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Abstract. Arbiter based Physical Unclonable Function (sometimes called
Physically Unclonable Function, or in short PUF) is a hardware based
pseudorandom bit generator. The pseudorandomness in the output bits
depends on device specific parameters. For example, based on the delay
parameters, an n-length Arbiter PUF can be considered as an n-variable
Boolean function. We note that the random variation of the delay pa-
rameters cannot exhaust all the Boolean functions and the class is sig-
nificantly smaller as well as restricted. While this is expected (as the
autocorrelation property in certain cases is quite biased), we present a
more disciplined and first theoretical combinatorial study in this domain.
Our work shows how one can explore the functions achieved through an
Arbiter based PUF construction with random delay parameters. Our
technique mostly shows limitation of such functions from the angle of
cryptographic evaluation as the subclass of the Boolean function can be
identified with much better efficiency (much less complexity) than ran-
dom. On the other hand, we note that under certain constrains on the
weights of inputs, such a simple model of Arbiter PUFs provide good
cryptographic parameters in terms of differential analysis. In this re-
gard, we theoretically solve the problem of autocorrelation properties in
a restricted space of input variables with a fixed weight. Experimental
evidences complement our theoretical findings.

Keywords: Bias, Boolean Function, Non-uniformity, Physically Unclon-
able Function (PUF), Pseudorandomness, Restricted Domain.

1 Introduction

Arbiter based Physically Unclonable Functions (PUFs) were first introduced
in [8]. This is a hardware based pseudorandom bit generator which is used
to generate cryptographic keys and related applications in device authentica-
tions [5,9,10]. PUFs are used to generate keys during the execution of the algo-
rithms without storing them in an insecure memory. To meet the security needs,
these constructions must be one-way and should not be cloned in different de-
vices. The design of PUFs basically depends on multiple device parameters. Due
to this, such devices supposedly generate uncorrelated output bit-stream. An



n-length Arbiter PUF takes an n-bit long challenge and based on the manufac-
turing variations, it generates one pseudorandom output bit. Thus an n-length
Arbiter based PUF can be treated as a Boolean function from {0, 1}n to {0, 1},
as described in [12]. Due to the pseudorandom nature of the output bits, one can
exploit them for security related tools and thus PUF has certain practical ap-
plications, e.g., smart cards [1]. An Arbiter based PUF supports a large amount
of Challenge-Response Pairs (CRPs) and therefore an adversary should not be
able to predict the CRPs.

C1 = -1/1 C2 = -1/1 Cn= -1/1

Arbiter
0/1

Output

If Ci = 1
If Ci = -1

Challenge C = (C1, C2, ... , Cn-1, Cn)

Fig. 1: Basic structure of an Arbiter based PUF.

An ideal PUF should exhibit some important cryptographic features, like
uniformity, uniqueness, reliability, etc. Uniformity describes the distribution of
the output bits of a PUF. If a PUF produces an equal number of 0’s and 1’s
in the output then that PUF is said to be uniform or balanced. The uniqueness
property says that if we provide the same input to different PUFs, then the
output of one PUF should not be predicted from the other. That means each
PUF should be unique in nature. It will have good reliability if the same device
produces the same output for the same input in different instances. In real life,
achieving all these cryptographic properties together is difficult as the device
specific and environmental parameters may inject noise in the output bits. Thus
the reducing noise in the output bits becomes an important task in practice.
In [7], Gassend has shown that error correcting codes can be used to tackle the
noisy situations.

As we have already described, an Arbiter based PUF can act as an n-variables
Boolean function. In most of the cryptographic applications, the input bits of a
Boolean function are usually considered independent and taken uniformly from
the domain. In such a scenario, the question is on pseudo-randomness mea-
sures of the output bits. If this is violated, then the PUF model should not be



accepted for cryptographic applications. There are several attacks in this direc-
tion [1,2,18,19,20,21,22] and the recent trend shows significant works in this di-
rection using Machine Learning tools [11,16,20,22]. Several counter-measures are
also proposed to resist such attacks and thus new designs are introduced [6,10,11].
On an orthogonal context, we are more interested in combinatorial and statistical
aspects in evaluating the Boolean functions generated out of varying delays in
Arbiter PUFs. In this direction, we refer to [24], where several non-randomness
results had been demonstrated theoretically.

From [24], it can be referred that if one generates output bits corresponding
to two challenge inputs C = (C1, C2, . . . , Cn) and C̃ = (C̃1, C̃2, . . . , C̃n), where
C and C̃ belong to {−1, 1}n and differ only at the most significant bit (MSB) po-
sition (i.e., C1 + C̃1 = 0), then the output bits will match with high probability.
The position of the differed challenge bit plays an important role in producing
the bias. One can look into Figure 1 to understand the position of the challenge
bits. This bias reduces with the location of the bit difference at the inputs. The
least bias occurs for the middle-most bit. Naturally, this lack of randomness
provides a direction that the PUF devices can only produce a restricted class
of Boolean functions, not all. Consequently, the immediate scientific question is
to explore the set of Boolean functions such Arbiter PUFs are generating. In
this regard, here we present relevant combinatorial results to show certain nec-
essary conditions regarding the existence or non-existence of Boolean functions
generated out of the Arbiter PUFs. Then we try to find out for what kinds of
combinatorial properties the functions from Arbiter PUFs resemble a randomly
chosen Boolean function better. We note that if one considers a certain autocor-
relation measure after restricting the input bit pattern to a fixed weight, then
such bias disappears. Thus, if one can restrict the attack model with such a con-
straint, then the use of Arbiter PUFs in certain applications (such as lightweight
environment) might be recommended.

As a passing remark, we should also mention the thin connectivity with
certain stream ciphers like FLIP [13], which are used as integral components in
Fully Homomorphic Encryption (FHE) [3]. In this direction, several properties
of Boolean functions over restricted domain (definition of the restricted domain
is described in Section 1.2 in more detail) were studied in [4,14,15,17]. Our
results show that while there is significant bias in the Arbiter PUFs in certain
autocorrelation measures [24], this is absent if challenge inputs are chosen from
a restricted domain.

Before proceeding further, let us now present the outline of the paper.

1.1 Contribution and Organization

In Section 1.2, we discuss the basic definitions and notations, introducing the
existing results and the problems we consider. The contributions of this paper
are the followings, in one case it shows the limitation of Arbiter PUFs, and in
another case it demonstrates still how they can be useful in restricted domain.

– In Section 2, we study the limitation of Arbiter PUFs in representing the
class of Boolean functions. We provide examples of functions that can or



cannot be generated through different delay parameters. An upper bound
on the number of such functions are also provided, which shows that the
proportions of different functions will be vanishing compared to the total
class of Boolean functions as the number of input variables increases. We
show that the ratio of distinct Boolean functions arising out of n-length
Arbiter PUFs and the total number of n-variable Boolean functions is less
than 1

25·2n−4 for n ≥ 4. The analysis also identifies the nature of the functions
arriving out of the Arbiter PUFs with better efficiency.

– Then, in Section 3, we show that the nature of autocorrelation distributions
of Arbiter PUFs and Boolean functions do not differ much if the inputs are
chosen from a restricted domain. In particular, we consider when the weight
of the inputs are fixed and the inputs must always differ at an already selected
bit. We provide a theoretical proof in this regard. This shows that in certain
restricted applications, such simple Arbiter PUFs can still be useful.

Section 4 concludes the paper.

1.2 Preliminaries

In this section we talk about some basic terminologies and definitions.

Arbiter PUF. It is a hardware based pseudorandom bit generator model, where
the basic idea is to initiate a digital race condition on two paths on the chip and
decide which of the two paths won the race. In Arbiter PUF construction, there
are n-many Arbiter switches present, one after the other, as shown in Figure 1.
Each switch has two multiplexers symmetrically placed. Each input bit is fed to
each Arbiter switch. A common pulse is also transmitted through the switches
and received at the end by an Arbiter. Based on the input bits, the pulse selects
the path inside the Arbiter switches. If an input bit is 1, the path of the pulse
remains unchanged. Else it gets swapped. Due to process variations, the pulse
will traverse through one path, faster than the other. At the end, the Arbiter
finally produces the response 0 or 1 based on the top or bottom path is reached
first. For each device, these paths for a given challenge act differently due to
delay parameters and hence the output will differ for different devices. This is
an informal description of the device. For our purpose, we need to follow the
mathematical definition more formally. This is as follows.

An n-length (or n-variable) Arbiter based PUF takes an input of length n
from {−1, 1}n and generates either 0 or 1. Note that, by abuse of notation, we
interchangeably consider the mapping a → (−1)a, for a ∈ {0, 1} sometime in
Boolean treatment here. The input to the Arbiter PUF is known as challenge
and the output is known as response. In [11] it has been shown that an n-length
Arbiter PUF can be modelled mathematically in the following form.

∆(C) = α1P0 + (α2 + β1)P1 + · · ·+ (αn + βn−1)Pn−1 + Pnβn. (1)

Here C is the challenge to the PUF, C = (C1, . . . , Cn) ∈ {−1, 1}n, αi and βi
depend on the delay parameters pi, qi, ri, si. Usually in a mathematical model



of PUF, we assume that these delay parameters follows normal distribution
with mean µ and standard deviation σ, i.e., the distribution follows N (µ, σ).
The formula through which these αi, βi are connected with pi, qi, ri, si are αi =
pi−qi

2 + ri−si
2 , and βi = pi−qi

2 − ri−si
2 . It can be easily verified that if pi, qi, ri, si ∼

N (µ, σ) then αi, βi ∼ N (0,
√

2σ). The term Pk =
n∏

i=k+1

Ci, for k = 0, . . . , n− 1

and Pn = 1. For a challenge C ∈ {−1, 1}n, the value of ∆(C) can either be
positive or negative. If the sign of ∆(C) is positive, the output from the PUF
will be 0 and if the sign of ∆(C) is negative then the output from the PUF will
be 1. We will be using the notation BPUFn to denote the set of n-variable Boolean
functions exhaustively generated through n-step Arbiter PUFs, whereas the set
of all Boolean functions involving n-variables are usually denoted by Bn. One
can note that implementation of an n-variable Boolean function requires expo-
nential number of gates. In practical life, we always prefer to have those circuits
which can be implemented using a polynomial number of gates. Arbiter based
PUFs are those class circuits that can be implemented using O(n) units. Thus
the Boolean functions constructed using PUF are of great interest. In this paper,
we are first time finding such class of Boolean functions and also showing that
in a special case it exhibits good property.

Restricted Domain. Let f be a function from {−1, 1}n to {0, 1}. Further,
let the function be defined over a restricted domain when it takes input from a
subset of {−1, 1}n. We know that the weight of x ∈ {0, 1}n (i.e., wt(x)) is consid-
ered as the number of 1’s present in x. In the similar convention along with the
transformation a→ (−1)a here we define wt(x) for x ∈ {−1, 1}n. The weight of
x ∈ {−1, 1}n is the total number of −1’s present in x. This is the total number of
1’s if we consider the string of 0’s and 1’s. The set En,k denotes the set of all n-
length points whose weight is k, i.e., En,k = {x : x ∈ {−1, 1}n and wt(x) = k}.
Here |En,k| =

(
n
k

)
. It can be noticed that En,k is a restricted domain, where the

restriction is that the all the points in En,k will be of length n and weight k.

Autocorrelation of an n-variable Boolean function f : {0, 1}n → {0, 1} is
defined by

Af (a) =
∑

x∈{0,1}n
(−1)f(x)⊕f(x⊕a),a ∈ {0, 1}n.

It can be noticed this definition of autocorrelation can not be used directly
to compute autocorrelation of f in En,k. As if we take any x ∈ En,k and take
any a ∈ {0, 1}n then x ⊕ a may not belong to En,k. For an x ∈ En,k, we need
to select an a selectively such that x⊕ a should also belong to En,k. As we have
already pointed out (see the discussion in Section 1.3 below), significant bias
could be identified in Af (a) when wt(a) = 1. In a similar line, we consider a
special case, where a specific input bit will be selected, where the differential will
exist. However, the weight of the two inputs should be of the same weight.

Let f be an n-variable Boolean function. Let S1 and S2 be two sets defined
as S1 = {x ∈ En,k | u-th bit of x is − 1}, S2 = {x ∈ En,k | u-th bit of x is 1}.



Note that En,k = S1 ∪ S2 and S1 ∩ S2 = φ. The restricted autocorrelation of f
over En,k is defined as

AEn,kf =
∑

x∈S1,x2∈S2

(−1)f(x1)⊕f(x2).

It is evident that |S1| =
(
n−1
k−1
)

and |S2| =
(
n−1
k

)
. We are not concerned about the

bit position u as it will be proved that this expression actually does not depend
on u for an n-length Arbiter PUF.

The purpose of defining restricted autocorrelation is to study the autocorre-
lation spectrum of PUF in a restricted domain, where the simple construction
of Arbiter PUF does not provide any bias.

1.3 Motivation of Our Work

Theoretical estimation of autocorrelation of an n-variable PUF over a complete
domain {−1, 1}n is discussed in [24]. In the same paper, it has also been shown
that the outputs corresponding to inputs are heavily biased when two inputs
differ at the first position. It means that the autocorrelation value of f ∈ BPUF

n

is not good for certain a ∈ {0, 1}n.
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Fig. 2: Representation of Table 1

Bit Difference Location Pr[zC = zC̃ ]

1 0.8691

2 0.7699

3 0.6982

4 0.6368

5 0.5804

6 0.5266

7 0.4734

8 0.4196

9 0.3632

10 0.3017

11 0.2300

12 0.1309

Table 1: Experimental Bias of PUFs
(n = 12) in complete domain
(over 1024 randomly chosen Ar-
biter PUFs) for single bit difference,
matching with the theoretical values
from [24]

To understand the autocorrelation values we consider a 12-variable PUF
and two inputs C and C̃ where C and C̃ differ at only one location. From the
result of [24] we know that the output zC and zC̃ are highly biased for certain



bit difference locations. The experimental Pr[zC = zC̃ ] for different single bit
difference locations is provided in Table 1. From Table 1 and Figure 2 it can be
observed that the bias is highest when the bit difference location is either first
or last and bias is least when the bit difference location is in the middle. Thus
for certain values of a ∈ {0, 1}n the expected autocorrelation value of f ∈ BPUFn

significantly differs from 0.5.
To get a clearer idea about the autocorrelation distribution of PUF we per-

form statistical analysis. We consider all 4-variable Boolean functions and PUFs
and measure the average number of Boolean functions and PUFs correspond-
ing to different possible autocorrelation values {−16,−8,−4, 0, 4, 8, 12, 16}. From
Figure 3 it can be observed that the distribution of PUF differs significantly from
the distribution of Boolean function.
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Fig. 3: Comparison of Autocorrelation Distribution in Complete Domain

Now we provide a clear answer why the autocorrelation distribution is highly
biased for PUF for single bit difference. The basic reason is that the Arbiter PUFs
cannot exhaustively generate all possible Boolean functions. This observation
motivates us to investigate the following.

– How to estimate the set BPUFn ?
– Can we obtain a restricted definition of autocorrelation so that the Arbiter

PUFs do not expose a significant bias?

2 Relation Between BPUF
n and Bn

In this section, we explore the class of Boolean functions generated from n-
variable PUFs i.e., BPUFn . To compute the number of distinct Boolean functions
which can be constructed using PUFs we start with n = 1. The total number of
Boolean functions involving 1-variable is |B1| = 22

1

= 4. We all know that a PUF



can be seen as a Boolean function. Thus, the obvious question is if we consider
1-length PUF, can that generate all possible Boolean functions given different
delay parameters. To answer this question we state the following proposition.

Proposition 1. All possible Boolean functions involving 1-variable can be gen-
erated by using 1-length PUFs i.e., BPUF1 = B1.

Proof. This proposition can be proven by exhaustively enumerating BPUF1 . We
have considered 1-length PUFs for different random delay parameters and ob-
served that all the possible truth tables are generated in our experiment. Thus
|BPUF1 | = |B1| = 4. ut

Now we move towards the case for n = 2. The total number of Boolean
functions in this case is |B2| = 22

2

= 16. Interestingly, from our experiments, we
have observed that 14 many Boolean functions can be constructed from 2-length
Arbiter PUFs, i.e., BPUF2 = 14. Truth tables of two specific Boolean functions
can never be constructed using 2-length Arbiter PUFs. In this regard, we will
state the following result.

Proposition 2. The following two Boolean functions f1 and f2 do not belong
to BPUF2 .

C1 C2 f1 f2
1 1 1 0
−1 1 0 1

1 −1 1 0
−1 −1 0 1

Proof. The mathematical model of 2-length PUF is ∆(C) = α1P0+(α2+β1)P1+
β2, where P0 = C1C2 and P1 = C2. Here αi, βi are the delay parameters. We
consider the truth table of f1 first. It can be observed that if the sign(∆(C))
and sign(C1) are the same then only the truth table f1 can be generated from
2-length PUF. Thus, to generate the same truth values from a 2-length PUF,
we need to have the following scenarios.

C1 C2 ∆(C)
1 1 α1 + (α2 + β1) + β2 > 0
−1 1 −α1 + (α2 + β1) + β2 < 0

1 −1 −α1 − (α2 + β1) + β2 > 0
−1 −1 α1 − (α2 + β1) + β2 < 0

If the above conditions hold for atleast one pair of α1, α2, β1, β2 then only the
truth values of f1 can be generated. If we add two > 0 inequalities then we
will have β2 > 0 and if we add two < 0 inequalities then we will have β2 < 0.
This generates a contradiction. Hence the truth table of f1 can not be generated
from the 2-length Arbiter PUF structure. Similarly, it can be shown that it
is not possible to generate the truth table of f2 using a 2-length PUF. Thus
f1, f2 /∈ BPUF2 . ut

Using the transformation a → (−1)a for a ∈ {0, 1}, the Algebraic Normal
Form (ANF) of f1, f2 are f1(x1, x2) = 1 ⊕ x1 and f2(x1, x2) = x1 respectively.



From the Figure 1, it can be noticed that x1 is related to the leftmost block of
the Arbiter PUF, furthest from the output.

Proposition 2 justifies that |BPUF2 | = 14 as we noted from exhaustive experi-
ment and directs us towards the following result.

Lemma 1. For any n-variable Boolean function f /∈ BPUFn if and only if (1⊕f) /∈
BPUFn .

Proof. To prove this, we assume that there exists an n-variable Boolean function
f ∈ BPUFn but 1 ⊕ f /∈ BPUFn . Let the n-length PUF be ∆(C) = α1P0 + (α2 +
β1)P0 + (α3 + β2)P2 + · · · + (αn + βn−1)Pn−1 + βn. Here, αi, βi are the delay
parameters. We know that depending on the sign of ∆(C), the truth table of 1⊕f
is generated. Now if we consider a PUF with the delay parameters α′i = −αi and
β′i = −βi and construct the PUF ∆(C)′ = α′1P0 + (α′2 + β′1)P0 + (α′3 + β′2)P2 +
· · ·+ (α′n + β′n−1)Pn−1 + β′n, then sign(∆(C)) and sign(∆(C)′) will be opposite
for the same challenge values. Thus the truth table generated from ∆(C)′ will
be the truth table of 1⊕ (1⊕ f) = f . Which contradicts our assumption. Hence
if a Boolean function f /∈ BPUFn then (1⊕ f) /∈ BPUFn . Similarly if (1⊕ f) /∈ BPUFn

then f /∈ BPUFn . ut
We know that any (n + 1)-variable Boolean function f can be expressed as

f(x1, . . . , xn+1) = (1 ⊕ xn+1)f1(x1, . . . , xn) ⊕ xn+1f2(x1, . . . , xn), where f1, f2
are two Boolean functions involving n variables. This is basically equivalent to
f(x1, . . . , xn+1) = f1(x1, . . . , xn) ‖ f2(x1, . . . , xn), in terms of concatenating the
truth tables. That is, the truth table of f can be divided into two halves. In
upper half if we consider xn+1 = 0, then it will contain the truth values of f1
and in lower half if we consider xn+1 = 1 then it will contain the truth values of
f2.

Every 3-variable Boolean function f can be written as f = f1 ‖ f2, where f1
and f2 are two Boolean functions involving 2 variables. As the constructions of
PUFs depend on parameters from normal distributions, the natural question is
that if we consider a 3-variable PUF then can it be of the form F = f ‖ f1 or
F = f1 ‖ f , where f1 = (1 0 1 0) /∈ BPUF2 (see Proposition 2) and f ∈ B2. The
mathematical model of 3-variable PUF is ∆(C) = α1P0 + (α2 + β1)P1 + (α3 +
β2)P2 + β3, where P0 = C1C2C3, P1 = C2C3 and P2 = C3. We prepare a truth
table of a 3-variable PUF F = f1 ‖ f where f1 = (1 0 1 0) /∈ BPUF2 and f ∈ B2.
We now break the truth table into two parts. In the upper part C3 = 1 and in
lower part C3 = −1. Without loss of generality we consider f = (0 0 0 0). The
final truth table of F will be of the following form.

C1 C2 C3 ∆(C) F = f1 ‖ f
1 1 1 α1 + (α2 + β1) + (α3 + β2) + β3 > 0 1
−1 1 1 −α1 + (α2 + β1) + (α3 + β2) + β3 < 0 0

1 −1 1 −α1 − (α2 + β1) + (α3 + β2) + β3 > 0 1
−1 −1 1 α1 − (α2 + β1) + (α3 + β2) + β3 < 0 0

1 1 −1 −α1 − (α2 + β1)− (α3 + β2) + β3 < 0 0
−1 1 −1 α1 − (α2 + β1)− (α3 + β2) + β3 < 0 0

1 −1 −1 α1 + (α2 + β1)− (α3 + β2) + β3 < 0 0
−1 −1 −1 −α1 + (α2 + β1)− (α3 + β2) + β3 < 0 0



We consider the following pairs of equations from the upper part of the above
truth table. {

−α1 + (α2 + β1) + (α3 + β2) + β3 < 0

α1 − (α2 + β1) + (α3 + β2) + β3 < 0
(2)

{
α1 + (α2 + β1) + (α3 + β2) + β3 > 0

−α1 − (α2 + β1) + (α3 + β2) + β3 > 0
(3)

From Equation (2) we get (α3 + β2) + β3 < 0 and from Equation (3) we get
(α3 + β2) + β3 > 0, which is a contradiction. Thus for any f ∈ BPUF3 it can not
be of the form f1 ‖ f2 or f2 ‖ f1 where f1 = (1 0 1 0) /∈ BPUF

2 . Similarly we can
prove that for any f ∈ BPUF3 it can not be of the form (1⊕f1) ‖ f2 or f2 ‖ (1⊕f1)
where f1 =/∈ BPUF2 . In this regard, we present the following important result.

Theorem 1. If f1 /∈ BPUFn , then there does not exist any F ∈ BPUFn+1 of the form
f1 ‖ f or f ‖ f1.

Proof. Assume that there exists an F ∈ BPUFn+1 such that F = f1 ‖ f and f1 /∈
BPUFn . Let the challenge input to the (n+1)-variable PUF be C = (C1, . . . , Cn+1).
The mathematical model of the (n+ 1)-variable PUF corresponding to F is

∆(C) = α0P0 + (α1 + β0)P1 + · · ·+ (αn+1 + βn)Pn + βn+1, (4)

where Pk =
n+1∏
i=k+1

Ci. As F ∈ BPUFn+1, the inequalities constructed from ∆(C) in

Equation (4) and the truth table corresponding to F will provide a solution for
αi and βi. Let us look at the truth table of F into two equal parts. In the upper
half Cn+1 = 1 and lower half Cn+1 = −1. It can be noticed that the upper half
of the truth table of F should be exactly the same as the truth table of f1 and
the lower half should be exactly the same as the truth table of f . Using the
values of αi and βi we prepare the following model of n-variable PUF

∆(C)′ = α′0P0 + (α′1 + β′0)P1 + · · ·+ (α′n + β′n−1)Pn + β′n, (5)

with α′i = αi for i = 0, . . . , n; β′i = βi for i = 0, . . . n− 1 and β′n = (αn+1 +βn) +
βn+1. The existence of αi, βi guarantees that the PUF described in Equation (5)
will be able to generate the truth table of f1. This is a contradiction as f1 /∈ BPUFn .
Thus F = f1 ‖ f /∈ BPUFn+1. Similar arguement works to prove F = f ‖ f1 /∈ BPUFn+1.

ut
From Lemma 1 and Theorem 1, it is clear that BPUFn ⊂ Bn for n ≥ 2. In fact we

can directly say that if f ∈ BPUFn+1 then f = f1 ‖ f2 where f1, f2 ∈ BPUFn . With this
we would like to investigate BPUF3 . Proposition 2 claims that |BPUF2 | = 14. Now
if we prepare a 3-variable Boolean function by concatenating these 14 Boolean
functions from BPUF2 then we can have maximum 196 Boolean functions. The
most natural question is that whether all such Boolean functions belong to BPUF3

or not. To answer this, we note the following result.



Proposition 3. Consider f1 = (1 1 0 1), f2 = (0 1 0 0) ∈ BPUF2 and f = f1 ‖ f2.
The Boolean function f /∈ BPUF3 .

Proof. We construct a truth table of f = f1 ‖ f2 for a 3-length PUF, where
f1 = (1 1 0 1), f2 = (0 1 0 0) ∈ BPUF2 .

C1 C2 C3 ∆(C) f = f1 ‖ f2
1 1 1 α1 + (α2 + β1) + (α3 + β2) + β3 > 0 1
−1 1 1 −α1 + (α2 + β1) + (α3 + β2) + β3 > 0 1

1 −1 1 −α1 − (α2 + β1) + (α3 + β2) + β3 < 0 0
−1 −1 1 α1 − (α2 + β1) + (α3 + β2) + β3 > 0 1

1 1 −1 −α1 − (α2 + β1)− (α3 + β2) + β3 < 0 0
−1 1 −1 α1 − (α2 + β1)− (α3 + β2) + β3 > 0 1

1 −1 −1 α1 + (α2 + β1)− (α3 + β2) + β3 < 0 0
−1 −1 −1 −α1 + (α2 + β1)− (α3 + β2) + β3 < 0 0

First we consider the following pairs of equations from the above truth table.{
−α1 + (α2 + β1) + (α3 + β2) + β3 > 0

α1 − (α2 + β1)− (α3 + β2) + β3 > 0
(6)

{
−α1 − (α2 + β1) + (α3 + β2) + β3 < 0

α1 + (α2 + β1)− (α3 + β2) + β3 < 0
(7)

From Equation (6) we get β3 > 0 and from Equation (7) we get β3 < 0. This is
a contradiction. Thus f = f1 ‖ f2 /∈ BPUF3 . ut

Proposition 3 shows that even if we take any two Boolean functions f1, f2
from BPUF2 then f = f1 ‖ f2 may not belong to BPUF3 . We have |BPUF1 | = 4 but
|BPUF2 | = 14. For higher values of n, we have considered the mathematical model
of PUF described in Equation (1) for different values of n and exhaustively
searched the Boolean functions which belong to BPUFn . For n = 3, 4 we have
observed that |BPUF3 | = 104 < |BPUF2 |2 and |BPUF4 | = 1882 < |BPUF3 |2. From this,
the following result follows.

Theorem 2. For any value of n, |BPUFn+1| ≤ |BPUF
n |2. Further, for n ≥ 4,

|BPUF
n |
|Bn| <

1

25·2n−4 .

Proof. The first result follows from Theorem 1. The next result is initiated from
exhaustive experiments, where for different values of delay parameters we have
observed that |BPUF4 | = 1882. Regarding the exhaustive experiment supporting

the proof we refer to Algorithm 1 below. If we compute
|BPUF

4 |
|B4| = 1882

224
< 1

25 =

1

25·24−4 . Assume that the relation holds for n = k, for some k > 4, i.e.,
|BPUF
k |
|Bk| <

1

25·2k−4 . For n = k + 1, following Theorem 1 we have,

|BPUFk+1|
|Bk+1|

≤ |B
PUF
k |2

|Bk|2
<
( 1

25·2k−4

)2
=
( 1

25·2(k+1)−4

)
(8)



Hence for n ≥ 4,
|BPUF
n |
|Bn| <

1

25·2n−4 . ut

Although the bound derived in Theorem 2 is not tight, it provides a sig-
nificant estimation about BPUFn . Now the question is how one can obtain BPUFn+1

exhaustively. One informal way is, consider large number of values varying the
delay parameters to construct (n+ 1) variable PUFs and enumerate the number
of distinct ones. However, this cannot be used as a proof.

Below we provide an iterative way of completely enumerating BPUFn+1 from
BPUFn . In Algorithm 1 we consider the mathematical model of (n + 1)-variable

PUF, i.e., ∆(C) = α1P0+(α2+β1)P1+· · ·+(αn+1+βn)Pn+βn+1, Pi =
n∏

k=i+1

Ci.

That is∆(C) can be considered as a Boolean function on C = (C1, C2, . . . , Cn+1),
the challenge inputs corresponding to (n + 1)-length PUF. Consider any two
f1, f2 ∈ BPUFn . Let f = f1 ‖ f2. For Cn+1 = 1 we prepare the system of inequali-
ties involving αi, βi, based on the truth table of f1. Similarly, for Cn+1 = −1 we
construct the system of inequalities involving αi, βi based on the truth table of
f2. If this system of equations is solvable then we include the Boolean function
f in BPUFn+1 which corresponds to the (n + 1)-length PUF ∆(C). If we continue
this process for all f1, f2 ∈ BPUFn then we will have BPUFn+1.

Algorithm 1: Construction of BPUFn+1 from BPUFn

Input : BPUF
n

Output: BPUF
n+1

1 Assign ∆(C) = α1P0 + (α2 + β1)P1 + · · ·+ (αn+1 + βn)Pn + βn+1, Pi =
n∏

k=i+1

Ci;

2 for each fi ∈ BPUF
n do

3 F1 = {};
4 if Cn+1 = 1 then
5 if fi(C1, . . . , Cn) = 1 then
6 Construct equation ∆(C) > 0 and include ∆(C) > 0 in F1;
7 end
8 else
9 Construct equation ∆(C) < 0 and include ∆(C) < 0 in F1;

10 end

11 end

12 for each fj ∈ BPUF
n do

13 F2 = {};
14 if Cn+1 = −1 then
15 if fj(C1, . . . , Cn) = 1 then
16 Construct equation ∆(C) > 0 and include ∆(C) > 0 in F2;
17 end
18 else
19 Construct equation ∆(C) < 0 and include ∆(C) < 0 in F2;
20 end

21 end
22 if F = F1 ∪ F2 is solvable then

23 Construct f = f1 ‖ f2 and include f in BPUF
n+1;

24 end

25 end

26 end

27 return BPUF
n+1;

We have implemented Algorithm 1 in SageMath 9.2 [23] and enumerated
BPUFn+1 for n = 1, 2, 3. Larger values are being tried with further optimization and



several cryptographic properties are being studied. These will be reported in full
version of this paper.

3 On Restricted Autocorrelation of Arbiter PUF

In Section 1.3 we have seen that the distribution of Boolean functions and PUFs
differs significantly in terms of autocorrelation spectrum. This happens due to
the fact that the PUFs depend on multiple device specific parameters and BPUFn ⊂
Bn for n > 2. Interestingly, if we consider the challenge inputs from En,k with
certain restrictions, then the autocorrelation distributions of random Boolean
functions and PUFs become quite close. For measuring this we need to revisit
the definition of restricted autocorrelation from Section 1.2.
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Fig. 4: Comparison of the restricted autocorrelation.

As we have discussed, f is an n-variable Boolean function. S1 and S2 are two
sets defined as S1 = {x ∈ En,k | u-th bit of x is −1}, S2 = {x ∈ En,k | u-th bit
of x is 1}. Note that En,k = S1 ∪ S2 and S1 ∩ S2 = φ. The restricted autocor-
relation of f over En,k is defined as

AEn,kf =
∑

x∈S1,x2∈S2

(−1)f(x1)⊕f(x2).

Let us explain the scenario for restricted autocorrelation over the domain

E6,3. We have classified all the 2(6
3) patterns and computed the distribution of

Boolean function corresponding to different restricted autocorrelation values in
Figure 4. Such autocorrelation values are {−100, −80, −64, −60, −48, −40, −36,
−32, −24, −20, −16, −12, −8, −4, 0, 4, 8, 12, 16, 20, 24, 32, 36, 40, 48, 60, 64,
80, 100}. The frequency of all such functions are normalized by dividing with



2(6
3). For 6-length PUFs we have randomly searched with 220 different sets of

delay parameters (αi, βi) and obtained 14100 such distinct functions. For them
we also obtained the same set of distinct autocorrelation values. The normalized
frequency distribution is drawn in Figure 4. A few blocks corresponding to certain
autocorrelation values (such as −100,−80, 80, 100) in Figure 4 are not visible due
to very small proportion.

From Figures 3 and 4, it can be observed that the restricted autocorrelation
distribution of the PUFs demonstrates same behavior as the set of Boolean func-
tions. That is the differential characteristics related to the bias is not observed
for this restricted domain. That is, if the choice of two distinct challenge pairs
can be restricted over certain domains (here one from S1 and another from S2

given a specific input bit location u), then the cryptographic weakness related
to the bias might be avoided. Other than this different larger classes should be
explored where such improved properties can be observed. Very simple model
of Arbiter PUFs can be used there as cryptographic components with better
confidence.

3.1 Theoretical Analysis

We now consider an Arbiter PUF whose inputs are from En,k. Let us divide the
complete set En,k into two subsets S1 and S2, where S1 = {x : MSB of x is −1}
and S2 = {x : MSB of x is 1}, i.e., the selected input bit is u = n.
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Weight(k) Pr[zC = zC̃ ]

1 0.495117

2 0.502397

3 0.497111

4 0.499929

5 0.502405

6 0.502307

7 0.500808

8 0.499840

9 0.506651

10 0.498867

11 0.506392

Table 2: Pr[zC = zC̃ ] in E12,k

Consider challenge input C from S1 and C̃ from S2. For a randomly chosen
PUF, let us denote zC as the output corresponding to C and zC̃ as the output

corresponding to C̃. Compute the difference zC ⊕ zC̃ for C ∈ S1 and C̃ ∈ S2.



If we calculate the average for all the points C ∈ S1 and C̃ ∈ S2, then we can
estimate the quantity pi = Pr[zC = zC̃ ]. Here pi denotes the probability cor-
responding to i-th PUF say. We compute the average of all these probabilities
(pi’s) for of all the different cases E12,1, E12,2, . . . , E12,11. The obtained experi-
mental data is presented in Table 2 and the distribution is plotted in Figure 5.
Note that E12,0 and E12,12 are not considered here as |E12,0| = |E12,12| = 1.
From this experiment, we observe that the average probability is close to 0.5 for
all weights k = 1, . . . , 11. During the experiments, we have also observed that
this probabilities do not depend of the choice of input bit t.

We note that this average probability is very close to 0.5 and that motivates
us to explore the following theoretical result.

Theorem 3. Expectation of AEn,kf is equal to 1
2 for f ∈ BPUFn .

Proof. Consider two distinct challenge inputs C, C̃ ∈ En,k such that they must

differ at location t1. Here C and C̃ are of the same weight k, hence they will
definitely differ at more than one locations. Let the m locations where C and C̃
differ be t1, t2, . . . , tm.

Let α = (αt1+1 +βt1)Pt1 + (αt1+2 +βt1+1)Pt1+1 + . . .+ (αt2 +βt2−1)Pt2−1 +
(αt3+1 + βt3)Pt3 + . . . + (αt4 + βt4−1)Pt4−1 + . . . + (αtm + βtm−1)Ptm−1 and
X = ∆(C) − α. Thus the sign of ∆(C) corresponding to two challenge inputs
C, C̃ will be same if and only if | αX | < 1. Hence the output bits corresponding

two inputs C and C̃ will be same if and only if | αX | < 1.

As αi, βi ∼ N (0, σ), the quantity α will follow N (0, σα) and X will fol-
low N (0, σX), where σα = σ

√
2[(t2 − t1) + (t4 − t3) + ...+ (tm − tm−1)] and

σX = σ
√

2n− 2[(t2 − t1) + (t4 − t3) + ...+ (tm − tm−1)]. The probability den-

sity functions of α and X will be fα(y) = 1√
2πσα

e
− y2

2σ2α , −∞ < y < ∞ and

fX(y) = 1√
2πσX

e
− y2

2σ2
X , −∞ < y < ∞ respectively. Now we consider Y1 = α

X

and Y2 = X. So α = Y1Y2. The joint distribution of α,X will be fα,X(α, x) =

1
2πσασX

e
−
(
α2

2σ2α
+ x2

2σ2
X

)
. Similarly, the joint distribution of Y1, Y2 will be fY1,Y2

(y1, y2) =

1
2πσασX

e
−
(
y21y

2
2

2σ2α
+

y22
2σ2
X

)
y2, where −∞ < y1, y2 <∞. The distribution of Y1 will be

fY1(y1) =
∞∫
−∞

fY1,Y2(y1, y2)dy2 =
∞∫
−∞

1
2πσασX

e
−
(
y21y

2
2

2σ2α
+

y22
2σ2
X

)
y2dy2 = 1

π

σα
σX

y21+
(
σα
σX

)2 ,

where −∞ < y1 <∞.

We already know that the output bits corresponding to the two inputs C
and C̃ will be the same if and only if | αX | < 1. To calculate Pr[| αX | < 1] we need
to calculate Pr[|Y1| < 1].

Pr[|Y1| < 1] =
∣∣∣ 1∫
−1

1

π

σα
σX

y21 +
(
σα
σX

)2 dy1∣∣∣



=
1

π

∣∣∣{tan−1
( 1
σα
σX

)
− tan−1

(−1
σα
σX

)
}
∣∣∣

= 1− 2

π
tan−1

( σα
σX

)
= 1− 2

π
tan−1

(√ (t2 − t1) + (t4 − t3) + ...+ (tm − tm−1)

n− [(t2 − t1) + (t4 − t3) + ...+ (tm − tm−1)]

)
= 1− 2

π
tan−1

√
t

n− t
.

Here t = (t2 − t1) + (t4 − t3) + · · · + (tm − tm−1). Note that we have selected
two distinct challenge inputs C, C̃ from En,k with the condition that C and

C̃ must differ at location t1. Without loss of generality, we can assume that
t1-th location of C has −1 and t1-th location of C̃ has 1. Let S1 = {x | x ∈
En,k and t1-th location of x has − 1}, S2 = {x | x ∈ En,k and t1-th location

of x has 1}. That is C ∈ S1, C̃ ∈ S2 and we have already noted |S1| =
(
n−1
k−1
)
,

|S2| =
(
n−1
k

)
. If we consider the average probability for all choices of C ∈ S1

and C̃ ∈ S2 then we will get the expectation of AEn,kf , where f is an n-length
Arbiter PUF chosen uniformly at random. Hence,

Expectation of AEn,kf =
1(

n−1
k

)
×
(
n−1
k−1
) × ∑

C∈S1

∑
C̃∈S2

[
1− 2

π
tan−1

√
t

n− t

]

= 1− 1(
n−1
k

)
×
(
n−1
k−1
) × ∑

C∈S1

∑
C̃∈S2

[ 2

π
tan−1

√
t

n− t

]
.

We further simplify this. For every pair of inputs C ∈ S1 and C̃ ∈ S2,

one can compute (1 − 2
π tan−1

√
t

n−t ) as follows. Note that for every value

of t, tan−1
√

t
n−t and tan−1

√
n−t
t both term will occur in the summation∑

C∈S1

∑
C̃∈S2

2
π tan−1

√
t

n−t . That means the above summation will contain tan−1
√
x+

tan−1
√

1
x = π

2 , for different values of x. As there are total
(
n−1
k

)
×
(
n−1
k−1
)

terms

in the summation, the final expectation of AEn,kf will be equal to 1
2 for f ∈ BPUFn .

This completes our proof. ut
Let us provide an example with n = 9 and k = 4, i.e., |En,k| = 126. Hence

|S1| =
(
8
3

)
= 56 and |S2| =

(
8
4

)
= 70. Let Ti = {(C, C̃) ∈ S1 × S2 : t = i}. It can

be checked that |Ti| = |Tn−i|, for i = 1, . . . , 8. In E9,4, |T1| = |T8| = 35, i.e., there

are 35 pair of inputs (C, C̃) ∈ S1 × S2, for which t = 1 and another different 35

pairs of inputs (C, C̃) ∈ S1 × S2, for which t = 8. If we add (1− 2
π tan−1

√
t

n−t )

for all these 70 pairs of distinct inputs, the final value becomes 35. Similarly
|T2| = |T7| = 215, |T3| = |T6| = 635 and |T4| = |T5| = 1075. Hence the final
expectation becomes 1

8C3×8C4
× [35 + 215 + 635 + 1075] = 1

2 .



From the result of Theorem 3 it can be observed that if the challenge pairs
are chosen with certain restrictions related to the input weights, then there does
not exist any bias in the output of the Arbiter PUF. Thus in such restricted
scenarios, such simple models of physically unclonable devices might provide
acceptable cryptographic parameters.

In a related note, it has been shown [15] that certain cryptographic prop-
erties related to the Walsh spectrum of a Boolean function degrades in the
restricted domain. Here we show that in the case of Arbiter PUFs, certain kind
of autocorrelation property in a restricted sense, improves. The proposed no-
tion of restricted autocorrelation might be explored for analyzing the security of
FLIP [13] type ciphers under differential attack or related key attack.

4 Conclusion

In this paper, we have studied certain limitations of Arbiter PUFs and shown
that the class of Boolean functions constructed using n-length (n > 1) PUFs is
a proper subset of the set of all n variable Boolean functions. It is shown that
exhaustively varying the delay parameters, the n-length Arbiter PUFs can only
generate a negligible portion of Boolean functions. We present several existence
and non-existence results in this direction. Further we have looked at autocorre-
lation in certain restricted sense and presented relevant results in this direction.
It is known that the autocorrelation property of Boolean functions generated out
of Arbiter PUFs is quite biased in certain cases. Interestingly, here we note that
under certain constrains on the weights of inputs, along with the difference in
a specific input bit, such biases vanish. That is, such a simple model of Arbiter
PUFs provide good cryptographic parameters in terms of differential analysis if
certain restrictions on the input challenge pairs are imposed.
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