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Abstract. In this work we present two commitment schemes based on hardness assumptions arising
from supersingular elliptic curve isogeny graphs, which possess strong security properties. The first is
based on the CGL hash function while the second is based on the SIDH framework, both of which require
a trusted third party for the setup phrase. The proofs of security of these protocols depend on properties
of non-backtracking random walks on regular graphs. The optimal efficiency of these protocols depends
on the size of a certain constant, defined in the paper, related to relevant isogeny graphs, which we give
conjectural upper bounds for.
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1 Introduction
Over the past several years, there has been an extensive effort to design cryptographic protocols that
are believed to be resistant to quantum attacks. Thanks to Shor’s celebrated breakthrough algorithm
in 1994 [Sho94], modern public key cryptosystems based on the integer factorisation problem or discrete
logarithm problem are not secure when presented with a quantum adversary. The field of post-quantum
cryptography is the study of such protocols and it is widely considered that there are six main categories of
post-quantum schemes. These are code-based, hash-based, multivariate-based, lattice-based, isogeny-based
and MPC-based cryptography - each of which uses either a new problem which is conjectured to be hard to
solve, or uses symmetric primitives to build new cryptosystems.

Commitment schemes [Blu83] have played a central role in the age of modern public-key cryptography.
It allows a party to securely commit to particular value in such a way that other parties can be assured that
it hasn’t been tampered with. They have many useful applications: in secure electronic voting [CFSY96,
DEG17], signature schemes [Lam79] and zero knowledge proofs [Dam98], to name a few.

One of the most important commitment schemes is the Pedersen commitment scheme [Ped92] based on
the hardness of the discrete logarithm problem in a finite cyclic group. As such, it is vulnerable to Shor’s
algorithm which renders it insecure if a sufficiently large quantum computer is available. Therefore, one might
hope to design a commitment scheme which is secure against quantum adversaries. There has been some
work on constructing lattice-based commitment schemes [XXW13, BDL+18]. They use well known lattice
based assumptions such as Ring-LWE, Module-LWE and Module-SIS as a basis for their security. There has
also been some work on constructing code-based commitment schemes [NTWZ19] and multivariate-based
commitment schemes [PBB13].

Isogeny based cryptography is one of the younger frameworks being considered as a basis for post-quantum
cryptography. Supersingular isogeny graphs were introduced as a hard problem in cryptography by Charles,
Goren and Lauter when they presented the CGL hash function at the NIST hash function competition in
2005 [CLG09]. Later, key exchange protocols [DFJP14] and signature schemes [GPS17, DFKL+20] were
proposed based on supersingular isogeny graphs. For these cryptosystems, the underlying security depends
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on the hardness of finding a path in the supersingular `-isogeny graph, sometimes with extra auxiliary
information.

At the time of writing, as far as we are aware, there are no published commitment schemes based on
isogeny assumptions. Just as SIDH is an analogue of traditional Diffie-Hellman, one would hope that an
analogue of Pedersen commitments exists in the isogeny setting. It is therefore surprising that this is not
currently the case. Galbraith has declared this to be a “huge open problem” in isogeny-based cryptogra-
phy [Gal20].

1.1 Contributions
In this work we present the first provably secure commitment schemes based on supersingular elliptic curve
isogeny graphs. Underlying our protocols is the well-known idea of using a hash function to obtain a secure
commitment scheme. In particular, we use the isogeny-based hash function from [CLG09] as a fundamental
building block for our commitment scheme. We also use a trusted third party in the setup phase. This is to
ensure that the endomorphism ring of the starting curve is not revealed.

Traditionally, proving the security of the resulting commitment scheme is done with the help of the
random oracle to show that it is information-theoretically hiding. However, in this work we obtain such a
scheme without using the random oracle model: instead we use mathematical properties of isogenies and
their associated isogeny graphs to obtain a commitment scheme which is both information-theoretically
hiding and computationally binding.

1.2 Outline
In Section 2 we begin with the necessary preliminaries needed for this work. This includes background on
supersingular elliptic curve isogenies and we review the techniques used for computing such isogenies. We
also give a formal definition of a commitment scheme and introduce the necessary security models. In Section
3 we introduce the mixing constant for any regular graph and analyse its properties. In Sections 4 and 5 we
present our commitment schemes based on supersingular isogeny graphs and use the result from Section 3
to prove their security. In Section 6 we estimate the performance of our commitment schemes, both from
a perspective of efficiency and size of the commitment values. We also attempt to compare our schemes to
that of a lattice counterpart. Finally, in Section 7 we summarise the presented work and suggest avenues for
future work.

2 Preliminaries
We refer to [Sil09] for a comprehensive background on elliptic curves and isogenies as well as [Sma15,
Chapter 20] for more background on commitment schemes.

2.1 Supersingular Elliptic Curve Isogenies
An isogeny between two elliptic curves E and E′ over a finite field Fq is non-zero rational map which maps
points on E(Fq) to E′(Fq) and also defines a group homomorphism on these points. We call an isogeny
Fqn -rational if the mapping is defined over Fqn . Two elliptic curves are isogenous if there is an isogeny
between the two curves. The degree of an isogeny is its degree as a rational map. We call an isogeny an
`-isogeny if it has degree `. For separable isogenies, the degree is the number of points in its kernel and,
given any subgroup G ⊆ E(Fq), there exists a unique1 separable isogeny φ : E → E′ whose kernel is G.
If the degree of an isogeny is 1 then the map defines an isomorphism. Moreover there is an isomorphism
between two elliptic curves if and only if their j-invariants are the same.

1Up to isomorphism.
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An endomorphism of an elliptic curve E is an isogeny from E to itself. The set of all endomorphisms of
E including the zero map forms a ring with addition and composition. This ring is called the endomorphism
ring, denoted by End(E), and it is isomorphic to either an order in an imaginary quadratic field or a maximal
order in a quaternion algebra. We say E is ordinary in the first case and supersingular in the second case.
For example, when p ≡ 3 mod 4 the curve E/Fp2 : y2 = x3 + x is supersingular, has j-invariant 1728
and has an endomorphism ring End(E) = 〈1, ι, ι+π2 , 1+ι◦π

2 〉, where π is the Frobenius endomorphism and
ι(x, y) = (−x,

√
−1y).

Given an isogeny φ : E → E′ there exists a unique isogeny φ̂ : E′ → E such that φ ◦ φ̂ = φ̂ ◦φ = [deg(φ)],
where [·] is the scalar multiplication map. This isogeny φ̂ is called the dual isogeny.

Given primes `, p where ` is small (typically 2) and p is large, the supersingular `-isogeny graph is the
graph whose vertex set is the isomorphism classes of supersingular elliptic curves2 defined over Fp2 (labelled
by the j-invariants) and two vertices are connected by a directed edge if there is an isogeny between the two
curves of degree `. In most circumstances this graph can be thought of as undirected since every isogeny
has a dual isogeny. For each ` this graph is connected in the sense that any two vertices can be connected
by a path in this graph, or equivalently, for each pair of supersingular elliptic curves E and E′ there is an
isogeny of degree `k between these curves. It is also (`+ 1)-regular in the sense that to each vertex there are
`+ 1 outgoing edges.

For such a graph, one can freely walk on the graph. Given a string m ∈ Z/(` + 1)Z × (Z/`Z)k−1, we
denote by Φ`(E,m) the supersingular elliptic curve obtained by going on a backtracking free walk in the
supersingular `-isogeny graph starting at E and dictated by the entries in the string m. Namely we get
a sequence E = E0 −→ E1 −→ · · · −→ Ek = Φ`(E,m) of supersingular elliptic curves each of which is
connected by an `-isogeny. To get the next curve from Ei−1 we first compute the irreducible factors (of
degree up to (`− 1)/2) of the `-division polynomial of Ei−1. Roots of these factors correspond to points of
order ` [Gal12, Section 25.2]. Up to generating the same subgroup and avoiding backtracking3, label these
roots as P0, P1, · · · , Pl−1 and choose the point Qi := Pmi

. Then compute the curve Ei+1 := Ei/〈Qi〉 and
its corresponding isogeny using Vélu’s formula [Vél71]. Associated to Φ`(E,m) is the isogeny φm : E →
Φ`(E,m) of degree is `k obtained as a composition of `-isogenies.

Alternatively, one can walk freely on these isogeny graphs direct from a cyclic subgroup [CFL+19, Corol-
lary 4.5]. Namely given an `-power cyclic subgroup G = 〈R〉 ⊆ E[`k] ⊆ E(Fq) one can compute the isogeny
φ : E → E′ whose kernel is G. This can be done by computing a chain of degree ` isogenies whereby the
kernel of the n-th isogeny in this chain is equal to 〈`k−nRn〉 where Rn = φn(Rn−1) and R1 = R. Then
composing these isogenies gives φ. This might look exactly the same the previous approach but the difference
here is one can exploit optimal strategies [DFJP14, Section 4.2.2] to make this computation faster.

The former approach mentioned for computing isogenies was done by [CLG09] to achieve the isogeny-
based hash function. The latter approach was done in [DFJP14] to achieve the isogeny-based key exchange
SIDH and its counterpart SIKE.

2.2 Commitment Schemes
Throughout the section and the rest of this work we abbreviate “probabilistic polynomial-time” by PPT and
denote any negligible function by negl.

Formally speaking, a commitment scheme consists of three algorithms: KeyGen(), Commit() and
Open() - each of which has an implicit input 1λ where λ is a security parameter. KeyGen() is a PPT
algorithm that outputs the necessary public parameters needed for the protocol as well as the definition
of the message space. Commit() is a PPT algorithm that, given the public parameters, a message m in
the message space and a random r ∈ {0, 1}λ, outputs a value c which serves as the commitment to m and
r. Open() is a deterministic polynomial-time algorithm that given the public parameters, the message m,

2Apriori defined over Fp.
3Which amounts to the next isogeny being the dual of the previous one.
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1. PP← KeyGen()
2. (m0, m1)← A(PP)
3. b ∈R {0, 1}
4. c = Commit(PP, mb, r)
5. b′ ← A(c)
6. return b == b′

1. PP← KeyGen()

2. (m, m′, r, r′, c)← A(PP)

3. return (m 6= m′) && (Open(PP,m, r, c) ==

Open(PP, m′, r′, c) == 1)

Figure 1: Hiding and binding games (resp.) for a commitment scheme.

the random r and the value c outputs a boolean value b ∈ {0, 1} according to whether or not c is a valid
commitment to m and r.

Cryptographic applications of commitment schemes require the following two properties, known as hid-
ing and binding. Informally, the hiding property ensures that the outputted commitment does not reveal
anything about the message, while the binding property ensures that it should be hard to replicate the same
commitment using a different message. We formally define these properties with aid of the games described
in Figure 1. The hiding game is modelled like an indistinguishability game where the adversary is given the
commitment of one of two messages and he is tasked to determine which message was used to derive the
commitment. The binding game asks the adversary to find two distinct messages from your message space
that gives the same commitment.

Definition 2.1. Let C be a commitment scheme with a security parameter λ and A be an adversary. The hid-
ing advantage for the adversary A, denoted Advhid

C (A), is defined to be 2 |Pr[A wins the hiding game]− 1/2|.
More specifically, we have

Advhid
C (A) = 2

∣∣∣∣Pr
[
A(PP,m0,m1, c) = 1

∣∣∣∣ PP← KeyGen(),
m0,m1, c = Commit(PP,mb, r)

]
− 1

2

∣∣∣∣ .
We say that C is information-theoretically (resp. computationally) hiding if for all adversaries (resp.

PPT adversaries) A there is a negligible function, negl, such that the advantage of winning the hiding game
is bounded above by negl(λ). Furthermore we say C has perfect hiding if the hiding advantage is zero for any
adversary.

The following is a reformulation of the hiding advantage.

Lemma 2.2. Given a commitment scheme C and an adversary A, we have

Advhid
C (A) =

∣∣∣∣∣Pr
[
A(PP,m0,m1, c) = 1

∣∣∣∣ PP← KeyGen(),
m0,m1, c = Commit(PP,m1, r)

]

− Pr
[
A(PP,m0,m1, c) = 1

∣∣∣∣ PP← KeyGen(),
m0,m1, c = Commit(PP,m0, r)

]∣∣∣∣∣.
Definition 2.3. Let C be a commitment scheme with a security parameter λ and A be an adversary. The
binding advantage for the adversary A, denoted Advbind

C (A), is defined to be Pr[A wins the binding game].
More specifically, we have

Advbind
C (A) = Pr

[
A(PP) = (m,m′, r, r′, c)

s.t. m 6= m′ & Open(PP,m, r, c) = Open(PP,m′, r′, c) = 1

∣∣∣∣ PP← KeyGen()
]
.

4



We say that C is information-theoretically (resp. computationally) binding if for all adversaries (resp.
PPT adversaries) A there is a negligible function, negl, such that the advantage of winning the binding game
is bounded above by negl(λ). Furthermore we say C has perfect binding if the binding advantage is zero for
any adversary.

3 Walking on Regular Graphs
Let G be a graph with vertex set V (G) and let (vk)k≥0 denote a random walk in G. For a positive integer
d (which throughout this work will always be at least 3), we say G is d-regular if for each vertex v ∈ V (G)
the number of edges incident to the vertex4 v is d. We say the random walk (vk) is non-backtracking if it
does not traverse on the same edge twice in a row, i.e., for each k ≥ 1 the edges [vk−1, vk] and [vk, vk+1] are
different.

The adjacency matrix of the d-regular graph G, A, is the matrix whose (i, j)-th entry is the number
of (directed) edges at the vertex i going to the vertex j. Note that the powers of this matrix describes
the number of paths (that may include backtracking paths) between two vertices of a given length. The
transition matrix of G, P , is the matrix whose (i, j)-th entry is A(i, j)/d. Finally, a stationary distribution
on V (G), π, is a probability distribution on the set of vertices of G such that π = πP or equivalently
π(y) =

∑
x∈V (G) π(x)P (x, y). In effect, this distribution remains unchanged as you transition through the

graph. If G is strongly connected, this stationary distribution is unique [LP17, Corollary 1.17].
Given a random walk (vk) in G, we define the worst-case total-variation distance to stationarity at time

t to be

d(t) := 1
2 max
v∈V (G)

 ∑
x∈V (G)

∣∣∣∣Prv(vt = x)− π(x)
∣∣∣∣


where Prv denotes the probability given v0 = v and π is the stationary distribution on G. We define tMIX(ε),
the total-variation mixing time of (vk) for 0 < ε < 1, as

tMIX(ε) := min{t : d(t) < ε}.

Theorem 3.1 (Rapid Mixing of Non-Backtracking Walks). Let G be a random d-regular graph with N

vertices and d ≥ 3. Let (vk) be a non-backtracking random walk in G. Then for any fixed ε > 0, the worst
case total-variation mixing time with high probability satisfies

tMIX(1− ε) ≥ dlogd−1(dN)e − dlogd−1(1/ε)e,
tMIX(ε) ≤ dlogd−1(dN)e+ 3dlogd−1(1/ε)e+ 4.

Proof. See [LS10, Theorem 2].

In other words, for a sufficiently small ε, this theorem says that the output of a non-backtracking random
walk of length O(logd−1(dN)) on a random regular graph is indistinguishable from choosing a random vertex
in the graph. It turns out that, compared to simple random walks that allow backtracking, the mixing time
of non-backtracking walks is d

d−2 times smaller [LS10, Theorem 1].
In previous work including [JMV09], powers of the adjacency matrix, Ak, are used to get some mixing

results on certain d-regular graph known as expander graphs. We are interested in the study of non-
backtracking paths and for that we consider the following matrices: A1 = A, A2 = A2 − dI and Ar+1 =
A1Ar − (d − 1)Ar−1 for r ≥ 2. Then Ar is the matrix whose (i, j)-th entry is equal the number of non-
backtracking walks from i to j of length r [Mur03, Section 6].

4If the graph G is directed then we specify that the number of outgoing edges from v is d.
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Lemma 3.2. Let G be a connected d-regular graph with d ≥ 3. Then there exists some positive integer k0
such that for all k ≥ k0, Ak has entries which are all non-zero.

Proof. For any vertex i, the number of length r non-backtracking walks starting at i is precisely d(d− 1)r−1

and so we have
#V (G)∑
k=1

Ar(i, k) = d(d− 1)r−1.

Since d ≥ 3, as r → ∞ this sum tends to ∞ and hence there is some vertex j0 such that Ar(i, j0) → ∞.
For any vertex j, fix two paths (of length m0,m1) between j0 → j (which can be done since the graph is
connected). We ensure that the first step in these paths are different. Consider all paths i→ j0 → j whereby
we first go to j0 and then traverse to j using one of our fixed paths making sure we avoid any backtracking.
Then we have Ar(i, j0) ≤ Ar+m0(i, j) +Ar+m1(i, j) and therefore Ar(i, j)→∞.

Hence for each i, j there is some k(i, j) such that for all k ≥ k(i, j), we have Ak(i, j) is strictly positive.
Setting k0 to be the maximum of k(i, j) over all pairs of vertices (i, j) gives the result.

Definition 3.3. We define kG to be the minimal k0 such that Lemma 3.2 holds and call kG the mixing
constant for the graph G.

The minimality of kG means that there exists i0, j0 such that AkG−1(i0, j0) = 0, and for all i, j and
k ≥ kG, Ak(i, j) 6= 0. Rephrasing this in the context of non-backtracking walks we obtain the following.

Corollary 3.4. For a connected d-regular graph G (with d ≥ 3) let kG be the corresponding mixing constant.
Then for all k ≥ kG and every pair of vertices (i, j), there exists a non-backtracking path between i and j of
length k.

We now provide a lower bound on the mixing constant kG. The following is a generalisation of the
calculation done in [ACNL+19, Section 6]. There are at most d(d − 1)k−1 possible outputs to a non-
backtracking walk of length k. For some large enough k this number of walks exceeds the number of vertices
in G: d(d− 1)k−1 ≥ N . Rearranging this gives us a lower bound for the mixing constant:

Lemma 3.5. The mixing constant kG of a connected d-regular graph is bounded below by

kG ≥ logd−1(N)− logd−1(d) + 1.

Theorem 3.1 hints at an upper bound for kG. Namely for a suitably small ε > 0 we expect that
kG ≤ tMIX(ε). In particular, if ε is negligibly small then the mixing constant may be at most tMIX(ε). For
instance ε = 1/dN , then by Theorem 3.1 we get that tMIX(1/dN) ≤ 4dlogd−1(dN)e + 4. To summarise we
make the following conjecture.

Conjecture 3.6. The mixing constant kG of a connected d-regular graph G has the following upper bound:

kG ≤ 4dlogd−1(dN)e+ 4.

This upper bound can be thought of as a worst case bound among all regular graphs. Some regular
graphs have faster mixing rates, such as expander graphs or Ramanujan graphs, so one would hope expect
that the mixing constant would be smaller. Later we conjecture better upper bounds for this mixing constant
in the context of supersingular isogeny graphs as well as providing some experimental data to support the
conjecture.
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4 A Commitment Scheme from Isogeny Assumptions
The idea of using Ramanujan graphs, that have optimal mixing properties [Alo86], in cryptography was first
proposed by [CLG09]. More precisely they proposed to construct hash functions by going on random walks
on certain Ramanujan graphs where path-finding is hard. This includes supersingular isogeny graphs which
were proved by Pizer [Piz90] to be Ramanujan.

In this section we use supersingular elliptic curve isogeny graphs to construct a commitment scheme and
use the graph theoretic results from Section 3 to prove its security. The idea behind our commitment scheme
is, given a message m and a random r that someone wants to commit to, compute the isogeny-based hash of
m concatenated by r. The output of this concatenation will be used as the commitment of the message m.
Initially we present it in the supersingular 2-isogeny setting graph and later generalise it to the supersingular
`-isogeny with ` an odd prime.

4.1 Our Protocol
Let λ be a security parameter. The key generation of the commitment scheme is as follows. Choose a
prime number p of 2λ bits, a supersingular elliptic curve E/Fp2 whose endomorphism ring is unknown and a
positive integer k to be chosen later. Apart from a few notable exceptions, constructing a supersingular curve
with unknown endomorphism ring is currently a hard problem and such a curve is commonly refereed to as
a hard curve. Classical isogeny-based protocols use the j-invariant 1728 as the starting curve5. However, as
alluded in Section 2.1 this curve has a special endomorphism ring which has an explicit form. Hence this
curve cannot be used in our protocol. To get around this, we suggest that a trusted third party generates
such a supersingular curve E by going on a random walk starting at a known node in the graph (for instance
the j-invariant 1728 curve). As long as the trusted party does not reveal the path it took to get the curve
E, the endomorphism ring of E should remain unknown. Finally, choose two random edges incident to j(E)
in the isogeny graph.

To commit to a message m ∈ {0, 1}k first compute the curve Em := Φ2(E,m) (making sure the first
step in the graph is one of the two edges chosen above). Then choose uniformly at random a binary string
r ∈R {0, 1}k and compute the curve E′ := Φ2(Em, r). When you go from Em to E′, make sure to avoid any
backtracking in the isogeny graph. Then return c := j(E′) as the commitment of the message m.

Given the message m, the random r and the commitment c, to open the commitment first compute the
curve Φ2(Φ2(E,m), r). Then return the boolean value c == j(Φ2(Φ2(E,m), r)).

Remark. The necessity of the endomorphism ring of E remaining unknown is due to an attack by [EHL+18].
They are able to break the second preimage resistance of the isogeny hash function when the endomorphism
ring of E is known. This will be important in the context of binding of our protocol.

4.2 Hiding
The graph theoretic results presented in Section 3 along with the following well known result on random
walks on isogeny graphs will be used here to show that the commitment scheme presented in the previous
subsection is information-theoretically hiding.

Theorem 4.1. Given a prime number p, let j0 be a supersingular j-invariant in characteristic p, Np be
the number of supersingular j-invariants in characteristic p and n =

∏
i `
ei
i be an integer where `i are small

primes. Let ĵ be the j-invariant reached by a random walk of degree n starting at j0. Then for every
j-invariant j̃ we have ∣∣∣∣Pr

[
ĵ = j̃

]
− 1
Np

∣∣∣∣ ≤∏
i

(
2
√
`i

`i + 1

)ei

.

5Updated versions of SIKE use the j-invariant 287496 as the starting curve which is the neighbour of the j-invariant 1728 in
the 2-isogeny graph.
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Proof. See [GPS17, Theorem 1].

Theorem 4.2. Let k2,p be the mixing constant for the supersingular 2-isogeny graph in characteristic p.
Then for any k ≥ k2,p, the commitment scheme described in Section 4.1 is information-theoretically hiding.

Proof. Fix two message strings m0,m1, a randomly chosen bit b ∈R {0, 1} and a resulting commitment
E′ = Φ(Emb

, r). The goal for an adversary is to determine which message was used to get the commitment.
Since the supersingular 2-isogeny graph is 3-regular, k2,p is well-defined. For any k ≥ k2,p, by Corollary 3.4,
there is guaranteed to be a path of length k from Em0 to E′ and Em1 to E′. Set α := 3

2
√

2 > 1. Using
Theorem 4.1 we have

Pr [c = E′ | message is m0]− Pr [c = E′ | message is m1] ≤ 2α−k.

Similarly this difference is bounded below by −2α−k. Therefore the advantage of winning the hiding
game is at most 2α−k ≤ 2α−k2,p ≤ 2α−2λ+log2(36) (last inequality is a consequence of Lemma 3.5 and
Np ≥ p/12− 1), which proves the theorem.

By the conjectural upper bound on the mixing constant, Conjecture 3.6, we can choose k = 4dlog2(p)e−4.
With this choice of k we achieve information-theoretic hiding for our commitment scheme. As mentioned
earlier, it could be possible to improve on this choice of k when specific graphs are used. Since supersingular
isogeny graphs are Ramanujan graphs, one hopes that the mixing constant for these graphs is smaller. In
particular we conjecture the following upper bound which we believe to be sharp for supersingular 2-isogeny
graphs.

Conjecture 4.3. With k2,p be as defined previously, we have the following upper bound

k2,p ≤ log2(p) + log2(log2(p)) +O(1).

In particular the constant in the big-Oh notation is at most 1.

Experimental results on this conjecture show that for every prime p ≤ 65600 and some primes between
123000 ≤ p ≤ 131100 and 234000 ≤ p ≤ 218, the associated mixing constant for the supersingular 2-
isogeny graph is no more than log2(p) + log2(log2(p)) + 3

10 . These mixing constants were calculated by first
computing the adjacency matrix, A, for the graph and sequentially compute Ak, as defined in Section 3,
until you find a value k̂ such that the each entry of Ak̂ is non-zero. We verify that k2,p = k̂ by computing
Ak̂+1, Ak̂+2, · · · , Ak̂+i for some small i and see if the entries in these matrices are non-zero. Since the entries
of these matrices grow as we increase k, then as long as these matrices have non-zero entries, we can conclude
that k2,p = k̂. Figure 2 tabulates the mixing constant in the supersingular 2-isogeny graph in characteristic
p for all p ≤ 65600.

If this conjecture is true then we can choose k = dlog2(p) + log2(log2(p)) + 1e and it would significantly
speed up the performance of the protocol.

4.3 Binding
We will prove that the binding of our protocol is secure under the following hard problem.

Problem 1 (Supersingular Smooth Endomorphism Problem). Given a prime p, a supersingular elliptic
curve E over Fp2 and a small prime `, compute a non-trivial cyclic endomorphism6 of E whose degree is a
prime power `e.

6By non-trivial we mean an endomorphism which is not a multiplication-by-m map, [m], and by cyclic we mean an endo-
morphism whose kernel is cyclic.

8



Figure 2: Mixing constant in prime characteristic p for all p ≤ 65600. The lower bound
curve is log2(x) and the upper bound curve is log2(x) + log2(log2(x)).

A similar problem was presented in the SQISign identification protocol [DFKL+20]. The only difference
is that this problem is more restrictive in the degree of the endomorphism. In their setting the degree of
computed endomorphism has smooth degree.

Also, as remarked in [DFKL+20], this problem is equivalent to the endomorphism ring problem, namely
compute a Z-basis for this endomorphism ring of an elliptic curve. For more details on this equivalence see
[EHL+18].

Theorem 4.4. The commitment scheme as described in Section 4.1 is computationally binding under the
Supersingular Smooth Endomorphism Problem on the curve E for the prime ` = 2.

Proof. Suppose that A is a PPT adversary which successfully solves the binding game for this commitment
scheme. We shall construct an PPT adversary A′ using A as a black box that solves the Supersingular
Smooth Endomorphism Problem on the curve E.

Upon receiving the curve E, A′ queries A and successfully outputs m,m′, r, r′ such that m 6= m′ and
E′ = Φ2(Em, r) = Φ2(Em′ , r′). Let φm : E → Em, φm′ : E → Em′ , φr : Em → E′, φr′ : Em′ → E′ be the
associated isogenies each of which has degree 2k.

Then the composition of φm ◦ φr ◦ φ̂r′ ◦ ˆφm′ is an endomorphism of E whose degree is the prime power
24k. First we need to verify that this composition is non-trivial. Suppose for a contradiction that φm ◦ φr ◦
φ̂r′ ◦ ˆφm′ = [22k]. Since the compositions φm ◦ φr and φm′ ◦ φr′ are isogenies from E to E′ of same degree,
then φ̂r′ ◦ ˆφm′ is the dual of φm ◦ φr. Since φm′ ◦ φr′

∧

= φ̂r′ ◦ ˆφm′ , we get φm ◦ φr = φm′ ◦ φr′ . As a result
m = m′ and r = r′ – which gives the contradiction.

By removing any potential backtracking to the composition φm ◦ φr ◦ φ̂r′ ◦ ˆφm′ that might occur as we
approach E′, we get a cyclic endomorphism ψ. The adversary A′ outputs this endomorphisms and solves
the Supersingular Smooth Endomorphism Problem on E in PPT. Therefore the advantage of winning the
binding game is at most the advantage of solving the above problem.
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4.4 Generalisation
In this section we generalise the above idea and construct a commitment scheme which works in the super-
singular `-isogeny graph for a small odd prime `. Once again, key generation of the protocol is the same as
described in Section 4.1.

To commit to a message m ∈ {0, 1, · · · , ` − 1}k first compute the curve Em := Φ`(E,m). Then choose
uniformly at random a binary string r ∈R {0, 1, · · · , `− 1}k and compute the curve E′ := Φ`(Em, r). Once
again, when you go from Em to E′, making sure to avoid any backtracking in the isogeny graph. Then
return c := j(E′) as the commitment of the message m.

Given the message m and the random r, to open the commitment scheme first compute the curve
Φ`(Φ`(E,m), r). Then return the boolean value c == j(Φ`(Φ`(E,m), r)).

Much like in the setting of the 2-isogeny graph, we have the following theorems proving the security of
this commitment scheme.

Theorem 4.5. Let k`,p be the mixing constant for the supersingular `-isogeny graph in characteristic p.
Then for any k ≥ k`,p, the commitment scheme described above is information-theoretically hiding.

Proof. The proof is analogous to the proof of Theorem 4.2.

Much like in Section 4.2, choosing k = 4dlog`(p)e + 8 would be sufficient to get information-theoretic
hiding.

Theorem 4.6. The above commitment scheme is computationally binding under the Supersingular Smooth
Endomorphism Problem on the curve E and the prime `.

Proof. The proof is analogous to the proof of Theorem 4.4.

Along with this we make the following conjecture on a sharp upper bound of the mixing constant in these
graphs.

Conjecture 4.7. With k`,p as above, we have

k`,p ≤ log`(p) + log`(log`(p)) +O(1).

In particular the constant in the big-Oh notation is at most 1.

5 Commitments using the SIDH Approach
In this section we describe a variant of the protocol from the previous section which uses the SIDH framework.
Instead of using SIDH friendly primes we use primes of the form 2nf − 1 and achieve the same security
requirements that were achieved in the previous section. One advantage of doing this is to exploit SIDH
strategies [DFJP14, Section 4.2.2] to speed up isogeny computations. (Similar ideas in the context of the
hash function construction can be found here [DPB17]).

Let p = 2nf − 1 be a prime with 2λ bits and f is a small integer. In the same manner as described in
the previous section, choose a supersingular elliptic curve E/Fp2 whose endomorphism ring is unknown but
this time we make sure that #E(Fp2) = (2nf)2. This is done intentionally so that the 2l-torsion subgroup
of E entirely consists of points whose coordinates are in Fp2 . Let P0, P1 ∈ E[2n] be points on E that form a
basis for this 2n-torsion subgroup of E.

Much like in the Section 4, we will go on walks in the supersingular 2-isogeny graph but instead of
choosing at each step which edge to traverse, we compute the kernel subgroup and corresponding the isogeny
whose kernel is this subgroup. However the longest isogeny that can be computed as a sequence of 2-isogenies
using this approach has degree 2n. So in order to attain the same security as a obtained in Section 4.2,
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namely computing an isogeny of degree 2k with k = 4dlog2(p)e ≈ 4n, we must do this isogeny computation
4 times each for the message used and the randomly generated element.

Recall that given m0 ∈ Z/2nZ the subgroup of E[2n] defined by 〈P + m0Q〉 induces an isogeny φm0 :
E → Em0 whose kernel is this subgroup. If we wish to extend this walk by going on another walk of degree
2n, then we must find points P ′, Q′ on Em0 that form a basis for the respective 2n-torsion subgroup. Also
we need a procedure of computing these points in a deterministic manner. Ensuring that if replicated by
another party we get the same points. We already know that φm0(Q) has order 2n, so set Q′ := φm0(Q).

To deterministically compute a point P ′ we use techniques from [CJL+17]. We briefly summarise this
method. Use the Elligator 2 method for deterministically computing points R in E(Fp2) [BHKL13], then
check that R ∈ E \ [2]E, where [2]E is the set of all 2-divisible points on E. If so then the point fR is a
point of order 2n. A check has to be made to see if this point is independent from Q′. If not then it cannot
be used as a second basis element and we repeat the whole process until you compute a point P ′ which can
be used as the second basis element. For more details on this see [CJL+17, Section 3.2].

Remark. The choice of Q′ = φm0(Q) was done purposefully. It ensures that the isogeny induced by a kernel
of the form 〈P ′ +m1Q

′〉 will not result in backtracking through part of the first isogeny. This is because the
kernel of the dual isogeny, ker(φ̂m0), is generated by the point Q′ [NR19, Proposition 3].

5.1 Protocol Description and Security
The key generation is as described above.

To commit to a message m ∈ Z/24nZ do as follows. Compute m0 := m mod 2n, m1 := (m −m0)/2n
mod 2n, m2 := (m−m1−m02n)/22n mod 2n and m3 := (m−m2−m12n−m022n)/23n mod 2n. Notice that
m0,m1,m2,m3 ∈ Z/2nZ. Compute the subgroup M0 := 〈P + m0Q〉 and hence the corresponding isogeny
φm0 : E → Em0 whose kernel is M0. Compute the point Q′ := φm0(Q) and a point P ′ as described above.
Now compute the subgroup M1 := 〈P ′ + m1Q

′〉 and hence the corresponding isogeny φm0 : Em0 → Em1

whose kernel is M1. Again compute the points P ′′, Q′′. Repeat this for the integers m2,m3 to get isogenies
φmi : Emi−1 → Emi whose kernel is Mi (i = 2, 3). Henceforth the curve Em := Em3 and the composition
φm = φm3 ◦ φm2 ◦ φm1 ◦ φm0 is the curve and isogeny obtained from the message m.

As remarked above, the choice of basis points for the 2n-torsion subgroup is done so that we don’t get
any backtracking in the isogeny graph.

From here choose a random r ∈ Z/24nZ and repeat the same procedure as done above. Once again you
make sure that there is no backtracking through φm by making sure that you have an appropiate basis for
the 2n-torsion subgroup. The result is an isogeny φr : Em → E′. Then return the curve c := j(E′) as the
commitment of the message m.

Much like in Section 4, given the message and the random m, r ∈ Z/24nZ (resp.), to open the commitment
you recompute the curve E′ and return the boolean value c == j(E′). The deterministic nature of computing
the new basis for the next 2n-torsion subgroup means that, as long as the message m and the random r are
as intended, then anyone can open the message and be assured that this is the correct message used.

Theorem 5.1. The commitment scheme described above is information theoretically hiding and compu-
tationally binding under the Supersingular Smooth Endomorphism Problem on the curve E for the prime
` = 2.

Proof. Application of Theorem 4.2 & Theorem 4.4.

6 Comparison
In this section we estimate the performance of these schemes, only in the setting when ` = 2, and attempt
to compare them to other post-quantum commitment schemes.
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In the work by [DPB17], they attempted to compare the performance of the CGL hash function with a
hash function that is analogous to the idea presented in Section 5. If a prime of the form p = 2nf −1 is used
and k is the length of the walk you want to compute, they estimated the complexity of the CGL hash function
as kn(5.7n + 110)m and the complexity of the SIDH variant as kn(13.5 log(n) + 42.4)m, where m is the
cost of performing a field multiplication. These performance timings translate to our commitment scheme
constructions by choosing k = 4dlog2(p)e − 4 with one exception. In the SIDH variant of our commitment
scheme a little more work is needed then that presented above since we need to generate the basis elements
for the new torsion subgroup. This requires computing one isogeny image as well as the cost of doing the
Elligator 2 method to determine the second basis element. Since this is done at most 3 times, it doesn’t add
much to the complexity mentioned above. Approximately it adds O(nm) to the overall complexity which is
primarily dominated by the isogeny image computations.

Therefore, the performance ratio of the scheme described in Section 4 versus that of this Section 5 is
approximately (5.7n + 110)/(13.5 log(n) + 46.4 + O(1/k)). This implies an exponential speed up in the
performance of the commitment scheme presented in this Section 5 versus that described in Section 4
(especially when the prime p is of cryptographic size).

As mentioned earlier, if the validity of Conjecture 4.3 holds then the performance of these procotols will
significantly speed up by up to a factor of 4.

Lets now look at the size of the commitment values in our schemes. In both variants, these values just
consist of one j-invariant of a supersingular elliptic curve which is an element in Fp2 . Equivalently, given a
2-dimensional representation of Fp2 = Fp[i], we can express this j-invariant as two Fp elements. Hence, given
a prime p of 2λ bits with λ a security parameter, the size of the commitment value is approximately 4λ bits
or λ/2 bytes. It is worth mentioning that the size of the commitment value does not depend on the size of
k. This point is consistent with most isogeny schemes, including the CGL hash function.

One can compare these commitment scheme to that of other post-quantum alternative. One clear advan-
tage this has over other alternatives is that the size of the committed values. To target 128 bits of security,
the size of the committed value in our scheme is approximately 64 B. In comparison to that of lattice based
commitment schemes taken from [BDL+18, Table 2], to achieve the same level of security, the committed
values is approximately 9 kB. This is much larger than that of our isogeny commitment schemes. There
are a few notable drawbacks when comparing our schemes to its alternatives. First one is the performance
of our schemes. Even faster variant described in Section 5 is not as fast as its lattice counterpart. This
point is again consistent with most isogeny schemes. Second drawback is that it is not a homomorphic
commitment scheme. Having a homomorphic commitment scheme is desirable to have since there are some
strong applications that rely on the homomorphic property such as electronic voting.

7 Conclusion
In this work we presented two commitment schemes based on isogeny assumptions. This is the first provably
secure commitment scheme in the isogeny literature. The scheme follows the approach of [CLG09] whereby
we go on walks in supersingular isogeny graphs. We proved that this commitment scheme is secure attaining
information-theoretic hiding and computational binding. We obtained information-theoretic hiding based
on the existence of a mixing constant, kG, implying that any two vertices in the graph can be connected
by a non-backtracking path of fixed length k for any k ≥ kG. We conjectured an upper bound on this
constant for both the generic setting and the specific setting of supersingular isogeny graphs. We obtained
computationally binding by reducing a binding instance to a well known isogeny problem which is believed
to be hard even for quantum adversaries.

We also presented a variant of this commitment scheme which is constructed through a kernel subgroup
to compute the isogenies instead of going through step by step and choosing which edge to continue. Its
security follows directly from the security of the previous scheme. The main advantage that this variant has
over the previous commitment scheme is that of efficiency.
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There are a number of open problems that arise from this work.

• Proving the explicit upper bounds for the mixing constant in both the generic setting and the special
setting of the supersingular isogeny graphs.

• See how sharp we can makes these upper bounds and see if we can get close to the bound presented in
Conjecture 4.3 and Conjecture 4.7 in the specific setting of supersingular isogeny graphs.

• Constructing a homomorphic commitment scheme based on isogeny assumptions. This problem would
be considered a major breakthrough in this area.
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[Vél71] Jacques Vélu. Isogénies entre courbes elliptiques. CR Acad. Sci. Paris, Séries A, 273:305–347,
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