] and Chord [29], are
analogous to conventional hash tables, with the exception that the
entire key-value store is systematically split across nodes in the
P2P network, such that queries can be conducted efficiently.

P2P networks have been known to suffer from attacks by ma-
licious users who aim to prevent a legitimate user from obtain-
ing a correct copy of their desired content [19, 28]. Related re-
search [3, 5, 10] shows that if only a small fraction of nodes in the
P2P network are malicious, it is possible to group joining peers
into quorums such that, with high probability, all quorums in the
network will only contain a bounded fraction of malicious nodes.
This result is known as the goodness invariant. Young et al. [36] de-
velop protocols for efficient, robust communication across quorums
that prevent spamming attacks, whereas Backes et al. [4] extend
the former’s protocols to support conducting DHT queries without
revealing the query content to any in-path nodes.

Our key insight lies in observing that IT-PIR can be instantiated
over quorums in the DHT. Carefully analyzing and setting the
parameters involved, we leverage the DHT goodness invariant to
satisfy the IT-PIR non-collusion assumption. We present an IT-PIR
architecture that can be integrated with an existing censorship-
resistant publishing system, such as CROPS, to enable clients to
retrieve documents from the DHT privately. Specifically, neither
the target node, nor any in-path nodes, learn which document was
retrieved. In addition to our enhancement of using PIR to protect
the nodes from learning which document is being retrieved, we use
Young et als protocols for robust communication across quorums,
and Backes et al’s protocols to hide the content of routing queries
from intermediate nodes.

We begin with a description of the building blocks we use, namely
PIR, DHTs, and censorship-resistant publishing systems, in Sec-
tion 2. We discuss robust DHTs, including related work in query
privacy over DHTs, in Section 3, and describe our threat model in
Section 4. We then present the following contributions:

e We provide an architecture, similar to that of regular DHTs in
structured P2P networks, such that a user can retrieve a doc-
ument from the network without revealing what document
was retrieved to the target node that stores the document,
nor to any in-path nodes. We also illustrate an integration
of this interface with that of an existing censorship-resistant
publishing system (Section 5).

o We detail the security parameters of our system and show in
our analysis that our system works when the DHT quorums
have less than % malicious nodes (Section 6).

e We include a message and communication complexity anal-
ysis of our system and find that it has a low communication
complexity in comparison to the best-known scheme for
privately retrieving a document from a node in a DHT [4]
(Section 7).

e We simulate the communication complexity of our system
and find that it is explained by our complexity analysis. We
also simulate the latency and throughput overheads of our
system, to demonstrate its viability for deployment (Sec-
tion 8).

Finally, though we have presented our interface in the context
of a censorship-resistant publishing system, we discuss general
deployment of our interface in Section 9, while highlighting other
use cases and addressing bootstrapping issues. We conclude in
Section 10.

Miti Mazmudar, Stan Gurtler, and lan Goldberg

2 BACKGROUND AND RELATED WORK

In this section, we describe the building blocks used in our system.
We begin with a brief description of private information retrieval
and factors affecting our choice of a PIR scheme. Second, we provide
a brief overview of DHTs, including existing literature on attacks in
DHTs. Third, we delve into censorship-resistant publishing systems,
with a focus on plausible deniability, and motivate our interface,
which prevents exposing node operators to the content of queries.

2.1 Private Information Retrieval

Private information retrieval (PIR) allows public databases, held
by one or more untrusted servers, to be queried by clients while
guaranteeing that the servers cannot learn which index of the data-
base was accessed. Computational PIR (CPIR) schemes require the
computational hardness assumptions of certain cryptographic prob-
lems, and can be used even when only one server stores the entire
database. On the other hand, information-theoretic PIR (IT-PIR)
schemes do not require any computational hardness assumptions;
however, they can only be implemented when multiple servers
have copies of the database [8].

InIT-PIR schemes, the client constructs one query for each server
such that using the responses to these queries, it can reconstruct
the desired row of the database. A certain threshold number of
these servers must not share the queries they receive with each
other, as otherwise, they could reconstruct the desired row and
identify it, just as the client does. This is known as the non-collusion
assumption. Chor’s IT-PIR scheme [8] requires all nodes to respond
correctly to the client’s query, for the latter to be able to reconstruct
the desired row, and thus does not tolerate any malicious nodes.
Byzantine-robust IT-PIR schemes, such as that of Goldberg [12]
support efficient reconstruction of the correct row, while allowing
a fraction of servers to be offline and out of those that are online
and provide responses, a fraction can provide incorrect responses.
Although Aguilar-Melchor et al’s [1] and Angel et al’s [2] CPIR
schemes have lower computational complexity than prior schemes,
they incur a high computational overhead over the aforementioned
IT-PIR schemes.

Thus, if one can reasonably argue that the aforementioned non-
collusion assumption holds true, then IT-PIR schemes are prefer-
able to CPIR schemes. First, they outperform the latter in terms
of computational overhead, and second, they do not require any
computational hardness assumptions. We detail in Section 5 why
the non-collusion assumption for IT-PIR can be reasonably made
within our context, leading us to use IT-PIR. We use Goldberg’s
IT-PIR scheme [12] as it is robust against failing and Byzantine
nodes, both of which exist in P2P networks.

2.2 DHTs

A file that is to be stored in a structured P2P network has a collision-
resistant one-way hash, typically of its contents, as its identifier.
A node on structured P2P networks also has a truncated one-way
hash as its identifier; such a node stores all files whose identifiers,
when truncated, are equal to the identifier of the node. As no single
entity stores all of the content on the network, peer-to-peer net-
works do not suffer from a single point of failure. Each node in a
structured P2P network maintains a routing table, which consists of

Do you feel a chill? Using PIR against chilling effects for censorship-resistant publishing

node identifiers and their routing information for a small number
of other nodes in the DHT. In order to search for or insert a file,
nodes obtain the routing information for the relevant node identi-
fiers by querying one of its neighbours and then querying one of
that neighbour’s neighbours, and so on, through iterative routing.
(Recursive routing, on the other hand, has the node’s neighbour
itself looking up the next neighbour that is closest to the target
node, and so on. We do not consider recursive routing as providing
privacy guarantees over routing queries in recursive routing sys-
tems is fundamentally difficult, as Backes et al. [4] point out.) The
maximum number of nodes that a given node needs to contact is
known as the path length (€). DHTs guarantee that the path length
is logarithmic in the number of nodes in the network.

DHTs have been known to be vulnerable to many attacks that
prevent a user from obtaining a copy of a file. Existing censorship-
resistant publishing systems do not consider these attacks, and thus,
do not integrate defenses that have been proposed against such
attacks. A censor can easily exploit these attacks, which we moti-
vate below, to break the availability of files stored on the overlay
censorship-resistant publishing system.

If nodes are allowed to choose their own node identifiers, then a
censor may simply join the system as a set of legitimate nodes, at
various node addresses that would be storing prohibited documents.
It can then simply drop all future requests that it obtains for storing
or retrieving prohibited content. The censor can also direct its new
nodes to join at addresses that are close to a target honest node,
and cause this node’s routing requests to be directed to its nodes,
instead of other honest nodes. This is known as an eclipse attack,
which restricts honest nodes’ view of the network.

As a defence against these attacks, P2P networks can require
existing nodes to assign a random identifier to incoming nodes.
However, malicious nodes may still attempt to join and leave the
network until they are placed at suitable network addresses, to
influence honest nodes’ routing table entries in a Byzantine join at-
tack. Several researchers [5, 10] have proposed protocols to allocate
joining nodes into quorums, such that by repeatedly rejoining, any
malicious nodes do not increase their chances of being cast into a
group with a majority of other such malicious nodes. We explicate
Awerbuch and Schiedeler’s cuckoo rule (CR) [3], as well as Sen and
Freedman’s improvement over this rule, namely the commensal
cuckoo rule (CCR) [26], in Section 3.

To resolve routing requests across quorums, nodes in a quorum
can reply back with the network addresses of the nearest quorum
to the target address, akin to iterative routing in regular DHTs.
However, malicious nodes in such quorums may respond back
with incorrect routing table entries, or inundate honest nodes in
other quorums with fake requests. Young et al. [36] present two
robust communication protocols to support nodes in efficiently
communicating across these quorums, while being able to either
detect or prevent spamming attacks. However, these protocols only
provide integrity guarantees over the routing information within
a quorum-based DHT. They do not provide confidentiality of the
routing query content; the node address being queried is known to
nodes on the path to the target node and to the target node itself.
The censor may thus compel all nodes in its region, as they may
serve as in-path nodes to other nodes, to reveal the node addresses
looked up by users in its region. It can then possibly harm these

users for attempting to contact external nodes that serve prohibited
content. Backes et al. [4] improve on Young et al.’s protocols by
hiding the queried key from all in-path nodes, thereby providing
query privacy (QP). As we discuss in the next subsection, honest
node operators benefit from learning as little as possible about the
key that was queried.

We describe Awerbuch and Schiedeler’s CR strategy, Sen and
Freedman’s CCR strategy, Young et al.'s Robust Communication
Protocols, and Backes et al.s Query Privacy protocols in Section 3.
Our interface uses these protocols to harden existing censorship-
resistant publishing systems against these attacks.

2.3 Censorship-resistant publishing

Censorship-resistant publishing (CRP) systems, such as Waldman
and Mazieres’ Tangler [34], Waldman et al’s Publius [35], and
Vasserman et al’s CROPS [33], support publishing and retrieving
documents in the face of a censor that may attempt to take down
prohibited content. Censors may outright block any censorship-
resistant publishing (CRP) systems within their administrative re-
gion. We assume that blocking the system entirely would impose
an undesirably large social or economic cost to the censor. This is
the collateral damage assumption, and we revisit it in Section 4.

CRP systems are built atop DHTs formed by machines that are
located across different administrative regions, each of which con-
tributes disk space and bandwidth. However, DHTs by themselves
do not ensure the confidentiality, integrity, or availability of the
content stored on them; CRPs include mechanisms to publish and
retrieve documents while providing these three crucial properties.
To increase the availability of the content stored on them, CRP sys-
tems store redundant copies of documents or of their parts across
the underlying DHT. In Publius [35], secret sharing is used to pro-
duce shards or shares of documents, such that the document can
be reconstructed using a threshold number of shares. Publishing
a single document in Tangler [34] necessitates replicating multi-
ple other existing documents within the system, again through
secret sharing. To store a document within CROPS, several replicas
are created, and split into chunks using erasure coding, which is
similar to secret sharing in terms of the aforementioned reconstruc-
tion guarantee. The lack of a single point of failure and support
for redundant storage render DHTs attractive, with respect to the
availability property, for censorship-resistant publishing.

All of the aforementioned systems encrypt documents to pre-
serve their confidentiality, before breaking them down into shards
for redundancy. Encryption supports node operators in plausibly
denying knowledge of what content they store. Consider a censor
that legally obliges all node operators in its region to report any
prohibited content that they store. In Vasserman et al’s CROPS, a
node that stores an erasure-coded chunk of a document does not
learn anything about it, based on the hardness assumption of the
cryptographic hash used to index the chunk.

Importantly, CROPS helps users easily discover content on the
system through keywords, while preserving plausible deniability
over the stored content and ensuring its integrity. To publish a
document, the publisher specifies relevant keywords for it. After
encrypting the document and performing erasure coding on the
ciphertext document, the publisher creates replicas of two manifest

1CR. A joining node p is assigned a random address, which lies
in some k-region of a quorum Qr.

1CCR. Primary join: Along with step 1CR, quorum Qt ensures
that it has received at least k — 1 secondary joins before letting
node p join.

2CR. All other nodes with addresses in this k-region are relo-
cated to other random k-regions.

2CCR. Secondary join: Instead of step 2CR, k’ = k - ||Q7]|/5
nodes with addresses in the quorum Q7 are relocated to other
random quorums (where § is the desired average quorum size).

FIGURE 1: Descriptions of cuckoo rule (CR) [3] and commen-
sal cuckoo rule (CCR) [26].

files, namely the content and key manifests. A cryptographic hash
of one important keyword, along with the replica number, is used
to index the manifest replicas. Each manifest file is signed by the
publisher to preserve its integrity. The content and key manifests
separate the material required to locate the erasure-coded chunks
(cryptographic hashes of the chunk content) from that required to
obtain a plaintext document (symmetric key for decryption). (The
manifests also contain cryptographic hashes to verify the integrity
of the ciphertext document, which is reconstructed from erasure-
coded shares, as well as of the plaintext document.) Nodes that
store one of a key or a content manifest replica need to obtain the
other one, and sufficient erasure-coded chunks, in order to obtain
the plaintext document that the replicas refer to.

As the client’s query includes keyword hashes, the censor may
legally oblige the node operator to reveal all queries that it received.
The censor may then determine if any of the keyword hashes in a
query match those of prohibited keywords [14, 18], using rainbow
tables. It may also require the node operator to report the network
addresses of all users, and possibly harm the users who attempted
to fetch prohibited content. Thus, simply providing plausible de-
niability over stored content is insufficient; node operators should
also be prevented from learning what content is being retrieved.

We address this problem by allowing a client to privately retrieve
either erasure-coded chunks or manifests (collectively known as
files from here on). Although we focus on CROPS as a use case
for our system, we provide private file retrieval for censorship-
resistant publishing systems in general. As we discuss in Section 9,
our interface may also be used with other CRP systems and DHT-
based applications.

3 ROBUST DHTS

In this section, we describe protocols to form quorums (Awerbuch
and Schiedeler’s CR [3], Sen and Freedman’s CCR [26]), to route
queries robustly across quorums (Young et al.’s RCP [36]), as well
as to conduct these routing queries privately (Backes et al.s QP [4]).
The QP protocols can also be applied to conduct file retrieval queries
privately, and so we also outline the advantages of our DHTPIR
sytem over those.

Forming quorums: Awerbuch and Scheideler [3] propose a
cuckoo rule joining strategy, wherein incoming nodes cause existing
nodes at nearby addresses to be kicked out (or cuckooed) to other

Miti Mazmudar, Stan Gurtler, and lan Goldberg

addresses, as shown in Figure 1. A virtual address space of size n is
split into quorums, which are split further into k-regions that span
a fraction % of the address space.

Awerbuch and Schiedeler show that for a given global bound on
the ratio of malicious to honest nodes (say €), their strategy results
in approximately equally sized quorums of s = O(log n) nodes (the
balancing condition), where the ratio of malicious to honest nodes
in each quorum is upper-bounded by a value greater than € (the
correctness condition). However, their result is asymptotic, and so
left an open question of whether it holds for networks with realistic
numbers of peers.

We implemented a simulator for the cuckoo rule in Rust, and
determined that for reasonable numbers of peers in the network (say
10 million), there is a severe tradeoff between € and s: to maintain
the correctness of relatively small quorums (s < 100), the network
can only withstand a very small fraction of adversary-controlled
nodes (e < ﬁ). Having large quorums of 100 peers or more makes
the distributed protocols required within Young et al’s schemes
expensive.

Sen and Freedman [26] performed a similar simulation and their
findings echo ours. Additionally, they find that the aforementioned
tradeoff worsens for large network sizes; that is, small quorums
in larger networks can only withstand much smaller fractions of
malicious nodes. To address this issue, they propose a commensal
cuckoo joining strategy, which modifies each of the two aforemen-
tioned steps of the cuckoo rule, as shown in Figure 1. In their joining
strategy, the desired average quorum size is set beforehand (to $),
in contrast with other schemes that require it to increase with the
network size. We use the commensal cuckoo rule strategy to form
quorums in our join protocol. We discuss its security implications
within our threat model in Section 6.

Robust routing across quorums: Young et al. [36] propose
two efficient robust communication protocols (RCP) that prevent
spamming attacks from nodes in other quorums by using a thresh-
old signature scheme. In order to communicate with a node in a
target quorum, the client node must obtain a time-stamped proof of
robust communication from one of the neighbours of that quorum,
in the form of a threshold signature of the neighbouring quorum.
Young et al’s deterministic RCP-I scheme prevents spamming at-
tacks by imposing a high communication cost for the client; the
client communicates with each of the s nodes in each of £ quorums
on the path to the target quorum, for s - £ nodes in total. Their prob-
abilistic RCP-II scheme enables the target quorum’s nodes to detect
such an attack, and only requires the client to communicate with an
expected O(s +¢) nodes. RCP schemes include distributed protocols
for synchronizing the quorum’s cryptographic state whenever a
new node joins the quorum.

Query privacy across quorums: Backes et al. [4] present two
query privacy (QP) protocols, namely QP-I and QP-II, which build
on Young et al’s RCP-I and RCP-II protocols respectively to hide
the node address key being queried from all nodes in all quorums
in path to the target quorum. They develop a protocol based on
oblivious transfer (OT) rather than PIR, in order to restrict a client
from privately obtaining routing information from any intermediate
quorum about multiple neighbouring quorums through a single
valid query.

Do you feel a chill? Using PIR against chilling effects for censorship-resistant publishing

TaBLE 1: Contrasting our scheme with existing ones for pri-
vate and robust communication in a DHT. D is the total size
(in bytes) of the files stored at each node in an s-node quo-
rum. RR = robust routing; QP = In-path query privacy; PR =
availability and, if so, communication complexity of private
file retrieval.

System RR QP PR
Base DHT - - -
Young et al’s RCP [36] ° - -
Backes et al’s QP [4] w/olasthop @ ° -
Backes et al’s QP [4] w/ last hop ° ° D
DHTPIR (our system) ° e 2VD

However, as they observe, their OT protocol requires the queried
node to send the entry-wise encrypted data store over which the
OT query is to be conducted back to the client. In their use case,
this data store is simply the small routing table maintained at each
DHT node, which contains O(log n) routing records for a network
of size n. To privately retrieve a file stored in the file store of the
target quorum, Backes et al. suggest optionally extending this same
OT protocol with one more hop to the target quorum. However,
doing so would require sending the entire encrypted file store back
to the client, resulting in a large communication complexity.

To retrieve a file from a quorum of s nodes, which holds a data-
base of size D bytes, Backes et al’s scheme incurs a communication
complexity of 9, whereas our scheme only has a complexity of
25VD. In Table 1 we contrast the properties provided by Young et
al., Backes et al., and our schemes to DHT clients and compare the
communication complexity for Backes et al’s and our scheme in
providing private file retrieval. We compute the range of values of
D for which our system performs better in Section 7.

4 THREAT MODEL

As mentioned earlier, we build our system atop DHTs as they sup-
port redundant storage of documents and do not suffer from a
single point of failure, which renders them suitable for censorship-
resistant publishing. (Tor and Tor onion services are orthogonal
to our work, as discussed in the non-goals below.) Our adversary
is a single nation-state censor that has an administrative region
of influence; other parts of the world are deemed safe. We con-
sider the case of multiple such censors below. We assume that this
nation-state cannot simply censor the entire system or host an
alternative, as blocking the system entirely would impose an unde-
sirably large social or economic cost to the censor. We recognize
that this collateral-damage assumption may not hold for powerful
nation-state adversaries: such an adversary could coerce its popula-
tion to simply use a publishing system that is not privacy protective.
However, we believe that it is a reasonable assumption that may
hold for many nation-states. We require the same cryptographic
hardness assumptions as Backes et al. [4], namely the GDH problem
for threshold signatures and the DDH problem for the OT protocol.

Our adversary’s goals are to determine which document was
retrieved in a particular content retrieval request and to prevent the
operator from responding correctly to a request. Our adversary has
several capabilities that it can exploit towards furthering its goals.
First, the censor may observe the network traffic within its region

of influence, possibly using deep packet inspection techniques on
any plaintext data. Second, the censor can search for sensitive
content by posing as a client and can map files to virtual addresses
of nodes that store them. Third, the censor’s control over nodes in
the network is bounded; in particular, for a network with n honest
nodes, the censor may insert up to € - n malicious nodes, where
€ ~ 0.02. The censor may remove these nodes from the network in
the future, and have them rejoin the network, which would allow
the node to join a different quorum.

Multiple nation-state censors may be interested in censoring
different content or content retrieval requests across nodes within
their respective regions of influence. Since nodes operated by one
nation-state censor may collude with those operated by another
censor, we require that the ratio of nodes controlled by all these
censors, to non-controlled nodes, is less than €. These nodes may
behave as Byzantine nodes by, for example, responding to routing
requests with incorrect responses, in an attempt to misdirect a
client’s routing request towards other Byzantine nodes. They may
also collude and share the content retrieval requests that they obtain,
or forward them to the censor. These censor-controlled nodes may
also simply fail, by not replying to queries. Furthermore, they may
attempt to inundate honest nodes with routing or content request
messages at the application layer.

Finally, the censor cannot dynamically compromise existing
nodes; that is, it cannot coerce honest nodes within its region of
influence to act as Byzantine or failing nodes. It may not compel
honest nodes to retain (and share) the content retrieval requests
they receive. (Note that honest nodes in a given quorum would be
geographically distributed in arbitrary administrative regions and
may be out of the censor’s region of influence.) The censor may
not block communication between honest nodes.

Our interface provides the following guarantees in the face of
this adversary:

e Minimizing data within the content of document retrieval
queries — honest server operator nodes and small coalitions
of Byzantine nodes within a quorum do not learn which
document was retrieved.

e Correct responses to document retrieval requests — a doc-
ument retrieval request will be answered correctly, even if
censor-controlled nodes provide incorrect or no responses.

Non-goals: We do not provide any additional protections over
content publishing requests. Although we use RCP’s spam-limiting
feature to prevent DoS amplification for the DHTPIR protocol mes-
sages, protecting nodes from general DoS attacks is orthogonal to
this work. We do not aim to protect the client’s identity, and thus,
we also do not prevent adversaries from targeting clients, such as by
traffic analysis. Regarding the first goal, although nodes controlled
by the adversary that lie within the quorum from which the file
is fetched also cannot learn which file was retrieved by colluding
among themselves, they may collude with nodes from other quo-
rums. By learning the set of quorums from which files were fetched,
they may determine which document was fetched, in a quorum
fingerprinting attack; we do not aim to protect against this attack,
as DHTPIR aims to protect server nodes, and not directly clients.

DHTPIR may be instantiated over Tor onion services to pro-
vide client anonymity. However, Tor itself does not support the

Cerors >
CoHTPIR>

(@) (o> Tm)
<

FIGURE 2: API interfaces required by, and provided by, our
DHTPIR interface. The bold red ellipse represents our inter-
face, and the grey ellipses show the layers of APIs required
by our interface. The white ellipse represents an existing sys-
tem within which our interface can be used in order to pro-
vide document retrieval privacy, in addition to the robust
routing and in-path privacy provided by the lower layers.

redundant storage of documents that is afforded by peer-to-peer
networks like DHTs. Although Tor onion services may have mul-
tiple physical servers serving the same onion service, all servers
must share a private key, putting them under shared administrative
control. In this sense, Tor onion services suffer from a single point
of failure, unlike DHTs. As node operators of Tor onion services
learn which document was retrieved through a given document
retrieval request, they do not have plausible deniability over the
content of such requests. Tor exit node operators have been blamed,
and even charged, for retrieving content that a client had retrieved
through their node [11]; privacy-enhancing technologies that pre-
vent the operators from being exposed to the information they store
or forward may decrease such risks.

5 OUR DESIGN

We first begin with an overview of our interface for integrating
private file retrieval to DHT-based censorship-resistant publishing
systems. We begin with a description of the building blocks that our
interface requires, and then describe our implementation of this
interface, while analyzing possible Byzantine behaviour. Through
this analysis, we motivate the constraints that our instantiations of
the building blocks must follow.

5.1 Building blocks

Our interface can be used within censorship-resistant publishing
systems, such as Vasserman et al.’s CROPS [33], to insert files into
quorums through the DHTPIRputFile function and to query quo-
rums privately for files through the DHTPIRfindFile function, both
provided by our DHTPIR API. Functions in the DHTPIR interface
invoke existing protocols in layers, depicted in Figure 2. A list of
all API functions can be found for reference in Appendix A.

We use Backes et al’s query privacy (QP) protocol to privately
fetch the desired quorum’s routing information; the corresponding
function constitutes the QP API layer. (This protocol internally
invokes Young et al’s RCP schemes.) We provide a QUORUM API

Miti Mazmudar, Stan Gurtler, and lan Goldberg

layer to support inter-quorum communication, given the target
quorum’s routing information. We use Goldberg’s IT-PIR algorithm
to privately fetch files from the target quorum; functions to generate,
perform, and process PIR queries form the PIR API layer. We rely on
Sen and Freedman’s commensal cuckoo-hashing technique [26] to
establish quorums across the DHT; that is, to assign node addresses
and quorum neighbours to new nodes joining it. We briefly describe
functions at the QP, QUORUM, and PIR layers below.

QP layer: The client uses the QPgetTargetQuorum function to
obtain the routing information of the target quorum while preserv-
ing the confidentiality of the file’s identifier from all nodes in the
DHT. This function executes Backes et al’s RCP-gp-I or RCP-gp-II
algorithms for the input file identifier id. This function obtains the
target quorums’ nodes’ network addresses [Aj, - - - As] and public
encryption keys [PKj, - - - PK;] from one of the quorum’s neigh-
bours. It also obtains a proof ¢ of robust communication from that
neighbour. The proof shows that the given client node sent a legit-
imate request to contact the target quorum, through a signature
over the node’s network address (A), its public key (PK) and a times-
tamp ts (¢ in our notation is equivalent to Sy_; for a query path
length ¢ in Backes et al.’s notation). Finally, this function returns a
verification key VK, obtained from the target quorum’s neighbour,
which allows the client to verify messages signed by a threshold
number of nodes in the target quorum.

QUORUM layer: The client uses the QUORUMsendQuery func-
tion for sending an encrypted message to each of the nodes in a
target quorum and obtaining a reply from them, given the nodes’
addresses ([A1, - - - As]) and public keys [PK7, - - PKg] as well as a
proof of robust communication ¢. This function can also be con-
figured to send a single message to an arbitrary quorum node,
retrying with different nodes until it obtains a valid reply. The re-
cipient nodes in the target quorum listen for messages from other
nodes in the QUORUMqueryListener function. Depending on the
flags in the message, a recipient node may be delegated to forward
different values back to its peers and send a response from these
peers back to the client node. All honest nodes regularly execute a
Byzantine agreement protocol among themselves to guarantee that
they agree on the state of the database (including a perfect hash
function as we discuss later) stored at other honest nodes.

PIR layer: We observe that all nodes in a quorum share the same
database of files; we provide an overview of the join protocol that
enables this shared state at the end of this section. The client uses
the PIRgetQueryVectors and PlIRrecreateFile functions to generate
and process IT-PIR queries while the target quorum’s nodes use
the PIRperformQuery function to perform the IT-PIR query itself.
Perfect hash functions (PHFs) [6] are often used within PIR schemes
to map a set of keywords for documents stored at server nodes
to a set of indices, such that the client can simply compute the
desired index if it knows the keyword. The client obtains the PHF
f beforehand using the DHTPIRfindFile function, and then passes
it as an input to the PIRgetQueryVectors function, along with the
desired file identifier id and the number of (server) nodes s. This
function computes the index at which the desired file will be stored,
by computing the value of f for the key id, and obtains an index i.
It then creates s query vectors such that when responses to these
vectors are combined in the PIRrecreateFile function, they will
result in file i of the PIR database.

Do you feel a chill? Using PIR against chilling effects for censorship-resistant publishing

11

10

7 8

FIGURE 3: Layers of protocols used within our work. Quo-
rums are numbered and shown in purple ovals. Node p from
quorum 1 wishes to fetch a file that is stored by quorum
8. Routing table (RT) entries maintained by quorum 1 are
shown by dotted lines. Quorum 1 uses the QP protocol to
query quorum 7 (grey background lines), whose RT entry it
knows. Quorum 7 then provides the RT entries for quorum
8, which is queried again through QP. PHF and PIR requests
and responses are shown in solid lines; node p fetches the
PHF from quorum 8, and then sends a PIR request to each
node in quorum 8, from which it obtains a PIR response, to
reconstruct the file.

The PIRrecreateFile function reconstructs the file from s PIR
query responses using Goldberg’s EASYRECOVER algorithm [12,
Fig.3]. We show in Section 6 that the preconditions for using this ef-
ficient algorithm are met. The PIRperformQuery function computes
a matrix multiplication of the query vector with a block-wise field
representation of the database, using Goldberg’s IT-PIR routine [12,
Fig.2].

5.2 Our interface

We present our functions for searching for a file, namely DHT-
PIRfindFile, and inserting a file, namely DHTPIRputFile, shown in
Algorithms 1 and 2, respectively. Both of these functions expect
at least an identifier for the file to be inserted or searched. These
functions use this identifier to locate the file within the DHT (as
in regular DHTs), with the exception that in our case, we wish to
locate all nodes in a quorum; that is, a set of nodes in the DHT,
all of which will store the file. Specifically, both functions execute
the Query Privacy API function QPgetTargetQuorum with this
identifier (id) to obtain network addresses and long-term public
keys of the quorum’s s nodes ([(A1, PK1), - - - (As, PK5)]), a proof
¢ of robust communication from a quorum linked to the target
quorum, and finally, a verification key VK to verify messages that
are signed by a threshold of the target quorum nodes (lines 2—-4).
We motivate rest of these functions by starting with a simple
protocol for each function and then optimizing its communication

Algorithm 1 Our file search function

function DHTPIRFINDFILE(id)
: dest « QPgetTargetQuorum(id)

1:
2
3 [(A1, PK1), -+ - (As, PKs)]lIIIVK < dest
4: nodes < [(A1, PK1), - - - (As, PK)]
5. msg — “SEARCH_PHF_PARAMS”
6 reply || sig <~ QUORUMsendQuery(¢, nodes, msg)
7 PHF || ts « reply

8 if verifySig(reply, sig, VK) == False then

9: return Error: “Could not verify PHF shares.”
10: end if

11 if ts + Current time > T then
12: return Error: “Got Expired PHF”
13: end if

14: queries «<— PIRgetQueryVectors(id, PHF, s)

15: msg «— “SEARCH_PIR_QUERIES” || queries

16: blocks «— QUORUMsendQuery(¢, nodes, msg)
17: file « PIRrecreateFile(blocks)

18: return file

19: end function

complexity. While designing the optimized protocols, we ensure
that we meet the goals mentioned in Section 4, namely, we guaran-
tee that an honest node, or a bounded-size coalition of Byzantine
nodes in a quorum, cannot learn the content of a client’s file re-
trieval query. We also meet the second aforementioned goal, that
is, such a coalition of Byzantine nodes cannot cause a legitimate
search or insertion query to be executed incorrectly or dropped.
Additionally, we explore what actions a Byzantine client node can
perform and consequently, we equip honest nodes with signature
verification and rate-limiting mechanisms to detect Byzantine client
nodes that attempt to overwhelm them with DHTPIR messages.
File retrieval: We illustrate the file retrieval process in Figure 3.
To conduct a search query, the client needs to identify the index of
its file in the target quorum’s nodes’ database. To do so, it obtains
the perfect hash function (PHF) used in that quorum; we detail this
step shortly. Through a call to the PIRgetQueryVectors function,
the client computes the index of the desired file identifier id using
the PHF and constructs s PIR query vectors (lines 14-15). It sends
one vector to each node and obtains all PIR responses through the
QUORUMsendQuery function (line 16). The client reconstructs the
file using these PIR responses through the PIRrecreateFile function
(line 17). We parameterize the threshold for the IT-PIR scheme
as follows (references for these and subsequent constraints to the
relevant inequalities are included in Section 6).
Constraints for threshold of IT-PIR scheme:
1. Byzantine nodes in a quorum cannot reconstruct a PIR
response through collusion (inequality 6).
2. Honest nodes can efficiently reconstruct the desired file,
when a given fraction of nodes per quorum is Byzantine
(inequality 7).

Naively, the client could obtain the PHF by simply querying each
node in the target quorum and majority filtering the received re-
sponses. Since all target nodes must agree on a PHF for indexing

the database, ostensibly the client could query one target node for
the PHF. (We describe PHF computation while discussing our file
insertion function.) However, this delegate node may be Byzantine
and may simply not respond. In this case, through the QUORUM-
sendQuery function, the client retries sending the message to a
different node until it receives a reply (lines 5-6). (Again, we ob-
serve that eventually the sending node will reach an honest node
as only a minority of nodes in the quorum are Byzantine.)

A Byzantine delegate node may also collude with other Byzan-
tine nodes to send a PHF that is built after excluding certain files’
indices from the input set, or after swapping some files’ indices
around. Thus, the client should receive a confirmation from enough
honest nodes in the quorum that a valid PHF was returned. There-
fore, the delegate node obtains signature shares over a hash of the
PHF and sends the threshold signature back to the client. As the
client knows the quorum verification key VK, it can verify this
signature (lines 6-10). Yet, a Byzantine node may simply return a
valid PHF and signature shares that reflect the state of the database
in the past. To guarantee freshness, we require the delegate node
to concatenate a timestamp with the PHF, before computing the
signature shares (lines 11-13). We parameterize the threshold for
Young et al.s threshold signature scheme as follows.

Constraints for Young et al.’s threshold signature scheme (in-
equality 2):
3. Byzantine nodes cannot produce enough valid signature
shares through collusion.
4. Byzantine nodes cannot prevent the reconstruction of a
signature by simply failing to respond.

File insertion: We present our file insertion function in Algo-
rithm 2. Intuitively, for inserting a file into the target quorum, the
client needs to send its copy to each node in the target quorum. To
preserve the confidentiality and integrity of the file content, con-
sider a baseline wherein the client encrypts the file to each of the
target nodes, given their public keys PK.. Again, as an optimization,
it could send the file to only one of the nodes that acts as a delegate
node and forwards the file to all other nodes in the quorum. We
deploy the same technique as for the PHF, to ensure that these
nodes get the correct file, namely, the delegate node should return
threshold signature shares over a hash of the file to the client (line
6). The client ensures that the signature is over the expected hash
of the file (lines 7-9) and verifies it using the quorum’s verification
key VK (lines 10-12).

A Byzantine delegate node may send the file to only a minimum
number of honest nodes in the quorum such that it can compose
a threshold signature over the hash of the file, to reply seemingly
honestly to the client. When the nodes synchronize their data store
through a Byzantine agreement protocol, it can deny having ob-
tained such a file, and thus render the honest nodes as malicious or
de-synchronized [7]. We specifically parameterize the fraction of
Byzantine nodes as follows.

Constraint for desynchronization attack [7]:
5. The number of honest nodes that retain this file at the
end of the aforementioned attack is sufficient to run the
Byzantine agreement protocol correctly (inequality 5)

Miti Mazmudar, Stan Gurtler, and lan Goldberg

Algorithm 2 Our file insertion function

function DHTPIRPUTFILE(id, F)
: dest « QPgetTargetQuorum(id)

1:

2

5 [(A1, PK1), - - (As, PK)]l|IIVK « dest

4: nodes < [(A1, PK1), - - - (As, PKs)]

5. msg — “INSERT_FORWARD” || F

6 reply || sig <~ QUORUMsendQuery(¢, nodes, msg)

7 if reply # Hash(F) then

8 return Error: “Did not get the correct hash of the file
in response.”

9: end if

10: if verifySig(reply, sig, VK) == False then

11: Error: “Could not verify the signature of the remote
quorum.”

12: end if

13: return

14: end function

Finally, we remark that a minority of Byzantine nodes that re-
ceive any file may not store it at all; instead, they may simply
compute the requisite hashes for insertion queries and drop all
search queries. Within our model, we assume that all honest nodes
follow all protocols correctly and therefore, that they store the files.
Thus, given our goodness invariant holds, enough honest nodes will
reply back with correct response blocks to future search queries,
such that the impact of the lazy Byzantine nodes is nullified.

PHF updates: The target quorum’s nodes can recompute a PHF
after each file insertion, or in occasional batches, at the cost of
temporary file retrieval misses until the insertion protocol fully
completes. We remark that the PHF computation cost is very small
— approximately 0.25 us per file in the database. Therefore, if nodes
receive a file retrieval request while re-computing the PHF, the
impact on latency due to the PHF computation is negligible, as evi-
denced in our latency simulation experiments. In other words, the
PHF recomputation does not necessitate a period of quiescence or
low network churn. After recomputing the PHF, each node should
recompute its own signature share over the PHF and broadcast it to
other nodes in the quorum. Any node that is chosen as a delegate
node may then respond with the updated PHF and signature shares.

Byzantine client node: We have assumed so far that the client
behaves as an honest node, that is, it runs the QUORUMsendQuery
function correctly. However, the client may spam a target quorum’s
nodes through an incorrect execution of this function. We now
describe rate-limiting mitigations for spamming attacks within the
recipient node’s QUORUMqueryListener function.

The receiving node expects each incoming message to contain a
valid proof. This check extends to file insertion messages forwarded
by a delegate node, thereby preventing a Byzantine delegate node
from inundating other nodes with fake insertion messages. As
mentioned within the QP layer description in Section 5.1, a valid
proof should consist of a signature o of a neighbouring quorum
over the new node’s network address A4, its public key PK, and
a timestamp ts. The receiving node only accepts a proof that is
obtained within a predetermined time interval T of the timestamp
ts from the network address A.

Do you feel a chill? Using PIR against chilling effects for censorship-resistant publishing

TaBLE 2: Notation for security constraints

Number of peers in the network

Network-wide ratio of Byzantine nodes to honest nodes
Total number of peers in a quorum

Honest peers in a quorum that reply to an IT-PIR query
Byzantine peers in a quorum (includes failing nodes)

Max colluding peers for IT-PIR queries [12]

Threshold for Young et al’s threshold signature scheme [36]

N TS a3

With these restrictions, a Byzantine client can only spam a re-
ceiving node within a time interval of T units from the timestamp
in the proof, and may only do so by sending messages with the
network address that is in the proof. Furthermore, the receiving
node ensures that a valid proof will only be processed once for
each different flag in the accompanying message within the time
interval T. This check allows for an honest node to use a valid proof
to conduct one insertion query and one search query with a target
quorum.

Join protocol: We provide a brief overview of the join protocol
here and explicate it further, along with the leave protocol, in Ap-
pendix B. We use Sen and Freedman’s commensal cuckoo rule [26]
to assign addresses to primary and secondary joining nodes. We
use threshold signatures within Young et al’s robust communica-
tion protocols [36] to securely notify quorums of these joins, and
to securely transfer the stored database to these nodes. We also
describe the leave protocol in Appendix B. As we run Kate and
Goldberg’s distributed key generation (DKG) scheme [17] within
the join and leave protocols to redistribute a secret throughout
the quorum, we must ensure that its pre-requisite is met. We thus
obtain the following constraint:

Constraint for DKG [17]:

6. The fraction of Byzantine nodes per quorum should sat-
isfy the upper bound for the DKG protocol (inequality 3).

6 SECURITY PARAMETERS ANALYSIS

In this section, we show that as long as the fraction of Byzantine
nodes per quorum is less than %, constraints 1-6, which were iden-
tified in the previous section, hold. We present the notation used
in our analysis in Table 2. We first establish some invariants using
this notation.

Invariants: Out of s peers in a quorum, a large number of h
peers provide honest replies whereas the rest of the peers, say b,
are Byzantine and either fail to provide a reply or provide incorrect
replies. Thus, we have that s = h + b. This equation holds in each
quorum of s nodes in the network, which may have varying sizes.
However, the particular value of s is irrelevant for the following
calculations, and thus we normalize our equations by dividing by
s and denote the resulting fractions by appending a subscript 0 to
the original symbols, yielding the following, where by < hy:

ho=1-by (1)

RCP constraints: The threshold for Young et al’s threshold
signature scheme, namely 7, is bound by constraints 3 and 4, as

follows.

bo <79 < ho=1-bo (2)
The DKG protocol used by Young et al’s scheme imposes the fol-
lowing bound on by (constraint 6):

s>3b+16&1>3b+1 (3)

These threshold signature shares are used to indicate a change of the
state of the quorum upon insertion of a file. As a node is delegated to
forward file insertion requests to all other nodes, we must prevent
the desynchronization attack that was described in Section 5 to
motivate constraint 5. We detail this attack here.

A Byzantine node might only forward such a request to its fel-
low Byzantine nodes and the minimum number of honest nodes
required to obtain a threshold signature (7 —b nodes in our case) and
then collude with other Byzantine nodes to pretend that it never
obtained such a file. In this case, only 7 — b nodes retain a copy of
the new file whereas the remaining s — (r — b) do not have such
a copy. For the Byzantine agreement protocol that synchronizes
the state of the data store across different nodes to be successful, a
majority of nodes must retain a copy of the newly inserted file. That
is, we must have 7 — b > s — (r — b). Equivalently, after substituting
equation 1, we obtain 79 > by + %

As this inequality tightens the lower bound in inequality 2, we
obtain the following range for 7o:

bo+%<l’o$l—bo 4)
This inequality is satisfiable as long as:
by < 1 %)

Note that any admissible value of by that satisfies inequality 5 also
satisfies inequality 3.

IT-PIR: In our notation, at most ¢t nodes can collude without
being able to reconstruct the desired row of a database from an
IT-PIR query. As all of the b Byzantine nodes in a quorum may
collude, constraint 1 requires that ¢ can only be as small as the
number of Byzantine nodes:

t>b (6)
Second, Goldberg shows that if the following condition holds, a
client can guarantee efficient reconstruction of the desired row

from the responses of the s peers, b of which may be Byzantine and
thus send incorrect responses, so to satisfy constraint 2, we need:

h> St o by > 130 ()
Substituting equation 1 and simplifying, we get:
1> 2by + ty (8)

Therefore, as expected, with an increase in the fraction of Byzantine
peers, the IT-PIR threshold should decrease in order to reconstruct
the message, without any other changes. Inequalities 6 and 8 con-
strain the range of this threshold, as follows.

1—2by >ty = by)

For a value of t; that satisfies inequality 9 to exist, the difference
between the upper and lower bounds of that inequality should be
strictly greater than %, as follows.

1>3bo+1 (10)

Any admissible by that satisfies the strictest inequality for Young
et al’s protocols, that is, inequality 5, also satisfies the strictest
inequality for Goldberg’s IT-PIR scheme, that is, inequality 10. Our
requirement that the fractions of Byzantine nodes in each quorum
be strictly less than ‘—1} is therefore sufficient for the requirements of
Young et al’s robust quorums, and also Goldberg’s IT-PIR scheme.

Quorum size/e trade-off: For a network with at most n nodes,
the desired average size of quorums formed through the commensal
cuckoo rule can be set beforehand to 5. The adversary can only
insert at most € - n nodes into this network and re-join these nodes,
as per the join protocol in Appendix B, in an attempt to overwhelm
a quorum. Increasing the target § allows us to increase € at the
expense of a greater intra-quorum communication cost.

We extend Sen and Freedman'’s [26] simulation and we estimate
the maximum value of € that can allow only by < 711 of each quorum
to be malicious. We conduct the simulations across a range of
network sizes (n) and over 100K rounds of re-join attempts. We
find that small networks (n = 6400, 12800) can sustain € up to 0.03,
while maintaining a desired average quorum size of § = 25 and
reaching a maximum observed quorum size of s = 74. When larger
networks (n = 10 - 2} | 1 = 18,19,20) were configured with a
slightly smaller target average quorum size of § = 20, the maximum
observed quorum size was less than 75, and can withstand € up to
0.02. Therefore, even for large network sizes, we conclude that the
commensal cuckoo rule can construct reasonably sized quorums
that satisfy the by < § constraint.

7 COMPLEXITY ANALYSIS

In this section, we analyze the performance of our system in terms of
its message and communication complexity for the client and server
nodes, for file insertions and retrievals. In terms of computation
complexity, our PIR-based [12] file retrieval function only requires
efficient Lagrange interpolation for the client. Recent improvements
in optimizing Lagrange interpolation [31] can be utilized in an
implementation of our scheme, to allow for fast reconstruction of
files from blocks returned by the s nodes of the target quorum.

Before the client can send search or insertion queries, it needs to
obtain the routing information of the target quorum through the
QPgetTargetQuorum function. The message complexity incurred
by the client in this call depends on whether RCP-I or RCP-1I is
chosen; as discussed in Section 2, RCP-I has a deterministic message
complexity of O(s - £) whereas RCP-II has a randomized expected
message complexity of O(¢ +).

First, we show that the message complexity of our insertion
and search algorithms is O(s). As ¢ will be O(log n) in expectation
and quorums are of size s = ©(logn), O(s) = O({), the message
complexity to run the whole protocol is determined by which of
the two aforementioned protocols is chosen. Second, we compare
the message complexity for the target quorum to participate in our
PIR-based protocol to the case when the quorum participates in
Backes et al’s OT-based one.

When an honest node in the target quorum is delegated to insert
a file or respond with a PHF, it exchanges a round of messages with
other nodes in the quorum (2 - (s — 1) = O(s) messages) to obtain
threshold signatures over the file or PHF hashes. Consider the
baseline discussed previously in Section 5 wherein for file insertion,

10

Miti Mazmudar, Stan Gurtler, and lan Goldberg

the client simply sends the file to all nodes, without requiring any
acknowledgements back, or, for PHF retrieval, the client expects a
PHF back from all nodes. As compared to this baseline, the target
quorum incurs an identical message complexity, namely O(s) for the
entirety of file insertion, or for PHF retrieval; the messages are sent
within the quorum, instead of to the client. However, the client may
send the file or PHF request messages to multiple Byzantine nodes
that drop them, and thus keep resending them until it reaches an
honest node. Modelling the number of times that a node needs to be
sampled, without replacement, until a single honest node is found,
as a negative hypergeometric distribution, the expected number of
nodes contacted is upper bounded by hl Thus the client incurs a
lower message complexity (by a factor of hg), for file insertion and
PHF retrieval, than the baseline.!

In the next step for file retrieval, the client sends s PIR query
vectors, each of size VO [12]. The client thus sends a total of % +s
messages and thus the message complexity for the client for file
retrieval is O(s). As each PIR query vector is of size VD, the total
communication complexity of the messages sent by the client will
bes- VD +s=0O(s - VD).

Suppose that each node in the target quorum stores o doc-
ument chunks, each of which is L bytes long, that is, a total of
D = Fp - L bytes. Botelho et al’s perfect hash function construc-
tion [6] for indexing these chunks allows the delegate node to send
the PHF in x - o bytes, where .243 < x < .3375. Each PIR re-

sponse is of size VD bytes [12]. When all Byzantine nodes send
PIR responses, along with the honest nodes, the quorum incurs a
worst-case communication complexity of s- VD bytes. Note that the
large PIR responses outweigh the small PHFs for the communica-
tion complexity of the target quorum for reasonably sized quorums
and numbers of stored files per quorum.

In contrast, consider Backes et al’s proposed extension to their
OT-based QP-RCP protocols, so that OT is used to retrieve the file
itself privately from the data store in the target quorum. In this
case, a delegate node responds back with the entry-wise encrypted
data store that is FoL bytes long as well as a total of 2 - F5 + 1 OT
parameters, each of a small constant length y bytes. For our scheme
to incur a lower communication complexity for the target quorum
than Backes et al’s, we must have:

s-\/E+K-TQ <D+QFg+1)-y
Ask < 2y < L, we drop the terms containing k and y, to obtain:
D=Fg-L>s (11)

The expected number of files per quorum (expected value of Fp)

will be the total number of files in the network (say Fxr) divided by

the number of quorums (%), yielding 57;” . Substituting this value

for Fp into inequality 11, we get the following lower bound on
the number of files in the network for our scheme to have a lower
communication complexity for quorums, than Backes et al.’s:

sn
> p—
FN T

! As the client waits to obtain a response before retrying with another node, it incurs a
higher expected latency in our new scheme than the baseline. The client may send the
file in parallel to multiple delegate nodes for insertion queries, significantly increasing
its chances of reaching an honest node, and reducing the latency at the cost of a higher
message complexity. Similarly, it may query several nodes in parallel for the PHF, each
of which will return the signature over the PHF, for search queries.

(12)

Do you feel a chill? Using PIR against chilling effects for censorship-resistant publishing

As s < L, our scheme requires less communication complexity for
quorums than Backes et al’s private file retrieval variant, when any
reasonably large numbers of files are stored in the network.

8 EVALUATION

The communication and computation costs for retrieving a file for
our system should scale when the number of nodes or users that
connect to the P2P network (n) increases, as well as when the num-
ber of files that are stored in the network (Fy) increases. We have
implemented a simulation of our system in order to evaluate these
costs for the client and target quorums’ nodes in our system. We
briefly describe our simulation, and then we focus on experiments
that demonstrate the scalability of our system with Fpy, although
our simulations show that these costs for our system scale well
with both n and Fj;. We also remark that the communication and
computation costs for publishing documents remain reasonably
low. Our simulation code and output, as well as additional graphs,
can be found at https://git-crysp.uwaterloo.ca/dhtpir/simulations.

Simulation setup: In our simulation, one node serves as the
client and creates Fy randomly generated document chunks, each
of size 1KiB. It stores each chunk on the quorum identified by the
ID of that chunk. The client then attempts to retrieve each chunk
from the network. We individually simulate each of the layers used
within our system: we start with a simple DHT-based P2P network
— a Base DHT that implements file insertion and retrieval. For all
other layers in our simulation, we instantiate ¢ = 100 quorums,
each of which has s = 10 nodes. (We simulated our interface for
(g, s) ranging from (10, 5) to (2000, 16); we discuss results of the
(100, 10) case as it is representative of this range.)

The next layer is a simulation of Young et al’s probabilistic robust
communication protocol (RCP-II) to efficiently route queries across
quorums. That is, our RCP simulation supports file insertion and
retrieval queries by replacing the routing protocol in the Base DHT
simulation with the RCP-II protocol. (We remark that none of the
nodes in our simulation behaves in a Byzantine manner.) We then
simulate Backes et al’s QP extension to Young et al’s RCP-II proto-
col, to conduct private routing queries, in the RCP+QP simulation.
Finally, we include two protocol simulations that enable clients
to privately retrieve files. We simulate our own DHTPIRfindFile
and DHTPIRputFile functions within the DHTPIR simulation. We
also simulate the closest related work, namely extending Backes et
al’s OT protocol for the last hop to the target quorum, in order to
privately retrieve a chunk from it; we refer to this protocol simu-
lation as LastHop. We delegate one node from the target quorum
to conduct the OT-based protocol for LastHop, and use threshold
signatures just as with RCP-QP-IL

For our performance simulation, we use the following estimates
of network and computation speeds. We set the network bandwidth
to 50 Mb/s, and the round-trip time (RTT) to 150 ms. We estimate
the PIR computations to run at the rate of 0.25 s per GB of database,
whereas encryption operations run at 1 GB/s (about 3 cycles/byte
for AES-NI). For all experiments, we increased Fp roughly exponen-
tially, that is, Fg € {10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000}
(A total of Fiy = Fg - q chunks are stored in the network.)

Communication complexity: We plot the total communica-
tion complexities over 25 runs for the DHTPIR, LastHop and RCP+QP

11

Total communication complexity per query vs.
number of chunks per quorum

kel

Y 1084 & RCP+QP+LastHop

E -&-- RCP+QP+DHTPIR, 1 core

¢ 107 -%- RCP+QP -
$> g RCP e

245 10s] - Base ..*""'*

o 3 e

o 3 e il

°% W

oo | e

gewy o p e
€ -SSR
£ 107 g PR @ e reer e rerenen I
8

= 103 T T

10 20 50 100 200 500 1.0k 2.0k 5.0k 10.0k

Number of chunks per quorum (Fq)
(100 quorums, 10 nodes per quorum)

FIGURE 4: Measurement of the total communication complex-
ity of one query for one chunk, including the request and
the response, as the number of chunks stored in each quo-
rum increases roughly exponentially. This plot shows the
average communication complexity over 25 runs of the sim-
ulation. Note the logarithmic scales. Error bars are shown,
but they are too small to see.

simulations in Figure 4. For the LastHop simulation, as explained
earlier, the OT request sent by the client is constant in size with
respect to increasing Fg, whereas the OT setup and response sent
by the delegate node is proportional to Fg in size. Thus, the total
communication complexity of the LastHop simulation increases
linearly in Fg in Figure 4.

In contrast, DHTPIR provides a smaller communication complex-
ity for file retrieval responses, at the cost of a larger communication
complexity for the corresponding requests. The total communica-
tion complexity overhead of DHTPIR over RCP includes the cost
for the PHF request, PIR request and PIR response. This overhead
increases by approximately the asymptotic amount (s - m) of
bytes discussed in Section 7, as expected.

Performance simulations: We measure the latency of DHT-
PIR and LastHop simulations to retrieve a file. We also measure
their throughput in terms of number of simultaneous clients’ file
retrieval requests that can be handled by the entire system. (We mea-
sure the latency and throughput of routing requests for RCP+QP, as
routing requests are the bottleneck for that protocol, which has no
privacy protection for the actual retrieval.) We plot the latencies of
these three systems as Fg increases in Figure 5a. Both LastHop and
DHTPIR incur two additional round trips over RCP+QP: to obtain
PHF or OT parameters and then to obtain a PIR or OT response.
However, as LastHop includes the entire database (up to ~ 10 MB in
the figure) within the OT response, we can see in Figure 5a that as
the number of chunks per quorum (Fgp) increases, LastHop incurs
a linearly increasing latency overhead over RCP+QP. On the other
hand, for DHTPIR, as the PIR requests and responses only grow
proportional to \/F_ , we do not observe a significant increase in
latency due to computational costs or communication costs, over
the range of Fp in Figure 5a.

We plot the throughput of RCP+QP, LastHop, and DHTPIR as Fp
increases in Figure 5b. For LastHop, as only a single delegate node
in the target quorum may compute the OT response (and computing

https://git-crysp.uwaterloo.ca/dhtpir/simulations

Latency per query vs.
number of chunks per quorum

5
= --§- RCP+QP+LastHop
g 4] -F=- RCP+QP+DHTPIR, 1 core -
g -F- RCP+QP
> A
o3 e
Sw |
NI i it et stivets sisiofivits. Sieist St IS See 3
g 2
>
()
C
o 1
2
@
-
0 : : . :
10 20 50 100 200 500 1.0k 2.0k 5.0k 10.0k
Number of chunks per quorum (Fq)
(100 quorums, 10 nodes per quorum)
Throughput vs. number of chunks per quorum
S B
= =—“_:-:-+-—-A- - e S S —
@@ 10° T &
%’ 8 e e
52 e
58 10 4 T
gﬁ -4~ RCP+QP T
o< RCP+QP+DHTPIR, 2 cores T
g 1034 ~%=- RCP+QP+DHTPIR, 1 core T
= - RCP+QP+LastHop s
10 20 50 100 200 500 1.0k 2.0k 5.0k 10.0k

Number of chunks per quorum (Fq)
(100 quorums, 10 nodes per quorum)

FIGURE 5: Measurement of the (a) latency and (b) throughput,
as the number of chunks stored in each quorum increases
roughly exponentially. These plots show the average latency
and throughput over 25 runs of the simulation. Note the log-
arithmic y-axis in (b). Error bars are shown, but they are too
small to see.

threshold signatures is much faster), multiple nodes can process dis-
tinct OT requests in parallel. For DHTPIR, each node participates in
computing the PIR response for a single PIR request; adding another
core allows for parallel processing of multiple distinct PIR requests.
(Adding more cores has quickly diminishing effects, however, as
the network speed soon becomes the bottleneck.)

We can see in Figure 5b that DHTPIR experiences a small con-
stant drop in its throughput over RCP, until Fp ~ 2000 — it stays
network-limited in this range — beyond which, adding another core
results in a significant improvement in throughput, which can be
extrapolated to expand with database size. Thus, DHTPIR affords
opportunities to optimize its throughput for nodes that store large
databases, through multi-core processing. (We do not consider pro-
cessing a single PIR request across multiple cores or threads; though
efficient parallelizable matrix multiplication algorithms can be used
to achieve even greater throughput for DHTPIR [20].) Even though
each node in LastHop can process multiple distinct OT requests in
parallel, it incurs a large reduction in throughput as compared to
RCP, proportional to the size of the database (Fg - L). As LastHop
is significantly network limited, adding more cores would not in-
crease its throughput. DHTPIR thus achieves a throughput that is

12

Miti Mazmudar, Stan Gurtler, and lan Goldberg

about two orders of magnitude larger than LastHop and this gap
widens with database size.

Our performance simulations show that DHTPIR incurs almost
no change in latency and only a modest drop in throughput over
the baseline RCP+QP simulation (which again does not protect
the privacy of the queries from the target quorum at all), across
increasing database sizes. DHTPIR shows a marked improvement
in latency and throughput across larger databases over LastHop,
and scales significantly better in comparison. Our simulation thus
provides us reasonable grounds to believe in the efficiency of a
DHTPIR implementation.

9 DEPLOYMENT

Although we have focused on CROPS in order to motivate our
interface, an implementation of our interface can be used to pub-
lish and privately retrieve a block of data within other publishing
systems, such as in Tangler. Moreover, designers of an upcoming dis-
tributed file storage system, namely the Interplanetary File System
(IPFS), have proposed establishing quorums [16] as well as privately
fetching content from nodes using Young et al. and Backes et al’s
systems [13], among other privacy features [23]. As our design in-
tegrates the aforementioned systems, it would be a useful starting
point to implementing such proposals to provide plausible deniabil-
ity for server nodes. Our design can also support other applications
that are built atop DHTs, such as distributed health and medical
data repositories. A system like ours is also useful to integrate into
DHTs used for commercial settings, to minimize the amount of
potentially sensitive data nodes can collect.

In the CRP setting, we rely on the developers of the underly-
ing CRP system to provide methods to bootstrap a user with the
complete client-side software, which would include a DHTPIR im-
plementation. For instance, a service like GetTor [24] can be used
to deliver the software. To join the network, DHT-based systems
typically require a new node to contact a node from a small list of
permanently online nodes [25], which is included in the software
package. These nodes are trusted to provide correct routing infor-
mation; that is, to not conduct an eclipse attack. For a CRP system
that uses DHTPIR, including the quorum verification keys of these
nodes’ current quorums with this list allows a new node to detect
and prevent an eclipse attack, through the robust communication
protocols. Similarly, we also rely on popular adoption of the un-
derlying CRP system. For instance, the system can be seeded with
popular, non-prohibited content, thereby inflicting a high collateral
damage onto the censor if the entire system were to be banned.

10 CONCLUSION

Censorship-resistant publishing systems are built atop DHTs and
enable users to store sensitive documents onto multiple server
nodes in different administrative regions, such that a censor cannot
easily take down or tamper with the published content. Server
node administrators may be compelled by censors to reveal the
documents retrieved by a given user. We propose an interface that
uses information-theoretic private information retrieval (IT-PIR) to
prevent node operators from being exposed to information about
which document was retrieved.

Do you feel a chill? Using PIR against chilling effects for censorship-resistant publishing

We integrate existing work on hardening peer-to-peer networks
so that quorums of nodes only contain at most a certain fraction of
Byzantine nodes; we allow the censor to run such colluding Byzan-
tine nodes. Our key insight lies in using quorums as a coalition of
server nodes that store a set of files over which IT-PIR queries can be
performed. We simulate our system and find that its total communi-
cation cost is up to two orders of magnitude smaller than the closest
related work, while simultaneously achieving lower latency and
higher, parallelizable throughput, all of which scale reasonably with
the database size. We hope that our design spurs further research
and development efforts into building robust censorship-resistant
publishing systems.

ACKNOWLEDGMENTS

We thank the Royal Bank of Canada and NSERC grant CRDP]J-
534381 for funding this work. This research was undertaken, in
part, thanks to funding from the Canada Research Chairs program.
This work benefitted from the use of the CrySP RIPPLE Facility at
the University of Waterloo.

REFERENCES

[1] Carlos Aguilar-Melchor, Joris Barrier, Laurent Fousse, and Marc-Olivier Killijian.
2016. XPIR: Private Information Retrieval for Everyone. Proceedings on Privacy
Enhancing Technologies 2016, 2 (2016), 155-174.

Sebastian Angel, Hao Chen, Kim Laine, and Srinath Setty. 2018. PIR with Com-

pressed Queries and Amortized Query Processing. In 2018 IEEE Symposium on

Security and Privacy (SP). IEEE, 962-979.

[3] Baruch Awerbuch and Christian Scheideler. 2009. Towards a Scalable and Robust
DHT. Theory of Computing Systems 45, 2 (2009), 234-260. https://doi.org/10.
1007/s00224-008-9099-9

[4] Michael Backes, Ian Goldberg, Aniket Kate, and Tomas Toft. 2012. Adding Query
Privacy to Robust DHTs. In 7th ACM Symposium on Information, Computer and
Communications Security (Seoul, Korea) (ASIACCS ’12). 30-31.

[5] Ingmar Baumgart and Sebastian Mies. 2007. S/Kademlia: A practicable approach
towards secure key-based routing. In 2007 International Conference on Parallel
and Distributed Systems. IEEE, 1-8.

[6] Fabiano C. Botelho, Rasmus Pagh, and Nivio Ziviani. 2013. Practical Perfect
Hashing in Nearly Optimal Space. Information Systems 38, 1 (2013), 108-131.
https://doi.org/10.1016/].is.2012.06.002

[7] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance. In
Proceedings of the Third Symposium on Operating Systems Design and Implemen-
tation.

[8] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. 1998. Private

Information Retrieval. Journal of the ACM 45, 6 (1998), 965-981. https://doi.org/

10.1145/293347.293350

Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The Second-

generation Onion Router. In Proceedings of the 13th USENIX Security Symposium

(San Diego, CA). 21-21.

Amos Fiat, Jared Saia, and Maxwell Young. 2005. Making Chord Robust to

Byzantine Attacks. In Proceedings of the 13th Annual European Conference on Al-

gorithms (Palma de Mallorca, Spain) (ESA’05). Springer-Verlag, Berlin, Heidelberg,

803-814.

Eva Galperin. 2017. Access Now and EFF Condemn the Arrest of Tor Node Oper-

ator Dmitry Bogatov in Russia. https://www.eff.org/deeplinks/2017/04/access-

now-and-eff-condemn-arrest-tor-node-operator-dmitry-bogatov-russia.

Tan Goldberg. 2007. Improving the Robustness of Private Information Retrieval.

In 2007 IEEE Symposium on Security and Privacy (SP '07). IEEE, 131-148.

gpestana. 2018. Privacy preserving DHTs. https://github.com/gpestana/notes/

issues/8.

Anne Henochowicz. 2015. The Human Side of Censorship: Keyword Filtering

and Censorship Directives on the Chinese Internet. In Proceedings of the 5th

USENIX Workshop on Free and Open Communications on the Internet (FOCI 2015).

Washington D.C., USA. https://www.usenix.org/sites/default/files/conference/

protected-files/focil5_slides_henochowicz.pdf

Michelle Hertzfield, Jessica Schilling, and Oli Evans. 2019. How IPFS Works -

IPFS Documentation. https://docs.ipfs.io/introduction/how-ipfs-works/.

jbenet. 2015. IPFS Feedback. https://github.com/ipfs/notes/issues/318.

Aniket Kate and Ian Goldberg. 2009. Distributed Key Generation for the Internet.

In 29th IEEE International Conference on Distributed Computing Systems. 119-128.

https://doi.org/10.1109/ICDCS.2009.21

2

=
X0

[10

[11

[12

[13

[14]

[15]

jpanpun
S

13

[18] Jeffrey Knockel, Masashi Crete-Nishihata, Jason Q. Ng, Adam Senft, and Je-
didiah R. Crandall. 2015. Every Rose Has Its Thorn: Censorship and Surveillance
on Social Video Platforms in China. In Proceedings of the 5th USENIX Work-
shop on Free and Open Communications on the Internet (FOCI 2015). Washington
D.C., USA. https://www.usenix.org/system/files/conference/foci15/foci15-paper-
knockel.pdf

[19] J. Liang, N. Naoumov, and K. Ross. 2006. The Index Poisoning Attack in P2P

File Sharing Systems. In Proceedings IEEE International Conference on Computer

Communications INFOCOMM). 1-12. https://doi.org/10.1109/INFOCOM.2006.

232

Wouter Lueks and Ian Goldberg. 2015. Sublinear Scaling for Multi-Client Private

Information Retrieval. In Financial Cryptography and Data Security. 168—186.

Petar Maymounkov and David Maziéres. 2002. Kademlia: A Peer-to-Peer Infor-

mation System Based on the XOR Metric. In Peer-to-Peer Systems, Peter Druschel,

Frans Kaashoek, and Antony Rowstron (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 53-65.

Miti Mazmudar, Stan Gurtler, and Tan Goldberg. 2021. Do you feel a chill? Using

PIR against chilling effects for censorship-resistant publishing. In 20th ACM

Workshop on Privacy in the Electronic Society.

mgoelzer. 2018. [Protocol Design] How to create a fully private DHT. https:

//github.com/libp2p/developer-meetings/issues/6.

The Tor Project. 2020. What is GetTor? https://gettor.torproject.org/.

Jessica Schilling, Chris Waring, and Bertrand Falguiere. 2020. Modify the boot-

strap peers list. https://docs.ipfs.io/how-to/modify-bootstrap-list/.

Siddhartha Sen and Michael J. Freedman. 2012. Commensal Cuckoo: Secure

Group Partitioning for Large-Scale Services. ACM SIGOPS Operating Systems

Review 46, 1 (2012), 33-39. https://doi.org/10.1145/2146382.2146389

Signal. 2016. Grand jury subpoena for Signal user data, Eastern District of

Virginia. https://signal.org/bigbrother/eastern-virginia-grand-jury/.

A Singh, T-W Ngan, P Druschel, and DS Wallach. 2006. Eclipse Attacks on Overlay

Networks: Threats and Defenses. In Proceedings IEEE International Conference on

Computer Communications (INFOCOMM). IEEE, 1-12.

Ton Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakr-

ishnan. 2001. Chord: A Scalable Peer-to-peer Lookup Service for Internet Ap-

plications. In Proceedings of the 2001 Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communications (San Diego, California,

USA) (SIGCOMM °01). 149-160.

Adam Stubblefield and Dan S. Wallach. 2002. Dagster: Censorship-Resistant

Publishing Without Replication. Technical Report. Rice University.

Alin Tomescu, Robert Chen, Yiming Zheng, Ittai Abraham, Benny Pinkas,

Guy Golan Gueta, and Srinivas Devadas. 2020. Towards Scalable Threshold

Cryptosystems. In 2020 IEEE Symposium on Security and Privacy (SP).

Eugene Y. Vasserman, Victor Heorhiadi, Nicholas Hopper, and Yongdae Kim. 2012.

One-Way Indexing for Plausible Deniability in Censorship Resistant Storage. In

Proceedings of the 2nd USENIX Workshop on Free and Open Communications on

the Internet. USENIX, Bellevue, WA.

Eugene Y. Vasserman, Victor Heorhiadi, Yongdae Kim, and Nicholas J. Hopper.

2011. Censorship resistant overlay publishing. Technical Report 11-027. University

of Minnesota.

Marc Waldman and David Maziéres. 2001. Tangler: A Censorship-Resistant

Publishing System Based On Document Entanglements. In Proceedings of the

ACM Conference on Computer and Communications Security. ACM, 126-135.

Marc Waldman, Aviel D. Rubin, and Lorrie Faith Cranor. 2000. Publius: A robust,

tamper-evident, censorship-resistant, web publishing system. In Proceedings of

the 9th USENIX Security Symposium. USENIX, 59-72.

Maxwell Young, Aniket Kate, Ian Goldberg, and Martin Karsten. 2013. Towards

Practical Communication in Byzantine-resistant DHTs. IEEE/ACM Transactions

on Networking 21, 1 (2013), 190-203.

)
&

[33

[34

[35

[36

A APIFUNCTIONS USED AND PROVIDED

As described in Section 5, our interface can be used within censorship-
resistant publishing systems, such as Vasserman et al’s CROPS [33],
to insert files into quorums through the DHTPIRputFile function
and to query quorums privately for files through the DHTPIRfind-
File function, both provided by our DHTPIR API. Functions in the
DHTPIR interface in turn invoke existing QP (which itself invokes
RCP), QUORUM, and PIR protocols in a layered manner, as shown
in Figure 2. A list of all API functions can be found for reference in
Table 3.

https://doi.org/10.1007/s00224-008-9099-9
https://doi.org/10.1007/s00224-008-9099-9
https://doi.org/10.1016/j.is.2012.06.002
https://doi.org/10.1145/293347.293350
https://doi.org/10.1145/293347.293350
https://www.eff.org/deeplinks/2017/04/access-now-and-eff-condemn-arrest-tor-node-operator-dmitry-bogatov-russia
https://www.eff.org/deeplinks/2017/04/access-now-and-eff-condemn-arrest-tor-node-operator-dmitry-bogatov-russia
https://github.com/gpestana/notes/issues/8
https://github.com/gpestana/notes/issues/8
https://www.usenix.org/sites/default/files/conference/protected-files/foci15_slides_henochowicz.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/foci15_slides_henochowicz.pdf
https://docs.ipfs.io/introduction/how-ipfs-works/
https://github.com/ipfs/notes/issues/318
https://doi.org/10.1109/ICDCS.2009.21
https://www.usenix.org/system/files/conference/foci15/foci15-paper-knockel.pdf
https://www.usenix.org/system/files/conference/foci15/foci15-paper-knockel.pdf
https://doi.org/10.1109/INFOCOM.2006.232
https://doi.org/10.1109/INFOCOM.2006.232
https://github.com/libp2p/developer-meetings/issues/6
https://github.com/libp2p/developer-meetings/issues/6
https://gettor.torproject.org/
https://docs.ipfs.io/how-to/modify-bootstrap-list/
https://doi.org/10.1145/2146382.2146389
https://signal.org/bigbrother/eastern-virginia-grand-jury/

Miti Mazmudar, Stan Gurtler, and lan Goldberg

TaBLE 3: Overview of the functions in each layer of the interfaces presented in Section 5. The layer name is included as the first

word of the function name and is capitalized.

Function Arguments Output Description
DHTPIRputFile F%le identifier id None Privately inserts a file F with the ID id. Replaces
File F : . .
the native putFile function.
DHTPIRfindFile File identifier id File F Privately finds a file with the ID id. Replaces the
native findFile function.
QPgetTargetQuorum File identifier id Proof of robust commu- Obtain the output information for the closest
nication: ¢ quorum that stores the file with the ID id, with-
Target nodes’ network out any intermediate node learning the ID.
addresses: [Ap---As]
and public keys:
[P Ki---P Ks]
Quorum verification
key: VK
QUORUMsendQuery Proof: ¢ Received messages: Used for securely sending a message to a target
Target nodes’ network [R; -- - R] quorum and receiving replies from it.
addresses: [A7--- A
and public keys:
[PK1 -+~ PK;]
Messages: [M; - - - Ms]
QUORUMqueryListener None None (replies internally Used for securely receiving messages from
to received messages) nodes in other quorums and sending replies
to them, possibly after coordinating with other
nodes in own quorum.
PIRgetQueryVectors File identifier id Query vectors Computes s query vectors, one for each server
Perfect hash function f [q1 - qs] that holds a database indexed by the output of
Number of nodes s a perfect hash function f, in order to obtain a
file at index id.
PIRrecreateFile File blocks [fi - - - fs] D Returns a file F that is reconstructed from the s
input blocks.
PIRperformQuery Query vector q Response block d Queries the node’s file store for the input query

B JOIN PROTOCOL

A new node p interacts with multiple quorums as it joins the net-
work; we illustrate the join protocol through the sequence diagram
in Figure 6. When a new node joins the network, it first contacts
a bootstrapping peer g, which is a part of quorum Q; for instance,
and sends its public key PK. Peer q then sends network addresses
and public keys of its peers, signed by quorum Q1, thereby allow-
ing node p to send this bootstrapping message to node g’s peers.
Nodes in the quorum Q; collectively generate a random address
using their shares of the quorum’s shared secret s. They generate a
cryptographic hash of the new node’s public key PK}, and include
a timestamp for freshness. Treating this hash as a group element,
they raise it to the power of their share, and send it to the new node.
Node p combines these shares to obtain a random address id.

To contact the target quorum Q7 that spans address idy, node p
obtains a valid proof of communication by running the QPgetTar-
getQuorum function. This function may be run with either RCP-I
or RCP-II as the underlying communication protocol, though there
are two small changes when it is run for primary or secondary joins.

14

¢, and returns a response block d.

First, the lookup message m,, also includes its securely assigned vir-
tual address id, and a string to demarcate the message as a primary
(or secondary) join, on top of the node’s network address Ay, public
key PK) and a timestamp ts. We need to distinguish primary joins
from a secondary join, as a new Byzantine node could masquerade
as a secondary join to avoid causing the eviction of other Byzantine
nodes in its target quorum. Second, for a primary join, as node
p does not belong to a quorum, the bootstrapping peer’s quorum
Q1 produces a threshold signature over the message my, which
is denoted by [m,]; within our diagram. Through this function,
node p then proceeds to contact multiple quorums, to ultimately
obtain the usual response; that is, a threshold signature over mp
by the nearest neighbour of the target quorum, namely quorum
Qr-1. as well as network addresses and public keys of nodes in
the target quorum ((A;, PK;);_,), and the verification key of the
target quorum VK. Node p then forwards the message m,, and the
threshold signature [mp]7_; to the target quorum.

The target quorum verifies the threshold signature [mp]7-1,
using the verification key of its neighbour quorum VKg,._,, as usual.
When the signed message contains the primary join flag, a node

Do you feel a chill? Using PIR against chilling effects for censorship-resistant publishing

in Qr must first vet the join, as proposed within the commensal
cuckoo rule (step 1CCR in Figure 1). That is, each node first ensures
that the quorum has had at least k — 1 secondary joins since the last
primary join into the quorum. Here, k is set such that an average
of k nodes are cuckoo-ed out in a k-region that spans a fraction %
of the address space. (In case this check fails, the target quorum
replies back with a signed failure message that is bound to the
input message m,,. Node p repeats the aforementioned process with
the bootstrapping peer, until it reaches a new target quorum that
allows the primary join.) Nodes in Q1 then compute the number k’
of its nodes that must be evicted from it and rejoin another quorum,
following Sen and Freedman’s commensal cuckoo rule. They then
recompute the size of its quorum based on k’. Finally, each node
in QT generates a message mg; that consists of the database hash,
the new quorum size, and a timestamp. Each node computes its
signature share over this message, and forwards it to one delegate
node, say node j. This delegate node derives a shared secret with
node p, using the latter’s public encryption key and its own private
key SK and uses this shared secret to encrypt the database to node
p. Node j merges the threshold signature shares to a threshold
signature pr and forwards it along with the message mg; and the
encrypted database, to the new node p.

The new node verifies the threshold signature pr using the
quorum verification key VK7 that it obtained earlier. It ensures
freshness of the message mg; by checking its timestamp. It uses
the peer node j’s public encryption key PK; that it obtained earlier
to establish the same shared secret sk, and decrypts the encrypted
database in the message. It computes a hash of this database and
checks it with the hash contained within the message, to detect if
peer j maliciously sent an incorrect copy of the database. (In this
case, it sends (my, [mp]7-1) to another node of the target quorum.)
The new node runs Kate and Goldberg’s distributed key genera-
tion (DKG) scheme [17], in conjunction with the remaining nodes
of the target quorum, to derive a signing key share for itself and
verification key shares for these nodes. This scheme requires that
the fraction of Byzantine nodes per quorum should be less than a
third, as explicted in constraint 6. The threshold for this threshold
signature scheme should be maintained to satisfy constraints 3
and 4. Thus, after a certain number of new node insertions, a new
signing/verification key may need to be generated and the neigh-
bouring quorums would need to be informed of the verification
key. The target quorum also updates its routing table entries to
include the network address A, and public key PK, of the new
node, and excludes addresses and keys of the k” old nodes. The
RCP-II protocol involves informing the quorum’s neighbours of
these updates in the routing table entries; we defer the reader to
Section IV-C in Young et als paper for details [36].

The nodes to be evicted from the target quorum do not partici-
pate in the DKG. After computing these threshold signatures, each
node in the target quorum proceeds to evict k” of its nodes as fol-
lows. They generate a random node address, in a similar manner as
before, compute a cryptographic hash of it, and expand this hash
to construct k” new random addresses for the nodes to be evicted.
They then identify which nodes in the quorum should be evicted,
based on their current addresses and the new set of addresses. For
each evicted node, the target quorum generates a message m; and

15

threshold signature [m;]1 over it; m; is identical to the message m,,
in structure for all fields, but differs in that its string flag indicates
a secondary join. Each evicted node follows a similar process as
the new node did with the bootstrapping quorum, in order to com-
municate with its new target quorum. (Such nodes may now safely
delete their databases.) It runs the QPgetTargetQuorum function
as node p did earlier in the protocol, and forwards m;, as well as
a threshold signature by the neighbour of its new target quorum,
[m;i]s—1 to the new target quorum Qg. The quorum Qg accepts all
incoming secondary joins and secondary joins do not result in fur-
ther cuckoos. So, with the exception of the corresponding check for
primary joins and the generation of IDs, and signed join messages
(id;j, m;, pi), this quorum and the secondary joining node repeat
the process of sharing the database, and generating (||Qs|| + 1) new
key shares.

Leave protocol: If a node decides to leave a quorum (outside of
a primary join), then it can send a time-stamped message which is
signed by its own private signing key. The remaining nodes may
then need to re-run the DKG protocol, or regenerate the quorum’s
signing/verification key, depending on the current value of the
threshold for the threshold signature scheme.

Miti Mazmudar, Stan Gurtler, and lan Goldberg

Bootstrapping
Quorum Q;

Target quorum Qr Secondary join

New node p Peer j Target quorum Qg

Join network ||PK},

idp < Hash(ts || PK,)*k
my — Apll PKp|| ts]]
“primary_join” ||idp

p1 < [mpl M- P1

[mplr-1,(Ai, PK})

i=1°

VKr < QPTQ(mp, p1)

Mp, [mp]T—l

Verify ([mp]T—L
VK1-1)
Verify ||sec. joins||
isk—-1
k" — Tk - 110711/5]
17l — llQ7ll — k" +1

| State transfer) {07} mg; « Hash(DB)

IOl ts
pr < [mselT
sk « derive (SKj, PKp)

CT « Encsi(DB)
CT, mgs, pT o K
id; < Hash(ts ||PKp)**T
mi — A; || PKi || ts |}
“secondary_join” || id;
pi « [milT i1

Verity (p1, VKT)
sk « derive (SKp, PK;)
DB « Decs(CT)

?
Hash(DB) € mg; Gen. ||Qr|| key
shares using DKG [17] : Remaining nodes (k” + 1..s)
4+——>

Secondary join nodes (1:.k”)
[mils-1.(Aj. PKj)i;s
VKS — QPTQ(mi,si)

mj, [mi]s—1

Verity ([mils-1,
VKs-1)
State transfer {||Qs|}
4y

FIGURE 6: A new node p informs nodes in the bootstrapping quorum Q; of its public key PK, in a bootstrapping message. This
quorum then generates a random identifier id, using its shared secret sk;, creates a primary join routing lookup message m,,
which includes idy, and quorum 1’s threshold signature over m,,, denoted by [m,]1. Q1 then forwards (m,, [m,]1) to node p. Node
p then contacts the target quorum Qr that spans idy, by passing its message and signature to the QPgetTargetQuorum (QPTQ)
function. Qr verifies this signature as usual, and only accepts this primary join if it has had sufficient secondary joins since the
last primary join. If so, each node in Q7 computes the number of nodes that must be kicked out from it (k’), and updates the
quorum size. All nodes then compute threshold signatures over a timestamped message that includes a hash of the database
and the new quorum size. A delegate peer j forwards this message and shares to node p, along with a copy of the database that
is encrypted to PKj. In parallel with node p processing this message, all nodes in Q7 construct random IDs for the nodes to
be evicted (idl..id]’c) just as quorum Q; did for node p, and identify which nodes should be evicted based on these IDs (nodes
1-k’). They also generate signature shares over secondary join lookup messages, as nodes in quorum Q; did for the primary
join node p. In the meantime, node p verifies the signature andthe integrity of the database. Along with the remaining nodes,
node p runs the DKG protocol to generate a new signature share and Qr verification key shares. The evicted nodes (nodes
1-k’) then contact their respective target quorums (quorum Qg here) through the QPTQ function as before, using (m;, [m;]s—_1).
After signature verification, all nodes in the target quorum engage in an identical state transfer process with node i as before.
Similarly, they also run the DKG protocol with node i to establish new key shares.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Private Information Retrieval
	2.2 DHTs
	2.3 Censorship-resistant publishing

	3 Robust DHTs
	4 Threat model
	5 Our Design
	5.1 Building blocks
	5.2 Our interface

	6 Security Parameters Analysis
	7 Complexity analysis
	8 Evaluation
	9 Deployment
	10 Conclusion
	Acknowledgments
	References
	A API functions used and provided
	B Join protocol

