
Resilient Uniformity:
Applying Resiliency in Masking

Siemen Dhooghe and Svetla Nikova

imec-COSIC, KU Leuven, Belgium
siemen.dhooghe@esat.kuleuven.be, svetla.nikova@esat.kuleuven.be

Abstract Threshold Implementations are known countermeasures de-
fending against side-channel attacks via the use of masking techniques.
While sufficient properties are known to defend against first-order side-
channel attacks, it is not known how to achieve higher-order security.
This work generalizes the Threshold Implementation notion of uniform-
ity and proves it achieves second-order protection. The notion is applied
to create a second-order masking of the Present cipher with a low ran-
domness cost.

1 Introduction

Side-Channel Analysis (SCA) is considered to be a powerful method which can
be used to extract secrets, e.g. keys or passwords, from cryptographic imple-
mentations when running on embedded devices. Side-channel analysis exploits
the information leaked during the computation of a cryptographic algorithm.
The most common technique is to analyze the power consumption of a cryp-
tographic device using Differential Power Analysis (DPA). This side-channel
attack exploits the correlation between the instantaneous power consumption
of a device and the intermediate results of a cryptographic algorithm. A popu-
lar method to protect implementations against SCA is masking [6,10]. Masking
works by splitting every intermediate variable that depends on the secret into
several shares, such that knowledge of any share does not reveal any information
about the intermediate variable. This splitting breaks the dependency between
the average instantaneous power consumption and the sensitive intermediates,
and thus thwarts first-order DPA attacks. In theory, however, a masked imple-
mentation can always be broken by a higher-order attack. Higher-order attacks
consider information from several shares simultaneously. Second-order attacks
have been shown to be practical to mount and hence developing methods to
protect implementations is of importance.
When implemented in hardware, masking can lead to insecure designs. Standard
CMOS gates can glitch, and these glitches can cause the power consumption to
depend on an unexpected number of shares in a nonlinear way. This behavior de-
grades the security claims. An approach based on properties of masked Boolean
functions has been proposed by Nikova et al. [15] which provides security even
in the presence of glitches in the hardware. An implementation made following

this approach is called a Threshold Implementation. Besides providing security
in hardware, Threshold Implementations require minimal randomness costs in
their design due to the guaranteed uniformity of their masking. See, for example,
the sharing of NOEKEON in the original paper [16], or the more recent AES
sharing of Sugawara [20] both of which require no fresh randomness. This signi-
ficantly reduces costs in hardware and relinquishes the costs of a cryptographic
strong random number generator.
While Threshold Implementations have provable security against first-order at-
tacks, they can often be practically broken using higher-order attacks.

Contribution. The main contribution of the work is the proposition of a new no-
tion, called resilient uniformity. This notion is a generalization of the uniform-
ity property of Threshold Implementations. We formally prove that functions
achieving the notion of resilient uniformity provide sufficient security against
second-order probing adversaries.

We use the new notion to show that the work by Reparaz et al. [18] called
“Consolidating Masking Schemes”, provides provable second-order protection as
the scheme is a specific application of resilient uniformity. Finally, we apply the
notion to create a second-order masking of Present. This masking is made
to minimize randomness costs requiring only 686 bits of randomness to secure
the state. The previous record on randomness cost of a second-order masked
Present was given by Cassiers et al. [5] which requires 5952 random bits.

2 Preliminaries

In this section we introduce the main building blocks in the context of our work.

2.1 Boolean Masking and Threshold Implementations

A popular method to defend against side-channel attacks is masking which was
independently introduced by Goubin and Patarin [10] and Chari et al. [6]. The
technique is based on splitting each secret variable x in the circuit into shares
x̄ = (x1, x2, . . . , xsx), such that x =

∑sx
i=1 x

i over a finite field Fn
2 . A random

Boolean masking of a fixed secret is uniform if all maskings of that secret are
equally likely. Define Sh(x) as the set of possible maskings of the secret x, for
example, for two-shared Boolean masking Sh(0) = {(a, a) | a ∈ F2}.

Definition 1 (uniform masking). A random masking X̄ in sx shares is uni-
form if for all x ∈ Fn

2 we have

P (X̄ = x̄ |X = x) =

{
2−n(sx−1) if x̄ ∈ Sh(x) ,

0 else .

Intuitively, an adversary observing the power consumption of a masked im-
plementation needs to combine several time samples, namely those related to

2

each share, in order to have data correlated to the secrets of the implementa-
tion. This combination makes it exponentially more difficult to recover secret
values. Masking a variable is simple, but masking computation can be much
more challenging as care must be taken to ensure no weaknesses are introduced
which reduce its security. This is especially challenging in hardware implement-
ations due to the presence of glitches. Nikova et al. [15] introduced Threshold
Implementations as a particular approach to share circuits and functions. In the
following, the main properties of Threshold Implementations are reviewed.

A Threshold Implementation consists of several layers of Boolean functions,
as shown in Figure 1. As for any masked implementation, a black-box encoder
function generates a uniform masking of the input before it enters the shared
circuit and the output shares are recombined by a decoder function. At the end
of each layer, synchronization is ensured by means of registers.

E
n
c
o
d
e
r

D
e
c
o
d
e
r

F 1

F s

G1

Gs

...
...

...x y

x1

xs

y1

ys

Figure 1: Representation of a threshold circuit assuming an equal number of
input and output shares [1].

Let F̄ be a layer in the Threshold Implementation corresponding to a part
of the circuit F : Fn

2 → Fm
2 . For example, F might be an S-box of a cipher.

The function F̄ : Fnsx
2 → Fmsy

2 , where we assume sx shares per input bit and sy
shares per output bit, will be called a masking of F . A share of a share function
F̄ is denoted by F i : Fnsx

2 → Fm
2 , for i ∈ {1, .., sy}. The properties of Threshold

Implementations are summarized in Definition 2.

Definition 2 (properties of threshold implementations [15]). Let F :
Fn
2 → Fm

2 be a function and F̄ : Fnsx
2 → Fmsy

2 a masking of F . The masking F̄
is said to be

1. correct if
∑sy

i=1 F
i(x1, . . . , xsx) = F (x) for all x ∈ Fn

2 and for all shares
x1, . . . , xsx ∈ Fn

2 , such that
∑sx

i=1 x
i = x,

2. non-complete if each F i depends on at most sx − 1 input shares,
3. uniform if F̄ maps a uniform masking of each x ∈ Fn

2 to a uniform masking
of F (x) ∈ Fm

2 .

If all layers of a Threshold Implementation adhere to the above properties,
the resulting shared circuit can be proven secure in the first-order probing model
considering glitches, which is the security model defined further on [8]. In the
higher-order setting, the situation is more complicated. Perfect multivariate se-
curity, when probes are placed in different clock cycles, can not be guaranteed

3

using uniform maskings alone [17]. Instead, the Threshold Implementation ap-
proach was generalized for second-order security using fresh randomness by the
“Consolidating Masking Schemes” (CMS) approach [18]. Only recently a secure
extension of the threshold model was proposed for second-order security [1].
Interestingly enough, this extension makes heavy use of the cryptanalytic prop-
erties of the shared cipher such as its diffusion layers and nonlinearity of its
S-box. As a result, certain ciphers can be difficult to protect. In particular,
Present was highlighted as one such cipher due to the cipher’s linear layer and
well-known weaknesses with respect to linear cryptanalysis [7]. In this work, we
study properties of maskings which defend them against second-order attacks.

2.2 Probing Security

This section introduces the formal adversary and security models. Both are de-
rived from the probing model by Ishai et al. [12]. This work considers a counter-
measure built according to the Threshold Implementation structure as defined
above. Additionally, the extension of the probing model by Faust et al. [9] is
considered to model glitches.

Consider an algorithm to be a sequence of calculations of Boolean functions.
In symbols, we denote (x1, ..., x`) ∈ F`

2, such that there exist Boolean functions
hi for which xi = hi((xj)j∈Jhi

) for a set Jhi
⊂ {1, ..., i − 1}, meaning that the

algorithm can be represented by a sequence of functions hi, each calculating a
new variable xi, with x1 as the input of the algorithm and x` the output.

Let ` ≥ d be positive integers. A d-threshold-probing adversary on F`
2 is

an algorithm Advd-thr that interacts as follows with an oracle that computes
(x1, ..., x`) ∈ F`

2:

1. Advd-thr specifies a set I ⊂ {1, ..., `}, such that |I| ≤ d,
2. Advd-thr then receives all inputs of (hi)i∈I , i.e. all xj for j ∈ ∪i∈IJhi

.

The considered security games are derived from the one introduced by Ishai
et al. [12]. In particular, perfect security is considered where the adversaries are
computationally unbounded and must specify probe locations before querying
the circuit. Take an arbitrary adversary Advd-thr and Dec◦C ′◦Enc a randomized
stateless sequence (circuit) which is the masked version of C. Importantly, the
adversary’s interaction with the circuit is mediated through the encoder and
decoder algorithms Enc and Dec, neither of which can be probed. There are two
notions of security for stateless circuits. The circuit C ′ is considered sound if
for all inputs k, Dec(C ′(Enc(k))) = C(k). The circuit C ′ is dth-order private if
it can be simulated from scratch, meaning the simulator is given nothing, such
that no adversary Advd-thr can distinguish Dec ◦C ′ ◦Enc from the simulation. A
circuit is considered dth-order probing secure if it is both sound and dth-order
private following the above games.

2.3 Adversary Structures

A key component to generalize the notion of uniformity is the notion of an
adversary structure. To that end, this section provides the required definitions.

4

Consider a secret x is shared in s shares X = {x1, ..., xs}. Let us denote all
subsets of X by P (X). We call the groups of shares which do not reconstruct
the secret as unqualified. The set of unqualified groups, also called the privacy
structure, is denoted by ∆ ⊂ P (X). Let us denote ∆+ as the maximal set of ∆,
i.e. the elements in ∆ for which no proper superset is also in ∆. In this work,
we consider Boolean masking for which ∆ consists of all sets containing s − 1
or fewer shares. For example, consider a secret x is shared into three shares
x1, x2, x3, such that

∑3
i=1 x

i = x then

∆+ = {{x1, x2}, {x2, x3}, {x1, x3}}.

In case multiple secrets are considered, the privacy structure would consist
of all sets containing s − 1 or fewer shares of each secret. For example, for two
secrets x, y shared into two shares

∆+ = {{x1, y1}, {x1, y2}, {x2, y1}, {x2, y2}}.

We denote the adversary structure ∆A as a monotone decreasing subset of
∆, i.e. for all sets in ∆A each of their subsets is also in ∆A. Intuitively, in this
work the adversary structure will contain all possible sets of shares a probing
adversary can view using a single probe. Conversely, using a probe, an adversary
can thus see one element from ∆.

Hirt and Maurer introduced the notion of Q` adversary structures [11]. An
adversary structure ∆A is Q` if no ` sets in ∆A cover all shares of a secret. In
this work, a focus is put on second-order probing security, as such we will work
with Q2 adversary structures.

2.4 Resiliency

The notion of resilient uniformity resembles the notion of resiliency. As such,
this section briefly introduces resiliency as first given by Siegenthaler [19].

Recall that a balanced Boolean function is one which gives an output, such
that each output vector is equally likely to occur if given a random input. In
particular, permutations are balanced. The notion of balancedness is then gen-
eralized to resiliency which we give in terms of monotone decreasing sets ∆
following the work by Braeken et al. [4].

Definition 3 (∆ resilient). Let f(x) be a Boolean function and ∆ be a mono-
tone decreasing set. Then f(x) is called ∆ resilient if any of its restrictions
obtained by fixing an input set A ∈ ∆ of inputs is balanced.

3 Resilient Uniformity

This is the main section of the paper introducing the notion of resilient uniform-
ity which provides second-order probing security of Threshold Implementations.
This notion can be seen as the masking’s equivalent of a resilient Boolean func-
tion. While this section expands the notions of non-completeness and uniformity,

5

the next subsection proves the second-order probing security using these notions.
In Section 4 the notion of resilient uniformity is applied to the “Consolidating
Masking Schemes” (CMS) approach [18] and in Section 5 to make a second-order
masking of the Present cipher.

We start by generalizing the notion of non-completeness. Recall that the
original notion requires that each share of a function can only work on a limited
number of shares namely that each share of a function can not work on all shares
of a secret. By using adversary structures as introduced in Section 2.3, we give
a more generalized notion of non-completeness by tightening this limitation.

Definition 4 (∆ non-completeness). A function F̄ is ∆ non-complete, for
an adversary structure ∆, if each share of F̄ only uses inputs A for an A ∈ ∆.

Thus, the above notion states that each share of the function can only work
on a set of input shares specified by the adversary structure ∆. We provide an
example of ∆ non-completeness. Consider the three-sharing of the multiplication
F (x, y) = xy

F i = xiyi + xiyi+1 + xi+1yi,

where the convention is used that superscripts wrap around at three. The above
function is ∆ non-complete with

∆+ = {{x1, x2, y1, y2}, {x2, x3, y2, y3}, {x1, x3, y1, y3}}.
In particular, the above ∆ is a Q1 adversary structure as probing two shares of
F̄ gives back all input shares. Equivalently, taking two elements in ∆+ covers
all shares of a secret, in this case both x and y.

There is a connection between ∆ non-completeness and higher-order non-
completeness by Bilgin et al. [2].

Definition 5 (dth-order non-completeness). A shared function F̄ (x̄) is dth-
order non-complete if every set of d shares of F̄ jointly operate on at most sx−1
input shares.

It is clear that if ∆ is a Qd adversary structure then a ∆ non-complete
function is also dth-order non-complete.

Now, assume that each shared function in the Threshold Implementation is
∆ non-complete. Looking back at the notion of resiliency from Section 2.4, we
transform the notion of uniformity to its resilient equivalent. A first attempt in
this transformation would give a notion where fixing certain inputs to constants
again gives a uniform function thus ensuring that the output is still uniform even
after one probe was placed. Nevertheless, this simple adaptation is not sufficient.
As a glitch-extended probe gives back all input shares of a share of a function,
the output of a probed function can never be uniform. An adaptation to the
notion of resiliency is necessary.

We denote a restriction of a masking x̄ on a set of shares A by x̄A to be the set
of shares of x̄ indicated by A. For example, for a three-sharing x̄ = (x1, x2, x3) =
(0, 1, 0) and A = {x1, x2} then x̄A = (0, 1). We start with the definition of a ∆
resilient uniform masking.

6

Definition 6 (∆ resilient uniform masking). A masking of a variable x is ∆
resilient uniform if there is a set I ∈ ∆, such that when x̄I are fixed to constants
then x̄X\I is uniform, with X the set of all shares.

For example, taking a three-shared Boolean masking of a secret x ∈ F2,
Sh(x) = {(x1, x2, x3) |

∑3
i=1 x

i = x}. Considering ∆ as the set of sets containing
at most one share, i.e. ∆ = {{x1}, {x2}, {x3}, ∅}. The sharing with one share set
to zero would be a ∆ resilient uniform masking. In other words, {(0, x2, x3) | x2+
x3 = x} would no longer be uniform, but it is a ∆ resilient uniform masking.

Having defined what is a ∆ resilient uniform masking, a (∆,∆′) resilient
uniform function is a function which maps a ∆ resilient input masking to a ∆′

resilient output masking. The definition of a (∆,∆′) resilient uniform function
is given in its combinatorial form.

Definition 7 ((∆,∆′) resilient uniformity). A function F̄ (x̄) = ȳ is (∆,∆′)

resilient uniform if ∀I ∈ ∆, ∃J ∈ ∆′, such that ∀x̄∗I ∈ F|I|2 , ȳ∗J ∈ F|J|2 , ∃c ∈ N,
such that ∀x ∈ Fn

2 and ȳ ∈ Sh(F (x)) with ȳJ = ȳ∗J :∣∣ {x̄ ∈ Sh(x) with x̄I = x̄∗I
∣∣ F̄ (x̄) = ȳ

} ∣∣ = c .

Later on, in Section 4 we will see that each second-order non-complete func-
tion that is re-masked via the ring refreshing method achieves a notion of (∆,∆′)
resilient uniformity. In Section 5, we show that the cost of this refreshing can be
lowered if the shared functions are uniform.

3.1 Proving Second-Order Probing Security

Having the notion of resilient uniformity, we prove that it is sufficient for per-
fect second-order probing security of Threshold Implementations as defined in
Section 2.2. We start by showing that a (∆,∆′) resilient uniform function in-
deed maps a ∆ resilient uniform input masking to a ∆′ resilient uniform output
masking.

Lemma 1. A (∆,∆′) resilient uniform function maps a ∆ resilient uniform
input masking to a ∆′ resilient uniform output masking.

Proof. Consider a random input masking x̄ of the secret x which is ∆ resilient

uniform. Meaning there is a set I ∈ ∆, such that x̄I ∈ F|I|2 are fixed to constants,
denote these by x̄∗I , and x̄X\I is uniform. Also consider F̄ a (∆,∆′) resilient
uniform function. We show that there exists a set J ∈ ∆′, such that the output
ȳ = F̄ (x̄) is a ∆′ resilient uniform masking for that J .

From the definition of (∆,∆′) resilient uniformity, we know that there exists

a set J ∈ ∆′, such that for all ȳ∗J ∈ F|J|2 , there exists a c ∈ N, such that
∀ȳ ∈ Sh(F (x)) with ȳJ = ȳ∗J :∣∣ {x̄ ∈ Sh(x) with x̄I = x̄∗I

∣∣ F̄ (x̄) = ȳ
} ∣∣ = c .

7

Since F̄ is a function, there exists at least one vector of constants ȳ∗J , such
that c 6= 0. We claim that ȳ is ∆′ resilient uniform for J ∈ ∆′ and the previous
mentioned set of constants. Indeed, each instance ȳ with ȳJ = ȳ∗J occurs equally
frequently, namely with frequency c 6= 0. As a result ȳY \J is uniform and thus ȳ
is ∆′ resilient uniform.

We then show that the notion of resilient uniformity is stronger than regular
uniformity.

Lemma 2. A (∆,∆′) resilient uniform function F̄ is uniform.

Proof. We take an arbitrary I ∈ ∆ and an arbitrary x̄∗I ∈ F|I|2 . We know there

is a J ∈ ∆′, such that for all ȳ∗J ∈ F|J|2 , there is a constant c, such that for all x
and ȳ ∈ Sh(F (x)) with ȳJ = ȳ∗J :

|{x̄ ∈ Sh(x) with x̄I = x̄∗I | F̄ (x̄) = ȳ}| = c .

We pick a ȳ∗J ∈ F|J|2 such that c does not equal to zero.

We now take another x̄′I ∈ F|I|2 , then we find that there is another constant
c′, such that for all x and ȳ ∈ Sh(F (x)) with ȳJ = ȳ∗J :

|{x̄ ∈ Sh(x) with x̄I = x̄′I | F̄ (x̄) = ȳ}| = c′ .

By taking the sum of these two we find that for all x and ȳ ∈ Sh(F (x)) with
ȳJ = ȳ∗J :

|{x̄ ∈ Sh(x) with x̄I = x̄∗I or x̄I = x̄′I | F̄ (x̄) = ȳ}| = c+ c′ .

Thus, by looping over all possible x̄I , we find that there is a constant c∗, such
that for all x and ȳ ∈ Sh(F (x)) with ȳJ = ȳ∗J :

|{x̄ ∈ Sh(x) | F̄ (x̄) = ȳ}| = c∗ .

Since each share in ȳ and x̄ is fixed, c∗ needs to equal 2n(sx−1)/2m(sy−1) if x ∈ Fn
2

with sx input shares and y ∈ Fm
2 with sy output shares. Since the constant c∗ has

the same value for each choice of secret x and ȳ∗J , we have shown the uniformity
of F̄ .

There is also a link between resilient uniform functions of different adversary
structure. Namely a (∆,∆′) resilient uniform function is (∆,∆′′) resilient uni-
form when ∆′ ⊂ ∆′′.

Lemma 3. Given two adversary structures ∆′ ⊂ ∆′′, a (∆,∆′) resilient uni-
form function is also (∆,∆′′) resilient uniform.

Proof. Let F̄ be a (∆,∆′) resilient uniform function. We prove that F̄ is (∆,∆′′)
resilient uniform. Take an arbitrary I ∈ ∆, then from the (∆,∆′) resilient uni-

formity, there there exists a J ∈ ∆′, such that for all x̄∗I ∈ F|I|2 and all ȳ∗J ∈ F|J|2

there exists a constant c, such that for all x and ȳ ∈ Sh(F (x)) with ȳJ = ȳ∗J :∣∣ {x̄ ∈ Sh(x) with x̄I = x̄∗I
∣∣ F̄ (x̄) = ȳ

} ∣∣ = c .

8

However, since ∆′ ⊂ ∆′′, J is also an element of ∆′′. Thus, we can always find
a suitable ȳ∗J′ with J ′ ∈ ∆′′ for which the necessary property holds.

Finally, we show that the composition between resilient uniform functions is
again resilient uniform.

Lemma 4. The composition between a (∆,∆′) resilient uniform function and a
(∆′, ∆′′) resilient uniform functions is (∆,∆′′) resilient uniform, given that the
functions can compose.

Proof. Let F̄ be a (∆′, ∆′′) resilient uniform function and Ḡ a (∆,∆′) resilient
uniform function such that the composition F̄ ◦ Ḡ makes sense, we prove that
F̄ ◦ Ḡ is (∆,∆′′) resilient uniform. We take an arbitrary I ∈ ∆. From Ḡ being
(∆,∆′) resilient uniform, we know that there exists a J ∈ ∆′, such that for all

x̄∗I ∈ F|I|2 and all ȳ∗J ∈ F|J|2 there exists a constant c, such that for all x and
ȳ ∈ Sh(G(x)) with ȳJ = ȳ∗J :∣∣ {x̄ ∈ Sh(x) with x̄I = x̄∗I

∣∣ Ḡ(x̄) = ȳ
} ∣∣ = c .

From F̄ being (∆′, ∆′′) resilient uniform we also know that there exists aK ∈ ∆′′,
such that for all ȳ∗J ∈ F|J|2 and z̄∗K ∈ F|K|2 there exists a constant c′, such that
for all y and z̄ ∈ Sh(F (y)) with z̄K = z̄∗K :∣∣ {ȳ ∈ Sh(y) with ȳJ = ȳ∗J

∣∣ F̄ (ȳ) = z̄
} ∣∣ = c′ .

Thus, we find that there are a constant number of ȳ vectors with ȳJ = ȳ∗J which
are mapped to a vector z̄ with z̄K = z̄∗K . For each of these ȳ vectors we find a
constant number of x̄ vectors with x̄I = x̄∗I that are mapped to that ȳ. Thus,

we find that there exists a set K, such that for all x̄∗I ∈ F|I|2 and z̄∗K ∈ F|K|2

there exists a constant c∗, namely c∗ = cc′ or c∗ = 0, such that for all x and
z̄ ∈ Sh(F (G(x))) with z̄K = z̄∗K :∣∣ {x̄ ∈ Sh(x) with x̄I = x̄∗I

∣∣ F̄ (Ḡ(x̄)) = z̄
} ∣∣ = c∗ .

Since I was chosen arbitrarily, we have proven the lemma.

The above two lemmas form a compositional security argument effectively
showing that (∆,∆′) resilient uniformity is sequentially composable. We now
show that the notion of (∆,∆′) resilient uniformity leads to second-order prob-
ing security. We require that each function in the circuit is (∆i, ∆

′
i+1) resilient

uniform such that ∆′i ⊂ ∆i with i the index enumerating the shared functions
in the circuit.

Theorem 1. The composition of shared functions F̄i which are correct, ∆i non-
complete, and (∆i, ∆

′
i+1) resilient uniform, with each ∆i, ∆

′
i being Q2 adversary

structures and ∆′i ⊂ ∆i, is secure against a second-order probing adversary.

9

Proof. Due to all functions being correct, the circuit is also correct. We show the
circuit is also second-order private as defined in Section 2.2. Recall that privacy
is shown as the existence of a simulator who can simulate the probed values from
scratch. Take two arbitrary probed functions from the threshold circuit and give
the adversary all the inputs of those functions. We denote the set of shares given
to the adversary by I.

We treat the case where the two probed functions lie in the same shared
function F̄i. Due to the ∆i non-completeness of F̄i and since ∆i is a Q2 adversary
structure, I never contains all shares of an input. The security of this case relies
only on the original definition of uniformity. Since each shared function is also
uniform, the input masking was also uniform, thus each input share can be
simulated as uniformly random.

We look at the case where the two probed functions do not lie in the same
shared function. Denote the to probed functions F̄i and F̄j with i 6= j. Due to the
∆i and ∆j non-completeness of both functions, I consists of a set of shares x̄I
with I ∈ ∆i and a set of shares ȳJ with J ∈ ∆j . Since the first probed function
has a uniform input, the shares x̄I can be simulated as uniform randomness.
Consider the function F̄ which maps the input of F̄i to the input of F̄j .

We first prove that F̄ is (∆i, ∆
′
j) resilient uniform. We know that F̄ is the

composition of functions which are (∆k, ∆
′
k+1) resilient uniform, for k ∈ {i, ..., j−

1}. From Lemma 3, we know from each ∆′k ⊂ ∆k, that each function is also
(∆k, ∆k+1) resilient uniform. From Lemma 4, we then know that the composition
of these functions is (∆i, ∆j) resilient uniform. Thus, F̄ is (∆i, ∆j) resilient
uniform.

As a result, since the input of F̄ is a ∆i resilient uniform masking, the
output of F̄ is also a ∆j resilient uniform masking following Lemma 1. Thus,
the output of F̄ consists of constants and a uniform masking. Since ∆j is a
Q2 adversary structure, the resulting uniform masking is still non-complete.
Thus, the second probe only gives back constants, which are already simulated,
or uniform randomness. As a result, all probed values can be simulated from
scratch.

In case functions are only uniform but not (∆,∆′) resilient, one can find
examples such that, when composed, the functions become insecure against a
second-order attack. An example is given by Reparaz [17] of a shared identity
function using five shares.

(a1, a2, a3, a4, a5)→ (a1, a1 + a2 + a4 + a5, a1 + a3 + a4 + a5, a4, a5)

This function is uniform but it is clearly not second-order secure as one probe
can read a3 and the other a1 + a2 + a4 + a5 to reveal a. The above function is
not (∆,∆′) resilient as, for example taking a3 in the input equal to zero gives
the non-uniform output distribution (a1, a1 + a2 + a4 + a5, a1 + a4 + a5, a4, a5).
Fixing an output coordinate to a constant does not help make the distribution
uniform, for example one can fix the third coordinate to zero (a1 + a4 + a5 = 0)

10

and remove it. However, the resulting output distribution (a1, a2, a4, a1 + a4) is
again non-uniform. This will be the case for any other output coordinate one
fixes.

4 Consolidating Masking Schemes Revisited

This section applies the notion of resilient uniformity to the “Consolidating
Masking Schemes” (CMS) approach [18]. The CMS approach was proposed to
secure Threshold Implementations against dth-order probing adversaries using
fresh randomness. However, its security was only argued and formal definitions
were never given. Later on, Moos et al. [14] showed that the CMS approach was
insecure against third- or higher-order attacks showing a need for formal security
proofs. In this work, we prove the second-order security of the CMS approach.

4.1 The CMS Approach

We quickly introduce the CMS approach which guarantees second-order probing
security. In short, the approach takes a second-order non-complete map and re-
freshes the uniformity by adding extra randomness in a ring refreshing approach.
The expanded shares are then re-compressed by XORing them together.

We give an example of the approach, namely for a shared AND gate which
is depicted in Figure 2a. First, the CMS approach calculates all the linear and
nonlinear terms, of the shared function in this case all cross products aibj . These
terms are then added together, such that second-order non-completeness still
holds, i.e. the joint inputs of every pair of functions do not cover all shares of
a secret. In the AND gate example, each cross product is held separately as
XORing some of them would already invalidate second-order non-completeness.
In order to re-compress the shares, they are first added with randomness and
synchronized. The addition of randomness follows a “ring refreshing” approach
as shown in Figure 2b with the dashed line denoting a register stage.

While the example is that of a multiplication, the CMS approach can be
applied to any Boolean function.

4.2 Applying Resilient Uniformity

We split up the CMS approach in two main layers; An expansion layer which
expands the input shares and adds randomness; and a compression layer re-
compressing the shares. The two layers are depicted in Figure 3. We show that
both layers conform to the notion of resilient uniformity.

To that end we introduce the two main adversary structures. The first is
denoted by ∆one share which is the adversary structure consisting of all sets
with one share, in total, and the empty set. Second, for a shared function F̄ , we
denote the natural adversary structure given by all sets of shares a single probe

11

b1

b2

b3

b1

b2 b3

b1

b2

b3

a2

a2

a3
a3

a3

a1

a1
a1

a2

⊕

⊕

⊕

⊕
⊕

⊕

⊕ ⊕

⊕

⊕

⊕

⊕

c2

c3

c1

r6

r7r8

r9

r1

r2

r3

r4

r5

(a) A second-order secure AND-gate.

⊕

⊕

⊕

x1

x2

x3

r1

r2

r3

r1

(b) Three-shared ring refreshing.

Figure 2: The CMS secure AND gate and refreshing method.

x1

x2

...

x`−1

x`

S1

S2

...

S`−1

S`

⊕

⊕
...

⊕

⊕

r1

r2

r`

r1

S1 + r1 + r2

S2 + r2 + r3

...

S`−1 + r`−1 + r`

S` + r` + r1

⊕

...

⊕

y1

...

y`

expansion phase compression phase

random zero-sharing

Figure 3: A depiction of the CMS approach. The gray dashed line denotes a
register stage. The adversary probes the first expanded share. Values known to
the adversary are denoted in bold red.

can observe by ∆probing. For example, consider the function G(x, y, z) = xy + z
which is shared in the following way

Gi = xiyi + xiyi+1 + xi+1yi + zi,

where the convention is used that superscripts wrap around at three. Then
∆one share and ∆+

probing equal the following sets

∆one share = {{x1}, {x2}, {x3}, {y1}, {y2}, {y3}, {z1}, {z2}, {z3}, ∅},

∆+
probing = {{x1, x2, y1, y2, z1}, {x2, x3, y2, y3, z2}, {x1, x3, y1, y3, z3}}.

We claim that if a function is shared according to the CMS approach, it is
(∆probing, ∆one share) resilient uniform.

We show the expansion phase of the CMS is (∆probing, ∆one share) resili-
ent uniform. This expansion phase F̄ is a Fm+n

2 → Fm
2 function with inputs

12

(a1, ..., an, r1, ..., rm) given by the equations

F i = Gi(a1, ..., an)⊕ ri ⊕ ri+1 ,

for a second-order non-complete function Ḡ, i ∈ {1, ...,m} and where the sub-
scripts wrap around at m.

Theorem 2. The function F̄ as defined above is (∆probing, ∆one share) resilient
uniform.

Proof. We take an arbitrary set I from ∆probing. Without loss of generality we
assume this set consists of the elements {ri, ri+1} for some i ∈ {1, ...,m} and a
non-complete set of shares of ā, i.e. a set which misses at least one share of ā,
which we denote by A. We take J = {F i}, set {A, ri, ri+1} to arbitrary constants

ā∗A ∈ F|A|2 , r∗i ∈ F2, r
∗
i+1 ∈ F2, and set F i = Gi(a1, ..., an) ⊕ ri ⊕ ri+1. Setting

F i to a different value would make the proof evident for c = 0. We show that
there exists a constant c, such that for an arbitrary a and ȳ ∈ Sh(F (a)) where
F i = yi = Gi(a1, ..., an) ⊕ ri ⊕ ri+1, there are c inputs (a1, ..., an, r1, ..., rm),
adhering to the constraints āA = ā∗A, ri = r∗i , ri+1 = r∗i+1, mapping to ȳ.

Since A consists of a non-complete set of shares, we find that for each secret a
there are a constant number, denote this c′, of share vectors ā ∈ Sh(a) with āA =
ā∗A. We now take an arbitrary vector of shares ā from the c′ previous possibilities.
We show that for each such vector we find unique values {r1, ..., rm}, such that
(a1, ..., an, r1, ..., rm) maps to ȳ. This is evident, since the shares {a1, ..., an} are
already fixed, we set

rj ⊕ rj+1 = yj ⊕Gj(a1, ..., an) .

The above gives m − 1 linear equations with m − 2 variables (excluding the
equation for F i and removing the variables ri, ri+1). Remark that due to the
correctness property, one equation is the sum of all others. Removing that linear
dependent equation, we have m − 2 equations and m − 2 variables. It is clear
that one can assign a unique rj to each equation, thus each remaining equation is
linear independent and there is a unique solution for {r1, ..., rm}. As a result, we
find that c = c′ and thus for each a and ȳ ∈ Sh(F (a)) where yi = Gi(a1, ..., an)⊕
ri ⊕ ri+1 we find there are c′ ∆probing-restricted inputs which map to ȳ.

Thus, the expansion phase is (∆probing, ∆one share) resilient uniform. The
second phase, the compression phase, maps each expanded share to only one
output. As a result, the inputs viewed by a probe are only used for one output
share and thus a ∆probing resilient input gets mapped to a ∆one share resilient
output meaning that the second phase is (∆probing, ∆one share) resilient uniform.

Since both layers adhere to the same notion of resilient uniformity, the entire
CMS approach is (∆probing, ∆one share) resilient uniform. Since ∆one share ⊂
∆probing, from Theorem 1 we know that the approach offers second-order probing
security.

13

5 Application to PRESENT

In this section, we give a sharing of the Present cipher which has a low-cost
requirement for fresh randomness.

Intuitively, the Present round operations are sparse, meaning each opera-
tion only operates on a small portion of the state at a time. This sparsity together
with using uniform shared functions allows for a relaxation for randomness cost
to achieve a notion of resilient uniformity.

For simplicity for the security arguments, we only consider protecting the
state function of Present. The key expansion function is left out of the analysis.
As such, we consider the key as a constant throughout the state computation.

5.1 PRESENT

We introduce the Present-80 cipher, denoted Present, from the work of Bog-
danov et al. [3]. Present accepts as input a 64-bit plaintext m and considers
a 80 bit key. Present consists of 31 rounds, each comprising an XOR with the
roundkey (addRoundKey), a substitution layer (sBoxLayer), and a bit permuta-
tion layer (pLayer). The cipher is depicted in Figure 4.

Ki ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕

S S S S S S S S S S S S S S S S

a
d
d
R
o
u
n
d
K
e
y

s
B
o
x
L
a
y
e
r

p
L
a
y
e
r

Figure 4: A round of Present.

5.2 Seven-Shared PRESENT

Following the notions explained in Section 3, this section constructs a masking
of the Present cipher. Figure 5 gives an overview of the shared round function.

Masking state and key. For the masking of Present we use classical Boolean
masking. The 64-bit state is shared using seven shares per bit. The 80-bit key is
shared using seven shares and is assumed to be already split into shared round
keys.

Masking affine operations. The masking of Present’s linear operations such
as the pLayer, the linear layers of the decomposed S-box, and the key addi-
tion are simply done share-wise. Constants are added to the first share of the
corresponding variable.

14

Masking the S-box. Following Kutzner et al. [13], the Present S-box is decom-
posed into two quadratic maps S1 = G ◦ C and S2 = B ◦ G where B and C
are affine. Further details on this decomposition are given in Appendix A.1. The
masking of the S-box is constructed from the masking of G which is inspired
from the work by Beyne et al. [1] and is detailed in Appendix A.2. This mask-
ing consists of seven input shares and seven output shares and is uniform and
second-order non-complete. We refer to the software added to the submission
for this verification. After the S̄1 and S̄2 operations, randomness is added to
make the operation resilient uniform. Both r̄1, r̄2 are ring refreshings as shown
in Figure 2b. However, the random bits r̄1, r̄2 are re-used for every cell in the
round. The details of this randomness is given in Appendix A.2. In total, the
masking of Present requires 49 fresh random bits per round.

S̄1 S̄1 S̄1 S̄1

S̄1 S̄1 S̄1 S̄1

S̄1 S̄1 S̄1 S̄1

S̄1 S̄1 S̄1 S̄1

r̄1

⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕ S̄2 S̄2 S̄2 S̄2

S̄2 S̄2 S̄2 S̄2

S̄2 S̄2 S̄2 S̄2

S̄2 S̄2 S̄2 S̄2

r̄2

⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕

	

pLayer addRoundKey

⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕

∆probing ∆probing ∆one share

sBoxLayer

Figure 5: The adversary structures for the seven-shared Present. The register
stages are denoted by dashed lines.

Security. Figure 5 depicts the adversary structures considered and the location
of register stages. The security argumentation is split for the two operations
F̄1 = r̄1 ◦ S̄1 and F̄2 = addRoundKey ◦ pLayer ◦ r̄2 ◦ S̄2. We use the adversary
structures ∆probing and ∆one share as introduced in Section 4.2.

The first operation F̄1 consists of an affine layer, a nonlinear map Ḡ, and
a layer of added randomness. In view of the mathematical construction, this
randomness is generated by the encoder function at the state of the masking
and is mapped through identity functions until the randomness is needed in
the operation. This does not need to be reflecting in the implementation as the
randomness can be generated by a true random bit generator or a cryptographic
secure generator.

Each share of Ḡ uses only three shares per input. Since each secret is shared
in seven shares, ∆probing is a Q2 structure. We show the first operation is
(∆probing, ∆one share) resilient uniform.

Theorem 3. The function F̄1 is (∆probing, ∆one share) resilient uniform.

Proof. First, note that ∆probing consists of sets of input shares of a single S-box
together with the added randomness of r̄1. Take an arbitrary set I from ∆probing.
Consider I consists of the input shares of the ith S-box in the state and some

15

randomness from r̄1. Since r̄1 is a ring refreshing operation, we know from The-
orem 2 that the output of the ith S-box is ∆one share resilient uniform. Because
all other masked S-boxes are uniform even without the added randomness r̄1
their output is uniform even when the first S-box is probed. The concatenation
of a ∆ resilient uniform masking with a uniform masking is again evidently a ∆
resilient uniform masking. As a result, the output of F̄1 is ∆one share resilient
uniform.

The second operation F̄2 consists of an affine layer, a nonlinear map Ḡ, a layer
of added randomness, the bit-wise permutation, and the addition of a round key.
Similar to the first operation, the structure ∆probing for the second operation
is also Q2 since the bit-wise permutations and round key additions are done
share-wise. This operation is also (∆probing, ∆one share) resilient uniform.

Theorem 4. The function F̄2 is (∆probing, ∆one share) resilient uniform.

Proof. The proof is similar as for the first operation. Due to the pLayer working
bit-wise, ∆probing still consists of inputs of a single S-box. Due to the randomness
layer r̄2 being a ring refreshing, the operation is (∆probing, ∆one share) resilient
uniform.

Since all operations in the shared Present are (∆probing, ∆one share) resilient
uniform, the entire sharing is second-order probing secure.

5.3 Moving to Bounded-Query Security

The above masking of Present requires a total of 1519 random bits (49 bits
per round, for 31 rounds) to secure the state function. We can further reduce
this cost to 686 bits (49 bits per round, for 14 rounds) by moving from perfect
security, given perfect independent and identically distributed randomness, to
bounded-query security. We argue that re-using the randomness every 14 rounds
is secure as long as the adversary is limited in the number of probing queries.
More specifically, we move from the simulation based security model as defined in
Section 2.2 to the bounded query model defined by Beyne et al. [1] which defines a
security model where the adversary is admitted only a limited number of probing
queries. In the bounded query model, we make use of linear cryptanalytic security
arguments using a trail-wise approach. The interested reader is referred to the
work by Beyne et al. [1] for the definition of correlation matrices over maskings
and how the coefficients of the Fourier transform of the probed distribution
bound the advantage of the adversary.

The work by Beyne et al. verified that the maximum absolute correlation of
S̄2 ◦ r̄1 ◦ S̄1 equals 2−3. From the uniformity of the masked Present’s round
function we know that at least one masked S-box is active per round, thus the
correlation of trails spanning at least 14 rounds is bounded by 2−42. It then
follows that the 2-norm of the nontrivial Fourier coefficients of the probed bits
can be upper bounded by 2−64 where we have used that the support of the
Fourier transform is bounded by 220, which follows from the fact if an output

16

coordinate of Ḡ is read, at most 10 shares are learned. Thus, the advantage of a
bounded query second-order probing adversary can be bounded by

Adv2-thr(A) ≤
√

q

262
,

with q the number of probing queries by Adv2-thr, which for a large number of
queries admits the same advantage as the security achieved by the cipher in most
modes of operation.

6 Conclusion and Future Work

In this work, a notion of uniformity was discussed which provides second-order
side-channel protection. The notion is called “resilient uniformity” as it resembles
resiliency of Boolean functions. The work formally proves its second-order pro-
tection in the framework of perfect probing security.

The notion is used to formally prove the security of the masking method
of Reparaz et al. [18]. Specific applications of the new notion also lead to the
significant reduction of randomness of maskings. This was shown by propos-
ing a second-order masking of the Present cipher. Previous work by Cassiers
et al. [5] details a second-order masking of Present. In the low-randomness
variant in their work, they report using 5952 random bits to secure Present’s
state function. In contrast, the design in this work requires only 686 random bits
improving the randomness cost eight times over.

Future work involves research into resilient uniform maskings of symmetric
primitives and the improvement of this work’s Present masking in terms of
randomness but also area and latency. Even though the main theoretic found-
ations are laid out, the generalization to higher-order security is an interesting
investigation to find whether randomness costs remain low.

Acknowledgment. We acknowledge Vincent Rijmen and Venci Nikov for help-
ful comments. This work was supported by CyberSecurity Research Flanders
with reference number VR20192203. Siemen Dhooghe is supported by a PhD
Fellowship from the Research Foundation – Flanders (FWO). Svetla Nikova was
partially supported by the Bulgarian National Science Fund, Contract No. 12/8.

References

1. Beyne, T., Dhooghe, S., Zhang, Z.: Cryptanalysis of masked ciphers: A not so
random idea. IACR Cryptol. ePrint Arch. 2020, 993 (2020), https://eprint.
iacr.org/2020/993

2. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold
implementations. In: Sarkar, P., Iwata, T. (eds.) Advances in Cryptology – ASIAC-
RYPT 2014, Part II. Lecture Notes in Computer Science, vol. 8874, pp. 326–
343. Springer, Heidelberg, Germany, Kaoshiung, Taiwan, R.O.C. (Dec 7–11, 2014).
https://doi.org/10.1007/978-3-662-45608-8˙18

17

https://eprint.iacr.org/2020/993
https://eprint.iacr.org/2020/993
https://doi.org/10.1007/978-3-662-45608-8_18

3. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) Cryptographic Hardware and Embedded
Systems - CHES 2007, 9th International Workshop, Vienna, Austria, Septem-
ber 10-13, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4727, pp.
450–466. Springer (2007). https://doi.org/10.1007/978-3-540-74735-2 31, https:

//doi.org/10.1007/978-3-540-74735-2_31

4. Braeken, A., Nikov, V., Nikova, S., Preneel, B.: On boolean functions
with generalized cryptographic properties. In: Canteaut, A., Viswanathan,
K. (eds.) Progress in Cryptology - INDOCRYPT 2004, 5th International
Conference on Cryptology in India, Chennai, India, December 20-22, 2004,
Proceedings. Lecture Notes in Computer Science, vol. 3348, pp. 120–135.
Springer (2004). https://doi.org/10.1007/978-3-540-30556-9 11, https://doi.

org/10.1007/978-3-540-30556-9_11

5. Cassiers, G., Grégoire, B., Levi, I., Standaert, F.: Hardware private circuits: From
trivial composition to full verification. IACR Cryptol. ePrint Arch. 2020, 185
(2020), https://eprint.iacr.org/2020/185

6. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to
counteract power-analysis attacks. In: Wiener, M.J. (ed.) Advances in Crypto-
logy – CRYPTO’99. Lecture Notes in Computer Science, vol. 1666, pp. 398–
412. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 15–19, 1999).
https://doi.org/10.1007/3-540-48405-1˙26

7. Cho, J.Y.: Linear cryptanalysis of reduced-round PRESENT. In: Pieprzyk, J.
(ed.) Topics in Cryptology – CT-RSA 2010. Lecture Notes in Computer Science,
vol. 5985, pp. 302–317. Springer, Heidelberg, Germany, San Francisco, CA, USA
(Mar 1–5, 2010). https://doi.org/10.1007/978-3-642-11925-5˙21

8. Dhooghe, S., Nikova, S., Rijmen, V.: Threshold implementations in the ro-
bust probing model. In: Bilgin, B., Petkova-Nikova, S., Rijmen, V. (eds.) Pro-
ceedings of ACM Workshop on Theory of Implementation Security Workshop,
TIS@CCS 2019, London, UK, November 11, 2019. pp. 30–37. ACM (2019). ht-
tps://doi.org/10.1145/3338467.3358949

9. Faust, S., Grosso, V., Pozo, S.M.D., Paglialonga, C., Standaert, F.X.: Compos-
able masking schemes in the presence of physical defaults & the robust probing
model. IACR Transactions on Cryptographic Hardware and Embedded Systems
2018(3), 89–120 (2018). https://doi.org/10.13154/tches.v2018.i3.89-120, https:

//tches.iacr.org/index.php/TCHES/article/view/7270

10. Goubin, L., Patarin, J.: DES and differential power analysis (the “duplication”
method). In: Koç, Çetin Kaya., Paar, C. (eds.) Cryptographic Hardware and Em-
bedded Systems – CHES’99. Lecture Notes in Computer Science, vol. 1717, pp.
158–172. Springer, Heidelberg, Germany, Worcester, Massachusetts, USA (Aug 12–
13, 1999). https://doi.org/10.1007/3-540-48059-5˙15

11. Hirt, M., Maurer, U.M.: Complete characterization of adversaries tolerable in se-
cure multi-party computation (extended abstract). In: Burns, J.E., Attiya, H. (eds.)
16th ACM Symposium Annual on Principles of Distributed Computing. pp. 25–
34. Association for Computing Machinery, Santa Barbara, CA, USA (Aug 21–24,
1997). https://doi.org/10.1145/259380.259412

12. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) Advances in Cryptology – CRYPTO 2003. Lecture
Notes in Computer Science, vol. 2729, pp. 463–481. Springer, Heidelberg, Germany,

18

https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-540-30556-9_11
https://doi.org/10.1007/978-3-540-30556-9_11
https://doi.org/10.1007/978-3-540-30556-9_11
https://eprint.iacr.org/2020/185
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/978-3-642-11925-5_21
https://doi.org/10.1145/3338467.3358949
https://doi.org/10.1145/3338467.3358949
https://doi.org/10.13154/tches.v2018.i3.89-120
https://tches.iacr.org/index.php/TCHES/article/view/7270
https://tches.iacr.org/index.php/TCHES/article/view/7270
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1145/259380.259412

Santa Barbara, CA, USA (Aug 17–21, 2003). https://doi.org/10.1007/978-3-540-
45146-4˙27

13. Kutzner, S., Nguyen, P.H., Poschmann, A., Wang, H.: On 3-share threshold im-
plementations for 4-bit S-boxes. In: Prouff, E. (ed.) COSADE 2013: 4th Interna-
tional Workshop on Constructive Side-Channel Analysis and Secure Design. Lec-
ture Notes in Computer Science, vol. 7864, pp. 99–113. Springer, Heidelberg, Ger-
many, Paris, France (Mar 6–8, 2013). https://doi.org/10.1007/978-3-642-40026-1˙7

14. Moos, T., Moradi, A., Schneider, T., Standaert, F.: Glitch-resistant mask-
ing revisited or why proofs in the robust probing model are needed.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(2), 256–292 (2019).
https://doi.org/10.13154/tches.v2019.i2.256-292, https://doi.org/10.13154/

tches.v2019.i2.256-292

15. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 06: 8th
International Conference on Information and Communication Security. Lecture
Notes in Computer Science, vol. 4307, pp. 529–545. Springer, Heidelberg, Germany,
Raleigh, NC, USA (Dec 4–7, 2006)

16. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of
nonlinear functions in the presence of glitches. J. Cryptol. 24(2), 292–321
(2011). https://doi.org/10.1007/s00145-010-9085-7, https://doi.org/10.1007/

s00145-010-9085-7

17. Reparaz, O.: A note on the security of higher-order threshold implementations.
Cryptology ePrint Archive, Report 2015/001 (2015), http://eprint.iacr.org/

2015/001

18. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating
masking schemes. In: Gennaro, R., Robshaw, M.J.B. (eds.) Advances in Cryptology
– CRYPTO 2015, Part I. Lecture Notes in Computer Science, vol. 9215, pp. 764–
783. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 16–20, 2015).
https://doi.org/10.1007/978-3-662-47989-6˙37

19. Siegenthaler, T.: Correlation-immunity of nonlinear combining functions for cryp-
tographic applications. IEEE Trans. Inf. Theory 30(5), 776–780 (1984). ht-
tps://doi.org/10.1109/TIT.1984.1056949, https://doi.org/10.1109/TIT.1984.

1056949

20. Sugawara, T.: 3-share threshold implementation of AES s-box without fresh
randomness. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(1), 123–
145 (2019). https://doi.org/10.13154/tches.v2019.i1.123-145, https://doi.org/

10.13154/tches.v2019.i1.123-145

A Masking of the Present S-Box

This appendix gives a decomposition of the Present S-box and a seven-sharing
of the cipher.

A.1 Decomposition

Let (x, y, z, w) denote the input nibble from most significant to least signific-
ant bit. Similarly, (G1, ..., G4) denotes the output from most significant to least
significant bit.

19

https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-642-40026-1_7
https://doi.org/10.13154/tches.v2019.i2.256-292
https://doi.org/10.13154/tches.v2019.i2.256-292
https://doi.org/10.13154/tches.v2019.i2.256-292
https://doi.org/10.1007/s00145-010-9085-7
https://doi.org/10.1007/s00145-010-9085-7
https://doi.org/10.1007/s00145-010-9085-7
http://eprint.iacr.org/2015/001
http://eprint.iacr.org/2015/001
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1109/TIT.1984.1056949
https://doi.org/10.1109/TIT.1984.1056949
https://doi.org/10.1109/TIT.1984.1056949
https://doi.org/10.1109/TIT.1984.1056949
https://doi.org/10.13154/tches.v2019.i1.123-145
https://doi.org/10.13154/tches.v2019.i1.123-145
https://doi.org/10.13154/tches.v2019.i1.123-145

S(x, y, z, w) = B′(G(G(C ′(x, y, z, w) + d)) + e)

In the above, the nonlinear function G(x, y, z, w) is given as

G1 = x+ yz + yw G2 = w + xy G3 = y G4 = z + yw ,

the linear transformations as

B′ =


1 0 1 0
0 1 0 0
1 0 0 0
1 0 1 1

 , C ′ =


1 1 0 0
0 1 1 0
0 0 1 0
0 1 0 1

 ,
and the constants as

d =
[
0 0 0 1

]
, e =

[
0 1 0 1

]
.

A.2 Seven-Sharing of G(x, y, z, w)

For each share i ∈ {1, ..., 7}, the permutation G(x, y, z, w) is shared as

Gi
1 = xi + yizi + yizi+1 + yi+1zi + yizi+3 + yi+3zi + yi+1zi+3 + yi+3zi+1

+ yiwi + yiwi+1 + yi+1wi + yiwi+3 + yi+3wi + yi+1wi+3 + yi+3wi+1 ,

Gi
2 = wi + xiyi + xiyi+1 + xi+1yi + xiyi+3 + xi+3yi + xi+1yi+3 + xi+3yi+1 ,

Gi
3 = yi ,

Gi
4 = zi + yiwi + yiwi+1 + yi+1wi + yiwi+3 + yi+3wi + yi+1wi+3 + yi+3wi+1 ,

where the convention is used that superscripts wrap around at seven.
For each i ∈ {1, ..., 7} and given 21 random bits (ri1, r

i
2, r

i
3), the randomness

layer r̄1(x, y, z, w) is given by

Gi
1 = xi + ri1 + ri+1

1 ,

Gi
2 = yi + ri2 + ri+1

2 ,

Gi
3 = zi ,

Gi
4 = wi + ri3 + ri+1

3 ,

where the convention is used that superscripts wrap around at seven.
For each i ∈ {1, ..., 7} and given 28 random bits (ri1, r

i
2, r

i
3, r

i
4), the random-

ness layer r̄2(x, y, z, w) is given by

Gi
1 = xi + ri1 + ri+1

1 ,

Gi
2 = yi + ri2 + ri+1

2 ,

Gi
3 = zi + ri3 + ri+1

3 ,

Gi
4 = wi + ri4 + ri+1

4 ,

where the convention is used that superscripts wrap around at seven.

20

	Resilient Uniformity: Applying Resiliency in Masking

