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Abstract

We introduce a category of O-oriented supersingular elliptic curves
and derive properties of the associated oriented and nonoriented `-isogeny
supersingular isogeny graphs. As an application we introduce an oriented
supersingular isogeny Diffie-Hellman protocol (OSIDH), analogous to the
supersingular isogeny Diffie-Hellman (SIDH) protocol and generalizing the
commutative supersingular isogeny Diffie-Hellman (CSIDH) protocol.

1 Introduction

In this paper we introduce a category of supersingular elliptic curves oriented by
an imaginary quadratic order O, and derive properties of the associated oriented
and non-oriented supersingular `-isogeny graphs. This permits one to derive a
faithful group action on a subset of oriented supersingular curves, equipped
with a forgetful map to the set of non-oriented supersingular curves. As an
application we introduce an oriented supersingular isogeny Diffie-Hellman pro-
tocol (OSIDH), analogous to the supersingular isogeny Diffie-Hellman (SIDH)
of De Feo and Jao [18] and generalizing the commutative supersingular isogeny
Diffie-Hellman (CSIDH) of Castryck, Lange, Martindale, Panny and Renes [5],
the latter based on the idea of group actions on sets by Couveignes [9] and
Rostovtsev-Stolbunov [25]. Renewed interest in these isogeny-based protocols
is motivated by their presumed resistance to quantum attacks, and this work
both enlarges the class of isogeny-based protocols and provides a framework for
their security analysis.

We study some theoretical and practical aspects of the endomorphism ring
of a supersingular elliptic curve and their connection with isogeny graphs. The
central idea is to use an embedding of a quadratic imaginary order into the endo-
morphism ring of a supersingular elliptic curve, a maximal order in a quaternion
algebra, to introduce an orientation on the curve. This extra piece of information
permits one to impose compatible actions of the class groups of the suborders
of this quadratic order on the descending isogeny chains and therefore on the
isogeny volcano of oriented curves.

We observe that the starting vertex of the chain can be chosen to have a
special orientation (by an order of class number one) and that computations
can be performed using modular polynomials. This motivates us to introduce a
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Diffie-Hellman key exchange protocol that avoids limitations imposed by earlier
constructions.

The idea of SIDH is to fix a large prime number p of the form p = `eAA `eBB f ± 1
for a small cofactor f and to let the two parties Alice and Bob take random
walks (i.e., isogenies chains) of length eA (or eB) in the `A-isogeny graph (or the
`B-isogeny graph, respectively) on the set of supersingular j-invariants defined
over Fp2 . In order to have the two key spaces of similar size `eAA ≈ `eBB , we need
to take `eAA ≈ `eBB ≈

√
p. Since the total number of supersingular j-invariants is

around p/12, this implies that, for each party, the space of choices for the secret
key is limited to 1/

√
p of the whole set of supersingular j-invariants over Fp2 .

In other words, in choosing their secrets, Alice and Bob can go only “halfway”
around the graph from the starting vertex j0.

Recently, Castryck, Lange, Martindale, Panny and Renes proposed another
key exchange protocol based on supersingular isogeny graphs over the prime
field Fp. We fix a prime of the form p = 4`1 · . . . · `t − 1 and an elliptic curve
E/Fp defined by the equation E : y2 = x3 + ax2 + x. The peculiarity of CSIDH
is that it works with curves defined over Fp and restricts the endomorphism
rings of such curves to the commutative subring consisting of Fp-rational en-
domorphisms. Starting from this setup, the scheme is an adaptation of the
Couveignes and Rostovtsev-Stolbunov idea. Observe that the choice of looking
at curves defined over Fp, instead of Fp2 , limits the key spaces for Alice and Bob
to #C̀ (Z[

√−p]) supersingular points. For a given p, this is the same order of
magnitude, O(

√
p log(p)), as for SIDH, but the class group is transitive on this

subset.
In this paper we want to describe a new cryptographic protocol, the OSIDH,

defined over an arbitrarily large subset of oriented supersingular elliptic curves
over Fp2 , which combines features of SIDH and CSIDH, and permits one to
cover an arbitrary proportion of all isomorphism classes of supersingular elliptic
curves.

A feature shared by SIDH and CSIDH is that the isogenies are constructed
as quotients of rational torsion subgroups: the secret path of length eA in the
`A-isogeny graph corresponds to a secret cyclic subgroup 〈A〉 ⊆ E [`eA ] where
A is a rational `eAA -torsion point on E. The need for rational points imposes
limits on the choice of the prime p and, thus, of the finite field we work on. In
contrast OSIDH relies on constructions that can be carried out only with the
use of modular polynomials hence avoiding conditions on the rational torsion
subgroup.

In summary, an orientation provides a class group action on lifts of an arbi-
trarily large subset of supersingular points. Exploiting an effective subring O of
the full endomorphism ring we obtain an effective action by the class group of
this subring on the isogeny volcano (whirlpool). This approach generalizes the
class group action of CSIDH where supersingular elliptic curves are oriented
by the commutative subring Z [π] generated by Frobenius π =

√−p. To avoid
subexponential (or polynomial) time reductions, in the OSIDH protocol, as de-
tailed in Section 5, the orientation and associated class group action is hidden
in the intermediate data exchanged by Alice and Bob. This gives a protocol for
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which the best known attacks at present are fully exponential.

2 Orientations, isogeny chains, and ladders

In this section, we recall the definition of an isogeny graph and introduce the
notion of orienting supersingular elliptic curves and their isogenies by an imag-
inary quadratic field K and its orders O. Finally, we describe how to impose a
structure on an isogeny graph by means of isogeny chains and how to carry out
an effective class group action, by means of ladders.

Isogeny graphs

Given an elliptic curve E over a field k, and a finite set of primes S, we can
associate an isogeny graph Γ = ΓS(E), whose vertices are elliptic curves k̄-
isogenous to E, with fixed vertex E, and whose directed edges are isogenies of
degree ` ∈ S. The vertices are defined up to k̄-isomorphism, and the edges from
a given vertex are defined up to a k̄-isomorphism of the codomain. If S = {`},
then we call Γ an `-isogeny graph, which we write as Γ`(E).

An `-isogeny graph Γ is equiped with an action of G = Gal(k̄/k), with the
vertex [E] a fixed point, as follows. We have

E[`] = {P ∈ E(k̄) | `P = O} ∼= (Z/`Z)2.

The set of cyclic subgroups is in bijection with P(E[`]) ∼= P1(Z/`Z), which in
turn is in bijection with the set of `-isogenies from E. The G-action on E[`]
induces an action by G on the ` + 1 cyclic subgroups. This action extends to
paths without backtracking of length n, via the action on the cyclic subgroups
G of order `n in

E[`n] = {P ∈ E(k̄) | `nP = O} ∼= (Z/`nZ)2.

which are in bijection with P(E[`n]) ∼= P1(Z/`nZ). This determines a compatible
Galois action on vertices [E/G] and edges ϕ : E/Gi → E/Gi+1 where Gi ⊂
Gi+1 is of index `. The action on infinite paths from E is thus determined by
the Galois action on the projective Tate module P(T`(E)) ∼= P1(Z`). In the
same way we define the G-action on ΓS(E) derived from the G-set structure of
P(TS(E)), where

TS(E) =
∏
`∈S

T`(E).

The choice of base curve E determines a Galois action on Γ, conjugate to the
Galois action induced by a twist of E.

Thus an `-isogeny graph is (`+ 1)-regular for outgoing edges. The existence
of curves of j-invariant 0 or 123 with additional automorphisms in the graph
implies a reduced number of incoming edges at these vertices. We define an
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undirected graph Γ`(E) by identifying an isogeny ϕ : E0 → E1 with its dual
ϕ̂ : E1 → E0, and if Aut(E0) 6= {±1} or Aut(E1) 6= {±1} the orbits

Aut(E1)ϕAut(E0) and Aut(E0)ϕ̂Aut(E1)

are identified, which gives a non-bijective correspondence between edges and
dual edges.

Lemma 1. Let E be an elliptic curve over k with endomorphism ring O, and
for a prime ` 6= char(k) let Γ`(E) be its undirected `-isogeny graph.

1. If O = Z, then each component of Γ`(E) is an infinite tree.

2. If O is an order in a CM field K, then each component Γ of Γ`(E) is
infinite and either

• the prime ` is split in K and Γ has a unique cycle, or

• the prime ` is ramified or inert in K and Γ is a tree.

3. If O is an order in a quaternion algebra, then Γ`(E) is finite and con-
nected.

If E is defined over a number field, then case (1) is the generic case and
in the CM case (2), every curve admits an embedding of an order of K in its
endomorphism ring, and the Galois action is determined by CM theory (see
Shimura [27]). If E is defined over a finite field, then only case (2) (ordinary) or
case (3) (supersingular) can hold. The ordinary case gives rise to an `-isogeny
graph in bijection with the CM graph with CM field K = Q(π), where π is
the Frobenius endomorphism. In the supersingular case we have more precisely
that there are

(p− 1)

12
+

1

3

(
1−

(−3

p

))
+

1

4

(
1−

(−4

p

))
vertices. In the next section we introduce the notion of a K-orientation by
an imaginary quadratic field K, which allows us to canonically lift the finite
supersingular graph to an infinite oriented CM graph.

Orientations

Suppose now that E is a supersingular elliptic curve over a finite field k of
characteristic p, and denote by End(E) the full endomorphism ring. We assume
moreover that k contains Fp2 and E is in an isogeny class such that Endk(E) =
End(E).

We denote by End0(E) the Q-algebra End(E)⊗ZQ. In particular, End0(E)
is the unique quaternion algebra over Q ramified at p and ∞.

Let K be a quadratic imaginary field of discriminant ∆K with maximal
order OK . Then there exists an embedding ι : K → End0(E) if and only if
p is inert or ramified in OK , and there exists an order O ⊆ OK such that
ι(O) = ι(K) ∩ End(E).
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Definition 2. A K-orientation on a supersingular elliptic curve E/k is a ho-
momorphism ι : K ↪→ End0(E). An O-orientation on E is a K-orientation
such that the image of the restriction of ι to O is contained in End(E). We
write End((E, ι)) for the order End(E) ∩ ι(K) in ι(K). An O-orientation is
primitive if ι induces an isomorphism of O with End((E, ι)).

Let φ : E → F be an isogeny of degree `. A K-orientation ι : K ↪→ End0(E)
determines a K-orientation φ∗(ι) : K ↪→ End0(F ) on F , defined by

φ∗(ι)(α) =
1

`
φ ◦ ι(α) ◦ φ̂.

Conversely, given K-oriented elliptic curves (E, ιE) and (F, ιF ) we say that an
isogeny φ : E → F is K-oriented if φ∗(ιE) = ιF , i.e. if the orientation on F
is induced by φ. The restriction to K-oriented isogenies determines a category
of K-oriented elliptic curves, hence of K-oriented isomorphism classes, and a
subcategory of O-oriented elliptic curves.

If E admits a primitive O-orientation by an order O in K, φ : E → F is
an isogeny then F admits an induced primitive O′-orientation for an order O′
satisfying

Z + `O ⊆ O′ and Z + `O′ ⊆ O.
We say that an isogeny φ : E → F is an O-oriented isogeny if O = O′.

If ` is prime, as direct analogue of Proposition 4.2.23 of [19], one of the
following holds:

• O = O′ and we say that φ is horizontal,

• O ⊂ O′ with index ` and we say that φ is ascending,

• O′ ⊂ O with index ` and we say that φ is descending.

Moreover if the discriminant of O is ∆, then there are exactly `−
(

∆
`

)
descending

isogenies. If O is maximal at `, then there are
(

∆
`

)
+ 1 horizontal isogenies, and

if O is non-maximal at `, then there is exactly one ascending `-isogeny and no
horizontal isogenies.

For an oriented class (E, ι) with endomorphism ring O = End((E, ι)), we
define (E, ι) to be at the surface (or depth 0) if O is `-maximal, and to be at
depth n if the valuation at ` of [OK : O] is n. In the next section we introduce
`-isogeny chains linking oriented curves at the surface to oriented curves at
depth n.

The oriented graph ΓS(E, ι) is the graph whose vertices are K-oriented iso-
morphism classes, with fixed base vertex (E, ι), and whose edges are K-oriented
`-isogenies for ` in S.

Isogeny chains and ladders

Let E0/k be a fixed supersingular elliptic curve, equipped with an O-orientation,
and let ` 6= p be a prime.
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Definition 3. We define an `-isogeny chain of length n from E0 to E to be a
sequence of isogenies of degree `:

E0
φ0−−−−−→ E1

φ1−−−−−→ E2
φ2−−−−−→ . . .

φn−1−−−−−−−→ En = E.

We say that the `-isogeny chain is without backtracking if ker(φi+1 ◦φi) 6= Ei[`]
for each i = 0, . . . , n − 1, and say that the isogeny chain is descending (or
ascending, or horizontal) if each φi is descending (or ascending, or horizontal,
respectively).

Remark. Since the dual isogeny of φi, up to isomorphism, is the only isogeny
φi+1 satisfying ker(φi+1 ◦ φi) = Ei[`], an isogeny chain is without backtracking
if and only if the composition of two consecutive isogenies is cyclic. Moreover,
we can extend this characterization in terms of cyclicity to the entire `-isogeny
chain.

Lemma 4. The composition of the isogenies in an `-isogeny chain is cyclic if
and only if the `-isogeny chain is without backtracking.

Remark. If an isogeny φ is descending, then the unique ascending isogeny
from φ(E), up to isomorphism, is the dual isogeny φ̂, satisfying φ̂φ = [`]. As an
immediate consequence, a descending `-isogeny chain is automatically without
backtracking, and an `-isogeny chain without backtracking is descending if and
only if φ0 is descending.

Suppose that (Ei, φi) is an `-isogeny chain, with E0 equipped with an OK-
orientation ι0 : OK → End(E0). For each i, let ιi : K → End0(Ei) be the
induced K-orientation on Ei; we note Oi = End(Ei)∩ ιi(K) with O0 = OK and
∆i = discr(Oi) with ∆0 = ∆K .

In particular, if (Ei, φi) is a descending `-chain, then ιi induces an isomor-
phism

ιi : Z + `iOK −→ Oi.
Let q be a prime different from p and ` that splits in OK , let q be a fixed

prime over q. For each i we set q(i) = ιi(q) ∩ Oi, and define

Ci = Ei[q(i)] = {P ∈ Ei[q] | ψ(P ) = 0 for all ψ ∈ q(i)}.
We define Fi = Ei/Ci, and let ψi : Ei → Fi, an isogeny of degree q. By
construction, it follows that φi(Ci) = Ci+1 for all i = 0, . . . , n−1. In particular,
if (Ei, φi) is a descending `-ladder, then ιi induces an isomorphism

ιi : Z + `iOK −→ Oi.
The isogeny ψ0 : E0 → F0 = E/C0 gives the following diagram of isogenies:

E0 E1 E2 En

F0

ψ0

φ0 φ1 φ2 φn−1
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and for each i = 0, . . . , n − 1 there exists a unique φ′i : Fi → Fi+1 with kernel
ψi(ker(φi)) such that the following diagram commutes:

Ci ⊆ Ei Ei+1 ⊇ Ci+1

Fi Fi+1

φi

ψi ψi+1
φ′i

The isogenies ψi : Ei → Fi induce orientations ι′i : O′i → End(Fi). This
construction motivates the following definition.

Definition 5. An `-ladder of length n and degree q is a commutative diagram
of `-isogeny chains (Ei, φi) and (Fi, φ

′
i) of length n connected by q-isogenies

(ψi : Ei → Fi):

E0 E1 E2 En

F0 F1 F2 Fn

φ0 φ1 φ2 φn−1

φ′0 φ′1 φ′2 φ′n−1

ψ0 ψ1 ψ2 ψn

We also refer to an `-ladder of degree q as a q-isogeny of `-isogeny chains, which
we express as ψ : (Ei, φi)→ (Fi, φ

′
i).

We say that an `-ladder is ascending (or descending, or horizontal) if the
`-isogeny chain (Ei, φi) is ascending (or descending, or horizontal, respectively).
We say that the `-ladder is level if ψ0 is a horizontal q-isogeny. If the `-ladder is
descending (or ascending), then we refer to the length of the ladder as its depth
(or, respectively, as its height).

Lemma 6. An `-ladder ψ : (Ei, φi)→ (Fi, φ
′
i) of oriented elliptic curves is level

if and only if End((Ei, ιi)) is isomorphic to End((Fi, ι
′
i)) for all 0 ≤ i ≤ n. In

particular, if the `-ladder is level, then (Ei, φi) is descending (or ascending, or
horizontal) if and only if (Fi, φ

′
i) is descending (or ascending, or horizontal).

Remark. In the sequel we will assume that E0 is oriented by a maximal order
OK . In Section 3 we investigate using the effective horizontal isogenies of E0

to derive an effective class group action, and introduce a modular version of
this action in Section 4. Walking down a descending isogeny chain, each elliptic
curve will be oriented by an order of decreasing size and the final elliptic curve,
which will be our final object of study, will have an orientation by an order of
large index in OK with action by a large class group.

Since the supersingular `-isogeny graph is connected, every supersingular
elliptic curve admits an `-isogeny chain back to a curve oriented by any given
maximal order OK , so such a construction exists for any supersingular elliptic
curve.
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3 Oriented curves and class group action

Let SS(p) denote the set of supersingular elliptic curves over Fp up to isomor-
phism, and let SSO(p) be the set of O-oriented supersingular elliptic curves up
to K-isomorphism over Fp, and denote the subset of primitive O-oriented curves
by SSprO (p).

Class group action

The set SSO(p) admits a transitive group action:

C̀ (O)× SSO(p) SSO(p)

([a] , E) [a] · E = E/E[a]

where a is any representative ideal coprime to the index [OK : O] so that the
isogeny E → E/E[a] is horizontal. When restricted to primitive O-oriented
curves, we obtain the following classical result, extending the standard result
for CM elliptic curves.

Theorem 7. The class group C̀ (O) acts faithfully and transitively on the set
of O-isomorphism classes of primitive O-oriented elliptic curves.

In particular, for fixed primitive O-oriented E, we hence obtain a bijection of
sets:

C̀ (O) SSprO (p)

[a] [a] · E

For any ideal class [a] and generating set {q1, . . . , qr} of small primes, coprime
to [OK : O], we can find an identity [a] = [qe11 · . . . · qerr ], in order to compute
the action via a sequence of low-degree isogenies.

For an ordinary `-isogeny isogeny graph Γ`(E), the points defined over Fpn
are determined by the condition Z[πn] ⊆ End(E). Since the class numbers of
orders O in K are unbounded, the previous theorem implies that the oriented
supersingular graphs are infinite. While all supersingular curves and isogenies
can be defined over Fp2 , we can use the inclusion of an order O ⊂ End(E) to
restrict to a finite subgraph.

Corollary 8. Let (E, ι) be a K-oriented elliptic curve. The `-isogeny graph
Γ`(E, ι) is an infinite graph which is the union of the finite subgraphs whose
vertices are restricted to SSO(p) for an order O in K.

The subrings On = Z + `nO are a linearly ordered family which serve to
bound the depth of K-oriented curves relative to a curve at the surface with
orientation by an `-maximal order O.
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On vortices and whirlpools

Instead of considering the union of different isogeny graphs as in Couveignes [9]
and Rostovtsev-Stolbunov [25], we focus on a fixed prime ` and we think of
the other primes as acting on the `-isogeny graph. The resulting object is the
union of `-isogeny volcanoes mixing under the action of C̀ (O). This action
stabilizes the subgraph at the surface (the craters) and preserves descending
paths. This view is consistent with the construction of orientations by `-isogeny
chains (paths in the `-isogeny graph) anchored at the surface, with action of the
class group determined by ladders.

Definition 9. A vortex is defined to be an `-isogeny subgraph whose vertices are
isomorphism classes of O-oriented elliptic curves with `-maximal endomorphism
ring, equipped with the action of C̀ (O). A whirlpool is defined to be a complete
`-isogeny graph of K-oriented elliptic curves whose subgraphs of On-oriented
classes are acted on by C̀ (On).

C`(O)

Figure 1: A vortex consists of `-isogeny cycles at the surface acted on by the
class group C̀ (O) of an `-maximal order O.

Figure 2: A whirlpool is an `-isogeny graph equipped with compatible actions
on its subgraphs by C̀ (On). The depicted 4-regular graph arises from ` = 3,
and the cycle length is the order of a prime over ` in the `-maximal order.

The underlying graph of a whirlpool is composed of multiple connected com-
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ponents, with the class group acting transitively on components with the same `-
maximal order of its vortex. The existence of multiple components of `-volcanoes
is studied in [21] and [15], where the set of `-volcanoes is called an `-cordillera.
A general whirlpool can be depicted as in Figure 3, as an `-cordillera (black
lines) acted on by the class group, as represented by colored arrows.

Figure 3: An `-isogeny graph of a whirlpool may have multiple components.
The action depicts the subgraph acted on by a class group C̀ (O) of order 18, in
which ` = 3 has order six, such as for discriminants −1691, −2291, and −2747.

Whirlpool examples

We give examples of both ordinary and supersingular whirlpool structures of
`-isogeny graphs with induced class group actions.

Definition 10. Let E/F353 be a ordinary elliptic curve with 344 rational points,
and consider the subgraph of Γ2(E) of curves defined over F353. The ring Z[π]
generated by Frobenius π has index 2 in the maximal order OK ∼= Z[

√
−82]

of class number 4. The set of j-invariants of such curves at the surface is
{160, 230, 270, 298}, and the j-invariants of curves at depth 1 are {66, 182, 197, 236, 253, 264, 304, 330}.

This graph, depicted in Figure 4, consists of two 2-volcanoes, and hence
the whirlpool consists of two components permuted by the transitive action of
C̀ (Z[π]).

160 270

182 253 66 236

230 298

197 304 264 330

Figure 4: A 2-cordillera.
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Figure 5 represents the whirlpool, with blue lines indicating the 7-isogenies
and red lines corresponding to the 13-isogenies.

160 270

182 253 66 236

230 298

197 304 264 330
264

236

66

330

304

182

253

197

Figure 5: A whirlpool with two components.

Definition 11. Let E0/F71 be the supersingular elliptic curve with j(E) = 0,
oriented by the order OK = Z[ω], where ω2 + ω + 1 = 0. The unoriented
2-isogeny graph is the finite graph:

0 40

17 41

6648

24

The orietation by K = Q[ω] differentiates vertices in the descending paths from
E0, determining an infinite graphy shown here to depth 4:

17 24 66 66 40 66 41 41

24 41 48 66

17 48

40

0
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Consider the descending path along vertex j-invariants (0, 40, 17, 41, 66), and let
p7 be a prime over the split prime 7. Since ∆K = −3 and ∆1 = disc(O1) = −12
are of class number one, p7 ∼ 1, and the 7-isogenous chain is likewise of the
form (0, 40, . . . ).

At depth 2, the class number of O2 of discriminant −48 is 2, and a Minkowski
reduction of p7 is an equivalent prime p3 over 3. In particular, this prime is
nonprincipal of order 2, so the image chain extends (0, 40, 48, . . . ).

At depth 3, the class number of O3 is 4, and p7 ∼ p̄7 are primes of or-
der 2 in the class group, hence the two 7-isogenies are to the same chain
(0, 40, 48, 48, . . . ). Finally at depth 4 we differentiate the two primes p7 and p̄7 in
O4 each of order 4. The two extensions (0, 40, 48, 48, 66) and (0, 40, 48, 48, 40),
each of which corresponds to one of the primes over 7. For a choice of prime p7

we have thus determined the following ladder inducing the action of p7 on the
`-isogeny chain.

0

0

40

40

17

48

41

48

66

66

The forgetful map to unoriented isogeny graphs

In this section we address the extent of non-injectivity of the forgetful map
from oriented curves in the infinite oriented supersingular `-isogeny graphs to
the finite supersingular graph.

By Theorem 7, we have a bijection (isomorphism of sets with C̀ (O)-action):

C̀ (O) ∼= SSprO (O) ⊆ SSO(p)

determined by any choice of base point. On the other hand, for a descending
chain of imaginary quadratic orders of index `,

OK = O0 ⊃ O1 ⊃ · · · ⊃ Oi ⊃ · · ·

determined by a descending `-isogeny chain, the class numbers satisfy the ge-
ometric growth h(Oi+1) = `h(Oi) for all i ≥ 1. In particular, the inclusion
Oi+1 ⊂ Oi determines an inclusion SSOi

(p) ⊂ SSOi+1
(p) = SSOi

(p)∪SSprOi+1
(p).

Consequently we have an unbounded chain of sets

SSOK
(p) ⊂ SSO1(p) ⊂ · · · ⊂ SSOi(p) ⊂ · · ·

equipped with forgetful maps SSOi(p) → SS(p) sending the Oi-isomorphism
class [(E,Oi)] to the isomorphism class [E] determined by the j-invariant j(E).

This motivates the questions of when the map SSOi
(p) → SS(p) and its

restriction to SSprOi
(p) are injective, and when these maps are surjective. We

12



adopt the notation H(p) for the cardinality |SS(p)| of supersingular curves,
denote byXi the image of SSOi(p) in SS(p) and write Yi for the image of SSprOi

(p).

Moreover we write λi = logp(|∆i|) where ∆i = `2i∆K = disc(Oi). With this
notation Figure 6 and Figure 7 give tables of values for |Yi|, |Xi|, and λi, for
primes of 10 and 12 bits respectively, depicting the boundary line for injectivity
at λi = 1 and the critical line for surjectivity at λi = 2. We conclude this section
with a general proposition, which follows from the following algebraic lemma,
in order to justify the injectivity bound.

Lemma 12. Let α1 and α2 be elements of a maximal quaternion order in a
quaternion algebra over Q ramified at a prime p. Set ∆i = disc(Z[αi]) for i ∈
{1, 2}, and define ω to be the commutator [α1, α2] = α1α2−α2α1. Then ω satis-
fies Tr(ω) = 0, Nr(ω) = (∆1∆2 − T 2)/4 where T = 2Tr(α1α2)− Tr(α1)Tr(α2),
and Nr(ω) ≡ 0 mod p.

Proof. The equality Tr(ω) = 0 follows from the relation Tr(α1α2) = Tr(α2α1)
and linearity of the reduced trace. The expression for the reduced norm Nr(ω)
is an elementary calculation. The congruence Nr(ω) = 0 mod p holds since
the unique maximal ideal P over p in the quaternion order is the subset of
elements α with Nr(α) ≡ 0 mod p, and the quotient by P is isomorphic to
the (commutative) finite field Fp2 . Hence α1α2 ≡ α2α1 mod P which implies
ω mod P = 0, from which Nr(ω) ≡ 0 mod p holds.

Proposition 13. Let O be an imaginary quadratic order of discrminant ∆ and
p a prime which is inert in O. If |∆| < p, then the map SSO(p) → SS(p) is
injective.

Proof. If the map is not injective, there exists a supersingular elliptic curve
E/Fp, such that End(E) admits distinct embeddings ιi : O = Z[α] → End(E),
for i ∈ {1, 2}. Let αi = ιi(α) and set ω = [α1, α2]. By the previous lemma, we
have

Nr(ω) =
∆2 − T 2

4
≡ 0 mod p.

Since p is prime, and T ≡ ∆ mod 2, we have either |∆| − |T | ≡ 0 mod 2p
or |∆| + |T | ≡ 0 mod 2p. Moreover, since End(E) is an order in a definite
quaternion algebra, we have Nr(ω) > 0, hence |T | < |∆|. It follows that 2p ≤
|∆|+ |T | ≤ 2|∆|, and hence p ≤ |∆|. As a consequence, we conclude that if the
map is injective, then |∆| < p.

4 Modular isogenies

In this section we consider the way in which we effectively represent and compute
isogenies. With the view to oriented isogenies, we focus on horizontal isogenies
with kernel E[q], where E is a primitive O-oriented elliptic curve and q a prime
ideal of ι(O). In what follows we suppress ι and identify O with ι(O).
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p = 1013
i h(Oi) |Yi| |Xi| H(p) λi
1 1 1 1 85 0.3590
2 2 2 3 85 0.5593
3 4 4 7 85 0.7596
4 8 8 15 85 0.9599
5 16 16 29 85 1.1603
6 32 26 47 85 1.3606
7 64 43 66 85 1.5609
8 128 70 82 85 1.7612
9 256 79 85 85 1.9615
10 512 83 85 85 2.1618

p = 1019
i h(Oi) |Yi| |Xi| H(p) λi
1 1 1 1 86 0.3587
2 2 2 3 86 0.5588
3 4 4 7 86 0.7590
4 8 8 15 86 0.9591
5 16 15 30 86 1.1593
6 32 29 49 86 1.3594
7 64 46 69 86 1.5595
8 128 64 81 86 1.7597
9 256 83 84 86 1.9598
10 512 86 86 86 2.1600

Figure 6: Sizes of images of oriented classes mapping to supersingular curves

p = 4079
i h(Oi) |Yi| |Xi| H(p) λi
1 1 1 1 341 0.2988
2 2 2 3 341 0.4656
3 4 4 7 341 0.6323
4 8 8 15 341 0.7991
5 16 16 31 341 0.9658
6 32 31 62 341 1.1326
7 64 61 113 341 1.2993
8 128 111 196 341 1.4661
9 256 180 276 341 1.6328
10 512 258 326 341 1.7996
11 1024 318 340 341 1.9663
12 2048 340 341 341 2.1331

p = 4091
i h(Oi) |Yi| |Xi| H(p) λi
1 1 1 1 342 0.2987
2 2 2 3 342 0.4654
3 4 4 7 342 0.6321
4 8 8 15 342 0.7988
5 16 16 31 342 0.9655
6 32 30 59 342 1.1322
7 64 59 110 342 1.2989
8 128 107 182 342 1.4656
9 256 186 263 342 1.6323
10 512 266 326 342 1.7990
11 1024 314 341 342 1.9657
12 2048 339 342 342 2.1323

Figure 7: Sizes of images of oriented classes mapping to supersingular curves

Effective endomorphism rings and isogenies

We say a subring of End(E) is effective if we have explicit polynomial or rational
functions which represent its generators. The subring Z in End(E) is thus
effective. Examples of effective imaginary quadratic subrings O ⊂ End(E), are
the subring O = Z[π] generated by Frobenius, for either an ordinary elliptic
curve, or a supersingular elliptic curve defined over Fp, or an elliptic curve
obtained by CM construction for an order O of small discriminant (in absolute
value).

In the Couveignes [9] or the Rostovtsev-Stolbunov [25] constructions, or in
the CSIDH protocol [5], one works with the ring O = Z[π]. The disadvantage
is that for large finite fields, the class group of O is large and the primes q in
O have no small degree elements. For large p and small q, the smallest degree
element of a prime q of norm q is the endomorphism [q], of degree q2. The
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division polynomial ψq(x), which cuts out the torsion group E[q], is of degree
(q2 − 1)/2. Consequently factoring ψq(x) to find the kernel polynomial (see
Kohel [19, Chapter 2]) of degree (q − 1)/2 for E[q] is relatively expensive. As
a result, in the SIDH protocol [18], the ordinary protocol of De Feo, Smith,
and Kieffer [11], or the CSIDH protocol [5], the curves are chosen such that
the points of E[q] are defined over a small degree extension κ/k, particularly
[κ/k] ∈ {1, 2}, and working with rational points in E(κ).

In the OSIDH protocol outlined below, we propose the use of an effective
CM order OK of class number 1. In particular every prime q of norm q is
generated by an endomorphism of the minimal degree q. For example we may
take OK to be the Eisenstein or Gaussian integers of discriminant −3 or −4,
generated by an automorphism. The kernel polynomial of degree (q − 1)/2
can be computed directly without need for a splitting field for E[q], and the
computation of a generator isogeny is a one-time precomputation. Using an
analog of the construction of division polynomials, the computation of the kernel
polynomial requires O(q) field operations.

Push forward isogenies

The extension of an isogeny (or, as we will see in the next section, of an endo-
morphism) of E0 to an `-isogeny chain (Ei, φi) reduces to the construction of a
ladder. At each step we are given φi : Ei → Ei+1 and ψi : Ei → Fi of coprime
degrees, and need to compute

ψi+1 : Ei+1 → Fi+1 and φ′i : Fi → Fi+1.

Rather than working with elliptic curves and isogenies, we construct the oriented
graphs directly as points on a modular curve linked by modular correspondences
defined by modular polynomials.

Modular curves and isogenies

The use of modular curves for efficient computation of isogenies has an estab-
lished history (see Elkies [14]). For this purpose we represent isogeny chains and
ladders as finite sequences of points on the modular curve X = X(1) preserving
the relations given by a modular equation.

We recall that the modular curve X(1) ∼= P1 classifies elliptic curves up
to isomorphism, and the function j generates its function field. The family of
elliptic curves

E : y2 + xy = x3 − 36

(j − 1728)
x− 1

(j − 1728)

covers all isomorphism classes j 6= 0, 123 or ∞, such that the fiber over j0 ∈ k
is an elliptic curve of j-invariant j0. The curves y2 + y = x3 and y2 = x3 + x
deal with the cases j = 0 and j = 1728.
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The modular polynomial Φm(X,Y ) defines a correspondence in X(1)×X(1)
such that Φm(j(E), j(E′)) = 0 if and only if there exists a cyclic m-isogeny φ
from E to E′, possibly over some extension field. The curve in X(1) × X(1)
cut out by Φm(X,Y ) = 0 is a singular image of the modular curve X0(m)
parametrizing such pairs (E, φ).

Remark. The modular curve X(1) can be replaced by any genus 0 modular
curve X parametrizing elliptic curves with level structure. Lifting the modular
polynomials back to X of higher level (but still genus 0) has an advantage of re-
ducing the coefficient size of the corresponding modular polynomials Φm(X,Y ).

In the case of CSIDH, the authors use X = X0(4), with a modular function
a ∈ k(X0(4)) to parametrize the family of curves

E : y2 = x(x2 + ax+ 1),

together with a cyclic subgroup C ⊂ E of order 4, whose generators are cut out
by x = 1. The map X → X(1) is given by

j =
28(a2 − 3)3

(a− 2)(a+ 2)
·

The approach via modular isogenies of this section can be adapted as well to
the CSIDH protocol.

Definition 14. A modular `-isogeny chain of length n over k is a finite sequence
(j0, j1, . . . , jn) in k such that Φ`(ji, ji+1) = 0 for 0 ≤ i < n. A modular `-ladder
of length n and degree q over k is a pair of modular `-isogeny chains

(j0, j1, . . . , jn) and (j′0, j
′
1, . . . , j

′
n),

such that Φq(ji, j
′
i) = 0.

Clearly an `-isogeny chain (Ei, φi) determines the modular `-isogeny chain
(ji = j(Ei)), but the converse is equally true.

Proposition 15. If (j0, . . . , jn) is a modular `-isogeny chain over k, and E0/k
is an elliptic curve with j(E0) = j0, then there exists an `-isogeny chain (Ei, φi)
such that ji = j(Ei) for all 0 ≤ i ≤ n.

Given any modular `-isogeny chain (ji), elliptic curve E0 with j(E0) =
j0, and isogeny ψ0 : E0 → F0, it follows that we can construct an `-ladder
ψ : (Ei, φi) → (Fi, φ

′
i) and hence a modular `-isogeny ladder. In fact the `-

ladder can be efficiently constructed recursively from the modular `-isogeny
chain (j0, . . . , jn) and (j′0, . . . , j

′
n), by solving the system of equations

Φ`(j
′
i, Y ) = Φq(ji+1, Y ) = 0,

for Y = j′i+1.

Remark. The modular polynomial Φq(X,Y ) is degree q + 1 in X and Y . The
evaluation at X = j ∈ Fp2 requires O(q2) field multiplications. The subsequent
gcd requires O(`q) operations, and these operations are repeated to depth n.

16



5 OSIDH

We consider an elliptic curve E0/k (k = Fp2) with an OK-orientation by an
effective ring OK of class number 1, e.g. j = 0 or j = 123 (for which OK = Z[ζ3]
or Z[i]), small prime `, and a descending `-isogeny chain from E0 to E = En.
The OK-orientation on E0 and `-isogeny chain induces isomorphisms

ιi : Z + `iOK → Oi ⊂ End(Ei),

and we set O = On. By hypothesis on E0/k (the class number of OK is 1),
any horizontal isogeny ψ0 : E0 → F0 is, up to isomorphism F0

∼= E0, an
endomorphism.

For a small prime q, we push forward a q-endomorphism φ0 ∈ End(E0), to
a q-isogeny ψ : (Ei, φi)→ (Fi, φ

′
i).

E0

E1

E2

En

φ0

φ1

φ2

φn−1

OK

F0 = E0

ψ0 F1
φ′0

ψ1 F2

φ′1

ψ2

Fn

φ′2

φ′n−1

ψn

By sending q ⊂ OK to ψ0 : E0 → F0 = E0/E0[q] ∼= E0, and pushing forward
to ψn : En → Fn, we obtain the effective action of C̀ (O) on `-isogeny chains of
length n from E0. In other words, the action of an ideal q becomes non trivial
while pushing it down along a descending isogeny chain due to the fact that
q ∩ Oi becomes “less and less principal”.

In order to have the action of C̀ (O) cover a large portion of the supersingular
elliptic curves, we require `n ∼ p, i.e., n ∼ log`(p).

Recall. The previous estimates are based on two very important results. Ob-
serve that the number of oriented elliptic curves that we can reach after n steps
equals the class number h(On) of On = Z + `nOK . It is well-known [10, §7.D]
that:

h(Z +mOK) =
h(OK)m[
O×K : O×

] ∏
p|m

(
1−

(
∆K

p

)
1

p

)
(1)
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where [8, VI.3]

O×K =


{±1} if ∆K < −4

{±1,±i} if ∆K = −4

{±1,±ζ3,±ζ2
3} if ∆K = −3

⇒
[
O×K : O×

]
=


1 if ∆K < −4

2 if ∆K = −4

3 if ∆K = −3

On the other hand, we know that the number of supersingular elliptic curves
over Fp2 is given by the following formula [28, V.4]:

#SS(p) =
[ p

12

]
+


0 if p ≡ 1 mod 12

1 if p ≡ 5, 7 mod 12

2 if p ≡ 11 mod 12

Therefore, in our case

h(`nOK) =
1 · `n
2 or 3

(
1−

(
∆K

`

)
1

`

)
=
[ p

12

]
+ ε =⇒ p ∼ `n

To realise the class group action, it suffices to replace the above `-ladder
with its modular `-ladder.

j0

j1

j2

jn

`

`

`

`

OK

j′0

q j′1
`

q
`

q

j′n

`

`

q


Φ`(j1, j2) = 0

Φ`(j
′
1, Y ) = 0

Φq(j2, Y ) = 0

At the first index for which j′i = j(Ei/Ei[qi]) is different from j′′i = j(Ei/Ei[q̄i]),
that is, [qi] 6= [q̄i] in C̀ (Oi), we can solve iteratively for j′i+1 from j′i and ji+1

using the equations:
Φ`(j

′
i, Y ) = Φq(ji+1, Y ) = 0.

The action of primes q through C̀ (O) can be precomputed by its action on
these initial segments which permits us to separate the action of q and q̄, hence
assures a unique solution to the above system.
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E0 E0
E0

E′′1 E′1
E1

qq

q̄

q2

Thus, E′i 6= E′′i if and only if q2 ∩Oi is not principal and the probability that a
random ideal in Oi is principal is 1/h(Oi). In fact, we can do better; we write
OK = Z[ω] and we observe that if q2 was principal, then

q2 = N(q2) = N(a+ b`iω)

since it would be generated by an element of Oi = Z + `iOK . Now

N(a+ b`i) = a2 ± abt`i + b2s`2i where ω2 + tω + s = 0

Thus, as soon as `2i > q2 we are guaranteed that q2 is not principal.

5.1 A first naive protocol

We now present the OSIDH cryptographic protocol based on this construction.
We first describe a simplified version as intermediate step. The reason for doing
that is twofold. On one hand it permits us to observe how the notions introduced
so far lead to a cryptographic protocol, and on the other hand it highlights the
critical security considerations and identifies the computationally hard problems
on which the security is based.

As described at the beginning of the section, we fix a maximal order OK
in a quadratic imaginary field K of small discriminant ∆K and a large prime

p such that
(

∆K

p

)
6= 1. Further, the two parties agree on an elliptic curve E0

with effective maximal order OK embedded in the endomorphism ring and a
descending `-isogeny chain:

E0 −→ E1 −→ E2 −→ · · · −→ En.

Each constructs a power smooth horizontal endomorphism ψ of E0 as the prod-
uct of generators of small principal ideals in OK . A power smooth isogeny, for
which the prime divisors and exponents of its degree are bounded, ensures that
ψ can be efficiently extended to a ladder.
Remark. In practice, we will fix OK to be either the Eisenstein integers Z[ζ3]
or the Gaussian integers Z[ζ4](= Z[i]). Since the ladder is descending, we have
that End((Ei, ιi)) ∼= Z + `iOK for all i = 0, . . . , n.

Alice privately chooses a horizontal power smooth endomorphism ψA = ψ0 :
E0 → F0 = E0, and pushes it forward to an `-ladder of length n:
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E0 E1 E2 En

F0 F1 F2 Fn

φ0 φ1 φ2 φn−1

φ′0 φ′1 φ′2 φ′n−1

ψA

By Lemma 6, this `-ladder is level, hence End((Ei, ιi)) = End((Fi, ι
′
i)).

The `-isogeny chain (Fi) is sent to Bob, who chooses a horizontal smooth
endomorphism ψB , and sends the resulting `-isogeny chain (Gi) to Alice. Each
applies (and, eventually, push forward) the private endomorphism to obtain
(Hi) = ψB · (Fi) = ψA · (Gi), and H = Hn is the shared secret.

In the following picture the blue arrows correspond to the orientation chosen
throughout by Alice while the red ones represent the choice made by Bob.

E0

F0

G0

H0

E1

F1

G1

H1

E2

F2

G2

H2

En

Fn

Gn

Hn

PUBLIC DATA: A descending `-isogeny chain E0 → E1 → · · · → En
ALICE BOB

Choose a smooth
endomorphism of
E0 in OK

E0

F0

E0

G0

Push it forward to
depth n

F0 → F1 → · · · → Fn︸ ︷︷ ︸
ψA

G0 → G1 → · · · → Gn︸ ︷︷ ︸
ψB

Exchange data
(Gi) (Fi)

Compute shared
secret

Compute ψA · (Gi) Compute ψB · (Fi)
In the end, Alice and Bob share a new chain E0 → H1 → · · · → Hn

This naive protocol reveals too much information and is susceptible to attack
by computing the endomorphism rings of the end curves End(En), End(Fn),
and End(Gn). In general, the problem of computing an isogeny between two
supersingular elliptic curves E and F knowing End(E) is broadly equivalent
to the task of computing End(F ) [17, 13]. Kohel’s algorithm [19], and the
refinement of Galbraith [16], compute several paths in the isogeny graph to find
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isogenies F → F . Thus, as noted in [17], computing End(F ) can be reduced to
finding an endomorphism φ : F → F that is not in Z[π].
Remark. Observe that in SIDH and CSIDH the endomorphism ring of the
starting elliptic curve is known since the shared initial curve is chosen to have
special form. In OSIDH the situation changes: we need to find an isogeny
starting from En, and not the curve E0 for which we have an explicit description
of the endomorphism ring. However, knowing End(E0), we can deduce at each
step

Z + `End(Ei) ∼= Z + φiEnd(Ei)φ̂i ⊂ End(Ei+1)

and thus we obtain the inclusion Z + `nEnd(E0) ↪→ End(En).
Notice that, in general, knowing the existence of a copy of an imaginary

quadratic order inside the maximal order of a quaternion algebra does not guar-
antee the knowledge of the embedding as there might be many [12, II.5]. In this
case, from the knowledge of a subring Z + `End(Ei) of finite index `3 we can
reconstruct End(Ei+1) step-by-step from the `-isogeny chain E0 → E1 → . . .→
En, and hence compute End(En).

In the naive protocol we also share the full isogeny chain (Fi) (or their
j-invariant sequence), which allows an adversary to deduce the oriented endo-
morphism ring

Z + `nOK ↪→ End(Fn)

of the terminal elliptic curve F = Fn. This gives enough information to deduce
Hom(E,F ) and construct a representative smooth ideal in C̀ (O) sending E to
F .

We observe that there is another approach to this problem which uses only
properties of the ideal class group. Suppose we have a K-descending `-isogeny
chain E0 −→ E1 −→ . . . −→ En with

End(E0) ) OK = O0 ⊃ O1 ⊃ . . . ⊃ On ' Z + `nOK
This induces a sequence at the level of class groups

C̀ (On) · · · C̀ (Oi) · · · C̀ (OK)

' ' '

(OK/`
nOK)×

O×
K(Z/`nZ)×

· · · (OK/`
iOK)

×

O×
K(Z/`iZ)×

· · · {1}

In particular, there exists a surjection

C̀ (Oi+1) '
(
OK/`i+1OK

)×
O×K (Z/`i+1Z)

× −−−−→→
(
OK/`iOK

)×
O×K (Z/`iZ)

× ' C̀ (Oi)

whose kernel is easily described. First, the map ψ : C̀ (O1)→ C̀ (OK) has kernel
F×`2/F

×
` of order `+ 1 if ` is inert(

F×` × F×`
)
/F×` of order `− 1 if ` splits

(F` [ξ])
×
/F×` of order ` if ` is ramified
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where ξ2 = 0 (see [10, §7.D] and [22, §12]). Thereafter, for each i > 1, the
surjection C̀ (Oi+1) → C̀ (Oi) has cyclic kernel of order ` by virtue of the class
number formula (1), and hence we have a short exact sequence

1→ Z/`Z→ C̀ (Oi+1)→ C̀ (Oi)→ 1

Thus if we have already constructed some representative for ψA modulo `iOK ,
we can lift it to find ψA mod `i+1OK from ` possible preimages. For each
candidate lift ψA mod `i+1OK , we search for an smooth representative

ψA ≡ ψe11 ψ
e2
2 · . . . · ψett mod `i+1OK

with deg(ψj) = qj small. The candidate smooth lift can be applied to Ei+1

and the correct lift is that which sends Ei+1 to Fi+1 in the `-isogeny chain (see
Figure 8). This yields an algorithm involving multiple instances of the discrete
logarithm problem in a group of order ` as in Pohlig-Hellman algorithm [23] and
in the generalization of Teske [29].

ψA

m
o
d

`O
K

ψ A
m
o
d
`2
O
K

ψ
A

m
o
d
`3
O
K

ψ
A

m
o
d
`4
O
K

ψ
A

m
o
d
`5
O
K

ψ
A
m
o
d
`n
O K

E0

E1

E2
E3

E4

E5

En−1

En

F1
F2

F3 F4

F5

Fn−1
Fn

Figure 8: Construction of Alice’s secret key

In conclusion, this näıve protocol is insecure because two parties share the
knowledge of the entire chains (Fi) and (Gi). The question becomes: how can
we avoid sharing the `-isogeny chains while still giving the other party enough
information to carry out their isogeny walk?

5.2 The OSIDH protocol

We now detail how to send enough public data to compute the isogenies ψA and
ψB on G = Gn and F = Fn, respectively, without revealing the `-isogeny chains
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(Fi) and (Gi). The setup remains the same with a public choice of OK-oriented
elliptic curve E0 and `-isogeny chain

E0 → E1 → · · · → En.

Moreover, a set of primes q1, . . . , qt (above q1, . . . , qt) splitting in OK is fixed.
The first step consists of choosing the secret keys; these are represented by

a sequence of integers (e1, . . . , et) such that |ei| ≤ r. The bound r is taken so
that the number (2r + 1)t of curves that can be reached is sufficiently large.
This choice of integers enables Alice to compute a new elliptic curve

Fn =
En

En
[
qe11 · · · qett

]
by means of constructing the following commutative diagram

E0

E1

En

E0

E0[q1]

=

E0

F
(1)
n

E0

E0[qe1
1 ]

=

E0

F
(e1)
n

E0

E0[qe1
1 q1

2]

=

E0

F
(e1,1)
n

E0

E0[qe1
1 q

e2
2 ]

=

E0

F
(e1,e2)
n

E0

E0[qe1
1 ...q

et-1
t−1 ]

=

E0

F
(e1,...,et-1)
n

E0

E0[qe1
1 ...q

et
t ]

=

E0

F0

F1

Fn

F
(e1,...,et)
n

Remark. Observe that this is just a union of qi-ladders.
At this point the idea is to exchange curves Fn and Gn and to apply the same

process again starting from the elliptic curve received from the other party. Un-
fortunately, this is not enough to get to the same final elliptic curve. Once Alice
receives the unoriented curve Gn computed by Bob she also needs additional
information for each prime qi:

Bob’s curve

Gn

Horizontal pi-isogeny
with kernel Gn[q̄i]

Horizontal pi-isogeny
with kernel Gn[qi]

but she has no information as to which directions — out of qi+1 total qi-isogenies
— to take as qi and q̄i. For this reason, once that they have constructed their
elliptic curves Fn and Gn, they precompute, for each prime qi, the qi-isogeny
chains coming from q̄ji (denoted by the class q−ji ) and qji :

F
(−r)
n,i ← · · · ← F

(−1)
n,i ← Fn → F

(1)
n,i → · · · → F

(r−1)
n,i → F

(r)
n,i
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and
G

(−r)
n,i ← · · · ← G

(−1)
n,i ← Gn → G

(1)
n,i → · · · → G

(r−1)
n,i → G

(r)
n,i

Now Alice obtains from Bob the curve Gn and, for each i, the horizontal qi-
isogeny chains determined by the isogenies with kernels Gn[qji ]. With this in-
formation Alice can take e1 steps in the q1-isogeny chain and push forward all
the qi-isogeny chains for i > 1.
Remark. We recall that pushing forward means constructing a ladder which
transmits all the information about the commutative action of qeii in the class
group.

Gn q1

q2
q3

q4

G
(−1)
n,1 G

(1)
n,1

G
(1)
n,2

G
(−1)
n,2

G
(2)
n,1 G

(r)
n,1G

(−2)
n,1G

(e1)
n,1G

(−r)
n,1

G
(r)
n,2

G
(−r)
n,2

G
(e1,1)
n,2

G
(e1,e2)
n,2 G

(e2)
n,2

Alice repeats the process for all the qi’s every time pushing forward the isogenies
for the primes with index strictly bigger than i. Finally, she obtains a new elliptic
curve

Hn =
En

En
[
qe1+d1

1 · · · qet+dtt

]
Bob follows the same process with the public data received from Alice, in order
to compute the same curve Hn. Recall that, in the naive protocol, Alice and
Bob compute the group action on the full `-isogeny chains:
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E0 E1 E2 En E0 G1 G2 Gn

E0 F1 F2 Fn E0 H1 H2 Hn

A
lice

A
lic e

Bob

Bob

In the refined OSIDH protocol, Alice and Bob share sufficient information to
determine the curve Hn without knowledge of the other party’s `-isogeny chain
(Gi) and (Fi), nor the full `-isogeny chain (Hi) from the base curve E0.

PUBLIC DATA: A descending `-isogeny chain E0 → E1 → · · · → En
and a set of splitting primes q1, . . . , qt ⊆ O = End(En) ∩K ↪→ OK

ALICE BOB
Choose integers in
an interval [−r, r] (e1, . . . , et) (d1, . . . , dt)

Construct an
isogenous curve Fn =

En

En
[
qe11 · · · qett

] Gn =
En

En
[
qd11 · · · qdtt

]
Precompute all
directions ∀ i Fn → F

(1)
n,i → · · · → F

(r)
n,i Gn → G

(1)
n,i → · · · → G

(r)
n,i

... and their
conjugates F

(−r)
n,i ← · · · ← F

(−1)
n,i ← Fn︸ ︷︷ ︸ G

(−r)
n,i ← · · · ← G

(−1)
n,i ← Gn︸ ︷︷ ︸

Exchange data
Gn+directions Fn+directions

Compute shared
data

Takes ei steps in
qi-isogeny chain & push

forward information
for all j > i.

Takes di steps in
qi-isogeny chain & push

forward information
for all j > i.

In the end, Alice and Bob share the same elliptic curve

Hn =
Fn

Fn
[
qd11 · · · qdtt

] =
Gn

Gn
[
qe11 · · · qett

] =
En

En
[
qe1+d1

1 · · · qet+dtt

] ·
Remark. We can read this scheme using the terminology of section 3.

After the choice of the secret key, we observe a vortex: Alice (respectively
Bob) acts on an isogeny crater (that in the case of OK = Z [ζ3] or Z [i] consists
of a single points) with the primes qe11 · . . . · qett (respectively qd11 · . . . · qdtt ).

This action is eventually transmitted along the `-isogeny chain and we get a
whirlpool. We can think of the isogeny volcano as rotating under the action of
the secret keys and the initial `-isogeny path transforming into the two secret
isogeny chains.
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Figure 9: Graphic representation of OSIDH

6 Security considerations

In order to ensure security of the system, we have seen that the data giving
the orientation must remain hidden. A second consideration is the proportion
of curves attained by the action of the class group C̀ (O), and by the private
walks ψA and ψB of Alice and Bob in that class group. The size of the orbit
of C̀ (O) is controlled by the chain length n, and the number of curves attained
by the private walks is further limited by the prime power data, up to exponent
bounds, which we allow ourselves to transmit.
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Chain length

Suppose that (Ei) is an isogeny chain of length n, from a supersingular elliptic
curve E0 oriented by OK of class number one, and consider

Hom(E0, En) = φOK + ψOK .

As a quadratic module with respect to the degree map, its determinant is p2.
If the length n is of sufficient length such that En represents a general curve in
SS(p), then a set of reduced basis elements φ and ψ satisfies

deg(φ) ≈ deg(ψ) ≈ √p.

Now suppose that φ : E0 → En is the isogeny giving the `-isogeny chain.
If deg(φ) = `n is less than

√
p, then φOK is a submodule generated by short

isogenies, and En is special. We conclude that we must choose n to be at
least log`(p)/2 in order to avoid an attack which seeks to determine φOK as a
distinguished submodule of low degree isogenies.

We extend this argument to consider the logarithmic proportion λ of super-
singular elliptic curves we can reach. In order to cover pλ supersingular curves,
out of |SS(p)| = p/12 + εp curves, deg(φ) must be such that

|C̀ (O)| =
∣∣∣∣ (OK/`nOK)

∗

O∗K(Z/`nZ)∗

∣∣∣∣ ≈ `n = deg(φ) ≈ pλ.

In particular, choosing λ = 1, we find that n = log`(p) is the critical length for
reaching all supersingular curves.

Degree of private walks

Suppose now that E = En is a generic supersingular curve and F another.
Without an OK-module structure, we have a basis {ψ1, ψ2, ψ3, ψ4} such that

Hom(E,F ) = Zψ1 + Zψ2 + Zψ3 + Zψ4.

Assuming that E and F are generic relative to one another, a reduced basis
satisfies deg(ψi) ≈ √p, as above. Thus the private walk ψA should satisfy

logp(deg(ψA)) ≥ 1

2

in order that ZψA is not a distinguished submodule of Hom(E,F ). This critical
distance is the maximal that can be attained by the SIDH protocol.

As above, another measure of the generality of ψA is the number of curves
that can be reached by different choices of the isogeny ψA. For a fixed degree
m, the number of curves which can be attained is

|P(E[m])| ∼= |P1(Z/mZ)| ≈ m.
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For the SIDH protocol, on has `nA

A ≈ `nB

B ≈ √p, and only
√
p curves out of p/12

can be reached.
In the CSIDH or OSIDH protocols, the degree of the isogeny is not fixed.

The total number of isogenies of any degree d up to m is

m∑
d=1

|P(E[d])| ≈ m2,

but the choice of ψA is restricted to a subset of O-oriented isogenies in C̀ (O).
Such isogenies are restricted to a class proportional to m. Specifically, in the
OSIDH construction, if we let Sm ⊂ OK be the set of endomorphisms of degree
up to m, and consider the map

Sm ⊂ OK −→
(OK/`nOK)∗

O∗K(Z/`nZ)∗
∼= C̀ (O).

Since |Sm| ≈ m, to cover a subset of pλ classes, we need logp(deg(ψA)) ≥ λ.

Private walk exponents

In practice, rather than bounding the degree, for efficient evaluation one fixes a
subset of small split primes, and the space of exponent vectors is bounded. The
instantiation CSIDH-512 (see [5]) uses a prime of 512 bits such that for each
of 74 primes one has a choice of 11 exponents in [−5, 5]. This gives 256 bits of
freedom which is of the order of magnitude to cover h(−p) ≈ √p classes (up to
logarithmic factors). In this instance the class number h(−p) was computed [2]
and found to be 252 bits.

For the general OSIDH construction, we choose exponent vectors (e1, . . . , et)
in the space I1 × · · · × It ⊂ Zt, where Ij = [−rj , rj ], defining ψA with kernel

ker(ψA) = E[qe11 · · · qett ].

We thus express the map to SS(p) as the composite of the map of exponent
vectors to the class group and the image of C̀ (O):

t∏
j=1

Ij −→ C̀ (O) −→ SS(p).

In order to avoid revealing any cycles, we want the former map to be effectively
injective — either injective or computationally difficult to find a nontrivial ele-
ment of the kernel in

(I1 × · · · × It) ∩ ker(Zt → C̀ (O)).

In order to cover as many classes as possible, the latter should be nearly surjec-
tive. Supposing that the former map is injective with image of size pλ in SS(O),
this gives pλ <

∏t
j=1(2rj + 1) < |C̀ (O)| ≈ `n. For fixed r = rj , this gives

n > t log`(2r + 1) > λ log`(p).
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Setting λ = 1, ` = 2 and log`(p) = 256, the parameters t = 74 and r = 5 give
critical values as in CSIDH-512, with group action mapping to the full set of
supersingular points SS(p).

7 Conclusion

By imposing the data of an orientation by an imaginary quadratic ring O, we
obtain an augmented category of supersingular curves on which the class group
C̀ (O) acts faithfully and transitively. This idea is already implicit in the CSIDH
protocol, in which supersingular curves over Fp are oriented by the Frobenius
subring Z[π] ∼= Z[

√−p]. In contrast we consider an elliptic curve E0 oriented by
a CM order OK of class number one. To obtain a nontrivial group action, we
consider descending `-isogeny chains in the `-volcano, on which the class group of
an order O of large index `n in OK acts. The map from an `-isogeny chain to its
terminal node forgets the structure of the orientation, giving rise to a generic
curve in the supersingular isogeny graph. Within this general framework we
define a new oriented supersingular isogeny Diffie-Hellman (OSIDH) protocol,
which has fewer restrictions on the proportion of supersingular curves covered
and on the torsion group structure of the underlying curves. Moreover, the
group action can be carried out effectively solely on the sequences of modular
points (such as j-invariants) on a modular curve, thereby avoiding expensive
isogeny computations, and is further amenable to speedup by precomputations
of endomorphisms on the base curve E0.
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[3] A. Bostan, F. Morain, B. Salvy and É. Schost. Fast algorithms for computing
isogenies between elliptic curves, In Mathematics of Computation 77 (2008),
1755–1778.
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algorithm to obtain cryptographically good elliptic curves, In ACSW Fron-
tiers 2007, Conferences in Research and Practice in Information Technology
68 (2007), 127–131.

[22] J. Neukirch. Algebraische Zahlentheorie, In Masterclass, Springer Berlin
Heidelberg, 1992.

[23] S.C. Pohlig, M.E. Hellman. An improved algorithm for computing loga-
rithms over GF(p) and its cryptographic significance, In IEEE-Transactions
on Information Theory 24 (1978), 106–110.

[24] O. Regev. A subexponential time algorithm for the dihedral hidden
subgroup problem with polynomial space, 2004. http://arxiv.org/abs/
quant-ph/0406151.

[25] A. Rostovtsev and A. Stolbunov. Public-key cryptosystem based on isoge-
nies, In IACR Cryptology ePrint Archive 2006/145 (2006) https://eprint.
iacr.org/2006/145.

[26] R. Schoof. Quadratic fields and factorization, In Computation Methods in
Number Theory, Math. Centrum Tract 154 (1982), 235–286.

[27] G. Shimura. Abelian Varieties with Complex Multiplication and Modular
Functions, Princeton Mathematical Series 46, 1998.

[28] J.H. Silverman. The Arithmetic of Elliptic Curves, Springer-Verlag, 1986.

[29] E. Teske. The Pohlig-Hellman method generalized for group structure com-
putation, In Journal of symbolic computation 11 (1999), 1–14.

31


