
ZKAttest: Ring and Group Signatures for existing
ECDSA keys

Armando Faz-Hernández1 , Watson Ladd1 , and Deepak Maram2

1 Cloudflare, Inc.
{armfazh,watson}@cloudflare.com

2 Cornell Tech
sm2686@cornell.edu

Abstract. Cryptographic keys are increasingly stored in dedicated hard-
ware or behind software interfaces. Doing so limits access, such as permit-
ting only signing via ECDSA. This makes using them in existing ring and
group signature schemes impossible as these schemes assume the ability
to access the private key for other operations. We present a Σ-protocol
that uses a committed public key to verify an ECDSA or Schnorr sig-
nature on a message, without revealing the public key. We then discuss
how this protocol may be used to derive ring signatures in combination
with Groth–Kohlweiss membership proofs and other applications. This
scheme has been implemented and source code is freely available.

Keywords: ring signature · zero-knowledge proof · Σ-protocol

1 Introduction

A ring signature scheme allows a signer to sign a message without revealing
their identity, thereby providing anonymity behind a ring. A verifier can check
the validity of the signature, but cannot know who among the ring members
generated the signature. This notion was introduced by Rivest et al. [28]. For
example, a whistleblower belonging to an organization could reveal sensitive
documents using a ring of all members within the organization, demonstrating
the authenticity of their claim to be a member while still remaining anonymous.

Existing schemes typically presuppose that every member of the ring has
ready access to a suitable key. But establishing such keys across a large group
of members purely for the purpose of whistleblowing may attract unwanted at-
tention. Furthermore it is unlikely that organizations would cooperate in issuing
keys for use with ring signatures. This problem can be avoided if a ring signature
could use already existing keys, such as those stored in a hardware security mod-
ule. A ring signature scheme would then be usable without requiring changes to
the hardware or the distribution of new keys across an organization.

For example, WebAuthn [21], a popular standard for hardware authentica-
tors, provides support only for signing messages through a standardized algo-
rithm such as ECDSA [23]. These signatures, and the certificate chain that shows

https://orcid.org/0000-0001-5502-8666
https://orcid.org/0000-0002-1674-8529
https://orcid.org/0000-0001-5324-6889

2 A. Faz-Hernández et al.

the authenticity of the public key, reveal which authenticator was used when car-
rying out attestation, creating a trade-off between confidence in authentication
and privacy. Changing the install base of such modules to enhance privacy, for
example by supporting an existing ring signature scheme, will take years. There-
fore a privacy enhancing form of WebAuthn attestation that works with existing
keys is highly desirable: this is the core motivation for ZKAttest.

The core primitive in ZKAttest is proof of valid ECDSA signature under
a committed public key. A verifier can check signature validity by verifying this
proof but learns nothing about the public key, thanks to the hiding commitment.
Zero–knowledge proofs then enable us to show additional properties of the public
key. For instance we can show that C is a commitment to a value on a public
list of keys, thereby producing a ring signature.

Outline: Section 2 contains definitions and recalls facts about Σ-protocols, Ped-
ersen commitments, ring signatures and other things we use. Section 3 lists pa-
rameters of the groups used. Section 4 discusses proofs of point addition that
we then use in Section 5 to prove knowledge of scalar multiplications. We then
apply these scalar multiplication proofs to proof of signature under a commit-
ted key in Section 6, and use that proof to derive ring and group signatures in
Section 7. We discuss an implementation and application to WebAuthn privacy
in Section 8.

2 Preliminaries

We will write G for the group of points on an elliptic curve and g, h, g1, g2, . . .
be generators of the group. In our construction, we will use two different sets of
elliptic curves, and pick one from each. One set, denoted GNIST are standardized
elliptic curves, and the other GTom is a set of elliptic curves such that the group
order equals the size of the base field of GNIST.

We write Com(x; r) = xg + rh to denote the computation of a Pedersen
commitment to x with randomness r. Pedersen commitments are unconditionally
hiding, computationally binding, and additively homomorphic [26].

We recall some basic Σ-protocols and their definition and properties [16,12].
A protocol is a Σ-protocol if it is a three round protocol satisfying Special
Honest-Verifier Zero-Knowledge (SHVZK) and Special soundness. SHVZK im-
plies that we are able to sample from the distribution of transcripts without any
knowledge of the witness. Special soundness means given several transcripts with
identical commitment phases and different challenges a witness can be extracted.

Σ-protocols compose in parallel. In this paper we apply this result to prove
multiple properties of a common set of commitments, without being forced to
spell out each proof. Given commitments C1 = xg + r1h, C2 = yg + r2h, and a
commitment C3 to the sum, product, difference, or quotient of x and y, there is
a Σ-protocol that proves that C3 is in fact a commitment to the sum, product,
difference, or quotient of x and y. Σ-protocols can be combined to prove that two
statements are simultaneously true, or that one of two statements is true [14].

ZKAttest: Ring and Group Signatures for existing ECDSA keys 3

From a Σ-protocol we can apply the Fiat-Shamir transform to achieve a non-
interactive zero-knowledge proof (NIZK) [6,9]. The security definitions of a NIZK
in the random oracle model (ROM) involve the existence of a simulator, that
can interact with a verifier and produce true seeming proofs by programming
the oracle, and an extractor, that interacts with a prover and obtains witnesses.

We recall ring signatures following definitions given by Bender, Katz, and
Morselli [8]. Intuitively ring signatures permit signers to hide among a group of
their choice, generating only a proof that one among the ring singed without
revealing who. Ideally even if all members of the ring have their private keys
exposed, the signer will not be discovered. Thus in addition to unforgeability we
have a requirement of anonymity.

Definition 2.1. A ring signature scheme is a triple of algorithms (Gen, Sign,
Verify) such that Gen(1k) outputs keys (sk, pk), Sign(m, ski, R) produces a
signature σ on the message m with respect to the ring R = {pk1, . . . , pkn}, and
Verify(σ,m,R) accepts or rejects the signature.

Definition 2.2. A ring signature scheme is complete if Verify accepts when
run on signatures generated by Sign.

Definition 2.3. A ring signature scheme is anonymous against full key expo-
sure if the adversarial advantage in the following game is negligible:

1. A set S of public keys pki is generated with Gen.

2. The adversary is given access to an oracle Corrupt that on input i returns
the randomness used to generate pki.

3. The adversary is given access to an oracle OSign to sign messages of their
choice with rings of their choice.

4. The adversary outputs a message m, a ring R and a pair of indices i0 and i1
such that pki0 and pki1 are both in the ring. The game picks a random bit b
and sends back Sign(m, skib , R). The adversary then attempts to guess who
signed. There are no restrictions on picking corrupted indices in this step.

Definition 2.4. A ring signature scheme is unforgeable against insider corrup-
tion if the adversarial advantage in the following game is negligible:

1. A set S of public keys PKs is generated by Gen and given to the adversary.

2. The adversary is given a signing oracle OSign(s,M,R) = Sign(m, sks, R)
for PKs ∈ S, where PKs ∈ R.

3. The adversary is also given an oracle Corrupt such that Corrupt(i) returns
ski.

4. The adversary outputs (R∗,M∗, σ∗). The adversary wins if Verify(σ∗,M∗, R∗)
accepts, R∗ does not contain corrupted users and is a subset of S and the
adversary did not ask the signature oracle to sign M∗ with the ring R∗.

4 A. Faz-Hernández et al.

3 Tom Curves

Digital signatures are generated using standardized elliptic curves defined over
prime fields [25,30]. These curves are defined by E/Fp : y2 = x3 − 3x+ b, which
in turn leads to a prime order group GNIST = E(Fp).

In order to prove relations among commitments to values in Fp, (for example,
commitments of the coordinates of a point), it is convenient to operate in a group
that has order p. If we had to use a group that did not have this order, then to
prove knowledge of openings of C1, C2, C3 to x, y, xy mod p, we would need to
have a group of size at least p2 so that we could prove knowledge of C4 opening
to xy over the integers then prove that there was a number r of size at most p
such that t = xy − rp. This would require an additional range proof and many
auxiliary commitments. Furthermore we cannot make use of homomorphisms to
carry out addition of commitments.

Instead, we follow the method of Bröker [11] to generate elliptic curves with
the desired order, and we call these curves the Tom curves. Hence, for a prime
q, a Tom curve E′/Fq : y2 = x3 + a4x + a6 results in a group GTom = E′(Fq)
of prime order equal to p. Correspondingly, we use ComTom and ComNIST to
distinguish between the two commitment functions.

To generate these curves we used complex multiplication. The starting point
is searching through (negative) discriminants d for one that allows an integral
solution to the problem x2 − dy2 = 4p. Given such a solution, q = p + 1 − x
or p + 1 + x are possible base fields if they are prime. Once the base field is
found, creating the curve requires computing the Hilbert class polynomial of d
and taking a root modulo q. It is possible that the curve found is the twist of
the one that is sought, and this can be determined by point-counting.

In the smaller cases, curve generation took few seconds on a commodity
laptop, and up to two minutes for the largest instance. The main complexity is
computation of the Hilbert class polynomial, which is built into PARI/GP [32].
For a one-time computation our script runs efficiently enough, taking a few
minutes wall clock time.

Generating curves whose order is a small multiple of p to have a faster arith-
metic (such as in Edwards curves) is also possible. However, it requires a slightly
more complicated search for elements of small norm, and one must apply the
Decaf group interface to deal with cofactors. To simplify the presentation we
focus on prime order Tom curves.

Table 1 shows Tom curves associated to commonly used curves from the
FIPS 186-2 [25] and SEC 2 [31] standards.

4 Proof of Point Addition

Let a, b, t be points on GNIST with coordinates ax, ay, bx, by, tx, ty and C1, . . . , C6

be the corresponding commitments computed on the Tom curve (i.e., C1 =
ComTom(ax), and so on). Now suppose we wish to prove the relation a+ b = t.
There are several special cases.

ZKAttest: Ring and Group Signatures for existing ECDSA keys 5

Table 1. Tom curves and their associated parameters.

Standard curve Tom curve
E(Fp) E′(Fq)

P-256 T-256
d = −4155
q = ffffffff0000000100000000000000017e72b42b30e73177931

35661b1c4b117

a4 = 776679e96d94aff61a5fb6d256dece8a9162868d9a3fcbcead

27946509c31405

a6 = c0450ed15e63704c6dfdd9be22fd6bbdfe5f4ccbc43c4d88a2

ec905a2af4fef7

P-384 T-384
d = −619
q = fffeaf5

f689f8669fb41b08d5f5edffd26599c434bbd978917c5

a4 = 821dfdc940e7f074ac481f8b2870c48962cce56abd72dfc428

13a944cea15df78dc0a2d97fbf031ed26c9076826940ba

a6 = 9b5b584b655fdcb087d37f8c4fee893c0499223db5e004c674

ea0dee48a4ec0c9e9f684099f2a51c62a2cce400cb1e4b

P-521 T-521
d = −28243
q = 200

000000000000002c54be78524c33584f734a266748b2063accf5028

e6778dc5056476d0690853249

a4 = ef6432c21701cc48c63fb9263e14ba76d4a94ba14d173b134e

3032b0e2e543180eb6725125992a7d00162a5f57d21918b0766364e

eb53c53bb12f405dac1d527e2

a6 = 3cbc65d1e0245d79703b18e9aaea1ac6d67f87a2cd4bd84b9e

6df6a45a979c481825ca5a857270fc890352f9fac7fd6020deaabb2

8d099718f0f77a4eec222871d

We start with the general case of ax 6= bx in which the following affine
addition formula [29, Chapter III, Section 2] holds:

tx =

(
by − ay
bx − ax

)2

− ax − bx, and ty =

(
by − ay
bx − ax

)
(bx − tx)− ay .

To prove a+ b = t, the prover computes auxiliary commitments

C7 = ComTom(bx − ax) C8 = ComTom

(
(bx − ax)−1

)
C9 = ComTom(by − ay)

C10 = ComTom

(
by − ay
bx − ax

)
C11 = ComTom

((
by − ay
bx − ax

)2
)

C12 = ComTom(bx − tx) C13 = ComTom

((
by − ay
bx − ax

)
(bx − tx)

)

6 A. Faz-Hernández et al.

and then proves in parallel that each of these auxiliary commitments opens to
the proper value as a sum or product of previous one, and then finally that

C5 = C11 − C1 − C3, and C6 = C13C12 − C2 .

Each of these auxiliary proofs can be done through either proving a correct
multiplication or addition, via known techniques [14]. Note that a proof of proper
inversion can be achieved through a proof of multiplication as proving C8 = C7

−1

is equivalent to proving C8C7 = ComTom(1).
For our application, the points we must add are unlikely to be in exceptional

cases. And if ever they are, the prover can simply try the entire protocol again,
as the probability of an exceptional case a = −b or a = b is just 2/|G|. This
proof does not demonstrate that the points are on the curve, but if a and b are
then t is guaranteed to be.

To handle the special cases in our addition law we extend our proof to show
that ax − bx is not zero via showing it has an inverse. Then the two remaining
cases possibilities are that ay = by in which case we have a point doubling, or the
result is the point at infinity, which cannot be represented in affine coordinates.
Since the result is represented in affine coordinates, it cannot be the point at
infinity.

Therefore it suffices to prove the following statement, using the OR and AND
compositions of Σ-protocols: (ax−bx 6= 0∧t = a+b)∨(ax = bx∧ay = by∧t = 2a).
This demonstrates that t = a + b provided the output can be written in affine
coordinates.

The cost of this proof is dominated by the number of field multiplications and
field inversions; each of them amounts to a proof of multiplication. Therefore,
in the proof-space, the affine formulas are the most efficient formulas to use. A
more complicated complete formulas such as the ones from Renes et al. [27] would
require significantly more operations. A cheaper unified formula that applies to
both addition and multiplication in affine coordinates is unknown to the authors.

5 Proof of Scalar Multiplication

To make the notation nicer, group elements and commitments of GNIST will be
unprimed while those on GTom primed. For example g, h refer to points on GNIST

while g′, h′ to points on GTom.
In this protocol, the prover starts with commitments C1 = ComNIST(λ),

C ′2 = ComTom(x) and C ′3 = ComTom(y). Their goal is to prove knowledge of
opening of these commitments C1, C

′
2, C

′
3 to values x, y and λ such that (x, y) =

λg where g is a point of GNIST.
This proof is a corrected form of one that appears in Agrawal et al. [1]. We

discuss the correction towards the end of this section. We now describe a round
of the Σ-protocol. For 128-bit security, we do 128 parallel instances of the below
protocol.

1. The prover picks α, β1, β2, β3 at random and computes (γ1, γ2) = αg, a1 =
αg + β1h, a′2 = γ1g

′ + β2h
′, and a′3 = γ2g

′ + β3h
′.

ZKAttest: Ring and Group Signatures for existing ECDSA keys 7

2. The prover lets C ′4, C
′
5 be commitments to the x and y coordinates of (α−λ)g.

It sends a1, a
′
2, a
′
3, C

′
4, C

′
5 to the verifier. It also sends the commitments for

a point addition proof showing that (a′2, a
′
3) and (C ′2, C

′
3) sum to the point

(C ′4, C
′
5).

3. The verifier responds with a challenge string c = (c0, c1) where c0 is a single
bit, and c1 a challenge for the point addition protocol.

4. If c0 = 0 the prover computes z1 = α, z2 = β1, z3 = β2, z4 = β3 and responds
with (z1, z2, z3, z4).

5. If c0 = 1 the prover computes z1 = α − λ, z2 = β1 − r. The prover uses
the point addition protocol (Sec. 4) to prove knowledge of an opening of
a′2, a

′
3, C ′2, C

′
3 and C ′4, C

′
5 to γ1, γ2, x, y, u, v respectively such that (u, v) =

(γ1, γ2) − (x, y) using challenge c1. Call the response π. The prover sends
(π, z1, z2) to the verifier as well as the opening of C ′4 and C ′5.

6. If c0 = 0, the verifier simply verifies that the commitments a1, a
′
2, a
′
3 are

opened correctly by (α, β1, β2, β3). If c0 = 1, then the verifier validates π
using c1 and checks that z1g + z2h + C1 = a1, as well as verifying the
opening of C ′4 and C ′5 to z1g.

We added the verification step z1g + z2h+ C1 = a1 to the verification algo-
rithm in [1]. Without this the verification ignored C1 entirely, and therefore did
not demonstrate knowledge of an opening of C1.

Theorem 5.1. The above protocol is a Σ-protocol.

Proof. It is easy to see that the protocol is three rounds and that the challenge
is a random string of bits. What is not clear is the Special Honest-Verifier Zero-
Knowledge and Soundness properties. We prove each one at a time.

Special Honest-Verifier Zero-Knowledge: Our goal is to construct a simulator
such that the output of the simulator is statistically indistinguishable from the
transcript of the protocol with a prover. On the input of challenge c, the simu-
lator does the following: If c0 = 0, pick (α, β1, β2, β3) at random and compute
a1, a

′
2, a
′
3, C

′
4, C

′
5 using the same process as above, then reveal the openings. If

c0 = 1, pick z1, z2 at random and compute a1 = z1g1 + z2h+C1, and let C ′4, C
′
5

be commitments to the x and y coordinates of z1g. Then invoke the simulator
for the point addition proof, and send over the last move. Since Pedersen com-
mitments are unconditionally hiding and not binding if the discrete logarithm is
known, the statement being proved by the point addition proof is true, so the
transcript can be simulated.

Soundness: We demonstrate that the witnesses (λ, x, y) may be extracted given
three accepting transcripts for the same commitment: one with c0 = 0 and two
with c0 = 1 and differing c1.

Note that λ = z1 − ẑ1 where z1 is from the transcript with c0 = 0 and ẑ1
is from one of the others. Further the prover must have a′2, a

′
3 on the curve as

they open them when c0 = 0, and C4, C5 on the curve as they open them when
c0 = 1. Therefore C ′2 and C ′3 are on the curve as they satisfy the addition proof.

8 A. Faz-Hernández et al.

We have openings of the commitments involved in π by the extractability of π,
and know that a′2 and a′3 are commitments to the x and y coordinates of αg+β1h
for some α. Furthermore we know that z1g + z2h + C1 = a1 = αg + β1h, and
that C ′2, C

′
3 are commitments to the x and y coordinates of a point t such that

z1g + t = αg as the openings are extractable from π. Therefore t = (x, y) can
be extracted as t = (α− z1)g and C1 = (α− z1)g + (z2 − β1)h, which is exactly
what is needed to show: C1 is a commitment to the discrete logarithm of t.

6 Proof of Knowledge of ECDSA Signature

We have a proof of scalar multiplication, but it does not immediately apply
to verification of signatures under committed public keys. To apply these tech-
niques to ECDSA we slightly recast the verification equation to make it more
amenable to our techniques. Ordinarily ECDSA verification of a signature (r, s)
on a message m takes the form of evaluating R = u1g+u2q for the public key q,
and then verifying that the truncation of the x coordinate of R equals r. In this
equation u1 = ts−1 mod n and u2 = rs−1 mod n where t is a function of H(m).

An alternative signature scheme instead transmits (R, z = s/r) as the signa-
ture, and then verifies the equation zR − tr−1g = q (obtained by multiplying z
on both sides of the previous equation). This equation is much more amenable to
a zero-knowledge proof. R is independent of the public key, as it is kg for some
random k, and t is a function of the message alone. Therefore R is independent
of the key. Note that this scheme is as secure as ECDSA since the verification
equations are equivalent.

It is in this form we apply the scalar multiplication proof to get our protocol.
Let Q be the committed public key. The prover transmits R, and a commitment
to the scalar z. The prover uses the scalar multiplication proof to demonstrate
correctness of a commitment to zR, and then use the point addition proof to
demonstrate that the committed Q satisfies zR−tr−1g = Q. As tr−1g is a public
value, the prover can simply display the opening of its commitments to tr−1g to
verify its correctness.

More formally we let Cqx, Cqy = ComTom(Qx),ComTom(Qy) and Cz = zR+
rh for a random r. Now, as R is an adversarially chosen point, we would have
a problem if R = kh for some k known to the adversary. To solve this we must
adjust h by generating it via hashing to the NIST curve based on R (refer to
Faz-Hernández et al. [18] for standard methods for hashing to curves). Then
the prover generates an auxiliary commitment Csx, Csy = ComTom(tr−1g). The
prover then generates C2, C3 commitments to the x and y coordinates of zR.

Lastly the prover proves knowledge of openings of Csx, Csy, Cqx, Cqy, C2,
C3, Cz such that Csx, Csy open to tr−1g; C2, C3 open to the x and y coordinates
of zR; and zR− tr−1g = Q.

We can handle some variations of Schnorr signatures similarly, although not
EdDSA [10]. Given a message m and public key Q = xg, the signature is (R, s)
where R = kg, e = H(R,m) and s = k − xe. The verification equation is then
sg+ eQ = R. We can recast this as Q = e−1R− e−1sg. Here the prover sends R,

ZKAttest: Ring and Group Signatures for existing ECDSA keys 9

and a commitment to e−1s, then proves that the committed public key is the sum
of e−1R, known to both, and e−1sg, computable through a scalar multiplication
proof. Since EdDSA incorporates the public key of the signer into what is hashed,
it is difficult to preserve signer privacy while permitting verification. SNARK
based approaches would be able to handle this type of signature [19].

7 Applications

Having demonstrated that a message is signed with a committed key, we can
then prove additional properties of the key. Depending on the properties chosen
we obtain group signatures, ring signatures, and proof of non-revocation.

7.1 Ring Signatures

Given a list of public keys k1, k2, . . . , kn in the ring, a signer takes the private
key corresponding to their key ki, commits to ki, signs the message m, creates
a proof of signature under committed key (Sec. 6), and then proves that the
commitment is to one of the keys in the list via Groth–Kohlweiss proofs [20].
More formally:

– Gen generates an ECDSA keypair.

– Sign carries out an ECDSA signature, commits to the key, and proves the
signature verifies and the key is on the list.

– Verify verifies the proof.

We now formally demonstrate correctness of this application. We start with
unforgeability. In Section 2 we recalled a game based definition of the strongest
variants unforgeability and anonymity. We now show that our construction
achieves both of these, à la Chase and Lysyanskaya [15]. To avoid an unfor-
tunate collision in notation we will call the ring Γ .

Theorem 7.1. Our ring signature scheme achieves anonymity against full key
exposure.

Proof. Consider the adversary in Step 4 of Definition 2.3. They have received
R and a NIZK for the statement “There is a modified ECDSA signature (R, z)
that verifies under a public key Q that is on the list of public keys”. But both
ski0 and ski1 would produce witnesses for this statement. Now consider the ad-
versary interacting with a game that switches which witness is used. By witness
indistinguishability, the adversary would produce the same result. Therefore the
adversarial advantage must be negligible.

Theorem 7.2. Our ring signature scheme achieves unforgeability against in-
sider corruption assuming that ECDSA is unforgeable.

10 A. Faz-Hernández et al.

Proof. Let Sim and Ext be the simulator and extractor for our NIZK. We take
the adversary in the unforgeability game and provide it with OSign that works
as follows: Given a private key ski, ring Γ , and associated public key pki it
computes random commitments C for use in our scheme. It generates a proof
that R is the R for a signature of a message under a public key in the ring using
the simulator, with no witness. This produces a valid signature σ for the ring
signature scheme that it returns thanks to the simulator. Corruptions we handle
by handing back the private key that is requested.

The adversary has no way to know the difference between this game and the
original one by the NIZK properties of the Fiat-Shamir transform.

At the final step of the game the adversary returns a signature for a ring it
has not queried, that does not contain any corrupted key. Assume this proof is
valid. This is the proof we apply Ext to, obtaining an ECDSA signature and a
public key pki such that the signature is valid and pki is in the ring. Now at no
point was the adversary given a value that reveals information theoretically any
private key or ECDSA signature of a value in the ring. Therefore this extracted
signature violates the unforgeability of ECDSA.

We do want to note a subtlety: our signature scheme proves knowledge of a
signature on a message. Therefore an adversary who obtains an ECDSA signa-
ture of a message under a users key can create their own ring signature showing
that someone in a ring containing the user signed the message. This sort of
multiprotocol attack is not present in the security definition of ring signatures.

7.2 Group Signatures

Once again Chase and Lysynaskaya anticipate us, as do Bellare et al. [5,15].
Both papers combine a public-key encryption scheme, a signature scheme, and a
zero-knowledge proof system into a group signature scheme. A signer signs with
their private key and encrypts the public key to the group manager, and the
signature is a zero-knowledge proof that the private key was used to sign the
message and that the public key is encrypted to the group manager and is in an
accumulator.

Our zero-knowledge proof can be used to show a committed public key was
used to sign, and if encryption to the group manager is done via ElGamal en-
cryption [17] the same proof techniques can show the committed public key is
correctly encrypted. We can also hash public keys via a Pedersen hash: after
chopping the bit expansion of the x-coordinate of the key up into small pieces
x0, x1, x2 we can take x0g1 + x2g2 + x3g3 + tg4 as the hash using our proof of
scalar multiplication, where t is a parameter used by the prover to make the
output have a prime x-coordinate. This enables our scheme to be used together
with an RSA accumulator, using proofs for membership of Benarroch et al. [7].

7.3 Non-revocation

Another application which we shall not treat formally is demonstrating non-
membership on a list. In applications such as WebAuthn, attestations are sig-

ZKAttest: Ring and Group Signatures for existing ECDSA keys 11

natures under a key built into the device. Revealing the key reveals the issuing
device, harming user privacy. At the same time revocation is necessary to en-
sure that compromised devices are distrusted. By using a Bayer–Groth proof of
non-membership [4], we obtain a proof of signature guaranteeing the use of an
unrevoked key; moreover, this proof does not reveal which key was used.

We also discuss a non-application. It is tempting to apply our technique to the
case of anonymous credentials [13], where the issuer would sign a message with
ECDSA, and a zero-knowledge proof of the credential is then used to anonymize
the credential itself. However our scheme hides the identity of the key, not the
signature itself, and therefore repeat proofs with the same signature are linkable.
Our scheme reveals the commitment to randomness used in the signature, but
this alone cannot reveal the key as it is independent of the key.

8 Implementation

ZKAttest originated as an effort to improve the privacy of WebAuthn attestation,
to enable it to be used as an alternative to CAPTCHAs [2]. WebAuthn attesta-
tion takes the form of signing an attestation message with a device attestation
key that chains up to a manufacturer’s key via the PKI. However, each attesta-
tion does reveal a hard-coded certificate associated with the device class. If the
certificate were unique, it could be used to track a user’s attestation across mul-
tiple challenges and make inferences about that user’s browsing patterns. The
FIDO standard [3, Section 4.1.2.1.1] that specifies certificates should be batched
and shared across at least 100,000 devices, so there is a moderately sized list
of all valid attestation keys. By using our ring signature to sign the attestation
message instead of presenting the ECDSA signature and chain, the user’s privacy
is further protected as all that is learned is that they have a WebAuthn device
that is trusted, rather than which one they have. Currently we have deployed
a proof of concept implementation that dynamically adds the attestation key
to a much smaller list of randomly generated keys, and then verifies the ring
signature server side.

Because our demonstration runs in the browser we wrote our implementation
in TypeScript, and implemented our proof for ECDSA with the P-256 curve.
No other language would allow us to run in the browser without a complex
transpilation step. Internally, we use JavaScript’s native big integer library [24]
and built on top of it elliptic curve arithmetic for the NIST and Tom curves.
The source code is available at https://github.com/cloudflare/zkp-ecdsa .

Note that JavaScript’s runtime does not guarantee that operations on big in-
tegers run in constant-time; moreover, some operations can be performed much
faster when targeting a specific computer architecture. These impact perfor-
mance negatively, but we still get adequate performance for occasional interac-
tive use by users. Our implementation is capable of proving membership on a list
within ten seconds, and can prove membership on lists of up to several thousand
with no appreciable slowdown. Verification time is half a second, albeit with an
acceptable soundness loss through verifying only some parallel compositions.

https://github.com/cloudflare/zkp-ecdsa

12 A. Faz-Hernández et al.

We trade soundness for performance by checking a randomly chosen subset
of the cases for the scalar multiplication proof. This ensures sufficient secu-
rity for our application while accelerating verification time. Each case has the
same 1/2 failure probability, so after checking 20 cases the probability of forgery
is now 2−20. As the relations to be checked are not known to the prover ahead
of time, they must interact with the verifier to attempt cheating. In our applica-
tion, requiring a million interactions for a single successful forgery is acceptable,
because we have other means for rate limiting malicious actors and can afford
a small false positive rate. As we continue to optimize our implementation, we
can reduce this rate even more. The cost of these checks is linear in the number
performed.

Several high-level optimizations were required to achieve this level of per-
formance. The major one is batching verification equations. In our protocol we
have a set of commitments, some from the theorems that are to be proven and
some from the proofs, C1, . . . Cn, that are then hashed to form a challenge e;
and then a set of revealed scalars sij such that

∑
sijCi = 0 for all j. Verify-

ing each of these equations separately is expensive. Our implementation instead
selects a random vector of scalars ri, and verifies that

∑
sijCiri = 0. If any

of the
∑
sijCi are not the identity, the probability that ri lies in the kernel of

the resulting linear operator is at most 1/|G|. This technique was also used by
Bernstein et al. [10] to accelerate verification of multiple signatures.

Some limitations of JavaScript prevent from performing well-known low-level
optimizations. For instance, JavaScript’s multiprecision arithmetic operators [24]
are limited in expressiveness so every field operation involves a full division
by the modulus. Montgomery arithmetic is hard to express. Inversion has to
be accomplished through either Fermat’s little theorem or extended Euclidean
algorithm: there is no way to approximate the quotient efficiently for use in
asymptotically faster gcd algorithms to make up for the slow division. Each step
of the extended Euclidean algorithm is an expensive division even though the
quotients are usually small. We have not investigated the use of binary algorithms
to accelerate the Euclidean algorithm to potentially accelerate it.

Access to machine word operations is central for obtaining better perfor-
mance for field operations. An alternative is moving computations to either
WebAssembly or AssemblyScript, but we did not explore that path due to time
constraints.

9 Related Work

There is a rich literature on anonymous credentials, ring signatures, and group
signatures, only some of which we have consulted. Agrawal et al. [1] presented a
proof of exponentiation relation, that our scalar multiplication proof is related
to. Their proof had a verification equation that did not include C1. Therefore
an attacker could generate any C1 value and the verifier would accept it, con-
tradicting the security claim of that paper. We have verified the correction we
present with the authors of that paper. Agrawal et al. consider the challenges of

ZKAttest: Ring and Group Signatures for existing ECDSA keys 13

proving statements with both algebraic relations and “arithmetic” ones, while
our techniques avoid “arithmetic” relations. In addition Agrawal et al. say that
the complex multiplication method is quite inefficient and makes protocols im-
practical, choosing to use a fixed, much larger group instead. The opposite is
true: a short one time calculation reduces the number of commitments and the
size of the group.

The general approach of constructing ring signatures via proofs on signatures
is found in Chase and Lysyanskaya [15], although they approach the question
with an eye toward delegatable anonymous credentials, and do not provide a
proof of the intuitive claim that their ring signature scheme is secure. Our work
can be seen as instantiating their scheme for an ECDSA signature, but in settings
where the message is public.

SNARKs provide a general method to create a succinct argument of knowl-
edge for any circuit [19]. One could apply such a technique to the ECDSA veri-
fication circuit and thus obtain a proof of signature generically, just as we have
applied the composition of Σ-protocols to obtain one by hand. SNARKs are de-
ployed in Zcash [22] where proofs of signatures are used and efficient verification
is a requirement. However SNARK design and compilation is tricky, with very
few tools targeting JavaScript and SNARKs depend on unfalsifiable assumptions
even in the CRS model, and the common reference strings are large. In the future
these barriers are likely to improve with further research.

Groth and Kohlweiss considered applying their one-out-of-many scheme to
produce ring signatures that use a preexisting PKI [20]. A user would reveal
that they know how to open their public key to zero, and use this for a ring
signature scheme. Our work can be seen as a natural extension to use preexisting
infrastructure such as smart cards or other forms of hardware with a limited
interface for the use of private keys.

10 Conclusion

We have presented a practical scheme with minimal assumptions for proving
knowledge of an ECDSA signature under a committed key. Our approach does
not use expensive pairing computations, is practical and efficient, and widely
applicable. Unlike SNARK based approaches we do not have a large common
reference string and our security does not need knowledge assumptions [19]. By
decoupling the proof of the signature from proving information about the key it
enables a great array of applications, such as improving the privacy of remote
attestation and demonstrating that keys have not been revoked. Our proof-of-
concept implementation demonstrates that our techniques are practical even in
a limited computing environment, such as a web browser. We believe ZKAttest
has numerous additional applications.

14 A. Faz-Hernández et al.

References

1. Agrawal, S., Ganesh, C., Mohassel, P.: Non-interactive zero-knowledge proofs for
composite statements. In: Shacham, H., Boldyreva, A. (eds.) Advances in Cryptol-
ogy – CRYPTO 2018. p. 643–673. Springer International Publishing, Cham (2018).
https://doi.org/10.1007/978-3-319-96878-0 22

2. von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: CAPTCHA: Using Hard AI
Problems for Security. In: Biham, E. (ed.) Advances in Cryptology — EURO-
CRYPT 2003. p. 294–311. Springer, Berlin, Heidelberg (2003). https://doi.org/10.
1007/3-540-39200-9 18

3. Balfanz, D., Czeskis, A., Lundberg, E., Jones, J., Hodges, J., Jones, M., Linde-
mann, R., Kumar, A., Liao, H.: FIDO UAF Protocol Specification v1.0. FIDO
Alliance Standard, FIDO (Dec 2014), https://fidoalliance.org/specs/fido-uaf-v1.
0-ps-20141208/fido-uaf-protocol-v1.0-ps-20141208.html

4. Bayer, S., Groth, J.: Zero-knowledge argument for polynomial evaluation with ap-
plication to blacklists. In: Johansson, T., Nguyen, P.Q. (eds.) Advances in Cryp-
tology – EUROCRYPT 2013. p. 646–663. Springer, Berlin, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38348-9 38

5. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: Formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) Advances in Cryptology - EUROCRYPT 2003, Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Warsaw, Poland, May 4-8, 2003, Proceedings. Lecture Notes in Computer Science,
vol. 2656, pp. 614–629. Springer (2003). https://doi.org/10.1007/3-540-39200-9 38

6. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) CCS ’93, Proceedings of the 1st ACM Conference on Computer and
Communications Security, Fairfax, Virginia, USA, November 3-5, 1993. pp. 62–73.
ACM (1993). https://doi.org/10.1145/168588.168596

7. Benarroch, D., Campanelli, M., Fiore, D., Kolonelos, D.: Zero-knowledge proofs for
set membership: Efficient, succinct, modular. Cryptology ePrint Archive, Report
2019/1255 (Oct 2019), https://eprint.iacr.org/2019/1255

8. Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and
constructions without random oracles. J. Cryptol. 22(1), 114–138 (2009). https:
//doi.org/10.1007/s00145-007-9011-9

9. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: Pitfalls of
the Fiat-Shamir heuristic and applications to Helios. In: Wang, X., Sako, K. (eds.)
Advances in Cryptology – ASIACRYPT 2012. p. 626–643. Springer, Berlin, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-34961-4 38

10. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-
security signatures. Journal of Cryptographic Engineering 2(2), 77–89 (2012).
https://doi.org/10.1007/s13389-012-0027-1

11. Bröker, R.: Constructing Elliptic Curves of Prescribed Order. Ph.D. thesis, Leiden
(2006)

12. Camenisch, J.: Group signature schemes and payment systems based on the dis-
crete logarithm problem. Ph.D. thesis, ETH Zurich (1998)

13. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) Ad-
vances in Cryptology — EUROCRYPT 2001. p. 93–118. Springer, Berlin, Heidel-
berg (2001). https://doi.org/10.1007/3-540-44987-6 7

https://doi.org/10.1007/978-3-319-96878-0_22
https://doi.org/10.1007/3-540-39200-9_18
https://doi.org/10.1007/3-540-39200-9_18
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-protocol-v1.0-ps-20141208.html
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-protocol-v1.0-ps-20141208.html
https://doi.org/10.1007/978-3-642-38348-9_38
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1145/168588.168596
https://eprint.iacr.org/2019/1255
https://doi.org/10.1007/s00145-007-9011-9
https://doi.org/10.1007/s00145-007-9011-9
https://doi.org/10.1007/978-3-642-34961-4_38
https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.1007/3-540-44987-6_7

ZKAttest: Ring and Group Signatures for existing ECDSA keys 15

14. Camenisch, J., Michels, M.: Proving in zero-knowledge that a number is the prod-
uct of two safe primes. In: Stern, J. (ed.) Advances in Cryptology — EURO-
CRYPT ’99. p. 107–122. Springer, Berlin, Heidelberg (1999). https://doi.org/10.
1007/3-540-48910-X 8

15. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.)
Advances in Cryptology - CRYPTO 2006. p. 78–96. Springer, Berlin, Heidelberg
(2006). https://doi.org/10.1007/11818175 5

16. Damg̊ard, I.: On Σ-protocols (2010), https://www.cs.au.dk/∼ivan/Sigma.pdf
17. ElGamal, T.: A public key cryptosystem and a signature scheme based on dis-

crete logarithms. In: Advances in Cryptology, Proceedings of CRYPTO ’84, Santa
Barbara, California, USA, August 19-22, 1984, Proceedings. Lecture Notes in
Computer Science, vol. 196, pp. 10–18. Springer (1984). https://doi.org/10.1007/
3-540-39568-7 2

18. Faz-Hernández, A., Scott, S., Sullivan, N., Wahby, R.S., Wood, C.A.: Hashing
to Elliptic Curves. Internet-draft, Internet Engineering Task Force (Apr 2021),
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/, (work in progress)

19. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin,
M., Coron, J. (eds.) Advances in Cryptology - EUROCRYPT 2016 - 35th An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II. Lecture Notes
in Computer Science, vol. 9666, pp. 305–326. Springer (2016). https://doi.org/10.
1007/978-3-662-49896-5 11

20. Groth, J., Kohlweiss, M.: One-out-of-many proofs: Or how to leak a secret and
spend a coin. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology - EURO-
CRYPT 2015 - 34th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceed-
ings, Part II. Lecture Notes in Computer Science, vol. 9057, pp. 253–280. Springer
(2015). https://doi.org/10.1007/978-3-662-46803-6 9

21. Hodges, J., Jones, J., Jones, M.B., Kumar, A., Lundberg, E.: Web Authentication:
An API for accessing Public Key Credentials - Level 2. W3C recommendation,
W3C (Apr 2021), https://www.w3.org/TR/webauthn-2

22. Hopwood, D., Bowe, S., Hornby, T., Wilcox, N.: Zcash protocol specification (Aug
2021), https://zips.z.cash/protocol/protocol.pdf

23. Johnson, D., Menezes, A., Vanstone, S.: The Elliptic Curve Digital Signature Al-
gorithm (ECDSA). Int. J. Inf. Secur. 1(1), 36–63 (Aug 2001). https://doi.org/10.
1007/s102070100002

24. MDN contributors: Bigint (2021), https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Reference/Global Objects/BigInt

25. National Institute of Standards and Technology: FIPS 186-2: Digital Signa-
ture Standard (DSS). Federal Information Processing Standards Publication
(Jan 2000), https://csrc.nist.gov/CSRC/media/Publications/fips/186/2/archive/
2000-01-27/documents/fips186-2.pdf

26. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable se-
cret sharing. In: Feigenbaum, J. (ed.) Advances in Cryptology — CRYPTO
’91. p. 129–140. Springer, Berlin, Heidelberg (1992). https://doi.org/10.1007/
3-540-46766-1 9

27. Renes, J., Costello, C., Batina, L.: Complete addition formulas for prime order
elliptic curves. In: Fischlin, M., Coron, J. (eds.) Advances in Cryptology - EURO-
CRYPT 2016 - 35th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings,

https://doi.org/10.1007/3-540-48910-X_8
https://doi.org/10.1007/3-540-48910-X_8
https://doi.org/10.1007/11818175_5
https://www.cs.au.dk/~ivan/Sigma.pdf
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/3-540-39568-7_2
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-46803-6_9
https://www.w3.org/TR/webauthn-2
https://zips.z.cash/protocol/protocol.pdf
https://doi.org/10.1007/s102070100002
https://doi.org/10.1007/s102070100002
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt
https://csrc.nist.gov/CSRC/media/Publications/fips/186/2/archive/2000-01-27/documents/fips186-2.pdf
https://csrc.nist.gov/CSRC/media/Publications/fips/186/2/archive/2000-01-27/documents/fips186-2.pdf
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/3-540-46766-1_9

16 A. Faz-Hernández et al.

Part I. Lecture Notes in Computer Science, vol. 9665, pp. 403–428. Springer (2016).
https://doi.org/10.1007/978-3-662-49890-3 16

28. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
Advances in Cryptology - ASIACRYPT 2001, 7th International Conference on
the Theory and Application of Cryptology and Information Security, Gold Coast,
Australia, December 9-13, 2001, Proceedings. Lecture Notes in Computer Science,
vol. 2248, pp. 552–565. Springer (2001). https://doi.org/10.1007/3-540-45682-1 32

29. Silverman, J.H.: The geometry of elliptic curves. In: The Arithmetic of Elliptic
Curves, chap. 3, p. 41–114. Springer, New York, NY (2009). https://doi.org/10.
1007/978-0-387-09494-6 3

30. Solinas, J.A.: Generalized Mersenne Numbers. Tech. rep., Centre for Applied Cryp-
tographic Research, University of Waterloo (Jun 1999), https://cacr.uwaterloo.ca/
techreports/1999/corr99-39.pdf

31. Standards for Efficient Cryptography Group: SEC 2: Recommended Elliptic Curve
Domain Parameters. Standards for Efficient Cryptography (SEC) (Sep 2000),
https://www.secg.org/sec2-v1.pdf

32. The PARI Group, Univ. Bordeaux: PARI/GP version 2.13.0 (2019), available
from http://pari.math.u-bordeaux.fr/

https://doi.org/10.1007/978-3-662-49890-3_16
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/978-0-387-09494-6_3
https://doi.org/10.1007/978-0-387-09494-6_3
https://cacr.uwaterloo.ca/techreports/1999/corr99-39.pdf
https://cacr.uwaterloo.ca/techreports/1999/corr99-39.pdf
https://www.secg.org/sec2-v1.pdf
http://pari.math.u-bordeaux.fr/

	ZKAttest: Ring and Group Signatures for existing ECDSA keys

