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Abstract

Applying access structure to encrypted sensitive data is one of the challenges in com-
munication networks and cloud computing. Various methods have been proposed to
achieve this goal, one of the most interesting of which is Attribute-Based Encryption
(ABE). In ABE schemes, the access structure, which is defined as a policy, can be
applied to the key or ciphertext. Thus, if the policy is applied to the key, it is called
the Key Policy Attribute-Based Encryption (KP-ABE), and on the other hand, if it is
applied to the ciphertext, it is called the Ciphertext Policy Attribute-Based Encryp-
tion (CP-ABE). Since in the KP-ABE;, the policy is selected once by a trusted entity
and is fixed then, they are not suitable for applications where the policy needs to
change repeatedly. This problem is solved in CP-ABE, where the policy is selected
by the sender and changed for each message. Furthermore, the access structure
should present a strong fine-grained access control. The arithmetic access structure
can supply fine-grained access structures stronger than Boolean access structures.

We present the first CP-ABE scheme with an arithmetic circuit access policy
based on the multilinear maps. First, we outline a basic design and then two im-
proved versions of this scheme, with or without the property of hidden attributes,
are introduced. We also define the concept of Hidden Result Attribute Based En-
cryption (HR-ABE) which means that the result of the arithmetic function will not
be revealed to the users.

We define a new hardness assumption, called the (k — 1)-Distance Decisional
Diffie-Hellman assumption, which is at least as hard as the k-multilinear decisional
Diffie-Hellman assumption. Under this assumption, we prove the adaptive security
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of the proposed scheme.
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1. Introduction

Nowadays, there is a considerable demand for fine-grained data sharing in cloud
based communication systems, where access to the data is supposed to be limited to
some specific eligible users. This type of data sharing requires flexible and dynamic
access control over a service provider which is not necessarily trusted enough. Based
on the traditional public key encryption solutions, the sender must identify all the
potential qualified users and encrypt the message for each of them separately, which is
an extremely inefficient solution. Attribute Based Encryption (ABE) addresses this
demand by providing a dynamic access control based on the user’s set of attributes.
The access structure, which is itself protected by encryption, can be embedded in
either the key (KP-ABE) or the ciphertext (CP-ABE). The flexibility of ABE makes
it applicable to many different aspects of recent technologies, such as Internet of
Things [2, 22|, personal healthcare records [27, 24], Internet of Energy [25] and
vehicular networks [10].

Related work. The concept of Attribute Based Encryption was first invented
by Sahai and Waters [23], though under the title of fuzzy Identity Based Encryption
(fuzzy IBE). In their scheme, each user has a set of attributes and a set of secret
keys associated with these attributes. The message is encrypted by the sender based
on the attributes and if the intersection of the sender and receiver attribute sets
is greater than a predefined threshold value, the message can be decrypted by the
receliver.

Goyal et al. [14] defined the concept of Key Policy Attribute Based Encryption
(KP-ABE) and proposed the first KP-ABE scheme. In this type of ABE scheme, the
ciphertext is labeled with a set of attributes, and the user’s secret key is associated
with an access structure. The ciphertext is decryptable only by the users whose secret
key access structure is satisfied by the set of attributes attached to the ciphertext.
Contrary to KP-ABE, Goyal et al. also introduced the concept of Ciphertext Policy
Attribute Based Encryption (CP-ABE), though they did not propose a scheme with
such a property.

In 2007, the first CP-ABE scheme was proposed by Bethencourt et al. [6]. In this
type of ABE, the ciphertext is constructed according to the access structure and the
secret keys of the receiver are constructed according to the user’s attributes. The set
of attributes of the decryptor in CP-ABE must satisfy the access structure defined in



the ciphertext. Due to the possibility of choosing the access structure by the sender,
this scheme is more flexible than KP-ABE.

Bethencourt proved the security of his scheme in the generic group model. Wa-
ters in [26] proposed a CP-ABE scheme and demonstrated the security of his scheme
under standard assumptions. All of these schemes support the monotone circuit ac-
cess structures. Ostrovsky et al. [21] presented the first schemes for non-monotone
circuits. Green et al. [15] proposed the idea of outsourcing the heavy computations
to the cloud, to reduce the computational overhead for the users. Some other arti-
cles in this research area focus on improving the efficiency, security, and size of the
ciphertext and keys [4],[19], [29], [11] and [18].

One challenge in this area is the problem of revocation. Some schemes, like [32] and
[16], focus on resolving this problem. Chase in [9] proposed the multi-authority ABE
as a solution for the key escrow problem. In [3], Attrapondong and Imai present
the Dual Policy ABE, which is a kind of ABE with simultaneous key and ciphertext
policies. In [31, 20], the Hierarchical Attribute Based Encryption (HABE) was pre-
sented. In HABE, the user possessing an attribute with a higher level can decrypt
the messages encrypted for that with lower level ones.

Garg et al. in [12] presented a backtracking attack for pairing-based ABE with cir-
cuits with fan-out bigger than one. Garg presented KP-ABE for all circuits using
multilinear maps, though the underlying assumptions for proving its security are re-
lated to multilinear maps. However, his scheme works for any circuits with arbitrary
fanout. The other scheme that supports arbitrary fanout was proposed in [13].

All the above schemes are constructed based on the bilinear pairing and their

security relies on pairing-related hard problems. Therefore, they can not be regarded
as post quantum ABE schemes. Contrary to pairing based ABE schemes, lattice
based ABE schemes are proposed, where security relies on the Learning With Error
(LWE) assumption. Agrawal et al. [1] presented the Fuzzy ABE based on lattice for
the first time. Boyen et al. [8] and Zhang et al. [30] presented the first lattice-based
KP-ABE and CP-ABE, respectively. Gorbunov et al. [13] presented the lattice based
KP-ABE that works for any boolean. The first work which supports the arithmetic
circuit as the access structure is Boneh’s scheme [7], where a fully key homomorphic
encryption for constructing KP-ABE is proposed. In this scheme, addition and
multiplication gates are used instead of the conventional AND and OR gates, which
is a more general approach than the boolean access structures.
Some schemes have the property of hiding the attribute vector or access policy in
the ciphertext. This property is called Predicate Encryption (PE) [17]. Such ABE
schemes are called policy hidden ABE [5, 28].

Motivation.All the above schemes, except Boneh et.al. [7] which is designed for



arithmetic functions, are constructed for boolean functions. Arithmetic functions can
achieve stronger fine-grained access control than boolean functions. Furthermore, it
is possible to generate the boolean access policy from the arithmetic function [7].
So, arithmetic functions as access policy is more general and more flexible than the
boolean ones. So, this work focuses on new ABE schemes with arithmetic access
functions, aiming to mitigate some limitations of [7].

Our contribution. In this paper, we propose the first CP-ABE scheme for
arithmetic functions with arbitrary results. The proposed scheme is designed based
on the multilinear map. We introduce the new concept of hidden result ABE, which
means that the result of the arithmetic function remains unknown to the user.

The proposed scheme is described in three variants. A basic scheme is first
introduced by which the platform of our idea is demonstrated. In this scheme,
the result and attribute vector is hidden and it covers simple arithmetic functions.
Then, an improved version, supporting a general arithmetic function is proposed in
which the attribute vector, as well as the result value, are unknown to the users.
Compared to [7], which is the only existing ABE work for arithmetic circuits, the
proposed scheme has significant advantages. Our proposed schemes are CP-ABE
with adaptive security. The result can take any arbitrary value. It supports the
exponentiation gate and does not have any constraint over the attribute values.
None of the above features are supported by Boneh’s scheme [7]. However, that
scheme is a lattice-based one which makes it a quantum-friendly solution, despite
ours.

Paper structure. The structure of the rest of the paper is as follows. In Sec.
2, the preliminaries for the paper are reviewed. In Sec. 3, a definition of a CP-ABE
scheme and its security is given. In Sec. 4, the proposed basic CP-ABE scheme
is detailed and its security is proved. Sections 5 and 6 describe the two improved
versions of the basic scheme, which are with or without the property of hidden
attributes, respectively. A comparison of the proposed scheme with Boneh’s scheme
is brought in Sec. 7, and finally Sec. 8 concludes our work.

2. Preliminaries and Definitions

At the first we introduce the notation that we will use throughout the paper.
We use A\ as a security parameter. We assume that negl(\) is a negligible func-
tion of A\. The cardinality of set A is denoted by |A|. The sets {1,...,n} and

{0,1,...,n} are denoted by [n] and [0, n], respectively. When we want to say z is
uniformly selected from set y, denote by x <—sx. By x", where x = [z, 21, ..., 2]
and u = [ug, u1, ..., u,], we mean [[;_, zj". Two computationally indistinguishable



distributions A and B are denoted by A =, B. Also, PPT represented from ”Prob-
abilistic Polynomial Time”.
Next, we provide a list of hardness assumptions.

Definition 1 (k-Multilinear map [12]). The multilinear map is defined over k groups
G1,Gs, ..., Gy of the same order. Assume that g; is the generator of G; for i €
{1,2,...,k}. The function e; ; is defined as below:

€ij: G; x Gj —>Gi+j; Z,] € [k?— 1], Z+] <k
ei;(9i, 95) = 9%, (1)

We can summarize the consecutive computations of several bilinear maps (1) into
the following formula.

6(9?1179?227 e ’g,i;n) — gyl:[i:l T4 (2)
where n =3, i; < k. We assume that there is a polynomial-time algorithm for

computing (1). The bilinear map (or pairing) is a special case of k-multilinear map
for k = 2. throughout this paper, by Mult;, we mean the following tuple.

Multy = {G,...,Gr, 91, .., gk, {€ij}ijer-11} (3)

Definition 2 (k-Multilinear Diffie-Hellman assumption (k-MDH) [12]). This as-
sumption states that given vector {Multk,gs,gcl,g”, .oy g% v, where g = gy, it is

— 5‘H§:1 Ci
hard to compute T' = g, .

Definition 3 (k-Multilinear Decisional Diffie-Hellman assumption (k-MDDH) [12]).
This assuption states that given vector {Multk,gs,gcl, g, ... ,gck,gz}, where g =
g1, it is hard to decide if z = s - Hle Ci.

Definition 4 ((k — 1)-Distance Diffie-Hellman assumption ((k — 1)-DsDH)). This

assumption states that given {Multk, g%, gz}, it is hard to compute T = g;.”.

Theorem 1. The (k — 1)-DsDH assumption is al least as hard as the k-MDH as-
sumption.

Proof. Given an oracle O, which on input {M ulty, g%, gz} outputs { g,ﬁ‘y}, we show

that there exists an algorithm A, which on input {Multk,gx,gcl,...,gc’f} out-

k
[Tizic

puts g,‘f' . Given a vector {Multk,g“",gcl, e ,gck}, we set hy = ¢* and hy =
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Hi:l Ci

e(g™, 9%, ..., 9%) = g = gy. We view (hy, hy) as an input to O to obtain
T e . . .

O(hy,hy) = g;¥. Tt follows that A can compute g, e using O in polynomial

time with the same advantage. O]

Definition 5 ((k—1)-Distance Decisional Diffie-Hellman assumption ((k—1)-DsDDH)).
This assumption states that given the vector {Multk, g°, g%, g,j}, 1t 1s hard to decide
if z=x-y. The advantage of algorithm A for solving the (k — 1)-DsDDH problem

is Advﬁff,ﬁi_"fﬁ%lsDDH = |p — %I, where p is the success probbaility of A.

Theorem 2. The (k — 1)-DsDDH assumption is at least as hard as the k-MDDH
assumption.

The claim of Theorem 2 can be proved similar to the (k — 1)-DsDH hardness
proof given in the proof of Theorem 1.

3. Overview and Security Definitions

In this section, we bring the formal definition of a ciphertext-policy attribute-
based encryption scheme and its security.

Definition 6. (Arithmetic Access Function (Structure, Policy or circuit)) Suppose
q 1s a large prime number. The general form of the arithmetic access function of
degree at most d over Zq is as follows.

fE) = > ax™ (4)
u,;€[0,d]™
j€n) Wi <d
where a; € Ly, X = [T1,%T2,...,2y,), and w; = [u;1,...,u;2|. If we define P, =
{j € [n]Jui; # 0}, (4) can be rewritten as:

f = > (a [] =) (5)

u;, j€[d] JEP;

ZjePi ui,j <d

We define S = {P;|a; # 0}.

A CP-ABE scheme for arithmetic circuits realizes an access policy consistent with
all or a class of the arithmetic functions defined in (5), where each z; , 1 =1,2,...,n
corresponds to one attribute and x is called the attribute vector.



Definition 7. (Ciphertext-Policy Attribute-Based Encryption scheme for arithmetic
circuits): Suppose that U is the set of all attributes from Z,, where |U| = n. And also,
Y. is the the set of all arithmetic access functions and ¥, = 2V is the key indices
over the attribute space U The CP-ABE scheme ABE for an arithmetic function
AF : ¥y x ¥, — Z4 over message space M and ciphertext space C, is a quadruple of
PPT algorithms, (Setup, KGen, Enc, Dec), described in the following.

- (pp, pk, msk) < ABE.Setup(A, k,U): The setup algorithm generates the public
parameters pp, the public key pk and the master secret key msk according to its
inputs. The inputs are the security parameter \, the attribute space U, and the
circuit depth k.

- (dkg) < ABE.KGen(msk, B, xg): The key generation algorithm returns the de-
cryption key dkg according to its inputs. The inputs of this algorithm are the
master secret key msk, an authorized key index B € ¥, and the value vector
xg € Zy. Note that x; =0 for all j ¢ B.

- (Ctxy) < ABE.Enc(pp, pk,m, f,y): The Encryption algorithm outputs the ci-
phertext Ctxy € C according to its inputs. Its inputs are the public parameters
pp, public key pk, message m € M, the arithmetic access function f € X, and
a value y € Zg, called the result value.

- {m/, L} < ABE Dec(pp, pk, Ctxy, f,dkg,B): The decryption algorithm returns
m' € M if AF(xp, f) = y otherwise L. The inputs of this algorithm are
the public parameters pp, the public key pk, the ciphertext Ctxy € C and the
corresponding access function f € ¥, along with a private decryption key dkg
for the key index B € X.

In the following, we give the definitions of the correctness of a CP-ABE scheme,
and the IND-CPA security (Indistinguishability under Chosen Plaintext Attack) in
the adaptive security model.

Definition 8 (Correctness). Let ¥ be a CP-ABE scheme for arithmetic functions.
We say that ¥ over message space M and ciphertext space C is correct if for all
meM,BeXy, feX, andy € Z,, it holds that:

(pp, pk, msk) <— W.Setup(A, k, U), dkg <— W.KGen(msk, B, x5),
Pr | Ctxs < W.Enc(pp, pk,m, f,y), U.Dec (pp, pk, Ctxs,dkg, B) =m :| ~. 1 .

AF(XIB% f) =Y



Definition 9 (Indistinguishability under Chosen Plaintext Attack (IND-CPA) in
adaptive security model). Suppose that the ABE scheme V is defined for the attribute
space U, message space M and an arrithmetic function AF : X X ¥, — Z,. Suppose
that the scheme WV s defined for the attribute space U, message space M and an
arrithmetic function AF : X X ¥, = Z,. The adaptive security model define as
below. Note that this model is described for a security parameter X, a circuit depth
k, and a challenger C.

- Initialization: The Challenger C runs W.Setup(\, k, U) algorithm and gener-
ates the triple of public parameters, the public key and the master secret key.
Then forwards pp and pk to A, while keeping msk secure.

- First Query Phase: The adversary A queries dkg from C by choosing a
key index B € X for polynomially-many requests. C chooses the vector xg,
executes algorithm V.KGen(msk, B, xp), and returns dkg to A. Also adds B to
a list, called Q. This list was initialized as an empty list.

Challenge: In this phase, two messages (mg,my) <—s M x M that have the
same length, along with a challenge access function f* € 3. are chosen by A.
Then A sends {(mg,m1), f*} toC. Then, C flips a fair coin, produces a random
bit b<—s{0,1}, chooses y € Z, such that AF(xg, f*) # y for all B € Qy, runs
U.Enc(pp, pk, my, f*,y) and sends Ctxp back to A.

- Second Query Phase: A is still allowed to repeat Query Phase, which was
defined in the First Query Phase step, after receiving the challenge cipher-
text. Note that the requested keys conditioned that AF(xg, f*) # y.

- Guess. A returns a bit v/ € {0,1} to C.

Definition 10 (Indistinguishability under Chosen Plaintext Attack (IND-CPA) in
adaptive security model). Suppose that the A ran the game defined in (9). If the
advantage for all PPT adversaries A, is negligible we say ¥ is IND-CPA secure.
The advantage of A is defined as follows.

AdvT A (M) =

Prib=0]— - (6)

1
2

In other words, V is the IND-CPA secure if the following relationship is established.
AdVDOPA (1A b = 0) — AdVIYR P (1), b = 1>' ~ 0
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Remark 1. Note that, there are two main security models for ABE constructions
including selective security and adaptive security. The selective security model is
weaker since, in this model, the adversary selects the challenge access function f*
at the beginning of the game and sends it to the challenger. Then, the challenger
generates the public parameters according to the received challenge policy.

We will prove the security of our schemes in the adaptive security model. This feature
s one of the advantages of our scheme.

4. Basic CP-ABE Scheme

This section describes a simplified and basic version of the proposed CP-ABE
scheme for arithmetic access functions. The goal of these simplifications is to make
it more convenient to understand the main schemes proposed in the next sections.

4.1. Features

Suppose that the circuit depth of the scheme is k. For the basic CP-ABE proposed
in this section, we restrict f(x) defined in (5) to those which Vi, j,u;; € {0,1},
d=n=Fk' and VP, P; € S,i # j, ;N P; = (. The proposed scheme works for any
result value y € Z,. Moreover, in this scheme, the user does not know the value of
his/her own attribute vector as well as the value of the result. These constraints will
be relaxed in the schemes proposed in the next sections.

4.2. Specifications
The proposed CP-ABE scheme Vg is a quadruple (Setup, KeyGen, Enc, Dec) of
PPT algorithms, which are described in the following.

- Uy.Setup(\, k, U). This algorithm takes security parameter A, the circuit depth
k, and the attribute space U as input. Then, it outputs the public parameters,
the public key, and the master secret key. The public parameters are pp =
{Mult} defind in (3). Then, ;<= Z,, s; s Z,, i € [k] are choosen, and the
public key pk and the master secret key msk are generated, as below.

R T 7 k_t,
pk = {{g“,gSi,gSi Ve, h = gi }

msk = {{ti}ie[k]a {Sz‘}ie[k]} (7)

INote that although the basic scheme is described for d = n = k, it can support functions with
d < k and n < k. For the latter case, we consider that a dummy term Hje[k] x; with zero coefficient
is included in f(x) descryption.



- Uy.KGen(msk, B, xp). This algorithm takes the master secret key msk, key
index B, and the attribute value vector xp € Z; as input, where z; = 0 for all
i ¢ B. Then, it outputs the user’s secret key dkg as follows.

dkg = {B, {sk; = s; - x; }ien }” (8)

- Wo.Enc(pp, pk,m, f,y). This algorithm takes public key pk, arithmetic function
f consistent with the specifications given in Sec. 4.1, the result value y € Z,
and message m encoded to an element of G, as inputs, then it generates Ctxy
as follows.

Firstly, rj <= Zy, j € [k] such that VF; € S, [];cp, r; = R. Note that since P;s

are disjoint, such a set of {r;};cp always exists. Then, {C;}icy are computed

as C; = g # ,i € [k]. Cp and check are also computed as follows.

Co = m:- hy'R

check = ¢ (9)
Finally, the ciphertext is returned by Wy.Enc algorithm as below.

Ctxy = { [, Co, {Ci}ic), check } (10)

The parameter check is left in the Ctxy to allow the W(.Dec algorithm to check
iff f(xz) =y.

- Wo.Dec(pp, pk, Ctxy, f,dkg, B). This is a deterministic algorithm that takes the
public paratmeters pp, public key pk, ciphertext Ctx¢, and the users secret key
dkg as inputs. It outputs message m only if Ctxy is an encryption of m under
the public key pk and f(xp) = y otherwise it outputs L.

The algorithm Wy.Dec, first checks if check = g,]; ™) to make sure that the input

decryption key dkg is valid for decryption. For this purpose, it computes g}: ()

2This way of defining the secret keys does not make this scheme vulnerable to the collusion
attack. The reason for that will be discussed more at the end of this section

10



using pk and dk, as follows (for simplicity xp is denoted by x).

1 S,l sk a;
check’ = H e((gsil )Skil’ cee (g Py | ) k’U’i\)

PZ'ES

= 11 e(gg“l, . ,gz"\myi

P;eS

aq HjePi Zj
- k
P;eS

= g[® (11)

where P; = {i;},cqp- If check’ = check, this algorith decrypts the ciphertext
as follows, otherwise it returns L. For decryption, the algorithm first computes
Ip, P; €S as follows.

IPi = e(C’ila Ciza e 702'\P.\ ) gtjl ) gtjzv s 7gtj<kilpi|>) (12)

where {j1,...,jrk—pj} = [k] \ P. Then, it computes mask, and decrypts the
ciphertext Ctx; into message m’ as follows.

mask = H(Ipi)aiHjGPﬁkﬂ'
P;eS
Co
/
= 1
m mask (13)

Correctness. The correctness of equation (13) is as follows. We first simplify (12)
using to the following equality.

Tt
H]EPl(%)H'UéPl ty
[P- = gk

[3

EJEPiETj;.Hk Lt [jep;(rj)
ep. (54 v=1 v . 4
= gk Jebitty —= hHJGP'L(S])

= hﬁ (14)

11



So, mask would be equal to

mask = H(_[Pi>aiHjGP¢Skj

P;eS

R ai[ljep, 5i%j

P—L'ES

= T e

P;eS

hR(ZPz‘ES (s Ter ) _ hIC-R (15)

Finally, equations (15) along with (9) yeilds (13).
Example 1. Assume that S = {Py, P»} where P, = {1,3} and P, = {2}. Here,

=n =3 and f(X) = a1x123 + agxy. mask is simplified as follows.

2
mask = H (Ip)" ep, sk

i=1
— (Ip) " enar b . (1, )% ey ohs
= (Ip,)n(rersaws) (], yaa(sawa)
— pRazes | pRaw
—  pRazizstases) _ pf(2)R
Note that in this scheme the non-eligible users can not effectively collude to
decrypt an impermissible ciphertext. Since the value of attributes, as well as the

result, is unknown to the users, they can not realize which combination of secret
keys can lead to successful collusion.

4.8. Security

In this section, we prove that the basic scheme proposed in Sec. 4.2 is adaptively
IND-CPA secure under the (k — 1)-DsDDH assumption.

Theorem 3. The proposed basic CP-ABE scheme described in Sec. 4.2, for arith-
metic functions with the characteristics given in Sec. 4.1 achieves IND-CPA in
adaptive security model under (k — 1)-DsDDH assumption.

12



Proof. Suppose that there exists a polynomial-time attacker A for the proposed basic
CP-ABE scheme with non-negligible advantage in the IND-CPA security game (Def.
9 and 10). Under this assumption, there exist a polynomial-time algorithm C that
uses the adversary A as a black-box and solves an instance of the (kK — 1)-DsDDH
problem with non-negligible advantage.

We suppose that the oracle D generates the (k — 1)-DsDDH parameters as
{Multg, g%, 9,97} D flips a fair coin p and sets z = z -y if p = 0 else z<=sZ,.
The challenger C gets the (k — 1)-DsDDH parameters and, by a blackbox access to
A, it aims to distinguish if z = x - y or it is a random value and return his guess 1/,
with non-negligible advantage. The security game for proof of the basic scheme is as
follows.

- Initialization: The challenger C chooses t; <—sZ,, i€ [k — 1], and s; <—sZ,, i €
[k]. Then, it sets g'* = gﬁ"'Hi:l1 b 1, and simulates the public parameters and
public key for the attacker A as follows.

pp = {Multy}
3 x- k—14-1 L
pk = {{gtl}ie[kq],gtk =g =it 9% Y

k—1,-1
123 eIl t

by L
{g° Yiew—1,9% =9 = h=e1p-1(9", gp—1) = g}f}

- First Query Phase. After receiving pp and pk, A requests C for secret
keys associated to its chosen key index B € Y. The challenger C chooses an
Xp <3 Z’; where x; = 0 for ¢ ¢ B, as the attribute vector and generates the
secret key according to (8) by simulating the Wo.KGen(msk, B, xp) algorithm.
Then, it sends it to A, upon each secret key requested by A. C adds the
recieved key index B to list Q.

- Challenge. A chooses two same length messages (mg, m;) <—s M x M and the
challenge access function f* and sends{(mg, m1), f*} to C. C flips a faircoin,
generating the random bit b, chooses y € Z, such that AF(xg, f*) # y for
all B € Qk. Then, C runs algorithm Wy.Enc(pp, pk,m, f*,y) to simulate the
ciphertext Ctxs- of my, for A as below.

Ctxye = {f*, Co, {Ci}icp), check}

Tt
54

where Cy = my.(¢7)%, C; = ¢ Cfori € [k — 1], Cp = g TS and
check = g7. The challenger C then sends Ctx; to A.

13



- Second Query Phase. Having received Ctxs«, A can adaptively request
more secret keys associated with more key indices B. C chooses xp such that
AF(xp, f*) # y, generates the requested keys, and sends them to A.

- Guess. The attacker A sends the guessed bit & of b to the C. If ¥’ = b, C will
output ' = 0 indicating that z = zy in the given (k — 1)-DsDDH instance,
otherwise it outputs p/ = 1 indicating that the given (k — 1)-DsDDH instance
was a random tuple.

The advantage of C for solving the (k — 1)—DsDDH problem is computed as follows.
In the case that = 1, A gains no information about b. Therefore, we have Pr[b’ #
bl = 1] = 3. Since C guesses ' = 1 when b # ', we have Prly/ = plp=1] = 3.

If © = 0 then A sees an encryption of m,. Suppose that the advantage of A in this
situation is the non-negligible value e. Therefore, we have Pr[b =b'|u=0] =1 + .
Since C guesses = 0 when b = b', we have Pr[y/ = pu|p = 0] = 1 + e. The overall
advantage of C in the (k — 1)-DsDDH game is:

1 1
Prip' = plp = 0]+ 5Prip' = plp=1] = 3

_ < (16)

Distinguish .
Advc,(k—l)—DsDDH =

N — Do —

In (16), the probability of resolving (k — 1)—DsDDH problem is non-negligibly

greater than 7 So, it is concluded that attacker A does not exist, since (k —
1)—DsDDH problem is assumed to be hard. O

5. Hidden-Result and Hidden-Attributes CP-ABE Scheme

In this section, we propose an improved version of the basic CP-ABE scheme for
arithmetic circuits, proposed in Sec. 4, where all the limitations of the basic scheme
over the access function are relaxed. The result value and the value of the attribute
vector in this scheme both are hidden to the user.

5.1. Features

The arithmetic function that can be realized as the access structure in this scheme
is in the general form of (5) with no constraint on n, P;s, and w; ;. It means that the
constraint of Vi # j, P, N P; = () is relaxed, and for circuit depth k, n can be greater
than k, and d is at most equal to k. So, u;; € [0, k], conditioned that ZjePi wij < k.
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5.2. Specifications

The quadruple of algorithms (Setup, KeyGen, Enc, Dec) of this version of the pro-
posed CP-ABE scheme is similar to the basic scheme’s, introduced in Sec. 4.2,

except for the following modifications in. In this section, ¥ refers to the proposed
hidden-result and hidden-attribute CP-ABE scheme.

- Uy.Setup(\, k, U). The public parameters, the public key and the master secret
key are generated as below.

pp = {Multy}

1t k
pk = {{g“,gsf‘,gsf} ,h:g}}“‘lt”}
i€lk],j€[n]
msk = {{t:}icp{si}icp } (17)

where, t; <= Z,,1 € [k] and s; <= Z,,j € [n].

- U;.KGen(msk, B, xp). This algorithm is the similar to ¥.KGen algorithm. The
only difference is in the size of the user secret key vector, which can reach up
to n:

dkg = {B, {sk; = s; - 7;}jen}

- Uy.Enc(pp, pk,m, f,y): This algorithm takes public parameters pp and public
key pk, the arithmetic function f, the result value y € Z, and message m which
is encoded to an element of G, as inputs then outputs the ciphertext Ctx;.

Firstly, the random numbers 7“]@ € Z,, where j € P, and F; € S are selected in

a way that for all ¢ it holds Hje P, r](.i) = R. The ciphertext is then computed

according to the following equation.
Ctxy = {f, Co,{Cp }pes,check} (18)

where Cp = m - h¥f and check = g¢?.
Cp =[c{). ... .Cl), vPes (19)

1"(.1) tj

and C) = g7 for j € P, and P, €S.
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Algorithm 1: Computing /p,

Input: pp, pk, P;, {u;};ep, and Cp,

Output: Ip,

B+ e(C{),CY,... . Cp);

T+ {1,...,k}\ P;

for j € P, do

for k € [u; — 1] do

select i’ € T,
B+ e(B.g");
T+ T\ A{i};

s while T # () do

9 select i € T';

10 | B+ e(B,g');

n | T« T\{i}

12 return B;

qA W N e

N O

- WUy.Dec(pp, pk, Ctxy, f,dkg, B): The only change in the W;.Dec algorithm is in
Ip, formula, P; € S. In this version, it is more convenient to use an algorithmic
presentation to explain how Ip, is computed, rather than a closed-form formula.
So, Algorithm 1 is run to get Ip,. According to this algorithm, Ip, is returned
as follows.

R k
U Hv:l to

I = g (20)

The rest of the ¥;.Dec algorithm is exactly similar to Wy.Dec in the basic
scheme. We bring an example here to show how Algorithm 1 works.

Example 2. Suppose that k = 7 and the i monomial of f(x) is z3x3xy. So,
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P, ={1,2,4} and uy = 3,us = 2 and uy = 1. Algorithm 1 computes Ip, as follows.

t3 ts te

IP. = 6(01(1),02(1), Czii)yg;;g;mggvgh)

7

’7‘5 >t1 ré )tQ Té(l >t4 t3 ts te

= (¢t .9 = ,9 1 ,g,9,9%2,9"7)

ng)réz)n(lz) -
5?5254 v=1"Y
= 97
5 TI

5.8. Security

The IND-CPA security of the proposed scheme, in the adaptive security model,
is reduced to the (k — 1)-DsDDH assumption.

Theorem 4. The improved hidden-result hidden-attribute CP-ABE scheme described
in Sec. 5.1 for arithmetic functions with the characteristics given in Sec. 5.1 achieves
IND-CPA in the adaptive security model, under (k — 1)-DsDDH assumption.

Proof. The security proof of this scheme is completely similar to the security proof
of the basic scheme given in Sec. 4.3. O

6. Hidden-Result Disclosed-Attributes CP-ABE Scheme

In the two previous schemes, the attribute vector is hidden from its owner. De-
pending on the application, such a property may be desired or not. In this section,
we present a variant of the proposed scheme in which the values of the attributes are
known to the attribute-owner.

6.1. Features

Like the scheme proposed in Sec. 5, The access functions supported by this
scheme are in the most general form of (5). Contrary to the two previous schemes, in
this scheme, the attribute vector is included in dkg, i.e., it is known to its owner. On
the other hand, the result value, y, is hidden before the decryption, but if Ar(xg, f) =
y, the value of y will be disclosed in Dec algorithm. In other words, the eligible
user who can successfully decrypt the ciphertext can obtain the result value after
decryption.

For a circuit depth of k, this scheme requires a 2k-multilinear map. This increases
the size of public parameters and secret keys as well as the computational complexity

17



of the decryption algorithm but does not affect on the public key and master secret
key sizes.

6.2. Specifications

In this section, we mention only those parts of algorithms (Setup, KeyGen, Enc, Dec)
that have changed comparing to the proposed scheme in Sec. 5.2.

- U,.Setup(\, n, U). The public parameters, the public key and the master secret
key are returned by this algorithm, as below.

pp = {multy}

1t k
pk = {{gtiagsjagsj} ,h:gg{vltv}
1€[k],j€[n]
msk = {{ti}iep{si}iem } (22)

where, t; <= Z,,i € [k] and s;j<=sZ,,j € [n]. Note that in this scheme h =

ITh_ito
Yok .

- Uy .KGen(msk, B, xg): This algorithm first selects a <—sZ,, then returns the
secret key, dkg, as below.

dk]E = {]B7 XB, Skl,j; Sk)zj}jgﬁg (23)

—a
where skyj = s - x; - (x;), skq; = g% .

- Uy.Enc(pp, pk, f,m,y): This algorithm is the same as W;.Enc(pp, pk, f,m,y)
algorithm. The only change in this algorithm is as follows.

C() = m-hy'R
check = gi, (24)

- Uy.Dec(pp, pk, Ctxy, f,dkg, B). The computation of check’ is much more simple
than the previous schemes. The value of ng]gxm) can be easily computed using
the attribute vector xp included in dkg. Then, it is compared to the received
check value. If check’ # check, the algorithm returns L and y remains unknown,
otherwise the it is revealed that y = f(xp) and of the decryption is proceeds
as follows.
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The value of Ip,, P, € S is computed according to Algorithm 1. Then, given
dkg and Ctxy, Jp, P; € S is computed as follows.

Jp, = e(sky; sks ; sks.; sko.; )
% NIRREREE 2,519 2,91p12 27_]}3.797"'79
N $ L LI DN AL
uj, times i p | times k—k; times
[Liep, I;Uja
= Yk (25)
where P, = {ji,...,jip}, and k; = >_, p, u;. Finally, mask is computed as
follows.
a; HjePi skijj
mask = H erk(Ip, ., Jp,)

P;eS

u 5 .
Reailljep, z;” ()" [Ty tv [jer, @
H ek, (9, » Ik )
PiES

" ws
_ | | hR'ai HjePi xj] — hR'ZPiesai HjePi l"jj

P;eS

= pRI) (26)
The rest of the Wy.Dec algorithm is similar to W;.Dec given in 5.2.

6.3. Security

The security proof of this scheme is mostly similar to the security proof of the
basic scheme brought in Sec. 4.3, but with some modifications. However, we bring
the complete security proof in this section.

Theorem 5. The improved hidden-result disclosed-attribute CP-ABE scheme de-
scribed in Sec. 6.2 for arithmetic functions with the characteristics given in 6.1
achieves IND-CPA in the adaptive security model under the (2k — 1)-DsDDH as-
sumption.

Proof. We suppose that the oracle D generates the (2k — 1)-DsDDH parameters as
{Multay, g*, g5, g5c }- D flips fair coin p and sets z = -y if p = 0 else z<=sZ,.
The challenger C gets the (2k—1)-DsDDH parameters and, by running the IND-CPA
game, it aims to distinguish if z = -y or it is a random value and return his guess 1/,
with non-negligible advantage. The security game for proof of the second improved
scheme is as follows.
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- Initialization. The challenger C chooses t; <—sZ,,i € [k —1], and s; ¢sZ,,i €
[n]. Then, it sets g = ¢TIt and b = e1.2k-1(9%, gok—1) = g5, and simu-
lates the public parameters and public key for the attacker A as follows.

pp = {Multy}
i o B L
pk = {{gtl}ie[k—l]vgtk =g L=t Ay }z'e[n],

k—1,-1
123 eIl Y

{g?j}ie[k[_}l], {9 =9 % Yjew b =g5}
jeln

- First Query Phase. After receivingthe public parameters and public key, A
requests C for secret keys associated to its chosen attribute vector xp € Zj. The
challenger C generates dkg by simulating the Wy.KGen(msk, B, xp) algorithm
(8). Then, it sends it to A. C addes the recieved key index B to list Q. This
step can be reapeted adaptively to simulate the collusion of users.

- Challenge. A chooses two same length messages (mg, m;) <—s M x M and the
challenge access function f* and sends {(mg,m1), f*} to C. C flips a faircoin,
generating the random bit b, chooses y € Z, such that Ar(xg, f*) # y for
all B € Qk. Then, C runs algorithm W,.Enc(pp, pk,m, f*,y) to simulate the
ciphertext Ctx s« of my, for A as below.

Ctxg = { ", Co, {Cp, } p,es, check}

where Cy = my,.(g3;,)", check = ¢, and {Cp,}pes are computed according to
(19). The challenger C then sends Ctxs« to A.

- Second Query Phase. Having received Ctx«, A can adaptively request more
secret keys associated with new attribute vectors xg. Although A chooses xg,
the probability of AF(xp, f*) = y is negligible. C generates the requested keys,
and sends them to A.

- Guess. The attacker A sends the guessed bit &’ of b to the C. If ¥’ = b, C will
output p/ = 0 indicating that z = x - y in the given (2k — 1)-DsDDH instance,
otherwise it outputs ¢/ = 1 indicating it was a random tuple.
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The overall advantage of C in the (2k — 1)-DsDDH game is:

TR 1 1 1
Distinguish
AdVC,(thfgl)stDDH = §P7“[M, = plp = 0] + §P7“[M/ = plp=1] - )
1 1 1 1 1 €
= - (z+€¢)+=z=—= = — 27
5 Gt +3 57573 (27)

In (27), the probability of resolving (2k — 1)—DsDDH problem is non-negligibly
greater than 5 So, it is concluded that attacker A does not exist, since (2k —
1)—DsDDH problem is assumed to be hard. O

7. Comparison with Boneh’s scheme

The only ABE scheme for arithmetic functions so far is the scheme of Boneh et
al. [7]. Although this work is a lattice-based scheme with the benefit of being a
post-quantum CP-ABE scheme, the proposed schemes in this paper have some other
advantages over that, which are listed in the following.

1. Despite Boneh’s scheme which has selective security, the proposed scheme is
adaptively secure.

2. The proposed scheme is CP-ABE which is more flexible than KP-ABE.

3. The both scenarios of hidden- and disclosed- attribute vector can be supported
by the proposed scheme. However, in Boneh’s scheme, the attribute vector can
not be kept hidden.

4. In Boneh’s scheme, the values of attributes must be in [—p, p], where p is less
than the group order ¢, for Multiply gates. But, the proposed schemes do not
put any constraint on the attribute values.

5. The arithmetic function supported by the proposed scheme is more general than
Boneh’s scheme. Our scheme supports the exponentiation gate. However, it
seems that this feature can be added to Boneh’s scheme, as well.

6. Since Boneh’s scheme is a lattice-based scheme, the computational complexity,
and the key size are larger than our scheme’s.

7. The result parameter in the proposed schemes is an arbitrary-chosen value.
But, Boneh’s scheme just works for y = 0 while not supporting a non-zero
ag in the access function. However, it seems to be modifiable to work for an
arbitrary result value.
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8. Conclusion

We proposed three variants of a CP-ABE scheme for arithmetic circuit access
functions. The proposed scheme relies on multilinear maps. We defined the new
concept of hidden-result ABE which refers to an ABE scheme for arithmetic functions
with unknown result values.

We first proposed a basic CP-ABE scheme for arithmetic functions, in which
the attribute vector and the result value are hidden to the users. For a circuit
depth k, this scheme requires a k-multilinear map and supports a number of n = k
attributes. Then, an improved hidden-result and hidden-attribute CP-ABE scheme
was proposed which works for any number of n > k attributes, conditioned that the
degree of the function is at most k. Finally, we proposed an improved hidden-result
and disclosed-attribute CP-ABE scheme for the access functions like the previous
scheme, which based on a 2k-multilinear map.

We proved that these schemes are adaptively secure under a newly defined hard-
ness assumption, called the k-Distance Decisional Diffie-Hellman problem, which is
at least as hard as the well-known k-multilinear decisional Diffie-Hellman problem.
Finally, we compared our schemes with Boneh et al.’s scheme and described the
advantages of ours.
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