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Abstract

Zero-knowledge (ZK) proofs with an optimal memory footprint have attracted a lot of attention,
because such protocols can easily prove very large computation with a small memory requirement. Such
ZK protocol only needs O(M) memory for both parties, where M is the memory required to verify the
statement in the clear. In this paper, we propose several new constant-round ZK protocols in this setting,
which improve the concrete efficiency and, at the same time, enable sublinear amortized communication
for circuits with some notion of relaxed uniformity.

1. In the circuit-based model, where the computation is represented as a circuit over a field, our ZK
protocol achieves a communication complexity of 1 field element per non-linear gate for any field
size while keeping the computation very cheap.
We implemented our protocol, which shows extremely high efficiency and affordability. Compared to
the previous best-known implementation, we achieve 6×–7× improvement in computation and 3×–
7× improvement in communication. When running on intro-level AWS instances, our protocol only
needs one US dollar to prove one trillion AND gates (or 2.5 US dollars for one trillion multiplication
gates over a 61-bit field).

2. In the setting where part of the computation can be represented as a set of polynomials with a “degree-
separated” format, we can achieve communication sublinear to the polynomial size: the communi-
cation only depends on the total number of distinct variables in all the polynomials and the highest
degree of all polynomials, independent of the number of multiplications to compute all polynomials.
Using the improved ZK protocol, we can prove matrix multiplication with communication propor-
tional to the input size, rather than the number of multiplications. Proving the multiplication of two
1024 × 1024 matrices, our implementation, with one thread and 1 GB of memory, only needs 10
seconds and communicates 25 MB.

1 Introduction

Zero-knowledge (ZK) proofs allow a prover in possession of a witness w to prove to a verifier that C(w) = 1
for some public circuit C. Until recently, most works focus on non-interactive ZK proofs with a small proof
size (e.g., [BCC+16, BBB+18, WTs+18, BCR+19, BBHR19, Set20, GKR08, BFS20, ZXZS20, AHIV17,
BFH+20] and references therein), most of which suffer from a scalability problem. Specifically, to prove
a circuit with t gates, these protocols require memory of size proportional to t. As a result, the memory
constraint quickly becomes the bottleneck on the scale of computation that can be efficiently processed by a
ZK proof.
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Recently, ZK protocols with essentially unlimited scalability gained a lot of attention. Here, the protocol
should use the minimal amount of memory possible, which is the memory required to evaluate the circuit in
the clear. For example, ZK protocols based on privacy-free garbled circuits [JKO13, FNO15, HK20] satisfy
this requirement and are also concretely efficient. However, due to the lower bound on garbled circuits,
the best communication complexity one can hope for is κ bits per AND gate in the gate-by-gate paradigm,
where κ is the computational security parameter. Some ZK proofs [GMO16, CDG+17, KKW18] using
the “MPC-in-the-head” paradigm [IKOS07] are also streamable, thus achieving a small memory overhead,
but the overall computation and communication complexities are still high. For zero-knowledge succinct
non-interactive arguments of knowledge (zk-SNARKs), the only exception is to use recursive composi-
tion [BCCT13]. However, compared to the state-of-the-art memory-heavy zk-SNARKs [Set20, SL20], those
using recursive composition are still orders of magnitude slower [COS20, BDFG21].

A recent promising line of work to build constant-round ZK proofs based on (subfield) Vector Oblivious
Linear Evaluation [BCGI18, BCG+19b, SGRR19, BCG+19a, YWL+20], or (s)VOLE for short, provides a
new direction to accomplish this goal. Weng, Yang, Katz and Wang [WYKW21] proposed a ZK protocol
(Wolverine) that can prove circuits over any field with the communication complexity roughly (3ρ/ log t+1)
field elements per multiplication gate where t is the circuit size and ρ is the statistical security parameter;
in the case of large fields1, the communication can be reduced to 4 field elements (or 2 field elements
with much higher computational cost) per multiplication gate. Another recent work by Baum, Malozemoff,
Rosen and Scholl (Mac′n′Cheese) [BMRS21b] proposed a similar ZK protocol for large fields with the com-
munication cost of 3 field elements per multiplication gate. Line-Point ZK (LPZK) by Dittmer, Ishai, and
Ostrovsky [DIO21] achieves seemingly optimal communication cost (i.e., one field element per multiplica-
tion gate) in the gate-by-gate paradigm, but their protocol is only for large fields and has not been studied
for implementation yet.

Challenges. The recent line of work has significantly improved the efficiency of ZK proofs with essentially
unlimited scalability but there are still some challenges.

1. LPZK is great in communication but it only supports large fields. For small fields (e.g., binary fields),
the best known ZK protocol Wolverine is still based on the cut-and-choose technique and thus incurs a
high overhead.

2. All of the above memory-efficient protocols require communication linear to the number of multipli-
cation gates in the circuits (except for zk-SNARKs with recursive composition). One would naturally
desire concretely efficient protocols with the same memory efficiency while only requiring sublinear
communication cost. Mac′n′Cheese partially addressed this issue by incorporating the “stacking” tech-
nique [HK20], but its applicability is rather limited to circuits with many branches.

1.1 Our Contributions

In this paper, we present a set of new constant-round ZK protocols that achieve unprecedented practical
performance while being able to scale to billions and even trillions of gates without any memory issue. Our
circuit-based ZK protocol only needs to send one field element per multiplication gate (and free for addition
gates) for any field size with very high computational efficiency. Our polynomial-based ZK protocol can
further reduce the communication for commonly encountered statements.

Optimally efficient ZK proof for any field in the gate-by-gate paradigm. As summarized in Table 1,
the recent LPZK protocol achieves the best communication cost in the gate-by-gate paradigm for large

1In this paper, we say a “large field” meaning that the field size is at least 2ρ.
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Protocol
Boolean Circuit Arithmetic Circuit

Size Speed Size Speed

Wolverine [WYKW21] 7 1.25 M/sec 4 0.66 M/sec
Mac′n′Cheese [BMRS21a] − − 3 0.4 M/sec

LPZK [DIO21] − − 1 −

QuickSilver 1 7.7 M/sec 1 4.8 M/sec

Table 1: Comparing our work (QuickSilver) with prior related work. Size represents the number of field
elements to send for each multiplication gate, which is also the number of (s)VOLEs. Speed represents
the number of multiplication gates that can be executed per second with unlimited bandwidth and a single
thread.

fields. However, when it comes to small fields like Boolean circuits, the cost of the best-known proto-
col [WYKW21] is still much high due to the usage of cut-and-choose. Our ZK protocol is developed on top
of Wolverine and LPZK to achieve the best of both protocols: it needs to send one field element and a single
sVOLE correlation per non-linear gate for any field (including the case of Boolean circuits). See Section 3.1
for a detailed explanation of the protocol.

Our implementation can prove Boolean circuits at a speed of 7.7 million AND gates per second (with
one thread) and can prove arithmetic circuits over a 61-bit field at a speed of 4.8 million multiplication gates
per second (with one thread). The performance could be doubled using four threads (See Section 6).

Efficient ZK proof beyond the gate-by-gate paradigm. The above ZK protocol, which only sends one
field element per non-linear gate, reminds us of the story in garbled circuits. After a long history of op-
timizations [BMR90, NPS99, KS08, KMR14], the half-gates garbling scheme [ZRE15] achieves free for
XOR gates and 2κ-bit communication per AND gate, which is also proven to be optimal when the gar-
bling algorithm takes one gate as input at a time (a.k.a., the gate-by-gate paradigm). The lower bound soon
spawned new researches to bypass it by garbling not in the gate-by-gate framework. For example, Ball et
al. [BMR16] observed that garbling Boolean formulas as a whole can further improve communication effi-
ciency.

Our optimized protocol puts us in a similar situation, where the gate-by-gate paradigm limits further
improvement. Inspired by the above successful story in garbling, we study the case of proving polynomial
satisfiability as a whole. As we discuss in Section 3.2, we find that it is possible to prove a set of degree-d
polynomials on totally n distinct variables with communication cost of n+ d field elements, independent of
the number of multiplications to compute all the polynomials. Here, we require that all the polynomials are
represented in a “degree-separated” format, meaning that any multivariable polynomial f with a degree d is
represented as

∑d
h=0 fh such that all terms in fh have degree exactly h. The computation is highly efficient,

and is linear to the total number of terms in all the polynomials and quadratic to degree d.
This ZK proof for polynomial satisfiability has a direct application to prove knowledge of a solution of

the short-integer-solution (SIS) problem, where verifying that all secret inputs are bounded in a small range
can be viewed as low-degree polynomials. Our ZK protocol could prove knowledge of a solution of the SIS
problem with 8× improvement in proof size and 110× improvement in execution time, compared with the
state-of-the-art implementation [WYKW21].

Sublinear ZK proof for circuits with relaxed uniformity. The above polynomial-based ZK protocol is
sublinear when we compare the communication cost with the number of multiplications in the polynomial
set. Using this result, we can improve the efficiency of many applications and reach amortized communi-
cation sublinear to the circuit size as long as the circuit satisfies some weak notion of uniformity. More

3



Functionality FZK

Input. Upon receiving (input, id, w) from a prover P and (input, id) from a verifier V , with id a fresh identifier,
store (id, w).

Prove circuit satisfiability. Upon receiving (prove, C, id1, . . . , idn) from P and (verify, C, id1, . . . , idn) from V
where id1, . . . , idn are present in memory, retrieve (idi, wi) for i ∈ [n] and define a vector w = (w1, . . . , wn).
Send true to V if C(w) = 1 and false otherwise.

Prove polynomial satisfiability. Upon receiving (prove, {fi}i∈[t], id1, . . . , idn) from P and (verify, {fi}i∈[t],
id1, . . . , idn) from V where id1, . . . , idn are present in memory, retrieve (idi, wi) for i ∈ [n] and define a vector
w = (w1, . . . , wn). Then send true to V if fi(w) = 0 for all i ∈ [t] and false to V otherwise.

Figure 1: Zero-knowledge functionality for circuit and polynomial satisfiability.

specifically, as long as the circuit contains many sub-circuits such that their polynomial representations are
all bounded by some degree d, our technique can reduce the communication cost for proving these sub-
circuits. For example, we can prove matrix multiplication in communication complexity of O(n2) where
two matrices are of dimension n× n, and a gate-by-gate protocol needs O(n3) communication. We discuss
more complicated examples, as well as the general applicability in Section 3.3, which opens a new space of
improvements for real-world applications.

For matrix multiplication, our implementation can prove an instance with n = 1024, which contains
about one billion multiplications over a 61-bit field, in about 25 MB of communication and 10 seconds
of execution time using just 1 GB of memory. This is 35× faster than the prior best-known implementa-
tion [ZXZS20], which needs 148 GB of memory to accomplish this task.

More discussion on related work. This work focuses on designing concretely efficient ZK protocols with
a small memory (compared with the statement size). As a result, our protocol is interactive and has a
relatively large proof size. Nevertheless, our ZK protocol provides a fast prover time. On the other hand,
a lot of prior works mentioned earlier achieve a smaller proof size, and could be made non-interactive and
publicly verifiable; but these ZK protocols have a large memory consumption linear to the circuit size and a
slower prover time. We view the two types of ZK protocols as complement to one another: our protocol is
more suitable to prove large statements to a small number of verifiers, while prior works are more suitable
for proving medium-sized statements to potentially unlimited number of verifiers. More recently, an updated
version of Mac′n′Cheese reduced the communication cost to 1 and support boolean circuits as well; their
concrete efficiency is still worse than ours but they showed how to support conjunction of statements cheaper.

2 Preliminaries

2.1 Notation

We use κ and ρ to denote the computational and statistical security parameters, respectively. We use x← S
to denote that sampling x uniformly at random from a finite set S. For n ∈ N, we denote by [n] a set
{1, . . . , n}. For a, b ∈ Z with a ≤ b, we write [a, b] = {a, . . . , b}. We use bold lower-case letters like x for
column vectors, and denote by xi the i-th component of vector x where x1 is the first entry.

For an extension field Fpr of a finite field Fp, where p ≥ 2 is a prime or a power of a prime and r ≥ 1
is an integer, we fix some monic, irreducible polynomial f(X) of degree r and write Fpr ∼= Fp[X]/f(X).
Therefore, every field element w ∈ Fpr can be denoted uniquely as w =

∑
h∈[r]wh ·Xh−1 with wh ∈ Fp

for all h ∈ [r]. We could view the elements over Fpr equivalently as the vectors in (Fp)r. When we write
arithmetic expressions involving both elements of Fp and elements of Fpr , it is understood that field elements
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Functionality Fp,rsVOLE

Initialize: Upon receiving (init) from P and V , sample ∆ ← Fpr if V is honest, and receive ∆ ∈ Fpr from the
adversary otherwise. Store ∆ and send it to V , and ignore all subsequent (init) commands.

Extend: This procedure can be run multiple times. Upon receiving (extend, `) from P and V , do the following:

1. If V is honest, sample k← F`pr . Otherwise, receive k ∈ F`pr from the adversary.

2. If P is honest, sample x← F`p and compute m := k−∆ ·x ∈ F`pr . Otherwise, receive x ∈ F`p and m ∈ F`pr
from the adversary, and then recompute k := m + ∆ · x ∈ F`pr .

3. Send (x,m) to P and k to V .

Figure 2: Functionality for subfield VOLE.

in Fp are viewed as the polynomials lying in Fpr that have only constant terms.
A circuit C over a field Fp is defined by a set of input wires Iin, along with a list of gates of the form

(α, β, γ, T ), where α, β are the indices of the input wires of the gate, γ is the index of the output wire of
the gate, and T ∈ {Add,Mult} is the type of the gate. If p = 2, C is a Boolean circuit with Add = ⊕ and
Mult = ∧. If p > 2 is a prime or a power of a prime, C is an arithmetic circuit where Add/Mult corresponds
to addition/multiplication in Fp. We let t denote the number of multiplication gates in the circuit, and also
let n = |Iin|.

A set of t multivariable polynomials over Fp is denoted as {f1, . . . , ft}, where each polynomial has
degree at most d and takes the same n variables (x1, . . . , xn) as input. Every polynomial fi can be denoted
as
∑

h∈[0,d] fi,h, where all terms in fi,h have degree exactly h. For a vector z = (z1, . . . , zn) ∈ Fnp , we
define fi(z) = fi(z1, . . . , zn). Given a polynomial f over Fp, we could naturally define a polynomial over
Fpr by interpreting operations over Fp (i.e., additions and multiplications) to be operations over Fpr .

2.2 MACs and Functionalities

Information-Theoretic MACs. We use information-theoretic message authentication codes (IT-MACs)
[BDOZ11, NNOB12] to authenticate values over Fp or Fpr . Specifically, let ∆ ∈ Fpr be a global key, which
is sampled uniformly at random and known only by one party V . A value x ∈ Fp or Fpr known by the other
party P can be authenticated by giving V a uniform key k ∈ Fpr and giving P the corresponding MAC tag
m = k − ∆ · x ∈ Fpr . We denote such an authenticated value by [x]. Note that authenticated values are
additively homomorphic. In particular, given the public coefficients c1, . . . , c`, c ∈ Fp or Fpr , the parties
can compute [y] =

∑`
i=1 ci · [xi] + c locally, where P compute y :=

∑`
i=1 ci ·xi + c, my :=

∑`
i=1 ci ·mxi ,

and V computes ky :=
∑`

i=1 ci · kxi + c · ∆. We extend the above notation to vectors of authenticated
values as well. In this case, [x] means that P holds x ∈ Fnp and m ∈ Fnpr , while V holds k ∈ Fnpr with
k = m + ∆ · x.

Security model and functionalities. All our protocols are proven in the universal composability (UC)
framework [Can01] in the presence of a malicious, static adversary. We provide a brief overview of the UC
framework in the Appendix A. Our ZK functionality is shown in Figure 1. As we provide the protocols for
both circuits and polynomial sets, we extend the ZK functionality accordingly.

We use the standard sVOLE functionality [BCG+19b, BCG+19a] shown in Figure 2 to generate au-
thenticated values, where P obtains x ∈ F`p and m ∈ F`pr , and V obtains ∆ ∈ Fpr and k ∈ F`pr , such that
m = k − ∆ · x. This sVOLE functionality can be efficiently realized using the recent LPN-based pro-
tocols [SGRR19, BCG+19a, YWL+20, WYKW21]. These protocols have the communication complexity
sublinear to the number of resulting sVOLE correlations.
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3 Technical Overview

In this section, we provide the intuition of our constant-round ZK protocols, and leave the full protocol
description, as well as the proofs of security, to later sections.

3.1 Zero-Knowledge Proof for Circuit Satisfiability over Any Field

In the previous section, we introduced authenticated values, which can also be viewed as a way for the prover
to commit values to the verifier. It is a non-interactive commitment with an interactive preprocessing phase.
Given this tool, recent work [WYKW21, DIO21, BMRS21a] designed efficient zero-knowledge proofs for
circuit satisfiability with high scalability and communication linear to the circuit size. These works all follow
the same paradigm below.

1. The prover P first commits to all wire values in the circuit to the verifier, which takes n+ t field elements
of communication and n+t number of (s)VOLE correlations, where n is the input size and t is the number
of multiplication gates. Because the underlying commitment is additively homomorphic, addition gates
can be processed for free.

2. Prover P then proves that the committed values on multiplication gates are correct by executing a check-
ing procedure with the verifier V . This is where prior works differ. The first approach uses the (s)VOLE-
based commitment as a black box so they could potentially work with different forms of commitments,
while the second approach by LPZK [DIO21] uses the fact that IT-MACs are linear relationships.

Our ZK protocol in the gate-by-gate paradigm. Our protocol in the circuit-based setting can be viewed
as a hybrid approach of Wolverine, which uses subfield VOLE to support any field size, and LPZK, which
crucially relies on the fact that the VOLE-based commitments are linear relationships.

Similar to prior work, we use a linear scan on the circuit to compute the authenticated values on all
the wires in the circuit. In particular, for each multiplication gate, the prover P has (wα,mα), (wβ,mβ),
(wγ ,mγ) ∈ Fp × Fpr , and the verifier V holds kα, kβ, kγ ,∆ ∈ Fpr such that the following four equations
hold:

wγ = wα · wβ and mi = ki − wi ·∆ for i ∈ {α, β, γ}.

If P is malicious, the first equation could potentially be incorrect and our task is to check that this rela-
tionship holds for all multiplication gates. Although the last three equations are linear equations from the
perspective of the verifier, the first equation is not linear. The crucial observation is that it is possible to
convert the non-linear checking to a linear checking. Specifically, we observe that for the i-th multiplica-
tion gate with wire values (wα, wβ, wγ), if it is computed correctly (i.e., wγ = wα · wβ), then we havethe
following relation:

known to V︷ ︸︸ ︷
Bi = kα · kβ − kγ ·∆
= (mα + wα ·∆) · (mβ + wβ ·∆)− (mγ + wγ ·∆) ·∆
= mα ·mβ + (wβ ·mα + wα ·mβ −mγ) ·∆ + (wα · wβ − wγ) ·∆2

= mα ·mβ︸ ︷︷ ︸
known to P

denoted as A0,i

+ (wβ ·mα + wα ·mβ −mγ)︸ ︷︷ ︸
known to P

denoted as A1,i

· ∆︸︷︷︸
known to V
global key

We can see that the above relationship is now linear and very similar to the IT-MAC relationship. What’s
more, we also show in Section 4 that if the underlying wire values (i.e., wα, wβ, wγ) are not computed
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correctly, then the above relationship can hold only with probability 2/pr: now it becomes a quadratic
equation of ∆, where there are at most two values of ∆ that satisfy the equation.

Now when we look at a circuit with t multiplication gates, we can obtain one such relationship for
each multiplication gate. Namely, for each i ∈ [t], P has A0,i, A1,i ∈ Fpr and V has Bi ∈ Fpr such that
Bi = A0,i + A1,i ·∆. We can check all t linear relations in a batch using a random linear combination. In
particular, the verifier samples a uniform element χ ∈ Fpr after the above values have been defined, and
then checks that the following relationship holds:∑

i∈[t]

Bi · χi︸ ︷︷ ︸
known to V

denoted as B

=
∑
i∈[t]

A0,i · χi︸ ︷︷ ︸
known to P

denoted as A0

+
(∑
i∈[t]

A1,i · χi
)

︸ ︷︷ ︸
known to P

denoted as A1

· ∆︸︷︷︸
known to V
global key

By the verifier sending just one field element (i.e., χ), we are able to reduce checking t equations in the
circuit to checking the above single equation, that is B = A0 +A1 ·∆, where V has B and ∆, while P has
A0 and A1. This could be easily checked by using a random linear relationship B∗ = A∗0 + A∗1 · ∆ with
B∗, A∗0, A

∗
1 ∈ Fpr to mask field elements A0 and A1, and then opening the masked elements. In particular,

P sends U = A0 + A∗0 and V = A1 + A∗1 to V , who checks that B + B∗ = U + V · ∆. Finally, this
random linear relationship over Fpr can be easily obtained by generating subfield VOLE correlations on Fp
and packing them to Fpr .

Note that the online phase of the ZK protocol where the circuit and witness are known, can be made
non-interactive by computing χ using a random oracle to hash the transcript up to that point. In Section 4,
we provide the detailed description of our ZK protocol for circuit satisfiability and prove that it is UC-secure.
We report the performance of the protocol in Section 6.

3.2 Zero-Knowledge Proof for Polynomial Sets

For Boolean circuits, the above ZK protocol sends only one bit per AND gate in the sVOLE-hybrid model
and supports free-XOR. We believe that in the gate-by-gate paradigm, the communication cost is optimal:
intuitively, each AND gate has to require some communication when we process each gate individually.

This reminds us of the successful story of garbling, where a progression of research reached the half-
gates garbling scheme [ZRE15] proven to be optimal in the gate-by-gate paradigm. However, a lower
bound is merely a way to rule out certain approaches and in this case, the garbling lower bound implies
that a better garbling scheme either needs to use something beyond random oracle and linear operations, or
needs to go beyond the gate-by-gate paradigm and look at more gates as a whole. Indeed, the follow-up
works [MPas15, BMR16, KP17] have shown that it is indeed possible to garble a formula more efficiently.
In our second protocol, we apply the same philosophy to our ZK protocol for circuit satisfiability.

Our ZK protocol: proving inner product with smaller cost. Recall that in the above idea when we
prove a multiplication gate with wire values (x, y, z), two parties essentially prove f(x, y, z) = x · y −
z = 0. This could be viewed as a degree-2 polynomial on three variables. Let’s first generalize it to a
degree-2 polynomial with more than just one multiplication. Suppose f is a degree-2 polynomial such that
f(x1, . . . , xn) = c0 +

∑
i∈[n/2] ci · xi · xn/2+i. Two parties hold authenticated values [w1], . . . , [wn], and

the prover wants to prove f(w1, . . . , wn) = 0. We will follow the similar thinking process as above. In
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particular, observe that

f(k1, . . . , kn) = c0 +
∑

i∈[n/2]

ci · ki · kn/2+i

= c0 +
∑

i∈[n/2]

ci · (mi + wi ·∆) · (mn/2+i + wn/2+i ·∆)

=
(
c0 +

∑
i∈[n/2]

ci ·mi ·mn/2+i

)
+
( ∑
i∈[n/2]

ci ·mi · wn/2+i + ci ·mn/2+i · wi
)
·∆+

( ∑
i∈[n/2]

ci · wi · wn/2+i
)
·∆2

=
(
c0 +

∑
i∈[n/2]

ci ·mi ·mn/2+i

)
+
( ∑
i∈[n/2]

ci ·mi · wn/2+i + ci ·mn/2+i · wi
)
·∆− c0 ·∆2.

The last equation is due to the fact that f(w1, . . . , wn) = c0 +
∑

i∈[n/2] ci · wi · wn/2+i = 0. Reorganizing
the above equation a bit, we can obtain the following equation:

f(k1, . . . , kn) + c0 ·∆2︸ ︷︷ ︸
known to V , denoted as B

=
(
c0 +

∑
i∈[n/2]

ci ·mi ·mn/2+i

)
︸ ︷︷ ︸

known to P , denoted as A0

+
( ∑
i∈[n/2]

ci ·mi · wn/2+i + ci ·mn/2+i · wi
)

︸ ︷︷ ︸
known to P , denoted as A1

·∆.

This is still a linear relationship B = A0 + A1 · ∆, which we could prove easily as in our first protocol.
Essentially, we can prove a degree-2 polynomial with n/2 multiplications with a communication cost of just
O(1), in addition to the cost of committing the witness. This is independent of the number of multiplications
in the polynomial, which could be as many as O(n). One immediate observation is that if we have t such
polynomials to be proven, the total communication cost is still O(1) rather than O(t), by using the same
random-linear-combination idea to reduce all linear checks to a single check. This protocol immediately
allows us to prove inner product faster than the circuit-based ZK protocol.

Our ZK protocol: proving arbitrary degree-d polynomials. The above protocol is not as generalized as
we want in two aspects: 1) it only handles degree-2 polynomials, not ones with a higher degree; 2) when
being executed for t times, we are assuming the polynomials are the same. Now we generalize it to the
most extensive format. We assume that the witness is (w1, . . . , wn) ∈ Fnp ; there are totally t polynomials
to be proven and each multivariable polynomial fi(x1, . . . , xn) over Fp has a degree at most d. The prover
wants to prove that fi(w1, . . . , wn) = 0 for all i ∈ [t]. Below, we show how to prove such polynomial set
in communication of d field elements over Fpr , in addition to the n field elements over Fp to commit the
witness.

When there are n variables and degree up to d, there are surprisingly high number of terms, making it
difficult to even write it out. Note that in practice commonly used polynomials only have a small number of
terms, but we do not want to limit in any way for our ZK protocol. As a result, for every n-variable d-degree
polynomial f ∈ {f1, . . . , ft}, we will represent it as f(x1, . . . , xn) =

∑
h∈[0,d] gh(x1, . . . , xn), where gh

is a degree-h polynomial such that all terms in gh have exactly degree h.2 This turns out to help in our
2Here we assume that each polynomial f has been written in a “degree-separated” format, and thus need not the computation of

decomposing the polynomial.
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calculation. Now we apply the same idea as follows:

f(k1, . . . , kn) = f(m1 + w1 ·∆, . . . ,mn + wn ·∆)

=
∑
h∈[0,d]

gh(m1 + w1 ·∆, . . . ,mn + wn ·∆)

=
∑
h∈[0,d]

(
gh(w1, . . . , wn) ·∆h +

∑
j∈[0,h−1]

Ajh ·∆
j
)

=
∑
h∈[0,d]

gh(w1, . . . , wn) ·∆h +
∑
h∈[0,d]

∑
j∈[0,h−1]

Ajh ·∆
j .

In the above equation, Ajh is the coefficient in front of xj for the univariate polynomial qh(x) = gh(m1 +

w1 · x, . . . ,mn + wn · x). Therefore, qh(∆) = gh(w1, . . . , wn) ·∆h +
∑

j∈[0,h−1]A
j
h ·∆

j .
At this point, we are stuck on the first part of the above equation. Recall that the protocol works in

the multiplication-gate case, as the polynomial f(x, y, z) = x · y − z is exactly the coefficient of ∆2

and thus proving that the relationship is linear implies that this coefficient is zero. In the case of inner
product, there is a constant term c0, but we are able to get around with it since c0 is public. Here, the
polynomial is generic and there may be lower-order terms on ∆. Ideally, we want an equation with the
term

(∑
h∈[0,d] gh(w1, . . . , wn)

)
·∆d, and then prove that the rest part of the equation is a (d − 1)-degree

polynomial. To sum up, we need a way to shift each sub-polynomial so that the terms align. It turns out to
be possible. See below.

Now instead of evaluating f(k1, . . . , kn) as we always do, we write this polynomial in a “degree-
separated” format and shift each sub-polynomial. The verifier now computes∑

h∈[0,d]

gh(k1, . . . , kn) ·∆d−h =
∑
h∈[0,d]

gh(m1 + w1 ·∆, . . . ,mn + wn ·∆) ·∆d−h

=
∑
h∈[0,d]

(
gh(w1, . . . , wn) ·∆d +

∑
j∈[0,h−1]

Ajh ·∆
j+d−h

)
=
∑
h∈[0,d]

gh(w1, . . . , wn) ·∆d +
∑

h∈[0,d−1]

Ah ·∆h

= f(w1, . . . , wn) ·∆d +
∑

h∈[0,d−1]

Ah ·∆h

=
∑

h∈[0,d−1]

Ah ·∆h.

HereAjh is defined as above, andAh is the aggregated coefficient for all terms with ∆h. Note that the prover
with witnesses {wi} and MACs {mi} can compute all the coefficients locally. The coefficients {Ah} are
polynomial coefficients when we treat it as a single-variable polynomial on ∆. Therefore, we can compute
{Ah} efficiently by evaluating the polynomial on d+1 points and then computing the polynomial coefficients
using Lagrange interpolation (see Section 5 for more details). In many practical applications, the polynomial
is usually simple and thus the coefficients can be derived without using the above generic approach. This
relationship can be viewed as an oblivious polynomial evaluation (OPE), where the verifier has ∆ and the
prover has a polynomial P (x) =

∑
h∈[0,d−1]Ah · xh over Fpr . The verifier wants to check that the resulting

evaluation in the above equation is the same as P (∆). It is not hard to check the above polynomial relation,
as sVOLE can be used to generate (V)OPE in an efficient way (see Section 4.1 for details). Similarly, we
can perform the checks for all t polynomials in a batch using the random linear combination. This results
in a total communication of (n + dr) log p bits in the sVOLE-hybrid model. When using the interpolation
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approach to compute the coefficients {Ah}, we have that the computational cost of the prover and verifier is
O(td2z + dn) and O(tdz) respectively, where z is the maximum number of terms in all t polynomials (see
Section 5 for an analysis of computational complexity). In Section 5, we give the detailed description of our
ZK protocol for polynomial sets over any field, and prove its UC security.

3.3 Other Useful Results

By applying the above results in different settings, we can obtain the following interesting results.

Proving knowledge of solutions to lattice problems. Immediately, our ZK protocol shows a way to prove
low-degree polynomials with very high efficiency. This could help us to prove knowledge of a solution of
the short integer solution (SIS) problem. In particular, we assume that the prover knows a vector s, such that
A · s = t and s ∈ [−B,B]m for a small value B ∈ N (or s ∈ {0, 1}m), where both parties know the public
matrix A ∈ Zn×mq and vector t ∈ Znq (here we assume that q is a prime). The main cost is to prove that
all input values are bounded, which can be modeled as a set of low-degree polynomials, something our ZK
protocol is very good at. As a result, our ZK protocol significantly outperforms all prior works for proving
knowledge of solutions to SIS problems. In particular, for s ∈ {−1, 0, 1}m, our protocol uses 8× less com-
munication and 110× less execution time compared to the state-of-the-art protocol Wolverine [WYKW21].
See Section 5.2 for details of our solution and Section 6.2 for performance evaluation.

Proving matrix multiplication with sublinear communication. Here, the prover intends to prove that
A · B = C, where A,B ∈ Fn×np are two secret matrices and C ∈ Fnp is a public matrix. Using the
circuit-based ZK protocol, this will need O(n3) communication. In the previous section, we present a ZK
protocol for inner product of two vectors with O(1) communication (in addition to the cost of committing
the witness), which is independent of the number of the inner-product executions. This immediately gives
us a ZK protocol for proving matrix multiplication with O(n2) communication for committing two secret
matrices and additional O(1) communication for proving the matrix relationship (A ·B has n2 executions
of inner product between two vectors of dimension n).

Proving integer multiplication over a ring with a linear amortized communication cost. The multipli-
cation of two n-bit integers needs O(n2) AND gates. Although multiplication is more efficient over large
fields, we may prefer computing over a ring Z2n (e.g., n = 32), for applications where matching cleartext
computation is crucial. Now, we could actually prove the multiplication of two integers in communication
of O(n) bits. In particular, it is known that n-bit multiplier can be represented as a Boolean circuit of depth
2 log n+ 3 [BHWK16]. Therefore, the polynomial that represents each bit in the multiplication has degree
at most 8n2. If there are t integer multiplications to be proven, the amortized communication cost of each
multiplication will be 3n + 8n2κ

t bits, which becomes 4n bits when t ≈ 8nκ. Here the communication of
3n bits for each integer multiplication is used to commit input and output values.

Generic sublinear ZK proof via amortization. If amortization is considered, then one immediate result
is that we can prove t number of circuits each with a low depth d and N multiplication gates on totally n
distinct variables in amortized communication sublinear to the circuit size. This is because the polynomial
that represents a d-depth circuit has a degree at most 2d. If the number of circuits to be proven is t = O

(
(n+

2d)/
√
N
)
, then the amortized communication cost per circuit is O

(
(n + 2d)/t

)
= O(

√
N). When each

circuit has a more compact polynomial representation (in terms of the highest degree), the communication
saving will be even higher.

We could develop on top of this idea for general circuits with weak uniformity. Specifically, given
a large circuit C, we can identify all sub-circuits denoted by C1, . . . , Ct, that have compact polynomial
representations. Now, we can prove the evaluation of gates in C \ {C1, . . . , Ct} using our ZK protocol for
circuit satisfiability, which provides us with the commitments on all input wires and the wires related to the
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Functionality Fp,rext-sVOLE

Initialize: Upon receiving (init) from P and V , sample ∆ ← Fpr if V is honest, and receive ∆ ∈ Fpr from the
adversary otherwise. Store ∆ and send it to V , and ignore all subsequent (init) commands.

Extend: This procedure can be run multiple times. Upon receiving (extend, `) from P and V , do the following:

1. If V is honest, sample k← F`pr . Otherwise, receive k ∈ F`pr from the adversary.

2. If P is honest, sample x← F`p and compute m := k−∆ ·x ∈ F`pr . Otherwise, receive x ∈ F`p and m ∈ F`pr
from the adversary, and then recompute k := m + ∆ · x ∈ F`pr .

3. Send (x,m) to P and k to V .

Vector Oblivious Polynomial Evaluation: Upon receiving (VOPE, d) from P and V , do the following:

1. If V is honest, sample B ← Fpr . Otherwise, receive B ∈ Fpr from the adversary.

2. If P is honest, sample Ai ← Fpr for i ∈ [d] and compute A0 := B −
∑
i∈[d]Ai · ∆i. Otherwise, receive

{Ai}i∈[0,d] with Ai ∈ Fpr from the adversary and recompute B :=
∑
i∈[0,d]Ai ·∆i.

3. Send {Ai}i∈[0,d] to P and B to V .

Figure 3: Functionality for extended subfield VOLE.

gates. Then we can prove all the sub-circuitsC1, . . . , Ct in a communication cost linear to the highest degree
of all the circuits represented as polynomials. Note that the input and output values of all the sub-circuits
have been committed in the first step, and thus no extra cost is needed. Here we only need a reasonably
weak uniformity: we do not require all sub-circuits to be of the same size or the same topology; instead we
only need that the polynomial representations of sub-circuits are all bounded by some degree D.

4 Zero-Knowledge Proof for Circuit Satisfiability over Any Field

In this section, we present our ZK protocol for circuit satisfiability over any field with communication of
only one field element per multiplication gate using sVOLE as a subroutine. First of all, we introduce a
functionality (and the corresponding protocol) that extends sVOLE to additionally support vector oblivious
polynomial evaluation (VOPE), which is crucial for our ZK protocols in this section and the next section.
Then, we provide the details of our ZK protocol, and give the formal security proof.

4.1 Extended Subfield Vector Oblivious Linear Evaluation

Extended sVOLE functionality. To accommodate our efficient ZK protocols for circuits and polynomial
sets (described in Section 4.2 and Section 5), we propose an extended sVOLE functionality Fp,rext-sVOLE
defined in Figure 3 to generate authenticated values and special correlations related to random polynomials.
This functionality is the same as that shown in Figure 2, except that it additionally allows two parties to
obtain VOPE correlations over Fpr with the guarantee that the same global key ∆ is used between sVOLE
and VOPE. In particular, given a polynomial-degree d input by both parties, this functionality will sample
d + 1 uniform coefficients over extension field Fpr to define a random polynomial g, and then output the
coefficients to a party P and g(∆) to the other party V .

Protocol for realizing extended sVOLE functionality. We construct the protocol to UC-realize function-
ality Fp,rext-sVOLE by extending the sVOLE protocol. Recall that our extended functionality can be viewed as
adding the support to output VOPE correlations over extension field Fpr . Our protocol to accomplish it takes

11



Protocol Πp,r
ext-sVOLE

Initialize. P and V send (init) to Fp,rsVOLE, which returns a uniform ∆ ∈ Fpr to V .

Generate sVOLE correlations. On input (extend, `), two parties P and V call Fp,rsVOLE to directly generate `
sVOLE correlations.

Generate VOPE correlations. On input (VOPE, d), two parties P and V execute the following:

1. For each i ∈ [2d− 1], two parties perform as follows:

(a) Both parties send (extend, r) to Fp,rsVOLE, which returns {(mh, uh)}h∈[r] to P and {kh}h∈[r] to V such
that kh = mh + uh ·∆ ∈ Fpr and uh ∈ Fp for h ∈ [r].

(b) P computes Mi :=
∑
h∈[r]mh · Xh−1 ∈ Fpr and Ui :=

∑
h∈[r] uh · Xh−1 ∈ Fpr , and V computes

Ki :=
∑
h∈[r] kh · Xh−1 ∈ Fpr , where Ki = Mi + Ui · ∆, and recall that each element in Fpr ∼=

Fp[X]/f(X) is denoted by a polynomial.

2. P defines g1(x) = M1 + U1 · x, and V sets B1 = K1. If d > 1, from i = 1 to d − 1, two parties execute as
follows:

(a) P computes the following univariate polynomial:

gi+1(x) = gi(x) · (Mi+1 + Ui+1 · x) + (Md+i + Ud+i · x).

(b) V computes Bi+1 := Bi ·Ki+1 +Kd+i.

Then, P computes the coefficients {Ai}i∈[0,d] locally such that gd(x) =
∑
i∈[0,d]Ai · xi, and V defines

B := Bd.

3. P outputs {Ai}i∈[0,d]; V outputs B.

Figure 4: Protocol for extended subfield VOLE in the Fp,rsVOLE-hybrid model.

two steps: 1) packing subfield VOLE correlations between Fp and Fpr into VOLE correlations over Fpr ; 2)
multiplying independent VOLE correlations to obtain a VOPE correlation. We note that a malicious party
V could cause the outputting coefficients A1, . . . , Ad−1 of honest party P to be always 0 by setting ∆ = 0
and all its keys as 0. To prevent the attack, we iteratively multiply the VOLE correlations over Fpr , and use
an extra independent VOLE correlation to randomize the product of VOLE correlations after multiplication
is computed in every iteration. Details of the protocol are described in Figure 4.

The security of this protocol is proved in the following theorem, where the proof of this theorem is
postponed to Appendix B.

Theorem 1. Protocol Πp,r
ext-sVOLE shown in Figure 4 UC-realizes Fp,rext-sVOLE with statistical error (d−1)/pr

and information-theoretic security in the Fp,rsVOLE-hybrid model.

4.2 Our ZK Protocol using extended sVOLE

We have already discussed the intuition of our ZK protocol for circuit satisfiability over any field in Sec-
tion 3.1, and thus here directly describe the details of the protocol in Figure 5. The online phase of the ZK
protocol requires three rounds of communication. At the end of this section, we will show that the online
phase can be made non-interactive in the random oracle model. Functionality Fp,rsVOLE can be securely re-
alized in constant rounds using known protocols (e.g., [SGRR19, BCG+19a, YWL+20, WYKW21]), and
thus Fp,rext-sVOLE is able to be instantiated using constant-round protocols. Overall, the ZK protocol shown in
Figure 5 has constant rounds. In the following, we prove the security of our ZK protocol.
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Protocol Πp,r
ZK

Inputs: The prover P and the verifier V hold a circuit C over any field Fp with t multiplication gates. Prover P
also holds a witness w such that C(w) = 1 and |w| = n (i.e., |Iin| = n).

Preprocessing phase: Both the circuit and witness are unknown.

1. P and V send (init) to Fp,rext-sVOLE, which returns a uniform ∆ ∈ Fpr to V .

2. P and V send (extend, n + t) to Fp,rext-sVOLE, which returns authenticated values {[µi]}i∈[n] and {[νi]}i∈[t] to
the parties.

3. P and V send (VOPE, 1) to Fp,rext-sVOLE, which returns uniform (A∗0, A
∗
1) to P and B∗ to V , such that B∗ =

A∗0 +A∗1 ·∆.

Online phase: Now the circuit and witness are known by the parties.

4. For i ∈ Iin, P sends δi := wi − µi ∈ Fp to V , and then both parties compute [wi] := [µi] + δi.

5. For each gate (α, β, γ, T ) ∈ C, in a topological order:

• If T = Add, then two parties locally compute [wγ ] := [wα] + [wβ ].

• If T = Mult and this is the i-th multiplication gate, P sends di := wα · wβ − νi ∈ Fp to V , and then both
parties compute [wγ ] := [νi] + di (with wγ = wα · wβ in the honest case).

6. For the i-th multiplication gate, two parties hold an authenticated triple ([wα], [wβ ], [wγ ]) (with ki = mi +
wi ·∆ for i ∈ {α, β, γ}) from the previous step and execute the following:

• P computes A0,i := mα ·mβ ∈ Fpr and A1,i := wα ·mβ + wβ ·mα −mγ ∈ Fpr .

• V computes Bi := kα · kβ − kγ ·∆ ∈ Fpr .

7. P and V perform the following check to verify that Bi = A0,i +A1,i ·∆ for all i ∈ [t].

(a) V samples χ← Fpr and sends it to P .

(b) P computes U :=
∑
i∈[t]A0,i · χi +A∗0 and V :=

∑
i∈[t]A1,i · χi +A∗1, and sends (U, V ) to V .

(c) Then V computes W :=
∑
i∈[t]Bi · χi + B∗ and checks that W = U + V · ∆. If the check fails, V

outputs false and aborts.

8. For the single output wire h in the circuit C, both parties hold [wh] with kh = mh + wh ·∆, and check that
wh = 1 as follows:

• In parallel with the previous step, P sends mh to V .

• V checks that kh = mh + ∆. If the check fails, then V outputs false. Otherwise, V outputs true.

Figure 5: Zero-knowledge protocol for circuit satisfiability over any field in the Fp,rext-sVOLE-hybrid model.

Proof of security. When both parties are honest, we easily see that the verifier will output true with prob-
ability 1. In particular, according to the description in Section 3.1, we have that the check in protocol Πp,r

ZK
always passes for an honest execution. For an honest protocol execution, we always have that wh = 1 (and
thus kh = mh + ∆) for the single output wire h. Overall, our ZK protocol Πp,r

ZK shown in Figure 5 achieves
perfect completeness.

Theorem 2. Protocol Πp,r
ZK UC-realizes functionalityFZK that proves the circuit satisfiability in theFp,rext-sVOLE-

hybrid model with soundness error (t+ 3)/pr and information-theoretic security.

Proof. We first consider the case of a malicious prover (i.e., soundness and knowledge extraction) and then
consider the case of a malicious verifier (i.e., zero knowledge). In each case, we construct a simulator S
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given access to FZK, and running the adversary A as a subroutine while emulating Fp,rext-sVOLE for A. We
always implicitly assume that S passes all communication between A and environment Z .

Malicious prover. S interacts with adversary A as follows:

1. S emulates Fp,rext-sVOLE for A by choosing uniform ∆ ∈ Fpr , and recording all the values {µi}i∈[n] and
{νi}i∈[N ] and their corresponding MAC tags, which are received by Fp,rext-sVOLE from adversaryA. These
values define the corresponding keys in the natural way. When emulating Fp,rext-sVOLE, S also receives
(A∗0, A

∗
1) ∈ (Fpr)2 from A and defines B∗ accordingly.

2. When A sends {δi}i∈Iin in step 4, S computes wi := δi + µi ∈ Fp for i ∈ Iin.

3. S executes the rest of the protocol as an honest verifier, using ∆ and the keys defined in the first step.
If the honest verifier outputs false, then S sends w = ⊥ and C to FZK and aborts. If the honest verifier
outputs true, then S sends w and C to FZK where w = (w1, . . . , wn) is defined as above.

Clearly, the view of adversary A simulated by S has the identical distribution as its view in the real-world
execution. Whenever the verifier in the real-world execution outputs false, the verifier in the ideal-world
execution outputs false as well (since S sends ⊥ to FZK in this case). Thus, it only remains to bound the
probability that the verifier in the real-world execution outputs true but the witness w sent by S to FZK

satisfies C(w) = 0. In the following, we show that if C(w) = 0 then the probability that the honest verifier
in the real-world execution outputs true is at most (t+ 3)/pr.

By induction, we prove that all the values on the wires in the circuit are correct. It is trivial that the
values associated with the input wires and the output wires of Add gates are computed correctly. Therefore,
we focus on analyzing the correctness of the values related to the output wires of Mult gates. When we
analyze the correctness of the output value with respect to the i-th multiplication gate, we always assume
that the output values associated with the first (i− 1) multiplication gates are correct by induction. For the
i-th multiplication gate, two parties hold an authenticated triple ([wα], [wβ], [wγ ]) with wγ = wα · wβ + ei,
where ei ∈ Fp is an error chosen by adversaryA by sending an incorrect value d′i in step 5 of protocol Πp,r

ZK.
Thus, we have kγ = mγ + wγ ·∆ = mγ + (wα · wβ) ·∆ + ei ·∆. Further, we have:

Bi = kα · kβ − kγ ·∆
= (mα + wα ·∆) · (mβ + wβ ·∆)− (mγ + wα · wβ ·∆ + ei ·∆) ·∆
= mα ·mβ + (wα ·mβ + wβ ·mα −mγ) ·∆− ei ·∆2

= A0,i +A1,i ·∆− ei ·∆2.

In step 7 of the ZK protocol, A sends U ′ = U + Eu and V ′ = V + Ev to the honest verifier, where
U, V ∈ Fpr are computed following the protocol description, and Eu, Ev ∈ Fpr are the adversarially chosen
errors. Furthermore, we have the following:

W =
∑
i∈[t]

Bi · χi +B∗

=
∑
i∈[t]

(
A0,i +A1,i ·∆− ei ·∆2

)
· χi +A∗0 +A∗1 ·∆

= U + V ·∆−
(∑
i∈[t]

ei · χi
)
·∆2

=
(
U ′ − Eu

)
+
(
V ′ − Ev

)
·∆−

(∑
i∈[t]

ei · χi
)
·∆2.
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If the check passes in step 7, then we have that W = U ′ + V ′ ·∆. Therefore, we obtain that

Eu + Ev ·∆ +
(∑
i∈[t]

ei · χi
)
·∆2 = 0.

If
∑

i∈[t] ei · χi 6= 0, then the above equation holds with probability at most 2/pr, as ∆ ∈ Fpr is uniformly
random and kept secret from the adversary’s view. Below, we consider that

∑
i∈[t] ei · χi = 0. If there

exists some i ∈ [t] such that ei 6= 0, the probability that
∑

i∈[t] ei · χi = 0 is at most t/pr, as χ is sampled
uniformly at random after ei for all i ∈ [t] have been determined. Overall, all the values on the wires in the
circuit are correct, except with probability at most (t+ 2)/pr.

Now, we assume that all the values on the wires in the circuit are correct. If C(w) = 0 but the honest
verifier outputs true in step 8, then adversary A must send mh + ∆ to the honest verifier where mh is an
MAC tag on output wire h known by A. In other words, A learns ∆, which occurs with probability at most
1/pr.

In conclusion, any unbounded environment Z cannot distinguish between the real-world execution and
ideal-world execution, except with probability (t+ 3)/pr.

Malicious verifier. If S receives false fromFZK, then it simply aborts. Otherwise, S interacts with adversary
A as follows:

1. In the preprocessing phase, S emulates Fp,rext-sVOLE by recording the global key ∆ and the keys for all the
authenticated values, that are sent to this functionality by A. S also receives B∗ ∈ Fpr from A when
emulating Fp,rext-sVOLE.

2. S executes steps 4–5 of protocol Πp,r
ZK by sending uniformly random δi for each i ∈ Iin and di for the i-th

multiplication gate to adversary A.

3. S executes steps 6–7 of the protocol as an honest prover, except that sampling V ← Fpr and computing
U := W−V ·∆ whereW is computed using ∆,B∗ and the keys received fromA following the protocol
specification.

4. In step 8 of the protocol, S computes kh (based on the keys sent to Fp,rext-sVOLE by A) and then sets
mh := kh + ∆, where h is the single output wire. Then, S sends mh to A.

Since {µi}, {νi} and A∗1 are uniformly random and perfectly hidden against the view of adversary A, we
easily obtain that the view of A simulated by S is distributed identically to its view in the real protocol
execution. This completes the proof.

In the protocol Πp,r
ZK shown in Figure 5, if we set p = 261 − 1 and r = 1, then the computation of

χi for i ∈ [t] is expensive (especially for large t). We can replace χi for i ∈ [t] with independent uniform
coefficient χi for i ∈ [t] to obtain better computational efficiency. In this case, the verifier can send a random
seed in {0, 1}κ to the prover, and then both parties compute χ1, . . . , χt using the seed and a random oracle.
Now, the soundness error is bounded by q/2κ + 4/pr, where q is an upper bound of the number of random
oracle queries made by the adversary. 3 When using the random oracle, the security is guaranteed in the
computational sense.

Non-interactive online phase. In the online phase of our protocol Πp,r
ZK, the verifier only sends a random

coefficient χ to the prover. Thus, the communication cost is one field element per multiplication gate even
without random oracle. But the online phase needs communication of three rounds.

3This bound can be easily obtained by adapting the proof of Theorem 2 and computing the probability that the adversary
succeeds to guess the seed.
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Protocol Πp,r
polyZK

Inputs: The prover P and verifier V hold t number of d-degree polynomials f1, . . . , ft all over n variables. Each
polynomial fi is represented as fi =

∑
h∈[0,d] fi,h where all terms in fi,h have degree h. P also holds a witness

w ∈ Fnp , such that fi(w) = 0 for all i ∈ [t].

Preprocessing phase: Both polynomials and witness are unknown.

1. P and V send (init) to Fp,rext-sVOLE, which returns ∆ ∈ Fpr to V .

2. P and V send (extend, n) to Fp,rext-sVOLE, which returns authenticated values {[si]}i∈[n] to the parties.

3. P and V also send (VOPE, d − 1) to Fp,rext-sVOLE, which returns {A∗h}h∈[0,d−1] to P , B∗ to V , such that∑
h∈[0,d−1]A

∗
h ·∆h = B∗.

Online phase: Now the polynomials and witness are known.

4. For i ∈ [n], P sends δi := wi − si ∈ Fp to V , and both parties compute [wi] := [si] + δi. Note that
ki = mi + wi ·∆ for i ∈ [n].

5. From i = 1 to t, for the i-th polynomial fi, two parties perform the following:

• V computes Bi :=
∑
h∈[0,d] fi,h(k1, . . . , kn) ·∆d−h.

• P defines a univariate d-degree polynomial over field Fpr as gi(x) =
∑
h∈[0,d] fi,h(m1 +w1 ·x, . . . ,mn +

wn · x) · xd−h, and computes the coefficients {Ai,h}h∈[0,d] such that gi(x) =
∑
h∈[0,d]Ai,h · xh. Since

Ai,d = fi(w1, . . . , wn) = 0, gi(x) can be written as
∑
h∈[0,d−1]Ai,h · xh.

6. Two parties perform the following to check that
∑
h∈[0,d−1]Ai,h ·∆h = Bi for all i ∈ [t]:

(a) V samples χ← Fpr and sends it to P .

(b) For all h ∈ [0, d− 1], P computes Uh :=
∑
i∈[t]Ai,h · χi +A∗h and sends it to V .

(c) V computes W :=
∑
i∈[t]Bi · χi + B∗ and checks that W =

∑
h∈[0,d−1] Uh ·∆h. If the check fails, V

outputs false; otherwise it outputs true.

Figure 6: Zero-knowledge for polynomial satisfiability over any field in the Fp,rext-sVOLE-hybrid model.

We can use the Fiat-Shamir heuristic to make the online phase non-interactive at the cost of that the
information-theoretic security is degraded to the computation security. Specifically, both parties can com-
pute χ ∈ Fpr as H(d1, . . . , dt), where H : {0, 1}∗ → Fpr is a cryptographic hash function modeled as a
random oracle and pr ≥ 2κ. In this case, the soundness error for the batch check of multiplication gates to-
gether with the correctness of the single output is now bounded by (qH+t+3)/pr ≤ (qH+t+3)/2κ, where
qH is an upper bound of the number of H queries made by the adversary. When we set p = 2 and r = 128,
we can obtain a non-interactive online phase with a blazing-fast computation given hardware-instruction
support.

5 Zero-Knowledge Proof for Polynomial Sets over Any Field

Recall that we have explained the intuition of our ZK protocol for polynomial sets in Section 3.2. Thus,
we directly show the detailed protocol in Figure 6. Similar to the circuit-based ZK protocol described
in Section 4.2, our polynomial-based ZK protocol is also constant-round. In Section 5.1, we provide the
formal security proof of the polynomial-based ZK protocol. In Section 5.2, we also present some practical
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applications of the polynomial-based ZK protocol, including how to optimize the zero-knowledge proofs
for proving matrix multiplication, proving knowledge of a solution to an SIS problem, proving integer
multiplication over a ring and proving the circuits with some level of weak uniformity.

Computing polynomial coefficients. In the ZK protocol shown in Figure 6, prover P can compute the
coefficients {Ai,h}h∈[0,d−1] of polynomial gi(x) for i ∈ [t] in the following generic way.

• P computes yi,j := gi(αj) for j ∈ [d+ 1], where α1, . . . , αd+1 are any d+ 1 different fixed points over
extension field Fpr .

• Then P computes gi(x) :=
∑

j∈[d+1] yi,j · δj(x), where δj(x) =
∏
k 6=j

x−αk
αj−αk is a fixed d-degree poly-

nomial that can be precomputed in the preprocessing phase.

In a lot of practical applications, the polynomials {gi(x)} are usually simple, and thus the coefficients can
be computed efficiently without the need of using the above Lagrange interpolation approach.

Computational complexity. In the Fp,rext-sVOLE-hybrid model, the computational cost of protocol Πp,r
polyZK is

dominated by polynomial evaluation (i.e., computing {Bi} and {Ai,h}). We easily bound the computational
complexities of prover P and verifier V by O(tdc + dn) and O(tc) respectively, where c is the maximum
cost to evaluate any polynomial on a single point, and O(dn) is the cost to compute {mi + wi · αj}i∈[n]
for j ∈ [d + 1]. Here, we assume that the polynomial coefficients {Ai,h}h∈[0,d] for i ∈ [t] are computed
using the generic Lagrange interpolation approach described as above. For many practical applications,
the computational complexity of the prover may be lower without using the generic approach. Let z be
the maximum number of terms in all t polynomials. Then we have that c = O(dz), as each term in any
polynomial has a degree at most d. Therefore, the computational complexities of P and V can be bounded
by O(td2z + dn) and O(tdz), respectively.

5.1 Proof of Security

When both parties are honest, it is not hard to see that the verifier will always output true with probability
1. Specifically, from ki = mi + wi · ∆ for i ∈ [n] and the description in Section 3.2, we have that
Bi =

∑
h∈[0,d−1]Ai,h · ∆h for all i ∈ [t]. Together with

∑
h∈[0,d−1]A

∗
h · ∆h = B∗, we obtain that the

following holds:

W =
∑
i∈[t]

Bi · χi +B∗

=
∑
i∈[t]

( ∑
h∈[0,d−1]

Ai,h ·∆h
)
· χi +

∑
h∈[0,d−1]

A∗h ·∆h

=
∑

h∈[0,d−1]

(∑
i∈[t]

Ai,h · χi +A∗h

)
·∆h =

∑
h∈[0,d−1]

Uh ·∆h.

Thus, our protocol shown in Figure 6 achieves perfect completeness.

Theorem 3. Protocol Πp,r
polyZK UC-realizes functionality FZK that proves polynomial satisfiability in the

Fp,rext-sVOLE-hybrid model with soundness error (d+ t)/pr and information-theoretic security.

We defer the formal proof of the above theorem to Appendix C. For the polynomial-based ZK protocol,
we can also use the Fiat-Shamir heuristic to make the online phase non-interactive at the cost of assuring
the security in the computational sense.
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5.2 Optimizing Practical Applications

In the following applications, for the sake of simplicity, we always assume that pr ≈ 2κ as the Fiat-Shamir
heuristic is assumed to be implicitly used in the applications. For the interactive case, we can also extend
the applications to smaller extension fields, as long as the soundness error is assured negligible in ρ. In this
section, the communication cost is computed in the sVOLE-hybrid model.4

Optimizing matrix multiplication. The prover wants to prove that A · B = C, where A,B ∈ Fn×np are
two secret matrices and C ∈ Fn×np is a public matrix known by the verifier. Using the circuit-based ZK
protocol shown in Figure 5, this will need communication of (2n2 + n3) log p+ 2κ bits.

Using the polynomial-based ZK protocol described in Figure 6, we can directly obtain a ZK protocol for
inner product of two n-length vectors with communication of 2n log p + 2κ bits, by defining a polynomial
f(x,y) =

∑
i∈[n] xi · yi for two vectors x,y ∈ Fnp . The communication complexity remains unchanged,

even if the inner product of t vector pairs needs to be proved. This immediately gives us a ZK protocol
for proving matrix multiplication with communication of 2n2 log p + 2κ bits, since a matrix multiplication
can be written as the inner-product of n2 vector pairs, where the communication of 2n2 log p bits is used to
commit the entries in matrices A and B using sVOLE.

Proving solutions to lattice problems. Here, we assume the prover has a binary vector s ∈ {0, 1}m and
intends to prove that A · s = t, with public matrix A ∈ Zn×mq and vector t ∈ Znq . Here we assume that
q is a prime. The SIS problem has been considered in prior work such as [BN20, WYKW21]. Our ZK
protocol for polynomial sets can be used to prove the statements more efficiently. To commit to all input bits
s1, . . . , sm, the ZK protocol takesm log q bits. Then we need to show that 1) the prover indeed commits bits
and that 2) the above linear equation holds. All of the above can be modeled as a set of m+ n polynomials
with degree at most 2. In particular, we need to show that si · (si − 1) = s2i − si = 0 for all i ∈ [m] and
that

∑
j∈[m] ai,j · sj − ti = 0 for i ∈ [n] where ai,j is the entry in the i-th row and j-th column of matrix A.

Since the polynomial degree is at most 2, the communication cost would be 2 elements over the extension
field, each of size roughly κ bits. Therefore, the total communication cost is m log q + 2κ bits.

If the secret vector s is in [−B,B]m (with a small integer B) instead of a binary vector, which has also
been addressed by prior work [BLS19, BCOS20, ENS20, WYKW21], we would need a degree-(2B + 1)
polynomial to prove that f(si) = 0 for all i ∈ [m] where f(x) = Πj∈[−B,B](x − j), with the total
communication cost of m log q + (2B + 1)κ bits.

In Section 6.2, we evaluate the concrete performance to demonstrate that our polynomial-based ZK
protocol significantly outperforms prior work for proving knowledge of solutions to SIS.

Optimizing integer operations over a ring. Arithmetic operations over a field may often be sufficient for
some applications. However, for applications where matching cleartext computation is crucial, the statement
to be proven may require native computation over a ring Z2n such as Z232 . In this case, one may naturally
think about ring operations. Here we explore an alternative approach.

Our idea is to view integer multiplication over Z2n as a set of n polynomials that take 2n variables as
input. In this case, the maximum degree for these polynomials is 8n2, since the Boolean circuit for integer
multiplication has a depth 2 log n + 3 [BHWK16]. The communication cost for proving a set of integer
multiplications would become linear to n, when the number of integer multiplications to be proven is large.
In particular, if there are t integer multiplications to be proven with t ≈ 8nκ, the amortized communication
cost for each multiplication will be 3n+ 8n2κ

t ≈ 4n bits.

Optimizing for circuits with weak uniformity. Inspired by the above concrete examples, we summarize
a blueprint to optimize circuits with some level of weak uniformity (i.e., the polynomial representations of
sub-circuits are all bounded by some degree d).

4We note that the communication for generating sVOLE correlations is sublinear to the number of resulting sVOLE correlations,
using the recent LPN-based protocols [SGRR19, BCG+19a, YWL+20, WYKW21].
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Assume that the circuit to be proven is C, which contains t multiplication gates. We let C1, . . . , Ck
be k non-overlapping sub-circuits of C, such that for sub-circuit Ci, it has ti multiplication gates without
counting the multiplication gates that include the output wires of Ci. Each sub-circuit can be represented as
a set of polynomials with the degree at most d. In a nutshell, our ZK protocol can be constructed as follows:

1. Use sVOLE to commit to all the wire values in C \ {C1, . . . , Ck}, including the input wires go into the
sub-circuits C1, . . . , Ck and the output wires go out of these sub-circuits.

This step takes t−
∑k

i=1 ti elements over Fp for communication.

2. Prove that all multiplication gates in C \{C1, . . . , Ck} are computed correctly using our ZK protocol for
circuit satisfiability shown in Figure 5.

This step takes 2κ bits of communication.

3. For each sub-circuit Ci, represent it as a set of polynomials, one for each output of Ci. Prove that all the
polynomials with respect to all sub-circuits are computed correctly using our ZK protocol for polynomial
satisfiability shown in Figure 6.

This step takes dκ bits of communication, because all input and output wire values have already been
committed with sVOLE.

In summary, the communication of the above protocol is essentially (t −
∑

i∈[k] ti) log p + (d + 2)κ bits.
Now the task is really about how to “dig” as many “holes” as possible from C, while keeping all holes
relatively simple. In practice, this is fairly common, as the real-life computations are written in succinct
libraries, which means the same subroutine is often called for many times. We leave it as a future work to
fully explore its potential and build an automated optimizer to maximize the practical efficiency.

6 Implementation and Benchmarking

We implemented our ZK protocols and report their performance. Unless otherwise specified, our evaluation
results are reported over two Amazon EC2 machines of type m5.2xlarge with throttled network band-
width (with latency about 0.1 ms) and one thread. Each machine has 8 virtual CPUs, which means 4 CPU
cores. We instantiate the COT protocol (i.e., sVOLE with p = 2 and r = κ) and the VOLE protocol over
a 61-bit field by using the recent protocols [YWL+20, WYKW21], and use SHA-256 as the cryptographic
hash function modeled as a random oracle. We take advantage of hardware AES-NI and binary-field multi-
plication when applicable. All our implementations achieve computational security parameter κ = 128 and
statistical security parameter ρ ≈ 100 for Boolean circuits, and κ = 128 and ρ ≥ 40 for arithmetic circuits
over a 61-bit field where Mersenne prime p = 261 − 1 is used as in prior work. The implementation is
openly available at EMP [WMK16].

6.1 Benchmarking Our Circuit-based ZK Proof

We benchmarked the performance of our ZK protocol by proving circuits with 3× 108 AND/MULT gates.
Similar to prior work [WYKW21, BMRS21a], we observe that the performance does not depend on the
shape of the circuit and is linear to the circuit size; and thus we focus on the speed in terms of “million
gates per second”. In Table 2, we benchmarked the performance of our circuit-based ZK protocol under
different network settings and number of threads. The performance of our protocol ranges from 4.4 million
to 15.8 million AND gates per second (or from 1.2 million to 8.9 million multiplication gates per second),
depending on the network setting and number of threads. When we increase the number of threads and/or the
network bandwidth, we could see an increase in the performance. The computation becomes the efficiency
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Threads Boolean Circuits Arithmetic Circuits

10 Mbps 20 Mbps 30 Mbps 50 Mbps Local-host 100 Mbps 500 Mbps 1 Gbps 2 Gbps Local-host

1 4.4 M 6.2 M 7.0 M 7.5 M 7.6 M 1.2 M 3.4 M 4.2 M 4.8 M 4.8 M
2 5.3 M 8.1 M 9.9 M 11.8 M 11.8 M 1.3 M 4.4 M 6.1 M 7.0 M 7.1 M
3 5.7 M 9.1 M 11.4 M 13.9 M 14.3 M 1.4 M 4.9 M 7.2 M 8.4 M 8.4 M
4 5.8 M 9.9 M 12.2 M 14.9 M 15.8 M 1.4 M 5.0 M 7.5 M 8.9 M 8.9 M

Table 2: Benchmark the performance of our circuit-based ZK protocol. The benchmark results are the number
of AND/MULT gates per second that can be proven using our protocol, where “M” means “million”. Benchmark was
obtained with different network settings and number of threads.

Instance Information Boolean Circuits Arithmetic Circuits

Type
Price

CPU
Speed Cost Speed Cost

cents/hour gates/sec gates/cent gates/sec gates/cent

c6g.medium 1.9 ARM 5.3 M 10.0 B 2.2 M 4.1 B

c5.large 4.7 Intel 5.9 M 4.5 B 2.9 M 2.2 B

c5a.large 4.2 AMD 7.3 M 6.3 B 3.0 M 2.6 B

Table 3: Performance of stress-testing our ZK protocol on different Amazon EC2 instances. All in-
stances have 2 vCPUs and 1 GB memory.

bottleneck of our protocol for Boolean circuits (resp., arithmetic circuits) when the network bandwidth is
increased to 50 Mbps (resp., 2 Gbps), and thus the performance is not improved much beyond that.

Comparison with prior work. We compared the performance of our ZK protocol QuickSilver and prior
related work in Table 1. Since Mac′n′Cheese [BMRS21a] only reported the performance of their proto-
col with one thread and local-host, we compare the performance of all protocols using this setup. In the
Boolean setting, we observe 6× improvement in computation and 7× improvement in communication com-
pared to the state-of-the-art protocol Wolverine [WYKW21]. For arithmetic circuits, our protocol improves
by at least 7× in computation and 3×–4× in communication compared to Wolverine and Mac′n′Cheese.
Note that Wolverine studied the performance of their ZK protocol when used for DECO [ZMM+20] and
Blind CA [WAP+19], as well as other applications like Merkle trees, and proving bugs in a set of code
snippets [HK20]. Our performance improvement directly translates to the improvements for all of these
applications.

Stress-testing of our ZK protocol. We stress-test our circuit-based ZK protocol on the cheapest instance
of Amazon EC2 that only costs 2 to 5 cents per hour, and summarize the experimental results in Table 3.5

For all protocol executions, we use only a single thread. The Boolean circuits (resp., arithmetic circuits) are
tested under the network bandwidth of 20 Mbps (resp., 500 Mbps). Although the computational power and
memory are limited, our protocol still achieves high throughput. The speed for computing Boolean circuits
ranges from 5.3 million to 7.3 million gates per second and the speed for arithmetic circuits ranges from
2.2 million to 3 million gates per second. Taking the low cost into consideration, our ZK protocol is very
affordable. The lowest cost to prove Boolean circuits is about 10 billion gates per cent; and roughly 2.2–4.1
billion gates per cent for arithmetic circuits.

5Price is based on AWS defined-duration spot instances. There are cheaper t3.medium, t3a.medium burstable instances, but
the cost is higher than the instances in Table 3 unless the average CPU usage is kept below 20%.
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Binary field F2 Large field F261−1

Length of vectors 106 107 108 106 107 108

Process witness (s) 0.24 2.4 23.8 0.39 3.9 39.2
Prove inner product (ms) 36.6 69.3 423.5 42.8 100.3 703.8

Table 4: Performance of our ZK protocol for inner product. We report separately the cost to process the witness
and the cost to prove the inner product after the witness was processed.

Protocol Execution Time Communication

Spartan [Set20] ≥ 5000 s ≤ 100 KB
Virgo [ZXZS20] 357 s 221 KB

Wolverine [WYKW21] 1627 s 34 GB
Mac′n′Cheese [BMRS21a] 2684 s 25.8 GB

QuickSilver (Circuit) 316 s 8.6 GB
QuickSilver (Polynomial) 10 s 25.2 MB

Table 5: Performance of proving matrix multiplication using various protocols. All numbers are based on proving
knowledge of two 1024× 1024 matrices over a 61-bit field, whose product is a public matrix. The execution time for
Wolverine and Mac′n′Cheese is based on local-host, while our protocols and Virgo are based on a 500 Mbps network.
Spartan consumed 600 GB memory before crash, and thus we extrapolate the execution time based on a smaller
proving instance. Our protocols use just 1 GB of memory, but Virgo needs 148 GB of memory.

6.2 Benchmarking Our Polynomial-based ZK Proof

While our ZK protocol for polynomial satisfiability is generic, here we focus on some useful applications
that use low-degree polynomials to demonstrate how powerful it can be. We leave exploration of compiler-
based optimization and more complicated examples as the future work. In all of the experiments below, we
use the network bandwidth of 20 Mbps for a binary field and 500 Mbps for a 61-bit field, and always use a
single thread.

Inner product. In this benchmark, the witness consists of two vectors of n field elements (namely x and
y), and the prover wants to prove that the inner product of two vectors 〈x,y〉 =

∑
i∈[n] xi · yi equals to

some public value. We report the cost of processing the witness and the cost of proving the inner product
separately in Table 4. We found that processing the witness could be free in a larger computation. This is
because when using inner product as a sub-circuit in a larger circuit, the input witness of this subcircuit is
the output of some prior computation and thus need not be processed again. In this case, the cost of the ZK
proof for inner product is simply the second line. We can see that even for proving inner product of two
vectors of length 108, the cost is very small.

Matrix multiplication. We report the performance of our ZK protocol for proving matrix multiplication,
and compare it with prior work in Table 5. We observe that our polynomial-based ZK protocol is 31× faster
than our own circuit-based protocol, which is already faster than prior protocols. It also uses 340× less
communication than our circuit-based protocol. Our proof size is still significantly larger than Spartan and
Virgo, but our ZK protocols (QuickSilver) benefit in other aspects including execution time and memory
usage. We note that the prover time of GKR-style protocols like Virgo could be further improved based on
the technique in interactive proofs [Tha13]. We did not find any ZK proof that implements this technique,
but anticipate that the prover time will be of the same order of magnitude when incorporating this technique
into Virgo.

21



Protocol ENS Wolverine QuickSilver
[ENS20] [WYKW21]

Communication 53 KB 32.8 KB 4.1 KB
Execution time − 220 ms 2 ms

Table 6: Performance comparison of our ZK protocol QuickSilver vs. prior work for proving knowledge of an
SIS solution. The solution is assumed to be a ternary-vector and n = 2048,m = 1024, log q = 32.

Proving knowledge of solutions to lattice-based problems. Here we focus on proving knowledge of a
solution to a short integer solution (SIS) problem. We assume that the prover knows a vector s ∈ [−B,B]m,
such that A · s = t, where both parties know the public matrix A ∈ Zn×mq and vector t ∈ Znq (here
we assume that q is a prime). Checking the matrix multiplication is easy since the matrix A is public
and thus the main work is to check that all coordinates in s are bounded. This can be done by proving
that Πj∈[−B,B](si − j) = 0 for all i ∈ [m]. In typical SIS problems, e.g., the one studied in the recent
work [ENS20],B is set to 1, resulting in a degree-3 polynomial. The checking procedure of our ZK protocol
is essentially free compared to the cost of obtaining the committed input to the polynomial. We show the
performance comparison in Table 6, where the execution time for [ENS20] is not available from their paper.
Due to our improved protocol for low-degree polynomials, our protocol outperforms prior work. When the
solution is restricted to a binary vector, our ZK protocol QuickSilver is still very faster than the state-of-the-
art protocol Wolverine, which outperforms other protocol [BN20].
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A More Details on UC Model and sVOLE Functionality

Universal composability. We use the universal composability (UC) framework [Can01] to prove security
in the presence of a malicious, static adversary. We say that a protocol Π UC-realizes an ideal functionality
F if for any adversary A, there exists a PPT simulator S such that for any environment Z with an arbitrary
auxiliary input z, the output distribution of Z in the real-world execution where the parties interact with A
and execute protocol Π is indistinguishable from the output distribution of Z in the ideal-world execution
where the parties interact with S and F.

We prove the security of our protocols in the G-hybrid model, where the parties execute a protocol
with real messages and also have access to an ideal functionality G. We say that protocol Π UC-realizes
functionality F in the G-hybrid model with statistical error 1/2ρ and information-theoretic security (resp.,
computational security), if the distinguishing probability of environmentZ between the real-world execution
and ideal-world execution is bounded by 1/2ρ (resp., 1/2ρ+negl(κ)). Here we denote by negl(·) a negligible
function such that negl(κ) = o(κ−c) for every positive constant c.

Global-key query for sVOLE. In the malicious setting, if the sVOLE protocol [WYKW21] over any field
is used to securely realize Fp,rsVOLE shown in Figure 2, then we can guarantee the UC security when the
following single global-key query is added into Fp,rsVOLE.

• If P is corrupted, receive (guess,∆′) from the adversary. If ∆′ = ∆, then send success to P and ignore
any subsequent global-key query. Otherwise, send abort to both parties and abort.

This global-key query allows the adversary to guess ∆ only once, which only increases the successful
probability of the adversary to guess ∆ by at most 1/pr. If the more efficient sVOLE protocol [YWL+20]
for only the case of p = 2 and r = κ is used, then we need to increase global-key queries from a single
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query to any polynomial number of queries, where this functionality will not abort for an incorrect guess.
This type of global-key queries has been used in MPC protocols such as [NNOB12, HSS17]. In this case,
the successful probability of the adversary to guess ∆ is increased to at most q/2κ, where q is the number
of global-key queries.

For the sake of simplicity, we omit the global-key query, even if we use the protocols [WYKW21,
YWL+20] to UC-realize Fp,rsVOLE.

B Proof of Theorem 1

Proof. We construct a simulator S given access to Fp,rext-sVOLE, and running the adversary A as a subroutine
while emulating Fp,rsVOLE for A. In particular, there is no communication between P and V . Thus, S can
emulate Fp,rsVOLE and record all the values sent by A to Fp,rsVOLE, and then compute the output value for the
corrupted party following the protocol specification, and send it to functionality Fp,rext-sVOLE. It is trivial to
see that the simulation is perfect.

Below, we show that the output of the honest party is statistically indistinguishable between the real-
world execution and ideal-world execution. We first prove if both parties compute their output locally
following the protocol specification, then their outputs satisfy the correct VOPE correlation. Specifically,
from kh = mh + uh ·∆ for h ∈ [r], we easily obtain that for each i ∈ [d],

Ki =
∑
h∈[r]

kh ·Xh−1 =
∑
h∈[r]

(mh + uh ·∆) ·Xh−1

=
∑
h∈[r]

mh ·Xh−1 +
( ∑
h∈[r]

uh ·Xh−1
)
·∆

= Mi + Ui ·∆.

It is easy to see that B1 = K1 = M1 +U1 ·∆ = g1(∆). Below, we prove by induction. In the i-th iteration
with i ∈ [d− 1], assuming that Bi = gi(∆), we have the following holds:

Bi+1 = Bi ·Ki+1 +Kd+i

= gi(∆) · (Mi+1 + Ui+1 ·∆) + (Md+i + Ud+i ·∆)

= gi+1(∆).

Therefore, we obtain that B = Bd = gd(∆) =
∑

i∈[0,d]Ai ·∆i.
If V is honest, then its output is always defined by the output of malicious party P and ∆ (i.e., B =∑
i∈[0,d]Ai ·∆i) in both worlds. In the following, we consider the case that P is honest but V is malicious.

The output valuesA0, . . . , Ad for P are uniformly random such thatB =
∑

i∈[0,d]Ai ·∆i in the ideal-world
execution, where B is the output of malicious party V . In the real protocol execution, Ai for each i ∈ [0, d]
is computed as the coefficient of item xi for polynomial gd(x). According to the definition of Fp,rsVOLE, uh
for h ∈ [r] is uniform in Fp. Therefore, for i ∈ [2d− 1], we have that Ui :=

∑
h∈[r] uh ·Xh−1 is uniformly

random in Fpr . For i ∈ [d], we prove by induction that each coefficient of gi(x) except for constant term is
uniformly distributed in Fpr , except with probability at most 1/pr. This holds for g1(x) = M1 +U1 ·x with
probability 1. In the i-th iteration with i ∈ [d − 1], we have that the coefficients Ai,1, . . . , Ai,i of degree-i
polynomial gi(x) are uniform by the induction assumption. From the definition of gi+1(x), we obtain the
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following holds:

gi+1(x) = gi(x) · (Mi+1 + Ui+1 · x) + (Md+i + Ud+i · x)

=

(
i∑

h=0

Ai,h · xh
)
· (Mi+1 + Ui+1 · x) + (Md+i + Ud+i · x)

= (Ai,0 ·Mi+1 +Md+i) + (Ai,1 ·Mi+1 +Ai,0 · Ui+1 + Ud+i) · x
i∑

h=2

(Ai,h ·Mi+1 +Ai,h−1 · Ui+1) · xh +Ai,i · Ui+1 · xi+1.

From the uniformity of Ud+i, we directly obtain that the 1-degree term of gi+1(x) is uniform. If Ui+1 6= 0
except with probability 1/pr, then the h-degree term of gi+1(x) for h ∈ [2, i + 1] is uniform from the
uniformity of Ai,h−1. Overall, except with probability 1/pr, each coefficient of gi+1(x) except for constant
term is uniformly random. Therefore, the coefficientsA1, . . . , Ad of polynomial gd(x) are uniform over Fpr ,
except with probability at most (d−1)/pr. Together withB = gd(∆), we have thatA0 = B−

∑
i∈[d]Ai ·∆i,

which completes the proof.

C Proof of Theorem 3

Proof. We first consider the case of a malicious prover (i.e., soundness and knowledge extraction) and then
consider the case of a malicious verifier (i.e., zero knowledge). In each case, we construct a simulator S,
which is given access to FZK, runs the adversary A as a subroutine while emulating Fp,rext-sVOLE for A. We
always implicitly assume that S passes all communication between adversary A and environment Z .

Malicious prover. S emulates functionality Fp,rext-sVOLE and interacts with adversary A as follows:

1. S emulates Fp,rext-sVOLE for A by choosing uniform ∆ ∈ Fpr , and recording all the values {si}i∈[n] and
their corresponding MAC tags that are received by Fp,rext-sVOLE from adversaryA. These values define the
corresponding keys in the natural way. When emulating Fp,rext-sVOLE, S also receives {A∗h}h∈[0,d−1] from
A and defines B∗ =

∑
h∈[0,d−1]A

∗
h ·∆h.

2. When A sends {δi}i∈[n] in step 4, S extracts the witness as wi := δi + si for i ∈ [n].

3. S executes the remaining part of protocol Πp,r
polyZK as an honest verifier, using ∆ and the keys defined

in the first step. If the honest verifier outputs false, then S sends w =⊥ and C to FZK and aborts. If
the honest verifier outputs true, S sends w and C to FZK where w = (w1, . . . , wn) is extracted by S as
above.

It is easy to see that the view of the adversary simulated by S has the identical distribution as its view in
the real-world execution. Whenever the honest verifier in the real-world execution outputs false, the honest
verifier in the ideal-world execution outputs false as well (since S sends ⊥ to FZK in this case). Therefore,
we only need to bound the probability that the verifier in the real-world execution outputs true but the
witness w sent by S to FZK satisfies that fi(w) 6= 0 for some i ∈ [t]. Below, we show that this happens
with probability at most (d+ t)/pr.

Let fi(w) = fi(w1, . . . , wn) = yi with some yi ∈ Fp for each i ∈ [t], where w = (w1, . . . , wn) is a
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vector extracted by S. According to the definition of Bi for i ∈ [t], we have the following:

Bi =
∑
h∈[0,d]

fi,h(k1, . . . , kn) ·∆d−h

=
∑
h∈[0,d]

fi,h(m1 + w1 ·∆, . . . ,mn + wn ·∆) ·∆d−h

=
∑

h∈[0,d−1]

Ai,h ·∆h + yi ·∆d.

In step 6, S receives U ′h = Uh + Eh for h ∈ [0, d − 1] from adversary A, where Uh is computed with w
and the corresponding MACs following the protocol specification, and Eh ∈ Fpr is an adversarially chosen
error. Together with B∗ =

∑
h∈[0,d−1]A

∗
h ·∆h, we obtain that the following equation holds:

W =
∑
i∈[t]

Bi · χi +B∗

=
∑
i∈[t]

( ∑
h∈[0,d−1]

Ai,h ·∆h + yi ·∆d
)
· χi +

∑
h∈[0,d−1]

A∗h ·∆h

=
(∑
i∈[t]

yi · χi
)
·∆d +

∑
h∈[0,d−1]

(∑
i∈[t]

Ai,h · χi +A∗h

)
·∆h

=
(∑
i∈[t]

yi · χi
)
·∆d +

∑
h∈[0,d−1]

U ′h ·∆h −
∑

h∈[0,d−1]

Eh ·∆h.

If the honest verifier outputs true, then we haveW =
∑

h∈[0,d−1] U
′
h ·∆h. Therefore, we have the following:(∑

i∈[t]

yi · χi
)
·∆d − Ed−1 ·∆d−1 − · · · − E1 ·∆− E0 = 0.

If
∑

i∈[t] yi · χi 6= 0, the probability that the above equation holds is at most d/pr, as ∆ ∈ Fpr is uniformly
random and kept secret from the adversary’s view. In the following, we assume that

∑
i∈[t] yi · χi = 0.

If there exists some i ∈ [t] such that yi 6= 0, then that probability that
∑

i∈[t] yi · χi = 0 is at most t/pr,
since χ ∈ Fpr is sampled uniformly at random after yi for all i ∈ [t] have been defined. Overall, the
probability that the honest verifier outputs true but fi(w) 6= 0 for some i ∈ [t] is bounded by (d+ t)/pr. In
conclusion, any unbounded environment Z cannot distinguish between the real-world execution and ideal-
world execution, except with probability (d+ t)/pr.

Malicious verifier. If S receives false fromFZK, then it simply aborts. Otherwise, S interacts with adversary
A as follows:

1. In the preprocessing phase, S emulates Fp,rext-sVOLE by recording the global key ∆ and the keys for all the
authenticated values, which are received from adversaryA. Additionally, S also receives B∗ ∈ Fpr from
A by emulating Fp,rext-sVOLE.

2. S executes the step 4 of protocol Πp,r
polyZK by sending uniform δi ∈ Fp for i ∈ [n] to adversary A.

3. For steps 5–6 of the ZK protocol, S computesW by using ∆, the keys andB∗ received fromA following
the protocol description, and then samplesU1, . . . , Ud−1 ← Fpr and computingU0 := W−

∑
h∈[d−1] Uh·

∆h. Then, S sends U0, . . . , Ud−1 to A.
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Note that {si}i∈[n] and {A∗h}h∈[d−1] are uniform and kept secret from the view of adversary A. Therefore,
we easily obtain that the view of A simulated by S is distributed identically to its view in the real-world
execution, which completes the proof.
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