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Abstract

In this work, we characterize online linear extractors. In other words, given a matrix A ∈
Fn×n
2 , we study the convergence of the iterated process S ← AS⊕X, where X ∼ D is repeatedly

sampled independently from some fixed (but unknown) distribution D with (min)-entropy at
least k. Here, we think of S ∈ {0, 1}n as the state of an online extractor, and X ∈ {0, 1}n as
its input.

As our main result, we show that the state S converges to the uniform distribution for all
input distributions D with entropy k > 0 if and only if the matrix A has no non-trivial invariant
subspace (i.e., a non-zero subspace V ( Fn

2 such that AV ⊆ V ). In other words, a matrix
A yields an online linear extractor if and only if A has no non-trivial invariant subspace. For
example, the linear transformation corresponding to multiplication by a generator of the field
F2n yields a good online linear extractor. Furthermore, for any such matrix convergence takes
at most Õ(n2(k + 1)/k2) steps.

We also study the more general notion of condensing—that is, we ask when this process con-
verges to a distribution with entropy at least `, when the input distribution has entropy greater
than k. (Extractors corresponding to the special case when ` = n.) We show that a matrix gives
a good condenser if there are relatively few vectors w ∈ Fn

2 such that w, ATw, . . . , (AT )n−k−1w
are linearly dependent. As an application, we show that the very simple cyclic rotation trans-
formation A(x1, . . . , xn) = (xn, x1, . . . , xn−1) condenses to ` = n− 1 bits for any k > 1 if n is a
prime satisfying a certain simple number-theoretic condition.

Our proofs are Fourier-analytic and rely on a novel lemma, which gives a tight bound on the
product of certain Fourier coefficients of any entropic distribution.

1 Introduction

An extractor is a deterministic algorithm that takes input X ∼ D sampled from some sufficiently
nice distribution D and outputs nearly uniformly random Y ∈ {0, 1}n. An online extractor is a
deterministic algorithm with a state S ∈ {0, 1}n that takes inputs X1 ∼ D1,X2 ∼ D2, . . . ,Xm ∼
Dm one at a time, updating its state after each input. We say that it extracts from D1, . . . , Dm if
the state S is statistically close to random at the end of this process. This naturally models the
idea of “gradually accumulating entropy” from entropic sources.

We are interested in perhaps the simplest possible setting, when the Di = D are independent
and identical but otherwise arbitrary entropic distributions over {0, 1}n, and when the extractor is
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linear (over F2). In other words, on input X ∈ {0, 1}n, the state S ∈ {0, 1}n is updated by the
procedure

S ← AS ⊕X

for some fixed linear transformation A ∈ Fn×n
2 .

We then ask the natural question

Which matrices A ∈ Fn×n
2 are good extractors?

In other words, for which matrices A does the process S ← AS ⊕X always converge to uniform
when X is sampled independently from any distribution with non-zero entropy?

We first notice that there is a natural obstruction that prevents some matrices A ∈ Fn×n
2

from extracting. As an illustrative example, suppose that A is the “rotation” map defined by
A(x1, . . . , xn) = (xn, x1, x2, . . . , xn−1). Then, A clearly fails to extract from the uniform distribution
over {0n, 1n}.

More generally, suppose that there exists a subspace V ⊂ Fn
2 with dimension 0 < dim(V ) < n

such that AV ⊆ V . Such a subspace is called a non-trivial invariant subspace. (The trivial invariant
subspaces are {0n} and Fn

2 .) Then, if X is sampled from the uniform distribution over V , it is not
hard to see that the distribution of the state S will itself remain uniform over V after each run of
the extractor S ← AS ⊕X. (Here and elsewhere, we assume without loss of generality that the
starting state is 0n.) So, A completely fails to extract from this distribution, even though it clearly
has (min-)entropy.

Our main theorem is a proof that this is the only obstruction, i.e., that a matrix A extracts
from all entropic distributions if and only if A has no non-trivial invariant subspaces. In fact, we
show that this property implies that A extracts after relatively few samples, just Õ(n2(k + 1)/k2)
samples. (Notice that n/k samples is the best that one could possibly hope for.)

Theorem 1.1 (Informal, see Theorems 4.2 and 4.3). A matrix A ∈ Fn×n
2 extracts from arbitrary

entropic distributions if and only if A has no non-trivial invariant subspace.
Specifically, if A has no non-trivial invariant subspace and the input has min-entropy k > 0,

then the distribution of the state will be 2−n-close to uniform after m ≤ O(n2(k+1)/k2 · log(2n/k))
steps.

We note that, while the property of having a non-trivial invariant subspace might seem rather
opaque, it is efficiently checkable: A has no non-trivial invariant subspace (and thus is a good
extractor) if and only if its characteristic polynomial is irreducible [Cla13]. Moreover, there are very
sparse matrices A having this property. For example, if A is the linear transformation corresponding
to multiplication by a generator of the finite field F2n , then A is a good extractor which can be
easily implemented in time O(n).1 Thus, we show very simple linear-time, online linear extractors
that work for any (unknown) distribution with non-zero min-entropy.

Our proof of Theorem 1.1 is Fourier-analytic; the main technical tool is a novel lemma (Lemma 3.1)
concerning certain products of Fourier coefficients of distributions with entropy k. Specifically, for
linearly independent w1, . . . ,wr ∈ Fn

2 , we give a tight bound on the product of the product of the
associated Fourier coefficients. (The worst case is essentially a linear transformation of the uniform
distribution over a Hamming ball.)

1Indeed, multiplication by the generator corresponds to one cyclic rotation and one conditional XOR with a fixed
string corresponding to the coefficients of the irreducible polynomial generating the field.
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Online linear condensers. We also consider a more general question. Recall that a condenser
is a deterministic algorithm that takes as input X ∼ D sampled from a sufficiently nice distribution
and outputs Y ∈ {0, 1}n that has relatively large entropy (but is not necessarily close to uniform).
In our setting, we are interested in the following question.

For which matrices A does the process S ← AS ⊕X converge to a distribution with
at least ` bits of entropy, whenever X is sampled independently from some (unknown)
distribution with more than k bits of entropy?

Notice that our extractor question from above corresponds to the the special case when k = 0 and
` = n.

Here, our result is necessarily a bit more complicated (though the proof is simple and uses the
same Fourier-analytic tools). Specifically, we define the A-rank of a vector w ∈ Fn

2 as the dimension
of the subspace spanned by w, Aw, . . . , An−1w. Notice that a matrix A has a non-trivial invariant
subspace if and only if there is a non-zero vector w ∈ Fn

2 with A-rank less than n—so that this
notion of A-rank is naturally related to the idea of non-trivial invariant subspaces discussed above.
And, notice that the obstruction that we ran into with rotation arose from the existence of the
vector 1n with rank equal to 1, which can cause our condenser to “get stuck at one bit of entropy.”
There is a similar obstruction caused by the uniform distribution over the subspace orthogonal to
1n (i.e., the subspace of vectors with even Hamming weight) that can cause our condenser to “get
stuck at n− 1 bits of entropy.”

More generally, a vector with A-rank r means that “we can get stuck on distributions with
entropy r or entropy n − r.” So, if we are going to condense from k bits to ` bits, we must have
k > min{n− r, r} and ` ≤ max{r, n− r}.

We prove that low-rank vectors are essentially the only possible obstruction to condensing. In
particular, a matrix A is a good condenser if it has a small number of vectors with small A-rank.
(Again, while this might seem rather opaque, it is easy to count the vectors with a given A-rank by
computing the characteristic and minimal polynomials of A [Cla13].) In fact, for technical reasons,
it is more natural to study vectors with low AT -rank, rather than vectors with low A-rank. (Since
AT and A have the same characteristic and minimal polynomials, A-rank and AT -rank are closely
related.)

Theorem 1.2 (Informal, see Theorem 5.4). For any invertible A ∈ Fn×n
2 , if there are at most N

vectors in {0, 1}n with AT -rank less than r, then A condenses any distribution with k > g := n− r
bits of min-entropy to a distribution with at least ` = n− log2N bits of min-entropy. In particular,
the state will have entropy at least `− 2−n after m = Õ(n2(k − g + 1)/(k − g)2) steps.

As an application, we show that rotation does in fact condense from k > 1 bits of entropy to
n − 1 bits—and that it only requires m = Õ(n2k/(k − 1)2) steps to do so—when n is a prime
satisfying a simple number-theoretic condition.

1.1 Related work

To the best of our knowledge, our question of linear extractors from independent, identically dis-
tributed (IID) sources was not explicitly considered by prior work, but several works considered
somewhat related models.

The closest such model is our recent prior work [DGSX21], which was motivated by a very
practical question of analyzing the bit-level complexity of fast entropy accumulation in real-world
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random number generators (RNGs), such as the Fortuna RNG used by Windows 10 [Fer19]. That
work also studied online linear extractors, but only for a specific class of natural distributions that
arise in practice and only for hyper-efficient linear transformations A that simply permute the
bits of the state. Indeed, in [DGSX21], we were primarily concerned with the practical question
of optimizing the exact number of samples needed to extract from such distributions for fixed
n ∈ {32, 64} using these extremely fast linear transformations.2 From a technical point of view, both
works use Fourier-analytic techniques, but the details are quite different. The main Fourier-analytic
tool in [DGSX21] is a bound on the Fourier coefficients of the class of natural distributions that we
study there. Here, our main tool is Lemma 3.1, which applies to arbitrary entropic distributions.

Starting with Chor and Goldreich [CG88], many papers (see [BIW04, KRVZ11, CZ19] and refer-
ences therein) studied the much harder question of randomness extraction from several independent
(but not identical) arbitrary entropic sources. Unlike our work, these extractors cannot be linear,
and, to the best of our knowledge, no online extractor is known to extract from this general class of
courses. However, if one sufficiently restricts the distribution family to be more structured, online
extraction is sometimes possible—even by extremely efficient functions. For example, the classical
work of Santha and Vazirani [SV86] showed that simply applying bit-wise XOR is a good extractor
for independent (but not necessarily identical) SV-sources. In fact, in some cases online extraction
becomes possible even without assuming independence, as long as each new source comes from
certain very structured family conditioned on the previous sources [BEG15, BBEG18].

The classical work of von Neumann [von51] studied the question of randomness extraction from
IID coin flips with an a-priori unknown bias, and his extractor happened to be online. Elias [Eli72]
improved the rate of von Neumann’s extractor, but sacrificed the online property to do so.

The works of [CDKT19, DGH+04] explicitly considered online extractors in various idealized
computational models (such as the random oracle model). These extractors are highly non-linear.

In the setting of so-called “seeded extractors”, where an additional random seed is available for
extraction, the power of simple, linear extractors goes back to the leftover hash lemma [HILL99],
and the streaming analog of this question (corresponding to a very long source X) was studied
by [BTRS02].

2 Preliminaries

2.1 Entropy and statistical distance

For an integer n ≥ 1, we write [n] := {0, . . . , n − 1}. For a distribution D over {0, 1}n and
x ∈ {0, 1}n, we write D(x) := PrX∼D[X = x] for the probability that D assigns to x. The
statistical distance between two distributions D1 and D2 over {0, 1}n is

SD(D1, D2) :=
1

2
·
∑

x∈{0,1}n
|D1(x)−D2(x)| .

2In contrast, we are interested in the more theoretical question of extracting from arbitrary entropic sources with
arbitrary n. In exchange for this generality, we sacrifice the extreme efficiency achieved in [DGSX21] (which was the
primary goal of that work). Indeed, in [DGSX21] we show that very efficient linear transformations A can extract
from a natural class of sources in just a bit more than n/k steps, while it is easy to see that n−k steps are necessary for
an online linear extractor to extract from arbitrary entropic sources. Indeed, all of the different linear transformations
that we considered in [DGSX21] are conjugates of rotation, and are therefore equivalent in our setting of arbitrary
entropic sources, while in the model of [DGSX21] their convergence rates are quite different. (In [DGSX21], we were
also happy to converge to at most, e.g., n−ε bits of entropy, while here we are interested in asymptotic convergence.)
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We say D1 is ε-close to D2 if SD(D1, D2) ≤ ε. The min-entropy of D is

Hmin(D) := min
x∈{0,1}n

log2(1/D(x)) .

2.2 Basic Fourier analysis

For a distribution D over {0, 1}n and w ∈ {0, 1}n, we define the Fourier coefficient of D at w as

D̂(w) := E
X∼D

[(−1)〈X,w〉] = Pr
X∼D

[〈X,w〉 = 0 mod 2]− Pr
X∼D

[〈X,w〉 = 1 mod 2] .

Claim 2.1. For any distribution D over {0, 1}n,

Hmin(D) ≥ n− log2

( ∑
w∈{0,1}n

|D̂(w)|
)
.

and

SD(D,U) ≤ 1

2

∑
w∈{0,1}n,w 6=0

|D̂(w)| ,

where U is the uniform distribution over {0, 1}n.

Proof. Recall that for any x ∈ {0, 1}n,

D(x) =
1

2n

∑
w∈{0,1}n

D̂(w)(−1)〈x,w〉 ≤ 1

2n

∑
w∈{0,1}n

|D̂(w)| .

Therefore,

Hmin(D) = min
x∈{0,1}n

log2(1/D(x)) ≥ n− log2

( ∑
w∈{0,1}n

|D̂(w)|
)
.

Moreover, note that D̂(0) = 1,∣∣D(x)− 1

2n
∣∣ =

∣∣ 1

2n

∑
w∈{0,1}n,w 6=0

D̂(w)(−1)〈x,w〉
∣∣ ≤ 1

2n

∑
w∈{0,1}n,w 6=0

|D̂(w)| .

Therefore,

SD(D,U) =
1

2
·
∑

x∈{0,1}n
|D(x)− 1

2n
| ≤ 1

2
· 2n ·

( 1

2n

∑
w∈{0,1}n,w 6=0

|D̂(w)|
)

=
1

2

∑
w∈{0,1}n,w 6=0

|D̂(w)| .

The Fourier coefficients arise naturally in our context because they interact nicely with both
convolution and linear transformations, as this next well-known claim shows.

Claim 2.2. For distributions D1, . . . , Dm over {0, 1}n and linear transformations A1, . . . , Am ∈
Fn×n
2 , let D be the distribution given by

Pr
X∼D

[X = x] = Pr
X1∼D1,...,Xm∼Dm

[A1X1 ⊕ · · · ⊕AmXm = x] ,

where the Xi are independent. Then,

D̂(w) = D̂1(A
T
1 w) · · · D̂m(AT

mw) .

for any w ∈ {0, 1}n.
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Proof. We have

E[(−1)〈w,X〉] = E[(−1)〈w,A1X1⊕···⊕AmXm〉]

= E[(−1)〈w,A1X1〉] · · ·E[(−1)〈w,AmXm〉]

= E[(−1)〈A
T
1 w,X1〉] · · ·E[(−1)〈A

T
mw,Xm〉]

= D̂1(A
T
1 w) · · · D̂m(AT

mw) .

For a distribution D over {0, 1}n, integer ` ≥ 1, and linear transformation A : Fn
2 → Fn

2 ,

we write D
(`)
A for the distribution obtained by sampling X1, . . . ,X` independently and returning

X1 ⊕AX2 ⊕ · · · ⊕A`−1X`.

2.3 Properties of (near)-uniform distribution over the Hamming ball

The (near)-uniform distribution over the Hamming ball with a given min-entropy plays an impor-
tant role in our analysis.

Definition 2.3. For r, n ∈ N, k ∈ R, suppose 1 ≤ r ≤ n, and n − r < k ≤ n, we define D∗r,k over
{0, 1}n as follows,

D∗r,k(x) :=


2−k

∑r
i=1 xi < d∗

p∗
∑r

i=1 xi = d∗

0 otherwise,

where d∗ := min{0 ≤ d ≤ r : 2n−r · (
(
r
0

)
+
(
r
1

)
+ · · ·+

(
r
d

)
) ≥ 2k}, and

p∗ :=
1(
r
d∗

) · (2−(n−r) − 2−k ·
((r

0

)
+

(
r

1

)
+ · · ·+

(
r

d∗ − 1

)))
.

(I.e., d∗ and p∗ are chosen to make D∗r,k a probability distribution.)

Lemma 2.4. Let 1 ≤ r ≤ n and n − r < k ≤ n, and let D∗r,k be defined as above. Then, for
1 ≤ i ≤ r,

D̂∗r,k(ei) ≤ 1− c · d∗

r
≤
(

1− c(r + k − n)

6r log(2r/(r + k − n))

)
,

where c := 1− 2−(r+k−n) ≥ min(12 ,
r+k−n

2 ).

Proof. By symmetry, for 1 ≤ i ≤ r, j ∈ N,

r · D̂∗r,k(ei) =

r∑
i′=1

D̂∗r,k(ei′) =

r∑
i′=1

(1− 2 Pr
x∼D∗r,k

[xi′ = 1]) = r − 2 E
x∼D∗r,k

[

r∑
i′=1

xi′ ] .

Let pj := Prx∼D∗r,k [
∑r

i′=1 xi′ = j]. We have that

pj :=


2n−r−k

(
r
j

)
0 ≤ j ≤ d∗ − 1

2n−r
(
r
d∗

)
· p∗ j = d∗

0 otherwise.
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For 1 ≤ j ≤ d∗ − 1, it holds that

j · pj + (d∗ − j) · pd∗−j ≥ (pj + pd∗−j) · (d∗/2)

because pj ≤ pd∗−j if and only if j ≤ d∗ − j 3. Hence,

2 E
x∼D∗r,k

[ r∑
i′=1

xi′
]

=

d∗∑
j=0

(j · pj + (d∗ − j) · pd∗−j)

≥
d∗−1∑
j=1

(pj + pd∗−j) · (d∗/2) + 2d∗ · pd∗

= d∗ ·
d∗∑
i=0

pi + d∗ · (pd∗ − p0)

= d∗(1 + pd∗ − p0)
≥ d∗ · c

where the last inequality is due to pd∗ ≥ 0. Hence

D̂∗r,k(ei) = 1−
2Ex∼D∗r,k [

∑r
i′=1 xi′ ]

r
≤ 1− c · d∗

r
.

The first inequality in the theorem statement follows.
To finish the proof, we prove that for k ∈ R, n− r < k ≤ n,

d∗ ≥ r + k − n
6 log(2r/(r + k − n))

.

We rely on some basic facts about binary entropy function listed in Appendix A. For p ∈ (0, 1),
the binary entropy function is H(p) := p log2(1/p) + (1− p) log2(1/(1− p)). By Fact A.1, we have

2r+k−n ≤
d∗∑
i=0

(
r

i

)
≤ 2rH(d∗/r) .

If k ≤ n− 1, then d∗ ≤ r/2. The desired conclusion follows by instantiating rH(d∗/r) ≥ r + k − n
in Claim A.2. If n− 1 < k ≤ n, then d∗ > r/2 > r+k−n

6 log(2r/(r+k−n)) because r+k−n
6 log(2r/(r+k−n)) ≤ r/6 for

all k ≤ n.

3 Our main lemma

Lemma 3.1. For r, n ∈ N, k ∈ R, suppose 1 ≤ r ≤ n, n − r < k ≤ n, F2-linearly independent
vectors w1, . . . ,wr ∈ {0, 1}n, and a distribution D over {0, 1}n with at least min-entropy k, we
have

r∏
i=1

|D̂(wi)| ≤ 2−c(r+k−n)/6 log2(2r/(r+k−n)) .

where c = 1− 2−(r+k−n).
3Note that pj = 2n−r−k ·

(
r
j

)
, pd∗−j = 2n−r−k ·

(
r

d∗−j

)
for 1 ≤ j ≤ d∗ − 1. If pj ≤ pd∗−j , it implies

(
r
j

)
≤

(
r

d∗−j

)
.

Since (j + d∗ − j)/2 = d∗/2 ≤ r/2, it implies j ≤ d∗ − j. Conversely, if j ≤ d∗ − j, by the same reason it implies(
r
j

)
≤

(
r

d∗−j

)
and thus pj ≤ pd∗−j .
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Proof of Lemma 3.1. Let D∗r,k be defined as in Definition 2.3. We show that products of Fourier
coefficients at independent vectors is maximized by the products of Fourier coefficients at basis
vectors for D∗r,k.

Claim 3.2. For F2-linearly independent vectors w1, . . . ,wr ∈ {0, 1}n and any distribution D over
{0, 1}n with min-entropy k ≤ n. we have

r∏
i=1

|D̂(wi)| ≤
r∏

i=1

D̂∗r,k(ei) ,

where ei ∈ {0, 1}n is the ith standard basis vector.

Combining with Lemma 2.4, we have

r∏
i=1

|D̂(wi)| ≤
r∏

i=1

D̂∗r,k(ei) ≤
(

1− c(r + k − n)

6r log(2r/(r + k − n))

)r
.

The desired conclusion follows (notice (1− x)r ≤ 2−rx for x ≥ 0). Now we prove Claim 3.2.

Proof of Claim 3.2. Let A ∈ Fn×n
2 be an invertible linear transformation such that ATwi = ei for

all i. Then, Hmin(AD) = Hmin(D) and ÂD(ei) = D̂(wi). So, by applying the linear transformation
A, we may assume without loss of generality that wi = ei. By possibly flipping some bits, we may
also assume that D̂(ei) ≥ 0, so that it suffices to prove that

r∏
i=1

D̂(ei) ≤
r∏

i=1

D̂∗r,k(ei) ,

For 1 ≤ i < j ≤ r, let π : {0, 1}n → {0, 1}n be the map that swaps the ith and jth coordinates
and leaves all other coordinates untouched. Let D′ be the distribution given by D′(x) = (D(x) +
D(π(x)))/2. Notice that Hmin(D′) ≥ Hmin(D). Furthermore,

r∏
k=1

D̂′(ek) =
(D̂(ei) + D̂(ej))

2

4
·
∏

k/∈{i,j}

D̂(ek) ≥
r∏

k=1

D̂(ek) ,

where the last inequality follows from the fact that (a+ b)/2 ≥
√
ab for a, b ≥ 0. Therefore, we may

assume without loss of generality that D(x) = D(π(x)). By a similar argument, we may assume
that D(x) = D(x′) for any x,x′ ∈ {0, 1}n with

∑r
i=1 xi =

∑r
i=1 x

′
i.

Now, suppose that there exists a vector x ∈ {0, 1}n and an index 1 ≤ i ≤ r such that xi = 1,
D(x) > 0 and D(x⊕ ei) < 2−k. Then, let D′ be the distribution that is identical to D except that
D′(x) = D(x)− p and D′(x⊕ ei) = D(x⊕ ei) + p, where 0 < p ≤ min{D(x), 2−k −D(x⊕ ei)}.
Clearly, Hmin(D′) ≥ k and

∏r
i=1 D̂

′(ei) >
∏r

i=1 D̂(ei).
So, by replacing D with D′, we may assume without loss of generality that no such x and i

exist. Together with the above assumption that D(x) = D(x′) whenever
∑r

i=1 xi =
∑r

i=1 x
′
i, this

uniquely characterizes the distribution D. I.e., D = D∗r,k. The result follows.
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4 Extractability

In this section, we characterize the matrices A that yield online extractors.

Definition 4.1. We say that a subspace S ⊆ Fn
2 is an invariant subspace of A ∈ Fn×n

2 or A-
invariant if for every w ∈ S, Aw ∈ S. We say S is non-trivial if S 6= {0} and S 6= Fn

2 .

There is a rich theory of invariant subspaces that is beyond the scope of this work. (See,
e.g., [Cla13].) For our purposes, it suffices to note simply that the invariant subspaces can be
computed efficiently. In particular, the invariant subspaces correspond to factors of the character-
istic and minimal polynomials of A, and A has no non-trivial invariant subspace if and only if the
characteristic polynomial of A is irreducible.

Invariant subspaces arise naturally in this context. Indeed, if S ⊂ Fn
2 is a non-trivial invariant

subspace of A, then A will completely fail to extract from the uniform distribution over S. We
make this observation formal in Theorem 4.2.

Theorem 4.2. For A ∈ Fn×n
2 , if there exists a non-trivial A-invariant subspace with dimension r,

then there exists a distribution D over {0, 1}n with min-entropy r such that D
(m)
A = D for all m.

Proof. Let S be an A-invariant subspace with dimension r. Let D be the uniform distribution
over S with min-entropy r. Recall that Dm

A is the distribution obtained by sampling X1, . . . ,X`

independently from D and returning X1 ⊕ AX2 ⊕ · · · ⊕ Am−1Xm. Because S is A-invariant, it
holds that y := AX2 ⊕ · · · ⊕ Am−1Xm is in the subspace S, and X1 ⊕ y is uniformly distributed

over S for an independent y ∈ S. Therefore for all m, D
(m)
A is the uniform distribution over S.

Perhaps more surprisingly, the next theorem shows that this is the only restriction. In particular,
if A has no non-trivial invariant subspace, then A extracts from any source with min-entropy k
after Õ(n2(k + 1)/k2) steps.

Theorem 4.3. For A ∈ Fn×n
2 , if A has no non-trivial invariant subspace, then for k > 0, and any

distribution D over {0, 1}n with min-entropy at least k,

SD(D
(m)
A , U) ≤ 2

n−1−bm/nc· ck
6 log2(2n/k)

where c = 1− 2−k.

Proof. Because the orthogonal subspace of an A-invariant subspace is AT -invariant, AT also has
no non-trivial invariant subspace. For any non-zero w, it must therefore be the case that w1 :=
w,w2 := . . . ,wn := (AT )n−1w, are linearly independent. Otherwise the span of w1, . . . ,wn would
be a non-trivial AT -invariant subspace. By applying Lemma 3.1 with r = n, we obtain

n−1∏
i=0

|D̂((AT )iw)| =
n∏

i=1

|D̂(wi)| ≤ 2−ck/6 log2(2n/k) , (1)

where c = 1− 2−k. Therefore, for any non-zero w,

|D̂(m)
A (w)| =

m−1∏
i=0

|D̂((AT )iw)| =
bm/nc−1∏

j=0

n−1∏
i=0

|D̂((AT )jn+iw)| ≤ 2
−bm/nc· ck

6 log2(2n/k)
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where the last inequality is due to (AT )jnw 6= 0 and (1). By applying Claim 2.1,

SD(D
(m)
A , U) ≤ 1

2
·

∑
w∈{0,1}n,w 6=0

|D̂(m)
A (w)| ≤ 2

n−1−bm/nc· ck
6 log2(2n/k) ,

as desired.

We note in passing that the matrix A corresponding to multiplication by a generator of a finite
field is a particularly nice example satisfying the condition of Theorem 4.3. That is, if we interpret
y = (y1, . . . , yn) ∈ {0, 1}n as the polynomial y1 +y2t+ · · ·+ynt

n−1 ∈ F2[t]/p(t) for some irreducible
polynomial p(t) ∈ F2[t] of degree n. Then, the matrix A corresponding to multiplication by t has
no non-trivial invariant subspace4 and thus yields a good extractor. This matrix has the convenient
property that it is quite sparse—with all columns except the last having a single non-zero entry.

5 Condensibility

We now turn our attention to online linear condensers. Our results will be in terms of the concept
of the A-rank of a vector w ∈ Fn

2 , defined below.

Definition 5.1. For any A ∈ Fn×n
2 , the A-orbit of a vector w ∈ {0, 1}n is the set {Akw}∞k=0. The

linear orbit [w] of w is the subspace spanned by A-orbit of w.

Definition 5.2. For any A ∈ Fn×n
2 , the A-rank of a vector w ∈ {0, 1}n is the maximal integer

r such that the set of vectors {w, Aw, . . . , Ar−1w} is linearly independent. We use rankA(w)5 to
denote A-rank of w.

One can efficiently compute the number of vectors with a given A-rank by computing the
minimal polynomial of A [Cla13].

Proposition 5.3. For A ∈ Fn×n
2 , w ∈ {0, 1}n with the A-rank r, the linear orbit [w] is an invariant

subspace of dimension r. Moreover,

[w] = span(w, Aw, . . . , Ar−1w) .

The above proposition shows that the A-rank of w characterizes the minimal invariant subspace
V containing w: if the A-rank of w is r, then the first r vectors in the A-orbit are linear independent
and thus generate V . In particular, if A has no non-trivial invariant subspace, then every w ∈
Fn
2 \ {0n} has A-rank n.

Our next theorem gives a partial characterization of matrices A that yield good online linear
condensers in terms of AT -rank and the number of vectors with small AT -rank. This yields a
natural generalization of Theorem 4.3.

4To see this, suppose for contradiction that there exists a non-trivial t-invariant subspace V ⊂ F2[t]/p(t). Then,
for any x ∈ V , we must have that x, tx, . . . , tn−1x are linearly dependent (since otherwise V is either not invariant
or V = Fn

2 is non-trivial). Since F2[t]/p(t) is a field, if V 6= {0}, we must also have that 1, t, . . . , tn−1 are linearly
independent. This means that t is a root of a polynomial with degree at most n − 1, contradicting the assumption
that p is irreducible.

5In linear algebra, our notation rankA(w) is the same as the maximal dimension of a Krylov subspace generated
by A and w.
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Theorem 5.4. For any invertible A ∈ Fn×n
2 , if there are at most N vectors in {0, 1}n with AT -rank

less than r, then for any real number g := n− r < k ≤ n and any distribution D over {0, 1}n with
min-entropy at least k,

Hmin(D
(m)
A ) ≥ n− log2(N + 2

n−bm/nc· c(k−g)
6 log2(2r/(k−g)) )

where c = 1− 2−(k−g).

Proof. For any w ∈ {0, 1}n with AT -rank at least r, then there are at least r-linear independent
vectors among w, . . . , (AT )n−1w, denoted as w1, . . . ,wr. By Lemma 3.1, it implies

n−1∏
i=0

|D̂((AT )iw)| ≤
r∏

i=1

|D̂(wi)| ≤ 2
− c(k−g)

6 log2(2r/(k−g)) ,

where c = 1− 2−(k−g). Moreover, because A is invertible, (AT )nw has the same AT -rank as w. We
have that,

|D̂(m)
A (w)| =

m−1∏
i=0

|D̂((AT )iw)| ≤
bm/nc−1∏

j=0

n−1∏
i=0

|D̂((AT )jn+iw)| ≤ 2
−bm/nc· c(k−g)

6 log2(2r/(k−g))

Because there are at most N vectors with AT -rank less than r, it holds that∑
w∈{0,1}n

|D̂(m)
A (w)| =

∑
w:rank

AT (w)<r

|D̂(m)
A (w)|+

∑
w:rank

AT (w)≥r

|D̂(m)
A (w)| ≤ N ·1+2n·2−bm/nc· c(k−g)

6 log2(2r/(k−g)) .

By applying Claim 2.1,

Hmin(D) = n− log2

( ∑
w∈{0,1}n

|D̂(w)|
)
≥ n− log2(N + 2

n−bm/nc· c(k−g)
6 log2(2r/(k−g)) ) ,

as desired.

Theorem 5.4 implies that any distribution with > n− r bits of min-entropy can be condensed
into at least n − log2N bits. Notice that Theorem 5.4 is non-vacuous if N < 2r. Moreover, the
constraint k > n− r is tight. If there exists a vector with AT -rank r, then there is an AT -invariant
subspace V of dimension r, which in particular contains 2r vectors of AT -rank at most r. Then, by
Theorem 4.2 the distribution D that is uniform over the subspace orthogonal to V has min-entropy

n− r but D
(m)
A = D for all m.

Rotation. Finally, as an application of this result, we show that rotation yields a good condenser
for some n. (Moreover, if we assume an additional minor condition on the distribution D, we
actually get an extractor.)

We write rotn for the linear transformation over {0, 1}n which rotates the coordinates of a vector
x by 1. In other words,

rotn((x1, . . . , xn)) := (xn, x1, x2, . . . , xn−1) .

11



Our first observation is that {x : xi = xi+d, ∀1 ≤ i ≤ n − d} is an invariant subspace of any
rotation when d < n is a divisor of n. By Theorem 4.2, rotn therefore cannot extract from sources
with min-entropy d for d < n a divisor of n. Moreover, rotations in general cannot condense from
a single bit of randomness because of the invariant subspace {0n, 1n} and cannot condense beyond
n− 1 bits of randomness because of the invariant subspace {x : x1⊕· · ·⊕xn = 0}. Therefore, the
best we can hope for is to condense from k > 1 bits of entropy to n− 1 bits of entropy for n prime.

We show that rotn does in fact achieve this as long as n is a prime satisfying a natural number-
theoretic condition. Indeed, this follows from Theorem 5.4 together with the following lemma due
to Vazirani [Vaz87].

Lemma 5.5 ([Vaz87]). If n is a prime such that 2 generates Z∗n (e.g., 5, 29, 37), then all w ∈
{0, 1}n \ {1n, 0n} have rotn-rank at least n− 1.

Plugging into Theorem 5.4 yields the following. In particular, for such primes, rotn condenses
from k > 1 bits to n− 1 bits in at most m = Õ(n2k/(k − 1)2) steps.

Corollary 5.6. If n is a prime with 2 is a primitive root for Z∗n, then for any real number 1 < k ≤ n,
and distribution D over {0, 1}n with at least min-entropy k,

Hmin(D
(m)
rotn) ≥ n− log2(2 + 2

n−bm/nc· c(k−1)
6 log2(2(n−1)/(k−1)) ).

where c = 1− 2−(k−1).

Finally, we note that our proof of Theorem 5.4 actually yields a statement about extraction as
well, which we present here in the special case of rotation. Specifically, in the proof of Theorem 5.4,
we used the trivial bound of |D̃(w)| ≤ 1 for low-rank w. If we instead happen to know a better
bound on the Fourier coefficient explicitly for the single non-zero low-rank vector for rotation, 1n,
we see that we can actually extract.

Theorem 5.7. For primes n such that 2 generates Z∗n, and for 1 < k ≤ n, a distribution D over
{0, 1}n with at least min-entropy k,

SD(D
(m)
rotn , U) ≤ 1

2
·
(
|D̂(1n)|m + 2

n−bm/nc· c(k−1)
6 log2(2(n−1)/(k−1))

)
where c = 1− 2−(k−1).

Theorem 5.7 implies that for such primes n, rotation yields a good online linear extractor for
distributions D with small |D̂(1n)| and min-entropy strictly larger than one. Notice that the two
counterexamples that we discussed in the definition—the uniform distribution over {0n, 1n}, and the
uniform distribution over all strings with even Hamming weight—show that one of these conditions
alone is not enough.
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A Facts about binary entropy function

Fact A.1. For 0 ≤ d ≤ `/2,
d∑

i=0

(
`

i

)
≤ 2`H(d/`).

Claim A.2. [BG13] For every p ∈ (0, 1/2],

H(p)

6 log2(2/H(p))
≤ p ≤ H(p)

log2(1/H(p))
.

We include the proof from [BG13] for completeness.

Proof. The upper bound on p follows from the inequality H(p) ≥ p log2 1/p. Applying twice we
obtain

1

p
≥ 1

H(p)
log2

1

p
≥ 1

H(p)
log2(

1

H(p)
log2

1

p
) ≥ 1

H(p) log2
1

H(p)

because 1/p ≥ 2. For the lower bound, we apply H(p) ≤ 2p log2 1/p twice to obtain

1

p
≤ 2

H(p)
log2

1

p
≤ 2

H(p)
log(

2

H(p)
log2

1

p
).

Now 2/H(p) ≥ (1/p) log2(1/p) ≥
√

log2(1/p), which is true for every p ∈ (0, 1]. Therefore,

1

p
≤ 2

H(p)
log2

( 8

H(p)3
)

=
6

H(p)
log2

( 2

H(p)

)
.
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