
Lelantus-CLA

Pyrros Chaidos1 and Vladislav Gelfer2

1National & Kapodistrian University of Athens, Greece
pchaidos@di.uoa.gr
2 BEAM Foundation
valdo@beam-mw.com

Abstract

This article presents Lelantus-CLA, an adaptation of Lelantus [Jiv19] for use
with the Mimblewimble protocol and confidential assets. Whereas Mimblewimble
achieves a limited amount of privacy by merging transactions that occur in the same
block, Lelantus uses a logarithmic-size proof of membership to effectively enable
merging across different blocks. At a high level, this allows value to be added to
a common pool and then spent privately, but only once. We explain how to adapt
this construction to Mimblewimble, while at the same time simplifying the protocol
where possible.

Confidential assets is a mechanism that allows multiple currencies to co-exist
in the same ledger and (optionally) enables transactions to be conducted without
disclosing the currency.

Finally, we also describe how we can use Bulletproof “coloring” to enable offline
payments, thus addressing one of the original shortcomings of Mimblewimble.

1 Introduction

In this article we destibe Lelantus-CLA, an adaptation of Lelantus [Jiv19] for use
with the Mimblewimble protocol and confidential assets.

Mimblewimble achieves a limited amount of privacy by merging transactions
that occur in the same block, effectively mixing together all transactions that were
submitted to the same block. This has significant privacy improvements when com-
pared with e.g. Bitcoin in which transactions are individually traceable and mixing
(or tumbling) requires the use of a separate service. However, the degree of privacy
that is offered is limited, and is not under the control of the user. While large blocks
offer better mixing, the user has little way of ensuring that.

Lelantus uses a logarithmic-size proof of membership to effectively enable merg-
ing across different blocks. At a high level, this may be thought of as a large common
pool of value to which individuals can make deposits and withdrawals in private.
The key feature is of course that any particular deposit can only be withdrawn once.
We explain how to adapt this construction to Mimblewimble, while at the same time
simplifying the protocol where possible. We term this construction Lelantus-MW.

1

In Lelantus-CLA, we also add support for confidential assets [PBF+18, ZYD+19]
in an efficient manner by allowing users to hide the asset types used inside transac-
tions whilst enforcing that all types are valid.

At the same time, we also describe how we can use Bulletproof “coloring” to
enable offline payments, thus addressing one of the original shortcomings of Mim-
blewimble. In our context coloring refers to hiding values inside the randomness used
in the construction of zero knowledge proofs. This enables those with knowledge
of the appropriate seed to detect and extract these values. With this functionality
in place, senders can send funds without needing to interact with recipients, as the
recipients are able to extract the necessary information on their own.

1.1 Outline

In Section 2 we give the necessary cryptographic definitions for the core concepts
used in this work. Next, in Section 3 we describe the constructions which use when
designing and implementing Lelantus-MW and Lelantus-CLA. Our choices are well-
studied constructions, requiring limited assumptions.

Before delving into Mimblewimble-MW (Section 5), Section 4 revisits Mim-
blewimble to establish our baseline and better highlight the improvements in our
construction.

In Section 6 we describe support for multiple assets, and introduce Mimblewimble-
CLA which leverages confidential assets [PBF+18, ZYD+19] so that the asset types
used in a transaction may be hidden.

Finally, in 8, we describe the technical details required to conduct transactions
in a meaningful way (i.e ensure privacy and integrity are upheld). This includes the
concept of bulletproof coloring, as well as the notions of tickets and addresses.

2 Preliminaries

2.1 The Discrete Log Setting

Let GGen be an algorithm that on input 1λ returns gk = (G, p, g) such that G is
the description of a finite cyclic group of prime order p, where |p| = λ, and g is a
generator of G.

Definition 1 (Discrete Logarithm Assumption). The discrete logarithm assumption
holds relative to GGen if for all non-uniform polynomial time adversaries A

Pr
[
(G, p, g)← GGen(1λ);h← G; a← A(G, p, g, h) : ga = h

]
≈ 0

2.2 Commitment Schemes

Commitment schemes allows one to commit to a value v without revealing it. We
use Comck(v; r) to refer to a commitment to a value v using randomness r under
a previously determined key ck. A commitment can later be opened to reveal the
value contained. We require that commitments are hiding i.e it must be difficult to
correctly guess the value contained in a commitment given the key and the commit-
ment itself. We also require that commitments are binding i.e. it must be difficult
for a malicious opener to create a commitment and open it to two different values.

2

Definition 2 (Perfectly hiding). We say a non-interactive commitment scheme
(CGen,Com) is perfectly hiding if a commitment does not reveal the committed value.
For all non-uniform polynomial time stateful interactive adversaries A

Pr

[
ck ← CGen(gk); (m0,m1)← A(ck);
b← {0, 1}; c← Com(mb)

: A(c) = b

]
=

1

2

where A outputs m0,m1 ∈ Zp.

Definition 3 (Binding). A non-interactive commitment scheme (CGen,Com) is
computationally binding if a commitment can only be opened to one value. For all
non-uniform polynomial time adversaries A

Pr

[
ck ← CGen(gk);
(m0, r0,m1, r1)← A(ck)

:
Com(m0; r0) = Com(m1; r1)

and m0 6= m1

]
≈ 0

where A outputs m0,m1, r0, r1 ∈ Zp.

2.2.1 Homomorphic Commitments

An important requirement for our application is that they are additively homomor-
phic, that is the sum of two commitments is a commitment to the sum of the values
contained within. We require that the property holds for values and randomisers
alike.

Com(v; r) + Com(v′; r′) = Com(v + v′; r + r′)

2.3 Zero Knowledge Arguments of Knowledge

Let R be a polynomial time decidable binary relation, i.e., a relation that defines a
language in NP. We call w a witness for a statement u if (u,w) ∈ R. We define the
language

LR = {x | ∃w : (u,w) ∈ R}

as the set of statements x that have a witness w in the relation R.
A zero knowledge protocol for an NP-relation R enables a prover to demonstrate

to a verifier that a statement u satisfies u ∈ LR, i.e. that there exists a witness w
such that (u,w) ∈ R without disclosing anything else, in particular not disclosing
the value of w that the prover has in mind.

More formally, a protocol for a relation R w.r.t. a setup gk ← GGen(1λ) and
a common reference string crs is a tuple (CRSGen,P,V). If a common reference
string, crs is used, we assume that the generator, CRSGen(gk) generates it before the
execution of the protocol. As we are interested in statements about commitments,
we additionally consider the commitment key ck, part of the crs. Both gk and crs
are provided as implicit inputs to all algorithms. We consider that the prover P and
the verifier V, are both probabilistic polynomial time interactive algorithms. The
transcript produced by P and V when interacting on inputs s and t is denoted by
tr ← 〈P(s),V(t)〉.

We require that a protocol woks correctly when used by honest participants
(completeness), that it prevents provers from convincing verifiers about a state-
menta unless they know a witness (knowledge soundness), and that it does not leak
information about w (zero-knowledge).

3

Definition 4 (Public coin). A protocol (P,V) is called public coin if the verifier
chooses his messages uniformly at random and independently of the messages sent
by the prover, i.e., the challenges correspond to the verifier’s randomness ρ.

Definition 5 (Perfect completeness). (P,V) has perfect completeness if for all non-
uniform polynomial time adversaries A

Pr
[
(u,w)← A(1λ) : (u,w) 6∈ R or 〈P(x,w),V(x)〉 = 1

]
= 1

Definition 6 (n-Special Soundness). We say that (P,V) is n-special sound [GK15]
if there exists an efficient extractor χ such that for any statement u, given n accepting
transcripts {(a, xi, zi)}ni=1 where the challenges xi are distinct, χ(u, a, xi, zi) outputs
w s.t. (u,w) ∈ R.

For more complex protocols, involving a large number of rounds n-Special Sound-
ness can be hard to obtain so we make use of the related notion of witness-extended
emulation introduced by Lindell [Lin03] as it is used in [GI08, BBB+18]. We refer
the reader to these texts for details.

A protocol is zero-knowledge if it does not leak information about the witness
beyond what can be inferred from the truth of the statement. Special honest verifier
zero-knowledge further specifies that if the verifier’s challenges are known in advance,
then it is possible to simulate the entire argument without knowing the witness.

Definition 7 (Special Honest Verifier Zero-Knowledge (SHVZK)). A public coin
argument (P,V) is called a special honest verifier zero knowledge (SHVZK) argu-
ment for R if there exists a probabilistic polynomial time simulator S such that for
all interactive non-uniform polynomial time adversaries A

Pr
[
(u,w, ρ)← A(1λ); tr ← 〈P(u,w),V(u; ρ)〉 : (u,w) ∈ R and A(tr) = 1

]
≈ Pr

[
(u,w, ρ)← A(1λ); tr ← S(u, ρ) : (u,w) ∈ R and A(tr) = 1

]
where ρ is the public coin randomness used by the verifier.

If this holds also for unbounded adversaries A, we say (P,V) is statistically
special honest verifier zero-knowledge. If the two distributions are equal, then we
say (P,V) is perfect special honest verifier zero-knowledge.

3 Constructions

3.1 Generalised Pedersen Commitments

Pedersen commitments [Ped91] are a widely used homomorphic commitment scheme.
Under the discrete logarithm assumption, Pedersen Commitments are perfectly hid-
ing and computationally binding. In this paper we will also use a variant of the
standard scheme that makes use of two randomisers. We will use r, s to refer to the
randomisers and Com(v, r, s) to refer to the commitments. The key generation and
commitment functions of the pedersen scheme are as follows:

4

CGen(gk) : h, k ← G; Return ck := (g, h, k)

Comck(v, r, s) : Return c = grhvks

Comck(v, r) : Return c = grhv

We point out that Comck(v, r) is functionally identical to Comck(v, r, 0) due to
the structure of the commitment scheme. The (generalised) Pedersen Commitments
are a core component of our construction, so ck is used in defining the protocol re-
lations. It is simple to extend Pedersen commitments to longer bases, by appending
elements to ck. For example let b := {b1, . . . bn} ∈ Gn, the we can use:

Comck,b(v, r, s, v1, . . . , vn) : Return c = grhvksb1
v1 . . . bn

vn

In section 6, we will be making use of commitments a single “asset tags” bi
contained in b. Effectively, we will use bi in the place of h contained in ck. To
simplify notation, we will expand the vector b by considering that b0 = h. More
concretely we write that:

Comck,b,i(v, r, s) : Return c = grbi
vks

We note that Comck,bi(v, r, s) = Comck,b(0, r, s, v1, . . . , vn) when vi = v and
vj = 0 for j 6= i, and Comck,h(v, r, s) = Comck(v, r, s) by identity.

3.1.1 Representing Supply

Before we continue, we will add a simple but useful shorthand to represent value
“in the open” without any serial number or randomness. The Sup terms are deter-
ministic, so we can use them in balance equations to represent value entering the
system e.g. via minting or an initial allocation.

Sup(v) : Return Comck(v, 0)

Supi(v) : Return Comck,b,i(v, 0, 0)

Sup(v, v1, . . . , vn) : Return Comck,b(v, 0, 0, v1, . . . , vn)

3.2 Range Proofs

The additive homomorphic property of Pedersen Commitments is a first step towards
ensuring that sums of values “add up”. However, since the values themselves remain
hidden, we need to enforce that users are unable to enter negative values; otherwise
one might pay $1 for a $5 coffee and receive -$4 as change. Such a transaction would
in principle balance, but in practice the intended recipient of a negative note would

5

simply ignore it1. We thus need to disallow commitments to negative values. We
do this by requiring that committed values lie in a certain range and use a zero
knowledge protocol to enforce that without having to reveal the values.

Bulletproofs Bulletproofs are a general purpose zero knowledge proving system
that can be tailored to perform efficient range proofs. Given a bound vmax, the
original construction from [BCC+15] can be used directly to prove knowledge of a
witness (r, v) for the relation:

Rρ = {(C, b), (r, v) : C = grbv ∧ (0 ≤ v < vmax)}

Bulletproofs require a CRS structured as a Pedersen commitment key:

CRSGenρ(gk) :g1, . . . , gn, h1, . . . , hn ← G, for n = log2 (vmax)

Return crs := (g,h)

In section 5, we slightly modify the protocol to add a second commitment to the
statement:

R′ρ = {(C, b, Ĉ), (r, v) : C = grbv ∧ (0 ≤ v < vmax)}

This is immaterial for the interactive version, but when applying the Fiat-Shamir
transformation, this ensures that a proof can only be verified in relation to Ĉ as well
as C.

Schnor Signatures In our applications we will often need to prove that the
value of certain commitments is exactly zero. While it would be possible to do that
with a range proof with a very restricted range, it is more efficient to do so directly.
We use the term “signatures” as opposed to proofs of zero value due to convention.
We use Schnor signatures to prove knowledge of a witness r for the relation:

Rσ = {C, r : C = gr}

We will later use a generalised version for the relation, which allows for an
arbitrary base b:

Rσb = {(C, b), (r, w) : C = grbw}

This allows us to define relations Rnv and Rns that enable us to prove knowledge
of a commitment’s opening such that it holds zero value or a zero serial number.
We will also make use of it directly in section 6 to handle arbitrary asset tags.

Rnv = {(C, k), (r, s) : C = grks}

We can also use the same protocol with a different base to show that a commit-
ment has a zero in the serial component.

Rns = {(C, h), (r, v) : C = grhv}
1Strictly speaking, a small negative value would be equivalent to a large positive value since arithmetic

happens modulo q.

6

3.3 Logarithmic Membership Proofs

The protocol of Groth and Kohlweiss [GK15], later optimized in [BCC+15] allows
one to prove they know the opening of a single commitment in a set of many without
specifying which one. The size of the proofs is logarithmic in the size of the set
which enables us to be efficient. Assuming a maximum set size of mmax the protocol
requires a common reference string as follows:

The protocol requires2 a CRS with structure similar to a Pedersen commitment
key:

CRSGenm(gk) :g1, . . . , gn ← G, for n = log2 (mmax)

Return csr′ := g

The protocol enables us to reveal a serial number s and prove that a commitment
C contains that serial number, and is contained in set C, as in the following relation:

Rm = {(C, s), r : C = grks ∧ (C ∈ C)}

3.4 The Fiat-Shamir Heuristic

The protocols we describe above operate in multiple rounds which is not practical for
our application. The Fiat-Shamir transformation [FS87] produces a non-interactive
version of a Σ-protocol by substituting the verifier’s challenge with the output of
a cryptographic hash function H : {0, 1}∗ → Zp on the protocol’s statement and
current transcript. The transformation can be proven secure in the random oracle
model [BR93]. The transformation crucially relies in the public coin and HVZK
property of the protocols.

4 Mimblewimble

In this section we briefly describe the original version of Mimblewimble as adapted
from [Jed16]. For simplicity, we omit the discussion of fees, minting and block
structure.

4.1 Transactions

Intuitively, a transaction in Mimblewimble consists of gathering an amount of value
stored in existing notes and re-distributing it in a set of new notes, so that the sums
of value in the old (input) notes and the new (output) notes are equal. This is
augmented by proofs certifying all the new notes are within the allowed range of
values, and by a number of special zero-value notes (kernels) that exist to maintain
privacy.

Formally, a transaction T consists of three lists: T.I,T.O,T.K. The list T.I con-
sists of commitments CI1, CI2, The list T.O consists of tuples (CO1, πO1), (CO2, πO2),
such that COj is a commitment and πOj is a range proof on statement COj , h. The

2In practice, as the structure is identical to the bulletproof crs we are able to reuse after ensuring
the length is set to the maximum of log2 (mmax), log2 (vmax).

7

list of kernels T.K consists of tuples (CK1, σK1), (CK2, σK2), such that CKl is a
commitment and σKl is a signature demonstrating CKl is zero-valued3.

Definition 8. A transaction T = (T.I,T.O,T.K) is valid if:

• The list of commitments T.I is a subset of the current UTXO set.

• For each commitment COj, the corresponding proof πOj is valid for statement
COj , h.

• For each commitment CKl the corresponding signature σKl is valid.

• The the sum of inputs minus the sum of outputs is equal to the sum of zero-
valued commitments:

∑
i CIi −

∑
j COj =

∑
l CKl.

4.2 Merging Transactions

The way transactions are structured is highly conducive to merging: given two
transactions T1 = (T1.I,T1.O,T1.K), T2 = (T2.I,T2.O,T2.K) such that T1.I has no
common elements with T2.I and T1.O has no common elements with T2.O, we can
merge4 them as: TM = (T1.I ∪ T2.I,T1.O ∪ T2.O,T1.K ∪ T2.K). Furthermore, if a
commitment appears in both the input and output lists, it can be deleted (cut) from
both without affecting the sum. With this in mind we arrive at:

TM.I := (T1.I ∪ T2.I) \ (T1.O ∪ T2.O)

TM.O := (T1.O ∪ T2.O) \ (T1.I ∪ T2.I)

TM.K :=T1.K ∪ T2.K

We consider the ledger L as a special transaction with an empty input set. The
output set of the ledger is termed the UTXO set.

UTXO := L.O

The ledger is updated by merging valid transactions onto it. The issue of deciding
which transactions are to be merged and in which order is outside the scope of this
text. When a transaction is accepted by the network, its outputs are added to the
UTXO set, and its inputs deleted from it.

In practice, this can be used to merge all submitted transactions into one trans-
action per block, and subsequently merge all block transactions into a single trans-
action. This practice of merging and cutting can decrease the storage requirements
while still allowing one to fully verify transactions. It also provides a small level of
confidentiality.

4.3 Mimblewimble Anonymity

Due to merging, Mimblewimble blocks contain a single transaction, produced as a
merging of all user-submitted transactions during that time. This can obfuscate the
transaction graph in the view of adversaries with access only to the block-level, but

3In addition, to having 0 value, we are also demonstrating it has 0 serial number, which will be
relevant later.

4We note here that we allow repetitions in the kernel lists.

8

individual transactions will still be distinguishable with regard to adversaries with
access to the network layer: even with the values hidden, “who paid whom” will be
in the clear.

5 Lelantus-MW

While the standard Mimblewimble protocol offers some privacy by obfuscating the
transaction graph in the block level, it has two shortcomings: first, small blocks
offer less obfuscation and second, the layer of obfuscation collapses if the adversary
is able to closely monitor the network. Lelantus offers a design that enables shielded
transactions, i.e. transactions that store or withdraw value from a universal set
without revealing which element they are withdrawing from. This raises the issue
of double-spending: if spent elements are unknown they cannot be removed from
the set, and thus users might attempt to spend them again. This is solved by
adding an extra “serial number” field to the commitments of shielded values. When
a shielded value is being spent the serial number is revealed and checked against a
list of previously-revealed serial numbers. This prevents double spending (due to
the binding property of the commitment scheme), without compromising privacy as
serial numbers are not revealed when shielded values are created.

Given the above discussion, we extend our definition of transactions in two ways:

• We allow shielded inputs. Whereas a transparent input “justifies” its existence
by appearing in the UTXO set, a shielded one is supported by the combination
of a membership proof and a single-use serial number.

• We allow shielded outputs. Whereas transparent outputs simply enter the
UTXO set, shielded ones are combined with an additional masking factor and
added to the STXO set.

Shielded outputs are in part similar to transparent ones: they have a commitment
containing their value and corresponding range proof. To disallow double-spending,
they also need to have a serial number, which is hidden in a second commitment, to
be combined with the first one when added to the STXO set,. Obviously, the second
commitment must carry zero value. Because we wish to exclude serial number
components from entering the balance sum, we need to tie the two commitments
together in some fashion, which we accomplish by adding the second one to the
statement of the range proof.

A shielded output is a tuple (CSO, πSO, ĈSO, σSO) such that:

• CSO is a commitment (i.e a group element)

• πSO is a proof for the relation R′ρ with statement CSO, h, ĈSO (i.e a range

proof counter-signing ĈSO).

• ĈSO is a generalised commitment (i.e a group element)

• σSO is a proof for relation Rnv for statement ĈSOj , k (i.e a proof that ĈSO has
zero value).

The tuple ĈSO, σSO is called a ticket because it can be pre-generated ahead of time
and also because it contains the serial number. To prevent (potentially accidental)
misuse leading to loss of funds we require that tickets are unique. Concretely, we
check that ĈSO has not been used previously.

9

Shielded inputs are different. Like transparent ones, they contain a commitment
carrying value. However, that commitment does not appear (directly) in the STXO
set as that would provide no privacy. The input also provides a group element
which is interpreted as a hash pre-image of the serial number, accompanied with
a signature proving knowledge of the discrete log. The last part of the input is a
membership proof of the combined commitment and serial number in STXO.

A shielded input is a tuple (CSI , σSI , QSI , σ
′
SI , πSI) such that:

• CSI is a commitment (i.e a group element)

• σSI is a proof for relation Rns for statement CSI , h (i.e a proof that CSI has
zero serial number).

• QSI is a group element.

• σ′SI is a proof for relation Rσ for statement QSI (i.e a proof of knowledge for
the log of QSI).

• πSI is a proof for the relation Rm on statement (C, s) where C = STXO
CSI

snd
s = H(QSI)).

With the above changes in mind we are able to adapt Definition 8 as follows:

Definition 9. A transaction T = (T.I,T.SI,T.O,T.SO,T.K) is valid if:

• The list of commitments T.I is a subset of the current UTXO set.

• For each commitment CO ∈ T.O, the corresponding proof πO is valid.

• For each commitment CKl the corresponding signature σKl is valid.

• For each shielded input, (CSI , σSI , QSI , σ
′
SI , πSI) the corresponding proofs,

σSI , σ
′
SI , πSI , are valid, and H(QSI) /∈ USN.

• For each shielded output, (CSO, πSO, ĈSO, σSO) the corresponding proofs πSO, σSO
are valid.

• The the sum of inputs minus the sum of outputs is equal to the sum of zero-
valued commitments:

∑
i CIi +

∑
i′ CSIi′ −

∑
j COj −

∑
j′ CSOj′ =

∑
l CKl.

5.1 The Shielded Set

As with standard Mimblewimble, the non-shielded outputs of the ledger form the
UTXO set. We define the shielded (STXO) set as the list of combined shielded
output commitments in the ledger:

STXO := {CSOi · ĈSOi|(CSO, πSO, ĈSO, σSO) ∈ L.SO}

Items cannot be deleted from the shielded set. In order to disallow double-
spending, we keep a list of used serial numbers:

USN := {H(Q)|(CSI , σSI , QSI , σ′SI , πSI) ∈ L.SI}

10

A note on the Membership Proof Even though the list of shielded outputs
consists of generalised commitments, we observe that given a serial number s and
a commitment C = Com(v; r), we can divide the list by C. Assuming one of the
original list elements has serial number s and value v with some randomness r′, the

corresponding quotient will be Com(v,r′,s)
Com(v,r) = Com(0, r′ − r, s) = Com(0, r′′, s). This

allows us to directly use the membership proof of [GK15, BCC+15] without the need
to adapt them for the generalised commitments.

6 Multiple Assets

In the previous sections we described Lelantus-MW as a single asset system: value
in that asset is represented within a commitmend C in the exponent of h in ck =
(g, h, k). It is however possible to generalize this notion to a set of n additional types
of assets represented by a vector of n random group elements b = {b1 . . . bn} ∈ Gn.
For ease of exposition, we will expand the vector b by considering that b0 = h.

We can thus use Comck,b,i(v, r, s) when committing to values in asset i. For
i = 0, this is equivalent to using Comck(v, r, s).

The descriptions and definitions of section 5 can be made to support these ad-
ditional currencies with few changes. First off, a commitment carrying value is
accompanied with an asset index i, indicating it is related to a single asset bi for
0 ≤ i <= n (this is implicitly true in our existing description of both Mimblewimble
as well as Lelantus-MW). Second, we adapt the range proofs for both shielded and
unshielded outputs to use bi in the place of h in the statement (in the case where
i = 0, this collapses to the previous definition). Third, we adapt the serial number
check for shielded inputs, i.e σSI for relation Rns to use statement (CSI , bi) instead
of (CSI , h). Again, for i = 0 this is identical to the initial definition.

For b sampled via a random oracle, the binding property of Pedersen commit-
ments ensures that there exists no efficient adversary who is able to interpret a
commitment with non-zero value over bi as one over bj for i 6= j. While this ex-
tension is concise and maintains separation amongst different assets, it offers no
improvement in privacy compared to the alternative of n + 1 single-asset systems
operating independently. It does however enable higher-level protocols that can fa-
cilitate exchange of values between assets in a more efficient way than what would
be possible for separate systems.

6.1 Confidential Assets

The concept of confidential assets [PBF+18, ZYD+19] is a natural addition to multi-
ple asset support: instead of stating the asset(s) of our commitments before proving
their validity, we would prefer to prove their validity without stating the asset. The
solution given in [PBF+18]and adapted in [ZYD+19] is to use a temporary asset tag
t in place of bi and demonstrate in zero knowledge that t is “equivalent” to some
bi ∈ b without revealing i. This is performed using the homomorphic property of
Pedersen so that the value and serial number of the commitment are unchanged.

Asset blinding Let bi ∈ b. The user randomly selects a← Zq and sets t← bi·ga.
We refer to t as a “blinded” asset.

11

Commitment equivalence Let C = Comck,b,i(v, r, s) = bvi g
rks, and let t =

bi · ga as above. Then, substituting bi = t · g−a we have C = tvgr−avks. That is, we
can use C as a commitment C = Comck′,b,i(v, r − va, s), where ck′ = (g, t, k). This
implies that commitments under bi can be used unchanged with blinded values of
bi with only local calculations from the user.

Asset surjection proofs Commitment equivalence hinges on t being correctly
formed. For example it is simple to show that if t includes a k component, the serial
of C with respect to to t would be different than the one with respect to the original
base bi. We thus need the user to demonstrate they know i, r such that t = bi ·ga, or
equivalently that they know i, r so that bi/t = ga i.e they know the logarithm over
g of bi/t for some i. The user can thus use the protocol for Rm on statement

(
b
t , 0
)

– the 0 derives from the fact that neither b or t involve serial number components
over k.

6.2 Lelantus-CLA

We now expand our definitions of outputs, inputs and valid transactions to account
for confidential assets:

A shielded CA output is a tuple (CSO, t, πASP , πSO, ĈSO, σSO) such that:

• CSO is a commitment (i.e a group element)

• t is a blinded asset (i.e a group element)

• πASP is a proof for the relation Rm with statement
(
b
t , 0
)

(i.e an asset surjection
proof for t).

• πSO is a proof for the relation R′ρ with statement CSO, t, ĈSO (i.e a range proof

counter-signing ĈSO).

• ĈSO is a generalised commitment (i.e a group element)

• σSO is a proof for relation Rnv for statement ĈSOj , k (i.e a proof that ĈSO has
zero value).

A shielded CA input is a tuple (CSI , t, πASP , σSI , QSI , σ
′
SI , πSI) such that:

• CSI is a commitment (i.e a group element).

• t is a blinded asset (i.e a group element).

• πASP is a proof for the relation Rm with statement
(
b
t , 0
)

(i.e an asset surjection
proof for t).

• σSI is a proof for relation Rns for statement CSI , t (i.e a proof that CSI has
zero serial number).

• QSI is a group element.

• σ′SI is a proof for relation Rσ for statement QSI (i.e a proof of knowledge for
the log of QSI).

• πSI is a proof for the relation Rm on statement (C, s) where C = STXO
CSI

snd
s = H(QSI)).

12

Supply In the operation of the system, value may be created according to some
higher level protocol which specifies asset creation and minting. We leave the details
of this protocol undefined, but assume that supply is represented via a tuple T.S =
(v, VSup), so that the amount of value created over each asset is represented by a
vector v that can be calculated by all users based on some information VSup. With
the above changes in mind we are able to adapt Definition 9 as follows:

Definition 10. A CA transaction T = (T.I,T.SI,T.O,T.SO,T.K,T.S) is valid if:

• The list of commitments T.I is a subset of the current UTXO set.

• For each commitment CO ∈ T.O, the corresponding proof πO is valid.

• For each commitment CKl the corresponding signature σKl is valid.

• For each shielded input, (CSI , t, πASP , σSI , QSI , σ
′
SI , πSI) the corresponding

proofs, πASP , σSI , σ
′
SI , πSI , are valid, and H(QSI) /∈ USN.

• For each shielded output, (CSO, t, πASP , πSO, ĈSO, σSO) the corresponding proofs
πASP , πSO, σSO are valid.

• The tuple T.S = (v, VSup) is consistent with the higher level asset creation
protocol.

• The the sum of inputs plus suply minus the sum of outputs is equal to the sum of
zero-valued commitments:

∑
i CIi+Sup(v)+

∑
i′ CSIi′−

∑
j COj−

∑
j′ CSOj′ =∑

l CKl.

This implies that supply is simple to merge supply across transactions: for two
transactions T1,T2 each with supply Ti.S = (vi, VSup,i) the merged supply is TM.S =
(v1 + v2, VSup,1 ∪ VSup,2).

7 Security Properties

We are interested in two security properties: first, we require that over each asset
type value cannot be created or destroyed except as allowed by the protocol. We
term this “Supply Persistence” and define it bellow. Intuitively, this means that
the balance of unshielded outputs minus unshielded inputs, plus that of shielded
shielded outputs minus that of shielded inputs equals the supply value in T.S. This
implies that assets do not interact inside transactions.

Definition 11 (Supply Persistence). For any PPT adversary A, the probability
that A can output a list of transactions Ti = (Ti.I,Ti.SI,Ti.O,Ti.SO,Ti.K,Ti.S) for
i = 0 . . . k and an opening v∗, r∗ such that:

• The list of commitments in Ti.I is a subset of the UTXO set formed by the
previous transactions T0 . . .Ti−1, or empty for T0.

• For each commitment CO ∈ Ti.O, the corresponding proof πO is valid.

• For each commitment CKl ∈ Ti.K the corresponding signature σKl is valid.

• For each shielded input, (CSI , t, πASP , σSI , QSI , σ
′
SI , πSI) ∈ Ti.SI the corre-

sponding proofs, πASP , σSI , σ
′
SI , πSI , are valid with regards to the shielded set

formed by the previous transactions T0 . . .Ti−1, or empty for T0, and addition-
ally H(QSI) /∈ USN.

13

• For each shielded output, (CSO, t, πASP , πSO, ĈSO, σSO) ∈ Ti.SO the corre-
sponding proofs πASP , πSO, σSO are valid.

• For each transaction, the sum of inputs plus suply minus the sum of outputs is
equal to the sum of zero-valued commitments:

∑
i CIi + Sup(v) +

∑
i′ CSIi′ −∑

j COj −
∑
j′ CSOj′ =

∑
l CKl.

• After transaction T k, UTXO consists of a single element C∗, such that C∗ =
Comck,b(v∗0 , r

∗, 0, v∗1 , . . . , v
∗
n).

• For at least one component l, v∗l > TSupl, where TSup =
∑k
i=0 vi.

is neglibigle

Proof (Sketch). We will show that if a PPT adversary A can ouptut Ti for i = 0 . . . k
and an opening v∗, r as specified, then we can recover with high probability a non-
trivial discrete log relation between the elements of ck and b, which in turn reduces
to the discrete logarithm problem. Towards that, we rewind the adversary to extract
the asset types, values, serials and randomness used for all shielded or unshielded
outputs. For unshielded inputs we can determine the corresponding output directly.
For shielded ones, we first extract the position of the commitment using the proof
of membership. Finally, we extract the randomisers from kernels. If any of our
extractions fail, we give up, but that only happens with negligible probability. If
the extraction indicated that a shielded output has been doublespent, the openings
directly give us a discrete log relation.

Assuming every extraction is successful, we have extracted a decomposition of
each commitment into a vector of known exponents. This allows us to recursively
construct the value of C∗ independently of the adversarial opening v∗, r∗ starting
with the inputs of Tk. If the calculated value disagrees with the adversarial opening,
we directly arrive at the required discrete log relation, as we have two openings for
C∗. If the openings match, we iterate backwards over Ti looking for a transaction
where for at least one asset type l the value of outputs exceeds that of inputs plus
supply.

Unshielded outputs cannot be doublespent as they are deleted once they are
spent, and we have determined during out extraction that no shielded outputs have
been doublespent either. Thus, there must be at least one transaction Ti with
mismatch of input, output and supply values, as otherwise we would have v∗l ≤ TSupl
across all assets l.

Furthermore, we require that users cannot “steal” value from other users. In-
formally, this requires that an adversary who has been assigned and sent a total of
value of v = (v0, . . . , vn) across all asset types, is unable to produce an opening to
an unspent output of value vj + δ for any j and δ > 0. Informally, this relies on the
zero knowledge property of our proof systems, so that the adversary gains no infor-
mation from transactions not addressed or initiated by him. Knowledge soundness
prevents adversaries from misrepresenting received transactions. A third require-
ment is a way for users to transaction outputs in a way that allows the receiver to
spend them, but the sender cannot. We describe this in the next section. We defer
a complete proof in the vein of [FOS19] as a formal treatment of the property has
additional technical requirements wrt the simulation extractability of bulletproofs.

14

8 Transacting using Lelantus-CLA

At a high level, sending funds consists of creating an output that the receiver can
subsequently open. The receiver can then use the commitment as an input to one
of their transactions. The data structures and proofs used for shielded transac-
tions imply that “owners” of value can spend it as they wish, with strong privacy
guarantees. However, the “owner” is defined as the person who knows the relevant
witnesses to construct a proof. This raises two issues:

• How is it possible for the sender to create commitments they cannot open?

• How will the intended recipient be able to spend them?

The first issue is easy to handle, by means of a Diffie-Hellman like protocol, as
with standard mimblewimble. The second issue is the main focus of this chapter.
While a trivial solution would be to have the sender simply send the necessary data
out of band (e.g. via email), it is obviously preferable if this can happen in-band
and at the same time without introducing any additional overheads.

We rely on the concept of “Coloring”, which is originally related to protocols
used to ascribe and recognise additional properties to otherwise ordinary bitcoins
without breaking compatibility with existing software. In our case, coloring has
to do with establishing a covert channel [LMS05, BDI+96] over the randomizers
used in the zero-knowledge proofs used when creating a commitment (i.e schnorr
signatures and range proof bulletproofs). This will enable the intended recipient
to both recognise commitments addressed to her, as well as extract the necessary
witnesses to actually spend them at a later time.

8.1 Bulletproof Coloring

A requirement for direct anonymous payments is for an in-band method of privately
notifying the recipient of a payment. Coloring offers a way of doing so by modifying
the prover’s randomness generation inside a bulletproof. For some of the blinders
in the proof the corresponding randomness will be generated as a deterministic
function of the payee’s address. This is done in a way that is computationally indis-
tinguishable from the standard version for any outsiders, but enables the intended
recipient to both detect the payment as one directed to them, and also extract a
short message embedded within.

We begin, by reproducing the standard range proof for commitments as described
in [Jiv19]. For brevity, we omit the logarithmic inner product argument as it is
unchanged from the original.

In the protocol, the t1, t2 values are derived from the following polynomials,
where l(X), r(X) are vector polynomials linear in X, and t(X) is a scalar polynomial
quadratic in X:

l(X) = (aL − z · 1n) + sL ·X ∈ Znp [X]

r(X) = yn ◦ (aR + z · 1n + sR ·X) + z2 ·X2 ∈ Znp [X]

t(X) = 〈l(X), r(X)〉 = t0 + t1 ·X + t2 ·X2 ∈ Zp[X] (1)

15

Psig(gk, crs, (C, b), (r, v)) Vsig(gk, crs, (C, b))

α← Zp, ρ← Zp
sL, sR ← Znp
Let aL ∈ {0, 1}n s.t.

∑
ai · 2i = v

aR = aL − 1n ∈ Znp
A = bαgaLhaR ∈ G
S = bρgsLhsR ∈ G A,S

-

Let t1, t2 be set as per eq. (1) y, z ← Z∗p Let h′i = hy
−i+1

i for i ∈ [1, n]

τ1, τ2 ← Zp; �

Ti = gtihτi for i = {1, 2} T1, T2
- Let P = A · Sx · g−z · ((h′)z·yn+z2·2n

) ∈ G
l = l(x) x← Z∗p Accept iff:

r = r(x) �

t̂ = 〈l, r〉 ∈ Zp
τx = τ2 · x2 + τ1 · x+ z2 · r ∈ Zp gt̂bτx = V z2 · gδ(y,z) · T x1 · T x

2

2

µ = α+ ρ · x ∈ Zp τx, µ, t̂, l, r P = bµ · gl · (h′)r
- t̂ = 〈l, r〉 ∈ Zp

Figure 1: Range proof for Rρ

8.1.1 Recipient verification

In the protocol of Figure 1, we observe that α and ρ are random elements of Zp to be
used as blinders. As a warmup, let us consider a modified protocol where they are

instead generated via a keyed PRF. For example, we replace α← Zp, ρ← Zp by

α← H(S||“alpha”||seed), ρ← H(S||“rho”||seed) , where S represents the concate-

nation of reference strings gk, ck, crs with the statement C, and seed ∈ Zp represents
the coloring key.

Theorem 1 (Informal). The modified range proof protocol is complete, has witness-
extended emulation and is computationally HVZK.

Proof. Completeness holds by inspection, as the modified values of α, ρ are used
consistently with the original protocol.

We also observe that witness-extended emulation is not impacted, as the defini-
tion is not conditioned on any particular prover. Thus, we are able to use the same
extractor to repeat the proof with no changes needed (in a way, we consider the
modified prover to be an adversarial one and carry out the extraction regardless).

Assuming the hash outputs are computationally indistinguishable from random
ensures that zero knowledge still holds, albeit computationally: if the existing simu-
lator fails then an adversary is able to efficiently distinguish the hash function from
a random one.

Even though security is only minimally impacted, a user with the correct value
of seed will be able to generate α′, ρ′ independently, and use the challege x from the

16

transcript to produce µ′ = α′ + ρ′ · x. She can then “check” the value of µ from the
transcript against µ′ to determine if she is the intended recipient.

8.1.2 Conditional witness extraction

We now observe we can develop the same idea further. We further modify the
protocol so that τ1, τ2 are also derived via the PRF. This enables us to revisit τx,
that is τx = τ2 · x2 + τ1 · x + z2 · r. Assuming we know the correct value of seed,
this enables us to reconstruct τ1, τ2, and using our knowledge of x, this allows us to
extract r.

8.1.3 In-Band Data

We are able to expand on our previous idea, by adding some additional data δ as a
perturbation to α, i.e. α← H(S||“alpha”||k) + δ. This enables us to recover δ from
µ by the above equation. We are still able to check if the value of seed is correct
by enforcing a specific range of allowed values for δ that is small compared to the
group order q, and accepting the possibility of false positives.

8.1.4 Additional Data

If we additionally know the value specified via the bulletproof, we can also add (and
extract) additional data as perturbations in the sL, sR values. We can perform the
extraction from the l, r vectors since they only depend on v and public data.

8.1.5 Bulletproof Coloring in practice

In the logarithmic version used in the implementation, we are able to hide one value
mod q in each of sL, sR, as they are subsequently compressed, preventing further
extraction. We are still able to extract the randomizer r, as well as a third value
mod q using α. Extracting any value is conditional on knowing the correct seed used
in the PRF, and for sL, sR, we also need to know the value v. For this reason, we
assume v is contained in the value contained inside α. Note here, that the range of
values is significantly smaller than q, so there is additional space for data.

In total, we are able to extract 2 arbitrary values mod q as well as v, r, and in
the case of a CLA transaction, the asset index i and randomizer a. We leave the
additional data unspecified, but they may be used to facilitate transaction metadata
or future functionality. The only additional information required for the receiver to
be able to spend the output is knowledge of the log of the serial number pre-image.
We will cover this in the next section, as it is not included in the bulletproof.

8.2 Sending and Receiving Shielded Values

We now revisit our main goal: enabling senders to create shielded outputs they
cannot spend (and allowing receivers to spend them).

The bulletproof coloring technique described above gives us ample space to ex-
tract data from πSO, including one of the needed witnesses (r) for CSO. We will
now focus our attention to enabling the receiver to obtain the PRF seed as well as to
recognise the transaction. We do so by applying similar techniques to the ĈSO, σSO

17

part of the shielded output (i.e the ticket), and also adding a DH-like protocol so
that receivers can determine seed as well as the serial number pre-image.

8.2.1 Addresses

A receiver first creates a triple keypair P1,g, P1,k, P2 where P1,g = gs1 , P1,k = ks1

and P2 = ks2 and si ← Zq. The corresponding secret keys are (s1, s2), used for
recognizing and spending payments. As such, s1 can be revealed to a semi-trusted
service with no risk to funds. The triple (P1,g, P1,k, P2) is a user’s address, and it
enables other users to directly pay her.

8.2.2 Tickets

To make a commitment recognisable, the sender will create ĈSO in a specific way.
First the sender samples a random value w ← Zq and sets skp ← H1(w). Then

Q← P skp2 . Finally s← H(Q) and ĈSO ← gskw. Looking forward, the sender does
not know the log of Q w.r.t g. The intended recipient however could calculate it as
w · s2, if provided with w.

The commitment is used to seed the randomness of the generalised Schnorr sig-

nature σSO as follows: seed← (P s1,g ·Pw1,k)H1(ĈSO). This implies seed = Ĉ
s1·H1(ĈSO)
SO

i.e the recipient can determine the seed from s1 and ĈSO. Once the key is deter-
mined, the recipient can extract the witnesses s, w from the signature, using the
techniques of section 8.1.3 which constitutes a full opening of ĈSO. Combined with
the above, this also allows the recipient to calculate the log of Q, which is required
for spending, check that the seed value is valid, and finally extract the values from
the bulletproof.

8.2.3 Ticket Distribution

Looking forward, when the receiver attempts to spend the received commitment, the
value of Q will be revealed as QSI in the shielded input. This will allow the sender
to detect that a particular shielded input has been spent. Conceptually, this can be
mitigated by having the receiver immediately re-send the same value to herself, but
that would be wasteful in practice. A more efficient solution is to have the receiver
pre-compute a number of tickets and make them available to known parties. This
can substitute distributing addresses.

The only required change is that the receiver needs to communicate seed in
addition to ĈSO, σSO, as the calculation to produce it requires either the pair (s, w)
or s1, of which the sender knows neither. The receiver is able to independently create
CSO, πSO at a later time. Note that whilst ĈSO, σSO do not depend on CSO, πSO,
the statement of the bulletproof πSO explicitly includes ĈSO so that the two parts
are effectively “tied”.

18

References

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Greg Maxwell. Bulletproofs: Short proofs for confidential
transactions and more. In 2018 IEEE Symposium on Security and Pri-
vacy (SP), pages 315–334. IEEE, 2018.

[BCC+15] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, Jens
Groth, and Christophe Petit. Short accountable ring signatures based on
ddh. In European Symposium on Research in Computer Security, pages
243–265. Springer, 2015.

[BDI+96] Mike Burmester, Yvo G Desmedt, Toshiya Itoh, Kouichi Sakurai, Hiroki
Shizuya, and Moti Yung. A progress report on subliminal-free chan-
nels. In International Workshop on Information Hiding, pages 157–168.
Springer, 1996.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In ACM conference on Com-
puter and communications security – CCS 1993, pages 62–73. ACM,
1993.

[FOS19] Georg Fuchsbauer, Michele Orrù, and Yannick Seurin. Aggregate cash
systems: A cryptographic investigation of mimblewimble. In Yuval Ishai
and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT
2019, pages 657–689, Cham, 2019. Springer International Publishing.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Advances in Cryptology—
Crypto’86, pages 186–194. Springer, 1987.

[GI08] Jens Groth and Yuval Ishai. Sub-linear zero-knowledge argument for
correctness of a shuffle. In Advances in Cryptology – EUROCRYPT
2008, pages 379–396. 2008.

[GK15] Jens Groth and Markulf Kohlweiss. One-out-of-many proofs: Or how
to leak a secret and spend a coin. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 253–
280. Springer, 2015.

[Jed16] TE Jedusor. Mimblewimble. Defunct hidden service, 2016.
Copy retrieved from https://github.com/mimblewimble/docs/wiki/

Mimblewimble-origin.

[Jiv19] Aram Jivanyan. Lelantus: A new design for anonymous and confidential
cryptocurrencies. Cryptology ePrint Archive, Report 2019/373, 2019.
https://ia.cr/2019/373.

[Lin03] Yehuda Lindell. Parallel coin-tossing and constant-round secure two-
party computation. Journal of Cryptology, 16(3):143–184, 2003.

[LMS05] Matt Lepinski, Silvio Micali, and Abhi Shelat. Fair-zero knowledge. In
Theory of Cryptography Conference, pages 245–263. Springer, 2005.

[PBF+18] Andrew Poelstra, Adam Back, Mark Friedenbach, Gregory Maxwell, and
Pieter Wuille. Confidential assets. In International Conference on Fi-
nancial Cryptography and Data Security, pages 43–63. Springer, 2018.

19

[Ped91] Torben P. Pedersen. Non-interactive and information-theoretic secure
verifiable secret sharing. In CRYPTO, volume 576 of LNCS, pages 129–
140. Springer, 1991.

[ZYD+19] Yi Zheng, Howard Ye, Patrick Dai, Tongcheng Sun, and Vladislav Gelfer.
Confidential assets on mimblewimble. Cryptology ePrint Archive, Report
2019/1435, 2019. https://eprint.iacr.org/2019/1435.

20

