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Abstract. This paper defines a new practical construction for a code-
based signature scheme. We introduce a new protocol that is designed
to follow the recent paradigm known as “Sigma protocol with helper”,
and prove that the protocol’s security reduces directly to the Syndrome
Decoding Problem. The protocol is then converted to a full-fledged sig-
nature scheme via a sequence of generic steps that include: removing
the role of the helper; incorporating a variety of protocol optimizations
(using e.g., Merkle trees); applying the Fiat-Shamir transformation. The
resulting signature scheme is EUF-CMA secure in the QROM, with the
following advantages: a) Security relies on only minimal assumptions and
is backed by a long-studied NP-complete problem; b) the trusted setup
structure allows for obtaining an arbitrarily small soundness error. This
minimizes the required number of repetitions, thus alleviating a major
bottleneck associated with Fiat-Shamir schemes. We outline an initial
performance estimation to confirm that our scheme is competitive with
respect to existing solutions of similar type.

Keywords: Code-based, Signature, Zero-Knowledge, Syndrome De-
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1 Introduction

Most of the public-key cryptosystems currently in use are threatened by the
development of quantum computers. Due to Shor’s algorithm [37], for example,
the widely used RSA and Elliptic-Curve Cryptography (ECC) will be rendered
insecure as soon as a large-scale functional quantum computer is built. To pre-
pare for this scenario, there is a large body of active research aimed at providing
alternative cryptosystems for which no quantum vulnerabilities are known. The
earliest among those is the McEliece cryptosystem [33], which was introduced
over four decades ago, and relies on the hardness of decoding random linear
codes. Indeed, a modern rendition of McEliece’s scheme [4] is one of the major
players in NIST’s recent standardization effort for quantum-resistant public-key
cryptographic schemes [1].



Lattice-based cryptosystems play a major role in NIST’s process, especially
due to their impressive performance figures. Yet, code-based cryptography, the
area comprising the McEliece cryptosystem and its offspring, provides credible
candidates for the task of key establishment (other examples being HQC [34]
and BIKE [5], both admitted to the final round as “alternates”). The situation,
however, is not the same when talking about digital signatures. Indeed, NIST
identified a shortage of alternatives to lattice-based candidates, to the point of
planning a reopening of the call for proposals (see for instance [2]).

There is a long history of code-based signatures, dating back to Stern’s
work [38], which introduced a Zero-Knowledge Identification Scheme (ZKID).
It is known that ZKIDs can be turned into full-fledged signature schemes via the
Fiat-Shamir transformation [26]. Stern’s first proposal has since been extended,
improved and generalized (e.g., [40, 27, 20]). However, all of these proposals share
a common drawback: a high soundness error, ranging from 2/3 to (asymptoti-
cally close to) 1/2. This implies that the protocol requires multiple repetitions
and leads to very long signatures. Other schemes, based on different techniques,
have also been proposed in literature. Trapdoor-based constructions (e.g., [21,
22]) usually suffer from a problem strictly connected to the (Hamming) code-
based setting: to be precise, unlike the case of the RSA-based Full-Domain Hash
(FDH) and similar schemes, a randomly chosen syndrome is, in general, not de-
codable. This makes signing very slow, since multiple attempts need to be made,
and furthermore leads to parameter choices for the underlying linear codes that
yield very large public keys. This issue is somewhat mitigated in [22], although
key sizes are still large (3.2 MB for 128 security bits) and signing is still hindered
by complex sampling techniques. Protocols based on code equivalence (e.g., [19,
11]) show promising performance numbers, yet are very new and require further
study before becoming established; the attack presented in [15], for instance,
suggests that the exact hardness of the code equivalence problem has yet to be
established in practice. Finally, there exists a literature on schemes using a dif-
ferent metric, such as the rank metric [28, 6] or the “restricted” metric [7]. All
of these schemes typically show very good performance, yet the hardness of the
underlying problems is also not fully trusted; for instance, RankSign was broken
in [23], Durandal attacked in [8], and the scheme of [7] appears to be vulnerable
to subset-sum solvers.

Our Contribution. We present a new code-based zero-knowledge scheme that
improves on the existing literature by featuring an arbitrarily low soundness
error, typically equal to the reciprocal of the size ¢ of the underlying finite
field. This allows to greatly reduce the number of repetition rounds needed to
obtain the target security level, consequently reducing the signature size. To do
this, our construction leverages the recent approach by Katz et al. [29], using a
Multi-Party Computation (MPC) protocol with preprocessing. More concretely,
we design a “Sigma protocol with helper”, following the nomenclature of [16].
We then show how to convert it to a full-fledged signature scheme and provide
an in-depth analysis of various techniques utilized to refine the protocol. Our
scheme is equipped with a wide range of optimizations, to balance the added



computational cost that stems from the MPC construction. In the end, we are
able to achieve very satisfactory performance figures, with a very small public
key, and rather short signatures.

It is worth remarking on security aspects. First of all, our scheme rests on
an incredibly solid basis: the security of the main building block, in fact, is di-
rectly connected to the Syndrome Decoding Problem (SDP). To the best of our
knowledge, the only other code-based schemes to do so are the original Stern
construction and its variants which, however, pay a heavy price in terms of signa-
ture size. Our signature scheme is obtained via standard theoretical tools, which
exploit the underlying zero-knowledge and naturally do not add any vulnerabil-
ities. In the end, we obtain a scheme which is secure in the QROM with strong
security guarantees and minimal assumptions. We deem this as a very important
feature of our proposal.

2 Preliminaries

We will use the following conventions throughout the rest of the paper:

a scalar

a vector

a matrix

a function or algorithm

a protocol

the n x n identity matrix

a security parameter

[a; b] the set of integers {a,a +1,...,b}

DN Y

> &

2.1 Coding Theory

An [n, k]-linear code € of length n and dimension k over Fy is a k-dimensional
vector subspace of Fy. It is usually represented in one of two ways. The first
identifies a matrix G € F’;X", called generator matriz, whose rows form a basis

for the vector space, ie., € = {uG, u € IF’;} The second way, instead, de-

scribes the code as the kernel of a matrix H € ]F((Z"_k)xn, called parity-check

matrir, i.e. € = {x € F : xH' = 0}. Linear codes are usually measured using
the Hamming weight, which corresponds to the number of non-zero positions in
a vector. Isometries for the Hamming metric are given by monomial transforma-
tions 7 = (v;m) € 3" %Sy, i.e. permutations combined with scaling factors. In
this paper, we will denote by FWV(gq, n,w) the set of vectors of length n with
elements in [y, and fixed Hamming weight w. The parity-check representation
for a linear code leads to the following well-known problem.

Definition 1 (Syndrome Decoding Problem (SDP)). Let € be a code of

length n and dimension k defined by a parity-check matrizc H € Fénik)xn, and

let s € Fg_k, w < n. Find e € Fy such that eH'" =s and e is of weight w.



SDP was proved to be NP-complete for both the binary and g-ary cases [14,
12], and is thus a solid base to build cryptography on. In fact, the near-entirety of
code-based cryptography relies more or less directly on SDP. The main solvers for
SDP belong to the family of Information-Set Decoding (ISD); we will expand on
this when discussing practical instantiations and parameter choices, in Section 5.

2.2 Technical Tools

We recall here the characteristics of a Sigma protocol with helper, as formalized
in [16]. This is an interactive protocol between three parties (which we model as
PPT algorithms): a prover P = (P1,Ps), a verifier V = (V1,Vs) and a trusted
third party H called helper. The protocol takes place in the following phases:

l. Setup: the helper takes a random seed seed as input, generates some auxiliary
information aux, then sends the former to the prover and the latter to the verifier.

Il. Commitment: the prover uses seed, in addition to his secret sk, to create a
commitment ¢ and sends it to the verifier.

I1l. Challenge: the verifier selects a random challenge ch from the challenge space
and sends it to the prover.

IV. Response: the prover computes a response rsp using ch (in addition to his
previous information), and sends it to the verifier.

V. Verification: the verifier checks the correctness of rsp, then checks that this
was correctly formed using aux, and accepts or rejects accordingly.

A Sigma protocol with helper is expected to satisfy the following properties,
which are closely related to the standard ones for ZK protocols:

— Completeness: if all parties follow the protocol correctly, then the verifier
always accepts.

— 2-Special Soundness: given an adversary A that outputs two valid tran-
scripts (aux, c,ch,rsp) and (aux,c,ch’,rsp’) with ch # ch’, it is possible to
extract a valid secret* sk’.

— Special Honest-Verifier Zero-Knowledge: there exists a probabilistic
polynomial-time simulator algorithm that is capable, on input (pk, seed, ch),
to output a transcript (aux, c, ch, rsp) which is computationally indistinguish-
able from one obtained via an honest execution of the protocol.

Of course, the existence of a helper party fitting the above description is not
realistic, and thus it is to be considered just a technical tool to enable the design
of the protocol. In Section 3.2, we will show the details of the transformation to
convert a Sigma protocol with helper into a customary 3-pass ZK protocol.

4 This is not necessarily the one held by the prover, but could in principle be any
witness for the relation (pk, sk).



The design of such a protocol will crucially rely on several building blocks,
in addition to those coming from coding theory. In particular, we employ a non-
interactive commitment function Com : {0,1}* x {0,1}* — {0, 1}?*. The first A
bits of input, chosen uniformly at random, guarantee that the input message is
hidden in a very strong sense, as captured in the next definition.

Definition 2. Given an adversary A, we define the two following quantities:

AdvB™ (A) = Pr[com(r,x) = Com(r,x') | (r,x,r',x') + A(lA)};

AdvHide(A x, x/ Pr [A(Com(r,x)) = 1} — Pr [A(Com(r, x')) = 1] ‘

):‘rH{O,l}* r« {0,1}*

We say that Com is computationally binding if, for all polynomial-time
adversaries A, the quantity /—\de'"d(/—\) is negligible in A. We say that Com is
computationally hiding if, for all polynomial-time adversaries A and every pair
(x,x'), the quantity Adv™™(A) is negligible in \.

Informally, the two properties defined above ensure that nothing about the

input is revealed by the commitment and that, furthermore, it is infeasible to
open the commitment to a different input.

3 The New Scheme

We begin by describing the new Sigma protocol with helper, below.

Public Data
Parameters ¢, n, k,w € N, a full-rank matrix H € Fé"fk)
Com : {0,1}* x {0,1}* — {0,1}**.

X . .
™ and a commitment function

Private Key

A vector e € FWV(g,n, w).
Public Key

The syndrome s = eH .

I. Setup (H)

Input: Uniform random seed € {0,1}*.

1. Generate u € Fy and & € FWV(g,n, w) from seed.
2. For all v € Fg:
i. Generate randomness r, € {0,1}* from seed.
ii. Compute ¢, = Com(r,,u + vé).
3. Set aux = {cy, | v € Fq}.



Il. Commitment (P1)
Input: H, e and seed.

1. Regenerate u € Fy and & € FWV(g,n,w) from seed.
2. Determine isometry 7 such that e = 7(€e).

3. Generate randomness r € {0, 17}A.

4. Compute ¢ = Com(r,7,7(u)H").

111, Challenge (V1)
Input: -

1. Sample uniform random z € Fj,.
2. Set ch = z.

IV. Response (P2)
Input: ch and seed.

1. Regenerate r, from seed.
2. Compute y = u + ze.
3. Set rsp = (r,r:,7,y).

V. Verification (V)
Input: H, s, aux, c and rsp.

1. Compute t = 7(y)H' — zs.

2. Check that Com(r,7,t) = c and that 7 is an isometry.

3. Check that Com(r.,y) = c.

4. Output 1 (accept) if both checks are successful, or 0 (reject) otherwise.

Fig. 1: Our proposed Sigma protocol with helper.

3.1 Security

We now proceed to prove that the scheme satisfies the three fundamental prop-
erties of a Sigma protocol with helper, which we described in Section 2.2.

Correctness: we have that 7(y) H' = 7(u+28)H' = 7(u)H' + 27(&)H"
and the second addendum is exactly zs, which yields 7(u)HT as expected.

Soundness: intuitively, this is based on the fact that enforcing 7 to be an
isometry is equivalent to checking that € has the correct weight. In fact, we want
to show that, given two transcripts that differ in the challenge, we are able to
extract a solution for SDP. Consider then the two transcripts (aux, c, z,r,r., 7,y)
and (aux,c, 2',r',r, 7 y') with z # 2/. Now let t = 7(y)H" — zs and t' =
7'(y')HT — z's. By the binding properties of the commitment (hash etc.), the
verifier only accepts if ¢ = Com(r,7,t) = Com(r’,7/,t’), so in particular this
implies 7 = 7" and t = t’. Since the helper computed everything honestly, and
aux is properly formed, the verifier also requires that ¢, = Com(r,,u + zé) =
Com(r,,y) and c,» = Com(r,,,u + z’€) = Com(r,,,y’), from which it follows,
respectively, that y = u+z€ and y’ = u+2’e€. We now put all the pieces together,
starting from t = t/, 7 = 7/ and substituting in. We obtain that 7(u+ z&)H' —
zs = 7(u+ 2’8)H" — 2’s, which implies that zr(&)H' — zs = 2/7(&)H' — 2’s.



Rearranging and gathering common terms leads to (z — 2/)7(€)H' = (2 — 2')s
and since z # 2/, we conclude that 7(6)H' = s. It follows that 7(&) is a solution
to SDP as desired. Note that this can easily be calculated since y —y’ = (z—2')é,
from which € can be obtained and hence 7(€) (since 7 is known).

Zero-knowledge: it is easy to prove that there is no knowledge leaked by
honest executions. To show this, we construct a simulator which proceeds as
follows. Take as input H,s a challenge z and the seed. The simulator then re-
constructs aux, r, and y = u + z€, having obtained u and € from the seed. It
then selects a random permutation 7 and computes t = 7(y)H'" — zs. Finally,
it generated a randomness r, calculates the commitment as ¢ = Com(r, 7, t), and
outputs a transcript (aux,c, z,r,r,, 7, y). It is easy to see that such a transcript
passes verification, and in fact it is identical to the one produced by an honest
prover, with the exception of m being used instead of 7.

3.2 Removing the Helper

We now explain how the protocol above can be converted into a standard Zero-
Knowledge protocol (without the artificial helper). The main idea is to use a
“cut-and-choose” technique, as suggested by Katz et al. [29]. The simplest way
to accomplish this is the following. The prover can simulate the work of the helper
by performing all the duties of the precomputation phase; namely, the prover is
able to generate a seed, run the Setup process to obtain aux and generate the
protocol commitment c. The verifier can then hold the prover accountable by
asking to do this several times, and then querying on a single random instance,
that gets executed. The other instances still get checked, by simply using the
respective seeds, which get transmitted along with the protocol response of the
one selected instance. To be more precise, we give below a schematic description
of the new protocol.

Public Data, Private Key, Public Key

Same as in Fig. 1.

I. Commitment (Prover)
Input: Public data and private key.
1. For all i € [0; N — 1]: v
i. Sample uniform random sged(l) € {0,1}*
ii. Compute au_x“) = H(seed™). _
iii. Compute ¢? = P;(H, e, seed(’)).
2. Send aux®, ... aux® "V and @, ..., ™Y to verifier.

1. Challenge (Verifier)
Input: -
1. Sample uniform random index I € [0; N — 1].

2. Sample uniform random challenge z € Fy.
3. Set ch ={I, z}.



I1l. Response (Prover)
Input: ch and seed D).

1. Compute rspt?) = Py(ch, seed D).
2. Send rsp'!) and {seed "}, to verifier.

IV. Verification (Verifier)
Input: H,s,aux® ... auxV =D @ cN=D rspM) and {seed(”}#].
1. For all i € [0; N —1],4 # I:
i. Compute aux” = H(seed ).
ii. Check that this is equal to aux?.
2. Set b =1 if all checks are successful, and b = 0 otherwise.
3. Compute b’ = Va(H, s, aux"), ¢ rsp)).
4. Output b b'.

Fig. 2: Generic transformation to transform Sigma protocol with helper into a zero-
knowledge proof.

It is possible to see that this new protocol yields a zero-knowledge proof of
knowledge. More specifically, we have the following result.

Theorem 1. Let P be a Sigma protocol with helper with challenge space C, and
let T be the identification protocol described in Figure 2. Then I is an honest-
verifier zero-knowledge proof of knowledge with challenge space [0; N —1] x C and

soundness error 1 1

€= max{N, |C|}

A proof was given in [17, Theorem 3] in all generality. In our case the challenge
space is Fy, a challenge is a random value z € Fy, and therefore we have |C| = q.
The protocol can then be iterated, as customary, to obtain the desired soundness
error of 27*; namely, the protocol is repeated t times, with t = [—)/loge]. Katz
et al. [29] also show how it is possible to beat parallel repetition, by using a more
sophisticated approach. In order to have a clearer description of the costs, we
postpone the discussion on this approach until the end of the next section.

3.3 Obtaining a Signature Scheme

The standard way to obtain a signature scheme from a ZKID is the Fiat-Shamir
transformation. In fact, this allows to securely convert an interactive scheme
(identification) into a non-interactive one (signature). To be precise, the following
theorem was proved in [3], stating the security of a generalized version of the
Fiat-Shamir transformation.

Theorem 2. LetZ be a canonical identification protocol that is secure against
impersonation under passive attacks. Let S = FS(Z) be the signature scheme
obtained applying the Fiat-Shamir transformation to L. Then, S is secure against
chosen-message attacks in the random oracle model.



The main idea is to replace the interaction with the verifier in the challenge step
with an automated procedure. Namely, the prover can generate the challenge by
himself, by computing it as a hash value of the message and commitment. The
signature will consist of the commitment and the corresponding response. The
verifier can then regenerate the challenge himself, and proceed with the same
verification steps as in the identification protocol. The process is summarized
below, where we indicate with ¢ the length of the challenge.

Public Data, Private Key, Public Key

Same as in Z, plus a collision-resistant hash function Hash™ : {0,1}* — {0, 1}*.

I. Signature (Signer)
Input: Public data, private key and message m.
1. Generate commitment cmt as in Z.
2. Compute challenge ch = Hash™ (m, cmt).
3. Produce response rsp as in Z.
4. Output signature o = (cmt, rsp).

Il. Verification (Verifier)
Input: Public data, public key, message m and signature o.
1. Parse o as (cmt, rsp).
2. Compute challenge ch = Hash™ (m, cmt).
3. Perform verification as in Z.
4. Accept or reject accordingly.

Fig. 3: The Fiat-Shamir transformation.

Note that the security result in Theorem 2 is intentionally vague, as the ex-
act result depends on the specific security notions defined for identification and
signature schemes. In our case, we rely on the fact that the underlying identifi-
cation scheme provides honest-verifier zero-knowledge, with negligible soundness
error, to achieve EUF-CMA security (see for example [30]). Moreover, note that,
as per theorem statement, security depends on the hash function being modeled
as a random oracle. This could, in principle, generate doubts about whether
such a scheme would still be secure in the scenario that considers an adversary
equipped with quantum capabilities. However, following some recent works [24,
31], we are able to claim that applying Fiat-Shamir to our identification scheme
is enough to produce a signature scheme whose EUF-CMA security is preserved
in the Quantum Random Oracle Model (QROM). The author in [17, Theorem
3] argues that the schemes satisfy the collapsing property, although this prop-
erty is not explicitly defined in the paper. Thus, we present its definition below,
following the generalized version of [24].

Definition 3. Let R: X xY — {0,1} be a relation with | X| and |Y| superpoly-
nomial in the security parameter \, and define the following two games for any
polynomial-time two-stage adversary A = (A1, Az),



Game 1: (S, X,Y) = Ay, r — R(X,Y), X = M(X),Y = M(Y),b— Ay(S, X,Y)

Game 2: (5, X,Y) —» A;,r —» R(X,Y), Y 5> MY),b— Ax(S,X,Y)

where X and Y are quantum registers of dimension | X| and |Y|, respectively,
M denotes a measurement in the computational basis, and applying R to quan-
tum registers is done by computing the relation coherently and measuring it. We
say that R is collapsing from X to Y, if an adversary cannot distinguish the two
experiments when the relation holds, i.e. if for all adversaries A

P P
A, Gar';e 1[7" =b= 1] o A,Gar:we 2[T =b= 1] < negl()\)
The above property allows to show that a Sigma protocol has quantum com-
putationally unique responses, which is necessary to achieve existential unforge-
ability in the QROM. We then have the following result.

Theorem 3. Let Com and PRNG be modeled as a quantum random oracles.
Then, the signature scheme obtained by applying the Fiat-Shamir transformation
to the scheme in Fig. 2 is EUF-CMA secure in the QROM.

Proof. We follow the steps of [17, Theorem 4], and note that these are standard
(for instance, they are similar to those given for the proof of the Picnic signature
scheme, see Section 6.1 of [24]). First, consider the setup algorithm, which con-
sists of expanding a randomness seed using PRNG, generating values accordingly,
and then committing to them using Com. Note that, since Com is modeled as a
quantum random oracle, then it is collapsing, as shown in [39]. As for PRNG, this
is injective with overwhelming probability (as the output is much longer than
the input), and so is the computation of the values derived from it. Since the
composition of collapsing functions is also collapsing, as shown in [25], and com-
posing a collapsing function with an injective one preserves collapsingness, we
conclude that the setup algorithm is overall collapsing. Next, we examine proto-
col responses: these consist only of preimages of Com(the commitment openings)
and preimages of the setup algorithm, and thus we are able to argue that the
protocol has quantum computationally unique responses, as mentioned above.
The thesis then follows by applying Theorems 22 and 25 from [24]. O

4 Communication Cost and Optimizations

Several optimizations are presented in [17], albeit in a rather informal way. More-
over, these are all combined together and nested into each other, so that, in the
end, it is quite hard to have a clear view of the full picture. In here, we strive to
present the optimizations in full detail, one at a time, show how they can all be
applied to our protocol, and illustrate their impact on the communication cost.
To begin, we analyze the communication cost of a single iteration of the protocol,
before any optimizations are applied. This consists of several components:

10



N copies of the auxiliary information aux(?), each consisting of ¢ hash values;

N copies of the commitment c(*), each consisting of a single hash value;

— the index I and the challenge z, respectively an integer and a field element;
— the protocol response (r,r,, 7,y), consisting of two A-bit randomness strings,
an isometry, and a length-n vector with elements in Fg;

— the N — 1 seeds {seed(i)}iﬂ, each a A\-bit string.

The bit-length of most of the objects listed above is self-explanatory. For
linear isometries, recall from Section 2.1 that these are composed by a permuta-
tion, combined with scaling factors. The former can be compactedly represented
with a list of entries using n[logn] bits, while the latter amount to n non-zero
field elements (each corresponding to [loggq]| bits). This leads to the following
formula for the communication cost (in bits):

2AgN +2AN + [log N+ [logq] + 2

L 1 L 1 L
Gy €0y T PR A
+ n([logn] + [logq]) +nflogq] + A(N — 1), (1)
I T I y {seed®}; 1

where all logarithms are assumed to be in base 2. Note that we have chosen
to leave the above formula in its unsimplified version, in order to highlight all
the various components. This will be helpful when analyzing the impact of the
different optimizations.

Protocol Commitments. The first optimization that we discuss regards the
commitments c¥; we choose to present this first, because it involves the first
verifier check, and also because it can serve as a blueprint for other optimizations.
Now, note that the prover transmits N copies of ¢, but only one of them is
actually employed in the verification (the one corresponding to instance I). It
follows that the transmission cost can be reduced, by employing a Merkle tree
T of depth d = [log N, whose leaves are associated to c(®, ... c(N=1),

To be more precise, we define a function MerkleTree, that uses a collision-
resistant hash function Hash™® : {0,1}* — {0,1}?*, and, on input a list of
elements (ag,...,a:_1), generates a Merkle tree in the following way. First,
generate the leaves as

Td,l = Hashtree(al) (2)

for 0 < 1 < 2% — 1. Then, the internal nodes are created, starting from the
leaves and working upwards, as

Tuy = Hash™ (T 1 ]| Tur1,2041) (3)

for 0 <u < dand 0 <1 < 2% —1. Only the root of the tree, root = T,
needs to be initially transmitted to the verifier; the prover will then include the

11



authentication path of the tree in his response, after receiving the challenge. By
authentication path, we mean the list of the hash values corresponding to the
siblings of the nodes on the path from the leaf to the root. This can be used
as input to a function ReconstructRoot, together with the corresponding leaf, to
recalculate root, by using the supplied nodes inside (3). In our case, using a tree
T. = MerkIeTree(c(O), . 7C(N_l)) and transmitting only its root and a path, the
component 2AN in Equation (1) is reduced to 2A(1 + [log N1).

Auxiliary Information. We now illustrate how to deal with the cost of trans-
mitting the N copies of the auxiliary information aux(®. This can be greatly
reduced, using two distinct optimizations.

First, notice that only one out of the ¢ commitment values is employed in a
single protocol execution, namely, in the second verifier check. This means that
we can again use a Merkle tree, with a setup similar as the previous optimization;
in this case, the leaves will be associated to the values {c, | v € F,}. Thus, once
more, only the root needs to be transmitted initially, and the authentication
path can be included in the response phase. Accordingly, the component 2 gV
in Equation (1) is reduced to 2AN (1 + [log q]).

Furthermore, we can look at the previous improvement in another light: only
one of the N instances is actually executed, while the other ones are simply
checked by recomputing the setups using the seeds. Thus, there is no need to
transmit all N copies of aux(¥), even in the above simplified version consisting of
root + path. Instead, the prover can compute a hash of the roots, send it to the
verifier, and include in his response only the authentication path for instance I. In
the verification phase, the root for instance I is computed via protocol execution,
while the other roots are recomputed via the seeds {seed(i)}# 1; then, the verifier
hashes the newly-computed roots and checks the resulting value against the
transmitted one. In the end, with this second technique, the component 2AN (14
[log q]) that we previously obtained is reduced to 2A(1 + [logq]).

Seeds. We are going to use a binary tree again, to reduce the communication
cost associated with the N — 1 seeds sent by the prover along with his response.
However, this is not going to be a Merkle tree; instead, in this case, the tree is
built starting from the root (i.e., the opposite of what one does to build Merkle
trees). The prover begins by choosing a random seed to be the root of the tree.
He then uses a pseudo-random generator PRNG : {0,1}* — {0,1}2* to generate
internal nodes.

To be precise, we define a function SeedTree that, on input seed, generates
a full binary tree as follows. First, set T ¢ = seed. Then, on input a node T}, ,
returns two nodes

(Tut1,21||Tus1,2141) = PRNG(T, 1)
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for0 <u<d—1and 0 <[ <2%—1, where d = [log N]. In the end, the
tree will produce N values as leaves, which are going to be exactly the N seeds
to be used in the protocol. Now, one seed is used and the remaining N — 1 need
to be made available to the verifier. Indeed, seed; should not be revealed, so
the prover cannot transmit the root of the tree. Instead, the prover transmits
the list pathgy of the d internal nodes that are “companions”, i.e. siblings to
the parents (and grandparents etc.) of seed;. An illustration is given in Fig. 4.
With this technique, the component A(N — 1) in Equation (1) is reduced to just
A[log N|. For more details about the “Seed Tree” primitive, we refer to [18],
where an extensive treatment is given.

Fig. 4: Example of binary tree for N = 8. The chosen seed (in green) is used and
not revealed. The prover transmits the red nodes and the verifier can generate the
remaining seeds (but not the chosen one) by applying PRNG to T50 and 71, (and
hence to T»,2 and T» 3). The nodes generated in this way are colored with in gray. The
leaves obtained are highlighted with the thick line.

Executions. We are now ready to discuss the more sophisticated approach of
Katz et al. [29], which will yield better performance compared to a simple par-
allel repetion of the protocol. The main idea is to modify the “cut-and-choose”
technique as follows. Currently, the protocol precomputes N distinct instances
and only executes one, then repeats this process ¢ times; thus, one has to pre-
compute a total of tIV instances, out of which only ¢ are executed. As mentioned
above, this leads to a soundness error of 27* = &!, where ¢ = max{1/N,1/q}.
¢ = 1/N. Instead, the same soundness error can be obtained by having a larger
number of instances, say M, but executing a subset of them, rather than just
one; this entirely avoids the need for repetition. In fact, as explained in [17], the
soundness error, in this case, is bounded above by
(3=)
max ———
e€|0,s] (As/l)qs_e

(4)
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where s is the number of executed instances (which are indexed by a set S C
{0,...,M — 1}) and e < s is a parameter that indicates how many instances
are incorrectly precomputed by an adversary. Note that, for these instances,
the adversary would not be able to produce values seed;, and therefore, the
only chance he has to win, is if the verifier chooses to execute exactly all such
instances; this happens with probability equal to (Z‘S/[:;)/ (AS/[ ) The remaining
term in Equation (4) is given by the probability of answering correctly (which
is 1/¢) in each of the remaining s — e instances. For a formal proof of this fact,
we refer the reader to [29).

In terms of communication cost, the total amount for the method using plain
parallel repetition is given by ¢ times the cost of one execution, refined with the
previous optimizations. This is given (in bits) by

t<2)\(1 + Mog q]) +2X(1 + log N1) + A[log N + c) (5)
{aux(®)} {c®} {seed}izs

where we have simplified to C.. = 2\ + [log N] 4+ n[logn] + (2n + 1)[log q] the
cost of transmitting the challenge and response, which is fixed. In comparison,
with the new method, the various tree roots need only be transmitted once. This
would lead to the following total cost (again, in bits)

2M(1 + s[log q]) + 2X(1 + s[log M) + sA[log M| + sC..,. (6)
{aux(D} {c®} {Seed(i)}igzs

with C,. = 2\ + [log M| + nflogn] + (2n + 1)[log¢|. While the number of
instances necessarily increases (i.e. M > N), the number of executions remains
about the same as for the case of parallel repetition (i.e. s & t). Since the former
number appears only logarithmically in the cost, while the latter is linear, the
above optimization allows to greatly reduce the total number of setups needed
(from tN down to M) without increasing communication cost.

It is worth commenting on the behavior of some of the logarithmic terms
in Equation (6), which correspond to the different trees used in the various
optimizations. First of all, since the executed instances are chosen among the
same set, all of the commitments {c(¥} are taken from a single tree. In this
case, the different authentication paths will present some common nodes, and
one could think that fewer nodes are necessary in practice. However, considering
the ratio of s to M, such an intersection is rather small and would probably not
lead to a meaningful reduction in cost. Thus, for ease of analysis, we choose to
leave the term sA[log M| as it is, which is an upper bound.

For the tree of the {seed(i)}, instead, there is a noticeable cost reduction. In
this case, in fact, it is not necessary to send multiple paths. Instead, the required
M — s seeds can all be obtained in batch using a variable number of nodes, which
depends on the position of the chosen leaves; an illustration is given in Fig. 5.
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With simple computations, one can find that, in the worst case, the number of
nodes which must be transmitted is given by

2111 1 s(log(M)] — [log(s)] — 1)

Conservatively, we will then estimate the cost as A times this number, and sub-
stitute this in Equation (6), obtaining the final cost formula (again, in bits):

2M\(1 + s[log q]) 4+ 2A(1 4 s[log M)
T eeoy <y '
+ M@ 1 g([log(M)] — [log(s)] — 1)) + 5Cr. (1)

L
{seed}, ¢

To visually illustrate the particularity of this construction, we provide an
example in the next figure.

(a) (b)

Fig. 5: Example of two binary trees for M = 8,s = 3. Color codes are the same as in
Figure 4. For tree (a), it is necessary to transmit 4 nodes, whereas for tree (b), only 2
nodes need to be transmitted.

To give a complete picture, that sums up all the optimizations we consider,
we present a schematic description below.

Public Data

Parameters ¢,n,k,w € N, a full-rank matrix H € , a commitment function
Com : {0,1}* x {0,1}* — {0,1}** and a collision-resistant hash function Hash™°* :
{0, 13 — {0,132,

an7k>xn

Private Key
A vector e € FWV(gq,n, w).

Public Key

The syndrome s = eH " .
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I. Commitment (Prover)
Input: H and e.

1. Sample uniform random seed € {0, 1}*.
2. Compute seed® ... seed™ 1 = SeedTree(seed).
3. Foralli € [0; M —1]:
i. Compute aux” = H(seed®).
1. Build tree Ta(ﬁ = MerkIeTree(aux(i)) and call rootgf& its root.
4. Compute h = Hash™*(root{s), . . ., root{h ).
5. For all i € [0; M — 1]:
i. Compute c¥ = P;(H, e, seed?).
6. Build tree T. = MerkleTree(c”, ..., c™ =) and call root. its root.
7. Send h and root. to verifier.

Il. Challenge (Verifier)

Input: -
1. Sample uniform random S C [0; M — 1] with |S| = s.
2. For all j € S:

i. Sample uniform random PACKS F,.
3. Set ch = {5, {z"};es}.

I1l. Response (Prover)
Input: ch and {seed?)}cs.
1. For all j € S: _ _ _
i. Compute rspt) = P;(z“%seed(”)'.
2. Send {rsp?},cs, {path!)},cs, {path!)},cs and path,, to verifier.

aux

IV. Verification (Verifier)
Input: H,s, h, roote, {rsp'V };es, {path'?)};cs, {path!? } ;s and path__.
1. For all j € S:
i. Compute t) =70 (y@)HT — 20)g,
ii. Compute c) = Com(r(j)ﬁ,(j) t(j>).
iii. Compute root. = ReconstructRoot(path?), c(?)).
iv. Check that this is equal to root..
2. Set b =1 if all checks are successful, and b = 0 otherwise.
3. Forallj€S: ,
i. Compute ci@.) = Com(ry),y(j)).
ii. Compute roote) = ReconstructRoot(path{) c%)).
4. For all j ¢ S: -

i. Recover seed<j> from path

seed*
ii. Compute aux"?) = (@U)).
ili. Build tree Ty = MerkleTree(aux"?)) and call mgﬂl its root.
5. Compute h = Hash(ﬁggi, e ,mgﬂf—”)

Set b =1 if h = h and b’ = 0 otherwise.
7. Output b ¥'.

o

Fig. 6: The optimized zero-knowledge proof.
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5 Practical Considerations

We now move on to a discussion about practical instantiations. We start by
summarizing some important facts about SDP.

As a first consideration, note that, once one fixes the code parameters (i.e.,
the values of ¢, k and n), the difficulty to solve SDP depends heavily on the weight
w of the searched solution. Generically, hard instances are those in which the
ratio w/n is outside the range [q(;ll(l — %), q;ql + %] (for a detailed discussion
about this topic, we refer the interested reader to [22, Section 3]). Roughly
speaking, the problem is hard when the weight of the solution is either high or
low: in the first case SDP admits multiple solutions, while in the latter case we
essentially expect to have a single solution. In this paper we will consider the low
weight regime: as it is essentially folklore in coding theory, for random codes the
hardest instances are obtained when w is close to the Gilbert-Varshamov (GV)

distance, which is defined as

d—1
d(g,n,k) =max{d €N Z (7;) (g—1) <q**

Jj=

In such a regime, the best SDP solvers are known as ISD algorithms, as we
mentioned in Section 2.1. Introduced by Prange in 1962 [36], ISD techniques have
been characterized by a significant interest along the years, which has ultimately
led to a strong confidence about their performance. In particular, for the case of
non-binary codes, the state of the art is represented by Peters’ algorithm [35],
proposed in 2010 and still unbeaten in practice. In our scheme we will always
set w = d(g,n, k) and, to guarantee a security of A bits, will choose parameters
¢, n and k so that the complexity resulting from Peters’ ISD [35] is at least 2*.

Taking the above reasoning into account, we have devised several parameters
sets, for different values of M. The resulting parameters are reported in Table 1,
below.

l M s ‘ g n k w ‘Pk size (B) Signature size (kB)‘

512 23| 128 220 101 90| 104.13 27.06
1024 19| 256 207 93 90 114 23.98
2048 16| 512 196 92 84 117 21.22
4096 14|1024 187 90 80| 121.25 19.76

Table 1: Parameters for the proposed instances, for different values of M.

We observe that our scheme offers an interesting trade-off between the sig-
nature size and the computational efficiency: increasing M leads to a significant
reduction in the signature size, but this comes at the cost of an increase in the
number of operations for signing and verification. Indeed, we expect the compu-
tational overhead to be dominated by the computation of hash functions, whose
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number grows proportionally to Mg (these are required to obtained the M val-
ues of {aux(¥} ). Optimization of the scheme can leverage a choice of efficient
primitives for such short-input hashes. In addition, we note that these hashes
operate on independent inputs, so software and hardware performance can enjoy
potential parallelization efficiency.

Remark 1. We note that, in order to decrease the algorithmic complexity of
the scheme, one can reduce the size of the challenge space. Recall that, in the
commitment phase, the prover uses all the values from F, to prepare the values
aux(®: this means that, for each setting, the prover has to compute a Merkle tree
having ¢ leaves in the base layer. The same operations are essentially repeated
by the verifier and, as we have already said, we expect this step to be the most
time-consuming. Indeed, to select the challenges (and consequently, to prepare
the aux(® values), one can use a subset C' C F,, of size ¢’ < ¢. By doing so, the
computation cost will decrease greatly. On the other hand the soundness error
will also change, since in (4) we need to replace ¢ with ¢/, and thus the code
parameters may have to change accordingly; however, this has very little impact
on the communication cost, which will essentially remain unchanged (actually,
it may become slightly smaller if representing the challenges requires fewer bits).

Remark 2. We would also like to point out that, while we have chosen all values
of ¢ that are powers of 2, this does not have to be the case. For the smallest
parameter sets, for example, we estimate that a practical choice for the value of ¢
would be either ¢ = 28 or the prime ¢ = 251. In both cases, the field arithmetic in
the chosen field F; could be implemented efficiently. For example, for the case ¢ =
28 note that Intel has recently included (as of microarchitecture codename ”Ice
Lake”) the Galois Field New Instructions (GF-NI). These instructions (namely
VGF2P8AFFINEINVQB, VGF2P8AFFINEQB, VGF2P8MULB) allow software to
computed multiplications and inversions in Fys over the wide registers that are
available with the AVX512 architectures.

To explain the potential of our scheme, we present next a comparison with
the current scenario of code-based signature schemes. Note that most of the
considered schemes make use of a public matrix which, however, does not depend
on the private key. As suggested, for instance, in [6], this matrix can be generated
from a seed and, consequently, its size can be excluded from the calculations
relative to the public key (it is instead included in the column “Public data”).
We have taken this into account to compute the various numbers for the schemes
that we consider in Table 2. Note that the original papers of Durandal [6] and
LESS-FM [11] already do this, while we have recomputed the public key size for
the following schemes®: Stern [38], Veron [40], CVE [20] and ¢cRVDC [13]. In the
comparison we have also included Wave [22], which is based on the hash-and-sign
framework and does not make use of any additional public matrix.

5 For a comprehensive list of these algorithms parameters, we refer the interested
reader to Table 2 in https://arxiv.org/pdf/1903.10212.pdf, which is the online
version of [13]. The public data expression for Stern, Veron, CVE and ¢cRVDC is
given by, respectively, k(n — k)log,(q), k(n — k)logs(q), k(n — k) and kmlog,(q).
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Security|Public Public Sig. PK + Sig. Security

Scheme Level | Data Key Assumption
Stern 80 18.43 0.048 113.57 113.62 |Low-weight Hamming
Veron 80 18.43 0.096 109.06 109.16 |Low-weight Hamming
CVE 80 5.18 0.072 66.44 66.54 Low-weight Hamming
Wave ‘ 128 - 3205 1.04 3206.04 |High-weight Hamming

cRVDC 125 0.050 0.15 22.48 22.63 Low-weight Rank
Durandal - I 128 307.31 15.24 4.06 19.3 Low-weight Rank
Durandal - 1T 128 419.78 18.60 5.01 23.61 Low-weight Rank
LESS-FM -1 128 9.78 9.78 15.2 24.97 Linear Equivalence
LESS-FM - 11 128 13.71 205.74 5.25 210.99 Perm Equivalence
LESS-FM - III| 128 11.57  11.57 10.39 21.96 Perm Equivalence

Table 2: A comparison of public keys and signature sizes with other code-based sig-
nature schemes. All sizes are in Kilobytes (kB).

The results in Table 2 capture the status of code-based-signatures, high-
lighting the advantages and disadvantages of each type of approach. For the
schemes that work with multiple repetitions of a single-round identification pro-
tocol (namely, Stern, Veron, CVE and ¢cRVDC), we have extremely compact
public keys, at the cost of rather large signatures. In this light, our scheme
presents a clear improvement, as the signature size is smaller in all cases. On the
other hand, the most compact signatures are obtained with Wave which, unfortu-
nately, needs very large public keys. Durandal, which follows a modified version
of the Schnorr-Lyubashevsky approach [32], yields very good performance over-
all; however, like cRVDC, the scheme is based on the rank metric, which relies on
relatively recent security assumptions, which are sometimes ad hoc and whose
security is not yet completely understood [23, 9, 10, 8]. Still, our work com-
pares well with such schemes, for example when considering the sum of public
key and signature sizes, a measure which is relevant in several situations where
key/signature pairs are transmitted, as in TLS. Finally, we have included num-
bers for the LESS-FM scheme, which is constructed via a very different method,
exploiting a group action associated to the notion of code equivalence. Thanks
to this, the scheme is able to leverage various techniques aimed at manipulating
public key and signature size; this leads to a tradeoff between the two, with an
overall high degree of flexibility (as is evident from the three parameter sets).
In all cases, our scheme presents a clear advantage, especially when considering
the size of the public key.
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