
Mercurial Signatures for Variable-Length
Messages?

Elizabeth C. Crites1 and Anna Lysyanskaya2

1 University College London, UK
e.crites@ucl.ac.uk

2 Brown University, USA
anna@cs.brown.edu

Abstract. Mercurial signatures are a useful building block for privacy-
preserving schemes, such as anonymous credentials, delegatable anony-
mous credentials, and related applications. They allow a signature σ on
a message m under a public key pk to be transformed into a signature
σ′ on an equivalent message m′ under an equivalent public key pk′ for
an appropriate notion of equivalence. For example, pk and pk′ may be
unlinkable pseudonyms of the same user, and m and m′ may be unlinkable
pseudonyms of a user to whom some capability is delegated.

The only previously known construction of mercurial signatures suffers a
severe limitation: in order to sign messages of length n, the signer’s public
key must also be of length n. In this paper, we eliminate this restriction
and provide a signing protocol that admits messages of any length. This
significantly improves the applicability of mercurial signatures to chains
of anonymous credentials.

Keywords: Signature schemes, anonymous credentials.

1 Introduction

Suppose Alice is known by a public key pkAlice, and Bob is known by a public key
pkBob. Suppose also that Alice has a certificate on her public key and relevant
attributes from some certification authority (CA). Attributes may include the
expiration date of the certificate or information about resources to which a user
has been granted access. Alice’s certificate consists of her public key pkAlice,
attributes attrAlice, and a signature on both from the CA: σCA→Alice . Suppose
Bob obtains a certificate from Alice, rather than directly from the CA. As a
result, Bob’s certificate consists of Alice’s public key pkAlice, attributes attrAlice,
and certificate from the CA: σCA→Alice as well as his own public key pkBob,
attributes attrBob, and certificate from Alice: σAlice→Bob .

A conventional signature scheme allows Alice to certify Bob as above. However,
a mercurial signature allows the signer, Alice, to sign a message, such as Bob’s
public key and attributes, with two important “blinding” features that make it

? Supported by EPSRC Grant EP/N028104/11 and NSF Grant 14223611,2.

2 Elizabeth C. Crites and Anna Lysyanskaya

attractive in privacy-preserving applications. The first feature is message-blinding:
the original message m and its corresponding signature σ can be transformed into
an equivalent message m′ and corresponding signature σ′. The second feature
is public-key-blinding: the public key under which the signature verifies can be
transformed as well.

Let us see how these two privacy-preserving features may be used in the
scenario above. Mercurial signatures allow Bob to transform the public keys
on his certification chain and derive valid signatures for these transformed
values. Specifically, he can transform pkAlice into an equivalent pk′Alice, where
Alice’s secret key will also correspond to this new public key. Bob can then
adapt σCA→Alice into σ′CA→Alice , which is the CA’s signature on the transformed
public key pk′Alice and attributes attrAlice. This can be done using the message-
blinding feature of mercurial signatures, which allows the signed message to
be transformed. Using the public-key-blinding feature, which allows the public
key to be transformed, Bob can also adapt σAlice→Bob into σ′Alice→Bob , which
is a valid signature on pkBob and attributes attrBob under pk′Alice. He can then
repeat the process to transform his own public key pkBob into an equivalent but
unlinkable p̃kBob and derive the corresponding signature σ̃Alice→Bob . It is easy
to see that this can be extended to longer certification chains.

These blinding features are desirable because certificate holders do not have
to disclose all of the information on their certification chains every time they use
them. In particular, the public keys on certification chains are blinded, concealing
the identities of the users operating under them. Also, with care in how attributes
are incorporated, a user may have the option of disclosing only a subset of her
attributes and those higher up in her certification chain.

Mercurial signatures were introduced in a recent paper by Crites and Lysyan-
skaya [CL19]. A construction was provided in which messages and public keys are
fixed-length vectors of group elements. Specifically, messages and public keys are
of the form M = (M1, . . . ,M`) and pk = (X̂1, . . . , X̂`) for a fixed length `, where
M and pk are defined over bilinear groups G1 and G2. Mercurial signatures allow
a message M to be transformed into an equivalent message M ′ = (Mµ

1 , . . . ,M
µ
`)

for a scalar µ, and public keys may be transformed similarly.

Our new construction of mercurial signatures inherits this structure but allows
for messages of unbounded length. A message space that consists of vectors of any
length is very convenient because, in particular, it allows for signatures on public
keys and attributes. Suppose Alice’s public key is pkAlice = (X̂1, . . . , X̂`) and her
attributes are some values (a1, . . . , ak) that represent access to a particular set
of buildings at particular times. If Alice intends to reveal her attributes every
time she uses her certificate, she may encode them as (X̂a1

1 , . . . , X̂ak
1) and simply

append them to the vector representing her public key. Her certificate is then
the CA’s signature on this combined vector M = (X̂1, . . . , X̂`, X̂

a1
1 , . . . , X̂ak

1) of
length `+ k. If the message is transformed into an equivalent message M ′, the
attributes remain the same, and thus her certificate still authorizes access to the
same buildings at the same times. Should she then issue a certificate to Bob, she
may grant him access to the same buildings or a subset of the buildings to which

Mercurial Signatures for Variable-Length Messages 3

she has access and potentially limit the hours during which Bob is authorized.
(Of course, a limitation of encoding attributes this way is that they are exposed.
In this paper, we do not address limited disclosure of attributes.)

The construction in [CL19] worked in a limited way: the length of a user’s
public key was an upper bound on the length of the message that user could sign.
For example, if Alices’s public key is of length ` and her attributes are of length
k, as above, the CA’s public key must be of length `+ k. This, in turn, severely
limits the kinds of key-attribute pairs that Alice can sign with a public key of
length ` and Bob can sign with a public key of length `− |attrBob| (and so on
down the credential chain).

1.1 Related Work

Our motivating application is anonymous credentials [Cha86,LRSW99,CL01,Lys02]
[CL04,CKL+14,CDHK15]. In an anonymous credential system, users can obtain
credentials anonymously as well as prove possession of credentials without reveal-
ing any other information (via zero-knowledge proofs). Anonymous credentials
are well-studied and have been incorporated into industry standards (such as the
TCG standard) and government policy (such as the NSTIC document released
by the Obama administration).

Mercurial signatures are a natural building block for anonymous credentials.
In order to anonymously obtain a credential, Alice requests a signature from
the CA on one of her many equivalent public keys. In order to anonymously use
her credential, Alice blinds her public key and the CA’s signature and gives a
zero-knowledge proof of knowledge (ZKPoK) of the secret key corresponding to
her public key. Crucially, it is difficult to distinguish whether or not a pair of
public keys (and thus identities) are equivalent. Furthermore, mercurial signatures
may be used as a building block for even more interesting applications, such as
delegatable anonymous credentials [CL19]. In this setting, a participant may use
her credential anonymously as well as anonymously delegate it to others, all while
remaining oblivious to the true identities of the users on her credential chain.

Mercurial signatures were inspired by Fuchsbauer, Hanser and Slamanig’s
work on structure-preserving signatures on equivalence classes (SPS-EQ) [FHS19],
which introduces the idea of transforming a signature σ on a message m into
a signature σ′ on an equivalent but unlinkable message m′. A related concept,
signatures with flexible public key [BHKS18], allows blinding of the public key,
but not the message.

1.2 Our Contribution

The only previously known construction of mercurial signatures [CL19] was
restricted to messages of fixed length, which limits its use in applications. Thus,
our goal was to construct mercurial signatures that allow messages of any length
to be signed under public keys of a small, fixed length.

We fell short of our goal as far as unforgeability is concerned: instead of
constructing a mercurial signature scheme that is existentially unforgeable under

4 Elizabeth C. Crites and Anna Lysyanskaya

adaptive chosen message attack (EUF-CMA), we construct a scheme that is
unforgeable in a more limited sense. Namely, instead of the adversary having
access to the regular signing oracle that, on input a message m, responds with
its signature σ, it obtains signatures via a signing protocol in which it is required
to prove knowledge of discrete logarithms of components of m. This variant
of unforgeability was defined by Fuchsbauer and Gay [FG18] as existential
unforgeability under chosen open message attack (EUF-CoMA).

Unfortunately, we also fell short of our goal as far as message-blinding is
concerned. Recall that Bob needs to blind a message m signed by a potentially
malicious Alice by transforming it into a new message m′ and adapting her
signature σ into σ′ accordingly; the origin-hiding property of mercurial signatures
guarantees that the resulting signature σ′ is distributed identically to what Bob
would have gotten by having m′ signed anew. Our construction can only guarantee
origin-hiding if the signer follows the signing algorithm; a malicious signer can
issue improperly formed signatures that will allow it to tell whether σ′ was
adapted from σ or issued anew. Luckily, the signer Alice can convince signature
recipient Bob that σ′ is properly formed via an efficient zero-knowledge proof
protocol.

Even though we failed to meet the full-blown unforgeability and origin-hiding
requirements of mercurial signatures, for the purpose of anonymous credentials,
our results still constitute a success. This is because the protocol for issuing
anonymous credentials typically requires that the recipient prove knowledge of
his or her secret key anyway, so relaxing unforgeability to EUF-CoMA comes for
free. Relaxing origin-hiding so it only holds when signatures were issued properly
adds an additional step to the signing protocol — namely, a step where the signer
convinces the recipient that the signature is properly formed — but this can be
executed efficiently so is also a reasonable relaxation.

Our construction of a variable-length mercurial signature scheme uses the
fixed-length mercurial signature scheme of [CL19] as a building block and is
proven secure (under the variants of unforgeability and origin-hiding just outlined)
assuming (1) the security of the underlying mercurial signature scheme and (2)
the ABDDH+ assumption, introduced in prior work [FHKS16] and reminiscent
of the decisional Diffie-Hellman assumption for Type III bilinear pairings.

1.3 Technical Considerations

Origin-hiding of mercurial signatures. In addition to the (KeyGen,Sign,Verify)
algorithms for a conventional signature scheme, a mercurial signature scheme
includes two other algorithms: ChangeRep and ConvertSig. ChangeRep takes in a
public key pk, a message m, and a signature σ that verifies under pk and trans-
forms them into an equivalent message m′ and a signature σ′ that verifies under
the same public key pk. ConvertSig takes in (pk,m, σ) and outputs an equivalent
m′ and a signature σ′ on m′ that verifies under an equivalent pk′. These trans-
formations are origin-hiding : given two equivalent messages, m0 and m1, and
their signatures, σ0 and σ1, the distribution of (m′0, σ

′
0) produced by ChangeRep

for (pk,m0, σ0) is statistically close to the distribution (m′1, σ
′
1) produced by

Mercurial Signatures for Variable-Length Messages 5

ChangeRep for (pk,m1, σ1). The same holds for ConvertSig for equivalent public
keys pk0 and pk1.

It is important that the distributions be statistically close rather than sim-
ply indistinguishable. Recall that a mercurial signature is a building block for
privacy-preserving applications, such as anonymous credentials and delegatable
anonymous credentials. What makes it a good building block? It easy to prove
both unforgeability and privacy of an anonymous credential.

Suppose that Alice is associated with an equivalence class of identifiers, of
which mA is a representative. A credential from the CA is a mercurial signature
on one of the messages from her equivalence class. The unforgeability property
of the mercurial signature scheme ensures that Alice cannot claim to possess a
credential that in fact she does not.

The origin-hiding property is what protects Alice’s privacy. It is important
that the CA, who knows Alice by the identifier mA and issued her the signature
σA, cannot link her to (m′A, σ

′
A), where m′A is another one of Alice’s identifiers and

σ′A is the output of ConvertSig. Let us see how origin-hiding prevents linkability.

The proof strategy is as follows. Imagine that we have some number of honest
users in the system. In a real system, they would each use a different class of
identifiers. However, due to the class-hiding property of the system, we can show
via a hybrid argument that the adversary cannot distinguish the real system
from one in which all honest users’ identifiers come from the same equivalence
class. At this point, if origin-hiding holds unconditionally, we have arrived at an
experiment in which, given (m′, σ′), even a computationally unbounded adversary
cannot tell Alice from another user. However, if it holds only computationally,
then an unbounded adversary could link σ′ to (mA, σA), and this proof strategy
would be insufficient.

Towards constructing variable-length mercurial signatures. A naive ap-
proach to extending mercurial signatures to allow for messages of any length
would be to hash the messages down to the correct fixed length and use the
fixed-length mercurial signature scheme. In general, this does not work because we
do not readily have a hash function H such that H(m) and H(m′) are equivalent
when m and m′ are equivalent.

In order to maintain the equivalence relationship between messages, we instead
break a message m = (ĝ, u1, . . . , un), where ĝ is the base group element and, for
all 1 ≤ i ≤ n, ui = ĝmi for some mi ∈ Z∗p, into its n constituent group elements ui.
We then sign each one individually, together with powers of a base group element
indicating its index i, using the fixed-length mercurial signature scheme. This
does not suffice, though, because an adversary may be able to mix and match
elements of the n new messages Mi being signed under the fixed-length scheme.
In order to mitigate this, an additional group element, which we call a “glue”
element, is included in each of the n messages Mi to link them together and to the
original message m in an unforgeable way. Specifically, we represent the message
m to be signed as a sequence of n fixed-length messages M1 = (g̃, g̃1, g̃n, g̃s, u1),
M2 = (g̃, g̃2, g̃n, g̃s, u2),. . ., Mn = (g̃, g̃n, g̃n, g̃s, un), where g̃s is the glue element.

6 Elizabeth C. Crites and Anna Lysyanskaya

This allows a change of message representative from m to m′ = mµ, for any
µ ∈ Z∗p, by simply changing each Mi to M ′i = Mµ

i and invoking the ChangeRep
algorithm of the underlying fixed-length scheme. The problem with this approach,
however, is that different signatures will receive different glue values, so origin-
hiding will not hold in a statistical sense. It is important for the origin-hiding
property that the glue element g̃s for a message m be a function of the discrete
logarithms mi so that if an equivalent m′ gets signed, the corresponding M ′i ’s are
in the same equivalence classes as the original Mi’s for the original m (i.e., M ′i is
equivalent to Mi for all 1 ≤ i ≤ n). Computing g̃s as g̃R(m1,...,mn) for a random
function R of the mi’s would work, but how would the signer compute such a
value? A pseudorandom function could be used instead, but it is not obvious how
to compute it since the signer has the group elements u1, . . . , un, but not their
discrete logarithms m1, . . . ,mn. Our main technical insight is how to compute
the glue element such that it is a function of the entire equivalence class that a
message represents, and not just the message itself.

Interactive signing protocol. Unfortunately, we are not able to achieve a
signing algorithm that, on input a message vector, computes a group element
that can act as the glue. Instead, we provide an interactive signing protocol
that the signer and the signature recipient run together to compute the glue
element. In this protocol, for a message m = (ĝ, u1, . . . , un), the recipient of the
signature (but not the signer!) must know the discrete logarithms mi ∈ Z∗p, where
ui = ĝmi for 1 ≤ i ≤ n. This, in turn, leads to a relaxation of the notion of
unforgeability [FG18], whereby the adversary’s query to the signing oracle on a
message m must be paired with its discrete logarithms. Even though interactivity
is a shortcoming of our result, is sufficient for the motivating application: when a
user certifies another user’s public key, the credential recipient must prove, via a
ZKPoK, that she knows her corresponding secret key. Thus, interaction in signing
is commensurate with the ZKPoK already required for anonymous credentials.

2 Definition of Mercurial Signatures

We propose a definition of mercurial signatures that is nearly identical to the
definition stated in [CL19], but allows for messages of unbounded length. As we
shall see, the original construction of mercurial signatures satisfies this revised
definition for a fixed-length message space. Though mostly a restatement, we
provide the definition here to highlight the ways in which it differs from the
original. Unlike the prior scheme [CL19], the message space M for our new
mercurial signature scheme consists of vectors of any length, and we denote by
Mn the message space consisting of all message vectors of length n. Additionally,
the KeyGen algorithm no longer takes a length parameter as input, and ConvertSig
now takes a message converter µ as input in order to convert (m,σ) into (m̃, σ̃).

Definition 1 (Mercurial signature). A mercurial signature scheme for param-
eterized equivalence relations Rm, Rpk, Rsk is a tuple of the following polynomial-
time algorithms, which are deterministic algorithms unless otherwise stated:

Mercurial Signatures for Variable-Length Messages 7

PPGen(1k)→ PP : On input the security parameter 1k, this probabilistic algo-
rithm outputs the public parameters PP . This includes parameters for the
parameterized equivalence relations Rm, Rpk, Rsk so they are all well-defined.
It also includes parameters for the algorithms sampleρ and sampleµ, which
sample key and message converters, respectively.

KeyGen(PP)→ (pk, sk): On input the public parameters PP , this probabilistic
algorithm outputs a key pair (pk, sk). This algorithm also defines a corre-
spondence between public and secret keys: we write (pk, sk) ∈ KeyGen(PP)
if there exists a set of random choices that KeyGen could make that would
result in (pk, sk) as the output.

Sign(sk,m) → σ: On input the signing key sk and a message m ∈ M, this
probabilistic algorithm outputs a signature σ.

Verify(pk,m, σ) → 0/1: On input the public key pk, a message m, and a pur-
ported signature σ, output 0 or 1.

ConvertSK(sk, ρ)→ s̃k: On input sk and a key converter ρ ∈ sampleρ, output a

new secret key s̃k ∈ [sk]Rsk
.

ConvertPK(pk, ρ)→ p̃k: On input pk and a key converter ρ ∈ sampleρ, output a

new public key p̃k ∈ [pk]Rpk
. (Correctness of this operation, defined below,

will guarantee that if pk corresponds to sk, then p̃k corresponds to s̃k =
ConvertSK(sk, ρ).)

ChangeRep(pk,m, σ, µ) → (m′, σ′): On input pk, a message m, a signature σ,
and a message converter µ ∈ sampleµ, this probabilistic algorithm computes a
new message representative m′ ∈ [m]Rm and a new signature σ′ and outputs
(m′, σ′). (Correctness of this will require that whenever Verify(pk,m, σ) = 1,
it will also be the case that Verify(pk,m′, σ′) = 1.)

ConvertSig(pk,m, σ, ρ, µ) → (m′, σ̃): On input pk, a message m, a signature
σ, a key converter ρ ∈ sampleρ, and a message converter µ ∈ sampleµ,
this probabilistic algorithm computes a new message representative m′ ∈
[m]Rm and a new signature σ̃ and outputs (m′, σ̃). (Correctness of this will
require that whenever Verify(pk,m, σ) = 1, it will also be the case that
Verify(p̃k,m′, σ̃) = 1, where p̃k = ConvertPK(pk, ρ).)

Definition 2 (Correctness). A mercurial signature scheme (PPGen,KeyGen,
Sign,Verify,ConvertSK,ConvertPK,ChangeRep,ConvertSig) for parameterized
equivalence relations Rm,Rpk,Rsk is correct if it satisfies the following conditions
for all k, for all PP ∈ PPGen(1k), for all (pk, sk) ∈ KeyGen(PP):

Verification: For all m ∈M, for all σ ∈ Sign(sk,m), Verify(pk,m, σ) = 1.

Key conversion: For all ρ ∈ sampleρ, (ConvertPK(pk, ρ),ConvertSK(sk, ρ)) ∈
KeyGen(PP). Moreover, ConvertSK(sk, ρ) ∈ [sk]Rsk

and ConvertPK(pk, ρ) ∈ [pk]Rpk
.

Change of message representative: For all m ∈ M, for all σ such that
Verify(pk,m, σ) = 1, for all µ ∈ sampleµ, for all (m′, σ′) ∈ ChangeRep(pk,m, σ, µ),
Verify(pk,m′, σ′) = 1, where m′ ∈ [m]Rm .

8 Elizabeth C. Crites and Anna Lysyanskaya

Signature conversion: For all m ∈M, for all σ such that Verify(pk,m, σ) = 1,
for all ρ ∈ sampleρ, for all µ ∈ sampleµ, for all (m′, σ̃) ∈ ConvertSig(pk,m, σ, ρ, µ),
Verify(ConvertPK(pk, ρ),m′, σ̃) = 1, where m′ ∈ [m]Rm .

Correct verification, key conversion, and change of message representative are
exactly as in [CL19]. Correct signature conversion means that if a key converter ρ
is applied to a public key pk to obtain an equivalent p̃k, and the same ρ together
with a message converter µ is applied to a valid message-signature pair (m,σ) to
obtain (m′, σ̃), then the new signature σ̃ is valid on the new, equivalent message
m′ under the new public key p̃k.

Definition 3 (Unforgeability). A mercurial signature scheme (PPGen,KeyGen,
Sign,Verify,ConvertSK,ConvertPK,ChangeRep,ConvertSig) for parameterized
equivalence relationsRm,Rpk,Rsk is unforgeable if for all probabilistic, polynomial-
time (PPT) algorithmsA having access to a signing oracle, there exists a negligible
function ν such that:

Pr[PP ← PPGen(1k); (pk, sk)← KeyGen(PP); (Q, pk∗,m∗, σ∗)← ASign(sk,·)(pk)

: ∀ m̄ ∈ Q, [m∗]Rm 6= [m]Rm ∧ [pk∗]Rpk
= [pk]Rpk

∧ Verify(pk∗,m∗, σ∗) = 1] ≤ ν(k)

where Q is the set of discrete logarithms m̄ of queries that A has issued to the
signing oracle.

This unforgeability property is similar to existential unforgeability under
chosen open message attack (EUF-CoMA), defined by Fuchsbauer and Gay [FG18].
EUF-CoMA differs from EUF-CMA in that the adversary must provide the
discrete logarithms m̄ of the message m to be signed, which has the advantage
that the adversary’s success is efficiently verifiable. Our notion of unforgeability
is similar to EUF-CoMA, except the adversary’s winning condition is different.
As in the EUF-CoMA game, the adversary is given the public key pk and is
allowed to issue signature queries to the oracle that knows the corresponding
secret key sk. Eventually, the adversary outputs a public key pk∗, a message m∗,
and a purported signature σ∗. Unlike the EUF-CoMA game, the adversary has
the freedom to choose to output a forgery under a different public key pk∗, as
long as pk∗ is in the same equivalence class as pk. This seemingly makes the
adversary’s task easier. At the same time, the adversary’s forgery is not valid if
the message m∗ is in the same equivalence class as a previously queried message,
making the adversary’s task harder. EUF-CoMA restricts the forged message m∗

in this way, but does not allow a forgery under an equivalent public key. The
definition in [CL19] allows a forgery under an equivalent public key, but does not
require the adversary to provide the discrete logarithms of the message to be
signed.

Definition 4 (Class- and origin-hiding). A mercurial signature scheme
(PPGen, KeyGen,Sign,Verify,ConvertSK,ConvertPK,ChangeRep,ConvertSig) for
parameterized equivalence relations Rm,Rpk,Rsk is class-hiding if it satisfies the
following two properties:

Mercurial Signatures for Variable-Length Messages 9

Message class-hiding: For all polynomial-length parameters n(k), and for all
probabilistic, polynomial-time (PPT) algorithms A, there exists a negligible
function ν such that:

Pr[PP ← PPGen(1k);m1 ←Mn(k);m
0
2 ←Mn(k);m

1
2 ← [m1]Rm ;

b← {0, 1}; b′ ← A(PP ,m1,m
b
2) : b′ = b] ≤ 1

2 +ν(k)

Public key class-hiding: For all probabilistic, polynomial-time (PPT) algo-
rithms A, there exists a negligible function ν such that:

Pr[PP ← PPGen(1k); (pk1, sk1)← KeyGen(PP); (pk02, sk
0
2)← KeyGen(PP);

ρ← sampleρ(PP); pk12 = ConvertPK(pk1, ρ); sk12 = ConvertSK(sk1, ρ); b← {0, 1};

b′ ← ASign(sk1,·),Sign(skb2,·)(pk1, pk
b
2) : b′ = b] ≤ 1

2
+ ν(k)

A mercurial signature is also origin-hiding if the following two properties hold:

Origin-hiding of ChangeRep: For all k, for all PP ∈ PPGen(1k), for all pk∗ (in
particular, adversarially generated ones), for all m, σ, if Verify(pk∗,m, σ) = 1,
if µ ← sampleµ, then with overwhelming probability ChangeRep(pk∗,m, σ, µ)
outputs a uniformly random m′ ∈ [m]Rm and a uniformly random σ′ ∈ {σ̂ |
Verify(pk∗,m′, σ̂) = 1}.
Origin-hiding of ConvertSig: For all k, for all PP ∈ PPGen(1k), for all pk∗ (in
particular, adversarially generated ones), for all m, σ, if Verify(pk∗,m, σ) =
1, if ρ ← sampleρ and µ ← sampleµ, then with overwhelming probability
ConvertSig(pk∗,m, σ, ρ, µ) outputs a uniformly random m′ ∈ [m]Rm and a uni-
formly random σ̃ ∈ {σ̂ | Verify(ConvertPK(pk∗, ρ),m′, σ̂) = 1)}. ConvertPK(pk∗, ρ)
outputs a uniformly random element of [pk∗]Rpk

.

Note that this definition of origin-hiding is a relaxation of the prior definition
[CL19] in that there is a small probability that the outputs of ChangeRep and
ConvertSig are not distributed correctly. It will become clear why in Section 3.1.

3 Construction of Mercurial Signatures for
Variable-Length Messages

Let G1,G2, and GT be multiplicative groups of prime order p with a Type III
bilinear pairing e : G1×G2 → GT (see Appendix A). Similar to the prior mercurial
signature scheme [CL19], the message space for our new mercurial signature
scheme consists of vectors of group elements from G∗1, where G∗1 = G1\{1G1

}.
Unlike the prior scheme, these can be vectors of any length. The message space
is Mn = {(ĝ, u1, . . . , un) ∈ (G∗1)n+1}, where ĝ is a generator of G1, and for all
1 ≤ i ≤ n, ui = ĝmi for some mi ∈ Z∗p. The space of secret keys consists of
vectors of elements from Z∗p. The space of public keys, similar to the message
space, consists of vectors of group elements from G∗2. A scheme with messages

10 Elizabeth C. Crites and Anna Lysyanskaya

over G∗2 and public keys over G∗1 can be obtained by simply switching G∗1 and
G∗2 throughout. Once the prime p, G1, and G2 are well-defined, for a length
parameter n ∈ N the equivalence relations of interest to us are as follows:

Rm = {(m,m′) ∈ (G∗1)n+1 × (G∗1)n+1 | ∃ µ ∈ Z∗p such that m′ = mµ}

Rsk = {(skX, s̃kX) ∈ (Z∗p)10 × (Z∗p)10 | ∃ ρ ∈ Z∗p such that s̃k = ρ · sk}

Rpk = {(pkX, p̃kX) ∈ (G∗2)10 × (G∗2)10 | ∃ ρ ∈ Z∗p such that p̃k = pkρ}

Our variable-length mercurial signature scheme, denoted MSX, is an extension
of the prior fixed-length scheme, denoted MSf [CL19], which can be found in
Appendix B. The subscript X, for extension, is used to denote all keys and
algorithms associated with the variable-length scheme MSX.

Let us discuss the security properties of the fixed-length scheme MSf . It
satisfies the definition of security in Section 2, but only for the fixed-length
message space M5 = (G∗1)5. If given as input a message m /∈ M5, the signing
algorithm rejects. Correspondingly, correctness only holds for messages of the
correct length. MSf satisfies the definition of unforgeability in Section 2 as well as
message and public key class-hiding. As for origin-hiding, ChangeRepf (pk,m, σ, µ)
outputs (m′, σ′), where m′ = mµ ∈ [m]Rm for a message converter µ ∈ Z∗p and
σ′ is a valid signature on m′ under pk, and ConvertSigf (pk,m, σ, ρ) outputs σ̃,

where σ̃ is a valid signature on m under p̃k = pkρ ∈ [pk]Rpk
for a key converter

ρ ∈ Z∗p. Both ChangeRepf and ConvertSigf satisfy origin-hiding with probability
1. The following theorem summarizes the security properties of MSf .

Theorem 1. [CL19]. The mercurial signature scheme MSf is correct for fixed-
length messages, unforgeable, and satisfies class- and origin-hiding in the generic
group model for Type III bilinear groups.

MSX can be constructed from MSf on messages of length ` = 5 as follows. A
message m is written as m = (ĝ, u1, . . . , un) ∈ (G∗1)n+1, where ĝ is a generator
of G1 and for all 1 ≤ i ≤ n, ui = ĝmi for some mi ∈ Z∗p. For a generator g̃ of G1

and “glue” element h̃ ∈ G∗1 (discussed shortly), the message m can be represented
as a set of n messages that are in the message space of the mercurial signature
scheme MSf as follows, where ũi = g̃mi for all 1 ≤ i ≤ n:

M1 = (g̃, g̃1, g̃n, h̃, ũ1)

M2 = (g̃, g̃2, g̃n, h̃, ũ2)

...

Mn = (g̃, g̃n, g̃n, h̃, ũn)

Each message Mi = (g̃, g̃i, g̃n, h̃, ũi) is signed using the mercurial signature
scheme MSf , resulting in a signature σi. The verification consists of checking the
n message-signature pairs (Mi, σi) using the prior mercurial signature Verifyf
algorithm.

Mercurial Signatures for Variable-Length Messages 11

How might we form the glue element h̃? As discussed in the introduction, it is
important for the origin-hiding property that h̃ for a message m = (ĝ, u1, . . . , un),
where ui = ĝmi , be a function of the mi’s so that if another representative
m′ ∈ [m]Rm gets signed, the corresponding M ′i ’s are in the same equivalence
classes as the original Mi’s for the original m (i.e., M ′i ∈ [Mi]Rm for all 1 ≤ i ≤ n).
Computing h̃ as g̃R(m1,...,mn) for a random function R of the mi’s would work,
but how would the signer compute such a value? A pseudorandom function could
be used instead, but it is not obvious how to compute it since the signer has the
group elements u1, . . . , un, but not their discrete logarithms m1, . . . ,mn.

Our solution is as follows. Consider a polynomial pm(x) parameterized by
the mi’s: pm(x) = m1 + m2x + m3x

2 · · · + mnx
n−1. The signer evaluates this

polynomial at a secret value x̂ known only to him: pm(x̂). The glue element

could be computed by the signer as ĥ = ĝpm(x̂); however, to ensure that it
is pseudorandom, the signer picks a uniformly random w ← Z∗p, sets g̃ = gw,

and computes the glue element as h̃ = g̃pm(x̂). Additionally, the signer picks a
uniformly random y ← Z∗p and raises g̃pm(x̂) to y, resulting in the following:

h̃ =
(
g̃pm(x̂)

)y
=
(
g̃
∑n
i=1mix̂

i−1
)y

=
(n∏
i=1

g̃mix̂
i−1
)y

(1)

Note that w is fresh for each signature, but y is the same for all signatures issued
by the same signer. In reality, the signer does not know the mi’s required to
form the polynomial pm(x̂); however, he is given as input the original ui’s, which
have the relationship ui = ĝmi , so h̃ can be computed directly as follows, where
ũi = uwi = g̃mi :

h̃ =
(n∏
i=1

ũx̂
i−1

i

)y
This is exactly Equation (1).

We now describe our construction formally. We first provide a non-interactive
construction that satisfies the input-output specification in the definition of
mercurial signatures. The final construction (Section 3.1) involves an interactive
signing protocol carried out between the signer and the recipient of the signature.

Construction. The following algorithms from the fixed-length scheme MSf are
invoked: ChangeRepf (pk,m, σ, µ)→ (m′, σ′), where m′ = mµ ∈ [m]Rm for a mes-
sage converter µ ∈ Z∗p and Verifyf (pk,m′, σ′) = 1, and ConvertSigf (pk,m, σ, ρ)→
σ̃, where Verifyf (p̃k,m, σ̃) = 1 and p̃k = pkρ ∈ [pk]Rpk

for a key converter ρ ∈ Z∗p.

PPGenX(1k) → PPX: Run PP ← PPGenf (1k) and output PPX = PP , where

PP = BG = (G1,G2,GT , P, P̂ , e).
KeyGenX(PPX)→ (pkX, skX): Run (pk, sk)← KeyGenf (PP , ` = 5), where sk =

(x1, x2, x3, x4, x5) ∈ (Z∗p)5 and pk = (X̂1, X̂2, X̂3, X̂4, X̂5) ∈ (G∗2)5 for X̂i =

P̂ xi . Pick uniformly at random a secret point x̂← Z∗p and secret seeds y1, y2 ←

12 Elizabeth C. Crites and Anna Lysyanskaya

Z∗p. Also pick x6, x8 ← Z∗p and set x7 = x6 ·x̂ and x9 = x8 ·y1 and x10 = x8 ·y2.

Set skX = (sk, x6, x7, x8, x9, x10) and pkX = (pk, X̂6, X̂7, X̂8, X̂9, X̂10), where
X̂i = P̂ xi , and output (pkX, skX).

SignX(skX,m) → (ĥ, σ): On input skX = (sk, x6, x7, x8, x9, x10) and a message
m = (ĝ, u1, . . . , un) ∈ (G∗1)n+1, where ĝ is a generator of G1, compute
x̂ = x7 · x−16 and y1 = x9 · x−18 and y2 = x10 · x−18 . Then, compute y := y1 · y2
and:

ĥ =
(n∏
i=1

ux̂
i−1

i

)y
Compute ĝ2, . . . , ĝn. For all 1 ≤ i ≤ n, form the message Mi = (ĝ, ĝi, ĝn, ĥ, ui)

and run σi ← Signf (sk,Mi). Output the signature (ĥ, σ = {σ1, σ2, . . . , σn}).

VerifyX(pkX,m, (ĥ, σ)) → 0/1: On input pkX = (pk, X̂6, X̂7, X̂8, X̂9, X̂10), m =

(ĝ, u1, . . . , un), and a signature (ĥ, σ = {σ1, . . . , σn}), compute ĝ2, . . . , ĝn. For

all 1 ≤ i ≤ n, form the message Mi = (ĝ, ĝi, ĝn, ĥ, ui) and check whether
Verifyf (pk,Mi, σi) = 1. If these checks hold, output 1; otherwise output 0.

ConvertSKX(skX, ρ) → s̃kX: On input skX = (sk, x6, x7, x8, x9, x10) and ρ ∈ Z∗p,
run s̃k ← ConvertSKf (sk, ρ), where s̃k = ρ · sk, compute x̃i = ρ · xi for all

6 ≤ i ≤ 10, and output the new secret key s̃kX = (s̃k, x̃6, x̃7, x̃8, x̃9, x̃10).

ConvertPKX(pkX, ρ)→ p̃kX: On input pkX = (pk, X̂6, X̂7, X̂8, X̂9, X̂10) and ρ ∈
Z∗p, run p̃k← ConvertPKf (pk, ρ), where p̃k = pkρ, compute X̃i = X̂ρ

i for all

6 ≤ i ≤ 10, and output the new public key p̃kX = (p̃k, X̃6, X̃7, X̃8, X̃9, X̃10).

ChangeRepX(pkX,m, (ĥ, σ), µ)→ (m′, (ĥ′, σ′)): On input pkX = (pk, X̂6, X̂7, X̂8,

X̂9, X̂10), m = (ĝ, u1, . . . , un), signature (ĥ, σ = {σ1, . . . , σn}), and µ ∈ Z∗p,
compute ĝ2, . . . , ĝn. For all 1 ≤ i ≤ n, form the message Mi = (ĝ, ĝi, ĝn, ĥ, ui)
and run (M ′i , σ

′
i)← ChangeRepf (pk,Mi, σi, µ), where M ′i = (ĝµ, (ĝµ)i, (ĝµ)n,

ĥµ, uµi). Set m′ = (ĝ′, u′1, . . . , u
′
n) = (ĝµ, uµ1 , . . . , u

µ
n) and ĥ′ = ĥµ and output

(m′, (ĥ′, σ′ = {σ′1, . . . , σ′n})).
ConvertSigX(pkX,m, (ĥ, σ), ρ, µ) → (m′, (ĥ′, σ̃)): On input pkX, m, signature

(ĥ, σ), and ρ, µ ∈ Z∗p, run (m′, (ĥ′, σ′)) ← ChangeRepX(pkX,m, (ĥ, σ), µ),
where m′ = (ĝ′, u′1, . . . , u

′
n) and σ′ = {σ′1, . . . , σ′n}. Compute (ĝ′)2, . . . , (ĝ′)n.

For all 1 ≤ i ≤ n, form the message M ′i = (ĝ′, (ĝ′)i, (ĝ′)n, ĥ′, u′i) and run

σ̃i ← ConvertSigf (pk,M ′i , σ
′
i, ρ). Output (m′, (ĥ′, σ̃ = {σ̃1, . . . , σ̃n})).

3.1 Signing Protocol

Our construction satisfies the input-output specification in the definition of
mercurial signatures; however, unfortunately, our proofs of unforgeability and
origin-hiding do not allow a signer to simply sign any message given to it as input.
Instead, the signer must run a signing protocol with the receiver of the signature.
When a signature is queried on a message m = (ĝ, u1, . . . , un) ∈ (G∗1)n+1, the
signer first has the recipient give a ZKPoK that, for all 1 ≤ i ≤ n, the recipient

Mercurial Signatures for Variable-Length Messages 13

knows mi such that ui = ĝmi . This ZKPoK is requisite for proving unforgeability,
as the reduction’s algorithm must use the exponent mi’s. The signer then carries
out the signing algorithm SignX as specified in the construction above, with one
modification: the signer picks a uniformly random w ← Z∗p, sets g̃ = ĝw, and

computes the glue element h̃ relative to base g̃. The additional randomness w
ensures that the glue element is pseudorandom, as discussed in Section 3.

In addition to the usual unforgeability property that protects the signer, mer-
curial signatures also have the origin-hiding property that protects the privacy of
the signature recipient. Intuitively, origin-hiding means that a message-signature
pair (m,σ) is distributed exactly the same way whether (1) the signature σ
on m was issued directly by the signer, or (2) (m,σ) was obtained by running
ChangeRep(pk,m′, σ′) on an equivalent m′. The reason it protects the signature
recipient is that the resulting (m,σ) is not linkable to the specific point in time
when this recipient was issued this signature.

In order to satisfy the origin-hiding property, the glue element h̃ must be
computed (relative to g̃) as a function of the entire equivalence class to which
the message belongs. That way, no matter which message in the class is being
signed, the glue element’s discrete logarithm base g̃ is the same. A dishonest
signer might try to compute the glue element incorrectly, depriving the recipient
of the benefits that origin-hiding confers. Thus, as a final step in the signing
protocol, the recipient verifies via a ZKPoK that the glue element was indeed
computed correctly, so origin-hiding holds for all signers, not just honest ones.

Let us now address which ZKPoK protocol ought to be used. There is a rich
literature on ZKPoK protocols for discrete logarithm-based relations that are
both practical and provably secure. For our purposes, a ZKPoK protocol needs
to be secure under the appropriate notion of composition: our unforgeability
game allows the adversary to issue many signing queries, so the challenger must
be able to respond to many queries. The best security for our purposes would
be UC security [Can01], but it may come at an efficiency cost. For efficient
and UC-secure Sigma protocols [Dam02], Dodis, Shoup, and Walfish [DSW08]
offer a solution, but it relies on verifiable encryption [CS03] or similar, which
adds complexity and setup assumptions. In the random oracle model, Fischlin
[Fis05] as well as Bernhard, Fischlin, and Warinschi [BFW15] show how to get
an extractor that does not need to rewind, thereby allowing composition. If all
we want is sequential composition, then we can rely on the fact that proofs of
knowledge compose under sequential composition, but that means that in our
unforgeability game, the signer can only respond to one signature query at a time.

Signing Protocol: This is an interactive protocol between a Signer, who runs
the Sign side of the protocol, and a Receiver, who runs the Receive side.

[SignX(skX,m) ↔ ReceiveX(pkX,m, (m1, . . . ,mn))] → (m̃, (h̃, σ)) : The Signer
takes as input his signing key skX = (sk, x6, x7, x8, x9, x10) and a message
m = (ĝ, u1, . . . , un). The Receiver takes as input the corresponding public key
pkX = (pk, X̂6, X̂7, X̂8, X̂9, X̂10), the message m, and a vector (m1, . . . ,mn) ∈
(Z∗p)n.

14 Elizabeth C. Crites and Anna Lysyanskaya

0. The Receiver checks that in fact ui = ĝmi for all 1 ≤ i ≤ n.
1. The Signer acts as the verifier while the Receiver gives a ZKPoK that, for

all 1 ≤ i ≤ n, he knows mi such that ui = ĝmi . If the verification fails, the
Signer denies the Receiver the signature.

2. The Signer computes ĥ as in the construction above. He then picks uniformly
at random w ← Z∗p and computes h̃ = ĥw and m̃ = (g̃, ũ1, . . . , ũn) =
(ĝw, uwi , . . . , u

w
n). He also computes g̃2, . . . , g̃n. For all 1 ≤ i ≤ n, he forms

the message Mi = (g̃, g̃i, g̃n, h̃, ũi) and runs σi ← Signf (sk,Mi). The Signer

sends the message m̃ and signature (h̃, σ = {σ1, . . . , σn}) to the Receiver.
3. The Receiver acts as the verifier while the Signer gives a ZKPoK that he

has computed the glue element h̃ correctly. If verification of the glue and
signature passes, the Receiver outputs the message m̃ and signature (h̃, σ).

The algorithms VerifyX, ChangeRepX, and ConvertSigX must be modified to take
as input the message m̃ = (g̃, ũ1, . . . , ũn):

VerifyX(pkX, m̃, (h̃, σ)) → 0/1: Form Mi = (g̃, g̃i, g̃n, h̃, ũi) and check whether
Verifyf (pk,Mi, σi) = 1 for all 1 ≤ i ≤ n.

ChangeRepX(pkX, m̃, (h̃, σ), µ)→ (m̃′, (h̃′, σ′)): Form Mi = (g̃, g̃i, g̃n, h̃, ũi) and
run (M ′i , σ

′
i) ← ChangeRepf (pk,Mi, σi, µ) for all 1 ≤ i ≤ n. Output (m̃′ =

(g̃µ, ũµ1 , . . . , ũ
µ
n), (h̃′ = h̃µ, σ′ = {σ′1, . . . , σ′n})).

ConvertSigX(pkX, m̃, (h̃, σ), ρ, µ)→ (m̃′, (h̃′, σ̃)): Run (m̃′, (h̃′, σ′ = {σ′1, . . . , σ′n}))
← ChangeRepX(pkX, m̃, (h̃, σ), µ). Form M ′i = (g̃′, (g̃′)i, (g̃′)n, h̃′, ũ′i) and run
σ̃i ← ConvertSigf (pk,M ′i , σ

′
i, ρ) for all 1 ≤ i ≤ n. Output (m̃′, (h̃′, σ̃ =

{σ̃1, . . . , σ̃n})).

Remark. While the elements X̂6, X̂7, X̂8, X̂9, X̂10 of the public key pkX do not
participate in signature verification, they do participate in Step 3 of the signing
protocol.

Theorem 2 (Correctness). Let MSf be a mercurial signature scheme on mes-
sage space (G∗1)5 as in Theorem 1, and let MSX be the variable-length mercurial
signature scheme on message space (G∗1)n+1 constructed above, where all signa-
tures are issued via the interactive signing protocol. Then, MSX is correct.

Correct verification and key conversion can be seen by inspection. We show
correct change of message representative, and signature conversion is similar.

Change of message representative: We wish to show that for all messages
m ∈ Mn, for all signatures (h̃, σ) such that VerifyX(pkX, m̃, (h̃, σ)) = 1, for all
µ ∈ sampleµ, for all (m̃′, (h̃′, σ′)) ∈ ChangeRepX(pkX, m̃, (h̃, σ), µ), it holds that

VerifyX(pkX, m̃
′, (h̃′, σ′)) = 1, where m̃′ ∈ [m̃]Rm . First, observe that the Mi’s cor-

responding to (m̃, (h̃, σ = {σ1, . . . , σn})) are Mi = (g̃, g̃i, g̃n, h̃, ũi). ChangeRepX
invokes ChangeRepf as follows: for all 1 ≤ i ≤ n, ChangeRepf (pk,Mi, σi, µ) out-

puts (M ′i , σ
′
i), where M ′i = (g̃µ, (g̃µ)i, (g̃µ)n, h̃µ, ũµi). By correct change of message

representative of ChangeRepf (Theorem 1), we have that Verifyf (pk,M ′i , σ
′
i) = 1

for all 1 ≤ i ≤ n, which implies that VerifyX(pkX, m̃
′, (h̃′, σ′)) = 1, where

m̃′ = (g̃µ, ũµ1 , . . . , ũ
µ
n) ∈ [m̃]Rm .

Mercurial Signatures for Variable-Length Messages 15

3.2 Origin-hiding

Theorem 3 (Origin-hiding). Let MSf be a mercurial signature scheme on
message space (G∗1)5 as in Theorem 1, and let MSX be the variable-length mercu-
rial signature scheme on message space (G∗1)n+1 constructed above. Suppose all
signatures are issued via the interactive signing protocol described in Section 3.1,
where the proof system used in Step 3 is sound under sequential (or concur-
rent) composition. Then, MSX is origin-hiding under sequential (or concurrent)
composition.

Origin-hiding of ChangeRepX: Let pk∗X, m̃, (h̃, σ = {σ1, . . . , σn}) be such that
VerifyX(pk∗X, m̃, (h̃, σ)) = 1, where pk∗X is possibly adversarially generated.
ChangeRepX(pk∗X, m̃, (h̃, σ), µ) outputs

(m̃′, (h̃′, σ′)) = (m̃µ, (h̃µ, {σ′1, . . . , σ′n}))

where m̃µ is shorthand for m̃µ = (g̃µ, ũµ1 , . . . , ũ
µ
n). By soundness of the ZKPoK

in Step 3 of the signing protocol, the glue element h̃ is computed correctly
with overwhelming probability. The Mi’s corresponding to (m̃, (h̃, σ)) are Mi =
(g̃, g̃i, g̃n, h̃, ũi). ChangeRepX invokes ChangeRepf as follows: for all 1 ≤ i ≤ n,

ChangeRepf (pk,Mi, σi, µ) outputs (M ′i , σ
′
i), where M ′i = (g̃µ, (g̃µ)i, (g̃µ)n, h̃µ, ũµi).

By origin-hiding of ChangeRepf (Theorem 1), σ′i is distributed the same as a

fresh signature on M ′i for all 1 ≤ i ≤ n. Note that the glue element h̃µ is correct
if h̃ is correct, and h̃µ is distributed the same as a fresh glue element for a
fresh signature on m̃µ. Thus, m̃µ is a uniformly random element of [m̃]Rm , and
(h̃µ, (σ′1, . . . , σ

′
n)) is a uniformly random element in the space of signatures (h̄, σ̄)

satisfying VerifyX(pk∗X, m̃
µ, (h̄, σ̄)) = 1 with overwhelming probability.

Origin-hiding of ConvertSigX: Let pk∗X, m̃, (h̃, σ = {σ1, . . . , σn}) be such that
VerifyX(pk∗X, m̃, (h̃, σ)) = 1, where pk∗X is possibly adversarially generated.
ConvertSigX(pk∗X, m̃, (h̃, σ), ρ, µ) outputs

(m̃′, (h̃′, σ̃)) = (m̃µ, (h̃µ, (σ̃1, . . . , σ̃n)))

where m̃µ is shorthand for m̃µ = (g̃µ, ũµ1 , . . . , ũ
µ
n). By soundness of the ZKPoK

in Step 3 of the signing protocol, the glue element h̃ is computed correctly
with overwhelming probability. The Mi’s corresponding to (m̃, (h̃, σ)) are Mi =
(g̃, g̃i, g̃n, h̃, ũi). The output of ConvertSigX is computed in two steps. First,
ChangeRepX(pk∗X, m̃, (h̃, σ), µ) outputs (m̃′, (h̃′, σ′)) = (m̃µ, (h̃µ, (σ′1, . . . , σ

′
n))).

Then, ConvertSigf (pk∗,M ′i , σ
′
i, ρ) outputs σ̃i for all 1 ≤ i ≤ n. ChangeRepX

is origin-hiding, as shown above, and ConvertSigf is origin-hiding by Theo-

rem 1. Thus, m̃µ is a uniformly random element of [m̃]Rm , and (h̃µ, (σ̃1, . . . , σ̃n))
is a uniformly random element in the space of signatures (h̄, σ̄) satisfying
VerifyX(ConvertPKX(pk∗X, ρ), m̃µ, (h̄, σ̄)) = 1 with overwhelming probability (where
ConvertPKX(pk∗X, ρ) = (pk∗X)ρ is a uniformly random element of [pk∗X]Rpk

).

16 Elizabeth C. Crites and Anna Lysyanskaya

3.3 Unforgeability

Unforgeability of MSX holds under a variant of the decisional Diffie-Hellman
assumption for Type III bilinear pairings, called the ABDDH+ assumption. It
was introduced by Fuchsbauer, Hanser, Kamath, and Slamanig [FHKS16] and
proven to hold in generic groups.

Definition 5 (ABDDH+ assumption). [FHKS16] Let BGGen be a bilinear
group generator that outputs BG = (p,G1,G2,GT , P, P̂ , e). The ABDDH+ as-
sumption holds in G1 if for all probabilistic, polynomial-time (PPT) algorithms
A, there exists a negligible function ν such that:

Pr[b← {0, 1};BG← BGGen(1k);u, v, w, r ← Z∗p;

b∗ ← A(BG, P̂u, P̂ v, Pu, Puv, Pw, P (1−b)·r+b·(wuv)) : b∗ = b]− 1

2
≤ ν(k)

Proposition 1. [FHKS16] The ABDDH+ assumption holds in generic groups.

Theorem 4 (Unforgeability). Let MSf be a mercurial signature scheme on
message space (G∗1)5 as in Theorem 1, and let MSX be the variable-length mer-
curial signature scheme on message space (G∗1)n+1 constructed above. Suppose
all signatures are issued via the interactive signing protocol described in Sec-
tion 3.1, where the proof system used in Step 1 is extractable under sequential (or
concurrent) composition. Then, unforgeability of MSX holds sequentially (or con-
currently) under the discrete logarithm (DL) assumption in G2 and the ABDDH+

assumption in G1. The same holds when G1 and G2 are swapped.

Proof. We wish to show that if there exists a probabilistic, polynomial-time (PPT)
adversary A that breaks unforgeability of MSX with non-negligible probability,
then we can construct a PPT adversary A′ that breaks unforgeability of MSf
with non-negligible probability, or the discrete logarithm (DL) or ABDDH+

assumption doesn’t hold.

Suppose there exists such a PPT adversary A. Then, we construct a PPT
adversary A′ as a reduction BMSf running A as a subroutine. We construct the
reduction BMSf for breaking unforgeability of MSf as follows.

BMSf receives as input public parameters PP = BG = (G1,G2,GT , P, P̂ , e)
and a fixed public key pk = (X̂1, X̂2, X̂3, X̂4, X̂5) for the mercurial signature
scheme MSf on messages of length ` = 5 for which he will try to produce a
forgery. He chooses uniformly at random a secret point x̂← Z∗p and secret seeds
y1, y2 ← Z∗p. He also picks x6, x8 ← Z∗p and sets x7 = x6 · x̂ and x9 = x8 · y1
and x10 = x8 · y2. He then sets pkX = (pk, X̂6, X̂7, X̂8, X̂9, X̂10), where X̂i = P̂ xi .
BMSf forwards PPX = PP and pkX to A and acts as A’s challenger C. As in the
unforgeability game for MSf , BMSf has access to a signing oracle Signf (sk, ·),
where sk is the secret key corresponding to pk. A proceeds to make signature
queries on messages of the form m = (ĝ, u1, . . . , un) ∈ (G∗1)n+1. For each signature
query, BMSf acts as the verifier while A gives a ZKPoK that, for all 1 ≤ i ≤ n,

Mercurial Signatures for Variable-Length Messages 17

he knows mi such that ui = ĝmi . If the verification fails, BMSf denies A the
signature; otherwise, BMSf computes y = y1 · y2 and:

ĥ =
(n∏
i=1

ux̂
i−1

i

)y
BMSf picks uniformly at random w ← Z∗p and computes g̃ = ĝw, h̃ = ĥw, and
ũi = uwi for all 1 ≤ i ≤ n. He also computes g̃2, . . . , g̃n. He forwards n messages
of the form Mi = (g̃, g̃i, g̃n, h̃, ũi) to his signing oracle Signf (sk, ·) and receives n
signatures σ1, . . . , σn. He sends the message m̃ = (g̃, ũ1, . . . , ũn) and the signature
(h̃, σ = {σ1, . . . , σn}) to A, along with a ZKPoK that h̃ was computed correctly.

After some polynomial number of signature queries, A produces a forgery
(pk∗X, m̃

∗, (h̃∗, σ∗)), where pk∗X = (pk∗, X̂∗6 , X̂
∗
7 , X̂

∗
8 , X̂

∗
9 , X̂

∗
10), m̃∗ = (g̃∗, ũ∗1, . . . , ũ

∗
n),

and σ∗ = {σ∗1 , . . . , σ∗n}. A’s forgery can be represented as a set of messages that
are in the message space of MSf :

M∗1 = (g̃∗, (g̃∗)1, (g̃∗)n, h̃∗, ũ∗1)

M∗2 = (g̃∗, (g̃∗)2, (g̃∗)n, h̃∗, ũ∗2)

...

M∗n = (g̃∗, (g̃∗)n, (g̃∗)n, h̃∗, ũ∗n)

BMSf chooses i← {1, . . . , n} uniformly at random and outputs (pk∗,M∗i , σ
∗
i) as

his forgery. Let us analyze BMSf ’s success probability.

Suppose A’s forgery (pk∗X, m̃
∗, (h̃∗, σ∗)) is successful. Then, by definition, it sat-

isfies [pk∗X]Rpk
= [pkX]Rpk

and ∀ m̄ ∈ Q, [m̃∗]Rm 6= [m]Rm and VerifyX(pk∗X, m̃
∗, (h̃∗,

σ∗)) = 1, where Q is the set of discrete logarithms m̄ = {m1, . . . ,mn} ∈ (Z∗p)n
of queries m that A has issued to the signing oracle. Note that the forged g̃∗

and h̃∗ must be repeated for each message M∗i because the verification algorithm
accepts the signature (h̃∗, σ∗ = {σ∗1 , . . . , σ∗n}).

There are two ways in which the forged message m̃∗ could have been derived
by A: either (1) there exists some i ∈ {1, . . . , n} for which [M∗i]Rm 6= [M]Rm for
any M previously queried by BMSf to his signing oracle, or (2) every M∗i is such
that [M∗i]Rm = [M]Rm for some M previously queried by BMSf to his signing
oracle.

(1) Good Case: There exists some i ∈ {1, . . . , n} for which [M∗i]Rm 6= [M]Rm
for any M previously queried by BMSf to his signing oracle.

We will see that with overwhelming probability, the Good Case is the way in
which A forms his forgery.

(2) Bad Case: Every M∗i is such that [M∗i]Rm = [M]Rm for some M previously
queried by BMSf to his signing oracle.

In this case, A is able to “mix and match” mi’s from different messages for
which signatures have been issued. We claim that A cannot do this, except with
negligible probability, or the DL or ABDDH+ assumption doesn’t hold.

18 Elizabeth C. Crites and Anna Lysyanskaya

First, note that if a glue element h̃ is formed as g̃R(m1,...,mn) for some random
function R : (Z∗p)n → Z∗p, then A cannot mix and match. This is because if the
vectors (m1, . . . ,mn) are distinct, then the values R(m1, . . . ,mn) are distinct as
well as the glue elements g̃R(m1,...,mn). Our goal is to demonstrate that a glue
element formed as g̃R(m1,...,mn) is indistinguishable from a real glue element g̃y·q,
where q = p(x̂) =

∑n
i=1mix̂

i−1. Then, A can’t mix and match when real glue
elements are used, except with negligible probability.

We achieve this goal in two steps. We first demonstrate that g̃R(m1,...,mn) is
indistinguishable from g̃R(q), where R : Z∗p → Z∗p is a random function, under the

DL assumption. We then demonstrate that g̃R(q) is indistinguishable from a real
glue element g̃y·q under the ABDDH+ assumption. This gives the desired result.

Consider the following set of games. In Game 0, the real signing game, the
glue element is computed directly, without extraction of the mi’s or simulated
proofs. Game 1 includes simulated proofs. In Games 2-5, the challenger acts as
the zero-knowledge extractor to extract the mi’s necessary to compute the glue
element and provides a simulated proof that it was computed correctly. The
overall proof structure is as follows. Arrows indicate why consecutive games are
indistinguishable. The full proof can be found in Appendix C.

Game 0. h̃ = g̃y·q. No extraction or simulation. This is the real signing game.xy Claim 1: zero-knowledge property

Game 1. h̃ = g̃y·q. No extraction, but simulation.xy Claim 2: knowledge extractor property

Game 2. h̃ = g̃y·q, where q = p(x̂). Extraction and simulation henceforth.xy Claim 3: ABDDH+ assumption in G1 (hybrid argument)

Game 3. h̃ = g̃R(q), where q = p(x̂) and R : Z∗p → Z∗p is a random function.xy Claim 4: polynomial collision argument / Claim 5: DL assumption in G2

Game 4. h̃ = g̃R(q̇), where q̇ = p(α) for “fake” secret point α ∈ Z∗p.xy Claim 6: polynomial collision argument

Game 5. h̃ = g̃R(m1,...,mn), where R : (Z∗p)n → Z∗p is a random function.

Thus, A cannot mix and match when real glue elements are used, except with
negligible probability. With overwhelming probability, the Good Case occurs
and A’s non-negligible success in producing a forgery for MSX becomes BMSf ’s
non-negligible success in producing a forgery for MSf .

3.4 Class-hiding

Message class-hiding states that given two messages, m1 and m2, it is hard to tell
if m2 ∈ [m1]Rm . Public key class-hiding states that given two public keys, pkX,1
and pkX,2, and oracle access to the signing algorithm for both of them, it is hard
to tell if pkX,2 ∈ [pkX,1]Rpk

. The proof of message class-hiding is a straightforward
hybrid argument under the decisional Diffie-Hellman assumption (DDH) [FHS19].
The bulk of this section is devoted to proving public key class-hiding.

Mercurial Signatures for Variable-Length Messages 19

Theorem 5 (Message class-hiding). Let MSf be a mercurial signature scheme
on message space (G∗1)5 as in Theorem 1, and let MSX be the variable-length
mercurial signature scheme on message space (G∗1)n+1 constructed above. Then,
message class-hiding of MSX holds under the decisional Diffie-Hellman assumption
(DDH) in G1. The same holds when G1 and G2 are swapped.

Proof. This is analogous to the proof of message class-hiding for MSf , which was
inherited from the work of Fuchsbauer et al. [FHS19].

Theorem 6 (Public key class-hiding). Let MSf be a mercurial signature
scheme on message space (G∗1)5, and let MSX be the variable-length mercurial
signature scheme on message space (G∗1)n+1 constructed above. Suppose all sig-
natures are issued via the interactive signing protocol described in Section 3.1,
where the proof system used in Step 1 is extractable under sequential (or concur-
rent) composition. Then, public key class-hiding of MSX holds sequentially (or
concurrently) under the DL assumption in G2, the ABDDH+ assumption in G1,
and the DDH assumption in G1 and G2. The same holds when G1 and G2 are
swapped.

Proof. Consider two public keys for the mercurial signature scheme MSX:

pkX,1 = (pk1, P̂
x1,6 , P̂ x1,6·x̂1 , P̂ x1,8 , P̂ x1,8·y(1)1 , P̂ x1,8·y(1)2)

pkX,2 = (pk2, P̂
x2,6 , P̂ x2,6·x̂2 , P̂ x2,8 , P̂ x2,8·y(2)1 , P̂ x2,8·y(2)2)

where xδ,6, xδ,8, x̂δ, y
(δ)
1 , y

(δ)
2 ∈ Z∗p for δ ∈ {1, 2}. They are independent if these

values are sample uniformly at random from Z∗p and equivalent if pkX,2 = pkβX,1
for some β ∈ Z∗p. They are said to be 1/2 independent and 1/2 equivalent if

pk2 = pkβ1 , but the remaining elements are independent.
We construct a sequence of games beginning with the real signing game in

which pkX,1, pkX,2 are independent (Game 0). In the real signing game, a signature
query on a message m under chosen public key pkX,δ for δ ∈ {1, 2} results in a

glue element computed as h̃ = g̃y
(δ)·qδ , where qδ = p(x̂δ) and y(δ) := y

(δ)
1 · y

(δ)
2 .

The sequence of games ends with the real signing game in which pkX,1, pkX,2
are equivalent (Game 13). Our goal is to show that Game 0 and Game 13 are
indistinguishable via a sequence of intermediate games. These games cycle through
public keys pkX,1, pkX,2 that are each of these three types as well as glue elements
that are computed in the various ways specified in the proof of unforgeability.
The overall proof structure is as follows. Arrows indicate why consecutive games
are indistinguishable. The full proof can be found in Appendix D.

Game 0. pkX,1, pkX,2 are independent, h̃ = g̃y
(δ)·qδ for δ ∈ {1, 2}. No extraction

or ZK simulation. This is the real signing game.xy Claim 1: zero-knowledge property, same as unforgeability Claim 1

Game 1. pkX,1, pkX,2 are independent, h̃ = g̃y
(δ)·qδ for δ ∈ {1, 2}. No extraction,

but simulation of ZKPoK of glue h̃.

20 Elizabeth C. Crites and Anna Lysyanskayaxy Claim 2: knowledge extractor property, same as unforgeability Claim 2

Game 2. pkX,1, pkX,2 are independent, h̃ = g̃y
(δ)·qδ for δ ∈ {1, 2}. Extraction of

the mi’s and simulation of ZKPoK of glue h̃ in this and subsequent games.xy Claim 3: reduction to public key class-hiding of MSf

Game 3. pkX,1, pkX,2 are 1/2 independent 1/2 equivalent, h̃ = g̃y
(δ)·qδ .xy Claim 4: ABDDH+ assumption in G1, similar to unforgeability Claim 3

Game 4. pkX,1, pkX,2 are 1/2 independent 1/2 equivalent, h̃ = g̃Rδ(qδ), where
Rδ : Z∗p → Z∗p is a random function for δ ∈ {1, 2}.xy Claim 5: polynomial collision argument and DL assumption in G2, similar to

unforgeability Claim 4 and Claim 5

Game 5. pkX,1, pkX,2 are 1/2 independent 1/2 equivalent, h̃ = g̃Rδ(q̇δ), where
q̇δ = p(αδ) for a “fake” secret point αδ, δ ∈ {1, 2}.xy Claim 6: polynomial collision argument, similar to unforgeability Claim 6

Game 6. pkX,1, pkX,2 are 1/2 independent 1/2 equivalent, h̃ = g̃Rδ(m1,...,mn),
where Rδ : (Z∗p)n → Z∗p is a random function for δ ∈ {1, 2}.xy Claim 7: DDH assumption in G1

Game 7. pkX,1, pkX,2 are 1/2 independent 1/2 equivalent, h̃ = g̃R(m1,...,mn),
where R : (Z∗p)n → Z∗p is a random function.xy Intermediate Games: Claim 8: 5 × DDH assumption in G2

Game 8. pkX,2 ∈ [pkX,1]Rpk
, h̃ = g̃R(m1,...,mn).xy Claim 9: polynomial collision argument, same as unforgeability Claim 6

Game 9. pkX,2 ∈ [pkX,1]Rpk
, h̃ = g̃R(q̇).xy Claim 10: polynomial collision argument and DL assumption in G2, similar to

unforgeability Claim 4 and Claim 5

Game 10. pkX,2 ∈ [pkX,1]Rpk
, h̃ = g̃R(q).xy Claim 11: ABDDH+ assumption, same as unforgeability Claim 3

Game 11. pkX,2 ∈ [pkX,1]Rpk
, h̃ = g̃y·q.xy Claim 12: knowledge extractor property, same as unforgeability Claim 2

Game 12. pkX,2 ∈ [pkX,1]Rpk
, h̃ = g̃y·q. No extraction.xy Claim 13: zero-knowlege property, same as unforgeability Claim 1

Game 13. pkX,2 ∈ [pkX,1]Rpk
, h̃ = g̃y·q. No extraction or ZK simulation. This is

the real signing game.

Since the real signing game in which pkX,1, pkX,2 are independent (Game 0) is
indistinguishable from the real signing game in which pkX,1, pkX,2 are equivalent
(Game 13), MSX satisfies public key class-hiding.

Mercurial Signatures for Variable-Length Messages 21

References

[BFW15] David Bernhard, Marc Fischlin, and Bogdan Warinschi. Adaptive proofs of
knowledge in the random oracle model. In Jonathan Katz, editor, PKC 2015,
volume 9020 of LNCS, pages 629–649. Springer, Heidelberg, March / April
2015.

[BHKS18] Michael Backes, Lucjan Hanzlik, Kamil Kluczniak, and Jonas Schneider.
Signatures with flexible public key: A unified approach to privacy-preserving
signatures (full version). Cryptology ePrint Archive, Report 2018/191, 2018.
https://eprint.iacr.org/2018/191.

[Can01] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society
Press, October 2001.

[CDHK15] Jan Camenisch, Maria Dubovitskaya, Kristiyan Haralambiev, and Markulf
Kohlweiss. Composable and modular anonymous credentials: Definitions
and practical constructions. In Tetsu Iwata and Jung Hee Cheon, editors,
ASIACRYPT 2015, Part II, volume 9453 of LNCS, pages 262–288. Springer,
Heidelberg, November / December 2015.

[Cha86] David Chaum. Showing credentials without identification: Signatures trans-
ferred between unconditionally unlinkable pseudonyms. In Franz Pichler,
editor, EUROCRYPT’85, volume 219 of LNCS, pages 241–244. Springer,
Heidelberg, April 1986.

[CKL+14] Jan Camenisch, Stephan Krenn, Anja Lehmann, Gert Læssøe Mikkelsen,
Gregory Neven, and Michael Østergaard Pedersen. Formal treatment of
privacy-enhancing credential systems. Cryptology ePrint Archive, Report
2014/708, 2014. http://eprint.iacr.org/2014/708.

[CL01] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-
transferable anonymous credentials with optional anonymity revocation.
In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS,
pages 93–118. Springer, Heidelberg, May 2001.

[CL04] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous
credentials from bilinear maps. In Matthew Franklin, editor, CRYPTO 2004,
volume 3152 of LNCS, pages 56–72. Springer, Heidelberg, August 2004.

[CL19] Elizabeth C. Crites and Anna Lysyanskaya. Delegatable anonymous creden-
tials from mercurial signatures. In Mitsuru Matsui, editor, CT-RSA 2019,
volume 11405 of LNCS, pages 535–555. Springer, Heidelberg, March 2019.

[CS03] Jan Camenisch and Victor Shoup. Practical verifiable encryption and
decryption of discrete logarithms. In Dan Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 126–144. Springer, Heidelberg, August 2003.

[Dam02] Ivan Damg̊ard. On σ-protocols. Available at http://www.daimi.au.dk/

~ivan/Sigma.ps, 2002.

[DSW08] Yevgeniy Dodis, Victor Shoup, and Shabsi Walfish. Efficient constructions
of composable commitments and zero-knowledge proofs. In David Wagner,
editor, CRYPTO 2008, volume 5157 of LNCS, pages 515–535. Springer,
Heidelberg, August 2008.

[FG18] Georg Fuchsbauer and Romain Gay. Weakly secure equivalence-class signa-
tures from standard assumptions. In Michel Abdalla and Ricardo Dahab,
editors, PKC 2018, Part II, volume 10770 of LNCS, pages 153–183. Springer,
Heidelberg, March 2018.

22 Elizabeth C. Crites and Anna Lysyanskaya

[FHKS16] Georg Fuchsbauer, Christian Hanser, Chethan Kamath, and Daniel Sla-
manig. Practical round-optimal blind signatures in the standard model
from weaker assumptions. In Vassilis Zikas and Roberto De Prisco, edi-
tors, SCN 16, volume 9841 of LNCS, pages 391–408. Springer, Heidelberg,
August / September 2016.

[FHS19] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Structure-
preserving signatures on equivalence classes and constant-size anonymous
credentials. Journal of Cryptology, 32(2):498–546, April 2019.

[Fis05] Marc Fischlin. Communication-efficient non-interactive proofs of knowledge
with online extractors. In Victor Shoup, editor, CRYPTO 2005, volume
3621 of LNCS, pages 152–168. Springer, Heidelberg, August 2005.

[LRSW99] Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf.
Pseudonym systems. In Howard M. Heys and Carlisle M. Adams, edi-
tors, SAC 1999, volume 1758 of LNCS, pages 184–199. Springer, Heidelberg,
August 1999.

[Lys02] Anna Lysyanskaya. Signature schemes and applications to cryptographic pro-
tocol design. PhD thesis, Massachusetts Institute of Technology, Cambridge,
Massachusetts, September 2002.

A Preliminaries

Definition 6 (Bilinear pairing). Let G1,G2, and GT be multiplicative groups
of prime order p, and let P and P̂ be generators of G1 and G2, respectively. A
bilinear pairing is a map e : G1 ×G2 → GT that satisfies:

Bilinearity: e(P a, P̂ b) = e(P, P̂)ab = e(P b, P̂ a) ∀ a, b ∈ Zp.
Non-degeneracy: e(P, P̂) 6= 1GT (i.e., e(P, P̂) generates GT).
Computability: There exists an efficient algorithm to compute e.

Bilinear pairings can be classified into three types:

Type I (symmetric): G1 = G2.
Type II (asymmetric): G1 6= G2, but there exists an efficiently computable

homomorphism φ : G2 → G1 (none in the reverse direction).
Type III (asymmetric): G1 6= G2, but there exists no efficiently computable

homomorphism in either direction.

Definition 7 (Bilinear group generator). A bilinear group generator BGGen
is a (possibly probabilistic) polynomial-time algorithm that takes as input a secu-
rity parameter 1k and outputs a bilinear group description BG = (G1,G2,GT , P, P̂ ,
e) consisting of groups G1 = 〈P 〉, G2 = 〈P̂ 〉, and GT of prime order p with
log2 p = dke and a Type III pairing e : G1 ×G2 → GT .

Definition 8 (Discrete logarithm assumption (DL)). Let BGGen be a
bilinear group generator that outputs BG = (G1,G2,GT , P1 = P, P2 = P̂ , e).
For i ∈ {1, 2}, the discrete logarithm assumption holds in Gi for BGGen if for
all probabilistic, polynomial-time (PPT) adversaries A, there exists a negligible
function ν such that:

Pr[BG← BGGen(1k), x← Zp, x′ ← A(BG, P xi) : P x
′

i = P xi] ≤ ν(k)

Mercurial Signatures for Variable-Length Messages 23

Definition 9 (Decisional Diffie-Hellman assumption (DDH)). Let BGGen
be a bilinear group generator that outputs BG = (G1,G2,GT , P1 = P, P2 = P̂ , e).
For i ∈ {1, 2}, the decisional Diffie-Hellman assumption holds in Gi for BGGen
if for all probabilistic, polynomial-time (PPT) adversaries A, there exists a
negligible function ν such that:

Pr[b← {0, 1},BG← BGGen(1k), s, t, r ← Zp,

b∗ ← A(BG, P si , P
t
i , P

(1−b)·r+b·st
i) : b∗ = b]− 1

2
≤ ν(k)

B Prior Construction of Mercurial Signatures [CL19]

This is the only previously known construction of mercurial signatures [CL19].
The message space consists of vectors of group elements from G∗1, the space of
secret keys consists of vectors of elements from Z∗p, and the space of public keys
consists of vectors of group elements from G∗2. Once the prime p, G1, G2, and a
fixed length parameter ` are well-defined, the equivalence relations are as follows:

RM = {(M,M ′) ∈ (G∗1)` × (G∗1)` | ∃ µ ∈ Z∗p such that M ′ = Mµ}

Rsk = {(sk, s̃k) ∈ (Z∗p)` × (Z∗p)` | ∃ ρ ∈ Z∗p such that s̃k = ρ · sk}

Rpk = {(pk, p̃k) ∈ (G∗2)` × (G∗2)` | ∃ ρ ∈ Z∗p such that p̃k = pkρ}

The message space for this mercurial signature scheme is (G∗1)`, but a mercurial
signature scheme with message space (G∗2)` can be obtained by simply switching
G∗1 and G∗2 throughout. The algorithms are as follows:

PPGen(1k)→ PP : Compute BG← BGGen(1k). Output PP = BG = (G1,G2,GT ,
P, P̂ , e). Now that BG is well-defined, the relations RM , Rpk, Rsk are also
well-defined. sampleρ and sampleµ are the same algorithm, namely the one
that samples a random element of Z∗p.

KeyGen(PP , `) → (pk, sk): For 1 ≤ i ≤ `, pick xi ← Z∗p and set secret key

sk = (x1, . . . , x`). Compute public key pk = (X̂1, . . . , X̂`), where X̂i = P̂ xi

for 1 ≤ i ≤ `. Output (pk, sk).

Sign(sk,M) → σ: On input sk = (x1, . . . , x`) and M = (M1, . . . ,M`) ∈
(G∗1)`, pick a random y ← Z∗p and output σ = (Z, Y, Ŷ), where Z =(∏`

i=1M
xi
i

)y
, Y = P

1
y , and Ŷ = P̂

1
y .

Verify(pk,M, σ) → 0/1: On input pk = (X̂1, . . . , X̂`), M = (M1, . . . ,M`), and

σ = (Z, Y, Ŷ), check whether
∏`
i=1 e(Mi, X̂i) = e(Z, Ŷ) ∧ e(Y, P̂) = e(P, Ŷ).

If this holds, output 1; otherwise, output 0.

ConvertSK(sk, ρ)→ s̃k: On input sk = (x1, . . . , x`) and a key converter ρ ∈ Z∗p,
output the new secret key s̃k = ρ · sk.

ConvertPK(pk, ρ)→ p̃k: On input pk = (X̂1, . . . , X̂`) and a key converter ρ ∈ Z∗p,
output the new public key p̃k = pkρ.

24 Elizabeth C. Crites and Anna Lysyanskaya

ConvertSig(pk,M, σ, ρ)→ σ̃: On input pk, message M , signature σ = (Z, Y, Ŷ),

and key converter ρ ∈ Z∗p, sample ψ ← Z∗p. Output σ̃ = (Zψρ, Y
1
ψ , Ŷ

1
ψ).

ChangeRep(pk,M, σ, µ) → (M ′, σ′): On input pk, M , σ = (Z, Y, Ŷ), µ ∈ Z∗p,
sample ψ ← Z∗p. Compute M ′ = Mµ, σ′ = (Zψµ, Y

1
ψ , Ŷ

1
ψ). Output (M ′, σ′).

C Proof of Unforgeability

Proof. (of Theorem 4.) As in Section 3.3, the overall proof structure is as follows.
Arrows indicate why consecutive games are indistinguishable.

Game 0. h̃ = g̃y·q. No extraction or simulation. This is the real signing game.xy Claim 1: zero-knowledge property

Game 1. h̃ = g̃y·q. No extraction, but simulation.xy Claim 2: knowledge extractor property

Game 2. h̃ = g̃y·q, where q = p(x̂). Extraction and simulation henceforth.xy Claim 3: ABDDH+ assumption in G1 (hybrid argument)

Game 3. h̃ = g̃R(q), where q = p(x̂) and R : Z∗p → Z∗p is a random function.xy Claim 4: polynomial collision argument / Claim 5: DL assumption in G2

Game 4. h̃ = g̃R(q̇), where q̇ = p(α) for “fake” secret point α ∈ Z∗p.xy Claim 6: polynomial collision argument

Game 5. h̃ = g̃R(m1,...,mn), where R : (Z∗p)n → Z∗p is a random function.

We now provide descriptions of the games and proofs of the claims.

Game 0. In this real signing game, the glue element is h̃ = g̃y·q. There is no
extraction or zero-knowledge simulation.

The challenger C computes the public parameters PP and keys (pk, sk) =
((X̂1, X̂2, X̂3, X̂4, X̂5), (x1, x2, x3, x4, x5)) for a mercurial signature scheme MSf
on messages of length ` = 5. C chooses uniformly at random a secret point x̂← Z∗p
and secret seeds y1, y2 ← Z∗p. He also picks x6, x8 ← Z∗p and sets x7 = x6 · x̂
and x9 = x8 · y1 and x10 = x8 · y2. He then sets pkX = (pk, X̂6, X̂7, X̂8, X̂9, X̂10),
where X̂i = P̂ xi . C forwards PPX and pkX to A.
A proceeds to make signature queries on messages of the form m = (ĝ, u1, . . . ,

un) ∈ (G∗1)n+1. For each signature query, C acts as the verifier while A gives a
ZKPoK that, for all 1 ≤ i ≤ n, he knows mi such that ui = ĝmi . If the verification
fails, C denies A the signature; otherwise, C computes y = y1 · y2 and:

ĥ =
(n∏
i=1

ux̂
i−1

i

)y
C picks uniformly at random w ← Z∗p and computes g̃ = ĝw, h̃ = ĥw, and
ũi = uwi ∀i. He also computes g̃2, . . . , g̃n. He then signs n messages of the form

Mercurial Signatures for Variable-Length Messages 25

Mi = (g̃, g̃i, g̃n, h̃, ũi) using his secret key sk for MSf and sends m̃ = (g̃, ũ1, . . . , ũn)

and (h̃, σ = {σ1, . . . , σn}) to A, along with a ZKPoK that h̃ was computed
correctly. A issues queries for signatures on messages a polynomial number of
times. The game ends when A produces a forgery or terminates without producing
a forgery.

Game 1. In this game, the glue element remains h̃ = g̃y·q. There is no extraction,
but now there is simulation.

Game 1 is the same as Game 0, except the challenger C simulates the ZKPoK
that h̃ was computed correctly.

Claim 1. A PPT adversary cannot distinguish Game 0 from Game 1, except
with negligible probability.

The only difference between the two games is zero-knowledge simulation. In
Game 1, the challenger simulates the ZKPoK that the glue h̃ was computed
correctly, whereas in Game 0, the challenger gives a real ZKPoK. If an adversary
could distinguish the two games, it would break the zero-knowledge property.

Game 2. In this game, the glue element remains h̃ = g̃y·q, where q = p(x̂).
There is now extraction and simulation (and for all games henceforth).

The challenger C computes the public parameters PP and keys (pk, sk) =
((X̂1, X̂2, X̂3, X̂4, X̂5), (x1, x2, x3, x4, x5)) for a mercurial signature scheme MSf
on messages of length ` = 5. C chooses uniformly at random a secret point x̂← Z∗p
and secret seeds y1, y2 ← Z∗p. He also picks x6, x8 ← Z∗p and sets x7 = x6 · x̂
and x9 = x8 · y1 and x10 = x8 · y2. He then sets pkX = (pk, X̂6, X̂7, X̂8, X̂9, X̂10),
where X̂i = P̂ xi . C forwards PPX and pkX to A.
A proceeds to make signature queries on messages of the form m = (ĝ, u1, . . . ,

un) ∈ (G∗1)n+1. For each signature query, C acts as the extractor while A gives a
ZKPoK that, for all 1 ≤ i ≤ n, he knows mi such that ui = ĝmi . C extracts the
mi’s, or if the extraction fails, C denies A the signature. Otherwise, C computes
the polynomial p(x) = m1 +m2x+ · · ·+mnx

n−1 and evaluates p(x) at the secret
point x̂. Let q = p(x̂) denote this evaluation. C computes y = y1 · y2 and:

ĥ = ĝy·q

C picks uniformly at random w ← Z∗p and computes g̃ = ĝw, h̃ = ĥw, and
ũi = uwi ∀i. He also computes g̃2, . . . , g̃n. He then signs n messages of the form
Mi = (g̃, g̃i, g̃n, h̃, ũi) using his secret key sk for MSf and sends m̃ = (g̃, ũ1, . . . , ũn)

and (h̃, σ = {σ1, . . . , σn}) to A, along with a simulated ZKPoK that h̃ was
computed correctly. A issues queries for signatures on messages a polynomial
number of times. The game ends when A produces a forgery or terminates
without producing a forgery.

Claim 2. A PPT adversary cannot distinguish Game 1 from Game 2, except
with negligible probability.

26 Elizabeth C. Crites and Anna Lysyanskaya

In Game 2, the challenger C extracts the mi’s from the message m, forms the
polynomial p(x) = m1 + m2x + · · ·+ mnx

n−1, and evaluates q = p(x̂). C then
forms the glue element as h̃ = g̃y·q, where g̃ = ĝw for some uniformly random
w ← Z∗p. In Game 1, the challenger C forms the glue element as:

h̃ =
(n∏
i=1

(uwi)x̂
i−1
)y

for a uniformly random w ← Z∗p. But note that:

h̃ =
(n∏
i=1

(ĝmi·w)x̂
i−1
)y

=
(n∏
i=1

g̃y·mi·x̂
i−1
)

= g̃y·q

Thus, the glue elements h̃ in both games are identical. The only difference
between the two games is extraction. In Game 2, the challenger extracts the
mi’s to compute the glue h̃, whereas in Game 1, the challenger computes the
correct h̃ directly from the ui’s, without extracting the mi’s. If an adversary could
distinguish the two games, it would break the knowledge extractor property.

Game 3. In this game, the glue element is h̃ = g̃R(q), where q = p(x̂) and
R : Z∗p → Z∗p is a random function.

Game 3 is the same as Game 2, except the challenger C chooses a random
function R : Z∗p → Z∗p and for each signature computes:

ĥ = ĝR(q)

where q = p(x̂). The rest of the signing protocol is carried out as in Game 2.

Claim 3. A PPT adversary cannot distinguish Game 2 from Game 3 under the
ABDDH+ assumption in G1.

Consider the following decisional problem related to the ABDDH+ assumption.

Definition 10 (Asymmetric bilinear decisional Diffie-Hellman† prob-
lem (ABDDH†)). Let BGGen be a bilinear group generator that outputs
BG = (G1,G2,GT , P, P̂ , e). The asymmetric bilinear decisional Diffie-Hellman†

problem in G1 is to distinguish between the distributions D0 and D1 defined by:

D0 = {BG← BGGen(1k); α, β, u, v, ω ← Z∗p;

(BG, P̂α, P̂αu, P̂αv, P β , P βuv, Pω, Pωuv)} (2)

D1 = {BG← BGGen(1k); α, β, u, v, ω, r ← Z∗p;

(BG, P̂α, P̂αu, P̂αv, P β , P βuv, Pω, P r)} (3)

Lemma 1. If the ABDDH+ assumption holds for a bilinear group generator
BGGen, then the ABDDH† problem is also hard for BGGen.

Mercurial Signatures for Variable-Length Messages 27

Indeed, a reduction B given an ABDDH+ instance

(BG, P̂u, P̂ v, Pu, Puv, Pω, P (1−b)·r+b·(ωuv))

can pick uniformly at random α, β ← Z∗p and provide an ABDDH† instance

(BG, P̂α, (P̂u)α, (P̂ v)α, P β , (Puv)β , Pω, P (1−b)·r+b·(ωuv))

to an adversary A whose non-negligible advantage in distinguishing ABDDH†

tuples becomes B’s non-negligible advantage in breaking ABDDH+.

We now prove Claim 3 via a hybrid argument.

Let Γ (k) be a polynomial. For 0 ≤ i ≤ Γ (k), let Hi be the hybrid experiment
defined as the following game.

The challenger C computes the public parameters PP and keys (pk, sk) =
((X̂1, X̂2, X̂3, X̂4, X̂5), (x1, x2, x3, x4, x5)) for a mercurial signature scheme MSf
on messages of length ` = 5. C chooses uniformly at random a secret point x̂← Z∗p
and secret seeds y1, y2 ← Z∗p. He also picks x6, x8 ← Z∗p and sets x7 = x6 · x̂
and x9 = x8 · y1 and x10 = x8 · y2. He then sets pkX = (pk, X̂6, X̂7, X̂8, X̂9, X̂10),
where X̂i = P̂ xi . He also chooses a random function R : Z∗p → Z∗p and forwards
PPX and pkX to A.

Let A’s jth signature query be on message mj = (ĝj , uj,1, . . . , uj,n). C acts as
the extractor while A gives a ZKPoK that, for all 1 ≤ i ≤ n, he knows mj,i such
that uj,i = ĝ

mj,i
j . C extracts the mj,i’s, or if the extraction fails, C denies A the

signature. Otherwise, C computes the polynomial pj(x) = mj,1 +mj,2x+ · · ·+
mj,nx

n−1 and evaluates qj = pj(x̂). C also computes y = y1 · y2.

1. If j ≤ i, C computes R(qj) and:

ĥj = ĝ
R(qj)
j

C picks uniformly at random wj ← Z∗p and computes g̃j = ĝ
wj
j , h̃j = ĥ

wj
j ,

and ũj,i = u
wj
j,i ∀i. He also computes g̃2j , . . . , g̃

n
j . He then signs n messages

of the form Mj,i = (g̃j , g̃
i
j , g̃

n
j , h̃j , ũj,i) using his secret key sk for MSf and

sends m̃j = (g̃j , ũj,1, . . . , ũj,n) and (h̃j , σj = {σj,1, . . . , σj,n}) to A, along with a

simulated ZKPoK that h̃j was computed correctly.

2. If j > i, C computes:
ĥj = ĝ

y·qj
j

C picks uniformly at random wj ← Z∗p and computes g̃j = ĝ
wj
j , h̃j = ĥ

wj
j ,

and ũj,i = u
wj
j,i ∀i. He also computes g̃2j , . . . , g̃

n
j . He then signs n messages

of the form Mj,i = (g̃j , g̃
i
j , g̃

n
j , h̃j , ũj,i) using his secret key sk for MSf and

sends m̃j = (g̃j , ũj,1, . . . , ũj,n) and (h̃j , σj = {σj,1, . . . , σj,n}) to A, along with a

simulated ZKPoK that h̃j was computed correctly.

28 Elizabeth C. Crites and Anna Lysyanskaya

By definition, H0 corresponds to the game in which all glue elements are
formed as h̃j = g̃

y·qj
j (Game 2), while HΓ (k) corresponds to the game in which

all glue elements are formed as h̃j = g̃
R(qj)
j (Game 3).

Let A be an adversary, let Γ (k) be the number of queries A makes, and
let 0 ≤ i ≤ Γ (k) − 1. We wish to show that A’s advantage ε = Adv(A, k, i) in
distinguishing Hi from Hi+1 is negligible; in fact, ε ≤ ν, where ν is the best
advantage in distinguishing ABDDH† tuples.

Suppose not; that is, suppose ε = Adv(A, k, i) > ν for some A, k, i. Then, let
us show that there exists a probabilistic, polynomial-time B that can distinguish
between the distributions D0 and D1 defined by Equations (2) and (3).

We construct B as a reduction running A as a subroutine. B serves as the
challenger for A in the hybrid game and as the adversary for his own challenger
in the ABDDH† game. B receives as input (BG, Â0, Â1, Â2, B1, C,B2, D), where
implicitly Â0 = P̂α, Â1 = P̂αu, Â2 = P̂αv, B1 = P β , C = P βuv, B2 = Pω, and
D = Pωuv or P r for some uniformly random α, β, u, v, ω, r ∈ Z∗p.
B computes the public parameters PP and keys (pk, sk) = ((X̂1, X̂2, X̂3, X̂4,

X̂5), (x1, x2, x3, x4, x5)) for a mercurial signature scheme MSf on messages of
length ` = 5. B chooses uniformly at random a secret point x̂ ← Z∗p but does
not know the secret seeds y1, y2. He also picks x6 ← Z∗p and sets x7 = x6 · x̂. He

then sets pkX = (pk, X̂6, X̂7, Â0, Â1, Â2), where X̂i = P̂ xi . B chooses a random
function R : Z∗p → Z∗p and forwards PPX and pkX to A.
A proceeds to make queries to the signing oracle. Acting as the challenger

for A, B is responsible for computing the responses to the signature queries and
forwarding them to A. B responds to the signature queries as follows.

Let A’s jth signature query be on message mj = (ĝj , uj,1, . . . , uj,n). B acts as
the extractor while A gives a ZKPoK that, for all 1 ≤ i ≤ n, he knows mj,i such
that uj,i = ĝ

mj,i
j . B extracts the mj,i’s, or if the extraction fails, B denies A the

signature. Otherwise, B computes the polynomial pj(x) = mj,1 +mj,2x+ · · ·+
mj,nx

n−1 and evaluates qj = pj(x̂).

1. If j ≤ i, B computes R(qj) and:

ĥj = ĝ
R(qj)
j

B picks uniformly at random wj ← Z∗p and computes g̃j = ĝ
wj
j , h̃j = ĥ

wj
j ,

and ũj,i = u
wj
j,i ∀i. He also computes g̃2j , . . . , g̃

n
j . He then signs n messages

of the form Mj,i = (g̃j , g̃
i
j , g̃

n
j , h̃j , ũj,i) using his secret key sk for MSf and

sends m̃j = (g̃j , ũj,1, . . . , ũj,n) and (h̃j , σj = {σj,1, . . . , σj,n}) to A, along with a

simulated ZKPoK that h̃j was computed correctly.

2. If j = i+ 1, B computes:
ĥj = Dqj

B sets g̃j = B2, h̃j = ĥj , and ũj,i = B
mj,i
2 ∀i. He also computes B2

2 , . . . , B
n
2 .

He then signs n messages of the form Mj,i = (B2, B
i
2, B

n
2 , D

qj , B
mj,i
2) using his

secret key sk for MSf and sends m̃j = (B2, B
mj,1
2 , . . . , B

mj,n
2) and (Dqj , σj =

Mercurial Signatures for Variable-Length Messages 29

{σj,1, . . . , σj,n}) to A, along with a simulated ZKPoK that h̃j was computed
correctly.

3. If j > i+ 1, B computes:

ĥj = Cqj

B picks uniformly at random wj ← Z∗p and computes g̃j = B
wj
1 , h̃j = ĥ

wj
j ,

and ũj,i = (B
wj
1)mj,i ∀i. He also computes (B

wj
1)2, . . . , (B

wj
1)n. He then signs

n messages of the form Mj,i = (B
wj
1 , (B

wj
1)i, (B

wj
1)n, Cqj ·wj , (B

wj
1)mj,i) using

his secret key sk for MSf and sends m̃j = (B
wj
1 , (B

wj
1)mj,1 , . . . , (B

wj
1)mj,n) and

(Cqj ·wj , σj = {σj,1, . . . , σj,n}) to A, along with a simulated ZKPoK that h̃j was
computed correctly.

Finally, when A terminates, WLOG he outputs either 0 or 1. He outputs
0 if he thinks he has observed Hi and 1 if he thinks he has observed Hi+1. If
A outputs 0, B outputs 0; otherwise, B outputs 1. Let us analyze B’s success
probability.

First, note that in the public key pkX, the values X̂8, X̂9, X̂10 can’t be com-
puted as P̂ x8 , P̂ x9 , P̂ x10 , where x9 = x8 · y1 and x10 = x8 · y2, because B does
not know y1 or y2; however, (Â0, Â1, Â2) is implicitly (P̂α, P̂αu, P̂αv), which is
distributed the same as (P̂ x8 , P̂ x8·y1 , P̂ x8·y2) for uniformly random x8, y1, y2 ∈ Z∗p.
Thus, pkX is distributed correctly.

The case j ≤ i is exactly as in the hybrid game. For the case j > i+ 1, B1 is
implicitly P β , so g̃j = P βwj , which is distributed the same as ĝ

wj
j because wj is

uniformly random in Z∗p. C is implicitly P βuv, so h̃j = Cqj ·wj = (P βwj)uv·qj =

(B
wj
1)uv·qj = g̃

uv·qj
j , which is distributed the same as g̃

y1y2·qj
j = g̃

y·qj
j for uniformly

random y1, y2 ∈ Z∗p. For the case j = i + 1, B2 is implicitly Pω, so g̃j = Pω,

which is distributed the same as ĝ
wj
j for a uniformly random wj ∈ Z∗p. D is

implicitly Pωuv or P r for the uniformly random u, v, ω, r ∈ Z∗p given as input

to the reduction. If D = Pωuv, then h̃j = Dqj = B
uv·qj
2 , which is distributed

the same as g̃
y1y2·qj
j = g̃

y·qj
j for uniformly random y1, y2 ∈ Z∗p. If D = P r, then

h̃j = Dqj = P r·qj , which is distributed the same as g̃
R(qj)
j since the r given as

input to the reduction is uniformly random in Z∗p. Thus, D = Pωuv corresponds
to hybrid Hi and D = P r corresponds to hybrid Hi+1.

The above description of B’s responses to A’s oracle queries demonstrates
that B is able to emulate the appropriate hybrid and compute each step of
each of A’s oracle queries exactly as A’s challenger in the game would. If A
outputs 0, it means the input looks like it came from Hi, so B outputs 0 to
indicate the distribution D0. If A outputs 1, it means the input looks like it came
from Hi+1, so B outputs 1 to indicate the distribution D1. Then, A’s advantage
translates into B’s advantage: if A is able to distinguish Hi from Hi+1 with
non-negligible probability ε, then B is able to distinguish ABDDH† tuples with
the same non-negligible probability.

Game 4. In this game, the glue element is h̃ = g̃R(q̇), where q̇ = p(α) for a
“fake” secret point α ∈ Z∗p and R : Z∗p → Z∗p is a random function.

30 Elizabeth C. Crites and Anna Lysyanskaya

Game 4 is the same as Game 3, except in addition to the secret point x̂, the
challenger C also chooses a “fake” secret point uniformly at random α← Z∗p and
computes:

ĥ = ĝR(q̇)

where q̇ = p(α). The rest of the signing protocol is carried out as in Game 3.

Claim 4. A PPT adversary can distinguish Game 3 from Game 4 only if a
collision pi(x̂) = pj(x̂) occurs in Game 3 with non-negligible probability.

Let a PPT adversaryA’s jth signature query be on messagemj = (ĝj , uj,1, . . . ,
uj,n), where uj,i = ĝ

mj,i
j ∀i. In Game 3, the challenger C extracts the mj,i’s, forms

the polynomial pj(x) = mj,1 +mj,2x+ · · ·+mj,nx
n−1, and evaluates qj = pj(x̂).

He then computes R(qj) for some random function R : Z∗p → Z∗p and forms the

glue element as h̃j = g̃
R(qj)
j .

In Game 4, the challenger C extracts the mj,i’s, forms the polynomial pj(x) =
mj,1 +mj,2x+ · · ·+mj,nx

n−1, and evaluates q̇j = pj(α) at the “fake” secret point

α ∈ Z∗p. He then computes R(q̇j) and forms the glue element as h̃j = g̃
R(q̇j)
j .

The only difference between the two games is that in Game 4, the polynomials
pj(x) are evaluated at α, which is independent of the true secret point x̂. If q̇i = q̇j
for some pi(x) 6= pj(x), then R(q̇i) = R(q̇j), so A learns that pi(α) = pj(α). The
value α is independent of the adversary’s view unless such a collision occurs. We
will show that a collision occurs with negligible probability by induction on the
number of queries.

For the base case, suppose q̇1 = q̇2. Then, α is a root of the difference
polynomial p1(x)−p2(x). A’s probability of successfully constructing a difference
polynomial with root α is maximized by choosing n − 1 distinct roots for it.
The probability that one of these n − 1 distinct roots is α is (n − 1)/p. Thus,
the probability that q̇1 = q̇2 is at most (n − 1)/p, which is negligible. For the
induction step, suppose ∀i ≤ t,∀j ≤ t, q̇i 6= q̇j . The probability that q̇t+1 collides
with one of the first t q̇i’s, conditioned on the fact that there are no collisions
among the first t q̇i’s, is at most (t+ 1)(n− 1)/p, which is negligible, completing
the induction step.

Thus, A can distinguish Game 4 from Game 3 only if a collision pi(x̂) = pj(x̂)
occurs in Game 3 with non-negligible probability.

We now show that such a collision occurs in Game 3 with negligible proba-
bility or the DL assumption doesn’t hold.

Claim 5. A collision pi(x̂) = pj(x̂) occurs in Game 3 with negligible probability
under the DL assumption in G2.

We wish to show that if there exists a PPT adversary A that produces a
collision pi(x̂) = pj(x̂) for some polynomials pi(x) 6= pj(x) with non-negligible
probability, then we can construct a PPT adversary A′ that breaks the DL
assumption.

Mercurial Signatures for Variable-Length Messages 31

Suppose there exists such a PPT algorithm A. Then, we construct a PPT
adversary A′ as a reduction B running A as a subroutine. We construct the
reduction B for breaking the DL assumption as follows.
B receives as input (Â, B̂) ∈ G∗2, where implicitly B̂ = Âx̂ for some uniformly

random x̂ ∈ Z∗p. (Note that this variant of the DL assumption is equivalent to
the one in which x̂ is drawn from Zp.)
B computes the public parameters PP and keys (pk, sk) = ((X̂1, X̂2, X̂3, X̂4,

X̂5), (x1, x2, x3, x4, x5)) for a mercurial signature scheme MSf on messages of
length ` = 5. B chooses uniformly at random secret values y1, y2 ← Z∗p but does
not know the secret point x̂. He also picks x8 ← Z∗p and sets x9 = x8 · y1 and

x10 = x8 · y2. He then sets pkX = (pk, Â, B̂, X̂8, X̂9, X̂10), where X̂i = P̂ xi , and
forwards PPX and pkX to A.
A proceeds to make queries to the signing oracle. Acting as the challenger

for A, B is responsible for computing the responses to the signature queries and
forwarding them to A. B responds to the signature queries as follows.

Let A’s jth signature query be on message mj = (ĝj , uj,1, . . . , uj,n). B acts as
the extractor while A gives a ZKPoK that, for all 1 ≤ i ≤ n, he knows mj,i such
that uj,i = ĝ

mj,i
j . B extracts the mj,i’s, or if the extraction fails, B denies A the

signature. Otherwise, B computes the polynomial pj(x) = mj,1 +mj,2x+ · · ·+
mj,nx

n−1.
For all 1 ≤ t < j, B computes the difference polynomial pj(x) − pt(x) and

finds its n− 1 roots rt,1, . . . , rt,n−1. Since B knows Â, he can compute Ârt,i ∀t,∀i
and check if Ârt,i = B̂. If this holds for some rt,i, then rt,i = x̂ and B wins the

DL game. If this does not hold, B picks uniformly at random R̃j ← Z∗p and
computes:

ĥj = ĝ
R̃j
j

since he cannot correctly compute ĝR(qj); however, note that A’s view is identical
because he receives random values. B picks uniformly at random wj ← Z∗p and

computes g̃j = ĝ
wj
j , h̃j = ĥ

wj
j , and ũj,i = u

wj
j,i ∀i. He also computes g̃2j , . . . , g̃

n
j .

He then signs n messages of the form Mj,i = (g̃j , g̃
i
j , g̃

n
j , h̃j , ũj,i) using his secret

key sk for MSf and sends m̃j = (g̃j , ũj,1, . . . , ũj,n) and (h̃j , σj = {σj,1, . . . , σj,n})
to A, along with a simulated ZKPoK that h̃j was computed correctly. A issues
queries for signatures on messages a polynomial number of times.
A’s success in producing a difference polynomial pj(x)− pt(x) with root x̂

with non-negligible probability.

From Claim 4 and Claim 5, we can conclude that a PPT adversary A can-
not distinguish Game 3 from Game 4, except with negligible probability.

Game 5. In this game, the glue element is h̃ = g̃R(m1,...,mn), where R : (Z∗p)n →
Z∗p is a random function.

Game 5 is the same as Game 4, except the challenger C does not choose a
“fake” secret point α ∈ Z∗p and does not compute or evaluate the polynomial p(x).

32 Elizabeth C. Crites and Anna Lysyanskaya

Instead, C chooses a random function R : (Z∗p)n → Z∗p and for each signature
computes:

ĥ = ĝR(m1,...,mn)

The rest of the signing protocol is carried out as in Game 4.

Claim 6. An adversary’s view in Game 4 is the same as it is in Game 5, except
with negligible probability.

Let a (possibly unbounded) adversary A’s jth signature query be on message
mj = (ĝj , uj,1, . . . , uj,n), where uj,i = ĝ

mj,i
j ∀i. In Game 5, the challenger C

extracts the mj,i’s, computes R(mj,1, . . . ,mj,n) for some random function R,

and forms the glue element as h̃j = g̃
R(mj,1,...,mj,n)
j , where g̃j = ĝ

wj
j for some

uniformly random wj ← Z∗p.
In Game 4, the challenger C extracts the mj,i’s, forms the polynomial pj(x) =

mj,1 +mj,2x+ · · ·+mj,nx
n−1, and evaluates q̇j = pj(α) at the “fake” secret point

α ∈ Z∗p. He then computes R(q̇j) for some random function R and forms the glue

element as h̃j = g̃
R(q̇j)
j , where g̃j = ĝ

wj
j for some uniformly random wj ← Z∗p.

If q̇i = q̇j for some pi(x) 6= pj(x), then R(q̇i) = R(q̇j), so A learns that
pi(α) = pj(α). The value α is independent of the adversary’s view unless such a
collision occurs. We showed in Claim 4 that a collision pi(α) = pj(α) occurs in
Game 4 with negligible probability. If there are no such collisions, A’s view is
identical in both games because he receives random values.

This completes the proof of unforgeability for MSX (Theorem 4).

D Proof of Public Key Class-Hiding

Proof. (of Theorem 6.) As in Section 3.4, the overall proof structure is as follows.
Arrows indicate why consecutive games are indistinguishable.

Game 0. pkX,1, pkX,2 are independent, h̃ = g̃y
(δ)·qδ for δ ∈ {1, 2}. No extraction

or ZK simulation. This is the real signing game.xy Claim 1: zero-knowledge property, same as unforgeability Claim 1

Game 1. pkX,1, pkX,2 are independent, h̃ = g̃y
(δ)·qδ for δ ∈ {1, 2}. No extraction,

but simulation of ZKPoK of glue h̃.xy Claim 2: knowledge extractor property, same as unforgeability Claim 2

Game 2. pkX,1, pkX,2 are independent, h̃ = g̃y
(δ)·qδ for δ ∈ {1, 2}. Extraction of

the mi’s and simulation of ZKPoK of glue h̃ in this and subsequent games.xy Claim 3: reduction to public key class-hiding of MSf

Game 3. pkX,1, pkX,2 are 1/2 independent 1/2 equivalent, h̃ = g̃y
(δ)·qδ .

Mercurial Signatures for Variable-Length Messages 33xy Claim 4: ABDDH+ assumption in G1, similar to unforgeability Claim 3

Game 4. pkX,1, pkX,2 are 1/2 independent 1/2 equivalent, h̃ = g̃Rδ(qδ), where
Rδ : Z∗p → Z∗p is a random function for δ ∈ {1, 2}.xy Claim 5: polynomial collision argument and DL assumption in G2, similar to

unforgeability Claim 4 and Claim 5

Game 5. pkX,1, pkX,2 are 1/2 independent 1/2 equivalent, h̃ = g̃Rδ(q̇δ), where
q̇δ = p(αδ) for a “fake” secret point αδ, δ ∈ {1, 2}.xy Claim 6: polynomial collision argument, similar to unforgeability Claim 6

Game 6. pkX,1, pkX,2 are 1/2 independent 1/2 equivalent, h̃ = g̃Rδ(m1,...,mn),
where Rδ : (Z∗p)n → Z∗p is a random function for δ ∈ {1, 2}.xy Claim 7: DDH assumption in G1

Game 7. pkX,1, pkX,2 are 1/2 independent 1/2 equivalent, h̃ = g̃R(m1,...,mn),
where R : (Z∗p)n → Z∗p is a random function.xy Intermediate Games: Claim 8: 5 × DDH assumption in G2

Game 8. pkX,2 ∈ [pkX,1]Rpk
, h̃ = g̃R(m1,...,mn).xy Claim 9: polynomial collision argument, same as unforgeability Claim 6

Game 9. pkX,2 ∈ [pkX,1]Rpk
, h̃ = g̃R(q̇).xy Claim 10: polynomial collision argument and DL assumption in G2, similar to

unforgeability Claim 4 and Claim 5

Game 10. pkX,2 ∈ [pkX,1]Rpk
, h̃ = g̃R(q).xy Claim 11: ABDDH+ assumption, same as unforgeability Claim 3

Game 11. pkX,2 ∈ [pkX,1]Rpk
, h̃ = g̃y·q.xy Claim 12: knowledge extractor property, same as unforgeability Claim 2

Game 12. pkX,2 ∈ [pkX,1]Rpk
, h̃ = g̃y·q. No extraction.xy Claim 13: zero-knowlege property, same as unforgeability Claim 1

Game 13. pkX,2 ∈ [pkX,1]Rpk
, h̃ = g̃y·q. No extraction or ZK simulation. This is

the real signing game.

We now provide descriptions of the games and proofs of the claims.

Game 0. In this real signing game, the public keys pkX,1, pkX,2 are independent,

and the glue element is h̃ = g̃y
(δ)·qδ , where qδ = p(x̂δ) for δ ∈ {1, 2}. There is no

extraction or zero-knowledge simulation.

34 Elizabeth C. Crites and Anna Lysyanskaya

The challenger C computes the public parameters PP = BG = (G1,G2,GT , P,
P̂ , e) and two sets of keys for a mercurial signature scheme MSf on messages of
length ` = 5:

(sk1, pk1) = ((x1,1, x1,2, x1,3, x1,4, x1,5), (X̂1,1, X̂1,2, X̂1,3, X̂1,4, X̂1,5))

(sk2, pk2) = ((x2,1, x2,2, x2,3, x2,4, x2,5), (X̂2,1, X̂2,2, X̂2,3, X̂2,4, X̂2,5))

where X̂i,j = P̂ xi,j . C chooses uniformly at random secret points x̂1, x̂2 ← Z∗p
and secret seeds y

(1)
1 , y

(2)
1 , y

(1)
2 , y

(2)
2 ← Z∗p. He also picks x1,6, x2,6, x1,8, x2,8 ← Z∗p

and sets:

x1,7 = x1,6 · x̂1, x1,9 = x1,8 · y(1)1 x1,10 = x1,8 · y(1)2

x2,7 = x2,6 · x̂2, x2,9 = x2,8 · y(2)1 x2,10 = x2,8 · y(2)2

C then sets:

pkX,1 = (pk1, X̂1,6, X̂1,7, X̂1,8, X̂1,9, X̂1,10) (4)

pkX,2 = (pk2, X̂2,6, X̂2,7, X̂2,8, X̂2,9, X̂2,10) (5)

where X̂i,j = P̂ xi,j . C forwards PPX = PP and pkX,1, pkX,2 to A.
A proceeds to make signature queries on messages of the form m = (ĝ, u1, . . . ,

un) ∈ (G∗1)n+1, where ĝ is a generator of G1. For each signature query, A
selects whether he would like m to be signed under skX,1 or skX,2. C acts as the
verifier while A gives a ZKPoK that, for all 1 ≤ i ≤ n, he knows mi such that
ui = ĝmi . If the verification fails, C denies A the signature; otherwise, C computes

y(1) = y
(1)
1 · y

(1)
2 and y(2) = y

(2)
1 · y

(2)
2 and:

ĥ =
(n∏
i=1

u
x̂i−1
δ
i

)y(δ)
where δ ∈ {1, 2} corresponds to the secret key skX,δ A selected. C picks uniformly

at random w ← Z∗p and computes g̃ = ĝw, h̃ = ĥw, and ũi = uwi ∀i. He also

computes g̃2, . . . , g̃n. He then signs n messages of the form Mi = (g̃, g̃i, g̃n, h̃, ũi)
using his secret key skδ for MSf and sends m̃ = (g̃, ũ1, . . . , ũn) and (h̃, σ =

{σ1, . . . , σn}) to A, along with a ZKPoK that h̃ was computed correctly. A issues
queries for signatures on messages a polynomial number of times.

Game 1. In this game, the public keys pkX,1, pkX,2 are again independent, and

the glue element is again h̃ = g̃y
(δ)·qδ , where qδ = p(x̂δ) for δ ∈ {1, 2}; however,

now there is simulation.

Game 1 is the same as Game 0, except the challenger C simulates the ZKPoK
that h̃ was computed correctly.

Claim 1. A PPT adversary cannot distinguish Game 0 from Game 1, except
with negligible probability.

Mercurial Signatures for Variable-Length Messages 35

The only difference between the two games is zero-knowledge simulation. In
Game 1, the challenger simulates the ZKPoK that the glue h̃ was computed
correctly, whereas in Game 0, the challenger gives a real ZKPoK. If an adversary
could distinguish the two games, it would break the zero-knowledge property.
This is the same as Claim 1 in the proof of unforgeability.

Game 2. In this game, the public keys pkX,1, pkX,2 are again independent, and

the glue element is again h̃ = g̃y
(δ)·qδ , where qδ = p(x̂δ) for δ ∈ {1, 2}; however,

now there is extraction and simulation.

Game 2 is the same as Game 1, except for each signature query, the challenger
C acts as the extractor while A gives a ZKPoK that, for all 1 ≤ i ≤ n, he
knows mi such that ui = ĝmi . C extracts the mi’s, or if the extraction fails, C
denies A the signature. C computes h̃ as in Game 1, signs n messages Mi =
(g̃, g̃i, g̃n, h̃, ũi) using his secret key skδ for MSf , and sends m̃ = (g̃, ũ1, . . . , ũn)

and (h̃, σ = {σ1, . . . , σn}) to A, along with a simulated ZKPoK that h̃ was
computed correctly.

Claim 2. A PPT adversary cannot distinguish Game 1 from Game 2, except
with negligible probability.

The glue elements h̃ in both games are identical. The only difference between
the two games is extraction. In Game 2, the challenger extracts the mi’s to
compute the glue h̃, whereas in Game 1, the challenger computes the correct
h̃ directly from the ui’s, without extracting the mi’s. If an adversary could
distinguish the two games, it would break the knowledge extractor property. This
is the same as Claim 2 in the proof of unforgeability.

Game 3. In this game, the public keys pkX,1, pkX,2 are now half in the same

equivalence class and half independent, but the glue element remains h̃ = g̃y
(δ)·qδ ,

where qδ = p(x̂δ) for δ ∈ {1, 2}.

Game 3 is the same as Game 2, except the challenger C computes pk2 as

pkβ1 for a uniformly random β ← Z∗p. C computes h̃ as in Game 2, signs n

messages Mi = (g̃, g̃i, g̃n, h̃, ũi) using his secret key skδ for MSf , and sends

m̃ = (g̃, ũ1, . . . , ũn) and (h̃, σ = {σ1, . . . , σn}) to A, along with a simulated
ZKPoK that h̃ was computed correctly.

Claim 3. If a PPT adversary can distinguish Game 2 from Game 3 with non-
negligible probability, then public key class-hiding of MSf doesn’t hold.

Suppose a PPT adversary A can distinguish Game 2 from Game 3 for MSX
on messages of length n∗. Then, we construct a PPT reduction B for breaking
public key-class hiding of MSf as follows. B receives as input PP and two fixed

public keys pk1, pk
b
2 for a mercurial signature scheme MSf on messages of length

36 Elizabeth C. Crites and Anna Lysyanskaya

` = 5. His goal is to determine if pkb2 ∈ [pk1]Rpk
or not. He constructs public keys

pkX,1, pkX,2 as follows:

pkX,1 = (pk1, X̂1,6, X̂1,7, X̂1,8, X̂1,9, X̂1,10)

pkbX,2 = (pkb2, X̂2,6, X̂2,7, X̂2,8, X̂2,9, X̂2,10)

where the X̂i,j ’s are computed independently, as in Equations (4) and (5). B
then forwards PPX = PP and pkX,1, pk

b
X,2 to A. For each signature query, A

selects whether he would like the message m to be signed under skX,1 or skbX,2. B
extracts the mi’s, or if the extraction fails, B denies A the signature. B computes
h̃ as in Game 2/Game 3, forwards n∗ messages Mi = (g̃, g̃i, g̃n

∗
, h̃, ũi) to the

appropriate signing oracle, either Signf (sk1, ·) or Signf (skb2, ·), and forwards the

signature m̃ = (g̃, ũ1, . . . , ũn∗) and (h̃, σ = {σ1, . . . , σn∗}) to A, along with a
simulated ZKPoK that h̃ was computed correctly. It is clear that pkbX,2 is half in
the same equivalence class as pkX,1 and half independent (Game 3) if and only if

pkb2 ∈ [pk1]Rpk
, so A’s success in distinguishing Game 2 from Game 3 translates

directly into B’s success in breaking public key class-hiding of MSf .

Game 4. In this game, the public keys pkX,1, pkX,2 are again half in the same

equivalence class and half independent, but the glue element is h̃ = g̃Rδ(qδ), where
qδ = p(x̂δ) and Rδ : Z∗p → Z∗p is a random function for δ ∈ {1, 2}.

The challenger C computes the public keys as:

pkX,1 = (pk1, X̂1,6, X̂1,7, X̂1,8, X̂1,9, X̂1,10)

pkX,2 = (pkβ1 , X̂2,6, X̂2,7, X̂2,8, X̂2,9, X̂1,10)

where the X̂i,j ’s are computed independently, as in Equations (4) and (5), and

β ← Z∗p. C chooses two random functions R1, R2 : Z∗p → Z∗p and computes h̃ =

g̃Rδ(qδ) according to the secret key skX,δ A selected. He then signs nmessagesMi =

(g̃, g̃i, g̃n, h̃, ũi) using his secret key skδ for MSf , and sends m̃ = (g̃, ũ1, . . . , ũn)

and (h̃, σ = {σ1, . . . , σn}) to A, along with a simulated ZKPoK that h̃ was
computed correctly.

Claim 4. A PPT adversary cannot distinguish Game 3 from Game 4 under the
ABDDH+ assumption in G1.

This is very similar to Claim 3 (ABDDH+) in the proof of unforgeability.

Game 5. In this game, the public keys pkX,1, pkX,2 are again half in the same

equivalence class and half independent, but the glue element is h̃ = g̃Rδ(q̇δ), where
q̇δ = p(αδ), αδ is a “fake” secret point, and Rδ : Z∗p → Z∗p is a random function
for δ ∈ {1, 2}.

Game 5 is the same as Game 4, except the challenger C computes the glue
element as h̃ = g̃Rδ(q̇δ), where δ ∈ {1, 2} corresponds to the secret key skX,δ A
selected.

Mercurial Signatures for Variable-Length Messages 37

Claim 5. A PPT adversary A cannot distinguish Game 4 from Game 5 under
the DL assumption in G2.

The only difference between the two games is that in Game 5, the polynomials
pj(x) are evaluated at a “fake” secret point αδ, which is independent of the true
secret point x̂δ. If qδ,i = qδ,j for some pi(x) 6= pj(x) and some δ ∈ {1, 2}, then
Rδ(qδ,i) = Rδ(qδ,j), so A learns that pi(x̂δ) = pj(x̂δ). We showed in Claim 4 of
the proof of unforgeability that a collision pi(αδ) = pj(αδ) occurs with negligible
probability, so A can distinguish Game 4 from Game 5 only if a collision pi(x̂δ) =
pj(x̂δ) occurs in Game 4 with non-negligible probability. We showed in Claim 5 of
the proof of unforgeability that such a collision occurs with negligible probability,
or the DL assumption doesn’t hold.

Game 6. In this game, the public keys pkX,1, pkX,2 are again half in the same

equivalence class and half independent, but the glue element is h̃ = g̃Rδ(m1,...,mn),
where Rδ : (Z∗p)n → Z∗p is a random function for δ ∈ {1, 2}.

Game 6 is the same as Game 5, except the challenger C computes the glue
element as h̃ = g̃Rδ(m1,...,mn), where δ ∈ {1, 2} corresponds to the secret key
skX,δ A selected.

Claim 6. An adversary’s view in Game 5 is the same as it is in Game 6, except
with negligible probability.

If q̇δ,i = q̇δ,j for some pi(x) 6= pj(x) and some δ ∈ {1, 2}, then Rδ(q̇δ,i) =
Rδ(q̇δ,j), so A learns that pi(αδ) = pj(αδ). The value αδ is independent of the
adversary’s view unless such a collision occurs. We showed in Claim 4 of the
proof of unforgeability that a collision pi(αδ) = pj(αδ) occurs with negligible
probability. If there are no such collisions, A’s view is identical in both games
because he receives random values.

Game 7. In this game, the public keys pkX,1, pkX,2 are again half in the same

equivalence class and half independent, but the glue element is h̃ = g̃R(m1,...,mn),
where R : (Z∗p)n → Z∗p is a random function.

Game 7 is the same as Game 6, except the challenger C computes the glue
element as h̃ = g̃R(m1,...,mn). Note that the same function R is used regardless of
which secret key skX,δ A selected.

Claim 7. A PPT adversary cannot distinguish Game 6 from Game 7 under the
DDH assumption in G1.

We prove this via a hybrid argument. Suppose a PPT adversary A can
distinguish hybrids Hi from Hi+1 (described below) for some i with non-negligible
probability (bounded by the best advantage in breaking DDH). Then, we construct
a PPT reduction B for breaking the DDH assumption as follows. B receives as
input (g0, A,B,C), where g0 is a generator of G1 and implicitly A = ga0 , B = gb0,

38 Elizabeth C. Crites and Anna Lysyanskaya

and C = gab0 or gr0 for some uniformly random a, b, r ∈ Z∗p. He computes public
parameters PP and public keys pkX,1, pkX,2 as follows:

pkX,1 = (pk1, X̂1,6, X̂1,7, X̂1,8, X̂1,9, X̂1,10)

pkX,2 = (pkβ1 , X̂2,6, X̂2,7, X̂2,8, X̂2,9, X̂2,10)

where the X̂i,j ’s are computed independently, as in Equations (4) and (5),
and β ← Z∗p. B chooses random functions R1, R2 : (Z∗p)n → Z∗p and forwards
PPX = PP and pkX,1, pkX,2 to A.

Let A’s jth signature query be on message mj = (ĝj , uj,1, . . . , uj,n). B acts as
the extractor while A gives a ZKPoK that, for all 1 ≤ i ≤ n, he knows mj,i such
that uj,i = ĝ

mj,i
j . B extracts the mj,i’s, or if the extraction fails, B denies A the

signature. Otherwise,

1. If j ≤ i, B computes:

h̃
(1)
j = (g̃

(1)
j)R1(mj,1,...,mj,n)

h̃
(2)
j = (g̃

(2)
j)R2(mj,1,...,mj,n)

He signs n messages M
(1)
j,i = (g̃

(1)
j , (g̃

(1)
j)i, (g̃

(1)
j)n, h̃

(1)
j , ũ

(1)
j,i) using the secret

key sk1 for MSf and also signs n messages M
(2)
j,i = (g̃

(2)
j , (g̃

(2)
j)i, (g̃

(2)
j)n, h̃

(2)
j , ũ

(2)
j,i)

using the secret key sk2 for MSf . B sends m̃
(1)
j = (g̃

(1)
j , ũ

(1)
j,1 , . . . , ũ

(1)
j,n), (h̃

(1)
j , σ

(1)
j =

{σ(1)
j,1 , . . . , σ

(1)
j,n}), m̃

(2)
j = (g̃

(2)
j , ũ

(2)
j,1 , . . . , ũ

(2)
j,n), and (h̃

(2)
j , σ

(2)
j = {σ(2)

j,1 , . . . , σ
(2)
j,n})

to A, along with simulated ZKPoKs that h̃
(1)
j and h̃

(2)
j are computed correctly.

2. If j = i+ 1, B computes:

g̃
(1)
j = g0 h̃

(1)
j = B ũ

(1)
j,i = g

mj,i
0 ∀i

g̃
(2)
j = A h̃

(2)
j = C ũ

(2)
j,i = Amj,i ∀i

He then signs n messages M
(1)
j,i = (g0, g

i
0, g

n
0 , B, g

mj,i
0) using sk1 and n messages

M
(2)
j,i = (A,Ai, An, C,Amj,i) using sk2 and sends the signatures and simulated

proofs to A.

3. If j > i+ 1, B computes:

h̃
(1)
j = (g̃

(1)
j)R1(mj,1,...,mj,n)

h̃
(2)
j = (g̃

(2)
j)R1(mj,1,...,mj,n)

He signs the messages M
(1)
j,i ,M

(2)
j,i and forwards the signatures and simulated

proofs to A.

Let Γ (k) be the number of queries A makes. Hybrid H0 corresponds to the

game in which all glue elements are formed as h̃j = g̃
R1(m1,...,mn)
j (Game 7),

Mercurial Signatures for Variable-Length Messages 39

while HΓ (k) corresponds to the game in which all glue elements are formed as

h̃j = g̃
Rδ(m1,...mn)
j for δ ∈ {1, 2} (Game 6). C = gab0 corresponds to hybrid Hi

and C = gr0 corresponds to hybrid Hi+1. Thus, if A is able to distinguish Hi
from Hi+1 for some i with non-negligible probability, then B breaks the DDH
assumption.

Game 8. In this game, now pkX,2 ∈ [pkX,1]Rpk
, but the glue element remains

h̃ = g̃R(m1,...,mn),where R : (Z∗p)n → Z∗p is a random function.

Game 8 is the same as Game 7, except the challenger C computes the public
keys as pkX,2 = pkβX,1 for a uniformly random β ← Z∗p.

Claim 8. A PPT adversary cannot distinguish Game 7 from Game 8 under the
DDH assumption in G2.

Consider the following set of games. In each game, h̃ = g̃R(m1,...,mn), and the
reduction B receives as input (ĝ0, Â, B̂, Ĉ), where ĝ0 is a generator of G2 and im-
plicitly Â = ĝa0 , B̂ = ĝb0, and Ĉ = ĝab0 or ĝr0 for some uniformly random a, b, r ∈ Z∗p.

Game 7. Recall that pkX,1 and pkX,2 are of the form:

pkX,1 = (pk1, X̂1,6, X̂
x̂1
1,6, X̂1,8, X̂

y
(1)
1

1,8 , X̂
y
(1)
2

1,8)

pkX,2 = (pkβ1 , X̂
γ
1,6, (X̂

γ
1,6)x̂2 , X̂λ

1,8, (X̂
λ
1,8)y

(2)
1 , (X̂λ

1,8)y
(2)
2)

where β, γ, λ, x̂1, x̂2, y
(1)
1 , y

(2)
1 , y

(1)
2 , y

(2)
2 ← Z∗p are all uniformly random.

Intermediate Game 1. Consider pkX,1 and pkX,2 of the form:

pkX,1 = (pk1, X̂1,6, X̂
x̂
1,6, X̂1,8, X̂

y
(1)
1

1,8 , X̂
y
(1)
2

1,8)

pkX,2 = (pkβ1 , X̂
γ
1,6, (X̂

γ
1,6)x̂, X̂λ

1,8, (X̂
λ
1,8)y

(2)
1 , (X̂λ

1,8)y
(2)
2)

where β, γ, λ, y
(1)
1 , y

(2)
1 , y

(1)
2 , y

(2)
2 ← Z∗p are all uniformly random.

The reduction plugs in the DDH challenge (ĝ0, Â, B̂, Ĉ) as follows:

pkX,1 = (pk1, ĝ0, Â, X̂1,8, X̂
y
(1)
1

1,8 , X̂
y
(1)
2

1,8)

pkX,2 = (pkβ1 , B̂, Ĉ, X̂
λ
1,8, (X̂

λ
1,8)y

(2)
1 , (X̂λ

1,8)y
(2)
2)

where β, λ, y
(1)
1 , y

(2)
1 , y

(1)
2 , y

(2)
2 ← Z∗p are all uniformly random. Thus, we have

that x̂1 = a and γ = b. If Ĉ = ĝab0 , then x̂2 = a = x̂1 (Intermediate Game 1). If
Ĉ = ĝr0, then x̂1 and x̂2 are independent (Game 7).

Intermediate Game 2. Consider pkX,1 and pkX,2 of the form:

pkX,1 = (pk1, X̂1,6, X̂
x̂
1,6, X̂1,8, X̂

y1
1,8, X̂

y
(1)
2

1,8)

pkX,2 = (pkβ1 , X̂
γ
1,6, (X̂

γ
1,6)x̂, X̂λ

1,8, (X̂
λ
1,8)y1 , (X̂λ

1,8)y
(2)
2)

40 Elizabeth C. Crites and Anna Lysyanskaya

where β, γ, λ, y
(1)
2 , y

(2)
2 ← Z∗p are all uniformly random.

The reduction plugs in the DDH challenge (ĝ0, Â, B̂, Ĉ) as follows:

pkX,1 = (pk1, X̂1,6, X̂
x̂
1,6, ĝ0, Â, ĝ

y
(1)
2

0)

pkX,2 = (pkβ1 , X̂
γ
1,6, (X̂

γ
1,6)x̂, B̂, Ĉ, B̂y

(2)
2)

where β, γ, y
(1)
2 , y

(2)
2 ← Z∗p are all uniformly random. Thus, we have that y

(1)
1 = a

and λ = b. If Ĉ = ĝab0 , then y
(2)
1 = y

(1)
1 (Intermediate Game 2). If Ĉ = ĝr0, then

y
(1)
1 and y

(2)
1 are independent (Intermediate Game 1).

Intermediate Game 3. Consider pkX,1 and pkX,2 of the form:

pkX,1 = (pk1, X̂1,6, X̂
x̂
1,6, X̂1,8, X̂

y1
1,8, X̂

y2
1,8)

pkX,2 = (pkβ1 , X̂
γ
1,6, (X̂

γ
1,6)x̂, X̂λ

1,8, (X̂
λ
1,8)y1 , (X̂λ

1,8)y2)

where β, γ, λ← Z∗p are all uniformly random.

The reduction plugs in the DDH challenge (ĝ0, Â, B̂, Ĉ) as follows:

pkX,1 = (pk1, X̂1,6, X̂
x̂
1,6, ĝ0, ĝ

y1
0 , Â)

pkX,2 = (pkβ1 , X̂
γ
1,6, (X̂

γ
1,6)x̂, B̂, B̂y1 , Ĉ)

where β, γ ← Z∗p are uniformly random. Thus, we have that y
(1)
2 = a and λ = b.

If Ĉ = ĝab0 , then y
(2)
2 = y

(1)
2 (Intermediate Game 3). If Ĉ = ĝr0, then y

(1)
1 and y

(2)
1

are independent (Intermediate Game 2).

Intermediate Game 4. Consider pkX,1 and pkX,2 of the form:

pkX,1 = (pk1, X̂1,6, X̂
x̂
1,6, X̂1,8, X̂

y1
1,8, X̂

y2
1,8)

pkX,2 = (pkβ1 , X̂
γ
1,6, (X̂

γ
1,6)x̂, X̂γ

1,8, (X̂
γ
1,8)y1 , (X̂γ

1,8)y2)

where β, γ ← Z∗p are uniformly random.

The reduction plugs in the DDH challenge (ĝ0, Â, B̂, Ĉ) as follows:

pkX,1 = (pk1, ĝ0, ĝ
x̂
0 , B̂, B̂

y1 , B̂y2)

pkX,2 = (pkβ1 , Â, Â
x̂, Ĉ, Ĉy1 , Ĉy2)

Thus, we have that γ = a. If Ĉ = ĝab0 , then λ = a = γ (Intermediate Game 4).
If Ĉ = ĝr0, then Ĉ is distributed the same as B̂λ for λ independent from γ
(Intermediate Game 3).

Game 8. Recall that pkX,1 and pkX,2 are of the form:

pkX,1 = (pk1, X̂1,6, X̂
x̂
1,6, X̂1,8, X̂

y1
1,8, X̂

y2
1,8)

pkX,2 = (pkβ1 , X̂
β
1,6, (X̂

β
1,6)x̂, X̂β

1,8, (X̂
β
1,8)y1 , (X̂β

1,8)y2)

Mercurial Signatures for Variable-Length Messages 41

where β ← Z∗p is uniformly random.

The reduction plugs in the DDH challenge (ĝ0, Â, B̂, Ĉ) as follows:

pkX,1 = (ĝ0, ĝ
x1,2

0 , ĝ
x1,3

0 , ĝ
x1,4

0 , ĝ
x1,5

0 , Â, Âx̂, Âω, (Âω)y1 , (Âω)y2)

pkX,2 = (B̂, B̂x1,2 , B̂x1,3 , B̂x1,4 , B̂x1,5 , Ĉ, Ĉ x̂, Ĉω, (Ĉω)y1 , (Ĉω)y2)

where the xi,j ’s and ω are uniformly random. If Ĉ = ĝab0 , then pkX,2 = (pkX,1)b,

so pkX,2 ∈ [pkX,1]Rpk
(Game 8). If Ĉ = ĝr0, then Ĉ is distributed the same as Âγ

for some γ independent from b (Intermediate Game 4).

Game 9. In this game, again pkX,2 ∈ [pkX,1]Rpk
, but the glue element is h̃ = g̃R(q̇),

where q̇ = p(α).

Claim 9. An adversary’s view in Game 8 is the same as it is in Game 9, except
with negligible probability.

The is the same as Claim 6 (collision argument) in the proof of unforgeability.

Game 10. In this game, again pkX,2 ∈ [pkX,1]Rpk
, but the glue element is

h̃ = g̃R(q), where q = p(x̂).

Claim 10. A PPT adversary cannot distinguish Game 9 from Game 10 under
the DL assumption in G2.

This is the same as Claim 4 (collision argument) and Claim 5 (DL) in the
proof of unforgeability.

Game 11. In this game, again pkX,2 ∈ [pkX,1]Rpk
, but the glue element is h̃ = g̃y·q.

Claim 11. A PPT adversary cannot distinguish Game 10 from Game 11 under
the ABDDH+ assumption in G1.

This is the same as Claim 3 (ABDDH+) in the proof of unforgeability.

Game 12. In this game, again pkX,2 ∈ [pkX,1]Rpk
, but the glue element is h̃ = g̃y·q.

There is extraction, but no zero-knowledge simulation.

Claim 12. A PPT adversary cannot distinguish Game 11 from Game 12, except
with negligible probability.

This is the same as Claim 2 (extraction) in the proof of unforgeability.

Game 13. In this real signing game, again pkX,2 ∈ [pkX,1]Rpk
, but the glue

element is again h̃ = g̃y·q. There is no extraction or zero-knowledge simulation.

Claim 13. A PPT adversary cannot distinguish Game 12 from Game 13, except
with negligible probability.

This is the same as Claim 1 (simulation) in the proof of unforgeability.

This completes the proof of public key class-hiding for MSX. (Theorem 6).

