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Abstract. Secure two party computation (2PC) of arbitrary programs
can be efficiently achieved using garbled circuits (GC). The bottleneck of
GC efficiency is communication. It is widely believed that for direct 2PC
evaluation of a Boolean circuit, it is necessary to transmit the entire GC,
including garbled truth tables corresponding to subcomputations whose
output is ultimately discarded by conditional logic.

This folklore belief is false.

We propose a novel GC technique, stacked garbling, that eliminates the
communication cost of inactive conditional branches. We extend the ideas
of conditional GC evaluation explored in (Kolesnikov, Asiacrypt 18) and
(Heath and Kolesnikov, Eurocrypt 20). Unlike these works, ours is for
general 2PC where no player knows which conditional branch is taken.

Our garbling scheme, Stack, requires communication proportional to the
longest execution path rather than to the entire circuit. Stack is compat-
ible with state-of-the-art techniques, such as free XOR and half-gates.

Stack is a garbling scheme. As such, it can be plugged into a variety of
existing protocols, and the resulting round complexity is the same as that
of standard GC. The approach does incur computation cost quadratic in
the conditional branching factor vs linear in standard schemes, but the
tradeoff is beneficial for most programs: GC computation even on weak
hardware is faster than GC transmission on fast channels.

We implemented Stack in C++. Stack reduces communication cost by
approximately the branching factor: for 16 branches, communication is
reduced by 10.5×. In terms of wall-clock time for circuits with branching
factor 16 over a 50 Mbps WAN on a laptop, Stack outperforms state-of-
the-art half-gates-based 2PC by more than 4×.

1 Introduction

Secure Multiparty Computation (MPC) allows mutually untrusting parties to
compute a function of their private inputs while revealing only the function
output. Two-party computation (2PC) is a special case of MPC that has received
wide attention due both to the importance of the setting and to the efficiency
of Yao’s garbled circuit (GC) technique.



In GC, the parties represent functions as Boolean circuits. One player, the
circuit generator, encrypts the circuit’s gates and inputs and sends the encryp-
tions to the other player, the circuit evaluator. We refer to the collection of
encrypted gates as material (following [Kol18]) and to the encryptions of wire
values as labels. Given material and input labels, the evaluator computes each
gate under encryption and obtains output labels. Finally, the players jointly de-
crypt the output labels to compute the cleartext output. The key invariant is
that the labels hide the truth values on the circuit wires, and thus nothing is
learned except the output.

The bottleneck in GC performance is communication: the material is a large
string that must be sent from generator to evaluator. Despite significant interest
and considerable effort, reducing the amount of necessary material has proved
challenging. Nonetheless, a persistent line of GC research has improved com-
munication by reducing the number of ciphertexts needed to encrypt individual
gates [NPS99,KS08,PSSW09,KMR14,ZRE15]. Our work is orthogonal to these
gate-level improvements.

In this work, we reduce communication for circuits that include con-
ditional branching. Under standard GC techniques, the circuit generator sends
material for each branch; it is widely believed that, for security, sending separate
branch material is required so as to hide which branch is taken1.

This folklore belief is false. The generator need only send enough material for
the longest program execution path. That is, separate material need not be sent
for each conditional branch. Instead, one string of material can be reused across
the branches, greatly reducing communication. Prior work has demonstrated this
possibility [HK20,Kol18], but only in the case where one of the players knows
the execution path. Our approach is for general 2PC: neither player knows which
branches are taken, yet material for conditionals can be efficiently transmitted
without compromising security or correctness.

At a high level, our generator bitwise XORs, or stacks, material from exclusive
branches together. Then, the evaluator reconstructs from seeds the material
for all branches except the taken branch, XORs these strings with the stacked
material to extract the material for the taken branch, and evaluates the taken
branch. For security, the evaluator performs these actions obliviously, meaning
that she attempts to evaluate each branch. By stacking material, the generator
sends much shorter messages to the evaluator. Hence we improve communication
and overall performance.

1.1 Contribution

We refute the widely held belief that inactive GC branches must be transmitted.
We construct a practically efficient stacked garbling scheme Stack, which

improves communication for circuits with conditional branching. Stack omits

1 Garbled RAM [LO13] facilitates improved branching, but requires heavy CPU-
emulation machinery; see Section 2. Additionally, universal circuits can implement
branching, but have impractical overhead, both in circuit size and in the cost of the
gadgets required [KKW17].
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transmission of inactive branches and produces GC material proportional to the
size of the longest program execution path rather than to the entire circuit. Stack
improves GC communication by up to the branching factor: i.e., up to the ratio
of the size of the longest execution path over the size of the entire circuit.

For each conditional with branching factor b, our computation cost is (less
than) b times that of standard GC. Because fixed key garbling is typically much
faster than GC transmission, the decrease in communication typically outweighs
the increase in computation. The added computation is easily parallelized.

Stack is fully compatible with prior GC advancements, such as free XOR [KS08]
and state-of-the-art half-gates [ZRE15].

Stack is extremely generic: it can improve the performance of any application
that includes conditional branching. We note that one exciting direction is to
use Stacked Garbling to build an efficient ‘MPC machine’. An MPC machine
would, similar to a hardware processor, execute programs by handling individ-
ual program instructions one-by-one. This style of machine requires conditional
dispatch on the type of instruction in order to optionally perform one instruction
from the instruction set, an ideal case for Stacked Garbling to be used.

We built and evaluated a C++ implementation of Stack (see Sections 9 and
10). Our evaluation confirms that Stack indeed reduces communication over the
prior state-of-the-art by the branching factor. This communication improvement
reduces wall-clock time, especially on slower or shared networks. In terms of wall-
clock time for circuits with branching factor 16 over 50 Mbps WAN on a laptop,
Stack outperforms state-of-the-art half-gates-based 2PC by more than 4×.

We plan to release our software as open-source.

2 Related Work

GC is the most popular and often the fastest approach to secure two-party com-
putation (2PC). GC is effective for functions that include conditional statements:
alternative arithmetic representations must convert values to a Boolean repre-
sentation at high cost before performing integer comparisons that frequently
appear as branch conditions.

We review and compare related work in the area of GC. The most relevant
works, [Kol18] and [HK20], are background to our approach and are reviewed
in Sections 3.1 and 3.2.

Garbling schemes formalize the subcomponents used in GC, and are de-
fined in a number of works, including [FKN94,KO04]. [BHR12] developed a
systematic and detailed garbling scheme framework. The BHR formalization is
popular and useful; it allows researchers to streamline and simplify their pre-
sentation of work in the GC area. At the same time, BHR groups material (i.e.
garbled gates) together with the circuit for which it was generated. Our ap-
proach relies on a separation of material from circuit topology. Therefore, while
we formalize our approach in the BHR framework, some definitions are adjusted
to explicitly separate material from topology.
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GC communication improvements. Since Yao’s original work, the com-
munity has achieved only modest improvements in communicating a single GC;
even the näıve construction is bare-bones and leaves little room for communica-
tion reduction. Additionally, most GC research has instead focused on orthogonal
performance concerns in the malicious model.

Still, improvements have been made. Most communication reduction has
come in the form of improvements to individual gates. In its original construc-
tion, GC required the transmission of four ciphertexts per gate. Chronologically,
the following improvements were made:

– [NPS99] achieved three ciphertexts per gate (3 garbled row reduction, GRR3).
– A decade later, ‘free XOR’ eliminated the cost of XOR gates [KS08].
– Shortly after, [PSSW09] unified GRR3 and free XOR. The same work also

introduced an interpolation-based technique that uses only two ciphertexts
per gate, but that is incompatible with free XOR.

– Subsequently, [KMR14] proposed a heuristic for combining different row re-
duction techniques with free XOR.

– Finally, improvements to individual gates culminated in ‘half-gates’, a gar-
bling scheme built on and compatible with free XOR that achieves two ci-
phertexts per AND gate [ZRE15]. The same work also established a matching
lower bound on the size of individual gates that is hard to circumvent.

Free XOR based schemes, including half-gates, assume the existence of a hash
function that is correlation robust [IKNP03] and circular secure [CKKZ12].
[GLNP18] specify an efficient scheme built on standard assumptions. Their tech-
nique uses two ciphertexts per AND gate and one ciphertext per XOR gate.

Our work is orthogonal to these gate-level improvements and our construction
uses them. In particular, we focus on conditional branching only and leverage
the existing half-gates technique to handle individual gates.

Universal circuits. In this work, we use cryptographic techniques to reduce
the cost of conditionals. Another direction attempts to instead reduce cost by
choosing alternate Boolean circuit representations. Universal circuits (UCs) can
be programmed to implement any circuit in the entire universe of circuits of a
given size n [Val76]. Researchers continue to search for smaller UC constructions;
recent work achieves size ≈ 4.5n log n [LMS16,KS16,GKS17,ZYZL18,AGKS19].
UCs implement conditionals by programming the UC to be the taken branch.
When the GC generator knows the evaluated branch, the cost of UC program-
ming is free as the generator directly programs the UC; otherwise programming
is sent via O(n log n) OTs. However, even in the former “free programming” case,
implementing conditionals via UCs usually does not pay off. Even for branches
with only 210 gates, the UC is 4.5 ·10 = 45 times larger than a single branch. For
typical conditionals with only 2-3 branches, it is cheaper to separately encrypt
and send each branch.

Motivated in part by branching, [KKW17] proposed a generalization of UCs
called set universal circuits (S-UCs). An S-UC implements a fixed set of circuits
S rather than an entire size-n universe. [KKW17] focuses on the special case
where |S| is small, capturing the case where S is a set of conditional branches.
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Their approach applies heuristics to embed S into one programmable circuit.
[KKW17] reports the performance of this heuristic for specific sets of circuits,
achieving up to 6× GC size reduction for 32 branches. However, some sets did not
improve over their original representations. Our work achieves up to 32× GC size
reduction for 32 branches and requires no per-gate overhead, which is significant
in [KKW17] (about 22 garbled rows per gate). The work of [Kol18] (Section 3.2)
supersedes [KKW17] when the GC generator knows the taken branch.

Topology-decoupling circuit garbling, i.e. GC evaluation under different
topologies, is a promising direction in GC research. It was introduced by [Kol18],
extended in [HK20], and is further explored in this work. We present detailed
reviews of [Kol18] and [HK20] as preliminaries in Sections 3.1 and 3.2. Our
work generalizes these existing techniques from special cases where one player
knows the executed branch to general 2PC. We believe topology-decoupling and
stacked garbling can be further fine-tuned and applied, especially with specific
functionalities in mind.

Garbled RAM and CPU-emulation-based 2PC. Garbled RAM is a
powerful technique that augments GC with sublinear cost oblivious random ac-
cess memory [LO13,GHL+14,GLOS15,GLO15]. It enables CPU-emulation-based
2PC, which in particular can conditionally execute branches without paying sep-
arately for each branch. Stacked Garbling achieves improved branching without
the overhead needed to emulate a CPU and, moreover, can itself be effectively
used as a low-level primitive in CPU emulation.

3 Preliminaries

We present an efficient technique for garbling circuits with conditional branches.
Two prior works also address GC conditionals, but both focus on special cases
where one player knows the target branch. I.e., one player knows which branch
is taken a priori. Specifically, [Kol18] requires the circuit generator to know the
target, while [HK20] requires the circuit evaluator to know the target. Our ap-
proach uses key ideas from both works to efficiently handle conditionals without
either party knowing the target, so we review both works.

3.1 ‘Free If’ Review [Kol18]

Consider a GC with conditional branching. If the circuit generator Gen knows
the target branch, then [Kol18] reduces communication needed to send the GC
by combining two keys ideas:

1. The circuit description (the topology) can be separated from the GC material
(i.e., the gate encryptions), and material can be used with a non-matching
topology. [Kol18] formalizes topology-decoupling circuit garbling, where cir-
cuit topology is conveyed separately from material.

2. Material can be re-used if it is used at most once with valid labels. The
same material can be re-used with garbage labels. Garbage labels are not
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the encryptions of truth values, but are instead pseudorandom strings. Put
another way, the evaluator may ‘decrypt’ a gate table with keys unrelated to
the table encryption multiple times. Successful and unsuccessful decryption
attempts must be indistinguishable.

The [Kol18] approach is as follows:

Let ~C = {C1, ..., Cn} be a set of Boolean circuits, where each circuit repre-
sents a different branch of a conditional statement. For simplicity, suppose all
GCs are of the same size ([Kol18] pads material to accommodate branches of
different sizes). Let Ct be the target circuit, and let Gen know t. Gen encrypts Ct
but does not encrypt the other n−1 circuits. Let M be the material constructed
by encrypting Ct. Gen sends M to the evaluator Eval. Furthermore, Gen conveys
to Eval input labels for each circuit via oblivious transfer. Eval knows the topol-
ogy of each branch, since she knows ~C, but does not know and must not learn
t. Therefore, she evaluates each branch Ci, interpreting M as the collection of
encrypted truth tables for that branch. When she evaluates Ct, she therefore ob-
tains correct output labels. But M is valid material only for Ct, not for the other
branches. The input labels that Eval uses for all Ci 6=t are garbage with respect
to M , and Eval obtains garbage labels for each wire. [Kol18] demonstrates it is
possible to re-use material in this way without compromising security. Namely,
Eval cannot distinguish the garbage labels from the valid labels and hence does
not learn t. Eval and Gen obliviously discard garbage labels from Ci6=t and prop-
agate valid labels from Ct via an output selection protocol. In this manner, the
parties compute the correct output labels for branch Ct which can be decrypted
or used as input for another circuit.

By computing the protocol above, the two parties securely evaluate 1-out-of-
n branches while transmitting material for only 1 branch rather than for all n.
This reduces communication and hence improves performance.

Our approach also optimizes conditional branching and also relies on the key
ideas of topology decoupling and garbage labels. However, our approach differs
from [Kol18] in two key respects:

1. [Kol18] relies on Gen knowing the target branch. We consider the general case
where neither Gen nor Eval know the target. Despite this generalization, we
similarly avoid transmitting separate material for each branch.

2. [Kol18] requires the parties to interact via the output selection protocol. We
discard garbage labels without interaction.

3.2 ‘Privacy-Free Stacked Garbling’ Review [HK20]

[HK20] is in a line of work that uses garbled circuits to construct zero-knowledge
proofs [JKO13,FNO15]. [HK20] differs from [Kol18] primarily in that the circuit
evaluator Eval knows the target branch rather than the circuit generator Gen.
This is a critical distinction that requires a different approach. [HK20] builds
this new approach on two key ideas:
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1. Material can be managed as a bitstring. In particular, material from dif-
ferent circuits can be XORed together. This is a different use of topology-
decoupling from that of [Kol18]. [Kol18] decouples topology from material so
that the same material can be used to evaluate many topologies. [HK20] de-
couples topology from material so that material from different circuits can
be XORed, or stacked, to reduce communication.

2. Material can be viewed as the expansion of a pseudorandom seed. Circuit
encryption is a pseudorandom process, but if all random choices are derived
from a seed, then material is the deterministic expansion of that seed. Hence,
material can be compactly sent as a seed.

In general, we cannot send material via a seed, as the seed also includes all
wire labels. In the [HK20] setting of GC-based zero-knowledge, this extra
information would allow the evaluator to forge a proof. [HK20] shows that
it is secure to reveal a seed to Eval if the seed only generates material for a
non-target branch.

[HK20] combines these ideas to reduce the cost of proving in zero-knowledge
(ZK) 1-out-of-n different statements. The approach is as follows (we elide many
ZK-specific details):

Let ~C = {C1, ..., Cn} be a set of Boolean circuits that each implement a proof
statement. Let Ct be the target circuit (i.e. the circuit for which ZK Prover Eval

has a witness) and let Eval know t. The ZK Verifier Gen knows ~C, but does
not know and must not learn t. Gen uses n different seeds to construct material
for each circuit Ci. He stacks these n strings by XORing them together, with
appropriate padding, and sends the result to Eval. Eval selects the target circuit
during n instances of 1-out-of-2 oblivious transfer. In each instance i 6= t, she
selects the first secret and receives the ith seed. In instance t, she chooses the
second secret and so does not receive the seed for Ct.2 Eval uses the n−1 seeds to
reconstruct material for circuits Ci6=t and uses the result to ‘undo’ the stacking.
As a result, she obtains material needed to evaluate Ct. She evaluates and is able
to construct a proof of Ct, which she sends to Gen.

By running this protocol, Eval and Gen perform a zero-knowledge proof of
1-out-of-n statements, but at the cost of sending only one proof challenge rather
than sending n. This reduces communication and hence improves performance.

Our approach leverages the key ideas from [HK20]. We also stack crypto-
graphic material using XOR and also allow the circuit evaluator to expand seeds
for non-target branches. Our approach differs from [HK20] in that:

1. [HK20] relies on Eval knowing the target branch. Our approach assumes that
neither Eval nor Gen knows the target.

2. [HK20] is a technique for ZK. Our approach addresses general 2PC where
both players have private input.

2 The second secret allows Eval to prove that she did not retrieve one of the seeds and
hence obtained the output label by GC evaluation of one branch. This prevents Eval
from taking all n seeds and using them to forge a proof.
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3. [HK20] requires Gen to send pseudorandom seeds to Eval via oblivious trans-
fer. Our approach embeds the seeds in the GC itself and hence does not
require additional interaction.

4 Notation and Assumptions

Notation

– ‘Gen’ is the circuit generator. We refer to Gen as he, him, his, etc.
– ‘Eval’ is the circuit evaluator. We refer to Eval as she, her, hers, etc.
– ‘C’ is a circuit. Subcircuits are distinguished using annotations, e.g.
C0, C1, C′...

– Lowercase variables, e.g. x, y, refer to unencrypted wire values. That is, x
and y are two different Boolean values held by two different wires.

– Uppercase variables, e.g. X,Y , refer to wire labels which are the encryption
of a wire value. E.g., X is the encryption of the value x.

– This work discusses projective garbling schemes, where each wire has two
labels. When the corresponding truth value for a label is known, we place
the value as a superscript. For example, we use X0 to refer to the encryption
of the bit 0 on wire x. Symmetrically, X1 refers to the encryption of bit 1.
Unannotated variables, e.g. X, refer to unknown wire encryptions: X could
be either X0 or X1, but it is unspecified or unknown in the given context.

– The variables s, S, S0, S1 refer to the branch condition wire. In the context
of a conditional, s decides which branch is taken.

– Following [Kol18], M refers to GC material. Informally, material is the data
which, in conjunction with input labels, is used to compute output labels.
In standard garbling schemes, material is a vector of encrypted gate tables.
In this work, material can be encrypted gate tables or the XOR stacking of
material from different branches. In our work, material does not include the
circuit topology or labels.

– In the context of a conditional, subscripts 0 and 1 associate values with the
first (resp. second) branch. For example, M0 is the material for branch C0.

– The variables n and m respectively denote the number of input wires and
output wires of a given circuit.

– Variables that represent vectors are written in bold. For example, ~x is a
vector of unencrypted truth values. We use bracket notation to access indexes
of vectors: ~x[0] accesses the 0th index of ~x.

– We work with explicit pseudorandom seeds. We write a ←$S A to indicate
that we pseudorandomly draw a value from the domain A using the seed S
as a source of randomness and store the result in a. When a seed S is used
to draw multiple values, we assume that each draw uses a nonce to ensure
independent randomness. For simplicity, we leave the counter implicit.

– We write a←$ A to denote that a is drawn uniformly from A.
–

c
= denotes computational indistinguishability.

– κ denotes the computational security parameter and can be understood as
the length of encryption keys (e.g. 128).
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– λ denotes the empty string.

In this work, we evaluate GCs with input labels that are generated inde-
pendently of the GC. I.e., these independent labels do not match the GC. We
call such labels garbage labels. During GC evaluation, garbage labels propagate
and must eventually be obliviously dropped in favor of valid labels. We call the
process of canceling out garbage labels garbage collection.

Assumptions. We assume a function H modeled as a random oracle (RO). We
note it is likely that Stacked Garbling can be achieved without use of a RO.
However, our particular construction interfaces with another garbling scheme
in a black-box manner. Because we place few requirements on this ‘underlying’
garbling scheme, interfacing requires care; we leave reducing assumptions needed
to achieve Stacked Garbling as future work.

5 High Level Approach

Our main contribution is a circuit garbling scheme that compacts material for
conditional branches. In Section 7, we present this garbling scheme in technical
detail. For now, we present our approach at a high level.

Section 3 covered four key ideas from prior work regarding material: material
can be (1) separated from circuit topology, (2) used with garbage input labels, (3)
stacked with XOR, and (4) compactly transmitted as a seed. To this list, we add
one additional key idea that allows us to obliviously and without interaction
discard garbage labels that emerge from the evaluation of inactive branches;
we ensure that all garbage is predictable to Gen. Gen precomputes the possible
garbage values and uses this knowledge to build garbled circuit gadgets that
collect garbage obliviously. We begin with a high level approach that omits
garbage collection (which is explained later):

Let C0 and C1 be two subcircuits that are conditionally composed as part
of some larger circuit. Let there be a wire s that encodes the branch condition:
if s = 0, then C0 should be executed and otherwise C1 should be executed. Let
S0, S1 be the pair of labels encrypting the possible values of s. I.e., S0 encrypts 0
and S1 encrypts 1. Let S be Eval’s label encrypting s. Eval does not know whether
S = S0 or S = S1. Suppose neither Gen nor Eval knows s and hence neither
player knows the target branch. At a high level, our approach is as follows:

1. Gen uses S1 as a seed to encrypt C0. As we will see, this allows Eval to
evaluate C1. Symmetrically, he uses S0 as a seed to encrypt C1. Let M0,M1

be the respective resultant material.
2. Gen uses XOR to stack the material. The result is the material for the con-

ditional: Mcond = M0 ⊕M1. Gen sends Mcond to Eval.
3. Recall, Eval has a label S. She assumes S = S0 and uses S to encrypt C1.

(a) Suppose Eval’s assumption is correct. Then since she encrypts with the
same seed as Gen, she constructs M1. She computes Mcond ⊕M1 = M0,
the correct material for C0. She evaluates C0 with her input labels and
obtains valid output.
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(b) Suppose Eval’s assumption is not correct, i.e. S = S1. Then she con-
structs garbage material instead of M1. Correspondingly, she obtains
garbage material for C0 and hence computes garbage output.

Critically, Eval cannot distinguish between her correct and incorrect assump-
tions. That is, she cannot distinguish valid material/labels from garbage:
from Eval’s perspective both valid and garbage material/labels are indistin-
guishable from random strings. We elaborate on this point in our security
proofs (Section 8).

4. Eval symmetrically assumes S = S1, encrypts C0, and evaluates C1.

Since S must be either S0 or S1, one of Eval’s assumptions is right and one
is wrong. That is, she computes valid output from one subcircuit and garbage
output from the other.

The remaining task is to obliviously discard the garbage output labels. This
could be achieved using an output selection protocol [Kol18], but our goal is to
discard garbage non-interactively. To realize this goal, we introduce two new GC
‘gadgets’: a demultiplexer gadget (demux) and a multiplexer gadget (mux). The
demux ensures that when Eval makes the wrong assumption, her garbage labels
are predictable to Gen. The mux disposes of predictable output garbage labels.
In practice, the demux and mux are built from garbled tables. We describe their
constructions in Section 7.6.

Additional details and garbage collection. We now rewind and present
Eval’s actions at a lower level of detail, including her handling of the demux and
mux. In our explanation, we assume S = S0. The symmetric scenario (S = S1)
has a symmetric explanation. We stress that the protocol is unchanged, and only
the explanation is affected by the assumption.

Figure 1 depicts a conditional subcircuit that includes a demux and mux.
Wirings in the diagram are numbered. Each of the following numbered steps
refers to a correspondingly numbered wiring in the diagram.

1. The input labels to the conditional are the output of some other subcircuit.
All input wires are passed to the demux.

2. The first input label is S, the encryption of the branch condition, by con-
vention. Both the demux and the mux take S as an argument that controls
their operation.

3. Eval assumes S = S0 and evaluates C0 as described in the above higher-level
explanation.

(a) Since this is a correct assumption (recall, we assumed S = S0), the
demux yields valid input labels for C0.

(b) As before, Eval encrypts C1 using S, computes Mcond ⊕M1 = M0, eval-
uates C0, and obtains valid output labels.

4. Eval symmetrically assumes that S = S1 and evaluates C1.

(a) Since this is an incorrect assumption, the demux yields garbage input
labels for C1. One challenge is that there are an exponential number of
possible inputs to C1. Each input wire can carry two different labels,
and all wires are potentially independent. The demux eliminates this
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C′ C′′

Fig. 1. A circuit with conditional evaluation. Subcircuit C′ is evaluated before the con-
ditional. By convention, the first wire out of C′ is the branch condition and controls
which conditional subcircuit is to be evaluated. C0 and C1 are the conditionally com-
posed subcircuits. Our approach introduces garbage labels, and the demux and mux
circuit components allow us to collect garbage non-interactively. Outputs of condition-
als can be used as inputs to subsequent subcircuits (e.g., C′′).

uncertainty by processing the input wire-by-wire, where there are only
two options for a wire label. That is, the demux, applying garbled tables,
obliviously translates both input wire labels to the same garbage label.
There is a corresponding translation performed for the target branch C0,
but in that case the demux keeps the two wire labels distinct. The demux
uses S to control which branch receives valid labels and which receives
garbage.

One can think of this uncertainty elimination as obliviously multiplying
the input wires by either 0 or 1 depending on S.

(b) As before, Eval computes garbage outputs by attempting to evaluate
C1. The output garbage labels are independent of the conditional circuit
inputs because (1) the demux ensures there is only one possible garbage
input per wire and (2) the evaluator’s actions are deterministic. That is,
we have guaranteed that C1 has only one possible garbage output label
per wire, and these garbage labels can be computed/predicted by Gen.

5. Garbage Collection. Eval passes both sets of output labels to the mux, along
with S. The mux collects garbage and yields valid outputs. These outputs
can be used as input to a subsequent subcircuit.

Garbage collection (Step 5) is possible because Gen predicts the garbage output
from C1 (recall, we assumed that the target branch is C0). By construction, the
output labels depend on garbling randomness only, and are independent of the
inputs to C1. Gen predicts this garbage by emulating Eval’s actions when making
a bad assumption. More precisely, he predicts both possible wrong assumptions:
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1. Gen emulates Eval in the case where she assumes S = S1, while in fact S =
S0. Gen encrypts C0 with S0, yielding garbage material M ′

0, and evaluates
C1 using Mcond ⊕M ′

0.
2. Gen emulates Eval in the case where she assumes S = S0, while in fact
S = S1. Gen encrypts C1 with S1 and evaluates C0 using Mcond ⊕M ′

1.

These emulations compute the possible garbage output from both branches. Gen
uses the garbage output labels to construct encrypted truth tables for the mux.

By our approach, Gen and Eval compactly represent the conditional composi-
tion of C0 and C1. In particular, Gen sends Mcond = M0⊕M1 instead of M0||M1.
The XOR-stacked material is shorter than the concatenated material and hence
more efficient to transmit. Both the demux and mux require additional material,
but the amount required is linear in the number of inputs/outputs and is usually
small compared to the amount of material needed for the branches.

6 Formalization of Circuits

We formalize our technique as a garbling scheme [BHR12]. Before defining our
scheme, we specify the syntactic objects that it manipulates. Specifically, we
formalize circuits that include explicit conditional branching.

A circuit is typically understood as the composition of many Boolean gates
together with specified input and output wires. We refer to this representation as
a netlist. We do not specify the syntax of netlists and instead leave the handling
of netlists to another underlying garbling scheme, which we refer to as Base. In
practice, our implementation instantiates Stack with the half-gates technique,
the state-of-the-art scheme for securely computing netlists [ZRE15].

Unfortunately, netlists alone are insufficient for our approach because they
do not explicate conditional branching. Therefore, we add the notion of a condi-
tional. A conditional is parameterized over two circuits, C0 and C1. Conditionals
with more than two branches can be constructed by nesting. In Supplementary
Material, we also provide a vectorized construction that conditionally composes
any number of branches without nesting. This vectorized construction is a sim-
ple generalization and is concretely more efficient yet notationally more complex.
Thus, we now formalize our approach for branching factor two. The first bit of
input to a conditional is, by convention, the condition bit s. The condition bit
decides which of the two parameterized circuits should be executed. As an ex-
ample, Figure 1 depicts the conditional composition of C0 and C1. We add one
requirement to conditionals: the two subcircuits must use the same input and
output wires. This requirement can be met without loss of generality by dis-
posing of unused inputs or adding constant-valued outputs. From here on, we
assume this requirement has been met.

We also add a third type of circuit that we call sequences. Sequences, while
uninteresting, are necessary for our approach. Sequences allow us to place con-
ditional circuits ‘in the middle’ of the overall circuit. As an example, Figure 1
depicts a sequence of three circuits: the leftmost circuit that provides input
to the conditional, the conditional circuit, and the rightmost circuit. Without
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sequences, we could not formalize the circuit in Figure 1. A sequence is pa-
rameterized over two subcircuits. Vectors of circuits are constructed by nesting
sequences. When executed, a sequence passes its input to its first subcircuit and
uses the resulting output as input to its second subcircuit. We add one require-
ment to sequences: the number of output wires from the first subcircuit must
match the number of input wires into the second subcircuit. We assume that
this requirement is met in future discussion.

Let C0, C1 be two arbitrary circuits. The space of circuits is defined as follows:

C ::= Netlist(·) | Cond(C0, C1) | Seq(C0, C1)

That is, a circuit is either a netlist, a conditional, or a sequence. By nesting
conditionals and sequences, this small language can achieve complex branching
control structure. As an example, we formalize Figure 1 as:

Seq(C′,Seq(Cond(C0, C1), C′′))

7 Our Garbling Scheme

1 En(e, ~x):

2 ~X ← λ
3 for i ∈ 0..n−1 :
4

(
X0, X1

)
← e[i]

5 if ~x[i] = 0 then ~X[i]← X0;

6 else ~X[i]← X1;

7 return ~X

1 De(d, ~Y ):
2 ~y ← λ
3 for i ∈ 0..m−1 :
4

(
Y 0, Y 1

)
← d[i]

5 if ~Y [i] = Y 0 then ~y[i]← 0;

6 else if ~Y [i] = Y 1 then
7 ~y[i]← 1
8 else return ⊥;

9 return ~y

Fig. 2. The input encoding algorithm En and the output decoding algorithm De. En
specifies how to encrypt input values, resulting in input labels. Symmetrically, De
specifies how to decrypt output labels into cleartext output values. En and De are
generic and work for any projective garbling scheme.

In this section, we formalize our garbling scheme, Stack, presented in Con-
struction 1. Stack securely evaluates functions represented by circuits as defined
in Section 6. Furthermore, if a circuit has conditional branching, then Stack com-
pactly represents the material for the conditional, reducing communication cost.

Garbling schemes abstract the detail of encrypted circuit evaluation such
that protocols can be written generically and new garbled circuit advancements
can be quickly integrated [BHR12]. That is, a garbling scheme is a specification,
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1 Stack.ev(C, ~x):
2 switch C :
3 case Netlist(·) :
4 return Base.ev(C, ~x)
5 case Seq(C0, C1) :
6 ~y0 ← Stack.ev(C0, ~x)
7 ~y ← Stack.ev(C1, ~y0)
8 return ~y

9 case Cond(C0, C1) :
10 if ~x[0] = 0 then
11 return Stack.ev(C0, ~x)
12 else
13 return Stack.ev(C1, ~x)

1 Stack.Ev(C,M, ~X):
2 (M ′||Mtr)←M

3 ~Y ′ ← Ev′(C,M ′, ~X)

4 ~Y ← trans.Ev(~Y ′,Mtr)

5 return ~Y

1 Ev′(C,M, ~X):
2 switch C :
3 case Netlist(·) :

4 ~Y ← Base.Ev(C,M, ~X)

5 return ~Y

6 case Seq(C0, C1) :
7 (M0||Mtr||M1)←M

8 ~Y0 ← Ev′(C0,M0, ~X)

9 ~X1 ← trans.Ev(~Y0,Mtr)

10 ~Y ← Ev′(C1,M1, ~X1)

11 return ~Y

12 case Cond(C0, C1) :
13 (Mdem||Mcond||Mmux)←M

14 S ← ~X[0]

15 ( ~X0, ~X1)←
demux.Ev(S, ~X,Mdem)

16 (M0, ·, ·)← Gb′(1κ, C0, S)
17 (M1, ·, ·)← Gb′(1κ, C1, S)

18 ~Y0 ← Ev′(C0,Mcond ⊕M1, ~X0)

19 ~Y1 ← Ev′(C1,Mcond ⊕M0, ~X1)

20 ~Y ← mux.Ev(S, ~Y0, ~Y1,Mmux)

21 return ~Y

1 Stack.Gb(1κ, C, S):

2 (M ′, e, d′)← Gb′(1k, C, S)
3 d← GenProjection(m,S)
4 Mtr ← trans.Gb(d′, d)
5 M ←M ′||Mtr

6 return (M, e, d)

1 Gb′(1κ, C, S):
2 switch C :
3 case Netlist(·) :
4 return Base.Gb(1κ, C, S)
5 case Seq(C0, C1) :
6 (M0, e0, d0)← Gb′(1κ, C0, S)
7 (M1, e1, d1)← Gb′(1κ, C1, S)
8 Mtr ← trans.Gb(d0, e1)
9 M ← (M0||Mtr||M1)

10 return (M, e0, d1)

11 case Cond (C0, C1) :
12 e← GenProjection(n, S)
13 d← GenProjection(m,S)
14 (S0, S1)← e[0]
15 (M0, e0, d0)← Gb′(1κ, C0, S1)
16 (M1, e1, d1)← Gb′(1κ, C1, S0)

17 (Mdem, ~⊥0, ~⊥1)←
demux.Gb(S0, S1, e, e0, e1)

18 Mcond ←M0 ⊕M1

19 (M ′0, ·, ·)← Gb′(1κ, C0, S0)
20 (M ′1, ·, ·)← Gb′(1κ, C1, S1)

21 ~⊥′0 ← Ev(C0,Mcond ⊕M ′1, ~⊥0)

22 ~⊥′1 ← Ev(C1,Mcond ⊕M ′0, ~⊥1)
23 Mmux ←

mux.Gb(S0, S1, d, d0, d1, ~⊥′0, ~⊥′1)
24 M ← (Mdem||Mcond||Mmux)
25 return (M, e, d)

1 GenProjection(n, S):
2 p← λ
3 for i ∈ 0..n−1 :
4 X0 ←$S {0, 1}κ
5 X1 ←$S {0, 1}κ
6 c←$S {0, 1}
7 p← p||((X0||c), (X1||1⊕ c))
8 return p

Fig. 3. Our garbling scheme Stack. Let Stack.En = En and Stack.De = De as defined in
Figure 2. Ev and Gb are written in terms of recursive sub-procedures Ev′ and Gb′ respec-
tively. The procedure GenProjection draws a pseudorandom input or output projection
(à la projective garbling schemes). Gb, Gb′, and GenProjection each take an explicit
pseudorandom seed S. Recall that when using S as a pseudorandom seed, there is an
implicit counter that ensures drawn values are independent.
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not a protocol. For completeness, Supplementary Material provides a reference
protocol that uses the garbling scheme abstraction to achieve semihonest 2PC.

A garbling scheme is a tuple of five algorithms:

(ev,Gb,En,Ev,De)

ev is a reference function that describes cleartext circuit semantics. The remain-
ing four algorithms securely achieve the same result as ev. The idea is that if (1)
the circuit is encrypted using Gb, (2) the players’ cleartext inputs are encoded
using En, (3) the encoded inputs and garbled circuit are evaluated using Ev, and
(4) the encoded outputs are decoded using De, then the output should be the
same as obtained by invoking ev directly.

Construction 1 (Stack garbling scheme). Stack is the tuple of algorithms
(Stack.ev,Stack.Gb,Stack.En,Stack.Ev,Stack.De) presented in Figures 2 to 4.

Construction 1 supports any number of branches via nested conditionals. We
also provide a construction (with a proof) that conditionally composes arbitrary
numbers of branches without nesting in Supplementary Material. This vectorized
construction and its proofs are immediate given Construction 1.

In the following subsections, we present the interface to and our instantiation
of each algorithm. In Section 8, we prove that our instantiation is correct,
oblivious, private, and authentic, as defined in [BHR12]. Formal definitions
of these properties are included in Section 8.

Lemmas and theorems proved in Section 8 imply the following:

Theorem 1. If H is modeled as a RO and the underlying scheme Base is half-
gates [ZRE15], then Construction 1 is correct, oblivious, private, and authentic.

7.1 Projective garbling schemes, encoding, and decoding

We consider projective garbling schemes [BHR12]. In a projective scheme, each
circuit wire is encrypted by one of two possible labels, where one label corre-
sponds to 0 and the other to 1. Correspondingly, a projection is a vector of pairs
of labels. Stack is projective.

Due to projectivity, encrypting inputs and decrypting outputs is simple. In
particular, En and De are implemented as straightforward mappings between
truth values and labels. Our instantiations of En and De (Figure 2) are generic
to all projective garbling schemes:

En maps cleartext inputs to encrypted inputs. More precisely, it maps an
encoding string e and a vector of cleartext inputs ~x to a vector of input labels
~X. In a projective scheme, e is a vector of pairs of labels (a projection). Our
specification of En ‘walks’ ~x and e together. At each index, it checks the value of
the ith input bit and appends the correponding label to ~X. When instantiated
in a protocol, En is typically implemented via OT; we do this as well.

De maps encrypted outputs to cleartext outputs. More precisely, it maps a
decoding string d and a vector of output labels ~Y to a vector of cleartext outputs
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~y. Like e, d is a vector of pairs of labels (a projection) when the garbling scheme
is projective. Our specification of De is dual to our construction of En. The
algorithm walks ~Y and d together. At each index, it checks if the ith output is
equal to the 0 label or to the 1 label and appends the appropriate truth value
to the output vector. If any output does not correspond to a label, then the
algorithm outputs ⊥ to indicate that an error has occurred.

7.2 Underlying garbling scheme

Stack directly handles conditionals and sequences but leaves the handling of
netlists to another garbling scheme. That is, Stack is parameterized over an
underlying garbling scheme Base. In practice, we implement Base using the state-
of-the-art half-gates technique [ZRE15]. Our formalization assumes that Base is
a package that includes all garbling scheme algorithms. For example, Base.Gb is
the underlying scheme’s procedure for encrypting netlists.

We place the following requirements on Base:

– Base is correct, oblivious, private, and authentic ([BHR12] definitions
are stated in Section 8).

– Base is projective [BHR12]. That is, each wire has two possible labels.
– Base provides a color procedure that assigns a different Boolean value to the

two labels on each wire. In practice, color is implemented via the traditional
point-and-permute technique [BMR90]. This requirement allows Stack to
manipulate labels chosen by Base.

– Base produces labels and material that are indistinguishable from random
strings. This property is critical for securely stacking material and is dis-
cussed at length in our proofs (Section 8).

7.3 Circuit Semantics

ev specifies cleartext semantics. More precisely, ev maps a circuit C and an input
~x to an output ~y. The correctness of a garbling scheme is defined with respect
to ev: evaluating a circuit under encryption should yield the same output as
evaluating the circuit in cleartext.

Stack.ev (Figure 3) conditionally dispatches on the structure of C:

– If C is a netlist, then Stack.ev delegates to Base.ev.
– If C is a sequence Seq(C0, C1), then Stack.ev recursively evaluates C0, uses the

output as input to a recursive evaluation of C1, and returns the result.
– If C is a conditional Cond(C0, C1), then Stack.ev dispatches based on the

condition bit. If the condition bit is 0, then Stack.ev recursively evaluates C0
and otherwise recursively evaluates C1.

7.4 Circuit encryption

Gb encrypts circuits. More precisely, Gb maps a circuit C to material M , an
encoding string e, and a decoding string d. e contains the input labels that are

16



encryptions of the input bits, and d contains output labels that describe how to
decrypt the output bits.

Our presentation of Gb differs from [BHR12]’s in two ways:

1. [BHR12]’s presentation requires Gb to include the circuit topology as part of
its output, i.e. the output of Gb must include C. We opt to omit this because
we assume both parties know the entire topology a priori and so this added
information is not needed. Furthermore, omitting the topology results in a
shorter and simpler garbling scheme. This omission requires the procedure
Ev to take the circuit topology C as an explicit argument.

2. [BHR12]’s presentation models Gb as a pseudorandom procedure. Since we
deal with explicit randomness, we instead define Gb as a deterministic pro-
cedure that takes a pseudorandom seed S as an additional argument.

Stack.Gb captures many of the key ideas of our approach. The core of the
specification is a delegation to Gb′, an algorithm that recursively descends over
the structure of the circuit. We first explain Gb′ before returning to the top level
Stack.Gb. Gb′ processes C by case analysis:

– If C is a netlist, Gb′ delegates to Base.Gb. Netlists are the “leaves” of the
tree Gb′ constructs. Ultimately, netlists produce the material that we stack.

– If C is a sequence Seq(C0, C1), then Gb′ recursively encrypts both subcircuits.
However, this is not a complete construction: the output encoding of C0, i.e.
d0, is independent of the input encoding of C1, i.e. e1. Thus, we translate d0 to
e1. The procedure trans.Gb constructs material for a gadget that implements
this translation. trans.Gb is described in Section 7.6.

– If C is a conditional, then Gb′ recursively encrypts both subcircuits and
stacks the resultant material. Gb′ also constructs material for the mux and
demux, whose operation is described formally in Section 7.6.
We begin by calling GenProjection to draw uniform input encoding e and
output decoding d. GenProjection uses a pseudorandom seed to sample a
projection (i.e. a vector of pairs of labels).3 The sampled projections e and
d contain the input and output labels for the overall conditional.
By convention, the first input to the conditional is the branch condition.
Therefore, we extract both condition labels S0 and S1 by looking in the first
index of the input encoding e. Gb′ uses these condition labels as seeds to
recursively encrypt both subcircuits. There is an important detail that we
do not explicate in the code: if the string of material from one branch is
shorter than the other, then Gb′ pads the shorter material with uniform bits
until it is of the same length. That is, if M0 is shorter, then it is padded with
uniform bits drawn from S1, and vice versa. Padding is critical for security
(see Section 8).
Next, Gb′ encrypts the demux. The demux has two roles. First, the de-
mux inputs predictable garbage to the branch not taken. Second, the demux

3 We use point-and-permute [BMR90] to encode a color bit in the least significant bit
of each label. Color bits instruct Eval how to decrypt encrypted truth tables.
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translates labels in e to labels in either e0 or e1, depending on s. The demux
gadget is encrypted using a call to demux.Gb. demux.Gb outputs the demux
material as well as two sets of labels ~⊥0 and ~⊥1. These sets contain the
garbage inputs that Eval obtains when evaluating the branch not taken.

Next, Gb′ encrypts the mux. To do so, Gb′ computes the two possible sets
of garbage output labels by emulating both bad assumptions Eval can make
(Line 19 through Line 22). That is, Gb′ encrypts both circuits using the
wrong seeds and then evaluates using garbage material and garbage inputs.
Now, Gb′ has (1) both condition labels S0 and S1, (2) the conditional output
projection d, (3) the output projections of each branch d0 and d1, and (4)

both garbage outputs ~⊥′
0 and ~⊥′

1. This information suffices to encrypt the
mux, which is done by calling mux.Gb. The mux collects garbage outputs
and translates valid branch outputs to labels in d.

Finally, Gb′ returns all material and the input/output projections.

Next, we return to the top level Stack.Gb algorithm. After encrypting C using
Gb′, we translate the output encoding d′ to a fresh, randomly generated (via a
call to GenProjection) encoding d. This top level translator gadget ensures that
Eval learns nothing about the circuit input except what can be deduced from the
output. More practically, our proof of privacy relies on this top level translator.
Finally, Stack.Gb concatenates material and returns.

7.5 Evaluation under encryption

Ev evaluates circuits under encryption. More precisely, Ev maps a circuit C,
material M , and inputs X to outputs Y .

Like Stack.Gb, Stack.Ev delegates to a recursive subprocedure, Ev′:

– If C is a netlist, Ev′ delegates to Base.Ev.

– If C is a sequence, then Ev′ recursively evaluates both subcircuits. First, the
material is broken up into pieces corresponding to the two subcircuits and
the intervening translator. These three components are evaluated in order.
The translator is evaluated by calling trans.Ev.

– If C is a conditional, then Ev′ (1) encrypts the branch not taken, (2) unstacks
material for the branch taken, and (3) evaluates the branch taken. Of course,
these steps are completed obliviously.

First, Ev′ decomposes the material into material for the demux, for the con-
ditional, and for the mux. The first input is S by convention. Ev′ uses S
to demultiplex the inputs by calling demux.Ev. Let s be the taken branch.
That is, ~Xs holds valid inputs while ~X¬s holds garbage inputs. Ev′ uses S to
encrypt both subcircuits, padding the shorter encryption with uniform bits
drawn from S. Next, Ev′ recursively evaluates both subcircuits by unstack-
ing material. One resultant output is valid and the other is garbage. Finally,
mux.Ev collects garbage output.
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1 trans.Ev(~Y ,M):

2 ~X ← λ

3 for i ∈ 0..|~Y |−1 :

4 Y ← ~Y [i]
5 (row0||row1||M)←

M
6 c← color(Y )

7 ~X ← ~X||H(Y )⊕rowc
8 return ~X

1 trans.Gb(d, e):
2 M ← λ
3 for i ∈ 0..|d|−1 :
4 (Y 0, Y 1)← d[i]
5 (X0, X1)← e[i]
6 c← color(Y 0)
7 row0 ← H(Y c)⊕Xc

8 row1 ←
H(Y 1⊕c)⊕X1⊕c

9 M ←M ||row0||row1

10 return M

1 trans.S(~Y , ~X):
2 M ← λ

3 for i ∈ 0..|~Y |−1 :

4 Y ← ~Y [i]

5 X ← ~X[i]
6 c← color(Y )
7 rowc ← H(Y )⊕X
8 row1⊕c ←$S {0, 1}κ
9 M ←

M ||row0||row1

10 return M

Fig. 4. The algorithms associated with the translator gadget. trans.Ev and trans.Gb
describe the actions taken respectively by Eval and Gen. trans.S is a simulator used to
prove that Stack is private.

7.6 Circuit gadgets

Stack introduces three circuit gadgets which ‘glue together’ circuits: (1) the
translator aligns the output and input labels of sequentially composed circuits,
(2) the demux obliviously inputs garbage to non-target branches, and (3) the
mux collects garbage outputs.

Translator. Consider the sequence Seq(C0, C1). In Gb′, Stack recursively gener-
ates encryptions of both subcircuits. This results in input/output encodings for
both subcircuits. Our semantics require that the output labels of C0 are used as
inputs for C1. However, the output labels of C0 are not aligned with the input
encoding for C1: the two circuits are generated by independent calls to Gb′.

Fortunately, we can resolve this mismatch. We translate the output labels of
C0 to align with the inputs encoding for C1. This translation is implemented as a
garbled circuit gadget. Consider an individual output y0 of C0 and a correspond-
ing input x1 of C1. The translation from y0 to x1 is explained by the following
encrypted truth table:

C0 output C1 input
Y 0
0 X0

1

Y 1
0 X1

1

That is, Eval decrypts an input label that encodes the same truth value as the
output label. This table is implemented by the following two strings4:

H(Y 0
0 )⊕X0

1

H(Y 1
0 )⊕X1

1

4 Formally, each garbled row is given a unique ID, and calls to H for that row take
the ID as an extra argument. We omit this for simplicity of notation.
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We assume that the underlying scheme provides a color procedure (Sec-
tion 7.2). Gen permutes the two rows according to the color of Y 0

0 . Eval decrypts
a row according to the color of her Y label. Recall that H is modeled as a random
oracle (Section 4). Further, Eval views either Y 0

0 or Y 1
0 , but not both. Therefore,

Eval can decrypt only one of the rows and hence cannot determine which truth
value she has decrypted.

A vector of output wires is translated to a vector of input wires by many
translation components. The procedures trans.Gb and trans.Ev (Figure 4) de-
scribe the actions taken by Gen and Eval respectively in handling vectors of
translation components. Translation gadgets use two ciphertexts per wire.

Demux. Consider a conditional Cond(C0, C1). Recall, Eval evaluates the branch
taken by reconstructing material for the branch not taken. However, this eval-
uation must prevent Eval from learning which branch is taken, so we require
Eval to evaluate both branches in this manner. When Eval attempts to evaluate
the branch not taken she obtains garbage outputs. We ensure these outputs are
fixed values that can be garbage collected by fixing the garbage inputs. Garbage
inputs are computed by a demux gadget.

Like the translator, we construct the demux wire-by-wire. Each component
of the demux takes two inputs: the input wire to demultiplex and the branch
condition wire s. A component that demultiplexes an individual wire implements
the following encrypted truth table:

condition input C0 label C1 label
S0 X0 X0

0 ⊥1

S0 X1 X1
0 ⊥1

S1 X0 ⊥0 X0
1

S1 X1 ⊥0 X1
1

That is, if S = S0, then Eval decrypts (1) a valid input label for C0 corresponding
to the input label X and (2) a garbage input for C1. Note that Eval receives
the same label ⊥1 regardless of the input label X. If S = S1, the component
acts symmetrically, providing valid labels to C1 and garbage to C0. Like the
translator, we mechanically convert this encrypted truth table into two sets of
four ciphertexts and permute the sets according to input colors. The functions
demux.Gb and demux.Ev respectively encrypt and evaluate a demux. These
functions are implemented similarly to trans.Gb and trans.Ev and, in particular,
require use of a function H modeled as a random oracle.

Mux. In the case of a conditional circuit, Eval uses garbage material to evaluate
the branch not taken. Furthermore, this branch receives fixed garbage inputs,
thanks to the demux. Therefore, the output labels of the branch not taken are
deterministic and independent of the conditional’s input labels. That is, each
output wire has only one possible garbage label. The remaining task is to collect
the garbage labels. This garbage collection is handled by the mux gadget.
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Like the other gadgets, the mux handles outputs wire-by-wire. The mux
component for each wire takes three inputs: one output wire from each branch
and the branch condition wire s. The individual wire components implement the
following encrypted truth table:

condition C0 label C1 label output
S0 Y 0

0 ⊥1 Y 0

S0 Y 1
0 ⊥1 Y 1

S1 ⊥0 Y 0
1 Y 0

S1 ⊥0 Y 1
1 Y 1

That is, Eval decrypts either Y 0 or Y 1 according to whichever valid output label
is available. This table can be achieved using four ciphertexts, similar to the
previous gadgets. The functions mux.Gb and mux.Ev respectively encrypt and
evaluate a mux. These functions use a function H modeled as a RO.

8 Proofs

Now that we have presented our construction both at a high level and in detail,
we prove that it is correct and secure. The [BHR12] framework requires garbling
schemes to be correct, oblivious, private, and authentic. Stack satisfies these
properties. The formal definitions we use are derived from [BHR12], but adjusted
to our notation; we adjust Gb such that it does not output a circuit topology
and Ev such that it takes a circuit topology as a parameter (see Section 7).

8.1 Correctness

Definition 1 (Correctness). A garbling scheme is correct if for all circuits
C, all input strings ~x of length n, and all pseudorandom seeds S:

De(d,Ev(C,M,En(e, ~x))) = ev(C, ~x)

where (M, e, d) = Gb(1κ, C, S)

Correctness requires the scheme to realize the semantics specified by ev.

Theorem 2. If Base is correct, then Stack is correct.

Proof of correctness of Stack tracks the structure of C and can be inferred
from discussion in Section 5. Due to a lack of space, the full proof is presented
in Supplementary Material.

8.2 Security

The [BHR12] notion of a garbling scheme is general, and an arbitrary scheme is
not a candidate underlying scheme for Stack. Therefore, we build on a smaller
class of schemes, which is nevertheless general and includes all standard schemes,
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such as half-gates [ZRE15]. Specifically, we define stackable garbling schemes,
which are the candidate underlying schemes for Stack. A stackable scheme (1)
produces random looking (to a polytime distinguisher) wire labels and material
and (2) allows interoperation with our circuit gadgets.

Definition 2 (Stackability). A garbling scheme is stackable if:

1. For all circuits C and all inputs ~x,

(C,M,En(e, ~x))
c
= (C,M ′, ~X ′)

where S is uniformly drawn, (M, e, ·) = Gb(1κ, C, S), ~X ′ ←$ {0, 1}|
~X|, and

M ′ ←$ {0, 1}|M |.
2. The scheme is projective [BHR12].
3. There exists an efficient deterministic procedure color that maps strings to
{0, 1} such that for all projective label pairs A0, A1

color(A0) 6= color(A1)

We informally explain this definition. When Eval evaluates a conditional, it
is critical that she cannot distinguish which branch is taken. This is why circuit
encryptions must ‘look random’ to Eval. In particular, recall that Eval tries to
reconstruct material for both branches; in one case she succeeds and in the other
she fails and constructs garbage material. It is these two strings of material
that she should not distinguish. By ensuring both strings are random-looking,
Definition 2 ensures that Eval cannot distinguish which branch is taken. We
note that this indistinguishability is similar in flavor to the topology-decoupling
property of [Kol18].

Projectivity and wire coloring allow our translator, mux, and demux to in-
terface with stackable schemes. Because stackable schemes are projective, we
know that input encoding and output decoding strings are vectors of pairs of
labels. This allows us to encrypt our gadgets. For example, trans.Gb in Figure 4
assumes d and e are projective. Notice also that this procedure, as well as the
procedures that encrypt the mux and demux, makes use of the color procedure
to determine row order and allow Eval to decrypt. color must be defined for all
bitstrings, which is significant because it means that color is defined even for
garbage labels.

Many traditional garbling schemes are stackable. We focus on two. First, we
sketch a proof that the half-gates construction [ZRE15] is stackable. This allows
us to use half-gates as Base. Second, we show that if Base is stackable, then Stack
itself is stackable. This allows us to arbitrarily nest conditional circuits.

Lemma 1. Let H be the hash function used in [ZRE15]. If H is modeled as a
random oracle, then the half-gates garbling scheme of [ZRE15] is stackable.

Proof. By the fact that half-gates uniformly draws input labels and the proper-
ties of the hash function used to construct material for individual gates. Half-
gates is secure given a correlation-robust function, and hence its [BHR12] secu-
rity properties hold in the stronger RO model. Half-gates is a projective scheme
and implements the color procedure via point-and-permute [BMR90].
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Lemma 2. If Base is stackable and H is modeled as a random oracle, then Stack
is stackable.

Proof. By induction on the structure of the target circuit C. We rely on the RO
properties of H for the mux, demux, and translator. In the following, we use
the phrase ‘x looks random’ to mean that x is indistinguishable from a uniform
string of the same length.

– Suppose C is a netlist. Then Stack.Gb delegates to Base, which is assumed
to be stackable. Netlists are stackable.

– Suppose C is a sequence Seq(C0, C1). By induction, both C0 and C1 are stack-
able. It remains to demonstrate that the intervening translation gadget pre-
serves stackability. Consider a subcomponent of the translator that trans-
lates one wire. This subcomponent is implemented as an encrypted truth
table with two ciphertexts of material (Section 7.6). Each row is the XOR of
an input label with the output of H. H is modeled as a random oracle and
hence its output looks random. Furthermore, correctly decrypting one row
yields an input label for C1 which, by induction, looks random. Therefore,
the ciphertexts constructed by trans.Gb look random, so the translation
component preserves stackability. Sequences are stackable.

– Suppose C is a conditional Cond(C0, C1).

First, we examine the demux. The demux inputs are pseudorandomly chosen
by GenProjection and hence look random. Further, by a similar argument to
the translator (the demux is implemented by H), the demux material looks
random. Therefore the demux preserves stackability.

Next, we look at C0 and C1 together. By induction, both C0 and C1 indi-
vidually preserve stackability, so the materials M0 and M1 look random. If
we ignore the inputs ~X, then M0 ⊕M1 also looks random. It remains to
show that ~X does not allow a distinguisher. Consider the actions taken by
Ev′ when handling a conditional. Eval makes one good assumption and one
bad assumption. That is, she uses the seed S to encrypt both C¬s and Cs. In
both cases, the target circuit is stackable, and hence the resultant material
looks random. Here, it is critical that we pad the shorter of the two strings of
material; if Ms were shorter than M¬s, then a distinguisher could textually
compare M¬s to the trailing bits of M0 ⊕M1. Since we pad with random
bits until both strings are the same length, such a comparison is impossible.
The good and bad assumptions both lead to random looking material, so
the two cases are indistinguishable from one another.

Finally, we examine the mux. Because C0 and C1 are stackable, the mux
inputs look random. Additionally, the output of the mux preserves stacka-
bility: the output labels are randomly chosen by GenProjection. By a similar
argument to the translator and demux components (the mux material is
an encrypted truth table constructed by H), the material looks random.
Therefore, the mux preserves stackability.

Stack is stackable.
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Obliviousness. Stackability allows us to prove the necessary security properties
of our scheme. The first property specified by [BHR12] is obliviousness. The
following definition is adjusted to our notation:

Definition 3 (Obliviousness). A garbling scheme is oblivious if there exists
a simulator Sobv such that for any circuit C and all inputs ~x of length n, the
following are indistinguishable:

(C,M, ~X)
c
= Sobv(1κ, C)

where S is uniform, (M, e, ·) = Gb(1κ, C, S) and ~X = En(e, ~x).

Informally, obliviousness ensures that the material M and encoded input
labels ~X reveal no information about the input ~x or about the output ev(C, ~x).
Obliviousness follows trivially from stackability:

Lemma 3. Every stackable scheme is oblivious.

Proof. Choose Sobv to be a procedure that draws uniform pseudorandom strings
(M ′, ~X ′) of the correct length. By stackability, (C,M, ~X)

c
= (C,M ′, ~X ′).

An immediate corollary of Lemma 3 is:

Theorem 3. If H is modeled as a RO and Base is stackable, Stack is oblivious.

Privacy. Next, we demonstrate that Stack satisfies [BHR12]’s definition of pri-
vacy, adjusted to our notation:

Definition 4 (Privacy). A garbling scheme is private if there exists a simu-
lator Sprv such that for any circuit C and all inputs ~x of length n, the following
are computationally indistinguishable:

(M, ~X, d)
c
= Sprv(1κ, C, ~y),

where S is uniform, (M, e, d) = Gb(1κ, C, S), ~X = En(e, ~x), and ~y = ev(C, ~x).

Privacy ensures that Eval, who is given access to (M, ~X, d), learns nothing
about the input ~x except what can be learned from the output ~y.

Theorem 4. If Base is stackable and H is modeled as a random oracle, then
Stack is private.

Proof. By obliviousness of Stack, properties of the top level translator gadget
(Stack.Gb Line 4), and a hybrid simulator argument. We rely on the RO prop-
erties of H for the mux, demux and translator.

Consider the hybrid simulators listed in Figure 5. The first, hybrid0, cor-
responds to the real execution of Gb and En and the last, Sprv, is the privacy
simulator. The intermediate hybrids demonstrate the indistinguishability of the
real and ideal executions and hence demonstrate privacy. We argue indistin-
guishability of each hybrid:
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1 hybrid0(C, ~x, S):

2 (M ′, e, d′)← Gb′(1k, C, S)
3 d← GenProjection(m,S)
4 Mtr ← trans.Gb(d′, d)

5 ~X ← En(e, ~x)
6 M ←M ′||Mtr

7 return (M, ~X, d)

1 hybrid1(C, ~x, S):
2 ~y ← ev(C, ~x)

3 (M ′, e, d′)← Gb′(1k, C, S)
4 d← GenProjection(m,S)
5 Mtr ← trans.Gb(d′, d)

6 ~X ← En(e, ~x)

7 ~Y ′ ← Ev(C,M ′, ~X)

8 ~Y ← En(d, ~y)

9 Mtr ← trans.S(~Y ′, ~Y )
10 M ←M ′||Mtr

11 return (M, ~X, d)

1 hybrid2(C, ~x, S):
2 ~y ← ev(C, ~x)

3 (M ′, e, d′)← Gb′(1k, C, S)
4 d← GenProjection(m,S)

5 ~X ← En(e, ~x)

6 (M ′, ~X)← S ′obv(1κ, C)
7 ~Y ′ ← Ev(C,M ′, ~X)

8 ~Y ← En(d, ~y)

9 Mtr ← trans.S(~Y ′, ~Y )
10 M ←M ′||Mtr

11 return (M, ~X, d)

1 Sprv(1κ, C, ~y):
2 ~y ← ev(C, ~x)
3 d← GenProjection(m,S)

4 (M ′, ~X)← S ′obv(1κ, C)
5 ~Y ′ ← Ev(C,M ′, ~X)

6 ~Y ← En(d, ~y)

7 Mtr ← trans.S(~Y ′, ~Y )
8 M ←M ′||Mtr

9 return (M, ~X, d)

Fig. 5. Hybrid simulators that demonstrate Stack is private. hybrid0 is identical to
the real execution, and each subsequent hybrid is indistinguishable from the previous.
The final ‘hybrid’ is the privacy simulator Sprv. Differences between the hybrids are
indicated by highlighting added lines and striking removed lines.

– hybrid0
c
= hybrid1: hybrid1 replaces the call to trans.Gb with a call to

trans.S. This simulator uses the input/output label pairs to construct ma-

terial for the rows that can be decrypted given ~X. These rows are identi-
cal to those constructed by trans.Gb and so are trivially indistinguishable.
trans.S populates the remaining rows, which cannot be decrypted, with ran-
dom strings while trans.Gb uses calls to H to populate these rows. Since H
is modeled as a random oracle these two sets of rows are indistinguishable.
The remaining changes add calls to deterministic procedures in order to set
up the call to the simulator. Therefore, hybrid0

c
= hybrid1.

– hybrid1
c
= hybrid2: hybrid2 replaces calls to Gb′ and En with a call to S ′obv.

S ′obv is the oblivousness simulator that simulates the garbling of the entire
circuit except for the top level translator gadget. Since Stack is stackable, this
simulator simply draws random strings of the appropriate length. Because
Stack is oblivious and because all other objects in scope are independent of
the garbling (note d′ is no longer in scope since we replaced the translator

by its simulator), hybrid2
c
= hybrid1.

– hybrid2
c
= Sprv: In fact, the outputs of these two hybrids are identical. The

key difference between the two hybrids is a change in interface. Additionally,
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the pseudorandom string S is now implicit since Sprv is a pseudorandom
algorithm.

By transitivity, hybrid0
c
= Sprv. Since the real and ideal executions are indistin-

guishable, Stack is private.

Authenticity. Finally, we prove that Stack satisfies [BHR12]’s definition of
authenticity, adjusted to our notation:

Definition 5 (Authenticity). A garbling scheme is authentic if for all cir-
cuits C, all inputs ~x of length n, and all poly-time adversaries A the following
probability is negligible in κ:

Pr
(
~Y ′ 6= Ev(C,M, ~X) ∧ De(d, ~Y ′) 6= ⊥

)
where S is uniform, (M, e, d) = Gb(1κ, C, S), ~X = En(e, ~x), and ~Y ′ =

A(C,M, ~X)

Authenticity ensures that even an adversarial evaluator cannot construct
labels that successfully decode except by running Ev as intended.

Theorem 5. If Base is authentic and H is modeled as a random oracle, then
Stack is authentic.

Proof. We proceed backwards across the circuit C, at each step showing that A
cannot obtain valid labels except by running the previous parts of the circuit.
We rely on the RO properties of H for the mux, demux, and translator.

First, we examine the final top level translator gadget (Stack.Ev Line 4 and
Stack.Gb Line 4). The output of the translator is determined by using H to
decrypt garbled rows (Section 7.6). To break authenticity, A must guess the
output of H. But H is a random oracle and hence this is infeasible. Therefore, A
cannot obtain a decodable output except by running trans.Ev on valid translator
input labels.

Now, it suffices to show that A cannot obtain input to the final translator
except by running the recursive procedure Ev′(C,M, ~X). We demonstrate this
by induction on the structure of the target circuit C.

– Suppose C is a netlist. Gb′ and Ev′ delegate to Base which is assumed to
be authentic. Therefore, A cannot obtain valid output of C without running
Base.Ev. Netlists are authentic.

– Suppose C is a sequence Seq(C0, C1). By induction, A cannot obtain valid
output from C1 except by running Ev′. We have already shown that the
translator gadget preserves authenticity, so A cannot obtain input to C1 ex-
cept by running trans.Ev on valid input. Finally, C0 also inductively preserves
authenticity. Therefore, A cannot obtain input to the translator except by
running Ev′ on C0 with valid input. Sequences are authentic.
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– Suppose C is a conditional Cond(C0, C1). First, we examine the mux. Using
the same argument as for the translator (the mux is built using H), valid
output cannot be obtained except by running mux.Ev on valid inputs.

Inputs to the mux component are constructed by evaluating C0 and C1. Con-
sider the branch condition s. By induction, A cannot generate outputs of Cs
except by running Ev′ on Cs. C¬s is not supported by our inductive argument:
neither the inputs to nor the outputs from C¬s are valid. Fortunately, we do
not need C¬s to preserve authenticity. Even if A can forge ⊥-values from
the non-target branch, she still needs valid output from the target branch to
evaluate the mux.

Finally, we examine the demux. A cannot construct valid input to Cs ex-
cept by running demux.Ev: the demux is built using H. Conditionals are
authentic.

Stack is authentic.

9 Instantiating Our Scheme

We implemented Stack in C++ and used it to instantiate a semihonest 2PC
protocol. We instantiate the underlying garbling scheme using the state-of-the-
art half-gates technique [ZRE15]. That is, XOR gates require no material or
encryption while AND gates are implemented using fixed-key AES [BHKR13].
Each AND gate requires 2 ciphertexts, 4 AES encryptions to encrypt, and 2 AES
encryptions to evaluate. We use computational security parameter κ = 127; the
128th bit is reserved for point and permute.

Construction 1 supports conditionals with two branches. While we can nest
conditionals to achieve greater branching factors, this is somewhat inefficient;
recall that to support branching, Eval must generate both branches and Gen
must emulate Eval on both branches. If those branches themselves contain con-
ditionals, then recursively both players must emulate themselves, and so on as
the branching factor grows. This recursive behavior has quadratic complexity
for both players and constant factor overhead that we would like to avoid.

In our implementation, we therefore instantiate a vectorized version of Con-
struction 1, whereby n branches can be composed without nesting. In practice,
this means that only the generator has quadratic computation, while the evalu-
ator has computation linear in the number of branches. The constant factors are
also lower. We formally present the vectorized construction in Supplementary
Material, where we state the corresponding security theorem and its proof (by
reference to the proofs of Theorems 2 to 5 and enumeration and discussion of
the differences with the binary branching of Construction 1).

Our implementation uses inherent parallelism available in Gb and Ev: while
garbling/evaluating branches, the implementation spawns additional threads.
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Fig. 6. Performance comparison of Stack and half-gates [ZRE15]. Each experiment
tests both schemes on a circuit that conditionally executes one of n copies of the SHA-
256 netlist. The number of copies of SHA-256, i.e. the branching factor, was varied
between 1 and 16. The top-left plot shows total communication required to complete
the protocol. The remaining plots depict total wall clock time in the WAN and LAN
settings on a MacBook Pro and on an Amazon EC2 instance.

10 Evaluation

Our evaluation compares Stack to the state-of-the-art half-gates scheme [ZRE15].
We constructed an experiment that conditionally composes evaluations of SHA-
256 (47, 726 AND gates per branch). We ensured that branches are processed
independently and that there are no shortcuts due to branch similarity. While a
more realistic circuit would include a variety of branches, our goal is to isolate a
precise performance impact of Stack. We varied the number of branches between
1 and 16 and ran the experiment using half-gates and of Stack.

We ran experiments on two different machines:

– A MacBook Pro laptop with an Intel Dual-Core i5 3.1 GHz processor and
8GB of RAM. This machine demonstrates Stack’s performance on commod-
ity hardware.

– An Amazon EC2 c4.8xlarge instance with 36 virtual cores and 60GB of RAM
(< 300MB RAM were needed for the 16 branch experiment). This machine
explores inherent parallelism available in Stack’s algorithms.

Both Gen and Eval were run on the same machine, reducing the available
parallelism. Experiments were performed on two simulated network settings: (1)
a simulated WAN with 50Mbps bandwidth and 20ms latency and (2) a simulated
LAN with 1Gbps bandwidth and 2ms latency. For each experiment, we measured
total communication and wall-clock time. Results from each experiment were
averaged over 10 runs and are plotted in Figure 6.
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– Communication: Stack greatly outperforms half-gates in total communi-
cation. Advantage grows with branching factor: at 1 branch, Stack uses the
same amount of communication, while at 16 branches Stack enjoys a 10.6×
advantage. We do not achieve a 16× improvement for two reasons. First,
Stack implements a demux/mux which are not stacked. Second, both schemes
use the same amount of communication to transfer the circuit inputs.

– WAN wall-clock, MacBook Pro: Stack has a clear advantage. Compu-
tation is more than made up for by reduced communication, even on com-
modity hardware. At 16 branches, Stack outperforms half-gates > 4×.

– LAN wall-clock, MacBook Pro: In the LAN setting, Stack’s computa-
tional overhead means that performance is comparable to raw half-gates. A
1Gbps network is very fast, and computation overhead diminishes the impor-
tance of reduced communication. We therefore explore how Stack performs
on more powerful hardware, focusing on how inherent parallelism in Stack’s
algorithms impacts performance.

– WAN wall-clock, Amazon EC2: On this highly parallel machine, Stack’s
advantage is made more prominent. In fact, Stack’s total wall-clock time at
branching factor 16 is less than 50% higher than that at branching factor 1.
At 16 branches, Stack outperforms half-gates by more than 6.4×.

– LAN wall-clock, Amazon EC2: On this more powerful hardware, Stack
clearly outperforms half-gates. Still, the improvement is modest. We believe
that future work will reduce the asymptotic and/or concrete overhead of the
stacking technique and thus further improve overall performance.
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Supplementary Material

A Garbled Circuit Protocol from Garbling Schemes

We formalize Stack as a garbling scheme. That is, Stack is a specification, not
a protocol. For reference, we present a protocol that uses a projective garbling
scheme as a black box to implement secure function evaluation. The following is
secure against semihonest adversaries.

Protocol 1. This protocol achieves two party secure function evaluation between
the parties Gen and Eval.

– Inputs: Gen and Eval agree on a function f and on a circuit representation
of f , C. Gen inputs a private bitstring ~xGen and Eval a private bitstring ~xEval.

– Output: Gen and Eval both output f(~xGen, ~xEval).

– Protocol:

1. Gen samples a pseudorandom seed S.

2. Gen computes (M, e, d)← Gb(1κ, C, S) and sends M and d to Eval.
3. Recall, e is a vector of pairs of labels (the garbling scheme is assumed

to be projective). For each of his input bits, Gen selects a label from
the appropriate pair: if his input bit is 0 he chooses the first label and
otherwise the second. Call this vector ~XGen. Gen sends ~XGen to Eval.

4. For each of Eval’s inputs, Gen and Eval engage in a 1-out-of-2 oblivious
transfer protocol where Gen is the sender and Eval is the receiver. In
each instance, Gen provides a label pair from e and Eval provides her
corresponding input bit. Thus Eval receives labels corresponding to each
of her input bits. Call this vector of labels ~XEval.

5. Eval now knows C, M , d, ~XGen, and ~XEval. She computes the vector of
output labels: ~Y ← Ev(C,M, ~XGen|| ~XEval)

6. Eval decrypts the circuit output: y ← De(~Y , d). Eval sends y to Gen.

7. Eval and Gen both output y.

B Proof of Correctness

In the main part of the paper, we postponed the proof of correctness due to a
lack of space. The proof of Theorem 2 is as follows:

Proof. By the correctness of Base and induction on C. First, En is a straightfor-
ward mapping from cleartext to labels, and thus is correct. Next, we examine
Ev and Gb together to show that all circuits correctly map inputs to outputs.

– Suppose C is a netlist. In this case, both Ev and Gb delegate to Base. Since
Base is correct, netlists are correct.
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– Suppose C is a sequence Seq(C0, C1). Both subcircuits are correct by in-
duction and it remains only to show that the outputs of C0 are correctly
translated to inputs for C1. This is the role of the translator gadget (Sec-
tion 7.6). The translator gadget is implemented via garbled rows that are
the mechanical translation of an encrypted truth table. This encrypted truth
table is a straightforward mapping of output labels to input labels and hence
is correct. Sequences are correct.

– Suppose C is a conditional Cond(C0, C1). First, note that in ev, there are two
symmetric cases depending on the condition bit ~x[0]: if the value is 0, ev
recurses on C0 and otherwise recurses on C1. The following assumes that the
condition bit is 0. The argument for the 1 case is symmetric.

• Because inputs are correct, the evaluator has the condition label S0.

• The demux (Ev′ Line 8) yields valid inputs ~X0 for C0 and fixed garbage

inputs ~⊥1 for C1. Like the translator, the demux is the implementation
of a trivial encrypted truth table (Section 7.6) and hence is correct. We

emphasize that ~⊥1 is fixed and independent of ~x.

• Eval computes the correct material M0 for C0. (we assume ~x[0] = 0).
Indeed, by the definition of Gb, Gen constructs M0 by encrypting C0 and
M1 by encrypting C1. He stacks these strings using XOR (Gb′ Line 18):
Mcond = M0 ⊕ M1. He sends this material to Eval. The material M1

can be viewed as the pseudorandom expansion of S0. Therefore, when
Eval uses S0 to garble C1 (Ev′ Line 17), she obtains the same material
M1 as constructed by Gen. She XORs this material with Mcond, thereby
reconstructing M0: (M0 ⊕M1)⊕M1 = M0.

• Eval recursively evaluates C0. By induction, she obtains outputs ~Y0.

• Eval obtains the wrong material M ′
1 for C1. She uses the seed S0 to

expand C0 (Ev′ Line 16), but Gen uses S1. Therefore, Eval obtains garbage
material M ′

0 from this expansion. She XORs this with Mcond and gets
garbage. Gen precomputes the same garbage by emulating Eval’s bad
assumption.

• Eval incorrectly evaluates C1. She recursively invokes Ev on C1 using fixed
garbage input labels ~⊥1 and garbage material. She therefore obtains
garbage output labels.

• Gen precomputes ~⊥′
1 and M ′

1 by emulating the evaluator (Gb′ Line 19

to Line 22) Symmetrically, he precomputes ~⊥′
0 and M ′

0 by assuming the
condition bit is 1. He uses these values to encrypt the multiplexer.

• By the correctness of the multiplexer (Section 7.6), and the fact that the

evaluator has (1) S0, (2) ~Y0, and (3) fixed garbage ~⊥′
1, she obtains valid

outputs ~Y .

Conditionals are correct.

Finally, De is a straightforward mapping of labels to cleartext and hence is
correct. Stack is correct.
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C Vectorized Stack

Construction 1 handles conditionals with branching factor 2. We formalized this
special case because it is simple yet general: arbitrary branching is achieved by
nesting conditionals. In main, we noted that a generalization to an arbitrary
number of branches is immediate.

We now present this generalization, which directly handles conditionals with
arbitrary branching factor b. As discussed, the scheme is nearly identical Con-
struction 1 but is notationally more complex. In particular, the key ideas of
stacking material and reconstructing material from seeds carry to this enhanced
construction. The key change is in our circuit definition:

C ::= Netlist(·) | Cond(~C) | Seq(C0, C1)

Conditionals are now parameterized over a vector of subcircuits. We specify that
the first b inputs to a conditional are a bit map that specifies which branch is
taken. That is, of the first b inputs, exactly one encodes a logical 1.

To account for this change, we adjust our garbling scheme implementations
as well as our proofs. The changes to the garbling scheme are listed in Figure 7.
We now enumerate and explain them:

– Stack.ev now inspects each conditional bit and recursively evaluates the
branch whose condition bit is 1.

– Ev′ now requires Eval to encrypt all b circuits and then to evaluate all b
circuits by attempting to unstack the material for the evaluated branch. The
interface to demux.Ev and mux.Ev have also changed: the demux now take
all condition bits as arguments and produces a vector of vectors of input bits,
one vector per branch. The demux is still implemented via straightforward
encrypted truth tables. Similarly, the mux now takes all condition bits and a
vector of vectors of output bits, one vector from each branch. The mux uses
encrypted truth tables to eliminate garbage from all non-taken branches.
Each component of the mux takes b inputs, one from each branch.

– Gb′ now requires Gen to encrypt all b circuits both with ‘good’ seeds, cor-
responding to the valid material, and ‘bad’ seeds, corresponding to bad as-
sumptions made by Eval. Gen emulates all possible bad assumptions made
by Eval. That is, for each possible branch taken he considers the garbage
computed on all branches. He incurs quadratic computation to compute all
possible garbage. This garbage precomputation allows him to encrypt the
generalized mux.

Formally, Stack is defined as follows:

Construction 2 (Stack garbling scheme for arbitrary branching factor). Stack
is the tuple of algorithms

(Stack.ev,Stack.Gb,Stack.En,Stack.Ev,Stack.De)

where:
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– Stack.En,Stack.De are defined exactly as in Construction 1.
– Stack.ev is defined in Figure 7.
– Stack.Gb and Stack.Ev are defined as in Construction 1, but with calls to

procedures Gb′ and Ev′ defined in Figure 7.

Theorem 6. If Base is correct, stackable, and authentic and H is a random or-
acle, then Construction 2 is correct, stackable, private, oblivious, and authentic.

Proof. The proof follows from proofs of Theorems 2 to 5, except that we slightly
adjust the proofs for conditionals. I.e., proofs of Construction 2 follow from
proofs of Construction 1 with the following adjustments:

– Correctness. The mux and demux are still straightforward encrypted truth
tables and hence are correct. The key difference is that Eval now correctly
encrypts all circuits except the taken branch and hence unstacks material for
the taken branch. Further, Eval computes garbage on all branches except the
taken branch. But Gen precomputes these values and uses them to construct
the mux. Therefore, vectorized conditionals are correct.

– Stackability. The mux and demux still preserve stackability since they are
built using H (a random oracle). By the same argument as for binary-
branching Stack (Construction 1), the material from all branches looks ran-
dom because all material is padded to be of the same length: that is, the
material from one branch masks the material from others. Hence vectorized
conditionals are stackable.

– Obliviousness. Obliviousness follows trivially from stackability.
– Authenticity. The argument for authenticity is identical to that of for

binary-branching Stack (Construction 1 of the main paper): the authenticity
of the taken branch is ensured by induction. While the other branches are un-
supported, an adversarial evaluator must construct outputs for all branches
to decrypt the mux. Therefore, vectorized conditionals are authentic.
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1 Stack.ev(C, ~x):
2 switch C :
3 · · ·
4 case Cond(~C) :

5 b← |~C|
6 for i ∈ [0..b] :
7 if ~x[i] then

8 return Stack.ev(~C[i], ~x)

1 Ev′(C,M, ~X):
2 switch C :
3 · · ·
4 case Cond(~C) :

5 b← |~C|
6 (Mdem||Mcond||Mmux)←M

7 ~S ← ~X[0..b]

8 ~X ′ ← demux.Ev(~S, ~X,Mdem)

9 ~M ← λ
10 for i ∈ [0..b] :
11 . Encrypt each branch w/

seed
~M [i]← Gb′(1κ, ~C[i], ~S[i])

12 M ′ ←
⊕ ~M

13 ~Y ′ ← λ
14 for i ∈ [0..b] :

15 Mi ←Mcond ⊕M ′ ⊕ ~M [i]

16 ~Y ′[i]← Ev′(~C[i],Mi, ~X
′[i])

17 ~Y ← mux.Ev(~S, ~Y ′,Mmux)

18 return ~Y

1 Gb′(1κ, C, S):
2 switch C :
3 · · ·
4 case Cond(~C) :

5 b← |~C|
6 e← GenProjection(n, S)
7 d← GenProjection(m,S)

8 ~S ← ~X[0..b]
9 . “Good” (valid) material

10 ~G← λ
11 . “Bad” (garbage) material

12 ~B ← λ
13 ~e← λ

14 ~d← λ
15 for i ∈ [0..b] :
16 . Encrypt w/ good and bad seeds

17 (S0, S1)← ~S[i]

18 (~G[i], ~e[i], ~d[i])← Gb′(1κ, ~C[i], S0)

19 ( ~B[i], ·, ·)← Gb′(1κ, ~C[i], S1)

20 (Mdem, ~⊥)← demux.Gb(~S, e, ~e)
21 Mcond ←

⊕
G

22 ~⊥′ ← λ
23 for i ∈ [0..b] :
24 . For each taken branch...
25 for j ∈ [0..b] :
26 . Consider all bad assumptions
27 if i 6= j then

28 Mi ← ~G[j]⊕ ~G[i]⊕ ~B[i]

29 ~⊥′[i][j]← Ev(~C[i],Mi, ~⊥[i])

30 Mmux ← mux.Gb(~S, d, ~d, ~⊥′)
31 M ← (Mdem||Mcond||Mmux)
32 return (M, e, d)

Fig. 7. The adjusted instantations of Ev′ and Gb′ that allows Stack to handle con-
ditionals with arbitrary branching factor b, rather than branching factor 2. In Ev′,
Eval encrypts all b branches, then evaluates all b branches. In Gb′, Gen encrypts all b
branches both with ‘good’ seeds, to construct the valid material, and with ‘bad’ seeds,
to emulate Eval when making a bad assumption and obtaining garbage material. Then,
Gen computes the garbage labels given all possible scenarios.
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