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      Abstract. The intersection of Non-commutative   and  Multivariate cryptography 

contains studies of  cryptographic applications of subsemigroups   and subgroups of 

affine Cremona semigroups  defined over finite commutative ring K with the unit. We 

consider special subsemigroups  (platforms) in  a semigroup of all endomorphisms of 

K[x1, x2, …, xn].  

      Efficiently computed homomorphisms between such platforms can be used in 

Post Quantum key exchange protocols  when correspondents elaborate common trans-

formation of (K*)n.    The security of these schemes is based on a complexity of de-

composition problem for an element of a semigroup into a product of given genera-

tors.  

   We suggest three such protocols  (with  a group and with two semigroups as plat-

forms)  for their usage with multivariate digital signatures systems. The usage of pro-

tocols  allows to convert public maps  of  these systems into private mode, i.e. one 

correspondent uses the collision map for safe transfer of selected multivariate rule to 

his/her partner. 

  The ‘’ privatisation’’ of former publicly  given map allows the usage of digital sig-

nature system for which some of cryptanalytic instruments were found ( estimation of 

different attacks on rainbow oil and vinegar system,  cryptanalytic studies LUOV) 

with the essentially smaller size of hashed messages. Transition of basic multivariate 

map to safe El Gamal type mode does not allow the usage of cryptanalytic algorithms 

for already broken Imai - Matsumoto cryptosystem or Original Oil and Vinegar signa-

ture schemes proposed by J.Patarin. 

     So even broken digital signatures schemes can be used in the combination with 

protocol execution during some restricted ‘’trust interval’’ of polynomial size. 

   Minimal  trust interval can be chosen as  a dimension n of the space of hashed mes-

sages, i. e.  transported safely multivariate map has to be used at most n times. Before 

the end of this interval correspondents have to start the  session of multivariate proto-

col with modified multivariate map. 

The security of such algorithms rests not on properties of quadratic multivariate maps 

but on the security of the protocol for the map delivery and corresponding NP hard 

problem. 

  Keywords: Noncommutative Cryptography, Multivariate Cryptography, key ex-

change protocols, semigroups of transformations, decomposition problem, multivari-

ate digital signature.  

1. On Post Quantum, Multivariate and Noncommutative Crytog-

raphy.  
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            Post Quantum Cryptography (PQC) is an answer to a threat coming   

from a full-scale quantum computer able to execute Shor’s algorithm. With 

this algorithm implemented  on a quantum computer, currently used public 

key schemes, such as RSA  and elliptic curve cryptosystems, are no longer 

secure. The U.S. NIST made a step toward mitigating the risk of quantum 

attacks by announcing the PQC standardisation process [1] for new public key 

algorithm. In March 2019 NIST published a list of candidates qualified to the 

second round of the standardisation process. Few public key candidates are 

implemented, like candidate called Round 5 (see [2]) or classic Mc Eliece 

algorithm (see [3]). 

     Current candidates are developed within following directions of PQC: 

lattice based systems, code based cryptosystems, multivariate cryptography 

(see [4] and further references), hash based Cryptography, studies of isogenies 

for  superelliptic curves. There is the following alternative approach to public 

key cryptography. Instead of public encryption rule correspondents can use 

protocol for elaboration some common information which allows to 

define encryption rule for one user and decryption instrument for his/her part-

ner. We refer to such algorithms as cryptosystem of El Gamal type. Recall 

that El Gamal proposed such cryptosystem based on classical Diffie-Hellman 

algorithm over multiplicative group F*p.  

     In this publication we continue to develop  new cryptosystems within  al-

ternative approach ([5], [6], [7], [8], [9])  to multivariate public key cryptog-

raphy  based on the idea of  modified Diffie - Hellman type protocols in terms 

of Noncommutative cryptography  for subsemigroups of endomorphisms of 

K[x1, x2,…,xn]. Security of these algorithms rests on the complexity of word 

problem to decompose given multivariate map into generators of affine Cre-

mona semigroup End(K[x1, x2,…,xn]) (see [10] for the first application of 

word problem in the case of group).  Thus we are working in the area of inter-

section of Multivariate and Non-commutative cryptographies.  

     Recall that  Multivariate Cryptography (see [4]) uses polynomial  maps of 

affine space K n defined over a finite commutative ring K into itself as encryp-

tion tools. It exploits the complexity of finding a solution of a system of non-

linear equations from many variables. Multivariate cryptography uses as en-

cryption tools  nonlinear polynomial transformations of kind x1→f1(x1, 

x2,…,xn), x2→f2(x1, x2,…,xn), … , xn→fn(x1, x2,…,xn) transforming affine space 

Kn, where  fi ϵ K[x1, x2,…,xn], i=1,2,…,n are multivariate polynomials usually 

given in a standard form, i. e. via a list of monomials in a chosen order (non-

linear endomorphisms of K[x1, x2,…,xn].  

    Non-commutative cryptography is an active  area of cryptology where the 

cryptographic primitives and systems are based on algebraic structures like 

groups, semigroups and noncommutative rings (see [11]-[25]). It is important 

that this direction is well supported by Cryptanalytic research (see [26]-[29])  

Semigroup based cryptography consists of general cryptographical schemes 
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defined in terms of wide classes of semigroups and their implementations for 

chosen semigroup  families (so called platform semigroups). 

       Papers [5] , [6], [7], [8] and [9] contain some modifications of Diffie-

Hellman protocol when G is given as subgroup of affine Cremona semigroup 

S(Kn) over finite commutative ring K of all polynomial transformations. These 

papers use the  assumption that each element is given in its standard form of 

Multivariate Cryptography. To use semigroup operation one has to compute 

the composition of transformations. This was an attempt to combine methods 

of Non Commutative Cryptography and Multivariate Cryptography. 

     Paper [5] , [6] suggests some usage of homomorphisms of subsemigroups 

of affine Cremona groups for protocols and cryptosystems which are not gen-

eralisations of Diffie-Hellman algorithm and its El Gamal type modifications. 

Some examples are given there. The implementations of these schemes with 

evaluation of densities of involved polynomial transformations are described 

in [7], , [8] and [9] . Elements of graph based stable  subgroups used in [7] can 

serve as encryption tools of stream ciphers (see [30] and further references).  

      2. On stable subgroups of formal Cremona group and privatisation of Mul-

tivariate Public Keys based on maps of bounded degree.  

          Let K[x1, x2,… , xn] be commutive ring of all polynomials in variables 

x1, x2, … , xn  defined over a commutive ring K. Each endomorphism F ϵ 

En(K) is uniquely determined by its values on formal generators x1, i=1,2,…, 

n.   Symbol  End(K[x1, x2,… , xn] )=En(K) stands for semigroup of all endo-

morphisms of  K[x1, x2,… , xn]. So we can identify F with the formal rule  

x1→f1(x1, x2,… , xn),   x2→f2(x1, x2,… , xn), …, xn→fn (x1, x2,… , xn)  where fiϵ 

K[x1, x2,… , xn].   Element F naturally induces the transformation ∆(F) of af-

fine space Kn given by the following rule ∆(F):(α1, α2,…, αn)→( f1 (α1,  α2,…, 

αn), f2(α1, α2,…, αn),…, fn(α1, α2,…, αn)) for each (α1, α2,…, αn)ϵ Kn. Luigi 

Cremona [31]   introduced  ∆(En(K))= CS(Kn) which is currently called affine 

Cremona semigroup. A group of all invertible transformations of  CS(Kn) with 

an inverse from CS(Kn) is known as  affine Cremona group  CG(Kn) (shortly 

Cremona group, see for instance [32], [33]).          

      We refer to infinite En(K) as formal affine Cremona semigroup.    Density 

of the map F is the total number of monomial terms in all fi. 

   It is a known fact that typically the degree of iteration of the "random" mul-

tivariate polynomial transformation grows exponentially. This is due to the 

fact that the composition of two "'random" elements of CS(Kn) of degree d in 

majority cases will have a degree d2 . 

  In particular, this can be seen in the one-dimensional case (i.e. for n = 1) the 

exponential growth of the degree of iterations of a nonlinear polynomial is 

unavoidable. However, it turns out that for n > 1 the degree of some special 

transformations may grow significantly slower. There are discovered exam-

ples of transformations with a degree that may grow polynomially (see [34], 
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[35]) or be even not greater than some established constant d .  Last fact 

means the existence of stable subsemigroups/ subgroups  of formal Cremona 

groups of degree d, i.e.  subsemigroups of endomorphisms of degree at least 

d. First example of families of stable groups were introduced in [36], [37] in 

terms of well known extremal graphs D(n, q) and their analogs D(n,K) defined 

over  arbitrary commutative ring K. However the importance of their stability 

were realised later [38], [39]. The formal prove of the fact  that these groups 

are stable of degree 3 is presented in [40].  Obviously the semigroup of trans-

formations of degree 1 and general affine group of bijective transformations 

of degree 1 are examples of stable subsemigroups and subgroups of En(K) of 

degree 1. Currently  nonlinear families of stable semigroups and groups are 

known for each parameter d ≥ 2, they have various  applications to Cryptog-

raphy (see [8], [9], [41] and further references ). All these results are obtained 

via studies of "symbolic walks'' on algebraic graphs, i.e. graphs defined by a 

system of algebraic equations.The following statement follows from the 

results of [8]. 

    Theorem 1. For each natural number n>1 and each commutative ring K  

and  d ≥ 2  there is a family of  non-commutative stable subgroups 

 Gn(K) < En(K)  of degree d  and stable semigroups Sn(K)<En(K)  of degree d 

such that    Gn(K) <Sn(K).  

          Let iZ= { ig1 ,  
ig2, … ,  igt} be a sequence of sets of elements from 

En(i)(K), where n(i)>1 is an increasing  sequence of positive integers.  We say 

that  iZ is  a noncommutative  system   of  stable Cremona generators of de-

gree d and  rank t if 

(1) Δ( igk
igj) ≠  Δ( igj

igk)  for arbitrary k ≠ j. 

(2)  iSZ= <ig1,
 ig2,  … , igt> are stable semigroups of  degree d. 

Proposition 1. For each commutative ring K, sequence n(i)=i ,i≥2 and each 

value of parameters  d and t there is a noncommutative  system   of  stable 

Cremona  generators  of degree d and  rank t.  

             We say that  iZ is a regular  noncommutative system of stable Cremo-

na generators if n(i)=i for each value of i.  

      Let   n(i), m(i),  m(i) ≤ n(i) be two increasing sequences  of natural num-

bers and iZ,  iZ1 are corresponding  stable systems of growing periods of de-

grees d and d' (d' ≤d) and rank t, t>1.   

      We say that iZ' ={ ig'1,
 ig'2, … , ig't}  is a quotient of stable Cremona system 

iZ if the rule φ(igj)=
 ig'j, j=1, 2,…, t defines computationally tame homomor-

phism of semigroup iSZ onto  iSZ1 , i. e. homomorphism computable in time 

O(ni
α) for some positive constant α. We refer to iZ as stable cover of noncom-

mutative system of stable Cremona  generators. 

      As it follows from results [41] the statement below holds.  

THEOREM 2. For each finite commutative ring K  and natural  
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numbers d,  d>0 and t, t ≥ 2 there is an increasing sequence n(i)  of natural 

numbers and noncommutative  system of stable Cremona generators  iZ ={ ig 

1, 
ig2, … ,  ig t} of  degree d and rank t which has a regular quotient  iZ'. 

    We say that stable Cremona system of degree d of elements has  enveloping 

family of stable subsemigroup EZi(K) of degree d  if E(i)(K)>EZi(K)>SZi(K). 

2. Multivariate tahoma protocol for stable Cremona generators and 

its usage for Multivariate Encryption Algorithms.  

      Word tahoma stands here for the abbreviation of ‘’tame homomorphism’’. 

Noteworhy that Tahoma is a name of mountain in North America and popular 

shrift in text processing.   

     Let us assume that Alice selects a  noncommutative  system Z(K) of stable 

Cremona generators  of degree d and rank t with quotient Z'(K) such that 

there is  an  enveloping  family EZ(K) of   Z(K) and enveloping family EZ1(K) 

of  Z'(K). 

  Alice chooses parameter i  and bijective affine transformation T , deg(T)=1 

and T',  deg(T')=1 acting on (K ) 
n(i) and (K ) 

m(i). She selects elements E and 1E 

from EZn(i)(K)   and  EZ'm(i)(K). Alice takes  generators g1 ,  g2, …  , gt of SZ i (K) 

and corresponding images  g'1,   g'2  , …, g't in the SZ' i(K).  

 So she forms aj = TEgjE
-1T-1, j=1,2,…,t    and bj = T'E' g'j(E')-1(T') -1, 

j=1,2,…,t  written in standard form of En(i)(K) and Em(i)(K).  

    Alice sends (aj, bj) and j=1,2,…,t to Bob. He takes alphabet {z1, z2,… , zt} 

and  selects word w(z1, z2, …, zt), =zi(1)
α(1)zi(2)

α (2) … z2i(l)
α (l), where α(j)>0, 

j=1,2, …, l, l >1, i(s)ϵ{1,2,…,t}, i(j)≠i(j+1) for j=1,2,...,t-1. 

  Bob computes b=w(b1, b2,…,bt) and keeps it safely for himself. He forms 

a=w(a1, a2, … at) and sends this element of En(i)(K) to Alice. 

      She uses the following restoration process to get w(b1, b2,…,bt). Alice 

computes E-1T-1aTE=c. She  uses tame  homorphism φ corresponding to 

noncomutative  system Z and  its quotient Z1 and computes φ(c)=c'. Secondly 

she computes b=w(b1, b2,…,bt) as  T'E'c1(E')-1(T')-1. 

 REMARK 1.  Adversary has to decompose available multivariate map 

a=w(a1, a2) from En(i) into word in given  generators a1, a2 , …, at written in 

their standard form. So security rests on the word problem in semigroup 

En(i)(K) (or stable semigroup  <a1, a2, …, at>). 

   Noteworthy that due to this algorithm  correspondents Alice and Bob can 

safely elaborate  collision quadratic transformation of (K)m(i) with the chosen 

dimension m(i). In the case of regular quotient m(i)=i.  

   So correspondents have an algorithm to elaborate safely stable collision  

map of selected degree d acting of free module Kl of arbitrarily chosen  di-

mension.  This option rises the following question.  

DO WE NEED MULTIVARIATE PUBLIC KEY?  

            One of the directions of security research is CLASSICAL 

MULTIVARIATE CRYPTOGRAPHY (see books [42], [43] which present 

examples of old public keys in the form of a family of  quadratic elements  nF 
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of En(Fq)  which induces a bijective map Δ(nF ). The map  nF is  given public-

ly.    

        So each public user (and adversary as well)can create as many pairs (x, 

y=Δ(nF )(x)) where x is choosen plaintext from the plainspace   Fq 
n and get 

corresponding ciphertext y as he/she wants. 

    Thus due to above protocol there is no need  to give F to public. Alice can 

select some family which is a  current or former (already broken) candidate to 

a safe  pubic key. So she has a private algorithm to solve equation F(x)=b. 

      She can deformate nF by bijective elements 1T n and 2T n   from AGLn(Fq) 

to use elements  Gn=
1Tn 

nF 2Tn.   Secondly Alice and Bob executes 

MULTIVARIATE TAHOMA PROTOCOL to elaborate common element 

Bn(x) from En(Fq). 

     We assume that Gn and Bn are given in the forms of tuples (g1, g2, …, gn) 

and  (b1, b2, …, bn) where gi and bi are elements of Fq[x1, x2, … , xn].Finally 

Alice sends (g1+b1, g2+b2, …, gn+bn) to Bob. He uses his knowledge on B(x) 

and publicly known addition rule to restore G(x). So Bob uses G(x) as encryp-

tion function. Alice uses her private algorithm of finding the reimage of F(x) 

for the decryption. 

Conclusion 1. No need to give multivariate rule F(x) of bounded degree for 

public audience. There is a safe way to transport the rule to your partner. 

Next question is 

How long correspondents are able to keep G in private mode? 

REMARK 2. Assume that correspondents use Multivariate Stable Protocol 

and Alice transports safely quadratic multivariate encryption map G on Fq
n (or 

transformation of constant degree d ). 

   Bob sends  Alice several elements of kind G(pi), i=1,2, …, l via open chan-

nel  during their communication. 

   If  parameter l is ''large enough" (l=O(n2) for d=2) then ADVERSARY can 

use his cyberterrorist tools and intercept some pairs (pi, ci) where pi is a 

plaintext  and ci is a corresponding ciphertext.  If he/she  intercepts O(n2)   

such pairs then he can  approximate G with costly polynomial algorithm  

(cryptanalitic linearisation method), which requires O(n5) elementary opera-

tion for d=2.  

   Such activity allows ADVERSARY  to become in the same position with 

user Bob.  He  gets G from the  private storage of correspondents. Similarly to 

the case of having public rule adversary can compute G(p) for any chosen p.  

    Of course Adversary  has to break "public rule'' G as  well, i.e. to find out 

the way of computation of its reimage. 

     Alice and Bob could be smart  enough to use reasonable trust interval re-

stricting parameter l (number of messages) by some expression   C(n) such 

that   C(n) ≤ den(G)/(2n) (half of the average density of Gi , i=1,2,…,n). 
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  At the end of trust interval Alice may select other conjugates of generators of  

Singer system, correspondents conduct a new session of the protocol. Alice 

delivers safely a new quadratic encryption rule  for Bob.  

 Conclusion 2. After the transportation of  the encryption multivariate rule 

F(x) to your partner there is an option of its periodical modification. 

This scheme allows privatisation of multivariate public rules,i.e. transition of 

the rule to  noncommutative El Gamal Gamal type cryptosystem which uses 

Protocols of noncommutative cryptography which hide the encryption algo-

rithm from adversary. 

  PRACTICAL ASPECTS: Instead of quasipublic rules Alice can create 

invertible quadratic multivariate map G of density O(n)  (density is the  num-

ber of monomial  terms in all Gi , i=1,2,…,n) which allows to compute its 

reimage for O(n) elementary steps. Notice that O(n) is a speed of reading of 

string from Mn, where M is selected finite alphabet. 

       Some of the presented cryptographic privatisation schemes are already 

implemented on the level of  prototype models ( see [7], [9]). 

3. On multivariate digital signatures algorithms and their privatisa-

tion scheme. 

It is commonly  admitted that Multivariate cryptography turned out to be 

more successful as an approach to build signature schemes primarily because 

multivariate schemes provide the shortest  signature among post-quantum 

algorithms.   Such signatures use system of nonlinear polynomial equations 

1p(x1,x2 , . . . , xn) = 1pi,j · xixj+
1pi · xi+

 1p0 

2p(x1, x2, . . . , xn) = 2p i,j · xixj +
2pi · xi +

2p0 

   … 

mp(x1,x2 , . . . , xn) = mpi,j · xixj+mpi · xi+
 mp0 

where kp i,j,  
kp i are elements of selected commutative ring K. 

   The quadratic multivariare cryptography map  consists of two bijective af-

fine  transformations, S and T of dimensions n and m, and a quadratic element  

P’ of kind  xi →
ip of formal Cremona group, where ip are written above ele-

ments of  K[x1, x2,…,xn].We denote via Δ(P’) -1(y) some reimage of y=Δ(P(x)). 

The triple Δ(S) -1, Δ(P’) -1,  Δ(T) -1 is the private keyq also known as the 

trapdoor.  

     The public key is the composition S, P’ and T which is by assumption hard 

to invert without the knowledge of the trapdoor. Signatures are generated us-

ing the private key and are verified using the public key as follows. The mes-

sage is hashed to a vector y via a known hash  function. The signature is Δ(T) -

https://en.wikipedia.org/wiki/Digital_signature
https://en.wikipedia.org/wiki/Hash_function
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1 (Δ(P’) -1)( Δ(S) -1). The receiver of the signed document must have the public 

key P in posession. He computes the hash y  and checks that the signature  x 

fulfils Δ(P)(y)=x. 

  EXAMPLE. Assume that we have two groups of variables  z1, z2, …, zr and 

z’1 , z’2, …, zn-r    such  that  the substitution  x1=z1, x2=z2,…, xr =zr, xr+1=z’1, 

xr+2=z’2,…, xn =z’n-r  converts every single element ip  to expression in  the  

form  Σγijkzjz’k+ Σλijkz’jz’k+ Σςijzj+ Σς’ijz’j+ϭi.  In this situation we have to  

sign a given message y and the result is a valid signature x .The coeffi-

cients, γijk, λijk, ςij, ς’ijand ϭi must be chosen secretly. The vinegar variables z’i 

are chosen randomly (or pseudorandomly).The resulting linear equations sys-

tem gets solved for the oil variables zi. 

Described above  unbalanced oil and vinegar (UOV) scheme is a modified 

version of the oil and vinegar scheme designed by J. Patarin. Both are digital 

signature protocols. They are algorithms of multivariate cryptography. The 

security of this signature scheme is based on an NP-hard mathematical prob-

lem. To create and validate signatures a minimal quadratic equation system 

must be solved. Solving m equations with n variables is NP-hard. While the 

problem is easy if m is either essentially larger or essentially  smaller 

than n,[1] importantly for cryptographic purposes, the problem is thought to be 

difficult in the average case when m and n are nearly equal, even when using 

a quantum computer. Multiple signature schemes have been devised based on 

multivariate equations with the goal of achieving quantum resistance. We 

assume that parameter n can be selected in a free way and parameters n and m 

are connected via linear equation αn+βm+b where α≠0,β≠0. So m=)(n). We 

take integer k which ≥ max(n, m), k=O(n) and commutative ring K[x1,x2,…,xn, 

xn+1, xn+2,…, xk] where xi, i=1,2,…,n are variables of public equations  jp(x1,x2 

, . . . , xn), j=1,2, …,m and xn+1, xn+2,…,xk are formal variables.  Further one of 

suggested below schemes can be used. 

Scheme 1. Let us assume that Alice selects a  noncommutative  system 

Z(K) of stable Cremona generators  of degree d =2 and rank t, t>1 with regu-

lar quotient Z'(K) such that there is  an  enveloping  family EZ(K) of   Z(K) 

and enveloping family EZ1(K) of  Z'(K). Let us assume that Z(K) corresponds 

to the sequence  of increasing integers  n(i) and i coincides with the number of 

total variables k introduced above.  So Alice  takes generators kg1, 
kg2,…, kgt  

and  uses multivariate tahoma protocol. She forms aj ϵ En(k)(K)  and  bj ϵ 

Ek(K). She  sends them to Bob. Correspondents execute the protocol and elab-

orate common collision element h=(h1, h2,…,hk) ϵ Ek(K). Alice  (or Bob)  se-

lects polynomials ip for the multivariate  digital signature system (m.d.s.). 

She/he  takes  h’ with coordinates h’1=
ip+hi, i=1,2,…m and h’i= hi +fi , 

https://en.wikipedia.org/wiki/Digital_signature
https://en.wikipedia.org/wiki/Digital_signature
https://en.wikipedia.org/wiki/Multivariate_cryptography
https://en.wikipedia.org/wiki/NP-hard
https://en.wikipedia.org/wiki/Unbalanced_oil_and_vinegar_scheme#cite_note-1
https://en.wikipedia.org/wiki/Quantum_computer
https://en.wikipedia.org/wiki/Post-quantum_cryptography
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i=m+1, m+2,…,k where f i  are quadratic ‘’pseudorandom’’ elements of K[x1, 

x 2 ,…, xk]. 

   Noteworthy that users has to know formats n and m of hashed vector and 

a signature.  So Bob (Alice) restores (1p, 2p,…, mp) and correspondents can use 

the  multivariate digital signature system on private El Gamal mode based on 

the chosen multivariate tahoma protocol.  

 Scheme 2. Alice (or Bob) can use described above scheme with d=3. For f 

ϵ K[x1, x2, … xk] we define its quadratic restriction  r(f) as the sum of mono-

mial terms of degree at most 2. Let D=d/dx1+ d/dx2, … + d/dxk be differentia-

tion operator for elements of K[x1, x2, … xk]. We define deformation def(f ) of 

f  as  D(f)+r(f)  (see [5] for the idea of deformated collision maps). So corre-

spondents use scheme 1 to elaborate common cubical collisen map h. They 

continue remaining steps of scheme 1 with quadratic def(h) instead of  h. 

5. Examples of stable cubical groups. 

5.1. Simplest graph based example. The following family of stable groups is 

already used in some algorithms of symmetric cryptography and protocols of 

commutative and noncommutative  cryptography  (see [44], [45] and further 

references).  Let K be a commutative ring. We define A(n, K) as bipartite 

graph with the point set P=Knand line set L=Kn (two copies of a Cartesian 

power of K are used). We will use brackets and parenthesis to distinguish 

tuples from P and L. So (p)=(p1, p2, … , pn)ϵPn and [l]=[l1,  l2, … , ln]ϵLn. The 

incidence relation I=A(n,K) (or corresponding bipartite graph I) is given by 

condition  pI l if and only if the equations of the following kind hold.  

p2 - l2=l1p1,  p3 -  l3= p1 l2, p4 - l4 = l1p3,  p5 - l3 = p1 l4, … , pn - ln= p1 ln-1 for 

odd n and pn - ln = l1 pn-1 for even n. 

     Let us consider the case of finite commutative ring K, |K|=m. As it 

instantly follows from the definition the order of our bipartite graph A(n, K) is 

2mn. The graph is m-regular. In fact the neighbour of given point p is given by 

above equations, where parameters p1, p2,…, pn are fixed elements of the ring 

and symbols l1, l2,…, ln  are variables. It is easy to see that the value for l1  

could be freely chosen. This choice uniformly establishes values for  l2,  l3, … 

, ln . So each point has precisely m neighbours. In a similar way we observe 

the neighbourhood of the line, which also contains m neighbours. We 
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introduce the colour ρ(p) of the point  p and the colour ρ(l) of line l as 

parameter p1 and l1  respectively. 

Graphs A(n, K) with colouring ρ belong to class of  Γ linguistic graphs 

considered in [46].  Linguistic graph Γ= Γ(K) is defined over  commutative 

ring K as a bipartite graph with partition sets L=Kn and P=Kk  and colour sets  

Ks and  Kr respectively.  Projection ρ of point x=(x1, x2, …, xn), or line y=[y1, 

y2, …,yt], on the tuple of their first s and r coordinates respectively defines 

colours of vertices. Each vertex has a unique neighbour of selected colour. So 

n+r=t+s. The incidence of linguistic graphs is given by a system of 

polynomial equation over the ring K. 

In the case of linguistic graph Γ(K) with s=r=1 the path consisting of its 

vertices v0, v1, v2, …,vk  is uniquely defined by initial vertex v0, and colours 

ρ(vi,), i=1, 2,..., k of other vertices from the path. We can consider graph 

Г=Γ’(K[x1, x2, …, xn]) defined by the same with Γ equations but over 

the commutative ring K[x1, x2, …, xn]). 

So the following symbolic computation can be defined. Take the symbolic 

point x=(x1, x2, …, xn), where xi are generic variables of  K[x1, x2, …, xn] and  

symbolic string C which is a tuple of polynomials  f1,, f2,, ... , fk, from K[x1] 

with even parameter k.. Form the path of vertices  v0,=x,   v1  such that  v1Ivo 

and ρ(v1)=f1(x1),  v2  such that  v2Iv1 and ρ(v2)=f2(x1), ..., vk  such that  vkIvk-1 

and ρ(vk)=fk(x1). We choose parameter k as even number. So vk is the point 

from the partition set  K[x1, x2,…, xn]
n of the graph  Г’.   

        We notice that the computation of each coordinate of vi  depending on 

variables x1, x2, …, xn and polynomials f1,, f2,, ... , fk needs only arithmetical 

operations of addition and multiplication. As it follows from the definition of 

linguistic graph final vertex vk (point ) has coordinates (h1(x1), h2(x1,x2), 

h3(x1,x2,x3),...,hn(x1,x2,…, xn)), where h1(x1)=fk(x1). Let us consider the map H=  

Г^η(C): xi→ hi(x1, x2,…, xn), i=1, 2,..., n which corresponds to  symbolic string 

C. Assume that the equation b=fk(x1) has exactly one solution. Then the map 

H:xi→hi(x1, x2, …, xn) , i=1, 2,..., n is a bijective transformation. In the case of 

finite parameter k and finite densities of fi(x1),  i=1, 2,..., n the map H also has 

finite density. If all parameters  deg(fi(x1)) are finite then the map H has a 

linear degree in variable n.  The idea of symbolic computation  (see [44] and 

further references) is the following one.      

Let us consider the totality St=St(K) of all symbolic strings  with the product 

(f1, f2,…, f r) · (g1, g2,…, gs) = (f1, f2,…, fs, g1(fr), g2(fr),…gs(fr)). It is easy to see 

that St(K) is a semigroup for which  empty string serves as a unity.  

           One can check that the map  Гη=η is a homomorphism of semigroup 

St(K) into Cremona semigroup S( Kn) for each linguistic graph Г with r=s=1 

and point set Kn. We consider a subsemigroup ∑=∑(K) of symbolic strings C 
of kind ( x1+ai, x2+ a2 …, xt+at) where parameter t is  even. In  the case of a 

linguistic graphs with r=s=1 we identify a symbolic stringn  C with the 
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corresponding tuple (a1, a2, … , at). Natural product  of two strings given by 

tuples C1=( a1, a2, … , at)  and C2=(b1, b2, … , bm)   is a string C=C1◦ C2=( a1, 

a2, … , at , b1+ at , b2+ at, … , bm+at). This product transforms ∑ to a 

semigroup. The map η' sending C to η(C) is a homomorphism of ∑ into  

affine Cremona group C(Kn).  It is a restriction of  Гη onto ∑(K).  Let  C=(x1 

a1, x1 +a2, …., x 1+as) be a symbolic string from semigroup Σ(K). We refer to  

Rev( C)=(x1-as +as-1, x1-as+as-2, … , x1-as+a1 , x1-as) as a  reversing string for C. 

It is easy to see that η’(CRev(C)) is a unity of Cremona semigroup.  

       In the case  of linguistic graphs Г=A(n, K)  the totality G(n, K) = η'(∑(K))  

is a stable subgroup  of degree 3 (see [44] and further references). We use 

notation nη’ for the restriction of  Гη, Г=A(n,K) onto ∑. We assume that a0=0 

and say that transformation  η’(C) is irreducible if ai≠ ai+2, i=1, 2,..., t-2. If  

a1≠ at-1, and a2≠at we say that irreducible symbolic string  C and 

corresponding transformation η’(C)  are standard elements.  We have a natural 

homomorphism G(n+1, K) onto G(n, K) induced by the homomorphism  ∆ 

from A(n+1, K) onto A(n, K) sending point (x1, x2, …, xn, xn+1) to (x1, x2, …, xn)  

and line [x1, x2, …, xn, xn+1]  to  [x1, x2, …, xn]. It means that there is well 

defined projective limit A(K) of graphs A(n, K) and groups G(K) of groups 

G(n, K) when n is growing to infinity. In fact in the case of K=Fq, q>2 infinite 

graph A(Fq) is a tree. 

     It means that group G(Fq) is a group of walks of even length on q-regular 

tree starting in zero point with natural addition of them. A standard symbolic 

string C defines transformation nη’(C)  in each group G(n, K), n ≥ 2 and G(K).  

An irreducible transformation η’(C) from G(K) has an infinite order.  

  We are going to use the family of maps introduced below.  

Let ∆=∆n,k, n>k be a canonical homomorphism of A(n,K) onto A(k,K) 

corresponding to procedure of deleting of coordinates with indexes k+1, k+2, 

…, n. This map defines the canonical homomorphism ϻ=µ(n, k) of group G(n, 

K) onto G(k, K). Let us consider the diagram     

                                                               ∑(K)            

                                                                ∕    ↓ 

                                                   G(k, K)← G(n, K) 

where vertical arrow corresponds to homomorphism n η' from  ∑(K), skew line 

corresponds   to kη’ and horizontal arrow stands for ϻ(n,k), n>k. It is easy to 

see that this diagram is a commutative one. 

As it was noticed in  [44]  subgroups G(n, K) of En(K) form a family 

of stable cubical maps. So correspondents can take  pair G(n, K) and G(k, K) 

with n(k)=k+γ where parameter γ  is a positive constant or a positive linear 

function in variable k. 

Alice can use defined above computationally tame homomorphism   

ϻ=ϻ(n,k), n>k of groups G(n,K) and G(k,K). 

She considers family of subgroups Gk=G(n,K), n=n(k), k-2,3 and family 

G’k=G(k,K),k=2,3,…,n   
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She selects  different strings w1, w2, …wt of even length of semigroup ∑(K) 

such that wi wj≠wjwi for different i and   from {1,2,…,t}. This condition implies 

that  sη(wiw j) ≠
 sη(wjwi) for s ≥2. After the check of noncommutativity of gen-

erators Alice takes generators  igj=
n(i)η (wj) , j=1, 2, …, t, i ≥ 2 which form a 

Cremona system of stable noncommutative generators corresponding to se-

quence n(2),n(3),…. Let us denote this system  as Z. Notice that iSZ = <ig1, 
ig2,…, igt> is a subgroup of  Gi. So the  Gi(K) form an enveloping family of Z.. 

   Similarly Alice consider generators   ig’j =
iη (wj), j=2, 3, …,t, i≥ 2 of system 

Z’.Notice that  iSZ ‘= <ig’1, 
ig’2,…, ig’t>  is a subgroup of  G’i(K) 

So the G’i(K), i=2,3,…  is an enveloping  family of Z’. 

 It is easy to see that the  system Z’ is a quotient of Z defined by tame ho-

momorphisms which move igj  to  ig’j.  So Alice takes i=k and starts Stable 

Tahoma Protocol  with Z and Z’ and described enveloping families. So she 

conducts steps of the algorithm ,  generates pairs a i , b i , i=1,2,…,t and sends 

them to Bob.  Thus correspondents generate the collision element h in E_k(K). 

Alice (or Bob) selects multivariate map for digital signatures (MDS) to Bob 

(Alice). She/he uses def (h) and safely delivers the map to partner. 

       5.2. Other stable subgroups defined via linguistic graphs. 

Let us consider more general graph based constructions of  semi-

groups of formal Cremona semigroup  En(K).  
Element x1 → fi(x1, x2, …, fn), i=1,2,…,n of this semigroup will be 

identified with the tuple of elements (f1, f2,…, fn), fi ϵK[x1, x2,…,xn] when it is 

convenient. 

Let us consider a totality sBS(K) of sequences of  kind u=(H0, G1, G2, 

H3,H4,G5, G6,…, Ht-1, Ht), t=4i, where Hkϵ Es(K), Gj ϵEs((K).  We refer to 
sBS(K) as a totality of  free symbolic strings of rank s. We define a product of 
u with u’=(H’0, G’1, G’2, H’3, H’4, G’5, G’6,…, H’l-1, Hl) as w=(H0, G1, G2, H3, 

H4, G5, G6,…, Ht-1, H’0(Ht),G’1(Ht), G’2(Ht),  H’3(Ht), H’4(Ht),  G’5(Ht), 

G’6(Ht), …, H’l-1(Ht),  H’l(Ht)). Notice that the compositions of maps is com-

puted in Es(K). 

It is easy to see that this operation transforms sBS(K) into the semi-

group with the unity element (H0), where E0 is an identity transformation from 

S(Ks). Elements of kind (H0, G1, G2, H3, H4) are  generators of the semigroup. 

This   subsemigroup  has some similarity with subsemigroup of special chains 

in the free product Es(K)▪Es(K).  We refer to sBS(K) as semigroup of free  

regular strings  of dimension s.  

Let us assume that Ht  of written above u ϵ sBS(K) is a bijective map 

and its inverse is a polynomial map (in the case of infinite ring K).  Then we 

can consider a reverse linguistic string Rev(u)= (Ht-1(Ht
-1), Gt-2(Ht

-1), Gt-3,(Ht
-

1), Ht-4(Ht
-1),Ht-5

1(Ht), …,G2(Ht
-1),  G1(Ht

-1), H0(Ht
-1), Ht

-1) and refer to u as 

reversible string.  Let sBR(K) stand for the semigroup of reversible strings. 

Let K be a finite commutative ring. We refer to an incidence structure 

with a point set P=Ps,m=Ks+m and a line set L=Lr,m=Kr+m as linguistic inci-
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dence structure Im  if point   x=(x1, x2,…, xs, xs+1, xs+2, …,  xs+m) is incident to 

line y=[y1, y2, … , yr , ,yr+1, yr+2 , …, yr+m ] if and only if the following rela-

tions hold 

a1xs+1+b1yr+1=f1 ( x1, x2 ,… , xs, y1, y2, …  , yr) 

a2xs+2+b2yr+2=f2 ( x1, x2 ,… , xs, xs+1, y1, y2, …  , yr, yr+1) 

                                … 

amxs+m+bmyr+m=fm ( x1, x2 ,… , xs, xs+1,…, xs+m, y1, y2, …  , yr, yr+1, …,  yr+m) 

where  aj, and bj , j=1,2,,,,m are not zero divisors, and fj are multivariate poly-

nomials with coefficients from K. Brackets and parenthesis allow us to distin-

guish points from lines (see [9]). 

The colour ρ(x)=ρ((x)) (ρ(y)=ρ([y])) of point  x  (line [y])  is defined 

as projection of an element (x) (respectively [y]) from a free module on its 

initial s (relatively r) coordinates. As it follows from the definition of linguis-

tic incidence structure for each vertex of incidence graph there exists the 

unique neighbour of a chosen colour. 

We refer to ρ((x))=(x1, x2 ,… , xs) for  (x)=(x1, x2 ,… , xs+m) and  

ρ([y])=(y1, y2, …  , yr) for [y]=[y1, y2, …  , yr+m] as the colour of the point and 

the colour of the line respectively. For each bϵKr and p=(p1, p2 ,… , ps+m)  

there is the unique neighbour of the point [l]=Nb(p)=N((p),b) with the colour 

b. Similarly for each cϵKs and line l=[l1, l2 ,… , lr+m] there is the unique neigh-

bour of the line (p)= Nc([l])=N([l],b) with the colour c. We refer to operator 

of taking the neighbour of vertex accordingly  chosen colour as sliding opera-

tor.  On the sets P and L of points and lines of linguistic graph we define jump 

operators  1J=1Jb(p)=J((p),b)=(b1, b2,…,bs, p1, p2 ,… , ps+m), where (b1, 

b2,…,bs)ϵKs  and 2J=2Jb ([l])=J([l],b) =[b1, b2,…,br, l1, l2 ,… , lr+m], where (b1, 

b2,…,br)ϵKr. We refer to tuple (s, r, m) as type of the linguistic graph I=I(K).  

Notice that we can consider the same set of above equations with co-

edicients from K for variables xi and yi  from the extension K’ of K and define 

graph K’I=K’I(K). Let  s=r and K’=K[x1, x2 ,…, xn], n=m+s . We consider in-

duced subgraph in  I’ of all vertices of K’I with colours from K[x1, x2,…, xs ] 

(tuples of K[x1, x2,…, xs ]
 s ) 

 We form the sequence of vertices (walk with jumps) of graph I’with the us-

age of string u from free linguistic semigroupn sBS(K). 

We take initial point (x)=(x1, x2,…, xs, xs+1, xs+2,…, xs+m)  formed by 

the generic variables of K’ and consider 
a skating chain 

(x),J((x),H0)=(1x),N((1x),G1)=[2x],J([2x],G2)=[3x],N([3x],H3)=(4x),J((4x),H4)=(5x),

…, J([t-2x],Gt-2)=[t-1x],N([t-1x],Ht-1)=(tx),J((tx),Ht)=(tx). 

Let (tx) be the tuple (Ht, F2, F3,…,Fn) where Fi ϵK[x1, x2,…, xn]. We define IΨ(u), 

I=I(K) as the map (x1, x2,…, xn)→(Ht, F2, F3,…,Fn) and refer to it as chain transition 

of point variety. 

The statement written below follows from the definition of the map.    
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Lemma 1. The map ψ=Iψ: sBS(K)→En(K) is a homomorphism of semi-

groups,  ψ( sBR(K))is a group ( [41]),   
We refer to Iψ(sBS(K))=ICT(K) as a chain transitions semigroup of linguistic graph 

I(K) and to map ψ as linguistic compression map. Notice that in the case of the finite 

commutative ring homomorphism  composition Δψ of homomorphism Δ and 

ψ maps infinite semigroup into finite set of  elements of Δ( ICT(K)) . 

 We define subsemigroup sGS(K) of symbolic ground strings as a to-

tality of bipartite strings u=(H0, G1, G2, H3, H4, G5, G6,…, Ht-1, Ht) in
 sBSr(K) 

with H0=E0, G1=G2, H3=H4,G5=G6,…, Ht-1=Ht  where E0  is a unit of En(K) 

and refer to Iψ(sGS(K))=IGCT(K) as semigroup of ground chain transitions on 

linguistic graph I.  

In the case of linguistic graph A(n,K) of type (1,1,n-1) we can consid-

er a subgroup St(K) of elements of  1GS(K)  with coordinates of type x1+t, tϵK 
and identify  A(n,K)ψ (St(K)) with introduced above group of cubical endomor-

phisms GA(n, K). 

 We can consider a  subgroup LSt(K) of elements 1BS(K) with coordi-

nates of type  x1+t, tϵK  and construct extension Ext(GA(n,K)) of G(n,K) as  
A(n,K)ψ (LSt(K)). As it was shown in the  paper [47]  elements of  stable group 

Ext(AG(n,K)) are also cubical endomorphisms.  

  In fact the first family GD(n,K)   of stable groups of degree 3  was intro-

duced  as group of transformative of bijective stream  ciphers of multivariate 

nature define via  linguistic graphs D(n, K) of type (1,1,n-1) in [36] The im-

plementation of this cipher in the case K=Fq is described in [37]. Graphs D(n, 

Fq) and their connected components were introduced in [48],[49],[50] as fami-

ly of graphs of large girth of Extremal graph theory. (see also [51], [52]). 

Connections between graphs D(n,K) and A(n,K) are discussed in [44]. 

5.3. Special homomorphisms of linguistic graphs and  corresponding 

semigroups. 

Let I(K) be linguistic graph  over commutative ring K defined in section 

3.1. and M = {m1, m2,…, md} be a subset of {1, 2, …, m} (set of indexes for 

equations). Assume that equations indexed by elements from M of the follow-

ing kind 

am1xm1 -bm1ym1=fm1(x1, x2 ,  …, xs ,y1, y2, …  , yr) 

am2xm2 -bm2ym2 = fm2(x1, x2, … ,xs,xm1,y1, y2, …  , yr,, ym1) 

… 

amdxmd -bmdymd =fmd (x1, x2, … , xs,xm1,xm2,… , xm d-1, y1, y2, …  , yr,, ym1, ym2,,… , ym d-

1,)   define other linguistic incidence structure  IM. Then the natural projections 

δ1,: (x)→(x1, x2, … , xs,xm1, xm2,… , xmd) and δ2: [y]→[y1, y2, … , yr, ym1,ym2,… , 

ymd] of free modules define  the natural homomorphism δ of incidence struc-

ture I onto IM.. We will use the same symbol ρ for the colouring of linguistic 

graph IM.. 

It is clear, that δ is colour preserving homomorphism of incidence structures 

(bipartite graphs). We refer to δ as symplectic homomorphism and graph IM  as 
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symplectic quotient of linguistic graph I. In the case of linguistic graphs de-

fined by infinite number of equations we may consider symplectic quotients de-

fined by infinite subset M (see [30], where symplectic homomorphism was used for 

the cryptosystem construction). 

Lemma 3. A symplectic homomorphism  ἠ of linguistic graph I  of type (r, s, 

m) onto I’  defined over commutative ring K induces the semigroup homo-

morphism ἠ* of ICT(K) into I’CT(K)  and the following diagram is commuta-

tive 
sBSr(K)→ICT(K) 

↓             ∕ 
I’CT(K)   

where horizontal and vertical arrows corresponds to linguistic compression 

homomorphisms Iψ and I’ψ and symbol  ∕ corresponds to η*. 
      If S is a stable subsemigroup of ICT(K) (or BCTI(K))  of degree d then ἠ*(S) is 

also a stable subsemigroup (or subgroup).The degree of ἠ*(S) is bounded above by d. 

We will search for subsemigroup X of  sBSr(K) and linguistic graphs I(K) such that 

Ψ(X) is a  stable subsemigroups of  ICT(K).   

5.4. Example of stable subsemigroups of arbitrary degree. 

    We define Double Schubert Graph  DS(k,K) over commutative ring K as incidence 

structure defined as disjoint union of  partition sets PS=Kk(k+ 1)  consisting of points 

which are tuples of kind x =(x1 , x2, … , xk, x11 , x12, … , xkk ) and LS=Kk(k+1) consisting 

of lines which are tuples of kind y =[y1 ,y2, … ,yk, y11 ,y12, … ,ykk], where x is incident 

to y, if and only if xij - yij=xi yj for i=1, 2,..., k and j=1, 2,..., k. It is convenient to as-

sume that the indices of kind i,j are placed for tuples  of Kk(k+1) in the lexicographical 

order. 

   The term Double Schubert Graph is chosen, because points and lines of DS(k, Fq)  

can be treated as subspaces of Fq
(2k+1) of dimensions k+1 and k, which form two larg-

est Schubert cells. Recall that the largest Schubert cell is the largest orbit of group of 

unitriangular  matrices acting on the variety of subsets of given dimensions. We will 

consider these connection in details in the next section. 

    We define the colour of point x =(x1 , x2, … , xk, x11 , x12, … , xkk )  from  PS as 

tuple(x1 , x2, … , xk,) and the colour of a line y =[y1 ,y2, … ,yk,y11 ,y12, … ,ykk] as the 

tuple (y1 , y2, … ,yk). For each vertex v  of DS(k, K), there is the unique neighbour  

y=Na(v) of a given colour a=(a1,a2, … ,ak). It means the graphs  DS(k, K) form a fami-

ly of linguistic graphs.  

Let us consider the subsemigroup kY(d, K)  of  kBS(K) consisting of strings u=(H0, 

G1, G2, H3, H4, G5, G6,…, Ht-1, Ht) such that maximum of parameters 

deg(H0)+deg(G1), deg(G2)+deg(H3), deg(H4)+deg(G5), 

deg(G6)+deg(H7), deg(Gt-2)+deg(Ht-1),  deg(Ht)=1 

equals d, d>1. 

Theorem 2 (see [41]). Let I(K) be an incidence relation of Double Schubert 

graph DS(k, K). Then Iψ(kY(d, K))=kU(d,K) form a family of stable semigroups 

of degree d.  
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         The proof is based on the fact that the chain transition u from kU(d, K) moves xi,j 

into expression xi,j+T(u), where T(u) is a linear combination of products fϵK[x1, x2,…, 

xk],  gϵK[y1, y2,…, yk] where deg( f)+deg(g)≤d. 

New semigroup kU(d, K) consists of transformations of the free module Kt, t=(k+1)k. 

If d=2 then kU(d, K) contain semigroups of quadratic transformation defined in [9], 

which consists of ground chain transitions.  

        Let J be subset of the Cartesian square of M={I,2,…,k}. We can identify its ele-

ment (i,j) with the index ij of  Double Schubert Graph DS(k,K). 

Proposition 1. Each subset J of M2 defines symplectic homomorphism δJ of DS(k, K) 

onto linguistic graph DSJ (k,K). 

     It is easy to see that in the case of empty set J the image of the map is a complete 

bipartite graph with the vertex set KkUKk. 

       Corollary 1. Let I(J, K)) be an incidence relation of linguistic graph DSJ (k, K). 

Then I(J,K)ψ(kY(d, K))=kUJ
 (d,K) form a family of stable semigroups of degree d.  

Second protocol of safe delivery of MDS. 

     Let  f : N→R be real function in natural variable and  [ ,]’ stands for ceil-

ing function, i.e [f(n)]’ is closest to f(n) parameter n’ such that n’≥n. 

 Alice consider family of  r(n)Y(d, K)), d=2 or d=3 where r(i)=[i1/2 ]’ , 

i=2,3,… So the point set  r(i)DS(d, K)) is a free module of dimension [ i1/2 ]’ 

+([ i1/2 ]’ )2 which is at least [ i1/2 + i ]’. 

   For each i she can select the strings u(1)=u(1,i), u(2,i), …, u(t,i), t ≥ 2  of 

kind u(k,i)=( k,iH0, ,
k,iG1, 

k,iG2, 
k,iH3, 

k,iH4, 
k,iG5, 

k,iG6,…, k,iHt-1, 
k,iHt), k=1,2,…,t 

such that k,iHt
 j,iHt≠

ji Ht
 k,iHt for distinct  k and j. 

 Last condition insure that for Iψ(u(k,i))=a(k,i), k=1,2,…,t conditions 

a(k,i)a(j,i)≠a(j, i)a(k,i) holds if j ≠k.  

So cubical endomorphisms a(l,i)ϵEr(i),  l=1,2,…,t, i=2,3,… form stable cubical  

Noncommutative Cremona system Z corresponding to the sequence r(i). 

Semigroups r(i)U(d, K) form enveloping family of Z. Alice can take r(i)DS(d, K)) 

and subset J(i) which defines an incidence system I(J, K)) such that |J(i)|=i-

r(i). So the point set of I(J(i), K) is Ki. 

    Symplectic homomorphism of r(i)DS(d, K)) onto I(J(i),K) induces homo-

morphism ϕ(i,J(i)) of semigroup r(i)U(d, K) onto iUJ(i)(d,K). It is easy to see 

that ϕ(i,J(i))(a(k,i))=a’(k,i) form the quotient Z’ of the system Z with envelop-

ing family iUJ(i)(d,K). 

  So Alice selects multivariate digital signatures system with parameters m and 

n. She takes i=k which exceed  max(m, n) for parameters m and n of MDC. 

She generates a(k,j), j=1,2,…,t from r(k)U(d, K) and considers subset J(i). Al-

ice uses invertible elements of enveloping semigroups r(k)U(d, K) and 
kUJ(k)(d,K) together with bijective affine transformations of free modules Kr(k) 

and Kk. So she uses multivariate tahoma protocol, generates pairs (ai, bi) and 

sends them to Bob. 

 Correspondents executes the protocol and generates the collision map h=(h1, 

h2,…, hk)  from Ek(K). 
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      In the case of d=2 Alice (or Bob) uses scheme 1 of section 4. So she/he 

sends hi+ 
ipi , i=1,2,…,m to the partner who restores  ip. If d=3 Alice (or Bob) 

uses scheme 2  of section 4 with computation of def(h).  

 6. Conclusions. 

        We consider an option to keep multivariate public map of digital signa-

ture system on ‘’secure mode of El Gamal type”. So the combination of Mul-

tivariate Tahoma Protocol based on selected platform with the multivariate 

digital signature defined over chosen groupf field K=Fq is used.  The base is 

in fact triple which consists on two stable subsem groups S1(q) and S2(q) of 

Ep(n) and En(Fq) and homomorphis between them Open size  n gives the format 

of used hashed vectors. This number is known to adversary. 

    According to the cryptographic conventions the whole used combination 

has  to be known up to some hidden formal parameters which form the key of 

the algorithm. 

     Thus adversary knows ground field Fq, dimensions n and p(n), pairs of 

generators (ai , bi), i=1,2, where ai ϵ Ep(n)(Fq) and bi  ϵ En(q). So he knows de-

gree of stable subsemigroups <a1, a2,…,at> an <b1, b2,…bt>,  can use homo-

morphism which moves ai to bi  but does not know alternative efficien way of 

homomorphism computation. 

   Adversary is informed that correspondents use protocol in periodic way, the 

collision map is used exactly one time and multivariate map is used for signa-

tures  ≤  n times. From session to session correspondents can change sets of 

generators without change of the platform 

    He/she know the type of multivariate map P=SP’T , S and T of dimensions 

n and m, and a quadratic element  P’ of kind  xi →
ip, i=1,2,…m, but does not 

know multivariate map P itself.  It means that adversary knows that corre-

spondents are followers of one selected method. So correspondents are fol-

lowers of Imai-Matsumoto method, Original Oil and Vinegar method by J. 

Patarin, Rainbow UOV, or Lifted UOV algorithms. 

   Notice that cryptanalysis for first two method is known only in the case 

when P is given public. Adversary knows that correspondents are able to 

change maps S and T and internal parameters of P’ in each of these four cases. 

For the simplicity we assume that number of equations m is known to adver-

sary. 

    Thus adversary can try to break the tahoma multivariate protocol based on 

known NP hard problem (work decomposition of element of formal Cremona 

group into a product of given generators presented in the standard form of 

Multivariate Cryptography). Of course if he/she breaks the protocol  adver-

sary gets the multivariate digital signature in its public form. He/she has to 

periodically compute such a decomposition of obtained element into genera-

tors to get the corresponding  collision map. So in the case of already broken 

classical Imai-Matsumoto and Oil and Vinegar schemes adversary can forge 
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the signature. In the case of Raibow and Lifted UOV adversary has to find a 

solution for related crypt analytic problem. Current state of the cryptanalysis 

of these schemes the reader can find in [53], [54], [55]. 

   Breaking the WORD PROBLEM is currently unsolvable post quantum 

problem, so we discuss the remaining options for adversary. Assume that ad-

versary intercepts all pairs of kind (hash vector/corresponding signature) dur-

ing the session.   These n pairs are not sufficient to approximate the quadratic 

multivariate map of the signature. So the security of the entire algorithm rests 

entirely  on the security of the protocol. 

  We present 12 combined algorithm (3 families of platforms and 4 types of 

general digital signatures). Time execution of the combination is a sum of 

already investigated protocol and signature scheme.  
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