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Abstract

Key trees are often the best solution in terms of transmission cost and storage requirements for
managing keys in a setting where a group needs to share a secret key, while being able to efficiently
rotate the key material of users (in order to recover from a potential compromise, or to add or remove
users). Applications include multicast encryption protocols like LKH (Logical Key Hierarchies) or group
messaging like the current IETF proposal TreeKEM.

A key tree is a (typically balanced) binary tree, where each node is identified with a key: leaf nodes
hold users’ secret keys while the root is the shared group key. For a group of size N , each user just holds
log(N) keys (the keys on the path from its leaf to the root) and its entire key material can be rotated by
broadcasting 2 log(N) ciphertexts (encrypting each fresh key on the path under the keys of its parents).

In this work we consider the natural setting where we have many groups with partially overlapping
sets of users, and ask if we can find solutions where the cost of rotating a key is better than in the trivial
one where we have a separate key tree for each group.

We show that in an asymptotic setting (where the number m of groups is fixed while the number N
of users grows) there exist more general key graphs whose cost converges to the cost of a single group,
thus saving a factor linear in the number of groups over the trivial solution.

As our asymptotic “solution” converges very slowly and performs poorly on concrete examples, we
propose an algorithm that uses a natural heuristic to compute a key graph for any given group structure.
Our algorithm combines two greedy algorithms, and is thus very efficient: it first converts the group
structure into a “lattice graph”, which is then turned into a key graph by repeatedly applying the
algorithm for constructing a Huffman code.
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To better understand how far our proposal is from an optimal solution, we prove lower bounds on the
update cost of continuous group-key agreement and multicast encryption in a symbolic model admitting
(asymmetric) encryption, pseudorandom generators, and secret sharing as building blocks.
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1 Introduction

Key trees. In various group communication settings, including multicast encryption [15, 16, 7] or group
messaging protocols [4, 8], the most efficient constructions use a binary tree structure to manage keys. The
general idea is to consider a balanced binary tree with edges directed from leaves to the root. One then
identifies each node v with a key kv (of a symmetric encryption scheme for multicast encryption and a
public-key encryption scheme for group messaging). Each edge (u, v) corresponds to a ciphertext Encku(kv)
and each leaf node v with a user uv. A user uv will know the (secret) key kv, and from the ciphertexts can
then retrieve all the keys on the path from its leaf to the root ε. The root key kε is thus known to all users,
and can be used for secure communication to or among the group members.

What makes this tree structure so appealing is the fact that in a group of size N , the key material of a
user u can be completely rotated by replacing only the keys on the path from u to ε, which in a balanced
tree has length at most d = dlog(N)e. Moreover, as the nodes in a tree all have indegree two, one only needs
to compute two fresh ciphertexts for each new key (in practice just one as the new keys can be derived via
a hash-chain).

These aspects are important as the number of keys a user requires basically defines the communication
and computational efficiency of a key rotation, which is the main operation performed to add or remove
users, or for a user to update their keys in order to recover from a potential compromise.

Groups. In this work we consider an extension of this setting to multiple groups. We are given a base
set [N ] = {1, . . . , N} of users with a set system S = {S1, . . . , Sk} (each Si ⊆ [N ]), and we ask for a key
managing structure such that for any set Si ∈ S, the users in Si share a group key. This is a natural and
well motivated setting; consider for example a university, where one might want to have a shared key for all
students attending particular lectures.

A trivial solution to this problem is to simply use a different key-tree for every group Si, in this work we
explore more efficient solutions.

Key-graphs beyond trees. For a set system S as above, instead of using disjoint trees, any directed
acyclic graph (DAG) G = (V, E) with the following properties is sufficient to maintain group keys:

1. Every user i ∈ [N ] corresponds to a source vi (a node of indegree 0).

2. Every group Si ∈ S corresponds to a sink vSi (a node of outdegree 0).

3. For every Si ∈ S and j ∈ [N ], there is a directed path from vj to vSi
if and only if j ∈ Si.

4. The indegree of any node is at most 2.

The first three properties ensure that any user j ∈ [N ] can learn the keys associated with the nodes of groups
they are in. The last property is not really necessary, but it is without loss of generality in the sense that
any graph can be turned into a graph with at most as large update cost (as we show in Section 3) where
every node other than the leaves has indegree at most 2. We call this a key-derivation graph for S.

Update cost. If we rotate the keys of a user i we need to replace all keys that can be reached from vi,
which we denote by D(vi), and encrypt each new key under the keys of its co-path. We thus define the
update cost of a user i ∈ [N ] as

∑
v∈D(vi)

indeg(v) − 1, which with item 4 above roughly simplifies to the

number of vi’s descendants |D(vi)|. The update cost Upd(G) of a DAG G is the sum over the update cost of
all its leaves, which is proportional to the average update cost of users.

Towards constructing more efficient key-derivation schemes when we have multiple overlapping groups,
we thus address the problem of determining how small the update cost of a key-derivation for a given set
system S = {S1, . . . , Sk} over [N ] can be, and how to find graphs which achieve, or at least come close to,
this minimum.
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Our contributions. We look at this problem from two perspectives. To get an insight on how much can
be saved compared to the trivial solution, we first adapt a qualitative, asymptotic perspective, where we
assume a fixed set system, but the number of users N goes to infinity while the relative size of the sets
and intersections remains the same. We prove a lower bound on the update cost in this setting and give an
algorithm computing graphs matching this bound.

As this solution turns out to be far from optimal for certain concrete set systems, we then also look at a
quantitative non-asymptotic setting, where we consider concrete bounds and care about things like additive
constants. We propose an algorithm that seems better equipped to handle such systems and prove upper
and lower bounds on the update costs of graphs generated by it. Finally, we prove lower bounds on the
update cost of any continuous group-key agreement scheme and multicast encryption scheme in a symbolic
model.

1.1 The asymptotic setting

Given a set system S = (S1, . . . , Sk) over some base set [n], we let S(N) denote the system with base
set [N ] we get by considering each element in S with multiplicity N/n. E.g. if S = ({1, 2}, {2, 3}) then
S(6) = ({1, 2, 4, 5}, {2, 3, 5, 6}).1 Thus, as the number of users N grows the relative sizes of the groups and
their intersections remain fixed.

Let si := |Si|/n denote the relative size of Si and s =
∑m
i=1 si be the average number of groups users

are in. We assume wlog. that each user is in at least one group, implying s ≥ 1. Let Opt(S) denote the
update cost of the best key-graph for a set system S and Triv(S) the update cost of the Trivial algorithm
(which makes a key-tree for every Si ∈ S). We will show that (the hidden constants in the big-Oh notation
all depend on k, the number of groups).

Opt(S(N)) = N log(N) + Θ(N) (1)

Triv(S(N)) = s ·N log(N)−Θ(N) (2)

thus
Triv(S(N))

Opt(S(N))
= s− o(1) (3)

As s is the average number of groups users are in, this shows that

asymptotically (for a fixed set system S but with increasing number N of users) the update cost
of an optimal key-derivation graph depends only on N (but not on S). In this regime, the gain
we get by using more cleverly chosen key-derivation graphs (as opposed to using a key-tree for
every group) can be up to linear in s, the number of groups an average user is in, but not, say,
the number of groups |S|.

While we do not know how to efficiently find the best key graph for a given set system S, in Section 4 we
define a family Gao(S(N)) which is asymptotically optimal, i.e., matches Equation 1. Intuitively, it first
partitions the universe of users [N ] into the sets of users that are members of exactly the same groups. More
precisely, for I ⊆ [k] let PI be the set of users that are members of the groups specified by I. Then, the
asymptotically optimal algorithm builds a balanced binary tree for every PI , and in a second step connects
the roots of these trees to the appropriate group keys by another layer of binary trees. For an illustration of
the trivial and asymptotically optimal algorithms see Figure 1.

1.2 The non-asymptotic setting

Asymptotics can kick in slowly. The asymptotic setting gives a good idea about the efficiency we can
expect once the number of users N is large compared to the number k = |S| of groups. Though it should
be noted that this asymptotic effect can kick in only slowly: assume the artificial example where for some
small base set [n] we have a set system S = {S1, . . . , Sk} with k = 2n − 1 groups where for every non-empty

1S(N) is only well defined if N/n is an integer, we ignore this technicality as we’ll be interested in the case N →∞.
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S1

S2 S3

Group system S = (S1, S2, S3) Trivial solution

S1

S2 S3

Asymptotically optimal solution

S1 S2 S3

Algorithm 1

S1

S2 S3

Figure 1: Key graphs for group systems. Top left; Venn diagram of the considered group system. Top right;
trivial key graph using one balanced binary tree per group. Bottom left; Asymptotically optimal key graph
using one balanced binary tree per partition PI . Bottom right; asymptotically optimal key graph obtained
using Algorithm 1. In the depictions of key trees the horizontal thick lines indicates the users’ personal keys.

subset of users we have a group. Then each user is in 2n−1 groups and thus needs at least that many keys,
and so the Θ(1) term in the asymptotic update cost log(N) + Θ(1) of a single user is also at least 2n−1. For

the log(N) term to dominate we need log(N)� 2n−1, or N � 22n−1

, so the number of users needs to grow
doubly exponential in the base set [n].

Moving on to the non-asymptotic setting, consider a group system S for a fixed set of users [N ]. The
discussion above indicates that for S the asymptotic update cost per user of log(N) could be very far off the
truth unless N becomes fairly large compared to the number of groups. This leaves the possibility that for
concrete group systems where N is not huge relative to S already the trivial key-graph performs fairly well
in practice. This, however, turns out to not be the case.

First, let us observe that the gap in update cost can never be larger than log(N), for any S over [N ]

Triv(S) ≤ log(N) ·Opt(S) (4)

To see this we observe that the update cost for every user i ∈ [N ] is at most a factor log(N) larger in the
trivial solution: a user i that is in si = |{S ∈ S : i ∈ S}| groups has an update cost of at least si in any
key graph, in particular in Opt(S), and at most

∑
S∈S,i∈S log(|S|) ≤ si · log(N) in the trivial key graph.

In Section 4.2 we will show that this is not merely a theoretical gap by giving an example of a natural
system S for which the update costs of both the trivial and the asymptotically optimal algorithms match
the gap of log(N).

A greedy algorithm based on Huffman codes. The discussion above indicates that for set systems
mapping groups that we might encounter in practice, one shouldn’t simply use an asymptotically optimal
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solution, but aim for a solution that is optimal, or at least close to optimal, for all instances.
Algorithm 1 that we propose in Section 5 is an algorithm for computing a key-graph given a set system S.

In a first step, the algorithm computes a “Boolean-lattice graph” for S, and in a second iteratively runs the
algorithm to compute Huffman Codes to compute the key graph. As the algorithm is basically a composition
of greedy algorithms, it is very efficient. We leave it as an open question whether it really is optimal, and if
not, whether there’s an efficient (polynomial time) algorithm to compute Opt(S) and find the corresponding
key graph for a given S in general.2

We present Algorithm 1 in Section 5 and discuss its connection to Boolean lattices. Then, we derive
concrete lower and upper bounds on its update cost, that can serve as a good estimate on how much it saves
compared to the trivial algorithm and the asymptotically optimal algorithm of Section 1.1. We further show
that Algorithm 1 and a class of algorithms generalizing the approach taken are optimal in the asymptotic
setting. While the same is true for the algorithm discussed in Section 1.1, Algorithm 1 seems better suited
for practical applications as key-derivation graphs constructed by it reflect the hierarchical structure inherent
to such systems. An example of a key graph generated by it is in Figure 1.

Our analysis concerns static group systems, but in Section 6 we show how known techniques that allow
adding and removing users from groups in the settings of continuous group-key agreement and multicast
encryption for a single group can be adapted to key-derivation graphs generated by the greedy algorithm.

Lower bounds. To get a feeling how close to optimal our approach is, we prove a lower bound on the
average update cost for arbitrary schemes for continuous group-key agreement (in Section 7) and multicast
encryption (in Appendix B) that are based only on simple primitives such as encryption, pseudorandom
generators, and secret sharing in a symbolic security model. This closely follows ideas from Micciancio
and Panjwani [14] who considered such a symbolic model to analyze the worst-case update cost of multicast
encryption schemes. We improve on their results by considering the setting of multiple potentially overlapping
groups and proving a lower bound on the average communication complexity.

Our bound essentially shows that on average the cost of a user in any CGKA scheme or multicast
encryption scheme for group system S1, . . . , Sk constructed from the considered primitives satisfies

Upd(G) ≥ 1

N
·
∑
∅6=I⊆[k]

|PI | · log(|PI |) ,

where PI ⊆ [N ] is the set of users exactly in the groups specified by index set I ⊆ [k]. We consider it an
interesting open question to either improve on this bound or to construct an algorithm matching it.

1.3 Related Work

In the setting of a single group key graphs have been used to construct secure multicast encryption, e.g.
[15, 16, 7], and continuous group-key agreement (CGKA), e.g. [4, 8]. In the setting of multiple groups the
approach to use binary trees for every set of users that are members of exactly the same groups similarly to
the asymptotically optimal algorithm, has been suggested in [13, 17]. However, the trees are then combined
in a way that induces an overhead that is linear in the number of trees.

In [9] Cremers et al. consider the post-compromise security guarantees of CGKA protocols for multiple
groups. They show that in certain update scenarios protocols based on pairwise channels have better healing
properties than protocols based on key trees, as updates in a single group also benefit all subgroups of it.
We stress that these issues do not arise in our approach as updates in our setting are global and thus affect
all groups the updating user is a member of.

The symbolic security model was first introduced by Dolev and Yao [10] and used by Micciancio and
Panjwani [14] to prove worst case bounds on the update cost of multicast encryption schemes for a single
group. In the context of CGKA schemes it was recently used by Bienstock et al. [6] who analyze the
communication cost of concurrent updates in CGKA schemes for a single group.

2The question whether a polynomial time algorithm for computing Opt(S) exists can be naturally asked in various ways.
We discuss it in more detail in Section 8.
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2 Preliminaries

2.1 Notation

Throughout the paper log denotes the logarithm with respect to base 2.

Graph notation. Let G = (V, E) be a directed acyclic graph (DAG). To node v ∈ V we associate the
sets A(v) = {v′ ∈ V | ∃ path from v′ to v} of ancestors of v, and D(v) = {v′ ∈ V | ∃ path from v to v′} of
descendants of v. Here, we allow paths of length 0 and hence v ∈ A(v) and v ∈ D(v). Let G′ = (V ′,G′) be a
subgraph of G and v ∈ V ′. We denote the set of parents of v by P(v). The set of co-parents CP(v,G′) ⊆ V
of v with respect to G′ in G is the set of vertices that are parents of v in G but not in G′.

Probability distributions. Let X be a random variable that has outcomes x1, . . . , x` with probabil-
ity p1, . . . , p`. Then we denote by E[X] its expectation and by H(X) = −

∑`
i=1 pi log(pi) its Shannon

entropy.

2.2 Huffman Codes

Given a collection v1, · · · , v` of disconnected leaves of weight w1, . . . , w` ∈ N a Huffman Tree is constructed
as follows. From the set {v1, . . . , v`} two nodes vi1 , vi2 with the smallest weights are picked. Then a node v
and edges (vi1 , v), (vi2 , v) are added to the graph. v’s weight is set to wi1 + wi2 and the set of nodes to be
considered updated to {v1, . . . , v`}∪{v} \ {vi1 , vi2}. This step is repeated until all leaves are collected under
a single root.

Since all nodes have indegree 2 the Huffman tree defines a prefix-free binary code for (v1, . . . , v`). We
will make use of the following property of Huffman Codes.

Lemma 1 (Optimality of Huffman Codes [11]). Consider a Huffman tree T over leaves v1, . . . , v` of

weight w1, . . . , w` ∈ N. Let w =
∑`
i=1 wi and let UT denote the probability distribution that picks leaf vi

with probability wi/w proportional to its weight. Then, if len(UT ) denotes the random variable measuring
the length of the path from a leaf picked according to UT to the root, we have that the average length of such
paths is bounded by

H(UT ) ≤ E[len(UT )] ≤ H(UT ) + 1 .

3 Key-derivation Graphs for Multiple Groups

In this section we discuss key-derivation graphs for systems consisting of multiple groups. In Section 3.1 we
briefly recall two applications of such graphs; continuous group-key agreement and multicast encryption. In
Section 3.2 we formally define key-derivation graphs, discuss how key material in a graph is refreshed, and
define its update cost.

3.1 Continuous Group-key Agreement and Multicast Encryption

Continuous group-key agreement. Continuous group-key agreement (CGKA) schemes [2] are an im-
portant building block in the construction of secure asynchronous group messaging schemes. As the name
indicates, the goal of a CGKA scheme is to establish a common key that is to be used to secure the com-
munication between members of a group. As groups can typically be long-lived, users need to also be able
to frequently update the key material known to them, to on one hand, recover from a potential compromise
and, on the other hand, ensure forward-secrecy of messages sent in the past.

In this work we are interested in the more general setting in which users n ∈ [N ] want to agree on keys
for a system of groups S1, . . . , Sk ⊆ 2[N ]. After the groups have been established in a setup phase user n
can use the procedure Upd(n) to produce an update message that rotates the key material known to them,
thus eliminating any keys that may have leaked during a compromise. This update message is broadcasted
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to the other users using the untrusted delivery server. Given their own secret keys, users are then able to
retrieve the refreshed keys that should be known to them. A natural goal to aim for is to minimize the
communication cost incurred by such update messages.

Naturally, one would like to additionally support dynamic operations, i.e., allow users to add and remove
other users from groups in the system. While in this work we focus on the update costs of schemes for a
system of static groups, in Section 6 we show that the known techniques of blanking and unmerged leaves
used in the MLS protocol [4] can be adapted to schemes obtained from our approach.

Efficient CGKA protocols [4, 8] (in the single group setting) establish a key-derivation graph in the setup
phase that, in turn, allows user to update at a cost that is logarithmic in the number of group members.3

In Section 3.2 we formally define key-derivation graphs and discuss how the updating process works.

Multicast encryption. The goal of a multicast encryption scheme [15, 16, 7] is to establish a key for a
group of users to enable them to decrypt ciphertexts broadcast to the group. Every user holds a personal
long-term key, but opposed to CGKA there also exists a central authority that has access to all secret key
material. After a setup phase, the central authority is able to add and remove users from the group by
refreshing key material and broadcasting messages to the group. The central goal in the construction of
multicast schemes is to minimize the communication complexity incurred by such operations. Typically,
multicast encryption schemes also rely on key-derivation graphs.

As in the case of CGKA, we are interested in the more general setting of a system of potentially over-
lapping groups of users.

3.2 Key-derivation Graphs

We now discuss key-derivation graphs. In our exposition we will focus on graphs for continuous group-key
agreement. At the end of the section we discuss the differences to graphs for multicast encryption.

Consider a set of parties [N ] and a collection S ⊆ 2[N ] of subgroups of [N ]. A key-derivation graph (kdg)
for [N ] and S organizes key pairs in a way that allows the members of a particular subgroup to agree on
a key, and further enables parties to refresh the key material known to them. Every node v in the graph
is associated to a key pair (pkv, skv) of a public-key encryption scheme (KGen,Enc,Dec), and edges (v, v′)
indicate that parties with access to skv also posses skv′ . The personal keys of users correspond to sources
and every group is represented by a node that holds the corresponding secret group key. We formalize the
structural requirements on the graph in the multi-group setting as follows.

Definition 1. Let N ∈ N, S ⊆ 2[N ], and G = (V, E) a DAG. We say that G is a key-derivation graph for
universe of elements [N ] and groups S if

1. For every n ∈ [N ] there exists a source vn ∈ V and for every S ∈ S there exists a node vS ∈ V. We
further require that vn 6= v′n for n 6= n′.

2. For n ∈ [N ] and S ∈ S we have vS ∈ D(vn) exactly if n ∈ S.

In the definition above node vn correspond to user n’s personal key, and nodes vS to group keys. The
second property encodes correctness and security, intuitively saying that n is able to derive the group key of
S exactly if n ∈ S.

Updates. Let G be a key-derivation graph for [N ] and S. If party n wants to perform an update she has
to refresh all key-material corresponding the subgraph D(vn) known to her and communicate the change to
the other parties. To this end she picks a spanning tree Tn = (V ′, E ′) of D(vn), as well as a random seed ∆vn .
Then starting from the source vn, if v′ is the ith child of node v she defines the seed of v′ as ∆v′ = H(∆v, i),
where H is a hash function. ∆v′ is then used to derive a new key-pair (pkv′ , skv′) ← KGen(∆v′) for v′.

3In order to ensure authenticity of update messages and to prevent the server from sending users inconsistent update messages
these protocols employ additional techniques. We leave the question how to adapt these to key-derivation graphs for multiple
groups to future work (See Section 8).
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Finally, n for every v ∈ V ′ and every co-parent v′ ∈ CP(v, Tn) computes the ciphertext cv,v′ = Enc(pkv′ ,∆v).
The set of all ciphertexts together with the set of new public keys forms the update message. Finally, n
deletes all seeds ∆v.

We now show that the construction preserves correctness, i.e., users n′ 6= n are able to deduce all new
secret keys in D(vn′) from the update message and thus in particular the group keys of all groups they are
a member of. To this end, let v ∈ D(vn)∩D(vn′). Then there exists a path (vn′ = v1, . . . , v` = v) in D(vn′).
Let i be maximal with vi /∈ D(vn) (Note that such i must exist as vn′ is a source). By maximality of i the
node vi must be a coparent of vi+1 with respect to D(vn). Thus, the update message contains an encryption
of ∆vi+1 to pkvi . As skvi was not replaced by the update and is known to n′ the user can recover ∆vi+1

and in turn skvi+1
. Now, n′ can recover the remaining ∆vi+2

, . . . ,∆v` and the corresponding secret keys as
the seeds were either derived by hashing or, in the case that vj+1 is a coparent of vj with respect to D(vn),
encrypted to the new key pkvj , the secret key of which was already recovered by n′.

Update cost. Using the size of ciphertexts as a unit, the update cost of n is given by Upd(n) =∑
v∈Tn |CP(v, Tn)| =

∑
v∈Tn(|P(v)| − 1). Note that this quantity is independent of the particular choice

of spanning tree Tn. In this work we are interested in minimizing the average update cost, assuming that
every user updates with the same probability. We define the total update cost Upd(G) =

∑
n∈[N ] Upd(n) of

G. Note that Upd(G)/N is the average update cost of a user, and we can thus focus on trying to minimize
Upd(G), which will allow for easier exposition. The following lemma shows that we can restrict our view
to graphs in which every non-source has indegree 2. Note, that for graphs G with this property we have
|CP(v, Tn)| = 1 for every n, Tn, and v ∈ Tn that is not a source and thus in this case we can compute the
update cost as

Upd(G) =
∑
n∈[N ]

(|Tn| − 1) =
∑
n∈[N ]

(|D(n)| − 1) =
∑
n∈[N ]

|D(n)| −N . (5)

Lemma 2. Let n ∈ N, S ⊆ 2[N ], and G a key-derivation graph for [N ] and S. Then there exists a key-
derivation graph G′ for [N ] and S satisfying Upd(G′) ≤ Upd(G) such that for every non-source v ∈ V ′ we
have indeg(v) = 2.

Proof. We first show that we can iteratively decrease the indegree of nodes in G in a way that preserves
correctness and only improves the update cost. Thus let v ∈ V and P(v) = {v1, . . . , vk} with k ≥ 3 and
consider the graph G′ with V ′ = V ∪{v′} and E ′ = E ∪{(v1, v

′, ), (v2, v
′), (v′, v)} \ {(v1, v), (v2, v)}. Note that

the correctness requirements of Definition 1 are unaffected by this modification. Let n ∈ [N ]. If v /∈ D(n)
n’s update cost remains the same after the change. Thus, assume v ∈ D(v). In G we have |P(v)| = k. In
G′, on the other hand, |P(v)| = k − 1 and |P(v′) = 2|. Thus if n’s spanning trees in G uses edge (v1, v) or
(v2, v), then her update cost remains unchanged in G′. If, on the other hand, neither (v1, v) nor (v2, v) lie in
n’s spanning trees, then her update cost decreases by one. after repeating the step sufficiently many times
we end up with a graph G′ with indeg(v) ≤ 2 for all v ∈ V ′.

Finally note that non-sources with indegree 1 can be simply merged with their parent, which does not
affect correctness and update cost of the graph.

Key-derivation graphs for multicast encryption. Opposed to kdgs for CGKA key-derivation graphs
for multicast encryption rely on symmetric encryption. Let (E,D) be a symmetric encryption scheme. Every
node v in a kdg G for [N ] and S is associated to a key kv, and an edge (v, v′) indicates that a party with
access to kv allows knows kv′ . We require structural requirements on G that are analogous to Definition 1.
Updates with respect to leaf vn, which for multicast encryption are computed by the central authority, and
their update cost are defined analogous to the setting of CGKA as well.

While the main goal of multicast encryption is not to recover from compromise of keys by updating,
but instead to allow the central authority to dynamically change the structure of the groups S1, . . . , Sk the
notion of an update with respect to a leaf vn still turns out to be useful. Assume that the central authority
performed an update for vn starting with seed ∆. We can distinguish two cases. If ∆ is not known to the
owner n of leaf vn then n lost access to all keys corresponding to D(vn). Thus, by updating the central
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authority can remove a party from all groups they are a member of. Assume on the other hand that the
leaf was previously unpopulated and that ∆ can be derived from n’s long term key. Then n gained access to
all group keys that can be reached from vn. In Section 6 we discuss how updates can be used as the basic
building block of implementing more fine grained operations, i.e., adding or removing a user from particular
group Si. The efficiency of these operations is significantly determined by the update cost as defined in this
section.

3.3 Security

The main focus of this work is to investigate the communication complexity of key-derivation graphs for
group systems. We do not give formal security proofs in this work. The structural requirements on kdgs and
definition of update procedures are chosen with the goal of the resulting CGKA to achieve post-compromise
forward-secrecy (PCFS) [3] roughly corresponding to post-compromise security (PCS) and forward-secrecy
(FS) simultaneously. In the following paragraphs we provide an intuition on the security properties of kdgs.
For ease of exposition we will discuss PCS and FS separately instead of PCFS.

Note that CGKA schemes constructed from kdgs employ further mechanisms to ensure authenticity and
prevent a malicious sever to send users inconsistent update messages. We consider the construction of such
mechanisms as well as a formal security analysis of kdgs to be important open questions for future work.

Preserving the graph invariant. We first discuss how updates preserve the invariant, that users n know
exactly the secret keys corresponding to D(vn), which by Condition 2 of Definition 1 implies that n will
never be able to derive a group key for some group they are not a member of. Note that if n is the updating
user then they will only replace keys in D(vn). If n receives an update message, on the other hand, then they
will only be able to recover a key skv if either the corresponding seed ∆v was encrypted to a key known to n
or if ∆v was derived by hashing from a seed ∆v′ recoverable by n. By iteratively applying this argument to
∆v′ we obtain that there must exist some ∆v′′ that was encrypted to a key known to n such that v′′ has a
path to v. Thus, it must hold that v ∈ D(vn). (Note that the one-wayness of the used hash function ensures
that seeds derived by hashing can only be recovered from each other in the correct direction.)

Post-compromise security. The goal of PCS is to allow users whose secret state has been exposed to
recover from this exposure by performing an update. Using the example of a single compromised user we
now discuss how kdgs for group systems achieve this property. Assume that an adversary knows exactly
the secret state of user n, i.e., all keys skv for v ∈ D(vn), and that n then performs an update. Then the
adversary is not able to deduce any of the replaced keys: Note that the initial random seed ∆vn is not
encrypted to any key and thus cannot be leaked to the adversary. Thus, all other seeds ∆v can only be
derived by the adversary if ∆v itself, or a seed from which ∆v was derived by iterated hashing was encrypted
to a key known to the adversary. However, the adversary only knows the keys corresponding to D(vn) before
the update, and those keys were replaced by freshly sampled ones before computing the ciphertexts. Thus,
seeds are either encrypted to “old” keys not known to the adversary or new keys, and in turn after the
update all keys are secure again.

Forward secrecy. Forward secrecy requires that compromising a user’s secret state does not allow the
adversary to recover previous group keys. In key-derivation graphs old keys get deleted over time providing
a limited form of forward-secrecy. Concretely, if a user n is corrupted all group keys before their last update
remain secure. This holds, since seeds that were generated before this point in time and can be used to recover
group keys were encrypted to keys no longer in n’s memory. Note however, that group keys generated in
between n’s last update and the time of n’s corruption might leak to the adversary. For example, a seed
from which such keys can be derived might have been encrypted to the key skvn which remained unchanged
until the corruption.
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Improved forward secrecy using supergroups. CGKA constructions relying on kdgs like TreeKEM [5]
rely on an additional mechanism to improve their forward-secrecy guarantees. Instead of directly using group
keys skvS to communicate within the group these keys are used to derive a so called application secret K
that serves as the symmetric key for group communication. Whenever an update occurs, the new application
secret of S is computed as H2(skvS ,K) the output of a hash function on input of the new group key and
the previous application secret. Then the old application secret is deleted from memory. The effect of this
is, that when a user’s state leaks (including the current application secret Kt) no old application secret Ki

can be recomputed from old update messages, unless Ki−1 was already known to the adversary by former
corruptions. In short, users gain the advantage of forward secrecy not only by issuing but also by processing
updates of other users in S.

In the setting of a group system S we can further improve on this: Consider some group S ∈ S and let
S1, . . . , S` be the maximal (with respect to inclusion) groups in S that contain S. We denote the application
secrets for S and the Si by KS and KSi respectively. Now, whenever a member of any of the Si issues an
update the application secret of S is updated to KS ← H2(skvS ,KS1

, . . . ,KS`
).4 Note that for every i since

S ⊆ Si all members of S do indeed have access to KSi
and thus are able to compute KS , and that an update

by users in S implies that all Si are updated as well. The effect of this modification is that even updates by
users outside of S—more precisely in any of the sets Si \ S—imply forward secrecy of users in S. Note that
this is in particular helpful in the case where |S| � |Si| and updates in the large group occur much more
frequently than in the small group, for example in the case of two members of a large group having a private
conversation.

3.4 The Trivial Algorithm

To construct a key-derivation graph for a single group S the parties n ∈ S are typically arranged as the
leaves of a balanced binary tree T . The tree’s root serves as the group key. In this case the length of paths
from leaf to root is at most dlog(|S|)e and in turn Upd(T ) ≤ |S| · dlog(|S|)e. On the other hand, T defines a
prefix-free binary code for the set S. Thus, by Shannon’s source coding theorem the average length of paths
from leaf to root is at least log(|S|) which implies Upd(T ) ≥ |S| · log(|S|).

An algorithm for multiple groups. A trivial approach to construct a key derivation graph for parties [N ]
and group system S = {S1, . . . , Sk} is to simply apply the method described above to all Si in parallel. That
is, for i ∈ [k] construct a balanced binary tree Ti with |Si| leaves such that for n ∈ [N ] the node vn is a leaf
of exactly the trees Ti with n ∈ Si. Let G denote the resulting graph. The conditions of Definition 1 clearly
hold and we can bound the total update cost of G by∑

i∈[k]

|Si| · log(|Si|) ≤ Upd(G) ≤
∑
i∈[k]

|Si| · dlog(|Si|)e .

Further, the update cost of a single user n ∈ [N ] is bounded by Upd(n) ≤
∑
i:n∈Si

dlog(|Si|)e.

4 Key-derivation Graphs in the Asymptotic Setting

In this section we investigate the update cost of key-derivation graphs for multiple groups in an asymptotic
setting. More precisely, for a system consisting of a fixed number of groups we consider the setting in which
the number of users tends to infinity while the relative size of the groups stays constant. In Section 4.1
we first compute the asymptotically optimal update cost of key-derivation graphs and then show that the
trivial algorithm does not achieve it. We then present an algorithm achieving the optimal update cost. In
Section 4.2 we show that both approaches can perform badly for concrete group systems.

4Regarding PCFS it might even be advantageous to include KS′ for all S′ ⊇ S.
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4.1 Key-derivation Graphs in the Asymptotic Setting

We investigate the update cost of key derivation graphs in an asymptotic setting. That is, we consider N
parties that form a subgroup system S = {S1, . . . , Sk} and fix values pI ∈ [0, 1] for I ⊆ [k] that indicate the
fraction of users that are members of exactly the groups specified by I.

More precisely, let k ∈ N≥2 be fixed and let {pI}I⊆[k] be such that
∑
I⊆[k] pI = 1. For N ∈ N let

S(N) = {S1(N), . . . , Sk(N)} ⊆ 2[N ] be a subgroup system that satisfies |PI(N)| = N · pI for all I, where
PI(N) =

⋂
i∈I Si(N) \

⋃
j∈[k]\I Sj(N) is the set of users exactly in the groups specified by I.5 Throughout

this section we assume that p∅ = 0, i.e., every user is in at least one group, and that at least two groups are
non-empty. We are interested in the update cost of key-derivation graphs for S(N) when N tends to infinity.

Lower bound in the asymptotic setting. We first compute a lower bound on the update cost of kdgs in
the asymptotic setting. The bound follows from the following combinatorial result on concrete graphs that
will also turn out to be useful for our symbolic lower lower bound of Section 7. Recall that for graphs G′ ⊆ G
and a vertex v the set CP(v,G′) is the set of co-parents of v with respect to G′ in G.

Lemma 3. Let M ∈ N be fixed, S1, . . . , Sk ⊆ [M ], and let G = (V, E) be a DAG such that there exist pairwise
disjoint sets of sources Vn, n ∈ [M ], and nodes vSi

, i ∈ {1, . . . , k} such that

n ∈ Si ⇒ ∃vn ∈ Vn such that there is a path from vn to vSi
.

Further let Tn be a spanning forest of D(Vn) =
⋃
vn∈Vn

D(vn). Then

M · E
[ ∑
v∈Tn

|CP(v, Tn)|
]
≥

∑
∅6=I⊆[k]

|PI | · log(|PI |) ,

where the expectation is to be understood with respect to the uniform distribution on [N ].

Proof. As a first step we show that we may assume that all Vn consist of a single source vn. Indeed, we could
replace G with a graph G′ that for every n has an additional source vn which has outgoing edges to all elements
of Vn. As now all former sources have indegree 1 and all other nodes are unaffected

∑
v∈Tn |CP(v, Tn)| is the

same in both graphs, and every bound on for G′ carries over to G.
Further, using the same argument as in the proof of Lemma 2 we can replace G′ by a graph G′′ sat-

isfying the same correctness properties as G′ such that all non-sources v of G′′ satisfy indeg(v) = 2 and∑
v∈Tn |CP(v, Tn)| can only decrease, implying that every bound for G′′ carries over to G′ and in turn to G.

Thus assume that G satisfies Vn = {vn} for all n and that all non-sources have indegree 2.
Note that

M · E[
∑
v∈Tn

|CP(v, Tn)|] =
∑
n∈[N ]

∑
v∈Tn

|CP(v, Tn)|

=
∑
∅6=I⊆[k]

∑
n∈PI

∑
v∈Tn

|CP(v, Tn)| ,

where we used that the PI form a partition of [M ] and that P∅ = ∅. Thus, to prove the lemma it suffices to
show that for every nonempty I ⊆ [k] we have

∑
n∈PI

∑
v∈Tn |CP(v, Tn)| ≥ |PI | · log(|PI |). Fix a nonempty

index set I ⊆ [k] and let i ∈ I. By assumption for all n ∈ PI there exists a path P from vn to vSi . Thus
there exits a subgraph G′ of G in which every vn has exactly one path to vSi .

As all vn are sources and indeg(v) ≤ 2 for all v ∈ G′ the graph G′ defines a prefix-free binary code for the
set PI . By Shannon’s source coding theorem this implies that the average length of the paths from source
to sink in G′ is at least H(UPI

) = log(|PI |), where UPI
denotes the uniform distribution over PI . Summing

over all elements of PI we obtain∑
n∈PI

∑
v∈Tn

|CP(v, Tn)| =
∑
n∈PI

(|Tn| − 1) ≥ |PI | · log(|P |I) ,

5S(N) is only well defined if N · pI is an integer for all I, we ignore this technicality as we are interested in the case N →∞.
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where in the equality we used that all non sources have indegree 2 and in the inequality that Tn contains
paths of average length log(PI).

Note that Lemma 3 in the case |Vn| = 1 for all n can be seen as a lower bound on the total update cost
of key-derivation graphs as defined in Section 3 since M · E[

∑
v∈Tn |CP(v, Tn)|] =

∑
v∈Tn |CP(v, Tn)|.

Turning to the asymptotic setting we have∑
I⊆[k]

N · pI · log(N · pI) = N ·
∑
I⊆[k]

pI log(N) +N ·
∑
I⊆[k]

pI log(pI)

= N log(N) +N ·
∑
I⊆[k]

log(pI) = N log(N) + Θ(N) ,

where we used that
∑
I pI = 1. As we will show below, there exist key-derivation graphs matching this

bound. We conclude that the optimal update cost in the asymptotic setting only depends on the overall
number of users but not the particular set system:

Opt(S(N)) = N log(N) + Θ(N) .

Note, however, that the term Θ(N) hides a constant (with respect to N), that can be exponential in k.

Asymptotic update cost of the trivial algorithm. The trivial algorithm constructs a separate balanced
binary tree for every group Si(N). For i ∈ [k] let si be such that N ·si = |Si(N)| and further let s =

∑k
i=1 si

be the average number of groups a user are member of. Then we can bound the update cost Triv(S(N)) of
the trivial algorithm in the asymptotic setting as follows, showing that is does not match the optimal cost..

Claim 1. For I ⊆ [k] let pI ∈ [0, 1] be such that
∑
I⊆[k] pI = 1 and p∅ = 0. Let S(N) be the corresponding

group system and si, s as defined above. Then

Triv(S(N)) = s ·N log(N) + Θ(N) .

Proof. As discussed in Section 3.4, key-derivation graphs G for S(N) constructed by the trivial algorithm
satisfy ∑

i∈[k]

|Si(N)| · log(|Si(N)|) ≤ Upd(G) ≤
∑
i∈[k]

|Si(N)| · dlog(|Si(N)|)e .

Thus, on the one hand,

Triv(S(N)) ≥
m∑
i=1

(si ·N) · log(N · si) =

m∑
i=1

(si ·N) · log(N) + log(si)

=

m∑
i=1

si ·N logN +

m∑
i=1

si ·N · log(si) = s ·N log(N) + Θ(N)

and, on the other hand,

Triv(S(N))

≤
m∑
i=1

(si ·N) · log(N · si) +O(N) =

m∑
i=1

(si ·N) · log(N) + log(si) +O(N)

=

m∑
i=1

si ·N logN +

m∑
i=1

si ·N · log(si) +O(N) ≤ s ·N log(N) +O(N) .
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1 2 3 4 5 Σ

S1 S2 S3 S4 S5

Cost: 7 7 5 5 3 27

Trivial solution

1 2 3 4 5 Σ

S1 S2 S3 S4 S5

Optimal solution

4 4 3 2 1 14

Figure 2: Illustration of Triv(S↑N ) (left) and Opt(S↑N ) for N = 5. For each user, the update cost (i.e., the
indegree 2 nodes reachable) is indicated.

An asymptotically optimal graph. We will sketch how to construct an asymptotically optimal key
graph Gao(N) for a given set system S over [n]. In a first step the algorithm for every I with PI(N) 6= ∅
constructs a balanced binary tree with root vI using as leafs the elements of PI(N). Then, in a second step
for every group Si(N) it builds a balanced binary tree with root vSi

using as leafs the nodes {vI | I : i ∈ I}.
An illustration of the algorithm’s working principle is in Figure 1. Correctness of the construction follows
by inspection.

To bound the update cost Upd(Goa(N)) we split it in two parts; the first accounts for the contribution of
the nodes generated during the first step, the second for the contribution of the second step. As

∑
I pI = 1,

the first part contributes at most
∑
I⊆[k] pI ·N · log(N ·pI) ≤ N · logN , while the contribution of the second

part for every single user is constant as {vI} is independent of N , implying that with respect to the total
update cost it is Θ(N). Thus, overall we get Upd(Goa(N)) ≤ N · logN + Θ(N) matching the optimal update
cost.

4.2 Update Cost for Concrete Group Systems

Now consider a concrete group system S = {S1, . . . , Sk} for a fixed set of users [N ]. As already discussed
in Section 1.2, it is possible that the number k of groups can be as large as 2N − 1. Thus, for concrete
group systems the asymptotic update cost per user of log(N) (that contains hidden constants dependent
on k) derived in Section 4.1 could be very far off the truth unless N becomes fairly large compared to the
number of groups. This leaves the possibility that in the case where N is not huge relative to k already
the trivial key-graph performs fairly well in practice. In this section we show that this is not the case by
giving an example where not only the trivial key-graph (which has a balanced tree for every set), but also
our asymptotically optimal Goa perform poorly.

Recall that by Equation 4 the update costs of the trivial and optimal solutions always satisfy Triv(S) ≤
log(N) · Opt(S). The above argument seems very loose, but we show an example where we indeed have a
gap of ≈ log(N)−1 and thus almost match the this seemingly loose log(N) bound. Define the “hierarchical”

set system S↑N over [N ] as

S↑N := {S1, . . . , SN} where Si = {i, i+ 1, . . . , N} .

Note that while S↑N is defined for all N , it is not asymptotic in the sense discussed in Section 4.1 as the
number of groups grows with the number of users N . Further, for this group system the key derivation
graphs output by the trivial and asymptotically optimal algorithms coincide, as for every PI with PI 6= ∅
we have |PI | = 1. As the optimal solution for S is just a path as illustrated in Figure 2, we obtain update
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costs of

Triv(S↑N ) =

N∑
i=1

i log(i) ≈ N2

2
log(N) and Opt(S↑N ) =

N∑
i=1

i =
N(N + 1)

2
≈ N2

2
,

Thus Triv(S↑N )/Opt(S↑N ) ≈ log(N) matching the (4) bound. An interesting observation is the fact that

an optimal solution can have much larger depth than the trivial one: for S↑N the depth of the optimal solution
is N , while in the trivial solution it’s just log(N). The discussion above indicates that neither the trivial nor
the asymptotically optimal algorithm are well-equipped to handle certain group systems. In the following
section we propose an algorithm that is not only asymptotically optimal but also generates key-derivation
graphs better reflecting the hierarchical nature of group systems, and in particular for the example above
recovers the optimal solution.

5 A Greedy Algorithm Based on Huffman Codes

In this section we propose an algorithm to compute key-derivation graphs for group systems. Its formal
description is in Section 5.1. In Section 5.2 we compute bounds on its total update cost and compare it to
the trivial algorithm and the asymptotically optimal algorithm of Section 4.1 and in Section 5.3 we compute
bounds on its worst-case update cost. Finally, in Section 5.4 we show that the algorithm as well as class
generalizing it are asymptotically optimal.

5.1 Algorithm Description

We now describe Algorithm 1 that on input of parties [N ] and set of groups S ⊆ 2[N ] constructs a key-
derivation graph. Its formal description is in Figure 3.

Conceptually, the algorithm proceeds in two phases. The first phase (lines 1 to 11) determines the macro
structure of the key-derivation graph. For reasons explained below we will refer to the graph generated in
this phase as the lattice graph. In the second phase (lines 12 to 20) sources for the individual users are added
at the correct position in the lattice graph, which afterwards is binarized to reduce the update size.

More precisely, at the beginning of the first phase the algorithm initializes a graph G = (V, E) consisting
of isolated nodes vS′ with S′ ∈ S that, looking ahead, will represent the group keys. Every node vS′ is
associated to a set S(vS′) that is initialized to group S′. The algorithm then determines nodes v1, v2 such
that the intersection of their associated sets is maximal and adds a node v3 as well as the edges (v3, v1), (v3, v2)
to the graph. The associated set of v3 is set to S(v1)∩S(v2) and the associated sets of v1 and v2 are updated
to S(v1) \ S(v3) and S(v2) \ S(v3) respectively. This step is repeated until the associated sets of all nodes are
pairwise disjoint.

Let Glat = (Vlat, Elat) denote the resulting lattice graph. In the second phase for every node v ∈ Vlat for
all n ∈ S(v) a source vn representing user n together with edge (vn, v

′) is added to the graph. Finally, for
every node v with indeg(v) ≥ 3 a Huffman tree from the parents to the node is built. Here the weight of a
source is 1, and the weight of non-sources is given as the number of sources below it.

Properties of the lattice graph. We now derive several properties of the lattice graph, which will be
used to prove correctness and compute bounds on the total update cost of the generated key-derivation
graph. Thus, let Glat = (Vlat, Elat) be the lattice graph generated on input of [N ] and set of k groups S =
{S1, . . . , Sk} ⊆ 2[N ]. For index set I ′ ⊆ [k] we denoted by

PI′ :=
⋂
i∈I′

Si \
⋃

j∈[k]\I′
Sj ,

the set of parties that are members of exactly the groups specified by I. Further, for v ∈ Vlat we define

I(v) := {i ∈ [k] | exists path from v to vSi
} ,
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Input: (N,S)

1 : G = (V, E)← (∅, ∅)
2 : for S′ ∈ S
3 : V ← V ∪ {vS′}
4 : S(vS′)← S′

5 : while the sets associated to V are not disjoint

6 : v1, v2 ← arg max
v1,v2∈V

(|S(v1) ∩ S(v2)|)

7 : add the node v3

8 : S(v3)← S(v1) ∩ S(v2)

9 : S(v1)← S(v1) \ S(v3)

10 : S(v2)← S(v2) \ S(v3)

11 : add the edges (v3, v1), (v3, v2)

12 : for v ∈ V
13 : for n ∈ S(v)

14 : add the node vn

15 : add the edge (vn, v)

16 : S(v)← S(v) \ {n}
17 : compute the weight of each node as the number of sources below it

18 : for every node with indegree > 1

19 : build a Huffman tree from the parents to the node

20 : return G

Figure 3: Algorithm 1

the index set of group nodes that can be reached from v. Finally, for a collection V ′ ⊆ V of nodes we
generalize the notation for associated sets to S(V ′) := ∪v∈V′S(v). We obtain the following.

Lemma 4. Let N, k ∈ N, S = {S1, . . . , Sk} ⊆ 2[N ], and let Glat = (Vlat, Elat) be the lattice graph generated
on input ([N ],S). Then the following holds.

1. Let v, v′ ∈ Vlat be such that I(v) = I(v′). Then v = v′.

2. I(v) 6= ∅ for all v ∈ Vlat.

3. For every v ∈ Vlat and every i ∈ I(v) there is exactly one path from v to vSi
.

4. Consider the ancestor graph A(v) for v ∈ Vlat. Then⋃
v′∈A(v)

S(v′) ⊆
⋂

i∈I(v)

Si .

If |I(v)| = 1 then the equation holds with equality, i.e.,
⋃
v′∈A(vS) S(v′) = S for all S ∈ S.

5. Consider some v ∈ Vlat. Then we have S(v) = PI(v) .

Before turning to the proof, we briefly discuss how Lemma 4 allows us to interpret the lattice graph as
a subgraph of the Boolean lattice with respect to the power set of [k], i.e., the graph GB = (VB , EB) with
VB = {vI | I ⊆ [k]} and edges EB = {(vI , vI′) | I, I ′ ⊆ [k] : I ′ ⊆ I)}. Indeed, Properties 1 and 2 allow us to
map every v ∈ Vlat to a unique index set I ⊆ [k]. Since the existence of an edge (v, v′) ∈ Elat implies that
I(v) ⊇ I(v′) all edges adhere to the structure of GB . Summing up, the map G → GB ; v 7→ vI(v) is an injective
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S1

S2 S3

Group system S = (S1, S2, S3) Lattice graph Glat

v{1} v{2} v{3}

v{1,2} v{1,3}

v{1,2,3}

Key-derivation graph G

vS1

vS2
vS3

Resulting group trees

vS1

vS2
vS3

Figure 4: Working principle of the algorithm. Top left; Venn diagram of the considered group system. Top
right; resulting lattice graph after the first phase. Node vI has associated set S(vI) = PI , the set of users
in exactly the groups indicated by I. Nodes and edges of the Boolean lattice that are not part of Glat are
depicted in gray. Bottom left; final key derivation graph. Bottom right; resulting trees corresponding to
groups S1, S2, S3. Note that components of the same color are shared among different trees.

graph homomorphism. This allows us to identify nodes of the lattice graph with nodes of GB and sometimes
write vI′ for a unique node v ∈ Vlat with I(v) = I ′ ∈ P([k]). By Property 5 the associated set of v is PI , the
set of users exactly in the groups specified by I. Figure 4 depicts an example execution of Algorithm 1.

Proof of Lemma 4. For t ∈ N let Gt = (Vt, Et) be the graph after the tth execution of the loop while loop of
line 5. We will further use St and At to denote associated sets and ancestor sets with respect to Gt.

We show via induction on t that Properties 2 to 4 hold in Gt and that additionally for all v ∈ V the
sets associated to At(v) are pairwise disjoint. For t = 0 the graph consists of isolated nodes vS1 , . . . , vSk

with associated sets S1, . . . , Sk and corresponding index sets {1}, . . . , {k}. Thus, all properties stated above
clearly hold.

Assume that the properties hold for all steps up to t − 1 and consider Gt. The only change to E in the
tth step is the addition of two new edges (v3, v1) and (v3, v2). Thus, by the induction hypothesis we have
I(v) 6= ∅ for all v ∈ Vt \ {v3}. Further I(v3) = I(v1) ∪ I(v2) 6= ∅ and Property 2 still holds.

Regarding Property 3 note that the new node v3 added in the tth execution of the loop is a source. Thus,
by the induction hypothesis for all v 6= v3 there still exists exactly one path to every corresponding vSi

. We
have I(v3) = I(v1) ∪ I(v2). Since v3 is connected to both v1 and v2, by the induction hypothesis there is at
least one path from v3 to vSi

for all i ∈ I(v3). Now assume that there is an i such that there are at least two
different paths from v3 to vSi

. By the induction hypothesis these paths must diverge in v3, i.e., there are
paths from v1 to vsi and v2 to vSi . But since v1 and v2 were chosen by the algorithm in the tth execution
of the loop this implies that after the (t − 1)th execution there were two ancestors of vSi with non-disjoint
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associated sets. A contradiction to the induction hypothesis. Thus Property 3 holds.
Regarding Property 4 consider v ∈ Vt. Note that we either have At(v) = At−1(v) or At(v) = At−1(v) ∪

{v3}, v3 being the newly added node. In the former case Property 4 and disjointness of associated ancestor
sets follow immediately from the induction hypothesis. For the latter, first consider the case v 6= v3. Note
that the index set I(v) of v remains unchanged. Assume without loss of generality that for the two nodes
v1, v2 processed by the algorithm in the tth execution of the loop we have v1 ∈ At−1(v). Then the associated
set of v1 is updated to St(v1) = St−1(v1)\St−1(v2), St(v3) = St−1(v1)∩St−1(v2), and all other associated sets
stay unchanged. Thus all sets are still pairwise disjoint and cover the same subset of

⋂
i∈I(v) Si. In particular

if |I(v)| = 1 we still have
⋃
v∈A(v) S(v) =

⋂
i∈I(v) Si. Now consider v3. We have I(v3) = I(v1) ∪ I(v2) which

in particular implies |I(v3)| ≥ 2. By the induction hypothesis we obtain that

St(v3) = St−1(v1) ∩ St−1(v2) ⊆ (
⋂

i∈I(v1)

Si) ∩ (
⋂

i∈I(v2)

Si) =
⋂

i∈I(v3)

Si .

This concludes the induction.
We now prove Property 1. Note that |I(v)| = 1 implies v = vSi for some index i. In this case the property

holds by construction. Thus let v, v′ ∈ Vlat be such that I(v) = I(v′) and |I(v)| ≥ 2. Consider the sets D(v)
and D(v′) of descendants of v and v′ respectively. We first show that either v ∈ D(v′) or v′ ∈ D(v). To
this end, note that by Property 3 the set M := {vSi

| i ∈ I(v)} is a subset of D(v) ∩ D(v′). Let v1, v2 ∈ M
be such that v3 was the first node of D(v) ∪ D(v′) added by the algorithm together with the corresponding
edges (v3, v1), (v3, v2), and let t be the point in time when v3 was added.

Assume without loss of generality that v3 ∈ D(v). We show that v3 ∈ D(v′) holds as well. Since
I(v) = I(v′) there must exist paths from v′ to v1 and v2. Let v∗1 and v∗2 be the parents of v1 and v2 on those
paths respectively, and let t1 and t2 denote the points in time when v∗1 and v∗2 where added to the graph.
Note that by choice of v3 all nodes that were added before v3 must have a path to some vSi

with i /∈ I(v) and
hence by Property 3 cannot be elements of D(v′), which implies that both t1 > t and t2 > t. If v∗1 6= v3 6= v∗2
then we have

St1(v∗1) ⊆ St−1(v1) \ St−1(v2) and St2(v∗2) ⊆ St−1(v2) \ St−1(v1)

since v∗1 and v∗2 were added to the graph after v3. Thus, the nodes’ associated sets are disjoint which excludes
the possibility of t∗1 = t∗2 and v∗1 = v∗2 . Further, the associated sets of v∗1 and v∗2 being disjoint at the time
of their creation contradicts that the nodes share an ancestor v′ in the lattice graph. we conclude that the
paths must go via v3 and obtain v3 ∈ D(v′).

Note that by Property 3 v3 is the only node in D(v) and D(v′) that has edges to v1 or v2. By replacing
M with (M ∪{v3})\{v1, v2} we can use the same argument to show that also the node of D(v)∪D(v′) added
second must be an element of both D(v′) and D(v′). After finitely many steps we either obtain v ∈ D(v′) or
v′ ∈ D(v).

Assume without loss of generality the former holds, and assume v 6= v′. Then there exists a path from
v′ to v that uses one of the two outgoing edges of v′. Further, the second outgoing edge must be part of a
path to some vSi

, where by correctness i ∈ I(v′). Since I(v) = I(v′) there also must exist a path from v to
vSi

. Thus, there are at least two paths from v′ to vSi
contradicting Property 3. We obtain v = v′, which

concludes the proof of Property 1.
We now prove Property 5. Consider v ∈ Vlat. As v ∈ A(v) we have by Property 4 that S(v) ⊆

⋂
i∈I(v) Si.

Assume that there is n ∈ S(v) such that n ∈ Sj for some j ∈ [k] \ I(v). By Property 4, we have that
Sj =

⋃
v′∈A(vSj

) S(v′) which would imply that v ∈ A(vSj ). This however contradicts j /∈ I(v) and we obtain

S(vI′) ⊆
⋂

i∈I(v)

Si \
⋃

j∈[k]\I(v)

Sj = PI(v) .

For the other direction consider n ∈ PI(v) and let v′ ∈ V be the node such that n ∈ S(v′). By Property 4,
we have that n ∈

⋃
u∈A(vSi

) S(u) for all i ∈ I(v) and n /∈
⋃
u∈A(vSj

) S(u) for all j ∈ [k] \ I(v). This implies

that I(v′) = I(v). By Property 1 we obtain v = v′ and in turn PI(v) ⊇ S(v).
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Figure 5: Key-derivation graphs of the trivial algorithm (left) and Algorithm 1 (right) for two subgroups.
Users that are members of both subgroups are marked in thick.

Correctness. We show that key-derivation graph G output by Algorithm 1 satisfies the correctness prop-
erties of Definition 1. Note that the first property holds by construction.

To see that the second property holds as well, consider the lattice graph. By Lemma 4, Property 4 for
every group S′ ∈ S the associated sets of the ancestors of vS′ form a partition of S′. In the second phase of
the algorithm a source vn is added for every user and connected to corresponding node in the lattice graph.
Thus, after this step the set of users with a path to vS′ is exactly S′. As this property remains unaffected
by the binarization step of line 19 the final key-derivation graph is indeed correct.

5.2 Total Update Cost

In this Section we analyze the total update cost Upd(G) =
∑
n∈[N ] Upd(n) of key-derivation graphs G

generated by Algorithm 1. To this end, we will split Upd(G) into the contribution made by the constituting
Huffman trees T . Tree T has a single root and all non-sources in T have indegree 2. Let L(T ) denote the
set of leaves of T . As argued in Lemma 2, the update cost of a leaf u with respect to T corresponds to the
length len(u) of its path to the root. Note, however, that leaves of T may represent more than one user in
the key-derivation graph. Indeed, by construction of the algorithm the weight wu of u counts the number of
leaves in G below u. Thus, the contribution of Huffman tree T towards the total update cost of G is given
by Upd(T ) =

∑
u∈L(T ) wulen(u). If UT is the probability distribution that picks u ∈ L(T ) with probability

proportional to its weight wu we can express the update cost of T in terms of the expected length from
leaves to the root as

Upd(T ) = E[len(UT )] ·
∑

u∈L(T )

wu . (6)

We first consider Algorithm 1 for the simplest case of two subgroups and compare it to the trivial algorithm.

Example 1. Let N ∈ N and let S consist of two subgroups S1, S2 of sizes N1 and N2 respectively. Further
assume that |S1 ∩ S2| = K. Consider the key derivation graphs generated by the trivial algorithm and
Algorithm 1, which in both cases decompose into several Huffman trees. The trivial algorithm essentially
generates two trees T ′1 and T ′2 , the first containing all members of S1, the other all members of S2. Algorithm 1
first collects the K parties that are members of both groups in a tree T1,2. The remaining (N1−K) members
of S1 and the root of T1,2 are collected in a tree T1, the remaining (N2 −K) members of S2 and the root of
T1,2 in a tree T2 (See Figure 5).

By Equation 6 we have

Upd(Gtriv) = Upd(T ′1 ) + Upd(T ′2 ) = N1 E[len(UT ′1 )] +N2 E[len(UT ′2 )]

and

Upd(Ga1) = Upd(T1) + Upd(T2) + Upd(T1,2)

= N1 E[len(UT1)] +N2 E[len(UT2)] +K E[len(UT1,2)] .
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By optimality of Huffman codes (Lemma 1) we have that

H(UT ) ≤ E[len(UT )] ≤ H(UT ) + 1

for T ∈ {T ′1 , T ′2 , T1, T2, T1,2}, where H(UT ) is the Shannon entropy of UT . For T ′1 , T ′2 , and T1,2 the leaves
are distributed uniformly and we have H(T ′1 ) = log(N1), H(T ′2 ) = log(N2), H(T1,2) = log(K). Let i ∈ {1, 2}
and consider Ti. Then the first Ni −K leaves have probability 1/Ni and the last leaf K/Ni. Thus H(UTi) =
(Ni −K)/Ni log(Ni) +K/Ni log(Ni/K) = log(Ni)−K/Ni log(K). Summing up we obtain

Upd(Gtriv)−Upd(Ga1)

≥N1 log(N1) +N2 logN2 −N1(log(N1)−K/N1 log(K) + 1)

−N2(log(N2)−K/N2 log(K) + 1)−K(log(K) + 1)

=K(log(K)− 1)− (N1 +N2) .

Note that for K ≥ 2 the first term is non-negative (For K = 1 it is easy to see that Algorithm 1 performs
better than the trivial algorithm.).

Before turning to arbitrary group systems we derive a generalized statement on the update cost Upd(T )
contributed by Huffman trees as defined above.

Lemma 5. Let T be a Huffman tree over leaves v1, . . . , v` of weight w1, . . . , w` ∈ N. Let w =
∑`
i=1 wi.

Then T ’s update cost is bounded by

w log(w)−
∑̀
i=1

wi log(wi) ≤ Upd(T ) ≤ w(log(w) + 1)−
∑̀
i=1

wi log(wi) .

Proof. Let UT denote the probability distribution that picks leaf vi with probability wi/w proportional to
its weight. The entropy of UT is given by

H(UT ) = −
∑̀
i=1

wi
w

log(wi/w) =
∑̀
i=1

wi
w

log(w)−
∑̀
i=1

wi
w

log(wi)

= log(w)−
∑̀
i=1

wi
w

log(wi) .

The claim follows since by Equation 6 the update cost of T with respect to the weights is given by E[len(UT )]·
w and by optimality of Huffman codes H(UT ) ≤ E[len(UT )] ≤ H(UT ) + 1.

Regarding general systems of subgroups we obtain the following.

Theorem 1. Let N ∈ N, S1, . . . , Sk ⊆ [N ], and G the key-derivation graph output by Algorithm 1. Let
Glat = (Vlat, Elat) be the corresponding lattice graph. Then

k∑
i=1

|Si| · log(|Si|)−
∑

v∈Vlat : |I(v)|≥2

∣∣∣ ⋃
v′∈A(v)

PI(v′)

∣∣∣ · log
(∣∣∣ ⋃

v′∈A(v)

PI(v′)

∣∣∣) (7)

≤Upd(G)

≤
k∑
i=1

|Si| · (log(|Si|) + 1)−
∑

v∈Vlat : |I(v)|≥2

∣∣∣ ⋃
v′∈A(v)

PI(v′)

∣∣∣ · ( log
(∣∣∣ ⋃

v′∈A(v)

PI(v′)

∣∣∣)− 1
)
, (8)

where A(v) denotes the set of ancestors of v in Glat, I(v) = {i ∈ [k] : ∃ path from v to vSi
}, and for I ′ ⊆ [N ]

the set PI′ :=
⋂
i∈I′ Si \

⋃
j∈[k]\I′ Sj indicates the users exactly in the subgroup corresponding to I ′.
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Proof. As in Example 1 we decompose the total update cost of G into parts contributed by Huffman trees.
Note that every node v′ ∈ Vlat of the lattice graph serves as the root of a Huffman tree Tv′ in the final
key-derivation graph G and we can compute the total update cost of G as Upd(G) =

∑
v′∈Vlat Upd(Tv′).

The leaves L(Tv′) of Tv′ are either sources that were added in the second phase of the algorithm, or nodes
that are a parent of v′ in the lattice graph.

Recall that the weight of leaves is defined as 1 and for general nodes as the number of leaves below it.

This implies that node v′′ in line 17 of the algorithm gets assigned weight |S(A(v′′))| =
∣∣∣⋃ṽ∈A(v′′) S(ṽ)

∣∣∣.
Let v′1, . . . , v

′
` denote the parents of v′ in Glat and consider Huffman tree Tv′ . Then Tv′ has leaves v′i with

weight wv′i = |S(A(v′i))| for i ∈ {1, . . . , `}, and |S(A(v′))| −
∑`
i=1 |S(A(v′i))| additional leaves, each of which

has weight 1.
In the following we will use f as shorthand for the function f : n 7→ n log(n). We now bound Upd(Tv′)

using Lemma 5. As the negative terms in Lemma 5’s statement contributed by leaves of weight 1 are
1 · log(1) = 0 we obtain that

Upd(Tv′) ≥ f(|S(A(v′))|)−
∑̀
i=1

f(|S(A(v′i))|)

and

Upd(Tv′) ≤ f(|S(A(v′))|) + |S(A(v′))| −
∑̀
i=1

f(|S(A(v′i))|) .

To compute the total update cost of G we have to sum over all trees Tv′ with v′ ∈ Vlat. Note that every
node v′ in Vlat with |I(v′)| ≥ 2 has outdegree 2. Thus if we sum over the update cost of all trees the
term f(|S(A(v′))| appears twice with a negative sign (in the cost of v′’s children) and once with a positive
(in Upd(Tv′)). Thus ∑

v′∈Vlat : |I(v′)|=1

f(|S(A(v′))|)−
∑

v′∈Vlat : |I(v′)|≥2

f(|S(A(v′))|)

≤Upd(G) =
∑

v′∈Vlat

Upd(Tv′)

≤
∑

v′∈Vlat : |I(v′)|=1

(f(|S(A(v′))|) + |S(A(v′))|)

−
∑

v′∈Vlat : |I(v′)|≥2

(
f(|S(A(v′))|)− |S(A(v′))|

)
.

This is equivalent to the claim of the theorem since the nodes v′ with |I(v′)| = 1 are exactly the group-key
nodes of the form v′ = vSi

and since by correctness of the algorithm |S(A(vSi
))| = |Si| and by Lemma 4,

Property 5 S(vI′) = PI′ where the partitions PI′ are disjoint.

The bounds of Theorem 1 depend on the structure of the lattice graph generated by the algorithm. Using
Properties 4 and 5 of Lemma 4 to bound |S(A(v′))| it is possible to obtain a weaker bound on Upd(G) that
only depends on [N ] and S.

We conclude the section by comparing the update cost of Algorithm 1 to the trivial algorithm and the
asymptotically optimal algorithm of Section 4.1.

Comparison to the trivial algorithm. Note that the terms
∑k
i=1 |Si|·log(|Si|) and

∑k
i=1 |Si|·(log(|Si|)+

1) in Theorem 1 match the bounds on the update cost of the trivial algorithm derived in Section 3.4. Thus
the second term of ∑

v∈Vlat : |I(v)|≥2

∣∣∣ ⋃
v′∈A(v)

PI(v′)

∣∣∣ · ( log
(∣∣∣ ⋃

v′∈A(v)

PI(v′)

∣∣∣)− 1
)
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provides a good estimate on how much Algorithm 1 saves compared to the trivial one. For the group system
depicted in Figure 4, for example, this would amount to

|S1 ∩ S2| · log(|S1 ∩ S2|) + |S1 ∩ S3 \ S2| · log(|S1 ∩ S3 \ S2|) + |S1 ∩ S2 \ S3| · log(|S1 ∩ S2 ∩ S3|) .

Due to the “rounding error” of +1 in
∑k
i=1 |Si| · (log(|Si|) + 1) Theorem 1 unfortunately does not allow us

to conclude that the update cost of Algorithm 1 always improves on the one of the trivial algorithm. In
Appendix A we provide an alternative analysis of Upd(G) that directly compares the two algorithms and
gives conditions that imply Algorithm 1 outperforming the trivial one.

Comparison to the asymptotically optimal algorithm of Section 4.1. The algorithm of Section 4.1
in a first step constructs a binary tree for every non-empty partition PI′ and then in a second step for every
group builds a binary tree using the roots of the “partition trees” as leafs. We can interpret this as an
algorithm that similarly to Algorithm 1 in the first phase chooses a lattice graph Glat, concretely the graph
that connects every node vI′ directly with edges to all corresponding group nodes {v{i} | i ∈ I ′}, and in the
second phase builds Huffman trees for every lattice node.6

Thus, by Lemma 5 we can lower bound the update cost of key graphs Gasopt generated by it by

Upd(Gasopt) ≥
k∑
i=1

(
|Si| · log(|Si|)−

∑
I′⊆[N ]:i∈I′∧|I′|≥2

|PI′ | · log(|PI′ |)
)

+
∑

I′⊆[N ]:|I′|≥2

|PI′ | · log(|PI′ |) ,

which, taking into account that every I ′ with |I ′| = ` corresponds to exactly ` groups, simplifies to

Upd(Gasopt) ≥
k∑
i=1

|Si| · log(|Si|)−
∑

I′⊆[N ]:|I′|≥2

(|I ′| − 1) |PI′ | · log(|PI′ |) . (9)

For a comparison to Algorithm 1, consider a key derivation graph Ga1 output by it. We now compute a lower
bound on Upd(Gasopt) − Upd(Ga1). Let G′lat be the lattice graph of Ga1 and vI′ ∈ G′lat such that |I ′| ≥ 2.
Every non-sink in G′lat has outdegree 2 and vI′ is connected to all v{i} with i ∈ I ′ by exactly one path. Thus,
the subgraph of G′lat induced by these paths is a binary tree with root vI′ and |I ′| leafs, and thus consists of
exactly 2 |I ′| − 1 nodes, |I ′| of which have an index set of size 1. This implies that there exists |I ′| − 1 many
nodes vI′′ in G′lat with |I ′′| ≥ 2 such that vI′ ∈ A(vI′′).

Using f as shorthand for the function f : N 7→ N log(N) and pI′ = |PI′ |, we now can distribute the
expressions |PI′ | · log(|PI′ |) of Equation 9 on the negative summands of Equation 8 and obtain

Upd(Gasopt)−Upd(Ga1) ≥
∑

v∈V′lat : |I(v)|≥2

(f
( ∑
v′∈A(v)

pI(v′)
)
−

∑
v′∈A(v)

f(pI(v′))− 1) .

Note that the function f grows super-linearly implying that the terms f(
∑
v′∈A(v) pI(v′))−

∑
v′∈A(v) f(pI(v′))

are non-negative, and can even be of order N as for example f(2N/2)− 2f(N/2) = N . While again due to
the terms −1 we are unfortunately not able to conclude that Algorithm 1 is always more efficient, this shows
that it still can save substantially in terms of update cost, in particular if the pI′ are large.

5.3 Maximal Update Cost per User

In the previous section we were considering the total update cost of key-derivation graphs generated by
Algorithm 1, which relates to the average update cost of parties. As we have shown this metric will typically
improve compared to the trivial algorithm. However, it might still be possible, that the update cost of

6Formally, the algorithm as described in Section 4.1 collects all users that are only in group Si in a tree before computing
the tree for Si, while in the lattice-graph variant these users are directly included in the tree for Si. Note, however, that the
latter approach can only improve the total update cost.
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particular, fixed users increases. In this section we show that while this may indeed happen, the increase is
essentially bounded by a small constant.

As Algorithm 1 builds on Huffman codes, the results of this section make use of weight distributions that
maximize the codeword length of such codes, concretely, weights corresponding to the Fibonacci numbers Fi
that are recursively defined by

F0 = 0, F1 = 1 and Fi = Fi−1 + Fi−2 for i ≥ 2 .

We will make use of the following facts from [1]:

k∑
i=1

Fi = Fk+2 − 1 (10)

k − 2 < logΦ(Fk) < k − 1 , (11)

where Φ = (1 +
√

5)/2.
We first consider an example in which the update cost of a fixed user increases compared to the trivial

solution.

Example 2. Recall that for a system of subgroups S = {S1, · · · , Sk} the set of parties exactly in the subgroups
specified by index set I ⊆ [k] is given by PI =

⋂
i∈I Si \

⋃
j∈[k]\I Sj. Now assume that S satisfies∣∣P{1}∣∣ = 1,

∣∣P{1,i}∣∣ = Fi ∀i ∈ {2, · · · , k}, and |PI | = 0 for all other I .

We are interested in the update cost of the single party n ∈ P{1}. Since by choice of the PI we have

that |S1| =
∑k
i=1 Fi, we obtain by Equations 10 and 11 that n’s update cost with respect to the trivial

algorithm is maximally Updtriv(n) ≤ d(k + 1) log(Φ)e.
Now consider n’s update cost in a key-derivation graph G generated by our algorithm. Then vn is a leaf

of weight 1 in the Huffman tree with root vS1
, while the other leaves k− 1 have weights corresponding to the

Fibonacci sequence. Thus, the length of vn’s path to the root and in turn her update cost Upd(n) is k − 1.
Summing up, for the considered set system the maximal update cost with respect to Algorithm 1 is larger

by a factor of roughly 1/ log(Φ) ≈ 1.44 compared to the one of the trivial algorithm.

Below we show that the behavior exhibited in the example above is essentially the worst case. We first
recall a fact about the maximal length of paths in Huffman trees that follows from plugging Equation 11
into [1, Theorem 5].

Fact 1. Let T be a Huffman tree over leaves v1, . . . , v` of weight w1, . . . , w` ∈ N. Let w =
∑`
i=1 wi. Then

for all j ∈ {1, . . . , `} the length of the path from wj to the root of T is bounded by

len(wj) ≤ logΦ(w)− logΦ(wj) + 1 ,

where Φ = (1 +
√

5)/2.

Lemma 6. Let N ∈ N, S = {S1, . . . , Sk} ⊆ 2[N ], and G the key-derivation graph output by Algorithm 1. Fix
a party n ∈ [N ] and let I ′ =:= {i ∈ [k] | n ∈ Si}. Then n’s update cost in G is bounded from above by

Upd(n) ≤
∑
i∈I′

(
dlogΦ(|Si|)e+ |I ′| − 1

)
≈
∑
i∈I′

(
d1.44 · log(|Si|)e+ |I ′| − 1

)
.

Proof. Let Glat = (Vlat, Elat) denote the lattice graph corresponding to G. By Lemma 4, Property 5 the
node v′0 ∈ Vlat that the source vn is connected to in the second phase of the algorithm satisfies I(v′0) = I ′.
Fix i ∈ I ′. By Property 3 v′0 is connected to group node vSi by exactly one path (v′0, · · · , v′` = vSi). Since
I(v′0) = I ′ and I(v′j−1) ) I(v′j) for all j we have ` ≤ |I ′| − 1. In the key-derivation graph v′j is connected to
v′j−1 by a path Pj for j ∈ {1, . . . , `} and party n’s source vn is connected to v′0 by a path P0.
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Since the weight of v′j is
∣∣S(A(v′j))

∣∣ we obtain by Fact 1 that

len(Pj) ≤
⌈

logΦ(
∣∣S(A(v′j))

∣∣)− logΦ(
∣∣S(A(v′j−1))

∣∣)⌉
and that len(P0) ≤ dlogΦ(|S(A(v′0))|)e since vn has weight 1. Using that da− be+dbe ≤ dae+1 for b, a−b ≥ 0
it follows that

∑̀
j=0

len(Pj) ≤ dlogΦ(|S(A(v′0))|)e+
∑̀
j=1

⌈
logΦ(

∣∣S(A(v′j))
∣∣)− logΦ(

∣∣S(A(v′j−1))
∣∣)⌉

≤ dlogΦ(|S(A(v`))|)e+ `

≤ dlogΦ(|S(A(v`))|)e+ |I ′| − 1 .

Summing over all i ∈ I ′ and taking into account that by Lemma 4, Property 4 S(A(vSi
)) = Si yields the

claim of the lemma.

Note that in the analysis above the component of n’s update cost contributed by the Huffman tree rooted
at lattice node vI is included in the bound of the update cost of all Si with i ∈ I, and thus overestimated
by a factor of |I|. Thus, the actual update cost of users (in particular if they are members of many groups)
will typically be better than Lemma 6 indicates.

5.4 Asymptotic Optimality of Boolean-lattice based Graphs

As discussed in Section 5.1 we can interpret our algorithm as follows. On input ([N ],S = {S1, . . . , Sk}) in
the first phase the algorithm picks a subgraph of the Boolean lattice GB = (VB , EB) with respect to the
power set of [k], where

VB = {vI | I ⊆ [k]} and EB = {(vI , vI′) | I, I ′ ⊆ [k] : I ′ ⊆ I)} .

We refer to this subgraph as the lattice graph. In the second phase for I ⊆ [k] a source for every party in
PI , i.e., the set of parties belonging exactly to the groups specified by I, is added and connected to node
vI . Each node in the graph is assigned a weight; sources have weight 1 and the weight of all other nodes is
the sum of the weights of their parents. Finally, for every vI a Huffman tree to its parents according to the
weight distribution is built, resulting in the key-derivation graph.

In this section we consider key-derivation graphs for general choices of the lattice graph, i.e., key derivation
graphs G obtained by executing the second phase of the algorithm as described above with respect to a lattice-
graph Glat = (Vlat, Elat) ⊆ GB .7 We say G is the key-derivation graph associated to Glat, [N ] and S. The
following theorem shows that the update cost of every lattice-based key derivation graphs, and in particular
graphs generated by Algorithm 1, is optimal in the asymptotic setting of Section 4.

Theorem 2. Let k ∈ N be fixed, and for I ⊆ [k] let pI ∈ [0, 1] be such that
∑
I⊆[k] pI = 1 and p∅ = 0. For

N ∈ N let S(N) be the subgroup system associated to the pI .
Let Glat = (Vlat, Elat) be a subgraph of the Boolean-lattice graph with respect to [k] satisfying that vI ∈ Vlat

for all I with pI > 0, and let G(N) be the key-derivation graph associated to Glat and S(N). Then

Upd(G(N))
N→∞−−−−→

∑
I⊆[k]

|N · pI | · log(|N · pI |) + Θ(N) = N log(N) + Θ(N) .

7Naturally, one would require that the resulting key-derivation graph satisfies correctness. However, this is not necessary for
our analysis of its update cost.
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Proof. For node vI ∈ Vlat let T NvI denote the Huffman-tree in G(N) rooted at vI . Further, let v1, · · · , v` be
the parents of vI in Glat. We will analyze the contribution T NvI makes to the total update cost of G(N).

First, we show that if pI > 0 then

Upd(T NvI )
N→∞−−−−→ NpI · log(NpI) .

To this end, for i ∈ {1, . . . , `} let qi be such that the weight of vi in G(N) is given by qiN . Since T NvI has pI ·N
leaves of weight 1 additional to v1, . . . , v` this implies that the weight of vI in G(N) is N · (pI +

∑`
i=1 qi).

We now bound Upd(T Nv ) using Lemma 5. As the negative terms contributed by leaves of weight 1 are
1 · log(1) = 0 we obtain that

Upd(T NvI )

≤N
(

(pI +
∑̀
i=1

qi) · log
(
N(p+

∑̀
i=1

qi)
)
−
∑̀
i=1

qi log(N · qi)
)

=N
(
pI log(N) +

∑̀
i=1

qi log(N) + pI log(pI +
∑̀
i=1

qi) +
∑̀
i=1

qi log(pI +
∑̀
i=1

qi)

−
∑̀
i=1

qi log(N)−
∑̀
i=1

qi log(qi)
)
,

Note that the terms
∑`
i=1 qi log(N) cancel out and that c := pI log(pI+

∑`
i=1 qi)+

∑`
i=1 qi log(pI+

∑`
i=1 qi)−∑`

i=1 qi log(qi) is independent of N . We thus have

Upd(T NvI ) ≤ N · (pI log(N) + c)

and obtain in the case p > 0 that

1 ≤ Upd(TvI )

NpI · log(NpI)
≤ pI log(N) + c

pI log(N) + pI log(pI)
,

where the first inequality is due to Lemma 5 and the last term converges to 1 as claimed.
Now consider the case pI = 0. In this case the Huffman tree T NvI for all N has exactly ` leaves, the

proportional weight of which stays unchanged. Thus T NvI is the same for all N and in particular has constant
average update size. Recall that by Equation 6 the update cost of T NvI is given by

Upd(T NvI ) = E[len(UT N
vI

)] · wvI .

Since E[len(UT N
vI

)] as argued above is constant, and since all weights wvI are linear in N we obtain that

Upd(T NvI ) ∈ O(N).
Summing over all Huffman trees yields the claim of the theorem.

6 Dynamic Operations

So far we considered the setting of systems S of static groups for a universe of users [N ], i.e., while the
keys in the key-derivation graph are rotated, the set of groups that a particular party is a member of stays
unchanged. Naturally, we would like to be able to add or remove users from groups. In this section, we first
analyze what these operations correspond to with respect to boolean lattice based key-derivation graphs
and then discuss how techniques for adds and removes in CGKA and Multicast schemes in the single-group
setting can be adapted to multiple groups.
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Dynamic operations with respect to key-derivation graphs. Let N ∈ N, S = {S1, . . . , Sk} ⊆ 2[N ],
and let G be a key-derivation graph generated by our algorithm on input (N,S). Further, let Glat = (Vlat, Elat)
be the corresponding lattice graph. Consider a party n ∈ [N ] with index set I = I(n) = {i ∈ [k] | n ∈ Si}.
As discussed in Section 5 n’s node is a leaf of the Huffman tree rooted at vI ∈ Vlat. Our goal is to support
operations Add(n, i) which refreshes group key skSi

and gives n access to it, and Rem(n, i) which removes n
from group i, i.e., replaces skSi with a key not known to n.

Conceptually, Add(n, i) and Rem(n, i) correspond to changing n’s index set I to I ′ = I∪{i} or I ′ = I \{i}
respectively.8 We can break down this process in two steps. The first corresponds to changing the structure
of the key-derivation graph. The leaf vn needs to be removed from the tree rooted at vI while a new leaf v′n
(Owned by party n) has to be added to the tree rooted at vI′ . If I ′ = ∅ no leaf is added. It is possible that
the node vI′ , i.e, a node that has paths to exactly the nodes vSj

for j ∈ I ′, is not yet part of the lattice
graph and has to be added as well. Note that in the case I ′ = I ∪ {i} the new node vI′ can be connected in
the lattice graph using the two edges (vI′ , vI) and (vI′ , v{i}). If I ′ = I \ {i} more edges might be necessary.
After Glat has been updated the Huffman trees with leaf vI′ have to be updated.

As, after changing the structure of G, the invariant that every party only knows the secret keys corre-
sponding to the descendants of their leaf no longer holds, in a second step key material needs to be refreshed.
More precisely all keys corresponding to descendants D(vn) of n’s former leaf have to be replaced with fresh
ones, and similarly all key material corresponding to D(v′n) has to be refreshed starting with leaf key skv′n
that has to be accessible to n. We discuss how this can be implemented for CGKA and Multicast in greater
detail below.

Continuous group-key agreement. In the setting of continuous group-key agreement there exists no
central authority that holds all secret keys and administers structural changes in the groups. Accordingly,
the action of adding party n to group Si or removing n from Si has to be initiated by a party m. To be
able to do so without having party m sample key material for nodes outside of D(vm), we will rely on the
techniques of blanking paths and unmerged leaves of [4]. To every node v in the key-derivation graph G we
associate a flag blanked ∈ {0, 1} and a list of unmerged leaves Unm(v). Finally the resolution Res(v) of v
is defined as follows.

Res(v) = {v} if blanked(v) = 0
Res(v) =

⋃
v′∈P(v) Res(v′) else

where P(v) denotes the parents of v in G. Intuitively, Unm(v) indicates leaves below v that have not yet
been integrated in the key derivation graph, and Res(v) is used to address all leaves under v with a minimal
set of unblanked nodes.

As discussed above, adding or removing user n from a group proceeds in two steps, the first computing
structural changes in G, the second refreshing key material. Let vn denote the ”old” leaf of n and v′n the
new leaf to be added to the Huffman tree with root vI′ .

To carry out the first step, firstly, vn is removed from G and all remaining nodes v in D(vn) \ {vn}
blanked, i.e. blanked(v) ← 1, the keys (pkv, skv) deleted, and the resolution Res(v) updated accordingly.
Secondly, the new leaf v′n is added to the Huffman tree rooted at vI′ , and for every v ∈ D(v′n) the list of
unmerged leaves is updated to Unm(v)← Unm(v)∪{v′n}. Finally, if the operation was of the form Add(n, i)
additionally the group key corresponding to i is deleted. Note that in the setting where the whole structure
of G is known to the initiating party m, all changes can be computed by m and then communicated to the
remaining parties via the delivery server. In a setting where users only know the part of G relevant to them,
i.e., D(vm) and the public keys of the co-parents with respect to D(v), m simply poses a request of the
form Add(n, i) or Rem(n, i) to the server, which in turn computes the changes in G and sends personalized
messages to all parties.

As to the second step, note that all group keys corresponding to I∪I ′ have been deleted. Thus, in order to
resume communication in group Si ∈ I∪I ′ a member m of this group has to perform an update - this is similar

8One could also imagine a more general operation Change(n, I′) subsuming Add and Rem which changes n’s index set to
I′ ⊆ [k]. The techniques of this section easily extend to this setting.
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to the case of [4]. We now highlight how updates with respect to blanked nodes and unmerged leaves are
computed compared to the version for a static key-derivation graph described in Section 3.2. Let Tm be the (in
the case of our algorithm, unique) spanning tree of D(v). Then, starting from leaf vm, new key pairs (pkv, skv)
are generated from seeds ∆v for all v ∈ D(v) in the way defined in Section 3.2. The set of ciphertexts
corresponding to v is computed starting from leaf vm as follows. For every co-parent v′ ∈ CP(v, Tm) with
respect to the spanning tree and every v′′ ∈ Res(v′)∪Unm(v′), a ciphertext Enc(pkv′′ ,∆v) is generated. After
computing the ciphertexts corresponding to v, the flag blanked(v) is set to 0, the resolution is recomputed
accordingly, and the set of unmerged leaves is updated to Unm(v)← ∅. The Update message consists of all
ciphertexts.

Consider the case that an operation Rem(n, i) was carried out followed by an update by party m ∈ Si.
Since by correctness vSi

∈ D(vm), the group key for Si was refreshed. Further, all nodes with key material
known to n were blanked (except for the new leaf v′n, which does not have a path to vSi). This implies that
all new keys generated by m were encrypted to keys not known by n, and so, n does not have access to the
new group key for Si. Note that all users in Si \ {n} have a path from their leaf to one of the v′′ and hence
are able to derive the new group key.

Now assume that a user m ∈ Sj where j is an element of n’s new index set I ′, performed an update.
Then there must exist a node in D(vm) ∩ D(v′n). All elements of D(v′n) contain v′n as an unmerged leaf.
Thus m must have encrypted a seed to pkv′n from which n can derive the new group key of Sj . A similar
argument shows that the algorithm works as intended also for operation Add(n, i).

Summing up, if an add or remove operation for party n was carried out and I ′ and v′n denote n′s new
index set and leaf respectively, then:

(i) If a party m ∈ Sj performs an update, then n can derive the group key of Sj exactly if j ∈ I ′.

(ii) The graph invariant still holds, i.e., if n knows the secret key corresponding to node v ∈ G then it must
hold that v ∈ D(v′n).

Multicast. In the setting of multicast encryption, a central authority holds all keys kv with v ∈ G and
administers changes in the group structure. This makes adding users to or removing them from groups
considerably easier. As discussed above, assume that the index set of party n changes from I to I ′ and
let vn and v′n denote the old deleted leaf and the new leaf, respectively. To refresh the keys in D(vn) the
central authority derives them from a random seed and computes the corresponding ciphertexts as discussed
in Section 3.2. Similarly, starting from a seed ∆v′n

all key material for nodes in D(v′n) is resampled and
corresponding ciphertexts are prepared. Note that n needs to be given access to ∆v′n

. An easy way to is to
simply update the old leaf seed by hashing it with a secure hash function, i.e, by setting ∆v′n

← H′(∆vn).
Now n can compute the new seed locally.

7 Lower Bound on the Update Cost of CGKA

In this Section we prove a lower bound on the average update cost of continuous group key agreement
schemes for multiple groups. As an intermediate step we will further prove a bound on the update cost of
key-derivation graphs. To this aim, we follow the approach of Micciancio and Panjwani [14], who analyzed
the worst-case communication complexity of multicast key distribution in a symbolic security model, where
cryptographic primitives are considered as abstract data types. We will first recall their security model,
adapt it to CGKA, and then prove how to extend their results to our setting. In Appendix B using a similar
approach we prove a lower bound for multicast encryption.

7.1 Symbolic Model

We first define a symbolic model in the style of Dolev and Yao [10] for CGKA schemes. It follows the
approach of Micciancio and Panjwani [14], but as it admits the uses of public-key encryption also includes
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elements of the model of Bienstock et al. [6] who analyze the communication cost of concurrent updates in
CGKA schemes.

Building blocks. We restrict the analysis to schemes that are constructed from the following three prim-
itives. Note that our construction is a special case of the constructions analyzed in this section.

• Public-key Encryption: Let (KGen,Enc,Dec) denote a public-key encryption scheme, where

– KGen on input of secret key sk returns the corresponding public key pk.

– Enc takes as input a public key pk and a message m, and outputs a ciphertext c← Enc(pk,m).

– Dec takes as input a secret key sk and a ciphertext c, and outputs a message m = Dec(sk, c). We
assume perfect correctness: Dec(sk,Enc(pk,m)) = m for all sk, pk = KGen(sk), and messages m.

• Pseudorandom generator: The algorithm G takes as input a secret key sk and expands it to a sequence
of keys G0(sk), . . . ,G`(sk).

• Secret sharing: Let S,R denote the sharing and recovering procedures of a secret sharing scheme: For
some access structure Γ ⊆ 2[h], the algorithm S takes as input a message m and outputs a set of shares
S1(m), . . . ,Sh(m) such that for any I ∈ Γ it holds R(I, {Si(m)}i∈I) = m, but for any I 6⊆ Γ the message
m cannot be recovered from {Si(m)}i∈I .

We consider the following data types that can be derived from other objects according to the following
rules.

Data type Grammar rules

Message m ← sk, pk,Enc(pk,m), S1(m), . . . , Sh(m)
Public key pk ← KGen(sk)
Secret key sk ← R,G0(sk), . . . ,G`(sk)

To describe the information that can be recovered from a set of messages M , the entailment relation is
defined by the following rules:

m ∈M ⇒ M ` m
M ` sk ⇒ M ` G0(sk), . . . ,Gl(sk)

M ` Enc(pk,m), sk : pk = KGen(sk) ⇒ M ` m
∃I ∈ Γ : ∀i ∈ I : M ` Si(m) ⇒ M ` m

By restricting to these relations we essentially assume secure encryption and secret sharing schemes. Exam-
ples and further comments (in the setting of multicast encryption) can be found in [14, Section 3.2]. The set
of messages which can be recovered from M using relation ` is denoted by Rec(M).

Continuous group-key agreement. We now define continuous group-key agreement protocols in the
symbolic model. We consider the case of CGKA for a static system of users [N ] and groups S1, . . . , Sk ⊆ [N ].
Note that a lower bound for schemes in this setting in particular also excludes schemes which allow dynamic
operations, i.e., adding and removing users from groups.

A CGKA scheme for [N ] and S1, . . . , Sk specifies two procedures:

• Initially, Setup assigns each user n ∈ [N ] a personal set SK0
n of secret keys. Furthermore, Setup

generates a set msgs(0) of so-called rekey messages to establish for every group Sj a group secret
key sk0

Sj
. We require that the initial sets of personal keys consist of uniformly random keys, and that

for all n′ 6= n and sk ∈ SK0
n we have sk /∈ Rec(SK0

n′ ,msgs(0)).
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• In round t, the algorithm Update takes as input a user identity n ∈ [N ], establishes new sets SKtn′ for
all users n′, and outputs some rekey messages msgs(t) to establish for every group Sj an epoch t group
key sktSj

. We do not require the new sets and group keys to be distinct from the ones of round t− 1.
We denote the set of new uniformly random keys that were generated during the update procedure by
the updating party by Ftn.

Note that the only party generating new keys during update t is the updating party n. For ease of notation
we define Ftn′ = ∅ for all n′ 6= n, and set F0

n′ = ∅ for all n′.
For correctness, we require that, (a) at all times members of a group are able to derive the current group

key from their set of personal keys and the sent messages, and (b) that if some user updated in round t then
all users are able to derive their new set of personal keys from their old one, the sent messages, and in the
case of the updating party the new keys generated during the update. The latter condition accounts for the
fact that changes to a user’s set of personal keys need to be communicated to them.

More precisely, for (a) we require that for any subgroup structure and any sequence of updating users
(n1, . . . , nt), for all j ∈ [k] each member n of subgroup Sj can recover sktSj

:

sktSj
∈ Rec

(
SKtn ∪

⋃
ι∈[t]0

msgs(ι)
)
.

For (b) we require that for any subgroup structure and any sequence of updating users (n1, . . . , nt), we
have for all n that

SKtn ⊆ Rec
(
SKt−1

n ∪ Ftn ∪
⋃
ι∈[t]0

msgs(ι)
)
.

For security, we assume the minimal requirement of post-compromise security (PCS), which essentially
says that users can recover from compromise, which leaks their state and the keys generated during the time
period of being compromised, by updating. Note that a lower bound in this setting in particular excludes
protocols achieving stronger security notions desired in practice like post compromise forward security [3].

More precisely, we formalize PCS as the condition that no group key can be recovered from members
outside the group and/or members’ personal keys and the keys generated by them before their last update.
To this end for round t and user n ∈ [N ] let tup(t, n) denote the round in which n performed their last
update, where we set tup(t, n) = 0 if no such update occurred. I.e., we require that for any group system,
any update pattern, in every round t we have that

sktSj
/∈ Rec

( ⋃
n∈[N ]\Sj ,

t′∈[t]0

(SKt
′

n ∪ Ft
′

n ) ∪
⋃
n∈Sj

⋃
t′∈[tup(t,n)−1]0

(SKt
′

n ∪ Ft
′

n ) ∪
⋃

t′∈[t]0

msgs(t′)
)
.

Note that in the definition above excluding all sets of personal secret keys since a user’s last update is
necessary even in the case that another user’s update might have replaced them before round t, as otherwise
SKtn and in turn sktSj

could trivially be recovered by the two correctness conditions.
Our goal is to derive a lower bound on the communication complexity of CGKA schemes achieving PCS,

i.e., the number of messages |∪t′∈[t]0msgs(t′)| sent by the protocol.

Key Graphs. The execution of any CGKA scheme can be reflected by a graph structure representing
recoverability of the keys involved (cf. [14]). To define this graph, we first need to recall the definition of
useful keys and messages.

A secret key sk is called useless at time t if it can be recovered from old key material, i.e., if

sk ∈ Rec
( ⋃
n∈[N ]

⋃
t′∈[tup(t,n)−1]0

(SKt
′

n ∪ Ft
′

n ) ∪
⋃

t′∈[t]0

msgs(t′)
)
,

otherwise sk is called useful. As we will show below, if a CGKA scheme satisfies correctness and post-
compromise security, then for all t ∈ N, n ∈ [N ], j ∈ [k] it must hold that at least one of the user’s personal
keys sktn ∈ SKtn as well as all group keys sktSj

are useful at time t.
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To decide whether a message is useful, one has to consider the information it contains, where messages
can be arbitrarily nested applications of encryption Enc and secret sharing S. Thus, a message m is said to
encapsulate a (pseudo)random key sk if m = e1(e2(. . . (ej(sk)) . . . )) where ei = Encpki or ei = Shi

(for some
public key pki and hi ∈ [h]). A message is then called useful if it encapsulates a useful key.

Definition 2 (Key graph [14]). The key graph KGt = (Vt, Et) for a CGKA scheme at time t is defined as
follows. Vt consists of all the keys that are useful at time t, and E ⊆ V × V consists of all ordered pairs
(sk1, sk2) such that one of the following is true:

1. There exists j ∈ [l] auch that sk2 = Gj(sk1).

2. There exists a message m ∈
⋃
j∈[t]0

msgs(j) with m = e1(Enc(pk1, e2(sk2))) with pk1 = KGen(sk1). Here
e1 and e2 are some sequences of encryption and secret sharing, and we require that e2 does not contain
any encryption under a public key that has a matching secret key that is useful at time t.

Edges of the second type are called communication edges.

One can show that for any node sk in KG there is at most one edge of the first type incident to sk (the
proof is analogous to [14, Proposition 1]). Note that edges of the first type do not incur any communication
cost, while edges of the second type require at least one message. Thus, in the following we will be interested
in the number of communication edges. To this aim, we prove the following properties of key graphs. In
particular, we show that even if a CGKA scheme does not rely on the use of a fixed key-derivation graph as
discussed in Section 3, after every update the key graph must still have the properties of Definition 1.

We will rely on the following Lemma that can be proved analogously to [14, Lemma 1].

Lemma 7. Consider a secure and correct CGKA scheme for N ∈ N, S1, . . . , Sk ⊆ [N ]. Then, for any
t ∈ N and sequence of updates (n1, . . . , nt), the corresponding key graph KGt satisfies the following. For

every set of keys SK, and key sk2 that is useful at time t, such that sk2 ∈ Rec
(
SK ∪

⋃
t′∈[t]0

msgs(t′)
)

, there

exists a useful sk1 ∈ SK such that there is a path from sk1 to sk2 in KGt that only consists of keys sk with

sk ∈ Rec
(
SK ∪

⋃
t′∈[t]0

msgs(t′)
)

.

Note that the converse of Lemma 7 is not true, since, for example, a message Enc(pk1,S1(sk2)) with
useful keys sk1, sk2 and pk1 = KGen(sk1) incurs an edge (sk1, sk2) while sk2 can only be recovered from sk1

if {1} ∈ Γ.

7.2 Lower Bound on the Average Update Cost.

The communication complexity of a CGKA scheme after t updates is given by
∣∣∣⋃t′∈[t]0

msgs(t′)
∣∣∣. To measure

the efficiency of the scheme we will consider the amortized communication complexity

ComA :=
∣∣∣ ⋃
t′∈[t]0

msgs(t′)
∣∣∣/t .

We now are ready to compute a bound on the expectation of ComA in the scenario where in every
round the updating party is chosen uniformly at random. In Appendix B we prove an analogous bound
for multicast encryption that improves on [14, Theorem 1] in two aspects. It generalizes the bound to the
setting of several, potentially overlapping groups, and further gives a bound on the average communication
complexity of updates opposed to a worst case bound.

Theorem 3. Consider a CGKA scheme CGKA for N ∈ N, S1, . . . , Sk ⊆ [N ] that is secure in the symbolic
model. Then the expected amortized average communication cost after t updates is bounded from below by

E[ComA] ≥ (1− 1/t) · 1

N

∑
∅6=I⊆[k]

|PI | · log(|PI |) .
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and the asymptotic (in the number of update operations) update cost of the protocol is at least 1
N

∑
∅6=I⊆[k] |PI |·

log(|PI |).

Proof. We prove the result by showing that the average communication complexity after the tth update has
size at least (t− 1) 1

N

∑
∅6=I⊆[k] |PI | · log(|PI |). To this end, we will show that with every update on average

at least 1
N

∑
∅6=I⊆[k] |PI | · log(|PI |) useful messages become useless. We will rely on the following claim.

Claim 2. There exists a CGKA scheme CGKA′ that is secure in the symbolic model such that:

1. If CGKA and CGKA′ are executed with respect to the same update pattern, then their communication
costs coincide.

2. Consider a sequence of t updates. For every t′ < t there exist a subgraph H′t′ of the keygraph G′t′ of

CGKA′ at time t′, such that for every n ∈ [N ] there exists a set V t
′

n of useful sources of H′t′ with

V t
′

n ⊆
⋃
t′′∈[t′]0

(SKt
′′

n ∪ Ft
′′

n ) such that (H′t′ , {V t
′

n }) satisfies the requirements of Lemma 3.

Before proving the claim we show that it implies Theorem 3. To this end, recall, that at most one of the
edges incident to a node in a key graph is not a communication edge. For t′ < t consider the key graph G′t′ .
By applying Lemma 3 to the subgraph H′t′ of G′t′ the number of useful messages encapsulating secret keys

that can be reached from useful keys in
⋃
t′′∈[t′]0

(SKt
′′

n ∪Ft
′′

n ) is on average at least 1
N

∑
∅6=I⊆[k] |PI | · log(|PI |).

Note that by definition of PCS all useful keys in
⋃
t′′∈[t′]0

(SKt
′′

n ∪ Ft
′′

n ) become useless if party n updates

in the (t′ + 1)th round. By Lemma 7 all descendants of these keys and in turn messages encapsulating
descendants become useless as well. We obtain that with update (t′+1) on average at least 1

N

∑
∅6=I⊆[k] |PI | ·

log(|PI |) messages become useless. By linearity of expectation and since useless messages never become useful
again this implies that after the t updates on average at least (t − 1) 1

N

∑
∅6=I⊆[k] |PI | · log(|PI |) messages

must have been sent in CGKA′. As CGKA by Claim 2 has the same communication cost as CGKA′ this bound
carries over to it. Now dividing by t yields the claim of the theorem.

All that remains to do is to prove Claim 2. We define CGKA′ to be the scheme that works uses the
same initialization procedure as CGKA and computes updates in the same way, except that whenever a
uniformly random secret key sk is generated in CGKA then CGKA′ samples a uniformly random key sk′ and
sets sk← G0(sk′) instead of the uniformly random key; this modified key sk is then used just the same as in
CGKA in all further operations.

Note that the communication cost of both schemes coincides since CGKA′ only makes additional calls to
the pseudorandom generator but no additional use of the encryption and secret sharing schemes and that
CGKA′ preserves correctness. Further, CGKA′ is secure since CGKA is secure: To see this, note that in the
symbolic model there is no difference between a uniformly random key and a pseudorandom key, as long as
the seed of the latter is not revealed. But the additional seeds sk′ which we introduce in CGKA′ are never
used in any messages, nor are they used to derive any further keys; they only occur in the sets Ftn where
they replace the keys sk. Thus, security of CGKA′ indeed directly follows from security of CGKA.

We now show that the second part of Claim 2 holds as well. In fact, for a sequence of t updates we will
prove the following stronger statement. For all t′ < t (a) there exists a subgraph H′t′ of G′t′ with distinct

nodes vSi and pairwise distinct sets V t
′

n ⊆
⋃
t′′∈[t′]0

(SKt
′′

n ∪ Ft
′′

n ) of sources such that

n ∈ Si ⇒ ∃vn ∈ V t
′

n such that there is a path from vn to vSi
,

and that (b) for all n 6= n′ and v ∈ V t′n it holds that v /∈ Rec(V t
′

n′ ∪ SKt
′−1
n′ ).

We argue inductively in t′ that a subgraph and sets with the properties (a) and (b) must always exist.
First consider the case t′ = 0. Note that the group keys vSj

= sk0
Sj

by definition are useful at time 0. Fix

Sj and let n ∈ Sj . By correctness and Lemma 7 there exists a useful vn,j ∈ SK0
n that has a path to vSj

in G′0. We define V 0
n = {vn,j | j : n ∈ Sj} and H′0 to be the subgraph of G′0 induced by the union over

n and j of paths from vn,j to vSj . Then the correctness condition of (a) holds and we only have to show
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that the V 0
n consist of pairwise distinct sources. By definition we have vn,j /∈ Rec(SK0

n′) for n′ 6= n implying
that the V 0

n are pairwise distinct, and further by Lemma 7 that vn,j in H′0 cannot be reached by any vn′,j′

with n′ 6= n. Note that if vn,j can be reached by vn,j′ with j′ 6= j then we can simply remove vn,j from V 0
n

without changing the correctness condition. Thus, we end up with pairwise disjoint sets V 0
n of sources and

(a) holds.
Now assume that (a) and (b) hold for all t′′ < t′. Let nt′ denote the party that issued update t′. First

consider a party n 6= nt and a group Sj with n ∈ Sj . Note that by correctness and security the group
key vSj

= sktSj
is useful at time t′. Further, by correctness we have

skt
′

Sj
∈ Rec

(
SKt

′

n ∪
⋃

t′′∈[t′]0

msgs(t′′)
)

and SKt
′

n ⊆ Rec
(

(SKt
′−1
n ∪ Ft

′

n )
⋃

t′′∈[t′]0

msgs(t′′)
)
.

Thus, by Lemma 7 there exists a useful node v ∈ SKt
′

n with a path to vSj
and a useful node v′ ∈ SKt

′−1
n that

has a path to v, where we used that Ft
′

n = ∅. As v′ already existed at time t′−1 and lies in
⋃
t′′∈[t′−1]0

(SKt
′′

n ∪
Ft
′′

n ) by the induction hypothesis there must exist a node vn,Sj
∈ V t′−1

n that is a source in H′t′−1 ⊆ G′t′−1

and has a path to v′ and in turn to v and vSj
. We set V t

′

n = {vn,Sj
| j : n ∈ Sj}.

Now consider the party n = nt′ that issued update t′ and let Sj be such that n ∈ Sj . By the first

correctness property we have skt
′

Sj
∈ Rec(SKt

′

n ∪
⋃
t′∈[t′]0

msgs(t′)). Since the node vSj = skt
′

Sj
is useful at

time t′ by Lemma 7 there exists a useful node v ∈ SKt
′

n with a path to vSj . Further, by the definition of

PCS it is not possible that v can be recovered from SKt
′′

n for any t′′ < t′ and thus, must have been generated

during the t′th update. More precisely, since n is the updating party, by security all elements of SKt
′−1
n are

useless at time t′ and since by correctness v ∈ Rec(SKt
′−1
n ∪ Ft

′

n ) we obtain by Lemma 7 that there exists
useful vn,j ∈ Ft

′

n that has a path to v and in turn to vSj
. Note that vn,j by definition of Ft

′

n is a uniformly
random secret key. By construction of CGKA′ the only operation applied to vn,j was an application of G0,
which in particular implies that it never was encrypted under any key. Thus vn,j is a source in G′t′ and we

can define V t
′

n = {vn,j | j : n ∈ Sj}.
Now we can define H′t′ to be the subgraph of G′t′ induced by the union over n and j of paths from vn,j to

vSj . Note that for any party n 6= nt′ that did not update in round t′ any vn,j ∈ V t
′

n can only be reachable

from some other node v ∈ (V t
′

n′ ) with n 6= n′ in Ht′ if during the t′th update it was encrypted under some key

that can be recovered from V t
′−1
n′ ⊆ V t

′−1
n′ ∪ SKt

′−1
n′ . This however, would contradict induction hypothesis

(b). Thus all elements of V t
′

n must indeed be sources in Ht′ .
Finally, note that (b) holds as well: For n 6= nt this follows from the induction hypothesis and correctness

and for nt as discussed above by construction of CGKA′.

8 Open problems

We conclude by discussing some open problems.

8.1 Optimal Key-derivation Graphs

Unfortunately we are not able to tell how far from optimal the solutions generated by Algorithm 1 are for
concrete group systems. We consider it an interesting open question to resolve this issue.

General kdgs. We first discuss this problem in its general form. I.e., given a system S = {S1, . . . , Sk} of
subgroups of the set [N ] of users compute the key-derivation graph for S (as defined in Definition 1) that
has minimal update cost. The question whether a polynomial time algorithm for solving this problem exists
can be naturally asked in various ways. E.g., when polynomial means polynomial in the number of users N
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(think of N being given in unary), or polynomial in a reasonable description of the set system S, say, when
we are given the sizes of all non-empty intersections of sets in S. Here N can be exponential in the input
length, so a potential solution would need to have a very succinct description. Algorithm 1 (for which we
don’t know whether it is optimal) can be turned into of the latter kind by using an implicit representation
during the Huffman coding step.

We are thankful to one reviewer of this work, who pointed out an interesting connection of key-derivation
graphs for a group system S = {S1, . . . , Sk} to the disjunctive complexity of S, which, given variables
x1, . . . , xN ∈ {0, 1}, corresponds to the size of the smallest circuit of fanin-2 OR-gates computing∨

i∈S1

xi, . . . ,
∨
i∈Sk

xi . (12)

Note that circuits computing (12) correspond exactly to key-derivation graphs for S. So the two problems
differ only by the used metric; while disjunctive complexity counts the number of non-sources in the graph,
the update cost of a kdg weighs each of these nodes by the number of sources below it. As there exist upper
and lower bound on the disjunctive complexity of group systems (see e.g. [12]), we consider it an interesting
open questions whether these can be used to establish bounds on the update cost of kdgs. We want to point
out, however, that this metric might be not fine-grained enough to capture certain properties of kdgs: E.g.,
for N ∈ N the systems S1 = {[N ]} and S2 = {[1], [2], . . . , [N ]} both have disjunctive complexity N − 1, but
their total update costs as kdgs are of order N · log(N) and N2 respectively.

Lattice based kdgs. If we restrict our view to algorithms using to Boolean-lattice based graphs as defined
in Section 5.4 and are willing to make simplifying assumptions the question of optimality translates to an
optimization problem on graphs: We are (a) going to consider only lattice graphs Glat where all nodes v
are connected with their descendants v′ ∈ D(v) by an unique path, and (b) in our analysis of the update
cost assume that the algorithms second step (i.e., the generation of Huffman trees) is instead implemented
with an idealized code that has average codeword length matching the entropy of the leaf distribution. This
essentially corresponds to ignoring the terms of +1 in Lemma 1.

Recall that for groups system {S1, . . . , Sk} the nodes vI ∈ Vlat of a lattice graph correspond to index
sets I ⊆ [k] It is easy to see that correctness of Glat together with condition (a) is equivalent to requiring
that the only sinks in the graph are the singleton sets {i} and that for every vI ∈ Vlat

I = I1 ·∪ · · · ·∪ I` (13)

holds, where vI1 , . . . , vI` are the children of vI and disjointness enforces unique paths.
The total update cost of a graph satisfying this property can be computed as follows. To every node vI

we associate the weight wI =
∣∣∣⋂i∈I Si \⋃j∈[k]\I Sj

∣∣∣ corresponding to the number of users exactly in the

groups specified by I. Further, we inductively define the total weight tI of vI as

tI =

{
wI if vI is source

wI +
∑
I′ : vI′∈P(vI) tI′ else

,

where P(vI) denotes the set of parents of vI . By assumptions (a) and (b), and Lemma 5 the update cost
contributed by node vI thus corresponds to

Upd(vI) = tI log(tI)−
∑

I′ : vI′∈P(vI)

tI′ log(tI′) (14)

and we end up with the following optimization problem on lattice graphs.

Problem 1. Let k ∈ N. Given weights {wI}I⊆[k] with wI ∈ N among the subgraphs of the Boolean lattice
with respect to the power set of [k] that satisfy Condition 13 find the subgraph Glat of minimal total update
cost

Upd(Glat) =
∑
I⊆[k]

Upd(vI) .
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We consider it an interesting open question whether Algorithm 1 solves this problem and, if not, to find
an efficient algorithm that does.

8.2 Security

In this work we focused on the communication complexity of key-derivation graphs and only gave an intuition
on their security. Security proofs for secure group messaging are typically quite complex, and protocols rely
on additional mechanisms (e.g. confirmation tag, transcript hash, and parent hash) ensuring that users of the
system can not be tricked into inconsistent views of the graph. We consider it an important open question,
to adapt theses mechanisms to kdgs for several groups and give a formal security proof for the resulting
CGKA protocols.

8.3 Efficiency of Dynamic Operations

As discussed in Section 6 the techniques of blanking and unmerged leaves can be adapted to key-derivation
graphs in order to allow dynamic changes to the group membership. As is the case for singular groups,
blanking and unmerged leaves decrease the efficiency of updates of a user n, since they destroy the binary
structure of the graph resulting in potentially more than a single ciphertext per node in D(vn) having to
be generated. However, the graph gradually recovers from this, assuming that parties with update trees
overlapping D(vn) update. It is an interesting open question how the decrease in efficiency compares to that
of the trivial algorithm.
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A Direct Comparison of Trivial Algorithm and Algorithm 1

Tighter Analysis of Example 1. We now give an analysis of Example 1 that shows that at least in such
a situation our algorithm performs always better than the trivial solution, even including rounding. For
simplicity, assume n1 is a power of 2 (but k is arbitrary). Consider the following hypothetical construction
of T1 and T1,2: first build the complete binary tree and keep all k users in S12 = S1 ∩ S2 to the right. Let v
be the node highest up in the tree such that all its parents are in S12. Now remove all users in S12 from the
tree and call the result T1. Build a new binary tree T1,2 (as balanced as possible) from the nodes in S12 and
attach it to node v. Clearly, all users in S1 \ S2 have path length log n1 in T1 and node v has path length
log n1 − blog kc. Also, all users in S12 have path length < dlog ke < blog kc+ 1 in T1,2. So we get

E[len(UT1)] =
n1 − k
n1

log n1 +
k

n1
(log n1 − blog kc) = log n1 −

k

n1
blog kc

and E[len(UT1,2)] ≤ blog kc+ 1. Note that the same construction also works for T2 and yields

E[len(UT2)] = log n2 −
k

n2
blog kc

Since Huffman is optimal, creating T1, T2 and T1,2 by using Huffman cannot yield worse expected path
lengths. Putting these together

Upd(Ga1) ≤ n1E[len(UT1)] + n2E[len(UT2)] + kE[len(UT1,2)]

≤ n1 log n1 + n2 log n2 − k(blog kc − 1).

Clearly, for k ≥ 2 this is always negative.
Now we obtain an upper-bound in which the approach of the example and the use of Lemma 5 are

combined in order to obtain a sufficient condition under which Ga1 outperforms Gtriv. We generalize the
example to build the trees that correspond to nodes of the form v{i} in Vlat and then use Lemma 5 for the
rest of nodes in Vlat.

Comparison of Trivial Algorithm and Algorithm 1. Let S1, . . . , Ss ⊆ [N ] and Glat = (Vlat, Elat) be
the corresponding lattice graph. Let T{i} :=

∣∣S(A(v{i}))
∣∣− ∣∣S(v{i})

∣∣ =
∑

J⊆2[s] st
v{i}∪J∈P(v{i})∩P(vJ )

∣∣S(A(v{i}∪J))
∣∣.

For each i ∈ [s] first build a binary tree (as balanced as possible) using all users in S(A(v{i})) and keeping

2blog T{i}c users in
⋃
v′∈P(v{i})

S(A(v′)) to the right. Just as in the example, let v be the node highest

up in the tree such that P(v) ⊆
⋃
v′∈P(v{i})

S(A(v′)). Then remove all users in
⋃
v′∈P(v{i})

S(A(v′)) from

the tree and call the resulting tree T{i}. We build a Huffman tree, T aux{i} , with
∣∣P(v{i})

∣∣ many leaves and

weights S(A(v′)) for each v′ ∈
∣∣P(v{i})

∣∣ and attach it to v. Each leaf of T aux{i} corresponds to a node

v{i}∪J for some J ⊆ 2[s]. We add an edge between each leaf of T aux{i} and the root of the corresponding

T{i}∪J . For |I| ≥ 2 we just consider a Huffman tree TI . We can bound the update cost of G as Upd(G) ≤∑
i∈[s](Upd(T{i}) + Upd(T aux{i} )) +

∑
vI∈Vlat : |I|≥2 Upd(TI). We can upper-bound the update cost of T auxI

using Lemma 5;

Upd(T aux{i} ) ≤ T{i} log T{i} + T{i} −
∑

J⊆2[s] st
v{i}∪J∈P(v{i})∩P(vJ )

∣∣S(A(v{i}∪J))
∣∣ log

∣∣S(A(v{i}∪J))
∣∣ .

There exist 0 ≤ a{i}, b{i} ≤ 1 such that a{i} + b{i} = 1, there are a{i}
∣∣S(v{i})

∣∣ users that have path length

at most blog
∣∣S(A(v{i}))

∣∣c in T{i} and there are b{i}
∣∣S(v{i})

∣∣ users that have path length dlog
∣∣S(A(v{i}))

∣∣e
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in T{i}. The node v has path length at most dlog
∣∣S(A(v{i}))

∣∣e − blog T{i}c in T{i}. Therefore we have

Upd(T{i}) ≤
∣∣S(A(v{i}))

∣∣ ( aI
∣∣S(v{i})

∣∣∣∣S(A(v{i}))
∣∣blog

∣∣S(A(v{i}))
∣∣c+

b{i}
∣∣S(v{i})

∣∣∣∣S(A(v{i}))
∣∣ dlog

∣∣S(A(v{i}))
∣∣e

+
T{i}∣∣S(A(v{i}))

∣∣ (dlog
∣∣S(A(v{i}))

∣∣e − blog T{i}c)
)

≤
∣∣S(A(v{i}))

∣∣ ( aI
∣∣S(v{i})

∣∣∣∣S(A(v{i}))
∣∣blog

∣∣S(A(v{i}))
∣∣c+

b{i}
∣∣S(v{i})

∣∣∣∣S(A(v{i}))
∣∣ dlog

∣∣S(A(v{i}))
∣∣e

+
T{i}∣∣S(A(v{i}))

∣∣ (blog
∣∣S(A(v{i}))

∣∣c+ 1− blog T{i}c)
)

≤ Upd(Gtriv of Si) + T{i}(1− blog T{i}c)

The last inequality follows from the fact that there cannot be less than b{i}
∣∣S(v{i})

∣∣ users whose path length

is dlog
∣∣S(A(v{i}))

∣∣e in the tree constructed by the trivial algorithm.
We can upper-bound the update cost of TI for |I| ≥ 2 using Lemma 5;

Upd(TI) ≤ |S(A(vI))| (1 + log |S(A(vI))|)−
∑

J⊆2[s] st
vI∪J∈P(vI)∩P(vJ )

|S(A(vI∪J))| log |S(A(vI∪J))| .

We sum over all I ⊆ 2[s] such that vI ∈ V ′ and we get

Upd(Ga1) ≤
∑
i∈[s]

(Upd(T{i}) + Upd(T aux{i} )) +
∑

vI∈Vlat : |I|≥2

Upd(TI)

≤
∑
i∈[s]

(
Upd(Gtriv of Si) + 3T{i} −

∑
J⊆2[s] st

v{i}∪J∈P(v{i})∩P(vJ )

∣∣S(A(v{i}∪J))
∣∣ log

∣∣S(A(v{i}∪J))
∣∣ )

+
∑

vI∈Vlat : |I|≥2

(
|S(A(vI))| (1 + log |S(A(vI))|)−

∑
J⊆2[s] st

vI∪J∈P(vI)∩P(vJ )

|S(A(vI∪J))| log |S(A(vI∪J))|
)

Using the fact that T{i} :=
∣∣S(A(v{i}))

∣∣− ∣∣S(v{i})
∣∣ =

∑
J⊆2[s] st

v{i}∪J∈P(v{i})∩P(vJ )

∣∣S(A(v{i}∪J))
∣∣ yields

Upd(Ga1) ≤
∑
i∈[s]

Upd(Gtriv of Si) +
∑
i∈[s]

∑
J⊆2[s] st

v{i}∪J∈P(v{i})∩P(vJ )

∣∣S(A(v{i}∪J))
∣∣ (3− log

∣∣S(A(v{i}∪J))
∣∣)

+
∑

vI∈Vlat : |I|≥2

(
|S(A(vI))| (1 + log |S(A(vI))|)−

∑
J⊆2[s] st

vI∪J∈P(vI)∩P(vJ )

|S(A(vI∪J))| log |S(A(vI∪J))|
)

For |I| ≥ 2, the term |S(A(vI))| log |S(A(vI))| appears twice with a negative sign and once with a positive
sign. Hence

Upd(Ga1) ≤ Upd(Gtriv) +
∑

vI∈Vlat : |I|=2

|S(A(vI))| (7− log |S(A(vI))|)

+
∑

vI∈Vlat : |I|>2
∃i∈[s] : vI∈P(v{i})

|S(A(vI))| (4− log |S(A(vI))|) +
∑

vI∈Vlat : |I|>2
@i∈[s] : vI∈P(v{i})

|S(A(vI))| (1− log |S(A(vI))|)

In particular, if
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• |S(A(v′))| ≥ 2 for every vI ∈ Vlat with |I| > 2 and such that @i ∈ [s] with vI ∈ P(v{i}), and

• |S(A(v′))| ≥ 23 = 8 for every vI ∈ Vlat with |I| > 2 and such that ∃i ∈ [s] with vI ∈ P(v{i}), and

• |S(A(v′))| ≥ 27 = 128 for every vI ∈ Vlat with |I| = 2,

Ga1 outperforms Gtriv. The first condition applies to nodes which do not correspond to the intersection of
two of the original subsets. The second condition applies to nodes that correspond to the intersection of two
subsets of [N ] , of which exactly one is among the original subsets. The last condition applies to nodes with
|I| = 2, that is, nodes that correspond to the intersection of Si and Sj for some i, j ∈ [s].

B Multicast Encryption Lower Bound

In this Section we prove a lower bound on the average update cost of multicast encryption schemes for
multiple groups. To this aim, we follow the approach of Micciancio and Panjwani [14], who analyzed the
worst-case communication complexity of multicast key distribution in a symbolic security model, where
cryptographic primitives are considered as abstract data types. We will first recall their security model and
then prove how to extend their results to our setting.

B.1 Symbolic Model

We restrict the analysis to schemes that are constructed from the following three primitives. Note that our
construction is a special case of the constructions analysed in this section.

• Encryption: Let (E,D) denote a symmetric-key encryption scheme, where

– E takes as input a secret key k and a message m, and outputs a ciphertext c← Ek(m),

– D takes as input a secret key k and a ciphertext c, and outputs a message m = Dk(c). We
assume perfect correctness, i.e. Dk(Ek(m)) = m for all keys k and messages m. Furthermore, the
encryption scheme is secure, i.e., informally, without knowledge of the key k one cannot recover
m from c.

• Pseudorandom generator: The algorithm G takes as input a key k and expands it to a sequence of
keys G0(k), . . . ,Gl(k), that are indistinguishable from a sequence k0, . . . , kl of uniformly random keys
ki ← R (i ∈ [l]0) without knowledge of the key k.

• Secret sharing: Let S,R denote the sharing and recovering procedures of a secret sharing scheme: For
some access structure Γ ⊆ 2[h], the algorithm S takes as input a message m and outputs a set of shares
S1(m), . . . ,Sh(m) such that for any I ∈ Γ it holds R(I, {Si(m)}i∈I) = m, but for any I 6⊆ Γ the message
m cannot be recovered from {Si(m)}i∈I .

There are two types of data structures: messages and keys, which can be derived by repeatedly applying the
above algorithms:

m← {k, Ek(m), S1(m), . . . , Sh(m)}, k← {R, G0(k), . . . , Gl(k)}

where R denotes some set of random keys. All functions E,Gi,Si are assumed to output messages of ap-
proximately the same length as the keys in R; hence, the update cost can be measured as the number of
transmitted messages.

To describe the information that can be recovered from a set of messages M , the entailment relation is
defined by the following rules:

m ∈M ⇒ M ` m
M ` k ⇒ M ` G0(k), . . . ,Gl(k)

M ` Ek(m), k ⇒ M ` m
∃I ∈ Γ : ∀i ∈ I : M ` Si(m) ⇒ M ` m
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By restricting to these relations we essentially assume secure encryption and secret sharing schemes. Exam-
ples and further comments can be found in [14, Section 3.2]. The set of messages which can be recovered
from M using relation ` is denoted by Rec(M).

A multicast key distribution protocol for a (static) set of N users and k subsets S1, . . . , Sk ⊆ [N ] consists
of two components – the setup algorithm Setup and an update procedure Update. For simplicity, we assume
that each user is member of at least one group.

• Initially, Setup assigns each user n ∈ [N ] a secret key k
(0)
{n}, which is either a uniformly random key

from R, or a pseudorandom key that was derived through a sequence of applications of G to another

key k′n, i.e. k
(0)
{n} = Gl1(Gl2(. . . (Glj (k′n)) . . . )) with j ≥ 0, where k′n must not coincide with any of the

keys assigned to users in [N ]. Furthermore, Setup generates a set msgs(0) of so-called rekey messages

to establish group keys k
(0)
Si

(for all i ∈ [k]) among all members of the groups Si.

• In round t, the algorithm Update takes as input a user identity n ∈ [N ], assigns this user a fresh key

k
(t)
{n} and outputs some rekey messages msgs(t) to establish a fresh group key for each group of which

i was a member. For all other members n′ ∈ [N ] \ {n}, we set k
(t)
{n′} := k

(t−1)
{n′} .

For correctness, we require that, for any adversarially chosen subgroup structure and any sequence of up-

dating users (n1, . . . , nt), for all j ∈ [k] each member i of subgroup Sj can recover k
(t)
Sj

, i.e.

k
(t)
Sj
∈ Rec

{k(t)
{n}} ∪

⋃
ι∈[t]0

msgs(ι)

 .

For security, we assume the minimal requirement of post-compromise security, namely that no group key can
be recovered from members outside the group and/or old key material, i.e.

k
(t)
Sj

/∈ Rec

 ⋃
n∈[N ]\Sj

{k(t)
{n}} ∪

⋃
n∈[N ],
ι∈[t−1]0

(
{k(ι)
{n}} \ {k

(t)
{n}}

)
∪
⋃
ι∈[t]0

msgs(ι)

 .

B.2 Key Graphs

The execution of any multicast key distribution protocol can be reflected by a graph structure representing
recoverability of the keys involved (cf. [14]). To define this graph, we first need to recall the definition of
useful keys and messages.

A secret key k is called useless at time t if it can be recovered from old key material, i.e. if k ∈

Rec

(⋃
n∈[N ],
ι∈[t−1]0

(
{k(ι)
{n}} \ {k

(t)
{n}}

)
∪
⋃
ι∈[t]0

msgs(ι)

)
, otherwise k is called useful. If a multicast key dis-

tribution protocol satisfies correctness and post-compromise security, then for all t ∈ N, n ∈ [N ], j ∈ [k] it

must hold that the user’s keys k
(t)
{n} as well as the group keys k

(t)
Sj

are useful at time t.

To decide whether a message is useful, one has to consider the information it contains, where messages
can be arbitrarily nested applications of encryption E and secret sharing S. Thus, a message m is said to
encapsulate a (pseudo)random key k if m = e1(e2(. . . (ej(k)) . . . )) where ei = Eki or ei = Shi

(for some key
ki and hi ∈ [h]). A message is then called useful if it encapsulates a useful key.

Definition 3 (Key graph [14]). The key graph KGt = (Vt, Et) for a multicast key distribution protocol at
time t is defined as follows. Vt consists of all the keys that are useful at time t, and E ⊆ V × V consists of
all ordered pairs (k1, k2) such that one of the following is true:

• There exists j ∈ [l] auch that k2 = Gj(k1).
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• There exists some message m ∈
⋃
j∈[t]0

msgs(j) such that m = e1(Ek1(e2(k2))) for some sequences of
encryption and secret sharing e1 and e2, and e2 does not contain any encryption under a key that is
useful at time t.

Edges of the second type are called communication edges.

One can show that for any node k in KG there is at most one edge of the first type incident on k (see [14,
Proposition 1] for a proof). Note that edges of the first type do not incur any communication cost; thus, in
the following we will be interested the number of communication edges. To this aim, we prove the following
properties of key graphs, which in particular show that key-derivation graphs as defined in Section 3.2 are
just a special case of key graphs (cf. Definition 1).

Lemma 8. Consider a secure multicast key distribution protocol for N ∈ N, S1, . . . , Sk ⊆ [N ]. Then, for
any t ∈ N and sequence of updates (n1, . . . , nt), the corresponding key graph KGt satisfies the following two
conditions.

1. For n ∈ [N ] and j ∈ [k] there exist nodes vn and vSj
in KGt, and for n 6= n′ ∈ [N ] it holds vn 6= vn′ .

2. For every pair of keys k1, k2 that are useful at time t, such that k2 ∈ Rec
(
{k1} ∪

⋃
ι∈[t]0

msgs(ι)
)

, there

exists a path from k1 to k2 in KGt that only consists of keys k such that k ∈ Rec
(
{k1} ∪

⋃
ι∈[t]0

msgs(ι)
)

.

Proof. By definition the keys k
(t)
{n} for users n ∈ [N ] are distinct and there exists a group key k

(t)
Sj

for each

group Sj (j ∈ [k]). To prove property 1, it remains to prove that these keys are useful, hence represent a

node in KGt. For group keys k
(t)
Sj

this follows immediately from security of the scheme. For the users’ private

keys, recall that we assume that for all n ∈ [N ] there exists some j ∈ [k] such that n ∈ Sj . We assume for

contradiction that the user’s current key k
(t)
{n} was useless, i.e. could be recovered from users’ old keys that

have been replaced in rounds [t] and the rekey messages. But by correctness it must hold that user n can

recover the group key k
(t)
Sj

from its own key and the rekey messages. This, however, would imply that k
(t)
Sj

can be recovered from old keys and rekey messages, hence k
(t)
Sj

would be useless – a contradiction.

For the second property, we refer to [14, Lemma 1] for a proof.

Note that the converse of property 2 is not true, since e.g. a message Ek1(S1(k2)) with useful keys k1, k2

incurs an edge (k1, k2) while k2 can only be recovered from k1 if {1} ∈ Γ.

B.3 Lower Bound on the Average Update Cost

The communication complexity of a multicast encryption scheme after t updates is given by
∣∣∣⋃ι∈[t]0

msgs(ι)
∣∣∣.

To measure the efficiency of the protocol we will consider the amortized communication complexity

ComA :=
∣∣∣ ⋃
ι∈[t]0

msgs(ι)
∣∣∣/t .

We now are ready to compute a bound on the expectation of ComA in the scenario where in every round
the updating party is chosen uniformly at random. The result improves on [14, Theorem 1] in two aspects.
It generalizes the bound to the setting of several potentially overlapping groups, and further gives a bound
on the average communication complexity of updates opposed to a worst case bound.

Theorem 4. Consider a multicast key-distribution protocol for N ∈ N, S1, . . . , Sk ⊆ [N ] that is secure in
the symbolic model. Then the expected amortized average communication cost after t updates is bounded by

E[ComA] ≥ (1− 1/t) · 1

N

∑
∅6=I⊆[k]

|PI | · log(|PI |) .

and the asymptotic update cost of the protocol is at least 1
N

∑
∅6=I⊆[k] |PI | · log(|PI |).
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Proof. We prove the result by showing that the average communication complexity after the tth update has
size at least (t− 1) 1

N

∑
∅6=I⊆[k] |PI | · log(|PI |). To this end, we will show that with every update on average

at least 1
N

∑
∅6=I⊆[k] |PI | · log(|PI |) useful messages become useless.

Let 1 ≤ t′ ≤ t. Consider the useful nodes vn guaranteed to exist by Lemma 8, Property 1 after the
(t′ − 1)st update (where the 0th update is to be understood as Setup). We show that the key graph KGt−1

contains a subgraph G′t−1 which satisfies the requirements of Lemma 3:
By Lemma 8, Property 2, for each n ∈ [N ] and j ∈ [k] such that n ∈ Sj there exists a path Pn,j from

vn to vSj
in KGt−1 such that all keys associated to nodes in Pn,j can be recovered from k

(t−1)
{n} and the sent

messages. Let G′t−1 denote the union of these paths. It remains to argue that all nodes vn are sources in
G′t−1. For contradiction, assume there exists n, n′ ∈ [N ], j ∈ [k] such that n′ ∈ Pn,j . But Update only
replaces one user’s private key; thus, if in the next round an update for n was generated, only n’s private

key would be replaced, but not n′’s. Hence, security would be broken because n′’s current key k
(t)
{n′} = k

(t−1)
{n′}

can be recovered from n’s old key, and by correctness, for any j′ ∈ [k] such that n′ ∈ Sj′ , the key k
(t)
Sj′

can

be recovered from k
(t)
{n′}. This proves that G′ indeed satisfies the properties of Lemma 3.

Now, recall, that at most one of the edges incident to a node in the key graph is not a communication
edge. Thus, by Lemma 3 the number of useful messages encapsulating keys that can be reached from vn is
on average at least 1

N

∑
∅6=I⊆[k] |PI | · log(|PI |).

Note that one of the keys vn becomes useless after the t′th update. By Lemma 8, Property 2 all other
nodes in D(vn) ⊆ G′t−1 and in turn messages encapsulating descendants become useless as well. With the
argument above we obtain that with the t′th update on average at least 1

N

∑
∅6=I⊆[k] |PI | · log(|PI |) messages

become useless. By linearity of expectation and since useless messages never become useful again this implies
that after the t’th update on average at least (t−1) 1

N

∑
∅6=I⊆[k] |PI | · log(|PI |) messages have been sent. Now

dividing by t yields the claim.
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