XDIVINSA: eXtended DIVersifying INStruction
Agent to Mitigate Power Side-Channel Leakage

Thinh H. Pham!, Ben Marshall', Alexander Fell?, Siew-Kei Lam and Daniel Page'

! Department of Computer Science, University of Bristol,
{th.pham, ben.marshall, daniel.page}@bristol.ac.uk
2 Barcelona Supercomputing Center, Spain,
alexander.fell@bsc.es
3 Nanyang Technological University, Singapore,
assklam@ntu.edu.sg

Abstract. Side-channel analysis (SCA) attacks pose a major threat to embedded systems due
to their ease of accessibility. Realising SCA resilient cryptographic algorithms on embedded
systems under tight intrinsic constraints, such as low area cost, limited computational ability, etc.,
is extremely challenging and often not possible. We propose a seamless and effective approach
to realise a generic countermeasure against SCA attacks. XDIVINSA, an extended diversifying
instruction agent, is introduced to realise the countermeasure at the microarchitecture level
based on the combining concept of diversified instruction set extension (ISE) and hardware
diversification. XDIVINSA is developed as a lightweight co-processor that is tightly coupled with
aRISC-V processor. The proposed method can be applied to various algorithms without the need
for software developers to undertake substantial design efforts hardening their implementations
against SCA. XDIVINSA has been implemented on the SASEBO G-III board which hosts a
Kintex-7 XC7K160T FPGA device for SCA mitigation evaluation. Experimental results based
on non-specific t-statistic tests show that our solution can achieve leakage mitigation on the
power side channel of different cryptographic kernels, i.e., Speck, ChaCha20, AES, and RSA
with an acceptable performance overhead compared to existing countermeasures.

Keywords: Side-Channel Attack, Hiding, Hardware Diversification, Instruction Set Extension,
RISC-V

1 Introduction

Embedded systems have become an integral part of modern lives, and hence it is essential that they
are secure. Although cryptosystems implemented on embedded systems have been mathemati-
cally proven to be secure, they can be deployed in unforeseen adversarial settings and could be
vulnerable to physical attacks that exploit side-channel information, such as execution time, power
consumption, electromagnetic emission, etc. In 1999, Kocher et al. presented power side-channel
attacks to reveal sensitive information by analysing the power consumption measurements [1].
The power side-channel attacks are typically categorised into two types of attacks: Simple Power
Analysis (SPA) and Differential Power Analysis (DPA). SPA can reveal sensitive information
by observing the power consumption of one single execution of a cryptographic algorithm. In
contrast, DPA extracts sensitive information by statistically analysing a large number of power
measurements on the same algorithm with different inputs.

Masking and hiding are two widely used countermeasures against power side-channel attacks.
Masking countermeasures merge the sensitive information with random shares which are unknown
to the attacker, while hiding countermeasures reduce the signal-to-noise ratio of leakage information
in observation traces [2]. Hiding countermeasures has a lower implementation and performance
cost compared to masking alternatives, but it takes a toll on security [3]. A common way to

mailto:{th.pham,ben.marshall,daniel.page}@bristol.ac.uk
mailto:alexander.fell@bsc.es
mailto:assklam@ntu.edu.sg

XDIVINSA: eXtended DIVersifying INStruction Agent to Mitigate Power Side-Channel Leakage

perform hiding is to use random delays in embedded software to desynchronise side-channel traces.
Hiding is not able to prevent an SCA attack completely, yet renders the attack more complex
and time-consuming to the point where it is no longer practical [4]. Moreover, there is generally
accepted intuition that side-channel resistance requires the combination of several countermeasures
in order to be effective [5]. For example, combination of masking with time randomization is a
promising method against SCA attacks.

In this work, we investigate the application of hardware diversification and diversifying instruc-
tions to harden cryptographic software on an embedded system against SCA attacks. The approach
aims at a countermeasure that is transparent to software developers and requires no substantially
algorithm-specific change nor experience to implement the countermeasure. Therefore, the coun-
termeasure is able to integrate straightforwardly into other techniques to constitute a multi-layer
countermeasure. The main contributions of this paper are as follows:

1. We propose a novel SCA countermeasure which relies on hardware diversification and hiding
techniques. Rather than improving the security of hiding techniques, we focus on delivering
a generic and “drop in” countermeasure which avoids substantial changes in both hardware
and software, hence, minimise overhead incurred to provide an acceptable security level.

2. An approach combining ISE and diversification concepts is introduced. Diversified ISEs
are defined with the same logical function as primitive instructions. This enables the
countermeasure to be seamlessly applied to existing cryptographic algorithms to facilitate
SCA-hardened realisation without incurring an additional cost in code density and memory
footprint, nor re-designing the algorithms.

3. The proposed countermeasure employs a non-invasive approach that avoids negative effects
on non-security critical applications and causes only a marginal increase in hardware.

4. An empirical SCA evaluation on widely used cryptographic algorithms is conducted. The
measurements show that the proposed method reduces power side-channel leakage below
the thresholds and can mitigate actual SCA attacks against AES encryption.

The paper is organized as follows: Section 2 discusses related countermeasures and power
analysis attacks, while XDIVINSA is presented in Section 3. In Section 4, we provide a detailed
discussion of the experimental evaluation and Section 5 concludes the paper. Moreover, the source
code of the proposed method is available at https://github.com/scarv/xdivinsa.

2 Related Work

A hiding countermeasure can be generally realised on time dimension and/or amplitude dimension.
The former can improve the robustness of cryptographic algorithms against both power analysis and
timing-based attacks. Random delays in software are commonly used in the hiding countermeasure
against SCA and fault attacks in embedded devices. There are extensive studies on generating
various random delay distributions to increase the difficulty against SCA attacks [3, 4]. Due to
the fact that a processor is usually idle during the random delay, these countermeasures are still
vulnerable to enhanced SCA attacks, namely Sliding Window DPA [6], and elastic alignment based
DPA [7]. The works in [2] showed that runtime code polymorphism [8] is more robust against the
enhanced SCA attacks compared to inserting delays based on random dummy loops. The code
polymorphism countermeasure uses techniques that involve instruction shuffling, randomly select-
ing instructions, and inserting noise instructions to generate executed code at runtime. However,
runtime code generation and inserting additional redundant instructions incur a large performance
overhead in embedded processors.

Hardware solutions of SCA-resistant processors can provide a more generic countermeasure
for different cryptographic algorithms. However, existing hardware solutions usually require
substantial changes to the processor architecture that impacts all programs running on the processor

Thinh H. Pham, Ben Marshall, Alexander Fell, Siew-Kei Lam and Daniel Page 3

and also induce performance overhead on non-security critical programs. A hardware-based
instruction shuffler was proposed in [12] to shuffle independent instructions randomly for protection
against side-channel attacks. However, the effect of this countermeasure is dependent on the
implementation of the algorithm software. In addition, a secure processor which can protect
against side-channel attacks using masking and hiding techniques was proposed in [13]. Besides an
independent data path to implement the masking scheme, a pipeline randomizer is introduced to add
non-deterministic dummy control and data signals to the processor data path. The authors in [14]
presented an SCA-resistant embedded processor based on masking and DPA-resistant logic styles.
These approaches result in a significant increase in hardware usage. Interestingly, a hardware-based
non-invasive approach was presented in [11]. This countermeasure avoids substantial changes
to a processor architecture and effectively reduces timing side-channel leakage. However, the
evaluation in this work is solely performed on execution time measurements. The method is based
on naive insertion of a delay after performing the operation. Since the operation is executed at the
beginning of execution period, a successful side channel attack could be realized by measuring
the power/energy consumption during this time. Hence, the countermeasure is still vulnerable to
power side-channel attacks. Table 1 summarises the comparison between countermeasures realised
on time dimension. Invasive and non-invasive hardware-based countermeasures refer to those that
either require substantial modifications on a base processor’s microarchitecture or not.

3 Proposed Solution
3.1 XDIVINSA

A hardened processor is studied based on a soft RISC-V processor. Basic approaches to integrate
a hardware supported countermeasure into a processor can be invasive or non-invasive. The
former can achieve low area cost but induces substantial changes in hardware and depends on
a specific microarchitecture. The latter can be implemented in isolated hardware modules (i.e.,
dedicated IP modules) which can be micro-architecture independent but induce higher area cost
and longer latency to access data compared to the former. Our proposed method can be viewed as
a non-invasive alternative to provide a drop-in solution which is independent of the soft processor
implementation. We introduce XDIVINSA as a co-processor which is tightly coupled with the soft
processor as shown in Fig. 1. There is no additional changes to the processor microarchitecture
except for the need of a co-processor interface which is assumed to be available in the soft processor.
The tightly coupling with the processor enables XDIVINSA to effectively get the source registers,
stall the entire processor, and write back the result to the destination register through the co-
processor interface. Importantly, the presence of XDIVINSA does not cause negative effects on
the soft processor micro-architectural performance (i.e., reducing maximum clock rate). Therefore,
the countermeasure does not affect other normal (non-security critical) applications running on the
processor.

An ISE executed by XDIVINSA, called the diversified ISE, is introduced to diversify a subset

Table 1: Comparison of countermeasures on time dimension.

Methods Side Channel Software based Hardware based
invasivenon-invasive

[3, 4] power dummy loops

[8] power shuffling, noise instr.

[9, 10] power enhancing algorithms

[11] time v
[12, 13] power v

This work ~ power v

KDIVINSA: eXtended DIVersifying INStruction Agent to Mitigate Power Side-Channel Leakage

XDIVINSA
Comand
@) Interface
59
=0
RISC-V ®3
a0
Processor | & @
: ¢
e j‘ RBG
- Response| .
Interface
Control Unit
Timer

Figure 1: Hardware Diversification on XDIVINSA.

of the arithmetic/logic instructions. We opt for the Addition and Xor instructions because these in-
structions are commonly used in integer-number-based (e.g., RSA) or finite-field-based (e.g., AES)
cryptography, respectively, to handle critical data. It is worth noting that the RSA cryptosystem
works on large integer number computation that requires both Addition and Multiplication instruc-
tions. We select diversifying the Addition instruction in favour of low area cost. The diversification
of executing ISE can typically be implemented in hardware by using multiple versions of the same
operation. However, this approach incurs a considerable hardware consumption to implement
multiple versions of the operation. Instead, XDIVINSA relies on hiding technique mechanisms
to implement diversification on the time dimension. That can reduce the leakage with lower cost
compared to the previous alternative. Indeed, only one execution unit is implemented inside the
Extended ALU (XALU) for each ISE instruction. Every time the instruction is executed, a different
delay duration is inserted before and after instruction operation. With this, the measurements
of power traces are desynchronised, therefore reducing the leakage observed. In addition, the
hardware could also perform other countermeasures, i.e., inserting dummy operations. In this
countermeasure, XDIVINSA executes dummy operations on 32-bit random operands during the
delay durations resulting in different power profiles of the ISE. Doing so helps to raise the difficulty
for an attack templating the diversified ISEs.

To enable different execution times of the ISE, the Control Unit loads random bits into a
countdown timer to generate the random duration. A larger range for the random duration results in
a better de-synchronisation (i.e., more security). However, this also culminates in a longer overall
execution time. We define a diversification level L to specify the number of diversifying profiles
in time (n = 2) wherein the execution duration are varied in the range from 1 to n clock cycles.
Therefore, the level is equivalent to the number of random bits required to represent the random
duration. As our countermeasure requires a relatively small L to achieve the expected leakage
mitigation, we empirically choose to support the diversification levels upto 8 that equivalently
requires 8 random bits. The opt signal determines the operation to be executed on XALU and
also allows a developer to set an appropriate diversification level as a trade-off between channel
leakage and execution time. During the random duration, dummy operations are calculated on
32-bit random numbers. In the middle of the random duration, the Control Unit releases the actual
operands (rs/, rs2) from the registers, and latches the result. After the random duration expiration,
the valid signal is set to indicate the completion of the operation on XDIVINSA and the valid result
is passed to the processor core (refer to Fig. 1). The core is then allowed to continue its execution.

Thinh H. Pham, Ben Marshall, Alexander Fell, Siew-Kei Lam and Daniel Page 5

(1
reset RBG
clk L
3 Ppseudo
ffeedt;gck —] 32-bit shift register random
r uncton > number
() =
L) S
L A s true
] L>| O |——s> random
. . >,] .
ES-TRNG |—{Parity Filter H—- Q bits
>
s 5
\

J
Figure 2: FPGA-based Implementation of the RBG.

3.2 Random Bit Generation (RBG)

There are two basic types of random number generators, Pseudo Random Number Generator
(PRNG) and True Random Number Generator (TRNG). The former generates random number
sequences using a deterministic algorithm according to initial numbers, called seeds. The random-
ness of the seeds can be governed by a non-deterministic input to obtain the unpredictability of
PRNG. The latter has an indeterministic property, required by cryptographic applications, and is
based on physical sources such as thermal noise. It normally induces a higher area cost and longer
latency for generating large number of random bits compared to PRNG. Practically, in some current
embedded processor systems, a TRNG and/or PRNG in available. In this case, our XDIVINSA
can reuse these built-in random sources from outside through some inputs for its RBG. Since the
basic RISC-V processor lacks random sources, we need to implement an RBG for XDIVINSA.

The RBG generates 8 random bits to define the random execution time and 32-bit random
operands for dummy operations. The random duration of the execution is critical for hiding
techniques. Hence, high-quality randomness is needed. Moreover, the generation of random
duration requires relatively few random bits (i.e., 8 bits) and low throughput. Therefore, we
implement a true random generator for the 8 random bits. The dummy operations require 32-bit
random numbers with high throughput (i.e., one number per clock cycle) during the random
execution time. Therefore, a PRNG is implemented for this function to focus on area overhead and
throughput over the randomness quality. Fig. 2 shows the implementation of our RBG.

There are many TRNG designs for FPGA platforms in the literature which either use timing
jitter [15, 16] or metastability [17] as a noise source. We implemented our true RBG (TRBG)
based on ES-TRNG [15] which relies on timing jitter of ring oscillators implemented on the FPGA
fabric. ES-TRNG is designed to generate one single raw random bit. To enhance statistical and
security characteristics of the ES-TRNG, a third-order parity filter is used for post-processing
the raw random bit. This implementation is certified to pass the NIST SP 800-22 statistical test
suites [18] and is compliant with the AIS-31 standard [19]. To produce multiple random bits, apart
from generating each bit sequentially, an alternative is to generate them in parallel. This approach
results in a considerable area cost, but has an increased throughput and reduces the correlation
between the bits. Our TRBG is practically implemented with four 1-bit ES-TRNGs in parallel and
one shift register. The shift register sequentially concatenates 4 random bits to generate 8 random
bits.

For the PRNG, a simple 32-bit linear feedback shift register (LFSR) is used. The LFSR can
generate the maximum length sequence of 232 — 1 numbers. The selection of a feedback function
determines the maximum length pseudo random sequence and the appropriate function described
in [20] is used. The LFSR is updated every clock cycle, and the state cannot be accessed by the soft
processor. Although the PRNG could produce uniform random numbers, the output is deterministic

KDIVINSA: eXtended DIVersifying INStruction Agent to Mitigate Power Side-Channel Leakage

and can be exploited by attackers. An input from our true TRBG seeds non-deterministic values to
the PRNG to enhance its security.

3.3 ISE

31 30 29 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 121110 9 8 7 6 5 4 3 2 1 0

’d| L |fun| rs2 | rsl |lll| rd |OOOlOll

Figure 3: Encoding of a custom RISC-V instruction for the diversified ISE.

We realise the diversified ISE using the custom-0 encoding space [21], which is reserved
for custom instructions. Specifically, the ISE is encoded per Fig. 3. The d bit is set to specify
the diversified ISE. L and fun (3 bits for each) determine the diversification level and operation,
respectively, for the ISE. fun can be assigned to 0, 1, and 2 to perform diversified Addition,
diversified Xor and RBG reading, respectively. The other values of fun are reserved. 5-bit rd, rl
and r2 are encoded for the destination, the first and the second source registers, respectively, in the
processor’s register file. Three bits, 12, 13, 14, are set to enable the processor to fetch two source
registers and write the computed result back to the destination register.

3.4 Instruction Substitution

Since the function of the diversified ISE is equivalent to the function of the corresponding normal
instruction, the presence of the ISE can be abstracted from algorithm implementation at software
level. Realising an SCA countermeasure for a cryptographic algorithm using the proposed method
can be straightforwardly done in an automatic manner through an instruction substitution sequence
as follows: Firstly, a cryptographic implementation is compiled into assembly codes. Then, a
script (i.e., python) is employed to substitute the normal instructions in the assembly codes by the
corresponding diversified ISE. Finally, the revised codes are compiled and linked to an executable
file by using a customised binary tool (i.e., GNU Binutils). The customised tool is modified from
RISC-V GNU Binutils to support the diversified ISE. This approach avoids incurring any cost
in software, and relieve developers from the need to implement cryptographic algorithms in a
new language or with side-channel security considerations. Currently, the substitution uses a
naive find-and-replace mechanism. In future work, the substitution will be investigated with other
objective functions (e.g., to reduce execution time and to increase obfuscation level).

3.5 Implementation on FPGA

We employ Xilinx Vivado 2019.1 to implement the evaluated systems on Kintex-7 XC7K160T
FPGA device; default synthesis settings are used, with no effort invested in synthesis or post-
implementation optimisation. In this work, we investigate the integration of XDIVINSA for
two different and popular RISC-V processor core’s implementations: a) Rocket Chip for a high-
performance profile and b) PicoRV32 for a low-cost profile. Both of them explicitly support a
similar co-processor interface. Table 2 reports the hardware resource utilization of XDIVINSA
and RBG compared to the typical Rocket Chip and PicoRV processor. The RBG uses 96 slices,
consisting of 15 slides for PRNG and 81 slides for TRBG, which are more than double of that
consumed by XDIVINSA. The implementation of XDIVINSA consumes only 39 slices. The
slices used by both XDIVINSA and RBG occupy only 3.9% of the total slices of the entire Rocket
Chip system. For the low-area profile system, the number of slices used by XDIVINSA and RBG
accounts for 16.7% of the total slices of the PicoRV system.

Thinh H. Pham, Ben Marshall, Alexander Fell, Siew-Kei Lam and Daniel Page 7

Table 2: Hardware Resource Utilization.
XDIVINSA PRNG TRBG Rocket Chip PicoRV

Slices 39 15 81 3486 809
DSPs 0 0 0 8 0

4 Experimental Evaluation

4.1 Experimental Setup

The proposed solution has been implemented and evaluated on SASEBO G-III (i.e., SAKURA-X)
board [22]. The setup consists of four main components, i.e., the host computer, SAKURA-X board,
amplifier, and PicoScope. The host computer interfaces to the SAKURA-X board via a USB-UART
connection to provide data input and commands to the system on the board being evaluated. The
secured soft processor is implemented on the cryptographic FPGA device of SAKURA-X. The
board has a connector to a passive probe for measuring the consumed power of the FPGA device.
The power signals probed from the SAKURA-X board is fed to an amplifier to enhance the SNR
of measured signals before being passed as inputs to an oscilloscope. The oscilloscope is set to
capture power traces at the sampling rate of 250 MHz. The acquired power traces are sent to the
host computer for leakage analysis.

The executions of the PicoRV32 processor has lower switching noise and, therefore, generates
clearer leakage in power traces (due to its simple architecture and multiple cycle execution)
compared to the Rocket Chip (a 5-stages pipeline processor). Hence, the PicoRV32 processor is
chosen as the worse case for leakage evaluation. The system runs the benchmarks on the secured
32-bit PicoRV processor core with a system clock of 50 MHz.

4.2 Benchmark Functions

Power side-channel leakage mitigation is evaluated with a set of cryptographic kernels. Our
benchmark includes widely used cryptographic kernels as follows:

1. Speck is an (Addition-Rotation-Xor) ARX-based family of lightweight block ciphers [23].
Speck-64/128, referring to the variant of Speck characterized by a 64-bit block, a 128-bit
key, and 27 rounds, is investigated in our evaluation. The round function of Speck-64/128
uses only bitwise Xor, modular addition, and rotations. The Speck encryption function is
included in our benchmarks.

2. ChaCha20, an ARX based stream cipher, is deployed in many application domains [24].
This kind of cipher is easy to protect against timing side-channel attacks. However, other
side-channel protections, i.e., power or EM are very costly. The Chacha20 block function is
included in our benchmarks.

3. The Advanced Encryption Standard (AES), original name Rijndael, was standardised by
the National Institute of Standards and Technology in 2001 [25]. AES-128, referring to a
128-bit key variant, encryption function is implemented using pre-computed S-box for our
benchmarks.

4. Modular exponentiation (modExp) function used in RSA cryptosystem to encrypt or decrypt
a message [26] is also included in the benchmarks. The modExp function is straightfor-
wardly implemented using the square-multiply algorithm with long integer numbers. We
apply the Coarsely Integrated Operand Scanning (CIOS) Montgomery algorithm [27] (i.e.,
Montgomery reduction and Montgomery multiplication) for modExp calculation.

XDIVINSA: eXtended DIVersifying INStruction Agent to Mitigate Power Side-Channel Leakage

(a) Normal Addition Instruction

6 r6
N — t-value power trace
4 4 ;
v 2 2 %
2 | ‘
AT \ WMt o 8
) -2
£
-4 -4 ©
-6 r—6
0 20 40 60 80 100 120 140
(b) XDIVINSA Addition Instruction with L = 1
6 r6
4 4
2 2 E
ER o 2
E I "w\f\/ W/V"V’\A/ l {\,J W,\f\,ww"r \JI\IVJV\ _2%
-4 -4 %
A |
-6 r—6
0 20 40 60 80 100 120 140
(c) XDIVINSA Addition Instruction with L = 2
6 r6
4 4 s
g 2 M A AN L2 s
o NIV A sV s
) —2§
-4 -4 ©
-6 r—6

0 20 40 60 80 100 120 140
Sample Index

Figure 4: Non-specific leakage detection test on Addition instructions.

4.3 Evaluation Results

In order to evaluate and verify leakage mitigation, a range of methodologies exist: Side-channel
Vulnerability Factor [28], Signal Available to Attacker [29], and the Welch’s t-test [30] based Test
Vector Leakage Assessment [31], can, for example, be used to assess whether leakage occurs in
the power traces. A main advantage of such approaches is their non-specific nature, which helps
to abstract the evaluation of leakage mitigation countermeasures from performing a battery of
side-channel attacks. We adopt fixed versus random t-tests for evaluating the leakage. The two
sets of measurements are employed to calculate t-test statistics. If the t-test values are greater than
the threshold 7' = 4.5, the null hypothesis “the implementation has no leakage” is rejected with
the confidence < 99.999%. Otherwise, it corroborates that the information leakage on power side
channel of the measurements is not distinguishable. The leakage evaluations are performed with
two detail levels: a) a fine level shows the leakage detection on the power traces of a diversified
instruction. At this level, it can be clearly seen how the countermeasure reduces the leakage. b)
a coarse level illustrates the observed leakage of each benchmark function. It provides a leakage
detection on very long traces to evaluate the leakage mitigation results of the countermeasure
compared to the unprotected versions.

Fig. 4 and Fig. 5 show the leakage detection of the Addition and Xor instructions, respectively.

Thinh H. Pham, Ben Marshall, Alexander Fell, Siew-Kei Lam and Daniel Page

t-value

t-value

t-value

t-value

(a) Normal Xor Instruction

o N B O

— t-value power trace
\ Y A /WN“\MMMM
AVAVASN l Whv §
\
0 20 40 60 80 100 120 140

(b) XDIVINSA Xor Instruction with L =1

0 20 40 60 80 100 120 140
(c) XDIVINSA Xor Instruction with L = 2

NTRUN MWWW\,AN'\M A

0 20 40 60 80 100 120 140
(d) XDIVINSA Xor Instruction with L = 3

\/\Jv\/\-w‘W\/\/\/v'\/VNNWW\/\M

0 20 40 60 80 100 120 140
Sample Index

Figure 5: Non-specific leakage detection test on Xor instructions.

L
amplitude (mV)

amplitude (mV)

|
N

amplitude (mV)

|
N

amplitude (mV)

[
o AN

KDIVINSA: eXtended DIVersifying INStruction Agent to Mitigate Power Side-Channel Leakage

The figures illustrate the power trace average and the t-test results of normal instructions and
diversified ISEs with different levels L running on the evaluated system with a PicoRV core.
Two red horizontal lines on the t-value sub-figures denote the threshold 7" = 44.5. If the t-test
values are below the threshold, it corroborates that the information leakage on the power traces
is not distinguishable. NOP instructions are inserted before and after the evaluated instructions
to isolate their leakage. We collect 100,000 power traces for each t-test evaluation. As can be
observed, the normal instruction clearly expose leakage on t-value traces. Interestingly, the effect of
diversifying execution in time before performing instructions’ operation in the XDIVINSA flattens
the amplitude peaks in the average power trace, equivalently spreads and reduces the leakage
in t-value traces. Larger spreading diversification (i.e., larger L) makes the leakage smaller and
spreading wider. The leakage of the diversified Addition and Xor instructions of which L is set
greater than 2 and 3, respectively, is below the threshold.

Fig. 6 shows the results of the proposed countermeasure applied to the cryptographic kernels
compared to their unprotected implementation. Since collecting very long traces (i.e., greater
than 17,000, 60,000, 70,000, and 170,000 samples per trace for Speck, Chacha20, AES, and RSA,
respectively) leads to a large memory required and longer acquisition and processing time, the
number of traces collected for each t-test evaluation is set to 10,000 traces. In each benchmark, the
plot above shows the t- test trace of the unprotected version, while the plot below represents the
protected version with XDIVINSA. The leakage can be clearly seen in the unprotected t-test traces.
The leakage of the protected versions is reduced below the threshold at different L levels (i.e., 3, 3,
3, and 4 for Speck, Chacha20, AES, and RSA, respectively).

4.4 Leakage Recovery and Power Side-Channel Attacks

We evaluate further the security of the countermeasure against actual attacks in terms of the number
of traces required to succeed. Without loss of generality, the AES encryption case study is chosen
for the evaluation. Firstly, a well-known first order correlation-based differential power analysis
attack (CPA), used in [12, 8], is performed against both unprotected and protected implementations.
The Hamming weight is used to estimate the power consumption model. The attack computes the
sample estimation of PearsondAZs correlation coefficients between the measured power traces and
the model for each possible hypothetical value of the involved key part. The hypothetical value
which results in the maximal correlation value is guessed as the key. If the guessed key matches the
correct key, the attack is successful. We choose to target the first-round substitution operation of the
first key-byte because in the countermeasure, this operation has the least protection compared to
that of the subsequence substitutions. Only one diversified ISE is performed before this operations
while an increased number of diversified ISE are executed through the iteration of AES rounds
providing more protection.

Fig. 7.a illustrates the result of the CPA attack on the unprotected implementation. The correct
key clearly distinguishes from all the other hypothetical values as soon as more than 4,000 traces
are used for the attack. This result validates the experimental setup and the choice of the Hamming
weight model targeted operation used in the CPA. Fig. 7.b and 7.c show the results of the CPA
attack on the protected implementation using XDIVINSA with L = 1, and 3, respectively. Even
if XDIVINSA is set with the smallest diversification level, the countermeasure can mitigate the
attack. In case of L = 3, where the leakage is compressed below the threshold, the correlation
value of the correct key is clearly indistinguishable from the values of other keys.

Lastly, we have conducted well-known trace alignment attacks, i.e., sliding window integra-
tion (SWI) [6] and elastic alignment (EA) [7] to recover the leakage hiding by the countermeasure
before performing the CPA. Fig. 8.b and 8.c show the results of the combined attack using SWI and
EA, respectively, on the protected implementation. The sub-figures on the left-hand side present the
result of the countermeasure with L = 1. It can be seen that the SWI attack recovers the leakage
and results in a successful attack with more than 16,000 traces required. The EA attack fails to
have the similar result of the SWI attack. More importantly, when the implementation is protected
with L = 3 shown in the right-hand side sub-figures, both of these attacks are unsuccessful.

Thinh H. Pham, Ben Marshall, Alexander Fell, Siew-Kei Lam and Daniel Page 11

Table 3: Hardware Cost Comparison.

LUTs FFs
Hardware Shuffler [12] 278 131
XDIVINSA 121 76

Table 4: Performance Cost Comparison.
Speck ChaCha AES

Hardware Shuffler [12] - - ~ 1x
Code Polymorphism [8] - - 2.3x
PicoRV-XDIVINSA 1.1x 1.2x 1.1x

4.5 Comparison with existing countermeasures

This sub-section provides the comparison between the proposed method and existing hiding based
countermeasures in terms of area and performance overheads. We considered the 16-blocks
hardware shuffler presented in [32] and the runtime code polymorphism countermeasure in [8] for
comparisons. Table 3 reports the hardware usage of XDIVINSA and the hardware shuffler. The
results listed exclude the overhead of RBG in both implementations. XDIVINSA consumes about
half of the Look-up Tables (LUTs) and Flip-Flops (FFs) compared to the hardware shuffler.

Table 4 reports the performance overhead of the countermeasures. The overhead is represented
by a ratio between the execution time of the protected and unprotected implementations. For the
proposed countermeasure, diversification levels are assigned as in Section 4.3 so that the security
of the countermeasure is satisfied while measuring its performance. The hardware shuffler causes
a negligible performance overhead to protect AES encryptions, while the countermeasure using
XDIVINSA introduces an overhead of 1.1x. The runtime code polymorphism in software has
an overhead of 2.3x for the AES. In addition, the proposed countermeasure also induces small
performance overheads of 1.1x and 1.2x on Speck and Chacha20, respectively. Importantly, the
proposed countermeasure does not induce any overheads of code density and memory footprint,
and avoids requiring changes in software to realise the countermeasure. None of the existing
countermeasures offers these advantages.

5 Conclusion

We have proposed XDIVINSA to harden cryptographic software against SCA attacks. The
proposed solution employs diversified ISE with hardware diversification to provide a hardware-
based countermeasure avoiding modification in software. This enable the software to benefit from
the countermeasures automatically and without user intervention. Experimental results from the
benchmarks consisting of widely used ciphers proved that our solution achieves leakage mitigation
on the power side-channel. The proposed hardware incurs a negligible increased area cost compared
to the base processor. The protected software using our method does not suffer any increase in
terms of code density and memory-footprint but induces a small performance overhead compared
to its unprotected version. We show that the proposed solution is generic and can be applied to
various cryptographic algorithms without requiring any changes to them.

Acknowledgement

This work has been supported in part by EPSRC via grant EP/R012288/1, under the RISE
(http://www.ukrise.org) programme.

KDIVINSA: eXtended DIVersifying INStruction Agent to Mitigate Power Side-Channel Leakage

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in Advances in Cryptology —
CRYPTO’ 99, M. Wiener, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp.
388-397.

K. M. Abdellatif, D. Couroussé, O. Potin, and P. Jaillon, “Filtering-based CPA: A Successful
Side-channel Attack Against Desynchronization Countermeasures,” in Proceedings of the

Fourth Workshop on Cryptography and Security in Computing Systems, ser. CS2 ’17. New
York, NY, USA: ACM, 2017, pp. 29-32.

J.-S. Coron and I. Kizhvatov, “Analysis and Improvement of the Random Delay Counter-
measure of CHES 2009,” in Cryptographic Hardware and Embedded Systems, CHES 2010,
S. Mangard and F.-X. Standaert, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp- 95-109.

M. Tunstall and O. Benoit, “Efficient Use of Random Delays in Embedded Software,” in
Information Security Theory and Practices. Smart Cards, Mobile and Ubiquitous Computing
Systems, D. Sauveron, K. Markantonakis, A. Bilas, and J.-J. Quisquater, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007, pp. 27-38.

F.-X. Standaert, N. Veyrat-Charvillon, E. Oswald, B. Gierlichs, M. Medwed, M. Kasper, and
S. Mangard, “The World Is Not Enough: Another Look on Second-Order DPA,” in Advances
in Cryptology - ASIACRYPT 2010. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp- 112-129.

C. Clavier, J.-S. Coron, and N. Dabbous, “Differential Power Analysis in the Presence of
Hardware Countermeasures,” in Cryptographic Hardware and Embedded Systems — CHES
2000, C. K. Kog and C. Paar, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000,
pp- 252-263.

J. G. J. van Woudenberg, M. F. Witteman, and B. Bakker, “Improving Differential Power
Analysis by Elastic Alignment,” in Topics in Cryptology — CT-RSA 2011, A. Kiayias, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 104-119.

D. Couroussé, T. Barry, B. Robisson, P. Jaillon, O. Potin, and J.-L. Lanet, “Runtime Code
Polymorphism as a Protection Against Side Channel Attacks,” in Information Security Theory
and Practice. Cham: Springer International Publishing, 2016, pp. 136-152.

A. Kiss, J. Kramer, P. Rauzy, and J.-P. Seifert, “Algorithmic Countermeasures Against Fault
Attacks and Power Analysis for RSA-CRT,” in Constructive Side-Channel Analysis and
Secure Design, F.-X. Standaert and E. Oswald, Eds. Springer International Publishing, 2016,
pp- 111-129.

H. Kim, Y. Choi, D. Choi, and J. Ha, “A secure exponentiation algorithm resistant to a
combined attack on rsa implementation,” International Journal of Computer Mathematics,
vol. 93, no. 2, pp. 258-272, 2016.

T. H. Pham, A. Fell, A. K. Biswas, S. Lam, and N. Veeranna, “CIDPro: Custom Instruc-
tions for Dynamic Program Diversification,” in 28th International Conference on Field
Programmable Logic and Applications (FPL), Aug 2018, pp. 224-229.

A. G. Bayrak, N. Velickovic, P. Ienne, and W. Burleson, “An architecture-independent
instruction shuffler to protect against side-channel attacks,” ACM Trans. Archit. Code Optim.,
vol. 8, no. 4, pp. 20:1-20:19, Jan. 2012.

Thinh H. Pham, Ben Marshall, Alexander Fell, Siew-Kei Lam and Daniel Page 13

[13] F. Bruguier, P. Benoit, L. Torres, L. Barthe, M. Bourree, and V. Lomne, “Cost-effective design
strategies for securing embedded processors,” IEEE Transactions on Emerging Topics in
Computing, vol. 4, no. 1, pp. 60-72, Jan 2016.

[14] S. Tillich, M. Kirschbaum, and A. Szekely, “SCA-resistant Embedded Processors: The Next
Generation,” in Proceedings of the 26th Annual Computer Security Applications Conference,
ser. ACSAC ’10. New York, NY, USA: ACM, 2010, pp. 211-220.

[15] B. Yang, V. RoA()ic, M. Grujic, N. Mentens, and 1. Verbauwhede, “ES-TRNG: A High-
throughput, Low-area True Random Number Generator based on Edge Sampling,” JACR
Transactions on Cryptographic Hardware and Embedded Systems, vol. 2018, no. 3, pp.
267-292, 2018.

[16] V. Rozic, B. Yang, W. Dehaene, and I. Verbauwhede, “Highly efficient entropy extraction
for true random number generators on FPGAs,” in 2015 52nd ACM/EDAC/IEEE Design
Automation Conference (DAC), June 2015, pp. 1-6.

[17] I. Vasyltsov, E. Hambardzumyan, Y.-S. Kim, and B. Karpinskyy, “Fast Digital TRNG Based
on Metastable Ring Oscillator,” in Cryptographic Hardware and Embedded Systems — CHES
2008, E. Oswald and P. Rohatgi, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp- 164-180.

[18] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel,
D. Banks, A. Heckert, J. Dray, and S. Vo, “NIST special publication 800-22 revision 1a,”
National Institute of Standards and Technology, 2010.

[19] W. Killmann and W. Schindler, “A Proposal for: Functionality classes for random number
generators,” BSI, Bonn, 2011.

[20] M. George and P. Alfke, “Linear Feedback Shift Registers in Virtex Devices.” [Online].
Available: www.xilinx.com/support/documentation/application_notes/xapp210.pdf

[21] “The RISC-V instruction set manual,” Tech. Rep. Volume I: User-Level ISA (Version
20190608-Base-Ratified), 2019. [Online]. Available: http://riscv.org/specifications/

[22] SAKURA-X, 2013. [Online]. Available: http://www.risec.aist.go.jp/project/sasebo/download/
SASEBO-GIII_Spec_v1_1_English.pdf

[23] R. Beaulieu, S. Treatman-Clark, D. Shors, B. Weeks, J. Smith, and L. Wingers, “The simon
and speck lightweight block ciphers.” IEEE, 2015, pp. 1-6.

[24] D.J. Bernstein, “Chacha, a variant of salsa20,” in Workshop Record of SASC: The State of the
Art of Stream Ciphers, 2008.

[25] NIST, “Announcing the ADVANCED ENCRYPTION STANDARD (AES),” ed-eral Informa-
tion Processing Standards Publication, n. 197, Nov. 26, 2001.

[26] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital Signatures and
Public-key Cryptosystems,” Communications of the ACM, vol. 21, no. 2, pp. 120-126, Feb.
1978.

[27] C. Kaya Koc, T. Acar, and B. S. Kaliski, “Analyzing and comparing Montgomery multiplica-
tion algorithms,” IEEE Micro, vol. 16, no. 3, pp. 26-33, June 1996.

[28] J. Demme, R. Martin, A. Waksman, and S. Sethumadhavan, “Side-channel vulnerability
factor: a metric for measuring information leakage,” in International Symposium on Computer
Architecture (ISCA), 2012, pp. 106—-117.

www.xilinx.com/support/documentation/application_notes/xapp210.pdf
http://riscv.org/specifications/
http://www.risec.aist.go.jp/project/sasebo/download/SASEBO-GIII_Spec_v1_1_English.pdf
http://www.risec.aist.go.jp/project/sasebo/download/SASEBO-GIII_Spec_v1_1_English.pdf

KDIVINSA: eXtended DIVersifying INStruction Agent to Mitigate Power Side-Channel Leakage

[29] R. Callan, A. Zaji¢, and M. Prvulovic, “A practical methodology for measuring the side-
channel signal available to the attacker for instruction-level events,” in IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), 2014, pp. 242-254.

[30] B. Welch, “The generalization of “student’s” problem when several different population
variances are involved,” Biometrika, vol. 34, no. 1-2, pp. 28-35, 1947.

[31] G. Goodwill, B. Jun, J. Jaffe, and P. Rohatgi, “A testing methodology for side-channel
resistance validation,” in NIST non-invasive attack testing workshop, vol. 7, 2011, pp. 115—
136.

[32] W. Diehl, A. Abdulgadir, J.-P. Kaps, and K. Gaj, “Side-channel resistant soft core processor
for lightweight block ciphers.” IEEE, 2017, pp. 1-8.

Thinh H. Pham, Ben Marshall, Alexander Fell, Siew-Kei Lam and Daniel Page 15

(a) Speck
10 4
H\ ‘\ I le | h | ‘M H\ H ‘H “u H\‘ I \“ | ‘ ‘ M“ ’\ il h\
0 4
L L D A
-10 - v v T : : .
0 2000 4000 6000 8000 10000 12000
10
L=3
-10 T T T T . . : :
0 2500 5000 7500 10000 12500 15000 17500

(b) ChaCha20

T MH | LR L

1Y ‘U‘“ IART P ‘W] Wﬂ DR WW | Ty iy H”” In ‘”w’u “ |l|““|\l”\IW”H‘|‘\”'WI‘M‘\‘ll‘l'l‘W‘lNl’l‘

1
hﬂ WMMMMWWkMW M“WWMMNHWMMMLHW“&NM\WMNMMMWHMWWWMMMMMWMMNMM

_yo LT PR AT AT

0 10000 20000 30000 40000 50000 60000 70000

10 3
0 4
o -101— . : : : : : :
E 0 10000 20000 30000 40000 50000 60000 70000
E 10 (c) AES
Im W i H‘llwl I\“HIIWIIN “M"IMWWIW!U'M,NWMIMNIII NI"W]I I II”'IIMI
% uwlthmlmu ‘MMHm%\MMMAmlM
1 M U A A llth A A 0
o 0 10000 20000 30000 40000 50000 60000 70000
O 4
10 0 10000 20000 30000 40000 50000 60000 70000 80000
(d) RSA
10 N
0 R]
U 0 Ao o I
_12 0 25000 50000 75000 100000 125000 150000 175000
L=4
0 4
-10

0 25000 50000 75000 100000 125000 150000 175000

Samples

Figure 6: Leakage detection test on the unprotected version and protected version applied XDI-
VINSA of the cryptoeraphic kernels.

KDIVINSA: eXtended DIVersifying INStruction Agent to Mitigate Power Side-Channel Leakage

(a) Unprotected implementation
0.200

—— other keys
0.175 —— correct key

o o
e
N u
v o

o
=
o
o

o 9o
o o
[N
<INt

Correlation Coefficient

0.025

SN

80000

0.000

40000 60000 100000

(b) Protected implementation using XDIVINSA with L = 1
0

0 20000

—— other keys
0.175 —— correct key

on Coefficient
o
=
u
o

e o ©
o B P
9 o N
o S wu

Correlati
o
o
19,1
o

0.025

0.000 + T |
0 20000 40000 60000 80000 100000

(c) Protected implementation using XDIVINSA with L = 3
0.200

—— other keys
0.175 1 —— correct key

o o o
[e
o N wu
S wu o
L L !

Correlation Coefficient
° ©
o o
u ~
o w

0.025

0.000 +—— T T
0 20000 40000 60000

Number of Traces

80000 100000

Figure 7: Correlation-based differential power analysis attack against both unprotected and pro-
tected implementations.

Thinh H. Pham, Ben Marshall, Alexander Fell, Siew-Kei Lam and Daniel Page 17

(a) Sliding window alignment attacks

0.10 0.10
other keys L=3 other keys

*E' L=1 —— correct key —— correct key
@ 0.08 0.08
=
5
o 0.06 0.06
(@]
c
0 0.04 . 0.04
b=
&
[
£ 0.02) - 0.02
o
O

0.00 + = - -

20000 40000 60000 80000 100000 O 20000 40000 60000 80000 100000
(b) Elastic alignment attacks
0.10 0.10
other keys other keys

*E' L=1 —— correct key L=3 —— correct key
@ 0.08 0.08
=
G
o 0.06 0.06 |
O
c
0 0.04 0.04
=
&
Q N
£ 0.02 : 0.02
o -
O

40000 60000 80000 100000 O 2000 40000 60000 80000 100000
Number of Traces Number of Traces

Figure 8: Combining Leakage Recovery and CPA attacks against the protected implementations.

	Introduction
	Related Work
	Proposed Solution
	XDIVINSA
	Random Bit Generation (RBG)
	ISE
	Instruction Substitution
	Implementation on FPGA

	Experimental Evaluation
	Experimental Setup
	Benchmark Functions
	Evaluation Results
	Leakage Recovery and Power Side-Channel Attacks
	Comparison with existing countermeasures

	Conclusion

