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Abstract—As cloud computing matures, Machine Learning as a
Service(MLaaS) has received more attention. In many scenarios,
sensitive information also has a demand for MLaaS, but it should
not be exposed to others, which brings a dilemma. In order to
solve this dilemma, many works have proposed some privacy-
protected machine learning frameworks. Compared with plain-
text tasks, cipher-text inference has higher computation and
communication overhead. In addition to the difficulties caused
by cipher-text calculations, the nonlinear activation functions
in machine learning models are not friendly to Homomorphic
Encryption(HE) and Secure Multi-Party Computation(MPC).
The nonlinear activation function can effectively improve the
performance of the network, and it seems that the high overhead
brought by it is inevitable. In order to solve this problem, this
paper re-explains the mechanism of the nonlinear activation
function in forward propagation from another perspective, and
based on this observation, proposed a dynamic parameters
combination scheme as an alternative, called DPC. DPC allows
the decoupling of nonlinear operations and linear operations in
neural networks. This work further uses this feature to design the
HE-based framework and MPC-based framework, so that non-
linear operations can be completed locally by the user through
pre-computation, which greatly improves the efficiency of privacy
protection data prediction. The evaluation result shows that the
linear neural networks with DPC can perform high accuracy.
Without other optimizations, the HE-based proposed in this work
shows 2x faster executions than CryptoNets only relying on the
advantage of the DPC. The MPC-based framework proposed in
this work can achieve similar efficiency to plain-text prediction,
and has advantages over other work in terms of communication
complexity and computational complexity.

Index Terms—Cloud Computing, Machine Learning, Privacy
Protection, Activation Function.

I. INTRODUCTION

A. Background

IN recent years, machine learning has been widely
used in various fields, such as pattern recognition[1],

face recognition[2], machine translation[3], and sentiment
analysis[4]. As a special machine learning model, neural
network has received much attention because of its excellent
performance in various tasks. The great success of neural net-
works is inseparable from the support of powerful computing
resources and huge volume data, which is unreachable for
many individuals and small companies. Machine learning as
a service(MLaaS) provides a solution for this group[5].

Neural networks usually include a two-stage process: (1)
the training phase, which uses a large amount of data to
guide the model to learn the mapping relationship between
data and labels, and (2) the prediction phase, which uses
the trained model to complete the classification or regression
task of the given data[6]. As a new cloud service paradigm,
MLaaS provides services in these two phase. In this paper, we
mainly consider the prediction service provided by the cloud.
Although the prediction service provided by the cloud has ob-
vious advantages, it will expose users’ sensitive information to
the risk of leakage. An intuitive solution is that users download
models to make predictions locally, but they have the following
defects: (1) resource-constrained devices may not be able to
bear the computational overhead; (2) model parameters contain
training set information, which may cause the training set
information disclosure[7], [8]; (3) this facilitates the adversary
to launch adversarial attacks[9], [10]; (4) this will weaken the
competitive advantage of the model provider.

The mistrust between the user and the cloud server brings
difficulties to the task of inferring sensitive data. In order to
solve this dilemma, some work has been devoted to using
cryptographic tools to solve the computational problems of
neural networks, and has achieved some results. But com-
pared with the inference in plain-text, it has increased the
computational and communication overhead. Some MPC-
based frameworks are not even available in real-world WAN
scenarios. The operation of neural networks can be divided
into linear and non-linear according to the nature. Linear
operations in neural networks include convolutional layers,
average-pooling and fully connected layers, and nonlinear
operations are activation functions and max-pooling. For a
certain computation protocols or encryption schemes, the cost
of linear operation is fixed and inevitable, while the non-linear
operation is a bottleneck restricting efficiency. CryptoNets[11]
is the earliest privacy-protected neural network framework
based on Homomorphic Encryption(HE). It uses x2 as the
activation function and selects linear average-pooling in the
pooling operation. Such a network structure also become the
mainstream option for the subsequent HE-based framework.
Chameleon[12], SecureML[13], MiniONN[14], etc. are repre-
sentative works using Secure Multi-Party Computation(MPC)
to achieve nonlinear operation. Previous work was devoted to
design elaborate protocols and algorithms to achieve nonlinear
functions in prediction phase. But we thought from another
perspective and try to design a completely linear network
structure for the online prediction phase.
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B. Our Contributions

In this paper, we re-explained the working mechanism
of nonlinear activation function and max-pooling in forward
propagation, and proposed a dynamic parameter combination
scheme as a substitute for nonlinear operation, called DPC.
The linear network with DPC decouples the nonlinear opera-
tion from the linear operation in the network. The prediction
network that obtains the prediction results is completely linear,
and the non-linear guide network is responsible for generating
dynamic factors that act on the prediction network. This means
that the prediction network and the guide network can be
executed asynchronously. In addition to the original prediction
network, DPC introduced a lightweight network to guide the
parameter combination of the prediction network. Compared
with the overhead caused by the nonlinear function in the
online prediction phase, the additional overhead caused by the
guide network is negligible. DPC is a general method with
almost zero cost and does not depend on a specific network
structure. The decoupling of linear operations and non-linear
operations in linear networks with DPC is suitable for privacy-
preserving data prediction scenarios, so we designed HE-
based framework and MPC-based framework separately. The
evaluation results show that the framework based on linear
framework with DPC proposed in this work can maintain
both efficiency and accuracy. Our main contributions are
summarized as follows.
• From another perspective, we re-explained the working

mechanism of nonlinear activation function and max-
pooling in forward propagation in neural networks.

• Based on the observation of the working mechanism of
nonlinear operation, we propose a dynamic parameters
combination method called DPC, which can replace the
activation function and max-pooling in the neural net-
works to a certain degree. It means that DPC can make
the linear networks achieve the same performance.

• We have analyzed the information leakage problems that
DPC may cause in the privacy-protected data prediction
scenario, and proved that DPC will not expose user data
and prediction network information.

• We use the decoupling characteristics of linear operation
and non-linear operation of linear network with DPC to
design HE-based framework and MPC-based framework
respectively. The evaluation results show that the effi-
ciency performance of these two types of frameworks is
better than other similar work.

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Problem Statement

In this paper, we focus on the neural network-based sensitive
data prediction task in MLaaS. By observing 5 privacy-
protected machine learning frameworks, we found that nonlin-
ear activation functions and max-pooling bring major commu-
nication and computational overheads. At the same time, the
overhead of the convolutional layers, fully connected layers,
and average-pooling are acceptable.

The mainstream choice for HE-based frameworks is
to use x2 as the activation function and to choose

TABLE I
COMPARISON OF CIPHERTEXT OPERATION

Scheme Poly-Mod-Degree Add C-P-Mul Square C-C-Mul
BFV 1024 2ms 98ms 526ms 807ms
BFV 4096 10ms 555ms 3280ms 4469ms

CKKS 1024 1ms 6ms 14ms 22ms
CKKS 4096 10ms 52ms 98ms 144ms

average-pooling as pooling operation. Obviously, the ef-
ficiency performance of the HE-based framework mostly
depends on the HE scheme itself. As shown in Ta-
ble I, we select two HE schemes and compared the
speeds of cipher-text addition(Add), ciphertext-plaintext
multiplication(C-P-Mul), cipher-text multiplication(C-C-Mul)
and cipher-text square(Square) under different polynomial
modulus degree(Poly-Mod-Degree). Regardless of the addi-
tional cost caused by the noise growth associated with cipher-
text multiplication, one Square in BFV[15], [16] is as expen-
sive as a close to 6x C-P-Mul or 300x Add. In CKKS[17],
Square requires lower overhead, which is only equivalent to
2x C-P-Mul or 10x Add. However, the shortcomings of CKKS
are also obvious, and only results with a certain accuracy
can be obtained. It means that the high efficiency of CKKS
may pay the price of accuracy in deeper networks. Another
option for the activation function of the HE-based frameworks
is to use a polynomial to approximate the non-linear function.
This solution requires the use of a more expensive C-C-
Mul. In Table II we show the time cost of the linear and
nonlinear parts of CryptoNets and CryptoDL[18], which are
representative work of HE-based frameworks. CryptoNets use
x2 as the activation function because square is the most
efficient non-linear operation in homomorphic encryption.
Even so, the time cost of non-linear operations still accounts
for 49.6% of the total cost. The network structure design of
CryptoDL is optimized for cipher-text operations, placing non-
linear operations very far behind the network and using the
activation function only once. This makes the network only
need to perform 500 cipher-text multiplications when using the
quadratic polynomial activation function, which significantly
reduces the amount of calculation of the activation function,
so that the time cost of non-linear operations only accounts for
6.6% of the total cost. The disadvantage is that this approach
limits the flexibility of the network. In many mission scenarios,
CryptoDL will lose this advantages because under the same
conditions, the efficiency of polynomials will not be better
than x2. We will show more specific data in the experimental
results section.

The MPC-based framework handles activation functions in
two ways: (1) approximate activation functions using poly-
nomials or piecewise functions (Sigmoid, etc.) and perform
calculations by MPC protocol. (2) Use MPC for calculations
directly(Relu)[19]. As far as we know, in privacy-protected
inference scenarios, max-pooling is not a universal choice. Just
MiniONN has proposed a solution based on garbled circuits.
We analyze three representative MPC-based works, MiniONN,
SecureML, and Chameleon, and show the time cost of the
linear part and the nonlinear part in Table II respectively.
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TABLE II
NON-LINEAR OPERATION PERFORMANCES OF DIFFERENT FRAMEWORKS

Framework Protocol Based Linear Time Cost Non-Linear Time Cost Total Time Cost Non-Linear Cost Ratio
CryptoNets LHE 230.9s 225.3s 456.2s 49.3%
CryptoDL LHE 139.2s 9.8s 148.9s 6.6%
MiniONN GC, SS <5.74s >3.58s 9.32s >38.4%
SecureML ABY, GC <0.18s >4.7s 4.88s >96.3%
Chameleon A2GMW,GMW,GMW2A <0.99s >1.25s 2.24s >55.8%

(a) (b)
Fig. 1. (a) represents the fully connected neural network and (b) represents
a convolutional neural network.

The cost of non-linear operation not only comes from MPC,
but also from the conversion algorithm cost of different MPC
protocols, such as the conversion protocol of A-SS and GMW
in Chameleon, and the conversion protocol of ABY and GC
in SecureML. In addition, there is time overhead from pre-
computation. The following is a necessary description of
Table II. Experiments uses the MNIST dataset and the time
performance comes from single sample. Experiments use the
LAN environment, although this may weaken the disadvan-
tages of some frameworks. ”Protocol Based” represents the
scheme used by the framework to achieve nonlinear operation,
”Linear Time Cost” is the time cost of linear operations in
the framework, ”Non-Linear Time Cost” means non-linear
time cost, ”Total Time Cost” means total time cost for one
prediction and ”Non-Linear Ratio” is the time cost proportion
of the non-linear part in one prediction task.

The goal of this work is to improve the efficiency of sensi-
tive data prediction. Based on the existing knowledge and the
above observations, we can extract two cognitions: (1) Non-
linear operations are indispensable for improving the network
accuracy. (2) The privacy-protected non-linear operation is
inefficient. Unlike previous work, we focus on neural networks
and try to solve problems from the perspective of network
structure. More specifically, our model is completely linear in
the online prediction phase.

B. Neural Networks

Neural network is a data processing model with a multi-
layer structure that can reflect the relationship between input
and output[20]. As shown in Figure 1.(a), in general, the input
of current layer comes from the output of the previous layer.
The first layer of input is raw data, such as image pixels and
encoded text. The output of the last layer is the result of
the model inferring the input data. The values of the nodes
in the layer record the tendency of the model to process

the data. As shown in Figure 1.(b), compared with ordinary
neural networks, Convolutional Neural Networks(CNN) have
a complex network structure, which can more accurately
describe the relationship between input and output. Because
our work is based on CNN, we only describe the structure of
CNN in detail:

• Convolution layer. The convolutional layer has a set
of matrices with different weights, called the convo-
lution kernels. The convolution kernel slides at a cer-
tain stride on the output of the previous layer, and
the kernel performs an operation with each window to
generate a value, which reflects the similarity between
the current window and the kernel. One operation of
the convolutional layer is to reflect the similarity by
calculating the L1 distance between the kernel and the
current window[21]. Another more mainstream method
is the traditional convolution[22]. Convolution is formally
equivalent to the sum of Hadamard product, defined as
follows, where W ∈ Rm×n is the weight matrix of the
filter and I ∈ Rm×n is the current window:

Conv(I,W ) =

m∑
y=1

n∑
x=1

I[x][y] ·W [x][y] (1)

• Pooling layer. Max-pooling and average-pooling are the
most common operations in the pooling layer[23]. In
addition to reducing the size of the data, it is more impor-
tant to provide rotation-invariance, translation-invariance
and scale-invariance for the network. Max-pooling picks
the maximum value in the current region, and average-
pooling calculates the average value of the current region.

• Fully connected layer. Before entering the fully con-
nected layer (Fcl), the data(feature map) is flattened into a
one-dimensional array, and the Fcl weights are multiplied
by the data elements and summed. Defined as follows,
where i ∈ Ru, I = {i, i, ...}k is the input matrix,
w ∈ Rk is the weight array of FCL and b ∈ Ru is
the bias:

Fcl(I,w) = I ·w + b (2)

In fact, the fully connected layer is not necessary in many
models. One view is that Fcl may destroy the spatial
structure of the data to a certain extent. It is an option to
use the 1 × 1 filter instead of the fully connected layer
[24].

• Activation function. Activation function can improve
the non-linear expression ability of the model. Typical
examples are sigmoid, Relu, and tanh.
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Fig. 2. Residual Block

C. Residual Network

He et al.[25] proposes that if there is a K-layer network f1
that is the optimal network for the current task, then a deeper
K+N -layer network f2 can be constructed, and the final N -
layer is only the identity map output by the network f1, the
same result as f1 can be achieved. When f1 is not the best
network, then the deeper network f2 should get better results.
It means that deeper networks should not perform worse
than the shallow one. But in fact, the deeper network may
perform worse than the shallow network, that is, the network
degradation phenomenon. The residual network provides a
solution to this problem.

In ResNet, the residual block includes the two-layer struc-
ture and the three-layer structure. To simplify the represen-
tation, one layer is used to represent the residual block. As
shown in Figure 2, suppose the output of layer l is Fl(xl−1),
and the residual network introduces a shortcut from the input
of the layer to connect to the output, then the output of the
layer is:

xl = Fl(xl−1) + xl−1 (3)

According to the universal approximation theorem, if a
feedforward neural network has a linear output layer and
there is at least one squeezing activation function, as long
as the network is given a sufficient number of parameters, any
Borel measurable function that from one finite dimensional
space to another finite dimensional space can be approximated
with arbitrary precision. This means that when constructing
a network to learn a function, we know that there must be
a multi-layer perceptron that can represent this function, but
there is no guarantee that the network can be successfully
trained, because (1) the network structure is not sufficient
to accurately describe the function, and (2) The optimization
algorithm cannot find suitable parameters.

For (1), even if a narrow network is very deep, the ex-
pressive power of the network is limited by the width of the
network, and it cannot approximate an area with boundaries.
For residual networks, the ability to approximate the function
is not affected by the width of the network. For (2), iteratively
use the formula (3) to express the output of the l + n layer,
which can be expressed as:

xl+n =

l+n∑
i=l

Fi(xi) + xl (4)

This reflects the friendly back-propagation characteristics.
Let the loss be ε, according to the chain derivation rule:

∂ε

∂xl
=

∂ε

∂xl+n

∂xl+n
∂xl

=
∂ε

∂xl+n
(1 +

∂

∂xl

l+n∑
i=l

Fi(xi))

(5)

It shows that the gradient ∂ε
∂xl

in the residual network is
composed of two parts, one part is ∂ε

∂xl+n
without adding

any weight information, and the other part is weighted
∂ε

∂xl+n
( ∂
∂xl

l+n∑
i=l

Fi(xi)). The gradient composed of these two

parts ensures that the information can be directly propagated
back to the shallow layer without the gradient disappearing.
Therefore, the residual module is an effective method to solve
the network degradation phenomenon.

D. Homomorphic Encryption

Homomorphic Encryption(HE) scheme preserve the struc-
ture of the plain-text space, so we can perform addition and
multiplication operations in the cipher-text space to get the
corresponding result in the plain-text. Since Gentry introduced
the first homomorphic encryption scheme, a lot of progress has
been made in this area.

Fully Homomorphic Encryption(FHE) allows any num-
ber of additions and multiplications[26], and is suitable for
arithmetic circuits of unknown depth, but it lacks efficiency.
Leveled Homomorphic Encryption(LHE)[27]can only select
parameters to adapt to a limited number of additions and
multiplications. It is suitable for arithmetic circuits with certain
depths and has higher efficiency. In our scenario, the depth of
the arithmetic circuit depends on the structure of the neural
network, which is known in advance. So we choose to use
LHE, and the specific encryption scheme we use is BFV
scheme. The design of BFV scheme is based on Ring-LWE,
which can be described according to the following 6 functions:
• ParamGen(λ, PT,K,B)→ Params. Among them, λ

is the security parameter, PT is the plain-text space, K is
the length of the integer vector, and B is the integer that
determines the depth of the homomorphic multiplication
supported by the encryption algorithm. For example, for
the homomorphic operation of c1c2+c3c4, the multiplica-
tive depth is 1 and B can be set to 1. Params includes
prime p and prime q. The corresponding plain-text ring
Rp = R/pR and cipher-text ring Rq = R/qR, where
R = Z[x]/f(x). Params also includes key distribution
D1 and error distribution D2 over R that conform to
Gaussian distribution. The integer T in Params satisfies
L = logT q and T is the bit-decomposition modulus.

• KeyGen(Params) → SK,PK,EK. s is a random
element from distribution D1, a is a random element in
the cipher-text ring Rq , and error e from the distribu-
tion D2. Setting: private key SK = s and public key
PK = (−(as + e), a). EK stands for evaluation key,
unlike SK and PK, EK represents a set of keys. Set
i = 1, 2, . . . , L, ai are random elements in the cipher-text
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ring Rq and ei are random elements of the distribution
D2. EKi can be expressed as: EKi = (−(ais + ei) +
T is2, ai), and EK = {EK1, EK2, . . . , EKi}.

• Enc(PK,m) → c. m is an element in the plain-text
ring Rp and PK is expressed as (pk0, pk1). Set µ is
a random element in D1, and c can be expressed as:
c = (pk0µ+ e1 +mbq/pc, pk1µ+ e2), where e1, e2 are
sampled from D2.

• Dec(SK, c)→ m. Set c(SK) = pk0µ+ e1 +mbq/pc+
(pk1µ+e2)s = mbq/pc+e, where e represents a ”small”
error. The plain-text m can be recovered by dividing the
above formula by bq/pc and rounding up. Because m is
an integer and the error e is not large enough to affect the
value of m, and m = Dec(SK, c) = bc(SK)modbq/pce

• Add(c1, c2, EK) → c3. Suppose the plain-text corre-
sponding to c1, c2 is m1, m2, and c3 = c1 + c2 =
(pk0(µ1+µ2)+(e11+e21)+bq/pc(m1+m2), pk1(µ1+
µ2) + (e12 + e22)). It is easy to get that c3(SK) =
(m1 +m2)bq/pc+ e, and e represents the ”small” error.

• Mult(c1, c2, EK) → c3. Express c1, c2 as (c10, c11)
and (c20, c21), c′3 can be expressed as (c10c20, c10c21 +
c11c20, c11c21). And then c3 = b((p/q)c′3)modqe, it is
easy to verify that c3(SK) = b(p/q)c(m1 ∗m2) + e.

E. Additive Secret Sharing

In this protocol, a value is divided into two shares and
distributed to two parties respectively[28]. The two parties
perform the operations supported by the protocol on the shares
they hold, and the results obtained are added to obtain the
result of the corresponding calculation of the original value.
The original value and the shares are on the ring Z2l , and each
number is represented as a 1-bit integer. Obviously the ring
Z2l is closed for multiplication and addition.

Suppose there is a secret value x, first select a random
number x0 on the ring Z2l , and the two shares are created
as 〈x〉A0 = x0 and 〈x〉A1 = (x − x0)mod2l. The two parties
perform the operations supported by the protocol on their own
shares. When they want to restore data, one party sends their
own share to the other party, or sends the shares together to
the third party (specifically based on privacy requirements),
and execute f(x) = f(〈x〉A0 ) + f(〈x〉A1 )mod2l to restore the
calculation result of the secret value, where f(·) represents the
operation supported by the protocol.

This protocol supports addition, subtraction, constant mul-
tiplication and multiplication of two secret shares. In the
scenario of this work, only constant multiplication and addition
are involved, so other operations are not introduced here.
Addition and constant multiplication can be done locally on
both parties and do not require additional communication and
pre-computation. Constant multiplication can be expressed as
〈z〉Ai = 〈x〉Ai · constantmod2l and addition can be expressed
as 〈z〉Ai = (〈x〉Ai + 〈y〉Ai )mod2l.

III. DYNAMIC PARAMETERS COMBINATION

A. Motivation

In sensitive data prediction scenarios, the privacy-protected
activation function is generally inefficient. Therefore, we study
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Fig. 3. Security outsourcing prediction framework based on linear network
with DPC.

Fig. 4. Schematic diagram of neural network with basic structure

the mechanism of activation function in the forward propaga-
tion phase and try to re-explain it from another perspective.

Our conclusion is given first. The nonlinear activation
function introduces a dynamic factor to the network. For
each sample, the network can dynamically generate a linear
model. It means that a well-predicted prediction network can
be understood as a nonlinear model, or a set of linear models.

Lemma 3.1: For any continuous function Act(x) ∈ RRR and
x, b ∈ RRR,∃dym(x) satisfying: Act(x) = x× dym(x)+ b, and
dym(x) ∈ RRR.

Proof 3.1: Because x, b ∈ RRR and Act(x) is continuous,
therefore ∃b satisfying Act(x)− b over origin. Set dym(x) =
Act(x)−b

x , when x ∈ {x|x ∈ RRR, x 6= 0}, and dym(x) = 0
when x = 0. Therefore, when dym(x), x, b ∈ RRR, ∃dym(x)
satisfying Act(x) = x× dym(x) + b.

According to Lemma 3.1, any non-linear activation function
Act(x) can be expressed as x · dym(x) + b. Specifically for
Relu, Act(x) is a step function and b = 0. We take Figure 4 as
an example to verify the conclusion that the activation function
introduces a dynamic factor. Figure 4 is a basic example of
neural network, including a 1 × 3 × 3 × 1 convolution layer,
an activation function, and a fully connected layer. Pooling
operations will not affect our conclusions, but will make the
expressions lengthy, so it is not reflected here.

Set kij be the weight of the fully connected layer, where
i, j represent the indexes of c and o respectively. Forward
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propagation can be described as equation 1:

o1 = k11 · c11 + k21 · c12 + k31 · c21 + k41 · c22
= k11 ·Act(b11) + k21 ·Act(b21)+
k31 ·Act(b21) + k41 ·Act(b22)

= k11(b11dym(b11) + b) + k21(b21dym(b21) + b)+

k31(b21dym(b21) + b) + k41(b22dym(b22) + b)

(6)

We regard dym() as the dynamic factor dym factor,
and the polynomials about {a11, a12, . . . , a33} can be ob-
tained by combining coefficients, and sets the coefficients to
{p1, p2, . . . , p9}, the forward propagation phase for a single
sample can be described as equation 2:

o1 =dym factor · p1 · a11 + dym factor · p2 · a12+
. . .+ dym factor · p9 · a33 + constant

(7)

Through the same processing, we can get a similar expres-
sion of o2. By observing Table II, we find that dym factor
is the main bottleneck that affects the performance of frame-
works, and we know that it comes from the activation func-
tion. Different from previous works that try to improve the
execution efficiency of dym factor by designing elaborate
protocols and algorithms, we decouple dym factor from the
prediction network. In the prediction task, if the dym factor
does not need to be calculated in the forward propagation
phase, but can be directly obtained through pre-computation,
the inefficient non-linear network can be converted into a
friendly linear model. To avoid ambiguity, we emphasize once
again that dym factor is not a fixed function, but a dynamic
element that changes with different examples.

B. Method Design

We design a dual-network model that includes one
lightweight non-linear network running on the client provides
dynamic factors, and another linear network on the cloud
server to provides prediction services. The network running on
the client is called the guide network, and the one running on
the cloud server is called the prediction network. We decouple
the dynamic factor from the prediction network and reduce
the computational overhead of encrypted data through pre-
computation.

To perform the prediction task of sensitive data, the user
first receives the guide network from a non-conclusion third
party and generates a dynamic factor, and then encrypts his
data according to different frameworks. For example, when
the API document provided by the cloud server informs that
the service is based on CryptoNet, users will use YASHE to
encrypt their data; if the SecureML framework is used, users
will divide the data into two shares and send them to two
servers. The complete process is shown in Figure 3.

We were inspired by SENet[29] to apply dynamic factors
to convolutional layers. We set up multiple groups of filters in
each convolutional layer in the prediction network. In the same
convolutional layers, the multiple groups of filters have the
same size, input channels and output channels. In the forward
propagation stage, the multiple groups of filters use the output
of the guide network as the weight, and the convolutional layer

that is ultimately involved in the calculation is the weighted
sum of multi-group filters.

The guide network is a lightweight network that performs
pre-computation at the client, generates dynamic factors and
sends them to the prediction network. Compared with the
privacy-protected non-linear operation, the overhead of guide
network is almost zero cost. When the prediction network has
m convolutional layers, and each layer has n groups of filters,
m groups of dynamic factors are generated by guide network,
and each group is an n−dimensional vector. Because each set
of filters in the prediction network relies on n−dimensional
vectors for combination, a natural idea is that the sum of
all elements in one vector is equal to 1. The more intuitive
connection between the two networks is shown in equation 7:

n1∑
i=1

d1i = 1

...
nm∑
i=1

dmi = 1

Conv1 =
n1∑
i=1

d1i · filters1i
...

Convm =
nm∑
i=1

dmi · filtersmi

(8)

C. Networks Structure

The evaluation results in this chapter are all performed on
MNIST[30].

The m convolutional layers of the prediction network all
depend on the m sets of vectors generated by the guide
network. We considered two structures of guide network: (1)
use m independent networks to generate vectors separately,
and (2) use the multiple-task learning model[31]. We fixed
the prediction network and tried above two types of guide
network separately. In Figure 5 we show the evaluation results
on MNIST. Compared with the structure of multiple inde-
pendent networks, the multiple-task learning model has fewer
parameters and less computational overhead, which is more
friendly to edge devices. Moreover, the guide network of the
multiple-task learning model can make the prediction network
perform better. With the same prediction network structure, the
accuracy of the guide network using a multiple-task learning
model can reach 98.44%, while the guide network of multiple
independent networks can only reach 97.89%.

In the prediction network, each convolutional layer contains
n sets of filters, which requires additional n − 1 convolu-
tional computational overhead. When n is a small integer,
the cost paid in the forward propagation phase is negligible.
Proper value of n can greatly improve the performance of
the prediction model. Too few filters cannot flexibly form a
new convolution kernel, and too many filters will affect the
guide network learning the weight. Figure 6 shows the effect of
different values of n on the performance of prediction network
on MNIST, where n = 1 represents the model that does not
use DPC for optimization. In fact, the number of filter groups
in each convolutional layer can be different. In order to express
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Fig. 5. The influence of two types of guide network on prediction network,
Mul-Ind-Network represents the structure of multiple independent networks,
and Mul-Task-Learning represents the multiple-task learning model.
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Fig. 6. The influence of the number of filters in the convolutional layer on
the prediction network on the model performance.
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Fig. 7. The influence of the number of convolutional layers and residual
block in the prediction network on the model performance.

concisely, we assume that the number of filter groups in each
convolutional layer is n. On MNIST, n = 4 can make the
network perform better, but there may be a better option in
other tasks.

In traditional non-linear models, when the depth of the
network is not deep enough, more convolutional layers gen-
erally improve the ability to extract high-dimensional features
and improve performance. He ea al. proposed that if there
is a K-layer optimal network f , then a deeper K + 1-
layer network can be constructed. When the additional layer
and the output of previous layer is identity mapping, the
network of K + 1 layer can achieve the same result as the
K-layer network. This means that when f is not the best
network, the K +1 layer network should at least not perform
worse, but it is not the case. It can be observed in Figure 7
that the linear model has a model degradation phenomenon
when it is added to the second convolutional layer, which

often appears in deep non-linear models. The accuracy of
the network with one convolutional layer is 97.27%, but the
network with two convolutional layers can only reach 96.22%.
Therefore, a reasonable guess is that for linear neural networks
using DPC, identity mapping is not easy to approximate. We
introduced the structure of the residual network and treated the
two convolutional layers as a residual module, which greatly
eased the model degradation. The network without the residual
module can also reach 98.19%, but requires multiple rounds
of fine parameter adjustment and training with fixed part
of parameter, which is unacceptable in many scenarios. The
network structure in this chapter will be shown in Appendix
A. Softmax is difficult to achieve in the privacy protection
data prediction task. But Softmax only changes the distribution
of output results, and does not change the size relationship.
Therefore, the model retains Softmax during the training phase
and is removed during the prediction phase.

IV. SECURITY ANALYSIS AND SECURITY
INFERENCE FRAMEWORK

In this section, we conducted a security analysis of the linear
network with DPC and designed two linear network security
inference frameworks based on HE and MPC respectively. The
efficiency of the HE-based framework is largely rely on the
efficiency of the homomorphic encryption scheme. In order
to make it easier to compare with CryptoNet to reflect the
superiority of the linear network structure, we also chose BFV
as the data encryption scheme. Because our network structure
is completely linear, there is no need for complex secure multi-
party computing protocols, and only the most basic additive
secret sharing can complete the computing tasks.

A. Security Analysis

Compared with the traditional non-linear model, our predic-
tion model adds an additional guide network. In the security
outsourcing prediction task of sensitive data, the guide network
will be executed on the client, and the output vector will be
sent in plain-text to the prediction network on the cloud server.

Security has two meanings, one is data security, and the
other is model security. Data security means that the cloud
server should know nothing about the data and the predicted
results. Model security means that users should not get any
information about the prediction network from the local guide
network, and cannot get help about retraining the new predic-
tion network from the guide network.

Users will send data to the cloud server twice, once to send
encrypted sensitive data, and another time to send dynamic
factor vectors in plain-text. The security of sensitive data
depends on the schemes used by different frameworks, such
as LHE in CryptoNet and Additive Sharing in Chameleon.
Compared with the framework based on traditional linear
networks, the security of dynamic factors requires additional
discussion. In some scenarios, the guide network is sent to
the user by a semi-honest third party(STP), and in some
scenarios, it is sent by the cloud server holding the prediction
network. When the STP sends the guide network, the dynamic
factor vector cannot provide additional information for the
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Fig. 8. The prediction result of unsupervised clustering of dynamic factors, each pie chart represents the composition of one cluster, and one color represents
samples with one type of label. For example, (a) represents samples that are classified into one category in K-Means clustering, and black represents samples
with the same label.

cloud server holding the prediction network to guess user
data. When the cloud server holding the prediction network
sends the guide network, the difficulty of guessing the user
data is equivalent to solving the x-ary linear equation system
through n × m equations. Taking the model in Appendix
A as an example, the difficulty of guessing user data is
equivalent to solving 784-element linear equations through 8
equations. Although the cloud server cannot obtain additional
information through the dynamic factor vector when guessing
the user data, a reasonable assumption is that the dynamic
factor vector will expose the inter-class information of the
data. In other words, the cloud server may use dynamic factor
vectors to infer whether different samples belong to the same
category, although it is not known which category. As shown
in Figure 8, in the MNIST task, we use unsupervised K-Means
clustering[32] to process dynamic factor vectors. One pie chart
represents one cluster, and the same color represents samples
with the same label. We tested 10,000 samples, and we can
observe that the dynamic factor vector reflects some inter-
class information of user data, but the cloud server can only
judge whether the two samples belong to the same class with
a probability of less than 50%, and it is not higher than the
probability of guessing without prior knowledge. Therefore,
the cloud server cannot obtain additional information of user
data through the dynamic factor vector.

The user holds the guide network, which is only related
to the combined weight of the convolutional layer of the
prediction network. The user can only infer the number of
prediction network convolutional layers based on the guide
network, and has no knowledge of other information.

B. HE-Based Framework

As shown in Figure 9.(a), the HE-based framework con-
forms to the structure of Figure 3, including offline and online
stages. In the offline phase, users locally use a lightweight
guide network to generate dynamic factor vectors for each
sample, and use the BFV scheme to encrypt sensitive data. In
the online phase, the dynamic factors of the plain-text and the
encrypted original data(including EK) are sent to the cloud
server that holding the prediction network. The prediction

network completes the prediction task on the cloud, and sends
the cipher-text prediction result to the user. The user can use
the private key to recover the cipher-text and get the prediction
result.

The homomorphic encryption scheme is a non-interactive
secure computing protocol, and HE-based framework is secure
against semi-honest adversaries. This is the standard security
definition in the literature, considering adversaries who follow
the protocol but try to extract more information based on the
data they receive and process.

The linear network using DPC only contains the convolu-
tional layer, average pooling layer and fully connected layer,
and does not contain the nonlinear activation function that is
difficult to handle under cipher-text, which is very friendly
to homomorphic operations. The convolutional layer contains
multiple sets of filters, which seems to increase computational
overhead. But in fact, convolution is a linear calculation, and
multiple sets of filters can be combined according to dynamic
factors before forward propagation, so DPC will not bring
additional computational overhead. As mentioned in Section
III.C, Softmax is only retained during the training phase, and
Softmax does not change the result during the prediction phase,
so we removed it from the prediction network.

Sensitive data and network parameters are real numbers, but
the basic data unit in the BFV scheme is a polynomial ring
Rq , so we need to encode the data and parameters to adapt to
the BFV scheme. We fix the precision of the real number and
encode it as a constant polynomial. In CryptoNets, ciphertext
package is applied to improve efficiency, and multiple cipher-
texts are placed in different slots of a polynomial. Assuming
that the highest degree of the polynomial is j, and encoding
j real numbers into one polynomial, multiple sets of data
can be paralleled without additional cost, thereby reducing
the average processing time of a single sample. The feasible
reason is that traditional networks have the same parameters
for different samples. However, the parameters of our linear
network with DPC are adaptively changed,and ciphertext
package cannot be used for parallel computing to achieve
acceleration. The evaluation results will be given in Section.V.
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TABLE III
COMPARISON OF HE-BASED FRAMEWORK WITH SIMILAR WORKS

Framework Methodology Encryption Timing Prediction Timing Accuracy(%) Machine Configuration (CPU+RAM)
CryptoDL BGV 18.3s 148.8s 99.52% Xeon E5-2640@2.4GHz+16GB
CryptoNets BFV 15.7s 474.5s 98.86% Core i5-8300H@2.3GHz+8GB

HE-based framework (This work) BFV 18.3s 249.2s 98.44% Core i5-8300H@2.3GHz+8GB

TABLE IV
COMPARISON OF MPC-BASED FRAMEWORK WITH SIMILAR WORKS

Framework Methodology Prediction Timing Communication Volume Accuracy(%) Machine Configuration (CPU+RAM)
MiniOnn HE, GC, SS 1.04s, 9.32s 15.8MB, 657.5MB 97.6%, 99% Xeon ES-1620@3.5GHz+16GB

Chameleon GC, GMW, A-SS 2.24s 10.5MB 98.86% Xeon ES-1620@3.5GHz+16GB
SecureML HE, GC, SS 4.88s >1.49MB 93.1% Xeon ES-1620@3.5GHz+16GB

MPC-based framework
(This work) A-SS 0.0049s 16.6KB 98.44% Core i5-8300H@2.3GHz+8GB

(a) (b)
Fig. 9. (a) describes the HE-based framework and (b) describes the MPC-
based framework.

C. MPC-Based Framework

Different from the previous MPC-based framework, the
linear network with DPC proposed in this work only needs
to use basic additive secret sharing to complete the privacy
protection prediction task, and does not require additional
communication and pre-computation. As shown in Figure
9.(b), the MPC-based framework in this work requires the
participation of two additional cloud servers, including the
offline phase and the online phase. In the offline phase, the user
locally uses a lightweight guide network to generate dynamic
factor vectors, and generates two shares 〈x〉A0 and 〈x〉A1 over
the ring Z2l for sensitive data x. In the online phase, the two
shares and dynamic factors are sent to different cloud servers.
The cloud server calculates the share it receives according to
the dynamic factor and the prediction network, and sends the
calculation result to the user after the calculation is completed.
The user adds the calculation results of the two shares received
to get the prediction result of the original data.

We assume that the semi-honest adversary E can only
corrupt one of the two cloud servers, which requires that
the two servers are not colluding. In other words, when one
server is corrupted, the other one must be honest. The security
definition require that such an adversary E should only learns
the data of the server it has corrupted and the final output but
nothing else about the data of the remaining honest server.

Like the network in the HE-based framework, the network
in the MPC-based framework also removes the softmax in
the output layer. Although softmax is a linear function, it
has no effect on the result during the forward propagation
phase. Using of additive secret sharing to complete the privacy

protection prediction task can reflect the advantages of the
linear network model. There is no need to design sophisticated
protocols that support nonlinear calculations and conversion
protocols between different protocols. What is more attractive
is the need for zero communication between the two parties,
and only one communication between the cloud server and the
user is require. If l is large enough, the MPC-based framework
can achieve the same efficiency as the plain-text prediction
task. The evaluation results will be given in Section.V.

V. EXPERIMENT RESULTS

In the MPC-based framework, we perform our experiment
on the LAN network environment composed of 3 machines.
2 of the machines with 8GB of RAM and Intel Core i5-
8300H CPU @ 2.30GHz act as a cloud servers to perform
the prediction network, and 1 machine with 8GB of RAM
and Intel Core i5-7360U CPU @ 2.3GHz acts as the client
to generate data shares and perform the guide network. In the
HE-based framework, we preform our experiment on the LAN
network environment composed of 2 machines. One machine
with with 8GB of RAM and Intel Core i5-8300H CPU @
2.30GHz act as a cloud servers to perform the prediction
network, and the other one with 8GB of RAM and Intel Core
i5-7360U CPU @ 2.3GHz acts as the client to generate cipher-
text of data and perform the guide network.

MPC-based framework is implemented in Python and apply
Pytorch to speed up the efficiency of the network. We observed
that regular arithmetic is much faster than the modular arith-
metic in any number theoretic library. Therefore, we use the
skill in SecureML. In a sufficiently large ring Z2l , integer
addition (multiplication) can be used instead of modular
addition (multiplication), which brings a 100x speed increase.
HE-based framework is implemented in C# and and uses the
BFV provided by SEAL[33].

We choose to perform a prediction task on the MNIST
dataset to evaluate our scheme. MNIST dataset contains
60, 000 examples of handwritten digits, and each sample
contains 28 × 28 × 1 pixels. We use Pytorch to train the
linear network with DPC on 50, 000 samples and use 10, 000
samples for testing. The structure of the network is described
in Appendix A and consists of the following parts: Guide
network, (a) Convolutional layer with filers of size 8× 3× 3
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and stride is 1. (b) Use Relu as the activation function. (c)
Convolutional layer with filers of size 8 × 1 × 1 and stride
is 1. (d) Use Relu as the second activation function. (e) This
layer contains two side-by-side fully connected layers, each
with a size of 5408× 4. (f) After each fully connected layer,
there is a softmax to ensure that the output vector d satisfies
||d||1 = 1. Prediction network, (a) Convolutional layer with 4
sets of filters of size 16 × 5 × 5 and stride is 1. (b) Average
pooling with the size of 2× 2. (c) Convolutional layer with 4
sets of filters of size 16 × 3 × 3 and stride is 1. (d) Average
pooling with the size of 3× 3. (e) Fully connected layer with
the size of 1600×10. We use the residual block and the input
of this layer not only from the previous layer but also the layer
(b). We removed the softmax in the prediction network and use
the fully connected layer output ||output||∞ as the prediction
result. This is because the prediction result is determined by
the maximum value of the output, and softmax is a monotonic
function, so softmax will not affect the result during forward
propagation.

A. Comparison of HE-based Framework with Similar Works

The performance comparison of HE-based framework in
this work with CryptoNets and CryptoDL is shown in Table
3. This table shows the performance of one samples on the
MNIST dataset processed by different frameworks, including
the applied homomorphic encryption scheme, the time cost of
different phase and the accuracy over 10, 000 test samples.
The machine configuration of CryptoDL is different from the
other two frameworks. This is because we did not successfully
reproduce the CryptoDL experiment, so we used the evaluation
results given in this article.

We report the encryption time, prediction time and accuracy
of different frameworks. Our work uses the same encryption
scheme and the same machine configuration as CryptoNets,
but instead of x2 and relying on the superiority of the linear
network structure, we have achieved a double efficiency im-
provement. CryptoDL is another work based on homomorphic
encryption. It uses BGV as the encryption scheme and uses
low-degree polynomials to approximate arbitrary activation
functions. Compared with x2, the polynomial requires more
computing resources, but the prediction time of CryptoDL
is shorter. This is because the position of the polynomial
replacing the activation function is deeper in the network and
fewer elements need to be processed. Another reason is that
the machine configuration of E5-2640+16GB is better than our
experimental environment.

B. Comparison of MPC-based Framework with Similar Works

Table 4 shows the performance comparison between the
MPC-based framework in this work and other similar work.
The reported data is the performance of processing oen sample
from MNIST dataset. The table further shows the applied
security computation protocols, the prediction time cost, the
total volume of communication and the accuracy over 10, 000
test samples. The evaluation results of other frameworks come
from Riazi et al. This makes the experimental environment

of our scheme at a disadvantage and cannot fully reflect the
superiority of our scheme.

MiniOnn uses GC(garbled circuits), HE(homomorphic en-
cryption) and SS(secret share), and proposes two versions of
the network structure. The network accuracy rate using Relu
activation function and max pooling can reach 99%, but it
requires extremely high computational cost and communi-
cation volume. Using x2 as the activation function reduces
some overhead, but also reduces the expressive ability of the
model, and the accuracy rate can only reach 97.6%. Despite
the sacrifice of accuracy, there is still a big gap between the
prediction speed and the plaintext task. Chameleon uses GC,
GMW and SS. The prediction network uses Relu activation
function and average pooling. Chameleon uses different se-
cure computing protocols in different calculation phase, and
designs conversion protocols between different protocols. This
can take into account the framework efficiency and network
expression ability to a certain extent, but in the prediction
phase, GMW still needs the communication between the two
servers, which is the bottleneck of efficiency. SecureML uses
HE, GC and SS, and proposes a new segmented activation
function with an accuracy rate of 93.1%.

SecureML has the same constraints as Chameleon and Min-
iOnn, that communication cannot be avoided when performing
non-linear operations. This is a limitation from the secure
multi-party computing protocols. In the test environment with
LAN network, the communication process greatly reduces
the efficiency of these three frameworks. In an actual WAN
network, when two servers performing computing tasks are
physically far apart, it is conceivable that the time overhead of
the security prediction task is unacceptable. SecureML reports
the difference of 2 orders of magnitude between the time
overhead in the LAN network and the WAN network, which
provides guidance for us to infer the impact of the network
environment on efficiency.

The MPC-based framework in this work only requires the
client to communicate with the server in the online phase
to send the shares and dynamic factor vector once, and
there is no need to communicate between the servers during
the calculation process, which makes the prediction time of
our scheme close to the plain-text prediction tasks. Another
advantage is that the communication volume is very small.
In the plain-text prediction task, it takes 8.3KB to transmit
one sample. In the framework of this work, only 8.3KB×2
of shares and 32Byte of dynamic factor are required for one
task.

VI. RELATED WORK

We will summarize the previous work according to the
secure computation scheme used.

A. HE-Based Frameworks

CryptoNets is one of the earlier work to carry out privacy
protection data processing model, using YASHE [34] Layered
homomorphic encryption scheme (LHE). This work proposes
to use x2 to replace the conventional non-linear activation
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function, and proposes to pack the same pixels of multiple im-
ages into one ciphertext to improve the calculation efficiency.
CryptoDL focuses on CNN, and its main contribution is to
find polynomials that can approximate the nonlinear activation
function, and provides a theoretical basis. The accuracy of
the securely inference model based on this work is only
0.04% lower than the original model. HCNN [35] follows
the framework proposed by CryptoNets and proposes the first
GPU-accelerated homomorphic convolutional neural networks
(HCNNs), which uses low-precision training and a series of
methods to reduce the computational overhead. Similarly, their
work also uses polynomials to approximate the activation
function.

B. MPC-Based Frameworks

DeepSecure [36] is a deep learning framework that uses
garbled circuits to protect data privacy. SecureML proposes
to use the dual server model to solve the problem of secure
machine learning, uses secret sharing and garbled circuit to
implement secure computing, and accelerates the multipli-
cation process in secret sharing by pre-computing triples.
In this work, instead of using a polynomial fitting method
to represent the nonlinear activation function, the role of
the activation function in the process of machine learning
inference is considered, and a piecewise linear function is
used instead of the original activation function. MiniOnn uses
homomorphic encryption, garbled circuit and secret sharing
to achieve inexplicable inference. Chameleon uses the GMW
protocol, garbled circuit and secret sharing for SVM and
DNN security calculations. Specifically, the GMW protocol
is used to calculate shallow functions, the garbled circuit is
used to calculate deep functions, and secret sharing is used to
perform linear calculations. XONN [37] considers the Bool
neural network and relies on the garbled circuit to realize
inexplicable inference. The expensive matrix multiplication in
the traditional neural network is replaced by XNOR in the
Bool neural network. This kind of calculation has very little
overhead in the garbled circuit. CrypTFlow [38] design three
important components. Athos is the compiler of the original
model to various secure computing protocols. Porthos is a
semi-honest and secure three-party computing protocol. It can
safely perform indeterminate inferences. Aramis assumes that
there is at least one trusted hardware. In this case, the semi-
honest MPC protocol can be compiled into a malicious secure
MPC protocol.

C. Others

The scheme of Jiang et al. [39] uses a homomorphic
encryption scheme to encrypt the model and data, which can
protect the privacy of the data and the model parameters at the
same time. The main contribution of this work is to design
a parallel scheme for matrix multiplication, which converts
matrix multiplication to the sum of n times Hadamard product.
Using the idea of homomorphism, Xiang et al. [40] put real
number features in complex numbers to hide through rotation,
and use GAN model to generate confusion samples to achieve
k-anonymity.

VII. CONCLUSION

In this work, we reinterpreted the mechanism of nonlinear
activation function and max-pooling in the forward propaga-
tion phase from another angle, and based on this observation,
we designed a method called DPC for decouple the linear
operation and the non-linear operation in the network. In
the outsourcing prediction task of privacy protection data,
DPC allows users to pre-compute the non-linear parts of the
network locally, and only need to perform linear operations
of the network in the online phase. We designed HE-based
and MPC-based frameworks for linear networks using DPC
respectively. The evaluation results show that our scheme has
obvious advantages in terms of computational complexity and
communication complexity compared with previous work.

APPENDIX A
LINEAR CNN WITH DPC ARCHITECTURE

In Figure 10, we show the structure of the linear network
used to identify the MNIST dataset in this article. The
dashed box represents that it only appears in the training
phase and will be removed in the test phase. The size
of Conv1, Conv2, Conv3, Conv4 is 16 × 5 × 5, and the
stride is 1. The size of Conv5, Conv6, Conv7, Conv8 is
16× 16× 3× 3, stride is 1.

Fig. 10. The architecture of the dual network model used to classify the
MNIST data set in this article, and the necessary description of the structure
of each layer.
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