
Improve Neural Distinguisher for Cryptanalysis∗

ZeZhou Hou, JiongJiong Ren and ShaoZhen Chen

Information Engineering University, ZhengZhou, P.R.China, jiongjiong_fun@163.com

Abstract. At CRYPTO’19, Gohr built a bridge between deep learning and cryptanal-
ysis. Based on deep neural networks, he trained neural distinguishers of Speck32/64
using a plaintext difference and single ciphertext pair. Compared with purely differ-
ential distinguishers, neural distinguishers successfully use features of the ciphertext
pairs. Besides, with the help of neural distinguishers, he attacked 11-round Speck32/64
using Bayesian optimization. At EUROCRYPTO’21, Benamira et al. proposed a
detailed analysis about the inherent workings of Gohr’s distinguishers. Although
their work opened a new direction of machine learning aided cryptanalysis, there are
still two research gaps that researchers are eager to fill in. (1) How to further improve
neural distinguishers? (2) Can we conduct effective key recovery on large-size block
ciphers adopting neural distinguishers?
In this paper, we propose a new algorithm and model to improve neural distinguishers
in terms of accuracy and the number of rounds and present effective neural aided
attack on large-size block ciphers. First, we design an algorithm based on SAT to
improve neural distinguishers. With the help of SAT/SMT solver, we obtain new
effective neural distinguishers of SIMON using the input differences of high-probability
differential characteristics. Second, we propose a new neural distinguisher model using
multiple output differences. Inspired by Benamira’s work and data augmentation in
deep learning, we use the output differences to exploit more derived features and train
neural distinguishers, by splicing output differences into a matrix as a sample. Based
on the new model, we construct neural distinguishers of SIMON and Speck with
round and accuracy promotion. Utilizing our neural distinguishers, we can distinguish
reduced-round NSA block ciphers from pseudo-random permutation better.
Moreover, we perform practical key recovery attacks on different versions of SIMON.
For SIMON32/64 and SIMON48/96, we append additional 2-round optimal charac-
teristics searched by SAT/SMT solver to the beginning of our neural distinguishers
and attack 13-round SIMON32/64, 14-round SIMON48/96 using Gohr’s key recovery
frame. For SIMON64/128, it costs too much time in precomputation, especially in
wrong key response profile, which is unbearable for most of researchers. However,
we show with experiments that the distribution of the wrong key profile is pseudo-
periodic. Based on this, we make use of partial wrong key profile to describe the
whole wrong key response profile, and then propose a generic key recovery attack
scheme which can attack large-size block ciphers. As an application, we perform a
key recovery attack on 13-round SIMON64/128 using a 11-round neural distinguisher.
All our results are confirmed with experiments (source code available online).
Keywords: Deep Learning · Block Cipher · Neural distinguisher · Key Recovery ·
SIMON · Speck

1 Introduction
As a chosen plaintext attack, differential cryptanalysis is one of the most powerful analysis
techniques used in modern block ciphers. It can achieve key recovery attacks utilizing

∗All the code and data used in this paper will be released on Github

mailto:jiongjiong_fun@163.com

2 Improve Neural Distinguisher for Cryptanalysis

plain-cipher difference pair, which is expressed in input difference and output difference.
Differential cryptanalysis has been introduced in 1990 by Biham and Shamir in [BS91] to
break the DES block cipher. This statistical cryptanalysis exploits how a specific input
difference propagates through the cipher into the output difference. The most important
step of differential cryptanalysis is to find differential trails with high probabilities. This
technique has been widely applied to block ciphers and hash functions, and many new
constructions of these primitives are specifically designed to withstand this attack. In
traditional differential cryptanalysis, it is key to construct high-probability differential char-
acteristics. Recently some tools for automatically searching for differential distinguishers
were presented [SHY16,KLT15]. In traditional cryptanalysis, we normally use the optimal
differential characteristics or the optimal differentials, which causes that only an output
difference is considered given a fixed input difference. But the differential distribution also
contains some other information about block cipher, which has not been fully utilized in
traditional cryptanalysis. Therefore, these still cannot fully make use of the differential
characteristics and differential distribution.

Deep learning (DL) has played an important role in many fields, but its development
is bumpy. In 1943, McCulloch and Pitts [MP43] proposed the MP neuron model, which
was an abstract and simplified model constructed according to the structure and working
principle of biological neurons. It opened the simulation of the neural network, but
adjusting the weights relied heavily on manual work. In 1958, on the basis of MP neural,
Rosenblatt [Ros58] proposed the single-layer feedforward neural network named single-layer
perceptron, which can distinguish between triangle, square and other basic shapes. In
1986, the second generation of neural networks was put forward by Rumelhart [RHW86].
It changed the single fixed feature layer in the first-generation neural network to multiple
hidden layers, using Sigmoid as the activation function. At the same time, it used the idea
of Back Propagation, which effectively solved the problem that the first generation only
can be used in linear classification. However, shallower neural network cannot complete
the corresponding task with the amount of data increasing. In 2006, Hinton et al. [HOT06]
put forward the concept of deep learning for the first time, which played a huge role.
With the development of deep learning, there are diverse neural networks used in diverse
fields [LGTB97,WZ89,GPM+14].

Related work: Our work is most closely related to combine deep learning and
differential cryptanalytic techniques. At Crypto2019, Gohr [Goh19] showed that deep
learning can produce very powerful cryptographic distinguishers and indicated that the
neural distinguisher was better than the distinguisher obtained by traditional approach.
He used an input difference to train neural distinguishers of Speck32 [BSS+13] based on the
deep residual neural networks (ResNet) [HZRS16]. If the accuracy of a neural distinguisher
exceeds 0.5, the neural distinguisher can distinguish target cipher E from pseudo-random
permutation. At the same time, he developed a highly selective key search policy based
on a variant of Bayesian optimization by using neural distinguishers. With this policy,
Gohr described a practical key recovery attack on 11-round Speck, and explained that
the complexity of the attack based on deep learning was much lower than the traditional
attack. But there are some questions worthy of exploring:

Why are neural distinguishers effective? How to improve neural distin-
guishers in terms of accuracy and the number of rounds? Can we use neural
distinguishers to attack large-size block ciphers?

In [CY21c], Chen et al. designed a new neural distinguisher model using multiple
ciphertext pairs instead of single ciphertext pair. The new neural distinguisher can be used
to improve the key recovery attack on 11-round Speck32/64. Ulteriorly, it makes sense
to explore theoretical attacks using neural distinguishers. Chen et al. proposed neural
aided statistical attack (NASA) for cryptanalysis in [CY20,CY21b], which makes the use
of the neural distinguishers not limited to practical attacks. By a theoretical attack based

ZeZhou Hou, JiongJiong Ren and ShaoZhen Chen 3

on neural distinguishers, Chen et al. attacked reduced-round Speck32/64 and Speck48/x,
where the computation complexity of their attack is similar to the previous traditional
attacks. Chen’s work extends the scope of application of the neural distinguishers from
practical attack to theoretical attack, and the new model is effective to improve accuracy
of neural distinguishers. In [CY21a], Chen et al. explained phenomena related to neural
distinguishers via EDLCT (Extended Differential-Linear Connectivity Table). Chen et
al. partially answered the second question from the perspective of data format. But
they don’t explore to improve the accuracy from the perspective of input difference or
output difference, which is not conducive to finding a longer-round neural distinguisher.
Meanwhile, a study into the inherent workings of neural distinguisher is of both theoretical
and applied interest. In [BGPT21], Benamira et al. proposed a detailed analysis and
thorough explanations of the inherent workings of Gohr’s distinguishers. They showed that
Gohr’s neural distinguisher was in fact inherently building a very good approximation of
the Differential Distribution Table (DDT). Based on this, Benamira et al. also constructed
a 8-round distinguisher of SIMON32/64. In [BGPT21], Benamira et al. answered the first
question and partially answered the second question. Whereas now, there are no related
effective key recovery attacks on large-size block ciphers using neural distinguishers. And
further improvement of the neural distinguishers is still worth studying. Because if the
distinguishing accuracy is promoted, the complexity of key search can also be reduced.
Inspired by their interesting work, our core target is to further improve neural distinguishers
and propose effective key recovery policy to attack large-size block ciphers using neural
distinguishers.

Our contribution: In this paper, our contributions are as follows:
• Design an algorithm based on SAT to improve neural distinguishers.

In [Goh19], Gohr chose (0x40, 0x0) as the input difference to train his distinguisher
because it transitioned deterministically to the low-weight output difference. But
such input differences are hard to find, which makes it difficult to find effective distin-
guishers. To solve this problem, we propose an algorithm based on SAT to improve
neural distinguishers. With the help of this automatic search tool, we search for
the exact nr-round differential characteristics with probability

[
2− n

4 × Pmax, Pmax
]

and choose their input differences to train nr-round neural distinguishers, where
Pmax is the optimal probability, n is the block size. Utilizing the algorithm, we
obtain some neural distinguishers of 9-round SIMON32/64, 10-round SIMON48/96
and 11-round SIMON64/128 with the accuracy exceeding 57% for the first time.
Compared with the choice of input difference presented in [BGPT21], our algorithm
obtains higher-accuracy neural distinguishers.

• Propose a new neural distinguisher model using multiple output differ-
ences and construct neural distinguishers for NSA block ciphers. In image
recognition based on deep learning, a deep learning researcher will enhance some
objective features of pictures so that the neural network can learn more effective
features, which will improve the accuracy of the network. In [BGPT21], Benamira et
al. explored the connection between Gohr’s distinguisher and DDT, which enlightens
us the output difference is helpful to improve neural distinguishers. This also implies
that we can selectively enhance certain features from output difference to improve
neural distinguishers. Unlike [Goh19, CY21c] using ciphertext pairs as training
data, we use the output differences to train neural distinguishers, by splicing output
differences into a matrix as a sample. For a matrix, we treat it as an image and
each output difference of the matrix is treated as an objective feature. Our goal
is not only to learn each objective features, but to learn the connections between
output differences. If all output differences of the matrix are from the same input
difference, the matrix will be labeled 1, otherwise it will be labeled 0. Thanks to the
new model learning more features than using ciphertext pairs, we improve neural

4 Improve Neural Distinguisher for Cryptanalysis

distinguishers of SIMON32/64, SIMON48/96 and SIMON64/128. Besides, we obtain
new neural distinguishers of 8-round Speck32/64, 7-round Speck48/96 and 8-round
Speck64/128, which is better than the existing neural distinguishers. Using our
improved neural distinguishers, we can distinguish reduced NSA block ciphers from
pseudo-random permutation better. As a footnote, we show with experiments that
the improvement in the accuracy of distinguishers is not due to the increase in the
number of plaintexts, but learning more features from the relationship between the
output differences. The summary of our neural distinguishers together with other
neural distinguishers is shown in Table 1.

Table 1: Comparison of neural differential distinguishers

Block Cipher Source of Neural Distinguisher/Input difference Round Accuracy

SIMON32/64

[BGPT21] 8 82.2%
[ALLW14]1 9 59.07%
[SZM20]2 9 63.73%
Section 3 9 59.77%
Section 4 10 61.09%

SIMON48/96

[ALLW14]1 9 50.22%
[BGPT21]3 10 53.49%
Section 3 10 57.89%
Section 4 11 81.40%

SIMON64/128
[ALLW14]1 10 58.61%
Section 3 11 59.72%
Section 4 12 69.57%

Speck32/64

[Goh19] 7 61.6%
[CY21c]2 7 70.74%
Section 4 7 88.19%
[Goh19] 8 51.40%
Section 4 8 56.49%

Speck48/96 [CY21b] 5 - 4

Section 4 7 63.43%
Speck64/128 Section 4 8 63.20%

1 In [ALLW14], Abed et al. constructed differential characteristics of SIMON. We train neural distin-
guishers by choosing the input differences in [ALLW14].

2 We choose the highest-accuracy neural distinguisher in [SZM20,CY21c].
3 We train neural distinguishers using Benamira’s method presented in [BGPT21].
4 Chen et al. used 5-round neural distinguisher to attack Speck48/x, but the accuracy were not presented
in [CY21b].

• Perform key recovery attacks on reduced-round SIMON32/64 and SI-
MON48/96. As applications of our neural distinguishers, we perform key recovery
attacks on 13-round SIMON32/64 and 14-round SIMON48/96 with the help of Gohr’s
scheme. Similar to Gohr’s work, we first obtain the wrong key response profile. Then
we search for the optimal 2-round characteristics by SAT so that we can append
two additional rounds to the beginning of neural distinguishers in Section 3. Finally,
we attack 13-round SIMON32/64 and 14-round SIMON48/96 based on extended
neural distinguishers. All of our attacks are performed on a workstation configured
with Intel i9-10900K and Nvidia TITAN RTX. Our attacks cost about 23s and
1550s and each time to recover the final subkey for 13-round SIMON32/64 and
14-round SIMON48/96. The average time complexity is no more than 216.4 13-round
encryption of SIMON32/64 and 222.21 14-round encryption of SIMON48/96. The two

ZeZhou Hou, JiongJiong Ren and ShaoZhen Chen 5

attacks need about 212.5 and 212.8 ciphertext pairs respectively, which is much lower
than the complexity of traditional differential cryptanalysis. It is worth mentioning
that our attacks are all practical and the success rate of attacking SIMON32 is over
90%.

• Perform practical key recovery attack on reduced-round SIMON64/128.
Gohr’s framework is effective in key recovery of short-size block ciphers. Unfortunately,
it costs a lot of time in precomputation for large-size block ciphers, especially in
wrong key response profile. For SIMON32/64, it only spends about 1500s to obtain
the complete profile, while it spends more than 1300 days1 for SIMON64/128
on a fast graphics card of our system, which is unbearable for most researchers.
By experimentally observing the wrong key response profile of SIMON32/64 and
SIMON48/96, we find an interesting property that the distribution in the mean and
standard deviation of the wrong key is pseudo-periodic. In other words, we don’t
need to obtain the full wrong key response for large-size block ciphers. Based on
this, we design a generic algorithm to attack large-size block ciphers. Firstly, we
make use of partial wrong key profile to describe the whole wrong subkey response
profile. Once we get the complete profile portrayed partial profile, we can recover
partial subkey bits with Gohr’s key recovery policy. Then we guess the complete
subkey based on known subkey bits. As an application, we perform a key recovery
attack on 13-round SIMON64/128 using a 11-round neural distinguisher. The total
complexity is 225.700 and the data complexity is 213.24. It shows that our attack
scheme is effective in large-size block ciphers. This is the first attack based on neural
distinguisher for large-size block ciphers. Our results are shown in Table 2.

Table 2: Summary of attacks on SIMON32/64, SIMON48/96 and SIMON64/128.

Cipher Round Time complexity Data(CP) Source

SIMON32/64 11 230.9 225 [SZM20]
SIMON32/64 13 216.4 212.5 Subsection 5.2
SIMON48/96 14 222.21 212.8 Subsection 5.1
SIMON64/128 13 225.700 213.24 Subsection 6.2

Organisation of the paper: The remaining of this paper is organised as follows.
Section 2 reviews Gohr’s work. In Section 3, we design an algorithm based on SAT to
help us finding high-accuracy neural distinguishers. In Section 4, we propose a new neural
distinguisher model to ulteriorly improve neural distinguishers. Combined with the content
of Section 3, we perform key recovery attacks on 14-round SIMON48/96 and 13-round
SIMON32/64 in Section 5. In Section 6, we design a generic algorithm to attack large-size
block ciphers and attack 13-round SIMON64/128. Conclusions are drawn in Section 7
where we also suggest further work.

2 Preliminaries

To make it easier to read this paper, we first list the major notations. Then an overview
of Gohr’s work is given.

1 We calculate 216 wrong key response and estimate the time in 232 wrong key response.

6 Improve Neural Distinguisher for Cryptanalysis

2.1 Notations

SIMON2n/mn : SIMON acting on 2n-bit plaintext blocks and using a mn-bit key
Speck2n/mn : Speck acting on 2n-bit plaintext blocks and using a mn-bit key
⊕ : bitwise XOR
� : bitwise AND
∨ : bitwise OR
+ : addition modulo 2n
Sj : left circular shift by j bits
K : Master key
ki : i-round subkey ki = kn−1

i ||...||k0
i

2.2 Overview of Gohr’s Work

2.2.1 Gohr’s Distinguisher Model

Given a fixed input difference ∆ = (0x40, 0x0) and a plaintext pair
(
P 0, P 1), the resulting

ciphertext pair
(
C0, C1) is regarded as s sample. Each sample will be attached a label Y :

Y =
{

1, if P 0 ⊕ P 1 = ∆

0, else
. (1)

A neural network is trained over enough samples labeled 1 and 0. In addition, half
the training data comes from ciphertext pairs labeled 1, half from ciphertext pairs labeled
0. For these samples with label 1, their ciphertext pairs are from a specific distribution
related to the fixed input difference. For these samples with label 0, their ciphertext pairs
are from a uniform distribution due to their random input difference. If a neural network
can obtain a stable distinguishing accuracy higher than 50% on a testing set, we call the
trained neural network a neural distinguisher. In [Goh19], Gohr chose the deep residual
neural networks to train neural distinguisher and obtained effective neural distinguishers
of 5-round, 6-round, and 7-round Speck32/64.

In traditional differential attack, it is pivotal to distinguish encryption function from a
pseudo-random permutation, which is done with the help of the differential characteristic.
For a nr-round optimal characteristic ∆α 2−t

−−→ ∆β of a block cipher with block size n bits,
we calculate the output difference given the fixed input difference ∆α. If the ratio of the
output difference to ∆β is about 2−t, then we can distinguish the block cipher from a
pseudo-random permutation. This is called distinguishing attack for block ciphers.

For Gohr’s neural distinguisher, we can obtain N ciphertext pairs encrypted by the
input difference (0x40, 0x0). We input the N ciphertext pairs, and the neural distinguisher
will predict their labels. If the ratio of samples labeled 1 exceeds 0.5, we can distinguish the
block cipher and pseudo-random permutation and the neural distinguisher is effective. This
is called distinguishing attack based on neural distinguisher. In addition, it is obvious that
the higher the accuracy of the neural distinguisher, the better the effect of the distinguishing
attack. And the complexity of key search can also be reduced if the distinguishing accuracy
is greatly promoted. So it is necessary to improve neural distinguisher.

In [Goh19], Gohr explained the reason for choosing (0x40, 0x0) as the input difference
that it transitioned deterministically to the low-weight difference (0x8000, 0x8000). But it
is pretty hard to find such input differences unless the full differential distribution table
is used. However it is a time consuming task to calculate the full DDT, especially for
large-size block ciphers.

ZeZhou Hou, JiongJiong Ren and ShaoZhen Chen 7

2.2.2 Gohr’s Key Recovery Policy

The R-round neural distinguisher is used for a key recovery attack on (R + 1)-round
Speck32/64. In the attack, using the R-round neural distinguisher NDR, the key candidate
can be scored. A key guess is returned if its score exceeds a threshold λ. The key rank
score is formulated as

vk =
n∑
i=1

log2

(
Zki

1− Zki

)
, (2)

where k is the key candidate. Use k to decrypt all ciphertext pairs and Zki is the ith
R-round ciphertext pair’s output signal under the NDR.

Since the time of scoring all k (0 6 k < 216) is huge, Gohr searched for high-mark
candidate keys by iterative method based on Bayesian Optimization [ARG04]. In order
to generate new candidate keys in iterations, Gohr exploited the uneven distribution of
the output signal corresponding to the wrong key. For (R+ 1)-round Speck32/64, let C0
and C ′0 be a pair of (R+ 1)-round ciphertexts whose input difference is ∆α, and kR is the
real subkey. For δ ∈ GF (2)16, there is k′ = kR ⊕ δ. Use k′ as a subkey to decrypt the
ciphertext pair, and get the output signal of R-round neural distinguisher NDR as

Rδ

(
C0, C

′

0

)
= NDR

(
E−1
k′

(
C0, C

′

0

))
. (3)

Then Rδ
(
C0, C

′

0

)
can be regarded as a random variable related to δ, which follows a

normal distribution with mean µδ and standard deviation σδ. Using the difference in the
distribution of different wrong key, the guessed key can be generated. The iteration ends,
if the score of a candidate key exceeds threshold α.

In the attack scheme above, Gohr’s attack is shown as Algorithm 1.

Algorithm 1 [Goh19] Gohr’s Key Research for (R+ 1)-round Speck32/64
Input: Ciphertext pairs set C = {C0, C1, ..., Cn−1}, R-round neural distinguisher NDR,

number of candidates to be generated t, number of iterations l.
Output: Key set L.
1: S ← {k0, k1, ..., kt−1}, ki 6= kj if i 6= j
2: L← {}
3: for j ∈ {0, 1, ..., l − 1} do
4: Pi,k ← Decrypt1 (Ci, k) for all i ∈ {0, 1, ..., n− 1} and k ∈ S
5: vi,k ← NDR (Pi,k) for all i ∈ {0, 1, ..., n− 1} and k ∈ S
6: wi,k ← log2

(
vi,k

1−vi,k

)
for all i ∈ {0, 1, ..., n− 1} and k ∈ S

7: L← L||[(k,
∑n−1
i=0 wi,k) for k ∈ S]

8: mk ←
∑n−1
i=0 wi,k/n for k ∈ S

9: λk ←
∑t−1
i=0

(
mki

−µki⊕k

σki⊕k

)2
for k ∈

{
0, 1, ..., 216 − 1

}
10: S ← argsortk (λ) [0 : t− 1]
11: end for
12: return L

In Algorithm 1, the L||[(k,
∑n−1
i=0 wi,k) for k ∈ S] means adding [(k,

∑n−1
i=0 wi,k) for

k ∈ S] to L. And the argsortk (λ) means sorting k by the value of λ in descending order.
In addition, Gohr found that the output signal from R-round neural distinguishers will be
rather weak. Therefore, he used k neutral bits [BC04] to create from each plaintext pair a
plaintext structure consisting of 2k plaintext pairs that were expected to pass R-round
neural distinguisher. Given N ciphertext structures, his algorithm is firstly tried on each

8 Improve Neural Distinguisher for Cryptanalysis

structure, and then the best ciphertext structure is selected, which can enhance output
signal from R-round neural distinguisher to perform key recovery.

3 An Approach based on SAT to Improve Neural Distin-
guisher

In traditional differential cryptanalysis, it is a primary task to find a high-probability
differential characteristic, which takes advantage of the unevenness of the differential
distribution. The distribution of output differences is different for different input differences.
For a neural distinguisher, it actually learns the distribution of output difference given a
fixed input differences. Therefore, the input difference directly affects the accuracy of the
neural distinguisher.

In [Goh19], Gohr chose (0x40, 0x0) as the input difference to train the distinguisher
because it transitioned deterministically to a low-weight output difference. But such
input differences are hard to find, which makes it difficult to find effective distinguishers.
In [BGPT21], Benamira et al. chose the input difference from nr−1-round or nr−2-round
optimal differential characteristics for nr-round neural distinguishers.

In this section, we will introduce our algorithm for improving nr-round neural dis-
tinguishers by searching for the nr-round differential characteristics. With the help of
SAT/SMT solver, we search for high-probability differential characteristics with proba-
bility in

[
2− n

4 × Pmax, Pmax
]
, where Pmax is the optimal probability and n is the block

size. Using our algorithm, we can obtain high-accuracy neural distinguishers for 9-round
SIMON32/64, 10-round SIMON48/96 and 11-round SIMON64/128.

3.1 Generic Network Architecture

Gohr converted the distinguisher of ciphertext pairs into a binary classification problem.
His method is not only applicable to Speck, but also applicable to SIMON. With his
method, we can construct a generic network architecture for other ciphers. We refer
to [Goh19] for the description of the method of constructing the network architecture.

There are multiple neural networks available to train neural distinguishers, such as
MIP, ResNet and so on. We choose the ResNet to train a neural distinguisher.

Our networks comprise three main components: input layer, iteration layer and predict
layer, which is shown in Figure 1. The n in Figure 1 refers to the word size of SIMON2n/mn.
The input layer receives training data with fixed length. In the iteration layer, we use 5
residual blocks. In each residual block, we use two Conv1D layers, and each Conv1D layers
is followed by a batch normalization layer and a activation layer. After flattening data
from iteration layer, data will be sent into a fully connected layer. The fully connected
layer consists of a hidden layer and a output unit.

In our network, we choose that the kernel size of the first Conv1D layer is 1 and the kernel
size of other Conv1D layer is 3. In addition, the number of filters in each convolutional
layer is 2n and the padding method is SAME. At last, we train our network based on L2
weights regularization to avoid overfitting. The other details of the hyper-parameters used
are given in Table 3.

ZeZhou Hou, JiongJiong Ren and ShaoZhen Chen 9

Input:
(None,4n)

(None,4n)

(None,4,n)

(None,n,4)

(None,n,2n)

Input Layer

Reshape Permute Conv1D
Batch

Normalization

(None,n,2n)

Activation

(None,n,2n)

(a) Input Layer

(None,n,2n)

(None,n,2n)

(None,n,2n)

(None,n,2n)

(None,n,2n)

Conv1D
Conv1D

Batch
Normalization

(None,n,2n)

Activation

(None,n,2n)

Input:
(None,4n)

(None,4,n) (None,n,2n)

Input
Layer

Iteration
Layer

Output
Layer

(None,1)Iteration
Layer

Batch
Normalization

Activation
Add (None,n,2n)

(None,n,2n) X 5

(b) Iteration Layer

(None,n*2n)

(None,4n)

(None,4n)

(None,4n)

Dense_1

Batch
Normalization_

1
Activation_1Flatten

(None,n,2n)

Dense_2
(None,1)

Output

(c) Output Layer

Figure 1: Network Architecture

Table 3: List of Hyper-parameters

Hyper-Parameters Value

Batch Size 10000
Epochs 100
Train size 107

V alidation size 105

Regularization parameter 10−4

Optimizer Adam
Loss function MSE(mean-squared-error)

10 Improve Neural Distinguisher for Cryptanalysis

In Table 3, we choose the similar hyper-parameters as in Gohr’s choice, so we can ignore
the influence of the neural network and its parameters. After the neural distinguisher is
trained, we can use it to distinguish the output of target cipher with a given input difference
from random data. The higher its accuracy on the test set, the better it distinguishes
ciphertext data.

3.2 An Algorithm based on SAT to Improve Neural Distinguisher

SAT is the Boolean Satisfiability Problem. It is an NP-complete problem and considers
whether there is a valid assignment to Boolean variables satisfying a given set of Boolean
conditions. As the key issue of computer science and artificial intelligence, SAT solvers
have gained a lot of attention since it was proposed. It has great advantages with the
open source, good interface, high efficiency and perfect compatibility. There are many
cryptanalysis results based on SAT [MP13,KLT15,LWR16].

At present, there are two main ways to select the input differences of neural distinguish-
ers. One way is to directly choose an existing optimal differential characteristic [CY21c],
the other is to choose nr − 1-round or nr − 2-round optimal differential characteristics for
nr-round neural distinguishers [BGPT21]. But these methods cannot effectively promote
the distinguishing accuracy.

Taking into account the unevenness of the distribution of output differences for different
input differences, we decide to choose the input differences of high-probability differential
characteristics as the candidate differences. We search for high-probability differential
characteristic by a SAT-based automatic search tool, and train neural distinguishers
with these input differences of differential characteristics. Based on this, we design an
algorithm to help us search for neural distinguishers with higher accuracy, which is shown
in Algorithm 2. In Algorithm 2, we expand the search space of input difference by
expanding the range of the probability. We choose 2− n

4 × Pmax as the lower bound of the
probability, where the Pmax is the probability of the optimal differential characteristics.
By experimental experience, we find that if the differential probability is lower than
2− n

4 × Pmax, there are almost no high-accuracy neural distinguishers. So there is nearly
no need to spend time on the differential characteristics with the probability lower than
2− n

4 × Pmax.

Using the Theorem 3 in [KLT15] and open source SAT/SMT solver Z3 [dMB08], we
search for high-probability differential characteristics of SIMON. Then, with Algorithm 2,
we get the 9, 10 and 11 rounds neural distinguishers of SIMON32/64, SIMON48/96 and
SIMON64/128, respectively. This is the first time that there is a neural distinguisher of
11-round SIMON64/128. The results of the neural distinguishers are shown in Table 4.

ZeZhou Hou, JiongJiong Ren and ShaoZhen Chen 11

Algorithm 2 Search for neural distinguisher based on SAT
Input: Network Architecture Net, Cipher C with block size n bits, Round R.
Output: Neural distinguisher ND, Input difference of distinguisher Id.
1: Search for the optimal probability as Pmax
2: Search for the differential characteristics with probability in

[
2− n

4 × Pmax, Pmax
]
, and

save their input differences as DIFF
3: ND = []
4: Id = []
5: for d in DIFF do
6: S = C(d,R) #Generate train set using d as the input difference
7: V = C(d,R) #Generate test set using d as the input difference
8: Dd = Net(S)#Training using train data
9: accd = Evaluate(Dd,V)#Get the accuracy of the model Dd

10: if accd > 0.51 then
11: ND = ND || Dd

12: Id = Id || d
13: end if
14: end for
15: return (ND,Id)

In order to show that Algorithm 2 is effective, we use the other two methods [CY21c,
BGPT21] of selecting the input difference to train the neural distinguishers with the same
rounds. For the method presented in [CY21c], we choose (0x10100, 0x44040) in [ALLW14]
as input difference to train 9-round neural distinguisher. Besides, for the other method
presented in [BGPT21], we train 10-round neural distinguishers of SIMON48/96 using
9-round and 8-round optimal differential characteristics. And the specific results are shown
in Appendix B.

Table 4: Summary of neural distinguishers

Block Cipher Source of neural distinguisher
(Input difference) Round Input difference Accuracy

SIMON32/64 [ALLW14] 9 (0x0,0x40) 59.07%
Algorithm 2 9 (0x0,0x80) 59.77%

SIMON48/96
[ALLW14] 9 (0x10100,0x44040) 50.22%
[BGPT21] 10 (0x80000,0x222000) 53.49%

Algorithm 2 10 (0x0,0x100000) 57.89%

SIMON64/128 [ALLW14] 10 (0x100,0x440) 58.61%
Algorithm 2 11 (0x0,0x10) 59.72%

In Table 4, we show the comparison of the accuracy from three methods of selecting the
input difference. As we can see, compared with selecting the input difference in [ALLW14]
and [BGPT21], the accuracy of neural distinguishers obtained by Algorithm 2 has been
significantly promoted, which can be used to reduce the complexity of key recovery
attack. Although both methods select the input difference from differential characteristics,
Algorithm 2 selects the exact rounds of the differential characteristics according to the
rounds of neural distinguisher.

We also try to search for neural distinguishers for more rounds. Unfortunately, as the
number of rounds increases, the non-random features of the ciphertext pairs become weaker
and weaker. So it is difficult for us to find a neural distinguisher with longer round, even

12 Improve Neural Distinguisher for Cryptanalysis

if using Algorithm 2. In addition, the higher the Hamming weight of the input difference,
the weaker the non-random feature of the ciphertext pair. So we should firstly search for
input differences with lower Hamming weight adopting Algorithm 2 if time limit.

4 A New Neural Distinguisher Model Using Multiple Out-
put Differences

In [BGPT21], Benamira et al. show that the neural distinguisher generally not only relies
on the differential distribution of ciphertext pairs, but also on the differential distribution
in penultimate and antepenultimate rounds. This enlightens us whether we can directly
use the output differences to train neural distinguishers. Unlike [Goh19,CY21c] using
ciphertext pairs as samples, we design a new neural distinguisher model with multiple
output differences as a sample. Using the new model, we obtain the high-accuracy neural
distinguishers for 10-round SIMON32/64, 11-round SIMON48/96, 12-round SIMON64/128,
8-round Speck32/64, 7-round Speck48/96 and 8-round Speck64/128. Additionally, we
show with experiments that the promotion in the accuracy of distinguishers is not due to
the increase of the number of plaintexts, but learning more features from the relationship
between the output differences.

4.1 New Neural Distinguisher Model
Neural networks and deep learning currently provide the best solutions to many problems
in image recognition, speech recognition, and natural language processing. As we know, the
deep learning is data-driven, and the quality of the data determines the quality of the model
to some extent. For neural distinguishers, the choice of ciphertext pairs directly affects the
accuracy of the neural distinguishers, which has been solved in Section 3. In deep learning
field, the format of train data also affects the quality of the trained model to some extent.
This enlightens us that we can improve neural distinguishers from the perspective of data
format. In image recognition, the deep learning researchers currently rotate the image or
crop it to enhance some objective features, which has been experimentally proven to be
effective. Inspired by Benamira et al.’s work and data augmentation in deep learning, we
use the output differences to train neural distinguishers, by splicing output differences into
a matrix as a sample. For a matrix, we treat it as an image and each output difference of
the matrix is treated as a objective feature. Our goal is not only to learn each objective
feature, but to learn the connections between output differences.

……
k

Block

Cipher

Key

…… ……
k

2n n

Figure 2: A New Data Format

As shown in Figure 2, the k plaintext pairs
((
P 1

1 , P
1
2
)
,
(
P 2

1 , P
2
2
)
, ...,

(
P k1 , P

k
2
))

are en-
crypted by a random master key. The k ciphertext pairs

((
C1

1 , C
1
2
)
,
(
C2

1 , C
2
2
)
, ...,

(
Ck1 , C

k
2
))

are converted to output differences, where n is the block size of ciphers. We splice multiple
output differences into a matrix as a sample, which is described as O1||O2||...||Ok. Similar

ZeZhou Hou, JiongJiong Ren and ShaoZhen Chen 13

to Gohr’s method, given an input difference Id, each sample will be attached a label Y
according to Equation 4.

Y (O1||O2||...||Ok) =
{

1, if P i1 ⊕ P i2 = Id, i ∈ [1, k]
0, else

. (4)

If the label is 1, the matrix is denoted as a positive sample. Otherwise it is denoted as
a negative sample. By randomly generating plaintext and key, we make our distinguishers
learn the features of target block cipher instead of the features of the plaintext or key. In
the experiment, we make the neural network learn more features by using more output
differences in a matrix. As we can see, the new data format needs more ciphertext pairs.
For the same number of training sets, the new model requires k times more data than
Gohr’s model.

Because only the channel dimension is changed, we refer to Figure 1 for the description
of network architecture.

4.2 Applications to NSA Block Ciphers
Application to SIMON:

We choose the input difference in Table 4 to train new neural distinguishers. Other
hyper-parameters are posted in Table 3. The accuracy comparison is presented on Table 5.
For 11-round SIMON48/96, we don’t obtain an effective neural distinguisher using the input
difference in Table 4. So we re-search other high-probability differential transmissions.

As shown in Table 5, compared with using ciphertext pairs, the round and accuracy of
new neural distinguisher are greatly promoted. In addition, the new distinguishers can be
further promoted by increasing k, which shows that the superposition of output difference
can help the neural network to learn more unknown features.

Table 5: Comparison of SIMON using different data format. SCP: Single Ciphertext Pair.
MOD: Multiple Output Differences.

Ciphers Data Format k Round Input difference Accuracy

SIMON32/64

SCP - 9 (0x0,0x80) 59.07%
MOD 2 9 (0x0,0x80) 58.58%
MOD 4 9 (0x0,0x80) 62.27%
MOD 32 9 (0x0,0x80) 82.27%
MOD 32 10 (0x0,0x80) 61.09%

SIMON48/96

SCP - 10 (0x0,0x100000) 57.89%
MOD 2 10 (0x0,0x100000) 57.31%
MOD 4 10 (0x0,0x100000) 61.15%
MOD 48 10 (0x0,0x100000) 81.40%
MOD 48 11 (0x1000,0x4400) 61.43%

SIMON64/128

SCP - 11 (0x0,0x10) 59.72%
MOD 2 11 (0x0,0x10) 59.17%
MOD 4 11 (0x0,0x10) 63.53%
MOD 64 11 (0x0,0x10) 73.79%
MOD 64 12 (0x0,0x10) 69.57%

Application to Speck:
The new format is not limited to the neural distinguisher of SIMON, but can also

be found to be effective in Speck. In [Goh19,CY21c], the (0x40, 0x0) is used to train

14 Improve Neural Distinguisher for Cryptanalysis

neural distinguisher of 7-round Speck32/64. Using the difference, we obtain a new higher-
accuracy neural distinguisher of 7-round Speck32/64. Not only that, with the help
of [MP13, LWR16], we obtain a good input difference (0x2800, 0x10) and an effective
8-round neural distinguisher. As far as we know, this is the first effective 8-round neural
distinguisher of Speck32/64 with accuracy more than 55%. Besides, we also obtain neural
distinguishers of 7-round Speck48/96 and 8-round Speck64/128. Summary of the existing
results is shown in Table 6.

Table 6: Comparison of Speck using different data format. SCP: Single Ciphertext Pair.
MCP: Multiple Ciphertext Pairs. MOD: Multiple Output Differences.

Ciphers Data Format Round Input difference Accuracy Source

Speck32/64

SCP 7 (0x40, 0x0) 61.6% [Goh19]
MCP 7 (0x40, 0x0) 70.74%1 [CY21c]
MOD2 7 (0x40, 0x0) 88.87% Section 4
SCP 8 (0x40, 0x0) 51.4% [Goh19]
MOD2 8 (0x2800, 0x10) 56.49% Section 4

Speck48/96 MCP 5 -3 - [CY21b]
MOD4 7 (0x20082,0x120200) 63.43% Section 4

Speck64/128 MOD5 8 (0x1202,0x2000002) 63.20% Section 4
1 The highest accuracy of 7-round Speck32/64 in [CY21c].
2 k = 32.
3 Chen et al. used 5-round neural distinguisher to attack Speck48/x, but the accuracy were not
presented in [CY21b].

4 k = 48.
5 k = 64.

Utilizing the new model, we improve neural distinguishers in terms of length and
accuracy. We can achieve better results in distinguishing attack utilizing the new neural
distinguishers. Moreover, we give a further illustration of our model. Since we use more
data in the new model than using ciphertext pairs, this makes our improved results seem
to be related to increase of data. We perform supplementary experiments to show that the
improvement of the accuracy of distinguishers is not due to the increase of the number of
plaintexts, but because of learning more features from the relationship between the output
differences.

4.3 A Supplementary Explanation to Our New Model

Although the accuracy is higher using the new data format, the performance may be likely
improved by training on more train samples. So we use same number of ciphertext pairs
to train neural distinguishers shown in Table 7.

As shown in Table 7, the accuracy of new distinguisher is higher, even if they use the
same amount of data. In addition, it takes up less memory using output differences, which
can reduce training time in the training process.

ZeZhou Hou, JiongJiong Ren and ShaoZhen Chen 15

Table 7: Comparison with using ciphertext pairs and output differences

Ciphers Use the new
data format? k Round Size of train data Accuracy

SIMON32/64 No - 10 32× 107 50.28%
Yes 32 10 107 61.09%

SIMON48/96 No - 11 48× 107 50.43%
Yes 48 11 107 61.43%

SIMON64/128 No - 12 64× 107 50.37%
Yes 64 12 107 69.57%

To further illustrate the effectiveness of new distinguishers, we conduct additional
experiments. As shown in Figure 3, we use k same output differences as a sample. Based
on the new neural distinguishers, 106 positive and negative ciphertext pairs are randomly
generated. And each output difference is reused k times and filled in a matrix as a sample.
Then new neural distinguishers are performed on 106 samples. We calculate the accuracy
of the new neural distinguishers for these special data. Table 8 shows the corresponding
test results.

……
k

Block

Cipher

Key

…… ……
k

2n n

Figure 3: A new data format using the same output difference

Table 8: Accuracy of the new neural distinguishers for special data.

Ciphers k Round Accuracy Accuracy of Neural Distinguisher

SIMON32/64 32 10 51.69% 61.09%
SIMON48/96 48 11 54.81% 61.43%
SIMON64/128 64 12 49.78% 69.57%
Speck32/64 32 8 51.18% 56.49%
Speck48/96 48 7 50.06% 63.43%
Speck64/128 64 8 50.84% 63.20%

In Table 8, the ’Accuracy’ refers to the accuracy of neural distinguishers for special
samples like Figure 3. The ’Accuracy of Neural Distinguisher’ refers to the accuracy
of neural distinguishers for normal samples like Figure 2. As shown in Table 8, the
accuracy for special samples is lower than for normal samples. This illustrates that the
new distinguishers learn more unknown features especially in the connection of different
output differences.

16 Improve Neural Distinguisher for Cryptanalysis

5 Key Recovery Attack on Round-reduced SIMON32/64
and SIMON48/96

Using Algorithm 2, we choose (0x0, 0x100000) as the input difference to train 9-round
and 10-round neural distinguisher of SIMON48/96. With the help of automatic search
tool, we extend our 9-round and 10-round distinguisher to a 11-round and 12-round distin-
guisher by prepending the 2-round differential characteristic (0x400000, 0x100001) 2−4

−−→
(0x0, 0x100000). Using 11-round and 12-round distinguisher, we complete practical 14-
round key recovery attack of SIMON48/96 on a workstation configured with Intel i9-10900K
and Nvidia TITAN RTX. It takes about 1550s to recover the final subkey each time. Our
attack only needs no more than 222.21 14-round encryption and the data complexity does
not exceed 212.8. With the traditional differential attack in [ALLW14], it requires 235

plaintext pairs at least with the optimal 12-round optimal probability 235 [SWW21]. In
addition, we perform key recovery attack of 13-round SIMON32/64 with a success rate
more than 93%. Therefore the data complexity and time complexity based on deep learning
is far lower than that of the traditional differential cryptanalysis.

5.1 Practical Key Recovery Attack on 14-round SIMON48/96
5.1.1 Overview

We choose (0x0, 0x100000) as the input difference and train 9-round and 10-round neural
distinguisher of SIMON48/96 with an accuracy over 57.5%. We extend our 9-round
neural distinguisher to 11-round and 12-round distinguishers by prepending the 2-round
differential characteristic (0x400000, 0x100001) 2−4

−−→ (0x0, 0x100000). Combine 11-round
and 12-round distinguishers together, we can construct 14-round key-recovery attack.
Attack Pattern If the final subkey is correctly guessed, the probability that the inter-
mediate state obtained by the correct last subkey and the correct second-to-last subkey
passes through the 11-round distinguisher is the highest. That is to say, the response of the
11-round distinguisher is the highest if 2-round subkeys are guessed correctly. This is due
to the fact that the intermediate state decrypted by the error key is a random sequence
for distinguisher given by the fixed difference, that is, the distinguisher will return a value
below 0.5 if the guessed key is wrong. This can help us develop the key recovery attack of
14-round SIMON48/96. We guess possible keys in the last round, then we use the guessed
subkey to perform 1-round decryption, and use 12-round distinguisher to score and sort the
guessed subkeys. If the score of a key exceeds the threshold λ1, we use the key to decrypt
one round. At the same time, guess the second-to-last subkey, and similarly, score and
sort them. If the score exceeds the threshold λ2, the last guessed subkey will be returned
as the result.

We use Gohr’s attack scheme to perform a practical key recovery attack on 14-round
SIMON48/96. Our attack parameters are shown in Table 9.

Table 9: Attack parameters for 14-round SIMON48/96

Parameter Value

Initial difference (0x400000,0x110001)
λ1 10
λ2 50

Neutral bit [BC04] [44,47,21,39,3,28]
Number of iterations 100

Experimental configuration Intel i9-10900K, Nvidia TITAN RTX

ZeZhou Hou, JiongJiong Ren and ShaoZhen Chen 17

5.1.2 Wrong Key Randomization

Let C0 and C ′0 be a pair of ciphertexts whose input difference is (0x0, 0x100000), and k is
the real subkey of the last round. For δ ∈ GF (2)24, there is k′ = k⊕δ. Use k′ as a subkey to
decrypt the ciphertext pair, and get the response as Rδ

(
C0, C

′

0

)
= N10

(
E−1
k′

(
C0, C

′

0

))
,

where N10 is the 10-round neural distinguisher. Then Rδ
(
C0, C

′

0

)
can be regarded as a

random variable related to δ. We can assume that Rδ
(
C0, C

′

0

)
follows a normal distribution

with mean µδ and standard deviation σδ.

In order to compare the influence of wrong keys on the response of the neural distin-
guisher, we calculate the wrong key response profile for our 10-round distinguishers of
SIMON48/96. For δ ∈ GF (2)24 and a random master key K, we generate 1 ciphertext
pair

(
C0, C

′

0

)
whose input difference is (0x0, 0x100000) and save its last real subkey rk.

Calculate k′ = rk ⊕ δ and use k′ to decrypt
(
C0, C

′

0

)
for one round, we get the response

value of the 10-round distinguisher. We repeat the above steps 224 times and calculate the
mean value and standard deviation of the response values. The part of wrong key response
profile is shown in Figure 4.

18 Improve Neural Distinguisher for Cryptanalysis

0 6553 13106 19659 26212 32765 39318 45871 52424 58977 65530
difference to real key

(a) Mean response for 10-round distinguisher

0 6553 13106 19659 26212 32765 39318 45871 52424 58977 65530
difference to real key

(b) Standard deviation for 10-round distinguisher

Figure 4: Wrong key response profile for 10-round distinguisher

As described in Section 2, the output signal of the R−round neural distinguisher NDR

follows a normal distribution with mean µδ and standard deviation σδ, where δ is the
difference between the correct key and the wrong key. In Figure 4, the x-axis refers to the
difference δ. In Figure 4(a), the y-axis refers to the value of µδ. And the y-axis refers to
the value of σδ in Figure 4(b). It can be seen from Figure 4 that the mean and standard
deviation are larger when there are fewer error bits. This will help recover the last subkey.
Similar to 10-round neural distinguisher, we can get wrong key response profile for 9-round
neural distinguisher.

ZeZhou Hou, JiongJiong Ren and ShaoZhen Chen 19

5.1.3 Result and Complexity Analysis

For calculating the time complexity, we calculate the time for 210 14-round encryptions,
which costs about 0.32s for our hardware. And our attack only needs no more than 1550s
each time. Therefore, the time complexity can be calculated by 1550÷ 0.32

210 ≈ 222.21. At
the same time, the data complexity does not exceed 212.8. With complexity analysis, we
can see that this is a practical attack. Our result in 100 trials is shown in Table 10. It is
considered a success if the guess for the last subkey is only incorrect in 5 bits. And then
we can eliminate error bits by exhaustive methods.

Table 10: Results of 14-round SIMON48/96

The number of error bits 6 4 6 5 6 6 6 7 6 8

Number of experiments 50 58 62 68 72

To show that the neural distinguisher has advantages in key recovery attacks, we use
the traditional cryptanalysis to perform the recovery attacks for last key on 14-round
SIMON48/96. Since key-addition occurs after non-linear operation in the round function
of SIMON48/96, we can construct 14-round attack by adding one round before and after
12-round optimal differential characteristics with probability 2−35 [SWW21]. Utilizing the
traditional method, the time complexity is more than 235 14-round encryption.

5.2 Practical Key Recovery Attack on 13-round SIMON32/64

Similar to the key recovery attack of 14-round SIMON48/96, we choose (0x0, 0x80)
as the input difference to train 8-round and 9-round neural distinguishers. With the
automatic search based on SAT, we extend our 8-round and 9-round distinguishers to a
10-round and 11-round distinguishers by prepending the 2-round differential characteristic
(0x200, 0x880) 2−4

−−→ (0x0, 0x80). Using 10-round and 11-round distinguishers, we complete
practical 13-round key recovery attack of SIMON32/64. Our attack parameters are shown
in Table 11.

Table 11: Attack parameters for 13-round SIMON32/64

Parameter Value

Initial difference (0x200, 0x880)
λ1 10
λ2 10

Neutral bit [21, 30, 26, 5, 14, 18]
Number of iterations 100

Experimental configuration Intel i9-10900K, Nvidia TITAN RTX

The key recovery attack based on our neural distinguishers is performed 100 times. In
one hundred trials, the last subkey is correctly guessed in 60 cases and there are 24 cases
that the guess for the last subkey is incorrect in just one bit. There are only 9 cases that
have 2 bits differences from the correct last subkey. It takes about 23s each time to recover
the final subkey, with a success rate more than 90%. And we calculate the time for 210

13-round encryptions, which costs about 0.27s for our hardware. Our attack only needs no
more than 216.4 13-round encryption and the data complexity does not exceed 212.5.

20 Improve Neural Distinguisher for Cryptanalysis

6 Practical Key Recovery Attack on Reduced-round SI-
MON64/128

Gohr’s framework is effective in key recovery of short-size block ciphers. Unfortunately,
it costs a lot of time in precomputation for large-size block ciphers, especially in wrong
key response profile. For example, for SIMON32/64, it only spends about 1500s to
obtain complete profile on a fast graphics card, while it spends more than 1300 days for
SIMON64/128, which is unbearable for most of researchers.

We find with further experiments of SIMON32/64 and SIMON48/96 that the distribu-
tion of the wrong key response is pseudo-periodic. In other words, we can re-use known
partial wrong key profile to fill the remaining wrong key profile. Based on this, we design
a generic scheme to attack large-size block ciphers. Firstly, we make use of partial wrong
key profile to describe the whole wrong subkey response profile. Once we get the complete
profile portrayed partial profile, we can recover partial subkey bits with Gohr’s key recovery
policy. Then we guess the complete subkey based on the known subkey bits.

6.1 Observations on Wrong Key Response
In [CY21c], Chen et al. proposed two properties for most symmetric ciphers and neural
networks as follows.

Property 1. [CY21c] Let a ciphertext C be decrypted one round with two different
subkey, C1 = Decone (C, sk1), C2 = Decone (C, sk2). If sk1 and sk2 are different at a few
bits, the Hamming distance between C1 and C2 will be very small.

For SIMON, let C = (lc, rc). The Ci = (lci, rci), i = 1, 2 are generated by

lci = rc

rci =
(
S1rc&S8rc

)
⊕ S2rc⊕ lc⊕ ski.

(5)

In other words, the different bits of C1 and C2 depend on the different bits of sk1 and
sk2. So Hw(C1, C2) = Hw(sk1, sk2), where Hw denotes the Hamming distance.

Property 2. [CY21c] Given a trained neural network N (·) for solving a binary classi-
fication problem, if two input samples X1, X2 are very close to each other in the input
space, two outputs N (X1) and N (X2) obtained from the neural network may satisfy
N (X1) ≈ N (X2) with a high probability.

According to Property 1 and Property 2, when two guessed subkeys are different in a
few bits, the corresponding output signals should be similar.

Property 3. For a block cipher with subkey size nbits and I = [0, 2n), then I can be equally
divided into 2n−k parts, denoted by Ii =

[
i× 2k, (i+ 1)× 2k

)
(0 6 i < 2n−k). For xi ∈ Ii,

xi+1 ∈ Ii+1, two outputs ND (Decone (Cp, xi ⊕ sk)) and ND (Decone (Cp, xi+1 ⊕ sk))
obtained from the neural distinguisher ND may satisfy ND (Decone (Cp, xi ⊕ sk)) ≈
ND (Decone (Cp, xi+1 ⊕ sk)), where 0 6 i < 2n−k − 1, xi+1 − xi = 2k, sk is the cor-
rect subkey, Cp is a pair of ciphertexts given a fixed input difference. In addition,
|ND (Decone (Cp, xi ⊕ sk))−ND (Decone (Cp, xi+1 ⊕ sk)) | gets closer to 0, as k increases.

Property 4. For a block cipher with subkey size nbits and I = [0, 2n), then I can be
equally divided into 2n−k parts, denoted by Ii =

[
i× 2k, (i+ 1)× 2k

)
(0 6 i < 2n−k). For

x ∈ I, the output ND (Decone (Cp, x⊕ sk)) obtained from the neural distinguisher follows
a normal distribution with mean µx and standard deviation σx, where sk is the correct
subkey, Cp is a pair of ciphertexts given a fixed input difference. In addition, for xi ∈ Ii,
xi+1 ∈ Ii+1, there may satisfy µxi ≈ µxi+1 and σxi ≈ σxi+1 , where 0 6 i < 2n−k − 1,
xi+1 − xi = 2k. In addition, |µxi − µxi+1 | and |σxi − σxi+1 | get closer to 0, as k increases.

ZeZhou Hou, JiongJiong Ren and ShaoZhen Chen 21

Due to Property 4, we can find that the distribution of the wrong key response is
pseudo-periodic. So we can use partial wrong key response instead of the complete wrong
key response profile to recover subkey.

6.2 Key Recovery Attack on 13-round SIMON64/128
6.2.1 Key Recovery Policy

As described in Section 2, the output signal of R-round neural distinguisher NDR follows a
normal distribution with mean µδ and standard deviation σδ, where the δ is the difference
between the correct key and the wrong key. Affected by Bayesian optimization, we need
all µδ and σδ, where δ ∈

[
0, 232). But limited by our hardware, we only obtain partial

wrong key response profile, where δ ∈
[
0, 224). In other word, we only have partial µδ and

σδ ,where δ ∈
[
0, 224). Thanks to Property 4, the µi will be replaced by µ i mod 224 , where

i ∈
[
224, 232) . For δi, it will be replaced by δ i mod 224 . By this way, we can obtain a pseudo

wrong key response profile, which is used in the key recovery attack of SIMON64/128.
This will reduce the time in precomputation from more than 1300 days to about 5.3 days.
Based on this, we improve Gohr’s key search policy to Algorithm 3.

Algorithm 3 A New Key Research for (R+ 1)-round SIMON64/128
Input: Ciphertext pairs set C = {C0, C1, ..., Cn−1}, R-round neural distinguisher NDR,

number of candidates to be generated t, number of iterations l.
Output: Key set L.
1: S ← {k0, k1, ..., kt−1}, ki 6= kj if i 6= j
2: skg ← 0
3: Score← 0
4: for j ∈ {0, 1, ..., l − 1} do
5: for i ∈ {0, 1, ..., t− 1} do
6: Calculate the score of ki using Equation 2, denoted by scoreki

7: if scoreki
> Score then

8: Score← scoreki

9: skg ← ki
10: end if
11: end for

12: φk ←
∑t−1
i=0

(scoreki
n −µ(ki⊕k) mod 224

σ(ki⊕k) mod 224

)2

for k ∈
{

0, 1, ..., 232 − 1
}

13: S ← argsortk (φ) [0 : t− 1] #Get the new key candidates corresponding to the
largest t elements in φk

14: end for
15: return skg

In Algorithm 3, the key candidate will be returned if the iteration ends. We choose the
key with the highest score as the guessed subkey, denoted by skg. Due to the difference
between pseudo and real wrong key response profile, Algorithm 3 only recovers partial
subkey of SIMON64/128.

As shown in Figure 5, the whole wrong key response profile is described by partial
profile. The search for the correct subkey is the search for δ to be 0, where the δ is the
difference between subkey candidate and real subkey. In the step 12,13 of Algorithm 3, we
choose all possible keys and score them by partial µδ and σδ, where δ ∈

[
0, 224). And we

use little ciphertext pairs to recover subkey. Therefore, in the experiment of Algorithm 3,
the difference δ between subkey candidate and real subkey is easy to get the best value
in Ii. In other word, Algorithm 3 will make hw(δ � 0x00ffffff) close to 0, where hw

22 Improve Neural Distinguisher for Cryptanalysis

denotes the Hamming weight. In fact, we just make hw(δ23∼0) close to 0 by Algorithm 3
rather than that hw(δ) close to 0, where δ is the difference between skg and the real subkey.
In other words, for the returned subkey skg, there will be a few error bits in sk31∼24

g . So
we design Algorithm 4 to recover sk31∼24

g .

242 1−0 242i
24(1) 2 1i +  − 24255 2 8 242 2 1 −

iI

difference to real key

… …

Figure 5: Schematic of mean response using pseudo-period

Algorithm 4 Recover complete subkey for SIMON64/128
Input: Ciphertext pairs C = {C0, C1, ..., Cn−1}, NDR: R-round neural differential dis-

tinguisher, skg: Returned guess subkey with Algorithm 3.
Output: The complete subkey sk.
1: score← 0
2: guesssk ← 0
3: for j ∈

{
0, 1, ..., 28 − 1

}
do

4: guesssk ← (j � 24)⊕ skg
5: Pi ← Decryptone (Ci, guesssk) for all i ∈ {0, 1, ..., n− 1}
6: vi ← NDR (Pi) for all i ∈ {0, 1, ..., n− 1}
7: wi ← log2

(
vi

1−vi

)
for all i ∈ {0, 1, ..., n− 1}

8: mj ←
∑n−1
i=0 wi/n

9: if mj > score then
10: score← mj

11: sk ← guesssk
12: end if
13: end for
14: return sk

Although we choose SIMON64/128 as an example in Algorithm 3 and Algorithm 4,
they can also be used in other block ciphers whose subkey size exceeds 64 bits. Besides, we
can only obtain 224 wrong key response profile limited by the hardware. The more wrong
key response profile will be obtained utilizing better computing resources.

ZeZhou Hou, JiongJiong Ren and ShaoZhen Chen 23

6.2.2 Application to Attack 13-round SIMON64/128

Different from the attacks of SIMON32/64 and SIMON48/96, we only use the 11-round
neural distinguisher to perform 13-round attack without appending additional rounds.
This attack consists of two stages:

Stage 1(Algorithm 3):
In this stage, we complete the screening of the all possible keys using Algorithm 3,

11-round and 10-round neural distinguishers. And the parameters used in Stage 1 are
shown in Table 12.

Table 12: Attack parameters for 13-round SIMON64/128

Parameter Value

Input difference (0x0, 0x10)
λ1 10
λ2 10

Neutral bit [27,19,3,23,18,22]
Number of iterations 500

Experimental configuration Intel Xeon 6226R@2.90Ghz, Nvidia GeForce RTX3090

After performing 100 times attack using Algorithm 3, 11-round and 10-round neural
distinguishers, we find:

1. In one hundred trials, skg is output after processing on average 212.703 ciphertext
pairs.

2. Average runtime is about 21000s. This yields an estimated computational attack
complexity of 225.700 13-round SIMON64/128 encryptions.

3. The specific results are shown in Table 13.

Table 13: Results of 13-round SIMON64/128 in low 24 bits

The number of error bits 6 4 6 5 6 6 6 7 6 8

Number of experiments 49 63 78 83 86

For low 24 bits, it is considered a successful attack if the guessed last subkey is incorrect
in 5 bits, and the success rate exceeds 63%.

Stage 2(Algorithm 4):
In this stage, we obtain the best key with highest score from 28 key candidates using

Algorithm 4 and 3000 ciphertext pairs. In this stage, the calculation method of success
rate is designed as:

1. Randomly generate 3000 plaintext pairs with the difference (0x0, 0x10) and
encrypt them for 12 rounds with the right key;

2. Randomly generate a masking value m(0 6 m < 224) and hw(m) = t, where hw
denotes the Hamming weight;

3. Perform Algorithm 4 with 3000 ciphertext pairs and skg = rk ⊕m, where rk is
the real last subkey;

4. Save ((sk ⊕ rk)� 24), where the sk is the output of Algorithm 4;
5. Perform steps 1− 4 300 times and calculate the ratio of hw((sk ⊕ rk)� 24) 6 2.

For t (0 6 t 6 5), the ratio is shown in Table 14.

24 Improve Neural Distinguisher for Cryptanalysis

Table 14: Results in high 8 bits

t 0 1 2 3 4 5

Ratio 93.00% 93.33% 90.67% 92% 92.67% 91.33%

Computation Complexity: In Stage 1, about 212.703 plaintext pairs are needed and
an attack needs about 225.700 13-round SIMON64/128 encryption. In Stage 2, an attack
needs 3000 plaintext pairs. At the same time, compared with Stage 1, the computation
complexity is negligible in Stage 2. Thus the total complexity is 225.700 and the data
complexity is 213.24. In addition, the success rate is 90.67% × 63% ≈ 57.12%, if it is
considered a success in that the guess for the last subkey is only incorrect in 7 bits.

In this section, we design an algorithm to attack large-size block cipher based on neural
distinguishers. Limited by the computing resources, we can only obtain 224 wrong key
response profile to describe a complete wrong key response profile. Compared to complete
profile, the partial profile has some flaws in key recovery attack. Therefore the success rate
in Stage 1 will rise if we can obtain more wrong key response. At the same time, there
will be less error bits in Stage 1 if the success rate in Stage 1 rises, which will increase
the success rate of Stage 2. In short, the success rate will increase and the error bits will
decrease, if we can obtain more wrong key responses.

Moreover, for large-size SIMON, the key recovery attacks are mainly based on Property 3
and Property 4. And Property 3 and Property 4 can be used in other block ciphers, not
limited to SIMON. In other words, our techniques also work for other complex ciphers
apart from SIMON.

7 Conclusion and Future Work
In this paper, we proposed a new algorithm and model to further improve neural distin-
guishers, and then performed practical key recovery attack on SIMON. On the one hand,
by carefully selecting the input differences utilizing SAT/SMT algorithm, we managed to
searched for exact nr-round differential characteristics with high probability and trained
nr-round neural distinguishers. On the other hand, by adopting the new data format,
we spliced multiple output differences into a matrix as a sample to capture more derived
features, thus can improve the round and accuracy of neural distinguishers. Application
to SIMON and Speck have proved the superiorities of our new models. Moreover, based
on the improved distinguishers, we performed key recovery attack on SIMON32/64 and
SIMON48/96 adopting Gohr’s key recovery policy. We also proposed a new generic key
recovery policy using partial wrong key profile to significantly reduce the precomputation
time, that could complete practical attack on SIMON64/128.

With our results we obtain new effective neural distinguishers, which can be used to
distinguish reduced-round NSA block ciphers from pseudo-random permutation better.
Besides, we believe the new key recovery scheme of neural aided cryptanalysis has great
potential for better assessing the security of large-size block ciphers. Since there are
numerous network architectures now with the development of deep learning, it is meaningful
to explore other appropriate network models to improve neural distinguishers and key
recovery.

References
[ALLW14] Farzaneh Abed, Eik List, Stefan Lucks, and Jakob Wenzel. Differential crypt-

analysis of round-reduced simon and speck. In Carlos Cid and Christian

ZeZhou Hou, JiongJiong Ren and ShaoZhen Chen 25

Rechberger, editors, Fast Software Encryption - 21st International Workshop,
FSE 2014, London, UK, March 3-5, 2014. Revised Selected Papers, volume
8540 of Lecture Notes in Computer Science, pages 525–545. Springer, 2014.
https://doi.org/10.1007/978-3-662-46706-0_27.

[ARG04] Chang Wook Ahn, Rudrapatna S. Ramakrishna, and David E. Goldberg. Real-
coded bayesian optimization algorithm: Bringing the strength of BOA into
the continuous world. In Kalyanmoy Deb, Riccardo Poli, Wolfgang Banzhaf,
Hans-Georg Beyer, Edmund K. Burke, Paul J. Darwen, Dipankar Dasgupta,
Dario Floreano, James A. Foster, Mark Harman, Owen Holland, Pier Luca
Lanzi, Lee Spector, Andrea Tettamanzi, Dirk Thierens, and Andrew M. Tyrrell,
editors, Genetic and Evolutionary Computation - GECCO 2004, Genetic and
Evolutionary Computation Conference, Seattle, WA, USA, June 26-30, 2004,
Proceedings, Part I, volume 3102 of Lecture Notes in Computer Science, pages
840–851. Springer, 2004. https://doi.org/10.1007/978-3-540-24854-5_
86.

[BC04] Eli Biham and Rafi Chen. Near-collisions of SHA-0. In Matthew K. Franklin,
editor, Advances in Cryptology - CRYPTO 2004, 24th Annual International
CryptologyConference, Santa Barbara, California, USA, August 15-19, 2004,
Proceedings, volume 3152 of Lecture Notes in Computer Science, pages 290–305.
Springer, 2004.

[BGPT21] Adrien Benamira, David Gérault, Thomas Peyrin, and Quan Quan Tan. A
deeper look at machine learning-based cryptanalysis. IACR Cryptol. ePrint
Arch., 2021:287, 2021. https://eprint.iacr.org/2021/287.

[BS91] Eli Biham and Adi Shamir. Differential cryptanalysis of des-like cryptosystems.
J. Cryptol., 4(1):3–72, 1991. https://doi.org/10.1007/BF00630563.

[BSS+13] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK families of lightweight
block ciphers. IACR Cryptol. ePrint Arch., 2013:404, 2013. http://eprint.
iacr.org/2013/404.

[CY20] Yi Chen and Hongbo Yu. Neural aided statistical attack for cryptanalysis.
IACR Cryptol. ePrint Arch., 2020:1620, 2020. https://eprint.iacr.org/
2020/1620.

[CY21a] Yi Chen and Hongbo Yu. Bridging machine learning and cryptanalysis via
EDLCT. IACR Cryptol. ePrint Arch., 2021:705, 2021. https://eprint.iacr.
org/2021/705.

[CY21b] Yi Chen and Hongbo Yu. Improved neural aided statistical attack for crypt-
analysis. IACR Cryptol. ePrint Arch., 2021:311, 2021. https://eprint.iacr.
org/2021/311.

[CY21c] Yi Chen and Hongbo Yu. A new neural distinguisher model considering derived
features from multiple ciphertext pairs. IACR Cryptol. ePrint Arch., 2021:310,
2021. https://eprint.iacr.org/2021/310.

[dMB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT
solver. In C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms
for the Construction and Analysis of Systems, 14th International Conference,
TACAS 2008, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008.

https://doi.org/10.1007/978-3-662-46706-0_27
https://doi.org/10.1007/978-3-540-24854-5_86
https://doi.org/10.1007/978-3-540-24854-5_86
https://eprint.iacr.org/2021/287
https://doi.org/10.1007/BF00630563
http://eprint.iacr.org/2013/404
http://eprint.iacr.org/2013/404
https://eprint.iacr.org/2020/1620
https://eprint.iacr.org/2020/1620
https://eprint.iacr.org/2021/705
https://eprint.iacr.org/2021/705
https://eprint.iacr.org/2021/311
https://eprint.iacr.org/2021/311
https://eprint.iacr.org/2021/310

26 Improve Neural Distinguisher for Cryptanalysis

Proceedings, volume 4963 of Lecture Notes in Computer Science, pages 337–340.
Springer, 2008. https://doi.org/10.1007/978-3-540-78800-3_24.

[Goh19] Aron Gohr. Improving attacks on round-reduced speck32/64 using deep
learning. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in
Cryptology - CRYPTO 2019 - 39th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part II, volume
11693 of Lecture Notes in Computer Science, pages 150–179. Springer, 2019.
https://doi.org/10.1007/978-3-030-26951-7_6.

[GPM+14] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. Generative
adversarial networks. CoRR, abs/1406.2661, 2014. http://arxiv.org/abs/
1406.2661.

[HOT06] Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning
algorithm for deep belief nets. Neural Comput., 18(7):1527–1554, 2006. https:
//doi.org/10.1162/neco.2006.18.7.1527.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016,
pages 770–778. IEEE Computer Society, 2016. https://doi.org/10.1109/
CVPR.2016.90.

[KLT15] Stefan Kölbl, Gregor Leander, and Tyge Tiessen. Observations on the SIMON
block cipher family. In Rosario Gennaro and Matthew Robshaw, editors,
Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I, volume
9215 of Lecture Notes in Computer Science, pages 161–185. Springer, 2015.
https://doi.org/10.1007/978-3-662-47989-6_8.

[LGTB97] S. Lawrence, C.L. Giles, Ah Chung Tsoi, and A.D. Back. Face recognition: a
convolutional neural-network approach. IEEE Transactions on Neural Net-
works, 8(1):98–113, 1997. 10.1109/72.554195.

[LWR16] Yunwen Liu, Qingju Wang, and Vincent Rijmen. Automatic search of linear
trails in ARX with applications to SPECK and chaskey. In Mark Manulis,
Ahmad-Reza Sadeghi, and Steve A. Schneider, editors, Applied Cryptography
and Network Security - 14th International Conference, ACNS 2016, Guildford,
UK, June 19-22, 2016. Proceedings, volume 9696 of Lecture Notes in Computer
Science, pages 485–499. Springer, 2016.

[MP43] Warren S. McCulloch and Walter H. Pitts. A logical calculus of the ideas
immanent in nervous activity. The bulletin of mathematical biophysics., 5:115–
133, 1943. https://doi.org/10.1007/BF02478259.

[MP13] Nicky Mouha and Bart Preneel. Towards finding optimal differential character-
istics for arx: Application to salsa20. IACR Cryptol. ePrint Arch., 2013:328,
2013. https://eprint.iacr.org/2013/328.

[RHW86] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
representations by back propagating errors. Nature, 323:533–536, 1986. https:
//doi.org/10.1038/323533a0.

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-030-26951-7_6
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1406.2661
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1007/978-3-662-47989-6_8
10.1109/72.554195
https://doi.org/10.1007/BF02478259
https://eprint.iacr.org/2013/328
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0

ZeZhou Hou, JiongJiong Ren and ShaoZhen Chen 27

[Ros58] Frank Rosenblatt. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological Review, 65(6):386–408,
1958. 10.1037/h0042519.

[SHY16] Ling Song, Zhangjie Huang, and Qianqian Yang. Automatic differential analysis
of ARX block ciphers with application to SPECK and LEA. In Joseph K. Liu
and Ron Steinfeld, editors, Information Security and Privacy - 21st Australasian
Conference, ACISP 2016, Melbourne, VIC, Australia, July 4-6, 2016, Proceed-
ings, Part II, volume 9723 of Lecture Notes in Computer Science, pages 379–394.
Springer, 2016. https://doi.org/10.1007/978-3-319-40367-0_24.

[SWW21] Ling Sun, Wei Wang, and Meiqin Wang. Accelerating the search of differential
and linear characteristics with the SAT method. IACR Trans. Symmetric
Cryptol., 2021(1):269–315, 2021. https://doi.org/10.46586/tosc.v2021.
i1.269-315.

[SZM20] Heng-Chuan Su, Xuan-Yong Zhu, and Duan Ming. Polytopic attack on round-
reduced simon32/64 using deep learning. In Yongdong Wu and Moti Yung,
editors, Information Security and Cryptology - 16th International Conference,
Inscrypt 2020, Guangzhou, China, December 11-14, 2020, Revised Selected
Papers, volume 12612 of Lecture Notes in Computer Science, pages 3–20.
Springer, 2020. https://doi.org/10.1007/978-3-030-71852-7_1.

[WZ89] Ronald J. Williams and David Zipser. A learning algorithm for continually
running fully recurrent neural networks. Neural Comput., 1(2):270–280, 1989.
https://doi.org/10.1162/neco.1989.1.2.270.

Appendix

A Brief Description of SIMON and Speck
A.1 SIMON
SIMON [BSS+13] is a lightweight block cipher proposed by the NSA. The aim of SIMON
is to fill the need for secure, flexible, and analyzable lightweight block ciphers. It is a
family of lightweight block ciphers with block sizes of 32, 48, 64, 96, and 128 bits. The
constructions are Feistel ciphers using a word size n of 16, 24, 32, 48 or 64 bits, respectively.
Table 15 makes explicit all parameter choices for all versions of SIMON.

Table 15: SIMON parameters

block size 2n key size mn word size n rounds T

32 64 16 32

48 72 24 36
96 24 36

64 96 32 42
128 32 44

96 96 48 52
144 48 54

128
128 64 68
192 64 69
256 64 72

10.1037/h0042519
https://doi.org/10.1007/978-3-319-40367-0_24
https://doi.org/10.46586/tosc.v2021.i1.269-315
https://doi.org/10.46586/tosc.v2021.i1.269-315
https://doi.org/10.1007/978-3-030-71852-7_1
https://doi.org/10.1162/neco.1989.1.2.270

28 Improve Neural Distinguisher for Cryptanalysis

For SIMON2n/mn, the key-dependent SIMON2n/mn round function is the map
Rki

:GF (2)n ×GF (2)n → GF (2)n ×GF (2)n defined by

Rki
(xi, yi) = (yi ⊕ f (xi)⊕ ki, xi) , (6)

where f (xi) =
(
S1xi � S8xi

)
⊕ S2xi, ki(ki ∈ GF (2)n) is the round subkey.

A.2 Speck
Similar to SIMON, there are some different variants of Speck. And these parameter about
Speck are shown in Table 16.

Table 16: Speck parameters

block size 2n key size mn word size n rot α rot β rounds T

32 64 16 7 2 22

48 72 24 8 3 22
96 24 8 3 23

64 96 32 8 3 26
128 32 8 3 27

96 96 48 8 3 28
144 48 8 3 29

128
128 64 8 3 32
192 64 8 3 33
256 64 8 3 34

For Speck2n/mn, the key-dependent Speck2n/mn round function is the mapRki
:GF (2)n×

GF (2)n → GF (2)n ×GF (2)n defined by

Rki
(xi, yi) =

((
S−αxi + yi

)
⊕ ki,

(
S−αxi + yi

)
⊕ ki ⊕ Sβyi

)
, (7)

where ki(ki ∈ GF (2)n) is the round subkey.
As it is out of scope for our purpose, we refer to [BSS+13] for the description of the

key-scheduling.

B Accuracy of neural distinguishers of 10-round SIMON48/96
using Benamira’s method

Table 17: 10-round neural distinguishers using 9-round optimal characteristics

Input difference Accuracy Input difference Accuracy Input difference Accuracy

(0x2,0x880008) 0.5258 (0x100,0x444) 0.5279 (0x800,0x2220) 0.5281
(0x8000,0x22200) 0.5286 (0x4000,0x11100) 0.5286 (0x80000,0x222000) 0.5288

(0x100000,0x444000) 0.5290 (0x20000,0x88800) 0.5293 (0x20000,0x88800) 0.5293
(0x20,0x800088) 0.5301 (0x200000,0x888000) 0.5301 (0x200,0x888) 0.5303
(0x2000,0x8880) 0.5303 (0x4,0x100011) 0.5308 (0x80,0x222) 0.5310
(0x400,0x1110) 0.5311 (0x40,0x111) 0.5312 (0x10,0x400044) 0.5312

(0x400000,0x110001) 0.5312 (0x8,0x200022) 0.5315 (0x1,0x440004) 0.5327
(0x800000,0x220002) 0.5327 (0x1000,0x4440) 0.5330 (0x40000,0x111000) 0.5334

ZeZhou Hou, JiongJiong Ren and ShaoZhen Chen 29

Table 18: 10-round neural distinguishers using 8-round optimal characteristics

Input difference Accuracy Input difference Accuracy Input difference Accuracy

(0x400004,0x10) 0.5264 (0x100,0x444) 0.5282 (0x8,0x200022) 0.5283
(0x88,0x200) 0.5285 (0x2000,0x8880) 0.5286 (0x400,0x1110) 0.5287
(0x40,0x111) 0.5289 (0x440,0x1000) 0.5290 (0x40000,0x111000) 0.5291
(0x100001,0x4) 0.5294 (0x400000,0x110001) 0.5296 (0x20000,0x88800) 0.5298

(0x800000,0x220002) 0.5298 (0x880,0x2000) 0.5298 (0x11000,0x40000) 0.5300
(0x88000,0x200000) 0.5301 (0x110000,0x400000) 0.5301 (0x800,0x2220) 0.5302
(0x800,0x2220) 0.5302 (0x220,0x800) 0.5304 (0x8800,0x20000) 0.5304
(0x200,0x888) 0.5305 (0x2200,0x8000) 0.5306 (0x2,0x880008) 0.5306

(0x100000,0x444000) 0.5307 (0x880000,0x2) 0.5307 (0x10000,0x44400) 0.5308
(0x1100,0x4000) 0.5309 (0x1,0x440004) 0.5311 (0x110,0x400) 0.5313
(0x200002,0x8) 0.5313 (0x44000,0x100000) 0.5314 (0x220000,0x800000) 0.5314
(0x22,0x80) 0.5318 (0x8000,0x22200) 0.5319 (0x200000,0x888000) 0.5320
(0x80,0x222) 0.5322 (0x1000,0x4440) 0.5323 (0x10,0x400044) 0.5325

(0x4400,0x10000) 0.5326 (0x4,0x100011) 0.5327 (0x44,0x100) 0.5327
(0x440000,0x1) 0.5329 (0x20,0x800088) 0.5339 (0x4000,0x11100) 0.5340

(0x22000,0x80000) 0.5341 (0x11,0x40) 0.5341 (0x80000,0x222000) 0.5349

	Introduction
	Preliminaries
	Notations
	Overview of Gohr's Work

	An Approach based on SAT to Improve Neural Distinguisher
	Generic Network Architecture
	An Algorithm based on SAT to Improve Neural Distinguisher

	A New Neural Distinguisher Model Using Multiple Output Differences
	New Neural Distinguisher Model
	Applications to NSA Block Ciphers
	A Supplementary Explanation to Our New Model

	Key Recovery Attack on Round-reduced SIMON32/64 and SIMON48/96
	Practical Key Recovery Attack on 14-round SIMON48/96
	Practical Key Recovery Attack on 13-round SIMON32/64

	Practical Key Recovery Attack on Reduced-round SIMON64/128
	Observations on Wrong Key Response
	Key Recovery Attack on 13-round SIMON64/128

	Conclusion and Future Work
	Brief Description of SIMON and Speck
	SIMON
	Speck

	Accuracy of neural distinguishers of 10-round SIMON48/96 using Benamira's method

