
Ferret: Fast Extension for coRRElated oT with small
communication

Kang Yang
State Key Laboratory of Cryptology

yangk@sklc.org

Chenkai Weng
Northwestern University

ckweng@u.northwestern.edu

Xiao Lan*

Sichuan University
lanxiao@scu.edu.cn

Jiang Zhang
State Key Laboratory of Cryptology
jiangzhang09@gmail.com

Xiao Wang
Northwestern University

wangxiao@cs.northwestern.edu

September 6, 2020

Abstract

Correlated oblivious transfer (COT) is a crucial building block for secure multi-party computation
(MPC) and can be generated efficiently via OT extension. Recent works based on the pseudorandom
correlation generator (PCG) paradigm presented a new way to generate random COT correlations using
only communication sublinear to the output length. However, due to their high computational complex-
ity, these protocols are only faster than the classical IKNP-style OT extension under restricted network
bandwidth.

In this paper, we propose new COT protocols in the PCG paradigm that achieve unprecedented
performance. With 50 Mbps network bandwidth, our maliciously secure protocol can produce one COT
correlation in 22 nanoseconds. More specifically, our results are summarized as follows:

1. We propose a semi-honest COT protocol with sublinear communication and linear computation. This
protocol assumes primal-LPN and is built upon a recent VOLE protocol with semi-honest security by
Schoppmann et al. (CCS 2019). We are able to apply various optimizations to reduce its communi-
cation cost by roughly 15×, not counting a one-time setup cost that diminishes as we generate more
COT correlations.

2. We strengthen our COT protocol to malicious security with no loss of efficiency. Among all optimiza-
tions, our new protocol features a new checking technique that ensures correctness and consistency
essentially for free. In particular, our maliciously secure protocol is only 1 − 3 nanoseconds slower
for each COT.

3. We implemented our protocols, and the code will be publicly available at EMP toolkit. We observe at
least 9× improvement in running time compared to the state-of-the-art protocol by Boyle et al. (CCS
2019) in both semi-honest and malicious settings under any network faster than 50 Mbps.

With this new record of efficiency for generating COT correlations, we anticipate new protocol designs
and optimizations will flourish on top of our protocol.

*Work is done when visiting Northwestern University.

1

Contents

1 Introduction 3
1.1 Our Contribution . 3
1.2 More Discussion . 5
1.3 Paper Organization . 5

2 Preliminaries 5
2.1 Notation . 5
2.2 Correlated Oblivious Transfer . 5

3 Background and Technical Overview 6
3.1 Overview of the PCG Framework . 6
3.2 Single-Point Correlated OT . 6
3.3 Multi-Point Correlated OT . 8
3.4 Random Correlated OT . 10

4 Single-Point Correlated OT 12
4.1 Security of Our SPCOT Protocol . 13
4.2 Optimizations and Complexity Analysis . 14

5 Multi-Point Correlated OT 14

6 Iterative Correlated OT Extension 16
6.1 Our COT with Bootstrapped Iterations . 18
6.2 Optimizations and Complexity Analysis . 18

7 Performance Evaluation 19
7.1 Parameter Selection . 19
7.2 Efficiency of the Main Iteration . 20
7.3 Performance of One-Time Setup . 21
7.4 Micro-benchmark . 22

A More Preliminaries 26
A.1 Security Model . 26
A.2 Learning Parity with Noise . 26
A.3 Correlation Robust Hash Functions . 27

B Proof of Theorem 1 27

C Batched Consistency Check for Our SPCOT Protocol 32
C.1 Security Analysis . 33

D Proof of Theorem 2 35

E LPN with Selective Failure Leakage 36
E.1 LPN with Static Leakage . 36
E.2 LPN with Static, Functional Leakage . 37

F Proof of Theorem 3 38

2

1 Introduction
Correlated oblivious transfer (COT) allows the sender to obtain two random correlated messages and the
receiver to obtain one of them based on the choice bit. COT is a key building block in secure multi-party
computation (MPC). On the one hand, we can convert random COT to chosen-input oblivious transfer
(OT) efficiently [Bea95, IKNP03]. On the other hand, the preprocessing stage of many MPC protocols
such as [NNOB12, FKOS15, KOS16, BLO16, WRK17b, HSS17, KRRW18, RW19, AOR+19, DEF+19]
crucially relies on such COT correlations to generate (authenticated) shares and Beaver triples, which is the
main cost of these protocols. Boyle et al. [BCG+19b, BCG+19a] have discussed in detail how COT can
accelerate existing MPC protocols. Therefore, the efficiency improvement for COT will have a significant
impact on the efficiency of these MPC protocols. COT correlations can be generated efficiently using OT
extension [Bea96, IKNP03]. For example, the state-of-the-art IKNP-style OT extension protocols [ALSZ13,
KOS15] can generate COT with communication and symmetric-key operations linear to the number of
correlated OTs and a very small number of public-key operations.

Recently, Boyle et al. [BCGI18, BCG+19b] proposed a new approach to construct Vector Oblivious
Linear Evaluation (VOLE), a generalized notion of COT, with sublinear communication based on the Learn-
ing Parity with Noise (LPN) assumption. Their protocols are completely different from the IKNP frame-
work and have the potential to perform much better than the IKNP-style protocols. Specifically, two recent
works [BCG+19a, SGRR19] can improve the performance significantly with certain network bandwidth.

– A recent follow-up work by Boyle et al. [BCG+19a] explored concrete optimizations under the dual-
LPN assumption. Their COT protocol improves the communication of IKNP by 1000× for generating
10 million correlated OTs. Because of the simplistic structure of dual-LPN, they were also able to obtain
malicious security. However, the protocol suffers from a high computational cost. For example, it is 60×
faster than IKNP under a 10 Mbps network, but only 6× faster than IKNP under a network of 100 Mbps.

Both the pros and cons of this protocol stem from the use of the dual-LPN assumption: it allows for
very small parameters, but the computation is highly complicated, requiring operations like fast Fourier
transform.

– Schoppmann et al. [SGRR19], on the other hand, proposed a VOLE protocol with semi-honest security
under the primal-LPN assumption, which is inspired by [BCGI18]. They focused on VOLE for large
fields, but the protocol can be modified to work for generating COT correlations. Based on our estimation
with the computational security parameter κ = 128, their protocol can reduce the communication of
IKNP by only 20×, but the computation is much cheaper than the above protocol based on dual-LPN.

This protocol enjoys faster computation, but much more communication is required. This is due to the use
of the primal-LPN assumption that has larger parameters but can be instantiated using, e.g., local linear
codes with very cheap computation. In addition, it was not clear how to strengthen their protocol with
malicious security.

In summary, prior work on PCG has advanced the performance significantly. But there are still much space
to improve in their performance.

1.1 Our Contribution
In this paper, we propose new COT protocols in both the semi-honest setting and the malicious setting
with unprecedented speed. In particular, under network bandwidth of 50 Mbps, our semi-honest protocol
produces one COT correlation in merely 21 nanoseconds (ns), while our maliciously secure protocol is only
1 nanosecond slower. As summarized in Table 1, we give the performance of our COT protocols in the
malicious setting, and compare them with the state-of-the art protocols. This impressive performance is
achieved by a set of ideas in different layers of the protocol. We give a technical overview in Section 3, and
present our main results as follows.

3

Protocol Comm./COT Running time per COT correlation (nanoseconds, ns)

(bits) 10Mbps 50Mbps 100Mbps 1Gbps 5Gbps

[KOS15] 128 12831 2574 1292 139 34
[BCG+19a] 0.1 211 210 209 208 209

Ferret-Reg 0.44 54 22 18 19 19
Ferret-Uni 0.73 86 33 33 32 32

Table 1: Comparison between our protocols and the state-of-the-art COT extension protocols in the mali-
cious setting. All numbers are obtained using Amazon EC2 (c5.4xlarge) and do not include the one-time setup.
Ferret-Reg assumes LPN with a regular noise distribution, same as Boyle et al. [BCG+19a]; Ferret-Uni assumes LPN
with uniform noise, a weaker assumption than LPN with regular noise. More computational resources will further
bring down the cost of [BCG+19a].

– Semi-honest setting. As discussed above, the state-of-the-art COT protocols are able to achieve either
high communication efficiency or high computational efficiency, but not both. This appears to be inher-
ently rooted in the choice of LPN assumptions. To overcome the computation-communication dilemma,
we optimize the previous COT protocol [SGRR19] based on primal-LPN so that it works as an amplifier:
taking some number of COTs, the protocol makes a small amount of communication, and outputs a lot
of COTs. With this, we can boost the performance by feeding parts of the output to itself (as input).
This allows us to reduce the communication overhead significantly while keeping the advantage of high
computational efficiency for primal-LPN. As a result, our new protocol needs very small communication
(as in Boyle et al. [BCG+19a]) and fast computation (as in Schoppmann et al. [SGRR19]) at the same
time. Under the network bandwidth of 50 Mbps, it takes 21 ns and communicates 0.44 bits to compute
one COT correlation.

– Malicious setting. Boyle et al. [BCG+19a] obtained malicious security using a consistency check on
their dual-LPN based COT. However, this consistency check introduces a high overhead, especially com-
pared to our highly optimized semi-honest COT. What’s more, the protocol is not directly applicable to
the primal-LPN based protocol by Schoppmann et al. [SGRR19]. Here we propose a new consistency
check that can be applied to our semi-honest protocol and at the same time reduces the computational
cost significantly without increasing any communication. In a 50 Mbps network, our maliciously secure
protocol only imposes a 1-nanosecond overhead to our semi-honest protocol for each COT correlation,
resulting in an overall time of 22 ns. On the other hand, the prior consistency check [BCG+19a] would
introduce 14 ns of overhead.

– Implementation. We implemented our COT protocols, where the code will be publicly available at
EMP [WMK16]. Our protocols are highly applicable in a wide range of network settings. From our
experimental results, we observe at least 9× improvement compared to the state-of-the-art protocol by
Boyle et al. [BCG+19a] in both the semi-honest and malicious settings under any network faster than
50 Mbps. Compared to the best-known IKNP-style OT extension protocols [ALSZ13, KOS15], we can
achieve about 2× to 117× improvements when the network bandwidth is between 5 Gbps and 50 Mbps.

With the above improvements, our COT protocol will be able to significantly improve the practical efficiency
of many MPC protocols, including the classical GMW protocol based on bit-OT [GMW87], the authenti-
cated garbling protocols [WRK17a, WRK17b], the TinyOT/SPDZ protocols [NNOB12, KOS16], and many
others.

4

1.2 More Discussion
Prior work on COT (or VOLE) [BCGI18, BCG+19a, BCG+19b, SGRR19], in the pseudorandom correla-
tion generator (PCG) framework, explicitly requires that the protocol works in two stages: 1) an interactive
seed generation stage; and 2) a local seed expansion stage. In this paper, our primary focus is to apply these
techniques in MPC, and thus we model the whole computation, including both stages, as one functional-
ity. In this way, we avoid the complicated security definition. Note that PCG cannot realize the natural
simulation-based model [BCG+19b]. Our work mainly focuses on computing COT correlations without the
PCG seed that needs to be output by the functionality. This enables us to prove the security of the protocol
in a standard simulation-based model, at the cost of losing the flexibility to execute two stages separately.

Some of our optimizations assume two parties to compute a one-time setup. This has been the setting for
almost all prior work. For example, the existing IKNP-style OT extension protocols can take advantage of
the one-time setup to reuse base OTs (involving public-key operations) across multiple extend executions.
The underlying assumption is that the one-time setup cost becomes negligible, as much more OTs are
computed using the same one-time setup. In MPC applications, the one-time setup cost is minor, as it
can be reused across many protocol executions. For our protocols, we need a one-time setup less than 250
ms for any network faster than 100 Mbps (less than 100 ms for network faster than 500 Mbps), compared to a
30 ms setup in prior protocols. However, given our amazing speedup on the extension phase, we believe that
a slower one-time setup is a meaningful trade-off. Even in the single-execution setting, where the one-time
setup should be considered together, our protocols are still much faster than previous IKNP-style protocols,
and significantly outperforms the state-of-the-art COT protocol [BCG+19a] (with network faster than 50
Mbps). See Section 7 for more details.

1.3 Paper Organization
In Section 2, we introduce preliminaries to be used in this paper, where the standard simulation-based
security model is recalled in Appendix A.1. Section 3 provides a technical overview of our improvements.
In Section 4, we provide details of our single-point COT protocol; in Section 5, we use it to build a multi-
point COT protocol. We present details of our COT extension protocol in Section 6. Finally, in Section 7,
we discuss the concrete performance of our COT protocol.

2 Preliminaries
Below we introduce some essential concept, leaving more preliminaries in Appendix A.

2.1 Notation
We use κ and ρ to denote the computational and statistical security parameters respectively. We use x← S
to denote sampling x uniformly at random from a finite set S and x← D to denote sampling x according to
the distribution D. We use bold lower-case letters such as a to represent row vectors, and bold upper-case
letters such as A to denote matrices. We use a[i] to denote the i-th component of a, and a[i : j] to represent
the subvector consisting of a[i], . . . ,a[j − 1]. We denote by [n] the set {0, . . . , n − 1} for n ∈ N, and by
[a, b) the set {a, . . . , b−1} for a, b ∈ N and a < b. For any n ∈ N and a subset S ⊆ [n], we use u = I(n, S)
to denote an n-bit vector where u[i] = 0 for all i ∈ [n]\S and u[i] = 1 for all i ∈ S. For two families
of distributions X = {Xκ}κ∈N and Y = {Yκ}κ∈N, we write X

c
≈ Y if X and Y are computationally

indistinguishable. We use negl(·) to denote a negligible function. Depending on the context, we use {0, 1}κ,
Fκ2 and F2κ interchangeably, and thus addition in Fκ2 or F2κ corresponds to XOR in {0, 1}κ. We write
F2κ
∼= F2[X]/f(X) for some monic, irreducible polynomial f(X) of degree κ.

2.2 Correlated Oblivious Transfer
Correlated oblivious transfer (COT) is an important variant of OT, and has been applied in many MPC
protocols. The COT functionality is shown in Figure 1, and is a special case of the subfield VOLE func-

5

Functionality FCOT

Initialize: Upon receiving (init,∆) from a sender S where global key ∆ ∈ F2κ , and (init) from a receiver R,
store ∆ and ignore all subsequent (init) commands.
Extend: Upon receiving (extend, `) from S and R, this functionality operates as follows:

– Sample v ← F`2κ . If S is corrupted, instead receive v ∈ F`2κ from the adversary.

– Sample u← F`2 and compute w := v + u ·∆ ∈ F`2κ .

– If R is corrupted, receive u ∈ F`2 and w ∈ F`2κ from the adversary, and recompute v := w + u ·∆.

Outputs: Send v to S and (u,w) to R.

Figure 1: Correlated OT functionality.

tionality [BCG+19a] for binary field. Following previous definitions such as [KOS15, HSS17, BCG+19a],
the adversary is allowed to choose its own output from this functionality, which appears necessary for the
security proofs of many protocols instantiating this functionality [GKWY20]. It is known that such weaker
functionality is sufficient for many applications (see, e.g., [NNOB12, KOS15, KOS16, WRK17a, HSS17,
BCG+19a, GKWY20, DEF+19]). After the one-time initialization, one can repeatedly call the extend
phase to get multiple batches of COT correlations. While the COT functionality only supports that an hon-
est receiver gets uniform choice bits, one can easily obtain COT with chosen choice bits from such COT
functionality in a very cheap way based on the preprocessing OT technique [Bea95].

3 Background and Technical Overview
3.1 Overview of the PCG Framework
Our protocol follows the PCG paradigm from prior work [BCG+19b, BCG+19a, SGRR19]. Thus we first
give a high-level overview of this approach in the case of computing COT correlations. For both semi-honest
and malicious security, we can divide the COT protocol into three layers:

1. Construct a single-point COT protocol, a variant of COT where the Hamming weight of the choice-bit
vector is exactly 1, and so we can use an index (a.k.a. point) to represent the location of the single bit.
We present the SPCOT functionality FSPCOT in Figure 3.

2. Construct a multi-point COT protocol, a more complicated variant of COT where the Hamming weight
of the choice-bit vector is exactly t > 1. The functionality FMPCOT is shown in Figure 4, and more
details (including the actual role of function φn,t) are described in Section 5.

3. Using FMPCOT and an LPN assumption (either primal or dual), construct a COT protocol where all the
choice bits are uniform.

Our formulation differs from prior work: while previous work defines their functionalities in the two-stage
PCG framework, including joint seed generation and local seed expansion, we model everything together as
one ideal functionality. This change significantly simplifies the ideal functionality.

The structure of our protocol is shown in Figure 2, where a small number of correlated OTs output by
the first FCOT are amplified to a large number of correlated OTs used as the output of the second FCOT.
Below we discuss the background and our new techniques for each of the three layers as described above.

3.2 Single-Point Correlated OT
Protocols for single-point correlated OT (SPCOT) in the semi-honest setting have been studied concurrently
by Boyle et al. [BCG+19a] (what they refer to as PPRF-GGM which means puncturable pseudorandom

6

FCOT FSPCOT FMPCOT FCOT
ΠSPCOT (Sec. 4) ΠMPCOT (Sec. 5) ΠCOT (Sec. 6)

ΠCOT (Sec. 6)

Figure 2: Relations of the functionalities and protocols considered in this paper. A C−→ B denotes that protocol
C securely realizes functionality B in the A-hybrid model.

Functionality FSPCOT

Initialize: Upon receiving (init,∆) from a sender S where global key ∆ ∈ F2κ , and (init) from a receiver R,
store ∆ and ignore all subsequent (init) commands.
Extend: Upon receiving (sp-extend, n) from S, and (sp-extend, n, α) from R where α ∈ [n], this functionality
operates as follows:

1. Sample v ← Fn2κ . If S is corrupted, instead receive v ∈ Fn2κ from the adversary.

2. Define an n-sized bit vector u := I(n, {α}), and compute w := v + u ·∆ ∈ Fn2κ .

3. If R is corrupted, receive w ∈ Fn2κ from the adversary, and recompute v := w + u ·∆.

Selective failure: In the malicious setting, if S is corrupted, the adversary is allowed to make the following
selective failure query only once for each sp-extend call:

1. Wait for the adversary to input a guess I ⊆ [n].

2. If α /∈ I , send abort to R and wait for a response from R. When R responds with abort, forward it to the
adversary and abort. Otherwise, send success to the adversary.

Outputs: If this functionality does not abort, send v to S and w to R.

Figure 3: Single-point correlated OT functionality. Only a malicious sender can perform the selective failure attack.

function based on the GGM tree) and Schoppmann et al. [SGRR19] (what they refer to as known-index
SPFSS) with very high efficiency. Both protocols share the same idea that can trace back to Doerner and
shelat [Ds17], who proposed an improved protocol to securely compute distributed point functions [BGI16].
Here we sketch out the high-level idea and leave the detailed protocol description to Section 4. The semi-
honest SPCOT protocol works by the sender computing a GGM tree with n leaves (namely {v[i]}i∈[n]) and
the receiver obtaining all-but-one of the leaves (namely {v[i]}i∈[n]\{α}) using an OT protocol. Then the
sender can send ∆ +

∑
i∈[n] v[i] to the receiver who can compute v[α] + ∆ locally, which completes the

semi-honest protocol.
The above protocol is very efficient: it needs log n OTs and n calls to a pseudorandom generator (PRG)

that is equivalent to 2n block-cipher calls. However, it is only semi-honest secure and our next goal is to
make it maliciously secure. Boyle et al. [BCG+19a] observed that the protocol, when using a maliciously
secure OT, is already private against malicious adversaries, but when the sender is corrupted, it can cause
the receiver’s output to be incorrect or cause inconsistent ∆ in multiple executions. Their solution to obtain
malicious security requires expanding 4κ bits per leaf node (while κ bits are needed in the semi-honest
setting), and hashing 2nκ bits with a collision resistant hash function, which cause a great slow-down.

Our improvement: obtaining malicious security essentially for free. Our protocol can eliminate any
extra call to PRG completely and the hashing of a quite long string with 2nκ bits. Instead, we need to
perform one multiplication over F2κ per leaf node, which is blazing fast given hardware-instruction support,

7

and to hash only κ bits that is very fast.
Recall that in the semi-honest SPCOT protocol, the sender has v ∈ Fn2κ ,∆ ∈ F2κ ; the receiver has

w ∈ Fn2κ and α ∈ [n] such that
v +w = I(n, {α}) ·∆. (1)

Our idea is to use a random linear combination defined by a set of n random coefficients {χi}i∈[n] each
sampled from F2κ after the semi-honest protocol execution. From the property that χi for i ∈ [n] are
uniformly random sampled field elements after v and w have already been defined, we ensure that the
correctness of the protocol (i.e., the above equation (1)) holds as long as∑

i∈[n]

χi · v[i] +
∑
i∈[n]

χi ·w[i] = χα ·∆.

Two parties can locally compute terms on the left-hand side but the term χα · ∆ needs to be computed
jointly. Fortunately, shares Y,Z of this term can be computed efficiently using κ correlated OTs output by
FCOT based on the ideas from Gilboa’s multiplication protocol [Gil99] and MASCOT [KOS16]. Note that
the sender cannot directly send V =

∑
i∈[n] χi · v[i] + Y ∈ F2κ to the receiver. Otherwise, the malicious

receiver may reveal ∆ by deviating the protocol such that both parties compute the shares of χ′ ·∆ for some
maliciously chosen χ′ 6= χα. In this case, the malicious receiver can compute (χ′ + χα) · ∆ from V and
thus reveal ∆. We solve this issue by making the sender transmit H ′(V) instead, and the receiver checks
that H ′(V) = H ′(

∑
i∈[n] χi ·w[i] + Z), where H ′ : F2κ → {0, 1}2κ is a random oracle.

The above checking ensures the correctness of the protocol but not the ∆-consistency when executing
the extend phase multiple times. In the maliciously secure protocol by Boyle et al. [BCG+19a], this is
achieved by another checking procedure, which causes more computational overhead. We observe that
given our improved correctness-checking procedure, we can guarantee the consistency of ∆ for free. In
particular, from the correctness check, we know that the global key ∆ in the equation (1) is the same as
the one in FCOT. Therefore, as long as FCOT ensures ∆-consistency across different extend executions,
our SPCOT protocol after the correctness check automatically ensures ∆-consistency. The above checking
does not significantly increase the computational complexity, but requires additional κ COT correlations per
extend execution. To avoid this cost, we further observe that when m extend executions are needed, we can
perform the checking in a batch and compress all m checking procedures into one so that κ correlated OTs
can ensure the malicious security of all m executions. See Section 4 for more details of the construction
and the proof of security. Note that our consistency check approach is significantly different from Boyle et
al. [BCG+19a], and can also be used to improve the computational efficiency of their COT protocol.

3.3 Multi-Point Correlated OT
Recall that the functionality FMPCOT (shown in Figure 4) is very similar to FSPCOT, except that the receiver
inputs multiple indices instead of just one.

Prior work. In the FSPCOT-hybrid model, we can construct a protocol for FMPCOT using a naive approach:
a) we can call the extend phase of FSPCOT for t times with the same initialization; b) for the i-th extend
call, the receiver sends an index αi ∈ [n] to FSPCOT and two parties obtain vi ∈ Fn2κ and wi ∈ Fn2κ
respectively with the constraint that vi +wi = I(n, {αi}) ·∆. The final output is defined as v =

∑
i∈[t] vi

and w =
∑

i∈[t]wi. However, the cost of this protocol is high: to obtain an n-sized multi-point COT
with t indices, we need O(tn) symmetric-key computations and O(t log n) OTs. This can be improved to
O(n) symmetric-key calculations and O(t log n

t) OTs if we can restrict that there is exactly one index in
each interval of size bn/tc. In the semi-honest setting, Schoppmann et al. [SGRR19] proposed a Cuckoo
hashing based approach that achieves a similar performance without any restriction on the indices. Their
protocol [SGRR19], adapted to MPCOT, executes as follows.

8

Functionality FMPCOT

Parameter: In the malicious case, this functionality is parameterized by a family of efficiently computable
functions φ = {φn,t}n,t∈N, such that for any n, t ∈ N with t ≤ n, φn,t takes as input a t-sized sorted subset of
[n] and outputs another subset of [m] with the same size for some integer t ≤ m ≤ n.
Initialize: Upon receiving (init,∆) from a sender S where global key ∆ ∈ F2κ , and (init) from a receiver R,
store ∆ and ignore all subsequent (init) commands.
Extend: Upon receiving (mp-extend, n, t) from S and (mp-extend, n, t, Q = {α0, . . . , αt−1}) from R where
Q ⊆ [n] is a sorted set, this functionality does the following:

1. Sample v ← Fn2κ . If S is corrupted, instead receive v ∈ Fn2κ from the adversary.

2. Define an n-sized bit vector u := I(n,Q), and compute w := v + u ·∆ ∈ Fn2κ .

3. If R is corrupted, receive w ∈ Fn2κ from the adversary, and recompute v := w + u ·∆.

Malicious case: A corrupt receiver can send input set Q ⊆ [n] of size at most m for each mp-extend call. A
corrupt sender can make a single selective failure query for each mp-extend call:

1. Compute the set T = {β0, . . . , βt−1} := φn,t({α0, . . . , αt−1}).

2. Wait for the adversary to input m sets I0, . . . , Im−1 ⊆ [n] ∪ {−1}.

3. Check that αi ∈ Iβi for all i ∈ [t] and −1 ∈ Ij for all j ∈ [m]\T . If the check fails, send abort to both
parties and abort. Otherwise, send success to the adversary.

Outputs: If this functionality does not abort, send v to S and w to R.

Figure 4: Multi-point correlated OT functionality.

1. The receiver inserts all points in set Q = {α0, . . . , αt−1} to a Cuckoo hash table T of size m. The
Cuckoo hashing scheme is constructed by τ universal hash functions {hi}i∈[τ], and ensures that for each
point α ∈ Q, there exists a unique index i∗ ∈ [τ] such that T [hi∗(α)] = α.

2. Both parties build m buckets {Bj}j∈[m] such that for each x ∈ [n], x is located in the j-th bucket Bj if
and only if there exists an i ∈ [τ] such that hi(x) = j. This also means that for each j ∈ [m], if T [j] is
not empty, then T [j] ∈ Bj .

3. Let bit dj equal to 1 if and only if T [j] 6= ⊥ for j ∈ [m]. The sender sends (init,∆) to FCOT, and the
receiver sends (extend,d) to FCOT where d = (d0, . . . , dm−1). As a result, for each j ∈ [m], two parties
obtain DS

j ∈ F2κ and DR
j ∈ F2κ such that DS

j +DR
j = dj ·∆.

4. Let posj(x) be the position of x in the j-th bucket Bj . Two parties call FSPCOT m times, where in
the j-th call, a) the sender sends (init, DS

j) for initialization and sends (sp-extend, |Bj |) for extension;
b) the receiver sends (sp-extend, |Bj |, pj) where pj = posj(T [j]) (if T [j] = ⊥, then pj ∈ [|Bj |] can be

any value). For each j ∈ [m], the sender receives s̃j ∈ F|Bj |2κ and the receiver obtains r̃j ∈ F|Bj |2κ from
FSPCOT. The receiver updates the value r̃j [pj] := r̃j [pj] +DR

j .

After this step, we know that r̃j + s̃j = I(|Bj |, {pj}) · dj ·∆.

5. For each x ∈ [n], S computes s[x] :=
∑

i∈[τ] s̃hi(x)[poshi(x)(x)] ∈ F2κ ; and R computes r[x] :=∑
i∈[τ] r̃hi(x)[poshi(x)(x)] ∈ F2κ . As a result, we have that r + s = I(n,Q) ·∆.

In practice, we can set τ = 3 and t < m < 2t (e.g., m = 1.5t), and thus the number of symmetric-key
operations is O(n) and the number of OTs is O(t log n

t). However, this protocol is not maliciously secure
even if the underlying FCOT is, because a malicious sender can change its own shares of dj ·∆ for j ∈ [m]

9

arbitrarily used in different initialization procedures of Step 4.

Our protocol: constructing a maliciously secure MPCOT for free. Our goal is to design an MPCOT
protocol with malicious security compatible with the above optimization based on Cuckoo hashing without
introducing any overhead. Right now, a corrupt sender can cause an inconsistency of ∆ in Steps 3−4. Note
that the purpose of Step 3 is to prepare for secret shares of ∆ only at locations j ∈ [m] such that T [j] 6= ⊥.
If T [j] is empty, then two parties should hold shares of 0. Then in Step 4, the sender’s shares obtained from
the previous step are used as the global keys in m SPCOT executions. Since the sender’s shares in all m
executions are fresh, the sender has to use different global keys across all m SPCOT executions (i.e., m
different initialization procedures are called). As a result, even a maliciously secure SPCOT cannot help,
since it only ensures the consistency in the extensions under the same initialization but not across different
initialization.

The above analysis provides us with a hint: if we can “encode” the information of indices j ∈ [m] with
dj = 1 (i.e., the locations of input points in Cuckoo hash table T) without using different initialization of
FSPCOT, then the ∆-consistency provided by SPCOT ensures the consistency of MPCOT that we desire.
In our protocol, we are able to achieve this goal and at the same time eliminate the need of m correlated
OTs. In detail, a) for each bucket, we increase the bucket size by 1; b) if T [j] is empty for some j ∈ [m],
then the receiver’s input pj can point to this extra cell so that other values are not affected. Although a COT
correlation on the extra cell is made, it is never used in Step 5. Below is our updated and combined step
corresponding to Step 3 and Step 4.

3–4. Two parties call FSPCOT on respective input (init,∆) and (init). For each j ∈ [m], the sender sends
(sp-extend, |Bj | + 1) to FSPCOT, and the receiver sends (sp-extend, |Bj | + 1, pj) to FSPCOT, where
pj = posj(T [j]) if T [j] 6= ⊥ and pj = |Bj |+1 otherwise. As the output, the sender obtains s̃j ∈ F|Bj |+1

2κ

and the receiver obtains r̃j ∈ F|Bj |+1
2κ such that r̃j + s̃j = I(|Bj |+ 1, {pj}) ·∆.

Since the communication (resp., computation) of SPCOT is logarithmic (resp., linear) in the output length,
increasing the bucket size by 1 does not effectively increase the actual cost of MPCOT.

Challenge still exists when proving the malicious security. In particular, it is difficult to extract the ma-
licious sender’s guesses for selective failure attacks. Recall that the maliciously secure protocol for FSPCOT

suffers from selective failure attacks where the adversary is allowed to guess a range of the receiver’s input α
and the protocol aborts for an incorrect guess. In the naive MPCOT protocol without Cuckoo hashing, every
adversary’s guess to FSPCOT is directly mapped into the guess to one input point by the receiver. However,
after Cuckoo hashing is used, the selective failure attack corresponds to the Cuckoo hash table T , different
from the t points {αi}i∈[t] that are the input of T . To overcome this issue, we propose a more general selec-
tive failure attack as shown in Figure 4, which allows us to prove the malicious security directly. Looking
ahead, this selective failure attack corresponds to (on average) one-bit leakage of the LPN noise vector.

3.4 Random Correlated OT
To obtain a standard COT protocol with random choice bits, we can use the above MPCOT protocol along
with a binary LPN assumption. In the following, we first discuss how it was done in prior work and then
how we improve it.

Boyle et al. The protocol by Boyle et al. [BCG+19a] is based on the dual-LPN assumption, which states
that (H, b)

c
≈ (H, e ·H), where H ∈ FN×n2 is a code matrix with N > n, b is a uniform vector in FN2 and

e ∈ FN2 is a random sparse vector with fixed Hamming weight t. Their protocol works as follows.

1. Two parties call FMPCOT such that the sender gets s ∈ FN2κ ,∆ ∈ F2κ and the receiver gets r ∈ FN2κ , e ∈
FN2 with the constraint that r + s = e ·∆, where the indices of non-zero entries in e correspond to the
receiver’s input set {α0, . . . , αt−1}.

10

ΠSPCOT

Combine based on LPN

k COTs

k +O(t log n
t) COTs

O(t log n
t) COTs

n COTs

(a) Structure of the COT amplifier.

Obtain M COTs
from M0 COTs

Obtain M0 COTs
using IKNP-like
OT extension

One-time Setup

Obtain n+M COTs
from M COTs,
output n COTs

1

2

3

4
Obtain n+M COTs
from M COTs,
output n COTs

M COTsM COTs

n COTsn COTs

(b) Bootstrapped iterations with a one-time setup.

Figure 5: Graphic depiction of COT bootstrap-iterations.

2. The sender outputs y := s ·H ∈ Fn2κ ; the receiver outputs z := r ·H ∈ Fn2κ and x := e ·H ∈ Fn2 . Thus,
y + z = x ·∆ and x is pseudorandom under the dual-LPN assumption.

The correctness and security of the protocol can be established easily in the FMPCOT-hybrid model. In their
implementation, they assume that the noise vector e is regular, meaning that only a special type of MPCOT
is needed, where it is publicly known that there exists exactly one index in each bN/tc-sized interval. This
can be easily instantiated based on our SPCOT protocol too. The communication complexity is very small:
roughly O(tκ log N

t) bits are needed to generate n correlated OTs, where t = 116 (if N = 2n and n = 107)
in their parameter selection. However, the dual-LPN assumption limits the choices of matrix H resulting in
that the computations of s ·H, r ·H and e ·H are very costly even if all optimizations have been done by
Boyle et al. [BCG+19a]. For example, their protocol takes 2.11 seconds to compute 10 million correlated
OTs under 10 Mbps network and the same protocol execution takes 2.09 seconds under 5 Gbps network,
meaning that the computation completely dominates the cost!

Schoppmann et al. On the other hand, Schoppmann et al. [SGRR19] used the primal-LPN assumption to
construct the protocol, which works as below.

1. Two parties call FMPCOT such that the sender obtains s ∈ Fn2κ ,∆ ∈ F2κ and the receiver obtains
r ∈ Fn2κ , e ∈ Fn2 under the condition that r + s = e · ∆, where e is the LPN noise vector with fixed
Hamming weight t.

2. Both parties call FCOT so that the sender gets v ∈ Fk2κ and the receiver gets w ∈ Fk2κ and u ∈ Fk2 such
that u is a uniform vector and v +w = u ·∆.

3. The sender outputs y := v ·A + s; the receiver outputs x := u ·A + e and z := w ·A + r, where
A ∈ Fk×n2 is a code matrix.

Roughly O((t log n
t + k)κ) bits in their protocol are needed to generate n COT correlations. Schoppmann

et al. [SGRR19] choose the parameters such that t and k are O(
√
n), and so the resulting protocol has

a communication of O(κ
√
n log n) bits that is significantly higher than the one based on dual-LPN. In

practice, it can reduce the communication of the IKNP OT extension protocol [IKNP03] by around 20×.
On the other hand, primal-LPN allows us to use simpler, more common codes like local linear codes, where
the computation is much cheaper.

In summary, prior work has explored the protocols based on different LPN assumptions. By using the
dual-LPN assumption, we can achieve very small communication but the computational cost is high. If we
use the primal-LPN assumption, a much simpler code is possible (thus much cheaper computation) but the
communication saving is much worse. In the following, we introduce our idea that enables us to obtain the
best from both protocols.

11

Our COT protocol: improved performance via bootstrapped iterations. With all optimizations we
introduced, the structure of the primal-LPN version of our protocol looks as in Figure 5a. Essentially, the
protocol takes M = k + O(t log n

t) COTs as input and produces n COTs with extra O(tκ log n
t) bits of

communication. In the M COTs, k COTs of them are consumed directly during the output computation
based on primal-LPN, and O(t log n

t) random COTs of them are used as preprocessed OTs to implement
chosen-input OTs in protocol ΠSPCOT. In fact, the protocol works like a self amplifier in terms of the
number of COTs: it takes a small number of COTs, communicates a small amount of extra bits, and obtains
significantly more COTs.

Our first observation is that since the protocol is like an amplifier, we can iteratively amplify itself with-
out increasing much cost. In particular, we first perform a one-time setup, computing M COTs. Then
whenever n COTs are requested, our protocol internally computes n + M COTs using the setup COTs,
where M of them are stored as refreshed setup COTs to be used in the next iteration. Since the additional
communication is sublinear in the number of resulting COTs, computing M more COTs does not signifi-
cantly increase the communication. Except for the cost of one-time setup, n COTs can be computed with
only O(tκ log n+M

t) bits of communication.
Our second insight is that, in the new arrangement of the protocol, parameter k only affects the one-time

setup cost, and thus it is much less important than parameter t. Given this, we re-optimize the parameters
such that t � n and k = bn/cc for a small constant c > 1, so that the communication can be further
optimized. We can also apply the idea of COT iterations to the one-time setup phase. By performing one
iteration for the one-time setup, we can reduce the cost of the setup phase by roughly 10×. The overall
picture is presented in Figure 5b.

The above discussion assumes that two parties intend to run the protocol many times (so the one-time
setup cost is not important). This has been the model for many works where they assume that base OTs are
executed only once and used for many repeated executions. We note that even in the single-execution setting,
such self-amplification technique still leads to a significant performance improvement. We also note that the
idea of OT iterations was originally proposed by Asharov et al. [ALSZ13] (in the footnote of their paper) for
the semi-honest IKNP OT extension. Their goal is to avoid repeatedly computing base OTs when executing
OT extensions multiple times. Differently, by using our technique of COT iterations in a bootstrapped mode,
we will take a small portion of resulting COTs from the current iteration as the refreshed setup COTs that
will be used in the next iteration, such that only the first iteration needs an initial COTs from the one-time
setup. Due to the special structure of our protocol, it leads to a huge saving of the cost. See Section 6 for
more details of the protocol and Section 7 for performance evaluation.

4 Single-Point Correlated OT
In Figure 6, we present an improved single-point COT protocol in the FCOT-hybrid model, which extends
log n correlated OTs to a single-point COT of length n. Our improved consistency check needs extra κ
correlated OTs from FCOT. As a result, the receiver can ensure the correctness of outputs (i.e., the sum of
outputs of two parties vanishes in all indices except for the receiver’s input index α) per extend execution,
and also guarantees the consistency of ∆ across multiple executions of the extend phase. Our SPCOT
protocol adopts a tweakable CRHF to transform random COTs into chosen-input OTs using the standard
techniques [Bea95, IKNP03].

The protocol with the consistency check (Steps 6−9) achieves malicious security, while without this
check the protocol is secure in the semi-honest setting. When the context is unambiguous, we abuse the
notation and use ΠSPCOT to represent our protocol in both settings. Recall that semi-honest SPCOT has been
studied by Boyle et al. [BCG+19a] and by Schoppmann et al. [SGRR19], and our protocol with semi-honest
security is essentially a slight variation of theirs. However, the only maliciously secure SPCOT protocol
by Boyle et al. [BCG+19a] is much less efficient than ours, where our consistency check is significantly
different from their check technique. See Section 7 for a concrete performance comparison. Note that

12

Protocol ΠSPCOT

Parameters: A length-doubling PRG G : {0, 1}κ → {0, 1}2κ. A tweakable CRHF H : {0, 1}2κ → {0, 1}κ. A
cryptographic hash function H ′ : F2κ → {0, 1}2κ modeled as a random oracle.
Inputs: S holds a (uniform) ∆ ∈ F2κ . For each extend execution, S and R have an integer n = 2h for some
h ∈ N; R also has a single point α ∈ [n].
Initialize: This procedure needs to be executed only once to set up the global key.
1. S sends (init,∆) to FCOT; R sends (init) to FCOT.
Extend: This procedure allows to be executed multiple times.
2. S and R send (extend, h) to FCOT, which returns qi ∈ {0, 1}κ to S and (ri, ti) ∈ {0, 1} × {0, 1}κ to R such

that ti = qi ⊕ ri∆ for i ∈ {1, . . . , h}.

3. S picks a random s00 ∈ {0, 1}
κ. For each i ∈ {1, . . . , h}, j ∈ [2i−1], S computes

(
si2j , s

i
2j+1

)
:= G(si−1j).

For each i ∈ {1, . . . , h}, S then computes Ki
0 :=

⊕
j∈[2i−1] s

i
2j , and Ki

1 :=
⊕

j∈[2i−1] s
i
2j+1.

4. For i ∈ {1, . . . , h}, R sends a bit bi := ri ⊕ αi ⊕ 1 to S where αi is the i-th bit of α; S sends M i
0 :=

Ki
0 ⊕ H(qi ⊕ bi∆, i‖l) and M i

1 := Ki
1 ⊕ H(qi ⊕ bi∆, i‖l) to R for the l-th execution. In parallel, S sets a

vector v := (sh0 , . . . , s
h
n−1) ∈ Fn2κ and sends c := ∆ +

∑
i∈[n] v[i] ∈ F2κ to R.

5. For i ∈ {1, . . . , h}, R defines an i-bit string α∗i := α1 · · ·αi−1αi, and performs as follows:

(a) Compute Ki
αi

:= M i
αi
⊕H(ti, i‖l). If i = 1, define s1α1

:= K1
α1

.

(b) If i ≥ 2, then for j ∈ [2i−1], j 6= α1 · · ·αi−1, compute (si2j , s
i
2j+1) := G(si−1j).

(c) Compute siα∗
i

:= Ki
αi
⊕
(⊕

j∈[2i−1],j 6=α1···αi−1
si2j+αi

)
.

R sets w[i] := shi for i ∈ [n] \ {α}, and computes w[α] := c+
∑
i∈[n]\{α}w[i].

Consistency check: Two parties perform the following consistency check for malicious security.
6. Both parties send (extend, κ) to FCOT, which returns y∗ ∈ Fκ2κ to S and (x∗, z∗) ∈ Fκ2 × Fκ2κ to R such that
z∗ = y∗ + x∗ ·∆.

7. R samples uniform {χi}i∈[n] each from F2κ and interprets χα as x ∈ Fκ2 such that χα =
∑
i∈[κ] x[i] ·Xi ∈

F2κ . Then R sends {χi}i∈[n] and x′ := x+ x∗ ∈ Fκ2 to S.

8. S computes y := y∗ + x′ ·∆, Y :=
∑
i∈[κ] y[i] ·Xi ∈ F2κ and V :=

∑
i∈[n] χi · v[i] + Y ∈ F2κ . Then S

sends H ′(V) to R.

9. R computes Z :=
∑
i∈[κ] z

∗[i] · Xi ∈ F2κ and W :=
∑
i∈[n] χi · w[i] + Z ∈ F2κ . Then R checks that

H ′(V) = H ′(W). If the check fails, R aborts.
Outputs: S outputs v ∈ Fn2κ ; R outputs w ∈ Fn2κ .

Figure 6: Single-point correlated OT protocol in the FCOT-hybrid model. The consistency check is only needed
for malicious security.

the SPCOT protocol calls FCOT instead of the chosen-input OT functionality for the ease of bootstrapped
iterations shown in Section 6. Looking ahead, we will use some portion of the output COT correlations
towards our SPCOT protocol to obtain significantly more COT correlations.

4.1 Security of Our SPCOT Protocol
We prove that the SPCOT protocol with consistency check is maliciously secure. The theorem is stated
below with a full proof in Appendix B.

Theorem 1. Protocol ΠSPCOT shown in Figure 6 securely realizes FSPCOT with malicious security in the
FCOT-hybrid model, assuming that G is a pseudorandom generator, H is a tweakable correlation robust

13

hash function and H ′ is a random oracle.

4.2 Optimizations and Complexity Analysis
Optimization for generating random coefficients. In our SPCOT protocol, the receiver needs to send the
coefficients {χi}i∈[n] to the sender, which can be replaced by a random seed and then we use a random
oracle (RO) to derive the coefficients. The seed can also be avoided by using the Fiat-Shamir heuristic.
In particular, both parties can compute a seed by using an RO to hash the transcript. In fact, our SPCOT
protocol uses a 1/2κ-almost universal linear hash function H(w) =

∑
i∈[n] χi ·w[i] ∈ F2κ (see [CDD+16]

for the definition). We can also use a polynomial hash based on GMAC (used also in [NST17, HSS17])
to instantiate such hash function. Specifically, we can use χi+1 with a random χ ∈ F2κ to replace χi and
H(w) =

∑
i∈[n] χ

i+1 · w[i] is n/2κ-almost universal [HSS17]. Therefore, our protocol can use the Fiat-
Shamir heuristic to generate the single element χ, and then uses χ, . . . , χn as the coefficients of a random
linear combination, which is still secure for the consistency check due to the almost universality. This
enables us to optimize the computational efficiency of the SPCOT protocol.

Complexity and rounds. Now we analyze the complexity of our SPCOT protocol with the above optimiza-
tion in theFCOT-hybrid model. In the semi-honest case, the SPCOT protocol can be executed in two rounds,
and needs log n number of COT correlations. In the malicious setting, our protocol needs four rounds of
communication and (log n+ κ) correlated OTs, which can be further improved using the batched optimiza-
tion described in the next paragraph. In either case, the communication and computation are essentially
the same: it needs about 2κ log n bits of extra communication and n length-doubling PRG calls (equivalent
to 2n block-cipher invocations). Compared to the only maliciously secure SPCOT protocol by Boyle et
al. [BCG+19a], our protocol reduces the number of block-cipher calls from 6n to 2n, a saving of 3×, and
also reduces the hash cost from hashing of a 2nκ-bit string to hashing of only a κ-bit string.

Batched consistency check. When m extend executions are required for some m ∈ N (e.g., in our mali-
ciously secure MPCOT protocol shown in Section 5), we can compress m consistency checks into a single
check. This improves the communication overhead of consistency check by a factor of m. Informally, both
parties can generate Y and Z such that Y +Z =

∑
l∈[m] χ

l
αl
·∆ by calling FCOT and transforming random

choice bits to the chosen coefficient, where αl is the receiver’s input index and χlαl is a random coefficient
indexed by αl in the l-th execution. The sender can use Y to mask the random linear combination on its
output vectors of all m executions, and send a hash value of the resulting element to the receiver. The re-
ceiver can utilize Z and the random linear combination of its output vectors of all m executions to check
the correctness of this hash value. The formal description of this batched consistency check and its security
analysis are shown in Appendix C.

5 Multi-Point Correlated OT
In this section, we present an optimized multi-point correlated OT (MPCOT) protocol inspired by the known-
indices multi-point FSS protocol by Schoppmann et al. [SGRR19] that only works in the semi-honest setting.
By incorporating our new optimization described in Section 3.3, our protocol is also secure in the malicious
setting, given a functionality FSPCOT with malicious security. Our MPCOT protocol in the FSPCOT-hybrid
model is described in Figure 7. For readers who are familiar with Schoppmann et al.’s protocol, we note
that the main difference is Step 4, which is the key to enable malicious security of the protocol.

Cuckoo hashing. Recall that our MPCOT protocol uses a Cuckoo hashing scheme [PR04, SGRR19], which
can be instantiated with τ universal hash functions {hi : [n]→ [m]}i∈[τ]. By building a Cuckoo hash table,
we can map t points each in [n] to a hash table of sizem. We use an algorithm ParamGen(n, t, ρ) to generate
the appropriate parameters m and τ , such that inserting t elements in the Cuckoo hash table of size m fails
with probability at most 2−ρ. See previous work such as [CLR17, PSZ18, ACLS18, DRRT18] for a detailed

14

Protocol ΠMPCOT

Parameters: n, t ∈ N where n is the length of a resulting multi-point COT and t denotes the number of points.
For Cuckoo hashing parameters, the table size m and number τ of hash functions are computed by (m, τ) :=
ParamGen(n, t, ρ). Let {hi : [n]→ [m]}i∈[τ] be τ universal hash functions.
Inputs: S inputs a (uniform) ∆ ∈ F2κ . For each extend execution, R inputs a sorted set of t points Q =
{α0, . . . , αt−1} ⊆ [n].
Initialize: This procedure needs to be executed only once to set up the global key.
1. S and R call FSPCOT on respective inputs (init,∆) and (init).
Extend: This procedure can be executed multiple times.
2. R inserts α0, . . . , αt−1 into a Cuckoo hash table T of size m using the universal hash functions {hi}i∈[τ].

Empty bins in T are denoted as ⊥ (i.e., no elements are inserted in these positions of table T).

3. S and R independently build m buckets {Bj}j∈[m] with Bj = {x ∈ [n] | ∃i ∈ [τ] : hi(x) = j} by doing
simple hashing with {hi}i∈[τ] as follows:

(a) Initialize m empty buckets {Bj}j∈[m].

(b) For each x ∈ [n], i ∈ [τ], compute j := hi(x) and add x into bucket Bj .
(c) Sort all values in each bucket in an increasing order. Define a function posj : Bj → [|Bj |] to map a value

into its position in the j-th bucket Bj .

4. For j ∈ [m], R sets pj := |Bj | + 1 if T [j] = ⊥, and pj := posj(T [j]) otherwise. For j ∈ [m], S sends

(sp-extend, |Bj |+1) to FSPCOT, andR sends (sp-extend, |Bj |+1, pj) to FSPCOT, which returns s̃j ∈ F|Bj |+1
2κ

to S and r̃j ∈ F|Bj |+1
2κ to R.

After all m sp-extend calls for FSPCOT have already been made, R aborts if it receives abort from FSPCOT.

5. For x ∈ [n], S computes s[x] :=
∑
i∈[τ] s̃hi(x)[poshi(x)(x)] ∈ F2κ ; and R computes r[x] :=∑

i∈[τ] r̃hi(x)[poshi(x)(x)] ∈ F2κ .
Outputs: S outputs s; R outputs r.

Figure 7: Multi-point COT extension protocol in the FSPCOT-hybrid model. The protocol is malicious (resp.,
semi-honest) secure if FSPCOT with malicious security (resp., semi-honest security) is used.

discussion of the Cuckoo hashing scheme and the parameters. Let CHMapn,t be the Cuckoo mapping
defined by universal hash functions {hi : [n] → [m]}i∈[τ], which maps a sorted set {α0, . . . , αt−1} ⊆ [n]
to another set {β0, . . . , βt−1} ⊆ [m] such that αi = T [βi] for i ∈ [t], where T is the Cuckoo hash table.
Let CHMap = {CHMapn,t}n,t∈N be a family of such functions. Following the suggestion by Boyle et
al. [BCGI18], we let the receiver ignore the indices that failed to be inserted in the Cuckoo hash table in the
case that an insertion failure occurs with probability 2−ρ.

The MPCOT ideal functionality. Recall that our MPCOT functionality FMPCOT is shown in Figure 4.
The normal execution of this ideal functionality is as expected, where the receiver inputs a set Q of t points
and both parties obtain a multi-point COT of length n. Corrupt parties are allowed to choose their own
randomness used to define their outputs from this functionality. The case of malicious security is a bit more
involved.

For a malicious sender, it can perform the selective failure attack to guess the input indices in Q, where
an incorrect guess will be caught, while a correct guess keeps undetected. In the MPCOT protocol based
on Cuckoo hashing shown in Figure 7, the input indices in Q are mapped into t positions in the buckets
indexed by the non-empty entries in the Cuckoo hash table T . In this case, the adversary cannot directly
guess the input indices inQ, and instead can only guess the t positions. In addition, the adversary needs also

15

to guess which buckets involve non-empty entries (or empty bins) in T , as the entries of T depend on the
indices in Q and are unknown for the adversary. We use a polynomial-time function φn,t such as a Cuckoo
mapping CHMapn,t to define the selective failure attack mounted by the adversary in this case, and use −1
to represent the guess which bucket corresponds to an empty bin in T . This definition is general, and also
captures the MPCOT protocol without Cuckoo hashing by using the regular indices described at the end
of this section, by defining φn,t as a constant function that always outputs a set [t] for all inputs (m = t
in this case). The indices of input set Q are required to be sorted in some order (e.g., ascending order).
This requirement is only needed for defining the selective failure queries, as φn,t (e.g., Cuckoo mapping
CHMapn,t) may be sensitive to the order of these indices.

Proof of Security. We focus on proving the security of our MPCOT protocol in the malicious setting, which
also implies the semi-honest security of the protocol.

Theorem 2. Protocol ΠMPCOT shown in Figure 7 securely computes functionality FMPCOT(CHMap) with
malicious security in the FSPCOT-hybrid model.

Two parties just work in the FSPCOT-hybrid model, and has no communication between them. There-
fore, the proof of the above theorem is fairly straightforward. In Appendix D, we provide a full proof of the
above theorem.

Protocol complexity. Beyond calling FSPCOT, our MPCOT protocol does not need much computation, and
needs no extra communication. Here we analyze the cost including the cost of SPCOT in the FCOT-hybrid
model. We need to call SPCOT m times each of length roughly τn

m . As a result, the total communication
cost is about 2mκ log τn

m bits and the total number of block-cipher calls is about 2τn. In practice, we can
take τ = 3 and m = 1.5t as the Cuckoo hashing parameters (see Section 7.1), and thus our MPCOT
protocol needs about 3tκ log 2n

t bits of communication and about 6n block-cipher calls. We need m log τn
m

(1.5t log 2n
t for the above parameters τ,m) correlated OTs in the semi-honest case, and κ more in the

malicious case. Since here we can make SPCOT calls all in parallel, the round complexity of SPCOT is
preserved.

Optimization for regular indices. Protocol ΠMPCOT described in Figure 7 assumes that the receiver’s input
Q can be any t-sized subset of [n]. However, if we assume that LPN with a regular noise distribution, then
the set Q is more restricted in which there will be exactly one index in each interval Ui =

[
in
t ,

(i+1)n
t

)
for i ∈ [t]. In this case, we can construct a more efficient MPCOT protocol by directly using SPCOT.
In particular, we can just call FSPCOT t times, each corresponds to an interval Ui of size n/t. The final
output is the concatenation of all t output vectors. The correctness and security follows that of the SPCOT
protocol in a straightforward manner. This protocol only needs 2n block-cipher calls, about 2tκ log n

t -bit
communication, and t log n

t (resp., t log n
t + κ) COTs for semi-honest case (resp., malicious case).

6 Iterative Correlated OT Extension
We use the MPCOT protocol to construct our optimized COT extension protocol with uniform choice-bit
vectors. Our protocol can be proven secure in both the semi-honest and malicious settings, under different
LPN assumptions. For semi-honest security, we only need a standard LPN assumption defined in Defini-
tion 2. In the malicious setting, we use a slightly stronger variant of the LPN assumption (referred to as LPN
with static, functional leakage) to show that the (on average) one-bit leakage of noise vector e is harmless for
the security. Our LPN variant is a generalization of the LPN with static leakage by Boyle et al. [BCG+19a].

Our deal functionality. Our COT protocol for producing n correlated OTs requires a multi-point COT of
length n and k correlated OTs with the same global key ∆. Similar to TinyOT [NNOB12], we use a single
ideal functionality Fdeal shown in Figure 8 to incorporate the functionalities of MPCOT and COT such that

16

Functionality Fdeal

Parameter: This functionality is parameterized by a family of efficiently computable functions φ, which is used
to model selective failure queries in MPCOT.
Initialize: Upon receiving (init,∆) from S where ∆ ∈ F2κ , and (init) fromR, store ∆ and ignore all subsequent
(init) commands.

COT extend: Upon receiving (extend, `) from S and R, this functionality generates ` random COT correlations
as described in Figure 1.

MPCOT extend: Upon receiving (mp-extend, n, t) from S and (mp-extend, n, t, Q = {α0, . . . , αt−1}) from R
where Q ⊆ [n] is a sorted set, this functionality generates a multi-point COT of length n as described in Figure 4.

Figure 8: Functionality for dealing two types of correlated OTs.

Protocol ΠCOT

Parameters: LPN parameters (n, k, t); a code generator C where C(k, n,F2) outputs a matrix A ∈ Fk×n2 .
Initialize: This procedure needs to be executed only once to set up global key ∆ and initial COTs.

1. S samples a uniform ∆ ∈ F2κ . Then S and R calls Fdeal on respective inputs (init,∆) and (init).

2. Both parties S and R send (extend, k) to Fdeal.COT, which returns v ∈ Fk2κ to S and (u,w) ∈ Fk2 × Fk2κ to
R such that w = v + u ·∆.

Extend: This produces any polynomial number of COT correlations by iterative executions, where l = n − k
COT correlations are generated in each iteration.

3. R samples A ← C(k, n,F2) and e ← HWt, and then sends A to S. Let Q = {α0, . . . , αt−1} ⊆ [n] be the
sorted indices of non-zero entries in e.

4. S sends (mp-extend, n, t) toFdeal.MPCOT andR sends (mp-extend, n, t, Q) toFdeal.MPCOT, which returns
s ∈ Fn2κ to S and r ∈ Fn2κ to R where r + s = e ·∆.
If R receives abort from Fdeal.MPCOT, it aborts.

5. S computes y := v ·A + s ∈ Fn2κ ; and R computes x := u ·A + e ∈ Fn2 and z := w ·A + r ∈ Fn2κ .

6. S updates vector v := y[0 : k] ∈ Fk2κ , and outputs a vector y′ := y[k : n] ∈ Fl2κ .
R updates vectors (u,w) := (x[0 : k], z[0 : k]) ∈ Fk2 × Fk2κ , and outputs two vectors (x′, z′) := (x[k :
n], z[k : n]) ∈ Fl2 × Fl2κ .

Figure 9: COT extension protocol with bootstrapped iterations in the Fdeal-hybrid model. The protocol is
malicious (resp., semi-honest) secure if Fdeal with malicious security (resp., semi-honest security) is used.

they share the same initialization. As shown in Figure 2, protocol ΠSPCOT (Figure 6) uses the functionality
FCOT to handle all SPCOT extensions. In this case, the functionality FSPCOT implemented by protocol
ΠSPCOT will share the same initialization withFCOT. Further, protocol ΠMPCOT (Figure 7) securely realizes
FMPCOT by using the functionality FSPCOT, which results in the consistent input ∆ between FSPCOT and
FMPCOT (and thus between FCOT and FMPCOT). In conclusion, when we compose the protocol (e.g.,
IKNP-style OT extension [KOS15]) implementing FCOT and the protocol ΠMPCOT together, the resulting
protocol securely realizes Fdeal with the same initialization procedure.

17

6.1 Our COT with Bootstrapped Iterations
Our COT extension protocol ΠCOT with bootstrapped iterations in the Fdeal-hybrid model is described in
Figure 9. Note that all extend iterations can be executed in parallel, except that the resulting COT corre-
lations need to be computed sequentially. This enables ΠCOT to be run in the same rounds as the SPCOT
protocol described in Section 4. For simplicity, we assume the protocol outputs the same number of cor-
related OTs in each iteration. It can be modified to output different number of correlated OTs by using
different LPN parameters per iteration.

Our maliciously secure COT protocol is essentially the same as the semi-honest protocol, except that
Fdeal with malicious security rather than semi-honest security is used. In the malicious setting, a corrupt
sender is allowed to make selective failure queries for Fdeal.MPCOT, and the receiver aborts if it receives
abort from Fdeal.MPCOT. When the context is unambiguous, we abuse the notation and use ΠCOT to
denote the COT protocol in both the malicious and semi-honest settings.

Proof of Security. In the following theorem, we will prove that protocol ΠCOT securely computes FCOT

with malicious security. This proof also implies the security of the COT protocol in the semi-honest setting.

Theorem 3. Protocol ΠCOT shown in Figure 9 securely computes functionality FCOT with malicious secu-
rity and any polynomial number of resulting COT correlations in the Fdeal(φ)-hybrid model, based on the
(HWt, C,F2, φ)-LPN(k, n,m) assumption with static, functional leakage.

In the Fdeal-hybrid model, the only communication between the sender and the receiver is the transmis-
sion of a matrix A in each iteration of protocol ΠCOT described in Figure 9. Thus, for any PPT adversary
A, we are easy to construct a PPT simulator S. Using a standard hybrid argument along with the LPN
assumption, we can easily prove that vector x computed by the receiver in each iteration is computationally
indistinguishable from a uniform vector. The formal proof of the above theorem is given in Appendix F.
Using a regular noise distribution, our COT protocol is secure under the original LPN assumption with static
leakage [BCG+19a] in a primal version. This proof has been implied by the proof of Theorem 3 via setting
φ as a family of constant functions (i.e., for any n, t ∈ N, t ≤ n, φn,t(·) always outputs the set [t] for all
inputs).

COT with chosen choice bits and standard OT. While the IKNP-style protocols such as [IKNP03, ALSZ13,
KOS15] allow the receiver to choose its choice bits, the choice bits in our COT protocol are uniformly ran-
dom. We easily extend protocol ΠCOT with uniform choice bits as shown in Figure 9 to a COT protocol with
chosen choice bits using the preprocessing OT technique [Bea95], where only one bit of communication is
needed for each COT correlation. Based on tweakable CRHFs [IKNP03], we are also able to convert our
COT protocol to a standard chosen-input OT protocol, where two additional messages need to be sent for
each OT. Both transformations have been used in our SPCOT protocol shown in Figure 6.

6.2 Optimizations and Complexity Analysis
Below we present several optimizations and analyze the complexity of our COT protocol after incorporating
the optimizations.

Optimizing our main iteration. In each extend iteration of protocol ΠCOT, the receiver R needs to send
a large matrix A ∈ Fk×n2 to the sender S. To reduce the communication, R can send a random seed to S,
and the parties can use a random oracle to drive a matrix and the security is straightforward in the random
oracle model. In addition, we can use the same matrix for multiple different iterations with the same LPN
parameters, whose security is guaranteed using a standard hybrid argument. This further improves the
computational efficiency of generating the matrices.

In our protocol, we avoid computing k COTs repeatedly by bootstrapped iterations. Essentially, by
computing k COTs in the one-time setup phase, all subsequent COT calls can be done for free. We observe

18

that our SPCOT protocol also needs some number of COTs, which can be optimized in a similar way. Let
M = k + O(t log n

t) be the total number of COTs needed to execute one iteration of our protocol ΠCOT.
Now in the one-time setup phase, we can compute M COTs, which is enough for the first iteration. By
keeping M COTs from this iteration, we can execute the next iteration without calling extra COTs. With
the above optimization, we can output n −M COTs per iteration by consuming M COTs, communicating
O(tκ log n

t) bits and performing O(n) block-cipher operations.

Round complexity. We analyze the communication rounds of our COT protocol in the extend phase. If
the COT correlations are requested on-demand one iteration after another, then our protocol with the opti-
mization described as above need 2c rounds (resp., 4c rounds) in the semi-honest setting (resp., malicious
setting), where c is the number of iterations. If the total number of COT correlations needed is known in
advance, our protocol without the above optimization needs 2 rounds for semi-honest security and 4 rounds
in the malicious setting, as all extend executions can be run in parallel. But this requires the one-time setup
to compute k + c ·O(t log n

t) COT correlations.

Optimizing our one-time setup. Now we turn our attention to the one-time setup, where we need to
compute M COTs. We can again use the idea of COT iterations to reduce the cost. A graphical description
has been shown in Figure 5b. In detail, we can choose another set of LPN parameters (n0, k0, t0) with n0 =
M and define (m0, τ) := ParamGen(n0, t0) for Cuckoo hashing parameters. For semi-honest security, we
can use the improved IKNP OT extension protocol [ALSZ13] to first generate about M0 = k0 +m0 log τM

m0

COTs, and then compute M COTs via protocol ΠCOT with a single iteration. If we assume LPN with a
regular noise distribution, then M0 can be reduced to M0 = k0 + t0 log M

t0
. In the malicious setting, we can

use the KOS OT extension protocol [KOS15] to generate M0 + κ COT correlations as the setup COTs.1

7 Performance Evaluation
In this section, we evaluate the concrete performance of our semi-honest and maliciously secure COT proto-
cols by implementing them and comparing them with the state-of-the-art protocols. We present two versions
of our protocol, one based on LPN with a regular noise distribution (referred to as Ferret-Reg) and the other
based on LPN with uniform noise (referred to as Ferret-Uni). Note that LPN with regular noise is a stronger
assumption, but allows us to construct a faster protocol as MPCOT for regular indices is much more efficient
than the one with uniform indices.

For the MPCOT protocol based on Cuckoo hashing, we use a random permutation (in particular, AES-
128 with a fixed key) to instantiate universal hash functions {hi : [n] → [m]}i∈[τ] by transforming a single
permutation output on an input x ∈ [n] to τ different outputs on the same input for these hash functions with
module m, for parameters n,m, τ selected in the following.

7.1 Parameter Selection
Following the analysis by Boyle et al. [BCGI18], we choose the LPN parameters (k, n, t) so that all known
attacks (e.g., Gaussian elimination, low-weight parity-check and information set decoding) on primal-LPN
require at least 2128 arithmetic operations. To instantiate the code generator C of primal-LPN, we use a 10-
local linear code as suggested by previous work [BCGI18, SGRR19]. Following the estimates in [DRRT18],
we choose the Cuckoo hashing parameters m = 1.5t and τ = 3 such that inserting t random indices in
the Cuckoo hash table fails with probability at most 2−40 for our parameters (n, t). Note that the exact
parameters have also been used in prior work [ACLS18, SGRR19] based on Cuckoo hashing.

Our protocol is highly tunable in terms of the performance by choosing different parameter sets. To
maximize the performance, we choose our parameters in a very careful way. Here we focus on optimizing

1Technically, the KOS protocol [KOS15] allows a malicious adversary to perform the selective failure attack on ∆, but it
has been proven to be harmless for security in MPC applications [KOS15, CDE+18, YWZ20]. We can also use the technique
in [NST17] to eliminate such leakage at the cost of a worse setup performance.

19

Protocol
One-time setup Main iteration (output 107 COTs)

splen0 k0 n0 t0 splen k n t

Ferret-Uni 210 37,248 616,092 1,254 214 588,160 10,616,092 1,324
Ferret-Reg 29 36,288 609,728 1,269 213 589,760 10,805,248 1,319

Table 2: Our primal-LPN parameters for 128-bit security. We use splen0 or splen to denote the output length
of the underlying SPCOT protocol. To compute M = n0 COTs in the one-time setup, we use the IKNP/KOS OT
extension protocol to generate M0 COT correlations as required, where M0 = 56186 for Ferret-Uni and M0 = 47837
for Ferret-Reg.

our protocol to output 10 million COTs per iteration. Our protocol can also be optimized to produce fewer
COTs (e.g., 106) in a similar way, and we leave the parameter selection and performance evaluation of our
protocols in this case to future work. First, we determine the LPN parameter k. This is because the LPN
encoding process can get the maximum speed if all k values can fit in the CPU cache. With k determined,
we choose n and t such that n− 3

2 t · log 2n
t − k (resp., n− t · log n

t − k) is larger than but close to 107 for
a uniform distribution (resp., a regular distribution) and that under the LPN parameters (n, t, k) all known
attacks require at least 2128 arithmetic operations. This is done by enumerating a set of possible parameters
t and finding the smallest parameter set. Finally, we optimize the parameters for the one-time setup phase
in a similar way. The detailed parameters are provided in Table 2 for reproducibility.

7.2 Efficiency of the Main Iteration
Below we compare the performance of our protocols with the state-of-the art protocols for outputting COTs
of 128-bit strings. For all experimental results, we use two Amazon EC2 machines of type c5.4xlarge with
network bandwidth artificially limited. We use 5 threads for all implementations that we benchmarked.

We report the performance of our protocols in several different network settings and compare them with
the state-of-the-art COT protocols including the optimized semi-honest IKNP OT extension [ALSZ13], the
maliciously secure KOS OT extension [KOS15], and Boyle et al.’s two protocols [BCG+19a] based on dual-
LPN with a regular noise distribution. For the protocols other than ours, we use the libOTe library [Rin] for
benchmark, but remove the last hashing on COT correlations so that the final output is correlated OT rather
than random OT. We observe that this improves the running time of their protocols by roughly 15 ms.

We do not compare the semi-honest protocol by Schoppmann et al. [SGRR19] as they only implemented
the VOLE protocol over a large field/ring rather than a COT protocol. We estimate that our protocol is about
15× faster than theirs (without involving the one-time setup cost), since we improve the communication of
their protocol by roughly 15× and also optimize the computation. The one-time setup cost of our protocol is
larger than theirs, but the setup cost will be amortized to negligible when a huge number of COT correlations
are needed. While Schoppmann et al.’s protocol [SGRR19] is in the semi-honest setting, our technique
enables their protocol to obtain malicious security.

In Table 3, we evaluate the performance of different COT protocols in terms of communication and run-
ning time. Both of the IKNP-style OT extension protocols (IKNP [ALSZ13] and KOS [KOS15]) suffer from
a high cost due to the high communication overhead. As shown in Table 3, the IKNP-style protocols need
128-bit communication per OT, while our protocol Ferret-Uni (resp., Ferret-Reg) needs only 0.73 bits (resp.,
0.44 bits) per OT. Thus our protocols can achieve a huge performance gain (150×−40× for Ferret-Uni;
240×−70× for Ferret-Reg), when running in a network with restricted bandwidth (10Mbps−100Mbps).
Our protocol is also computationally cheaper than IKNP because our protocol does not need bit-matrix
transposition required by IKNP-style protocols. Even when the network bandwidth is as high as 5 Gbps,
Ferret-Reg is about 2× faster than IKNP [ALSZ13] and KOS [KOS15], and Ferret-Uni still outperforms
the two IKNP-style protocols.

20

Protocol Comm./COT 10Mbps 50Mbps 100Mbps 500Mbps 1Gbps 5Gbps

Semi-Honest Security

[ALSZ13] 128 bits 128308 25704 12885 2627 1345 324
[BCG+19a] 0.1 bits 1942 1961 1953 1966 1971 1966
Ferret-Uni 0.73 bits 821 306 262 264 262 261
Ferret-Reg 0.44 bits 536 215 176 159 158 160

Malicious Security

[KOS15] 128 bits 128314 25736 12924 2647 1387 344
[BCG+19a] 0.1 bits 2113 2099 2091 2106 2083 2095
Ferret-Uni 0.73 bits 864 325 326 318 317 317
Ferret-Reg 0.44 bits 540 220 184 182 185 185

Table 3: Comparison between our COT protocols and the state-of-the-art protocols. All numbers reported are in
milliseconds (ms) for computing 107 COTs. The one-time setup cost is not included.

Security Protocol Comm. 10Mbps 50Mbps 100Mbps 500Mbps 1Gbps 5Gbps

Semi-honest
Ferret-Uni 1.51 MB 1162 482 482 481 479 478
Ferret-Reg 1.13 MB 811 183 106 41 35 30

Malicious
Ferret-Uni 1.51 MB 1166 486 485 484 485 484
Ferret-Reg 1.13 MB 818 184 107 42 37 32

Table 4: The efficiency for one-time setup of our COT protocols. All numbers are in milliseconds (ms). For other
protocols, the one-time setup takes about 30 ms.

We also compare our COT protocols with the ones by Boyle et al. [BCG+19a]. Their protocols are
based on dual-LPN with a regular noise distribution, and thus have a small communication cost but a large
computational overhead. Although our protocols require more communication, it is still faster than theirs
even in slow network settings due to our high computational efficiency. We estimate the crossover point
be around 2 Mbps, and that more computational resources will further bring up the crossover point. As a
result, our protocol Ferret-Reg (using a similar LPN assumption) can improve the efficiency by a factor of
4×−11× under different network bandwidths.

We observe the overhead of strengthening semi-honest security to malicious security for these protocols
when computing one correlated OT. While Boyle et al. [BCG+19a] need an overhead of about 14 ns, our
protocol Ferret-Reg only incurs an overhead of about 1 ns, which matches the overhead of KOS [KOS15]
and seems to be optimal.

7.3 Performance of One-Time Setup
We also evaluate the performance in the one-time setup phase of our COT protocols. We take advantage
of pre-processing OT to accelerate the extend processes when many OTs are required. The one-time setup
generates M COTs (recall that M = 616, 092 for Ferret-Uni and M = 649, 728 for Ferret-Reg) by running
an IKNP-style OT extension followed by a single COT iterative execution.

As shown in Table 4, the one-time setup takes at most 486 ms for Ferret-Uni and 184 ms for Ferret-Reg
for any network with bandwidth at least 50 Mbps. When the network is faster than 500 Mbps, the running
time of one-time setup is less than around 42 ms for Ferret-Reg. The IKNP-style protocols (IKNP [ALSZ13]
and KOS [KOS15]) and the two protocols by Boyle et al. [BCG+19a] only need a one-time setup of about
30 ms. However, the setup procedure needs to be performed only once, and then can be extended to generate

21

Network SPCOT LPN Ferret-Reg Ferret-Uni
Bandwidth all executions encoding Total time Extra time

10 Mbps 40 12 53 32
50 Mbps 9 12 22 10
100 Mbps 6 11 18 14

Table 5: Microbenchmark for our maliciously secure COT protocols. All numbers are in nanoseconds (ns) and are
the amortized time per COT correlation, without involving the one-time setup cost.

any polynomial number of COTs as we want from the same setup. Therefore, if a great deal of COTs are
computed via multiple iterations using the same setup, the one-time setup cost will become negligible in an
amortized sense. When COT is used to construct MPC, the parties can execute the setup phase only once,
and then generate the correlated OTs for many protocol executions. Moreover, even if COTs are generated
in the preprocessing phase of MPC protocols, the setup process can only be executed once before the circuit
size is known, and then the desired number of COTs are produced by iterative extensions after the circuit
size is known by the parties. Due to these reasons, we optimize the parameters to improve the efficiency of
our main iteration while keeping the one-time setup cost reasonable.

We also emphasize that even in the single-execution setting where the one-time setup is a part of the
whole computation, the end-to-end performance of our COT protocols is still significantly better than prior
work. In particular, our protocol Ferret-Uni (resp., Ferret-Reg) still improves the end-to-end efficiency by
a factor of roughly 63×−2× (resp., 94×−6×) when the network bandwidth is between 10 Mbps and 1
Gbps, compared to the state-of-the-art IKNP-style protocols. Furthermore, in terms of the whole efficiency,
our protocol Ferret-Reg is about 5×−9× faster than Boyle et al.’s protocol, when the network bandwidth is
between 50 Mbps and 5 Gbps.

7.4 Micro-benchmark
Table 5 shows the experimental results by micro-benchmarking our maliciously secure COT protocols under
different network settings. The efficiency of Ferret-Reg is dominated by SPCOT and LPN computation. The
75% of running time is used to generate SPCOT correlations when the network bandwidth is limited to 10
Mbps, and it is reduced to 33% when the bandwidth is up to 100 Mbps. This is because SPCOT also has
network transmission involved. The LPN encoding only requires the local computation, and takes about 12
ns per COT correlation. We also include the extra running time of Ferret-Uni compared to Ferret-Reg, due
to the use of Cuckoo hashing.

Acknowledgements
Kang Yang and Jiang Zhang are supported by the National Key Research and Development Program of
China (Grant Nos. 2018YFB0804105, 2017YFB0802005), the National Natural Science Foundation of
China (Grant Nos. 61932019, 61802021), and the Opening Project of Guangdong Provincial Key Laboratory
of Data Security and Privacy Protection (No. 2017B030301004). Xiao Lan is supported by National Natural
Science Foundation of China (Grant No. 61802270) and International Visiting Program for Excellent Young
Scholars of SCU. Xiao Wang and Chenkai Weng are also supported by a Gift from PlatON. This material is
based upon work supported by DARPA under Contract No. HR001120C0087. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily
reflect the views of DARPA. We thank the anonymous reviewers for their helpful comments.

22

References
[ACLS18] Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V. Setty. PIR with compressed queries

and amortized query processing. In IEEE Symposium on Security and Privacy (S&P) 2018,
pages 962–979, 2018.

[Ale03] Michael Alekhnovich. More on average case vs approximation complexity. In 44th Annual
Symposium on Foundations of Computer Science (FOCS), pages 298–307. IEEE, 2003.

[ALSZ13] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient obliv-
ious transfer and extensions for faster secure computation. In ACM Conf. on Computer and
Communications Security (CCS) 2013, pages 535–548. ACM Press, 2013.

[AOR+19] Abdelrahaman Aly, Emmanuela Orsini, Dragos Rotaru, Nigel P. Smart, and Tim Wood. Za-
phod: Efficiently combining lsss and garbled circuits in scale. WAHC’19, page 33–44, New
York, NY, USA, 2019. ACM.

[BCG+19a] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and Peter
Scholl. Efficient two-round OT extension and silent non-interactive secure computation. In
ACM Conf. on Computer and Communications Security (CCS) 2019, pages 291–308. ACM
Press, 2019.

[BCG+19b] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Ef-
ficient pseudorandom correlation generators: Silent OT extension and more. In Advances in
Cryptology—Crypto 2019, Part III, LNCS, pages 489–518. Springer, 2019.

[BCGI18] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector OLE. In
ACM Conf. on Computer and Communications Security (CCS) 2018, pages 896–912. ACM
Press, 2018.

[Bea95] Donald Beaver. Precomputing oblivious transfer. In Advances in Cryptology—Crypto 1995,
LNCS, pages 97–109. Springer, 1995.

[Bea96] Donald Beaver. Correlated pseudorandomness and the complexity of private computations. In
28th Annual ACM Symposium on Theory of Computing (STOC), pages 479–488. ACM Press,
1996.

[BFKL94] Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lipton. Cryptographic
primitives based on hard learning problems. In Advances in Cryptology—Crypto 1993, LNCS,
pages 278–291. Springer, 1994.

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements and exten-
sions. In ACM Conf. on Computer and Communications Security (CCS) 2016, pages 1292–
1303. ACM Press, 2016.

[BLO16] Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. Optimizing semi-honest secure multi-
party computation for the internet. In ACM Conf. on Computer and Communications Security
(CCS) 2016, pages 578–590. ACM Press, 2016.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. J. Cryptology,
13(1):143–202, January 2000.

23

[CDD+16] Ignacio Cascudo, Ivan Damgård, Bernardo David, Nico Döttling, and Jesper Buus Nielsen.
Rate-1, linear time and additively homomorphic UC commitments. In Advances in
Cryptology—Crypto 2016, Part III, volume 9816 of LNCS, pages 179–207. Springer, 2016.

[CDE+18] Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter Scholl, and Chaoping Xing. SPD
Z2k : Efficient MPC mod 2k for dishonest majority. In Advances in Cryptology—Crypto 2018,
Part II, volume 10992 of LNCS, pages 769–798. Springer, 2018.

[CLR17] Hao Chen, Kim Laine, and Peter Rindal. Fast private set intersection from homomorphic
encryption. In ACM Conf. on Computer and Communications Security (CCS) 2017, pages
1243–1255. ACM Press, 2017.

[DEF+19] Ivan Damgård, Daniel Escudero, Tore Kasper Frederiksen, Marcel Keller, Peter Scholl, and
Nikolaj Volgushev. New primitives for actively-secure MPC over rings with applications to
private machine learning. In IEEE Symposium on Security and Privacy (S&P) 2019, pages
1102–1120, 2019.

[DRRT18] Daniel Demmler, Peter Rindal, Mike Rosulek, and Ni Trieu. PIR-PSI: Scaling private contact
discovery. Proceedings on Privacy Enhancing Technologies, 2018(4):159 – 178, 2018.

[Ds17] Jack Doerner and abhi shelat. Scaling ORAM for secure computation. In ACM Conf. on
Computer and Communications Security (CCS) 2017, pages 523–535. ACM Press, 2017.

[FKOS15] Tore Kasper Frederiksen, Marcel Keller, Emmanuela Orsini, and Peter Scholl. A unified ap-
proach to MPC with preprocessing using OT. In Advances in Cryptology—Asiacrypt 2015,
Part I, LNCS, pages 711–735. Springer, 2015.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. J.
ACM, 33(4):792–807, October 1986.

[Gil99] Niv Gilboa. Two party RSA key generation. In Advances in Cryptology—Crypto 1999, volume
1666 of LNCS, pages 116–129. Springer, 1999.

[GKWY20] Chun Guo, Jonathan Katz, Xiao Wang, and Yu Yu. Efficient and secure multiparty computation
from fixed-key block ciphers. In IEEE Symposium on Security and Privacy (S&P), 2020.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In 19th Annual ACM Symposium on
Theory of Computing (STOC), pages 218–229. ACM Press, 1987.

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cambridge
University Press, Cambridge, UK, 2004.

[HOSS18] Carmit Hazay, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-Vazquez. TinyKeys: A
new approach to efficient multi-party computation. In Advances in Cryptology—Crypto 2018,
Part III, volume 10993 of LNCS, pages 3–33. Springer, 2018.

[HSS17] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost constant round MPC com-
bining BMR and oblivious transfer. In Advances in Cryptology—Asiacrypt 2017, Part I, LNCS,
pages 598–628. Springer, 2017.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers ef-
ficiently. In Advances in Cryptology—Crypto 2003, volume 2729 of LNCS, pages 145–161.
Springer, 2003.

24

[KLR06] Eyal Kushilevitz, Yehuda Lindell, and Tal Rabin. Information-theoretically secure protocols
and security under composition. In 38th Annual ACM Symposium on Theory of Computing
(STOC), pages 109–118. ACM Press, 2006.

[KOS15] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension with opti-
mal overhead. In Advances in Cryptology—Crypto 2015, Part I, volume 9215 of LNCS, pages
724–741. Springer, 2015.

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster malicious arithmetic
secure computation with oblivious transfer. In ACM Conf. on Computer and Communications
Security (CCS) 2016, pages 830–842. ACM Press, 2016.

[KRRW18] Jonathan Katz, Samuel Ranellucci, Mike Rosulek, and Xiao Wang. Optimizing authenticated
garbling for faster secure two-party computation. In Advances in Cryptology—Crypto 2018,
Part III, volume 10993 of LNCS, pages 365–391. Springer, 2018.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A
new approach to practical active-secure two-party computation. In Advances in Cryptology—
Crypto 2012, volume 7417 of LNCS, pages 681–700. Springer, 2012.

[NST17] Jesper Buus Nielsen, Thomas Schneider, and Roberto Trifiletti. Constant round maliciously
secure 2PC with function-independent preprocessing using LEGO. In Network and Distributed
System Security Symposium (NDSS), 2017.

[PR04] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Journal of Algorithms,
51(2):122–144, 2004.

[PSZ18] Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable private set intersection based
on OT extension. ACM Transactions on Privacy and Security (TOPS), 21(2):7:1–7:35, 2018.

[Rin] Peter Rindal. libOTe: an efficient, portable, and easy to use Oblivious Transfer Library.
https://github.com/osu-crypto/libOTe.

[RW19] Dragos Rotaru and Tim Wood. MArBled circuits: Mixing arithmetic and Boolean circuits with
active security. In Progress in Cryptology – Indocrypt 2019, LNCS, pages 227–249. Springer,
2019.

[SGRR19] Phillipp Schoppmann, Adrià Gascón, Leonie Reichert, and Mariana Raykova. Distributed
vector-OLE: Improved constructions and implementation. In ACM Conf. on Computer and
Communications Security (CCS) 2019, pages 1055–1072. ACM Press, 2019.

[WMK16] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-toolkit: Efficient MultiParty com-
putation toolkit. https://github.com/emp-toolkit, 2016.

[WRK17a] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated garbling and efficient ma-
liciously secure two-party computation. In ACM Conf. on Computer and Communications
Security (CCS) 2017, pages 21–37. ACM Press, 2017.

[WRK17b] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure multiparty compu-
tation. In ACM Conf. on Computer and Communications Security (CCS) 2017, pages 39–56.
ACM Press, 2017.

25

https://github.com/osu-crypto/libOTe
https://github.com/emp-toolkit

[YWZ20] Kang Yang, Xiao Wang, and Jiang Zhang. More efficient MPC from improved triple gener-
ation and authenticated garbling. In ACM Conf. on Computer and Communications Security
(CCS) 2020. ACM Press, 2020.

A More Preliminaries
A.1 Security Model
All our protocols are proved in the standard simulation-based security model [Can00, Gol04]. We focus
on the case of static corruption and security with abort, and the two-party functionalities. This security
model adopts the Ideal/Real simulation paradigm, where an execution in the ideal world is compared to
an execution in the real world. The goal of a protocol Π is defined by a functionality F , which can be
considered as a trusted third party that receives the inputs of two parties, performs the desired task, and
sends the outputs to the two parties. In the ideal world execution, an ideal adversary (called the simulator) S
interacts with F . In the real world execution, an adversary A can on behalf of the corrupt party execute the
protocol with the honest party using any arbitrary strategy. To prove the security of a protocol Π, we need
to show that the real world execution with Π is as secure as the ideal world execution with F . LetM be the
set of corrupt parties. We denote by REALΠ,A(z),M(1κ, x, y) the output of the honest party and adversary
A in the real world execution of protocol Π with inputs x, y for two parties and auxiliary input z for A.
By IDEALF ,S(z),M(1κ, x, y), we denote the output of the honest party and simulator S in the ideal world
execution with functionality F , inputs x, y for two parties and auxiliary input z to S. In the real (resp.,
ideal) world execution, a corrupt party Pi controlled by adversaryA (resp., simulator S) may either send its
specified input x (or y), some other x′ (or y′), or an abort message.

Definition 1. Let F be a two-party functionality and Π be a two-party protocol. We say that protocol
Π securely computes functionality F , if for every probabilistic polynomial time (PPT) adversary A, there
exists a PPT simulator S such that{

IDEALF ,S(z),M(1κ, x, y)
} c
≈
{
REALΠ,A(z),M(1κ, x, y)

}
.

We prove the security of our protocol in the hybrid model, where the parties execute a protocol with real
messages and also have access to a sub-functionality. Suppose that the sub-functionality is G, we say that
the protocol works in the G-hybrid model.

The modular sequential composition theorem in [Can00] states that one can replace the sub-functionality
with a real protocol securely computing it. Furthermore, [KLR06] concludes that any protocol that is proven
secure with a straight-line black-box simulation and has also the property that the inputs of parties are fixed
before the executions starts (so-called input availability), is also secure under concurrent compositions. It is
easy to see that all our proofs have the straight-line black-box simulations, and the input availability property
holds for all our protocols. Therefore, it is sufficient to prove the security in the classic stand-alone model
and automatically obtain the concurrent security. This allows us to run many extend executions in parallel
and execute the protocol concurrently.

A.2 Learning Parity with Noise
In this paper, we rely on a Learning Parity with Noise (LPN) assumption [BFKL94] over F2, where the
noise vector has a small, fixed Hamming weight. Below we recall the primal-LPN assumption.

Definition 2 (primal-LPN). Let D = {Dk,n}k,n∈N denote a family of distributions over a binary field F2,
such that for any k, n ∈ N, support set Im(Dk,n) ⊆ Fn2 . Let C be a probabilistic code generation algorithm
such that C(k, n,F2) outputs a matrix A ∈ Fk×n2 . For dimension k, number n of samples and binary field
F2, the (D, C,F2)-LPN(k, n) assumption states that{

(A, b) |A← C(k, n,F2), e← Dk,n,u← Fk2, b = u ·A + e
} c
≈
{

(A, b) |A← C(k, n,F2), b← Fn2
}
.

26

Here and in the following, we define all parameters (e.g., k, n) as the functions of security parameter κ,
and the computational indistinguishability is defined with respect to κ. To obtain better efficiency, we can
choose the code matrix from a family of codes supporting linear-time matrix-vector multiplications such as
d-local linear codes, such that each column of the generating matrix has d non-zero entries. Note that the
hardness of LPN for local linear codes is a well-established assumption [Ale03].

The dual variant of the above LPN assumption (i.e., dual-LPN) states that it is infeasible to distinguish
e ·H ∈ Fn−k2 from a uniform vector in Fn−k2 , given the parity-check matrix H ∈ Fn×(n−k)

2 of A ∈ Fk×n2

as input. However, local linear codes cannot be used for dual-LPN [BCGI18], and more complicated codes
such as quasi-cyclic codes and LDPC codes [Ale03, BCGI18] are needed.

As in previous work such as [BCG+19a, SGRR19], we will use an LPN assumption in which the noise
vector e is sampled uniformly at random from Fn2 with fixed Hamming weight. LetHWt be the distribution
of uniform, weight t vectors over Fn2 , i.e., a sample from HWt is 1 in t random positions and 0 elsewhere.
The corresponding LPN assumption is denoted by (HWt, C,F2)-LPN(k, n).

To compare the efficiency of our COT protocol with the protocol by Boyle et al. [BCG+19a], we also
consider a regular noise distribution. This is the same as the fixed Hamming weight case, except that the
noise vector e ∈ Fn2 is divided into t consecutive sub-vectors of length bn/tc, where each sub-vector has
exactly one noisy coordinate. The LPN assumption with a regular noise distribution is stronger than LPN
with a uniform noise distribution. As pointed out by Hazay et al. [HOSS18] and Boyle et al. [BCG+19a],
there is no known attack that takes advantage of a regular noise distribution and performs significantly better
than uniform noise distribution.

To prove malicious security of their protocol, Boyle et al. [BCG+19a] define a slightly stronger variant
of the LPN assumption (referred to as LPN with static leakage), where the adversary can make a single
query to an (on average) one-bit leakage function on the noise vector. For a regular noise distribution, the
malicious security of our COT protocol is based on such LPN assumption. For a more conservative distri-
bution of uniform noises, we generalize their LPN assumption to what we call LPN with static, functional
leakage, which provides a similar hardness guarantee. We prove that the LPN with static leakage by Boyle
et al. [BCG+19a] is an instantiation of our LPN variant. See Appendix E.2 for more details.

A.3 Correlation Robust Hash Functions
We recall the definition of tweakable correlation robust hash functions (CRHFs) [IKNP03, GKWY20],
where a tweak is explicitly defined in the hash function. Given a hash function H : {0, 1}2κ → {0, 1}κ,
define a oracleO∆(x, i) = H(x⊕∆, i), where ∆ is a random key, x ∈ {0, 1}κ is a message and i ∈ {0, 1}κ
is a tweak. Let Func denote the set of all functions from {0, 1}2κ to {0, 1}κ.

Definition 3. Given a hash function H : {0, 1}2κ → {0, 1}κ and oracle O∆(·), we say that H is tweakable
correlation robust, if for any probabilistic polynomial time (PPT) distinguisher A,∣∣∣∣ Pr

∆←{0,1}κ

[
AO∆(·)(H) = 1

]
− Pr
f←Func

[
Af(·)(H) = 1

]∣∣∣∣ = negl(κ).

As shown in [GKWY20], the tweakable CRHF can be efficiently implemented by using only two calls
to a random permutation π such as AES-128 with a fixed key.

B Proof of Theorem 1
In this section, we first prove the following lemma, and then provide the detailed proof of Theorem 1.

Lemma 1. If both parties are honest in an execution of protocol ΠSPCOT shown in Figure 6, then the two
parties will output vectors v and w such that v + w = I(n, {α}) · ∆. Moreover, v is indistinguishable
from a random vector in Fn2κ assuming that G is a pseudorandom generator (PRG) and H is a tweakable
correlation robust hash function.

27

Proof. For each i ∈ {1, . . . , h}, M i
αi

= Ki
αi
⊕ H(qi ⊕ (αi ⊕ bi)∆, i‖l). Since bi = ri ⊕ αi, we have

M i
αi

= Ki
αi
⊕H(qi ⊕ ri∆, i‖l). Thus, Ki

αi
= M i

αi
⊕H(ti, i‖l) for i ∈ {1, . . . , h}, i.e., the receiver will

obtain the correct keys.
Following the proof of correctness in [BCG+19a, Theorem 7], we have that w[i] computed by the

receiver is equal to v[i] by the sender for each i 6= α. As c = ∆ +
∑

i∈[n] v[i], we have that

w[α] = c+
∑

i∈[n]\{α}

w[i] = ∆ +
∑

i∈[n]\{α}

(v[i] +w[i]) + v[α] = v[α] + ∆.

Therefore, we have that v +w = u ·∆ holds.
Below, we need to show that the receiver does not abort for an honest protocol execution. From z∗ =

y∗ +x∗ ·∆ and x′ := x+x∗ ∈ Fκ2 , we know that y+ z∗ = (y∗ + z∗) +x′ ·∆ = (x∗ +x′) ·∆ = x ·∆.
Thus, we have the following:

Y + Z =
∑
i∈[κ]

y[i] ·Xi +
∑
i∈[κ]

z∗[i] ·Xi

=
∑
i∈[κ]

(x[i] ·∆) ·Xi =
(∑
i∈[κ]

x[i] ·Xi
)
·∆ = χα ·∆.

Then V +W =
∑

i∈[n] χi · (v[i] +w[i]) + (Y + Z) = χα ·∆ + χα ·∆ = 0, and thus H ′(V) = H ′(W).
Thus, the receiver will not abort.

In the case of both honest parties, we obtain that {qi}i∈{1,...,h} are uniform and kept unknown from the
adversary’s view. Then we have that (H(qi, i‖l), H(qi ⊕∆, i‖l)) for all i ∈ {1, . . . , h} are computationally
indistinguishable from h random values in {0, 1}2κ, which has already been implied by the tweakable cor-
relation robustness of H via a hybrid argument. Therefore, {(M i

0,M
i
1)}i∈{1,...,h} are indistinguishable from

uniform values, and the messages do not reveal any information on the seeds of GGM tree. According to
the canonical pseudorandom function (PRF) construction based on the GGM tree [GGM86], we have that if
G is a PRG, then v[i] = shi computed by the sender is a PRF value on message i ∈ [n]. Thus, we directly
obtain that v is pseudorandom.

Theorem 1. Protocol ΠSPCOT shown in Figure 6 securely realizes FSPCOT with malicious security in the
FCOT-hybrid model, assuming that G is a pseudorandom generator, H is a tweakable correlation robust
hash function and H ′ is a random oracle.

Proof. Let A be a PPT adversary which allows to corrupt the sender or the receiver. We construct a PPT
simulator S with access to functionality FSPCOT, which simulates the adversary’s view. If S would abort
or terminate the simulation, S outputs whatever A outputs. In the following, we consider separately three
cases of two honest parties, a malicious sender and a malicious receiver. The proof is trivial for the case of
two malicious parties. For each case, we will prove that the joint distribution over the outputs of A and the
honest party in the real world execution is indistinguishable from the joint distribution over the outputs of S
and the honest party in the ideal world execution.

Two honest parties. If neither party is corrupted, the simulation of S is straightforward by sending random
values between the sender and the receiver. From the proof of Lemma 1, we know that (M i

0,M
i
1) for all

i ∈ {1, . . . , h} are computationally indistinguishable from random strings. From Lemma 1, we have that v
is computationally indistinguishable from a random vector, and thus c is indistinguishable from a random
element. All the choice bits output by FCOT are uniformly random, and thus we have the bits {bi}i∈{1,...,h}
and vector x′ are random. From that vector y∗ output by FCOT is random, we have that V is uniform and
thus H ′(V) is random. Overall, we obtain that the simulation is computationally indistinguishable from

28

the real protocol execution, in the case that both parties are honest. Below, we only need to prove that the
outputs of both parties in the real protocol execution are computationally indistinguishable from the outputs
in the ideal world. Based on Lemma 1, we have that the sender’s output v is indistinguishable from a random
vector. Again, according to Lemma 1, the outputs v and w of both parties satisfy w = v + u · ∆ in the
real protocol execution, where u = I(n, {α}) and α is the receiver’s input. This relation obviously holds in
the ideal world execution. Overall, the real world execution are computationally indistinguishable from the
ideal world execution.

Corrupt sender. Simulator S emulates FCOT, simulates the random oracleH ′, and interacts with adversary
A as follows:

1. S plays the role of FCOT and records all the values received from A. In particular, S stores ∆, {qi}hi=1,
y∗ and n = 2h, and then sends ∆ to FSPCOT.

2. For each i ∈ {1, . . . , h}, S sends a random bit bi to A, and receives (M i
0,M

i
1) from A. For i ∈

{1, . . . , h}, S computes Ki
0 := M i

0 ⊕ H(qi ⊕ bi∆, i‖l) and Ki
1 := M i

1 ⊕ H(qi ⊕ bi∆, i‖l). S also
receives an element c from A.

3. S samples χ0, . . . , χn−1 ← F2κ and picks a random x′ ∈ Fκ2 . S also computes y := y∗ + x′ · ∆
and Y :=

∑
i∈[κ] y[i] · Xi. Then, S sends {χi}i∈[n] and x′ to A, and receives a value H ′(V) from A.

Simulator S extracts V from the H ′-list maintained by itself. If no such V is found or there exists two
inputs whose outputs are equal to H ′(V), S aborts.

4. Given the pairs
{

(Ki
0,K

i
1)
}h
i=1

, the coefficients {χi}i∈[n] and element c, S computes Wα for each α ∈
[n] as follows:

– Compute {shj (α)}j∈[n]\{α} with the keys {(Ki
0,K

i
1)}hi=1 following Step 5 of protocol ΠSPCOT. Define

wα[i] := shi (α) for each i ∈ [n]\{α}.
– Compute wα[α] := c+

∑
i∈[n]\{α}wα[i].

– Compute Zα := χα ·∆ + Y and Wα :=
∑

i∈[n] χi ·wα[i] + Zα.

Note that this is exactly how an honest receiver R will proceed on input α ∈ [n]. If the sender S is
semi-honest, we should have W0 = W1 = · · · = Wn−1 = V .

5. S constructs a set I ⊆ [n] of indices consistent with V as follows:

I = {α ∈ [n] |Wα = V } ,

If I = ∅, S aborts.

6. S picks any α ∈ I and computes vα[i] for each i ∈ [n] from
{

(Kj
0 ,K

j
1)
}h
j=1

, where
{
vα[i] =

shi (α)
}
i∈[n]\{α} and vα[α] = Kh

αh
⊕
(⊕

j∈[2h−1],j 6=α1...αh−1
sh2j+αh(α)

)
. S also computes Eα :=

c +
∑

i∈[n] vα[i] + ∆. Then, S defines a vector v such that v[α] = vα[α] + Eα and v[i] = vα[i]
for i ∈ [n], i 6= α.

7. S sends (sp-extend, n) and v to FSPCOT. As the sender is corrupted, S also sends the set I to FSPCOT.
If receiving abort from FSPCOT, S aborts.

This concludes the description of the simulation in the case that the sender is corrupted and the receiver
is honest. Below, we first show that the simulated execution is indistinguishable from the real protocol
execution. In the protocol ΠSPCOT, for each i ∈ {1, . . . , h}, ri is uniformly random and kept unknown for

29

the corrupt sender. Hence, bi is uniformly random from the adversary’s view. That is, the bit bi simulated
by S has the same distribution as the one sent in the real protocol execution. In the protocol execution of
ΠSPCOT, x∗ output by FCOT is uniform and independent from x, and is kept secret against the malicious
sender. Therefore, x′ = x+x∗ is uniform and independent from χα∗ where α∗ is the receiver’s input. Thus,
the simulation of S on vector x′ has the identical distribution as the real protocol execution. The probability
that there exists a collision for random oracle H ′ is bounded by q2/22κ, where q is the number of queries to
H ′. In the real protocol execution, the probability that H ′(V) = H ′(W) and the adversary does not make a
query V to random oracle H ′ is bounded by 1/22κ. Therefore, the simulation in Step 3 is indistinguishable
from the real protocol execution, except with probability at most (q2 + 1)/22κ.

The set I extracted by S corresponds to the selective failure attack on the receiver’s input α∗ mounted
by the adversary. Note that H ′(Wα) = H ′(V) is equivalent to Wα = V , unless a collision of H ′ is found
with probability at most q2/22κ. If S does not abort, we know that α∗ ∈ I . In the real protocol execution, if
H ′(V) 6= H ′(W) (i.e., V 6= W), the honest receiver aborts. By previous considerations, this is equivalent
to α∗ /∈ I , where α∗ is the receiver’s input. In other words, FSPCOT aborts if and only if the real protocol
execution aborts. In all, we have that the simulated execution is indistinguishable from the real protocol
execution.

Below, we prove that the outputs of adversary A and the honest party in the real world execution are
indistinguishable from the outputs of simulator S and the honest party in the ideal world execution. To do
this, we prove that the vector v computed by S in Step 6 of the simulation is independent from the choice
of α ∈ I .

Claim 1. Except with probability 2−κ, all choices of α, α′ ∈ I in Step 6 of the above simulation lead to the
same vector v.

Proof. For the case of |I| = 1, this is trivial. For |I| > 1, we prove that for any α, α′ ∈ I and i ∈
[n]\{α, α′}, vα[i] = vα′ [i]. Specifically, from Wα = Wα′ and Zα := χα ·∆ + Y for all α ∈ [n], we have
the following holds:∑

i∈[n]

χi ·wα[i] + χα ·∆ + Y =
∑
i∈[n]

χi ·wα′ [i] + χα′ ·∆ + Y ⇔

∑
i∈[n]\{α,α′}

χi · (wα[i] +wα′ [i]) + χα · (wα[α] +wα′ [α] + ∆) + χα′ · (wα′ [α
′] +wα[α′] + ∆) = 0.

Note that ∆, {wα[i]}i∈[n] and {wα′ [i]}i∈[n] have been defined before {χi}i∈[n] are known. Moreover,
χi ∈ F2κ for each i ∈ [n] is uniformly random. Therefore, except with probability 2−κ, we have

wα[i] = wα′ [i] for each i ∈ [n]\{α, α′},
wα[α] +wα′ [α] = wα′ [α

′] +wα[α′] = ∆.

For all α ∈ [n], we have vα[i] = wα[i] for i ∈ [n], i 6= α from their definitions. Thus, we obtain that
vα[i] = vα′ [i] for each i ∈ [n], i 6= α, α′. From the two equations wα[α] = c +

∑
i∈[n]\{α}wα[i] and

Eα = c+
∑

i∈[n] vα[i]+∆, we also have thatwα[α] = (vα[α]+Eα)+∆.Together withwα[α]+vα′ [α] =

wα[α] + wα′ [α] = ∆, we have vα′ [α] = vα[α] + Eα. Therefore, for all α, α′ ∈ I , simulator S would
compute the same vector v, which completes the proof.

We define a vector v∗ as v∗[i] = vα∗ [i] for i 6= α∗ and v∗[α∗] = vα∗ [α
∗] + Eα∗ , where Eα∗ =

c+
∑

i∈[n] vα∗ [i] + ∆. Fromw∗[i] = v∗[i] for i 6= α∗ andw∗[α∗] = (vα∗ [α
∗] +Eα∗) + ∆ = v∗[α∗] + ∆,

we have that v∗ + w∗ = I(n, {α∗}) · ∆ holds, where w∗ is the output computed by the honest receiver.
Adversary A can compute a vector v as the sender’s output following the approach used by simulator S

30

(Step 6 of the simulation). According to Claim 1, if α∗ ∈ I , we have that v∗ = v except with probability
1/2κ, and thus v +w∗ = I(n, {α∗}) ·∆. If the ideal world execution does not abort, the honest receiver
will receive a vector w∗ such that v +w∗ = I(n, {α∗}) ·∆, where v is computed by S, and has the same
distribution as the vector computed byA except with probability 1/2κ from Claim 1. In conclusion, we have
that the real world execution is indistinguishable from the ideal world execution, except with probability at
most (q2 + 1)/22κ + 1/2κ.

Corrupt receiver. Simulator S plays the role of FCOT, simulates the random oracle H ′, and interacts with
adversary A as follows:

1. S emulatesFCOT and records all the values received fromA. Specifically, S stores {(ri, qi)}hi=1, (x∗, z∗)
and n = 2h. S also computes Z :=

∑
i∈[κ] z

∗[i] ·Xi ∈ F2κ .

2. For each i ∈ {1, . . . , h}, S receives a bit bi from A, and computes αi := bi ⊕ ri ⊕ 1. Then S defines
α = (α1, . . . , αh) and sends (sp-extend, n, α) to FSPCOT. For each i ∈ {1, . . . , h}, S samples M i

αi ←
{0, 1}κ, and picks a randomKi

αi
∈ {0, 1}κ and computesM i

αi
:= Ki

αi
⊕H(ti, i‖l) for the l-th extension.

S samples c← F2κ , and sends {(M i
0,M

i
1)}i∈{1,...,h} and c to A.

3. Using the keys
{
Ki
αi

}
i∈{1,...,h}, S computes shi for each i ∈ [n], i 6= α following the protocol spec-

ification. Then S defines a vector w such that w[i] = shi for each i ∈ [n]\{α} and w[α] = c +∑
i∈[n]\{α}w[i]. On behalf of a corrupt receiver, S sends w to FSPCOT.

4. After receiving {χi}i∈[n] and x′ from adversary A, S computes x := x′ + x∗ and writes x ∈ Fκ2 as
χ′ ∈ F2κ . Then, S computes W :=

∑
i∈[n] χi ·w[i] + Z. If χ′ = χα, S sends H ′(W) to A on behalf of

the honest sender. Otherwise, S sends a random value in {0, 1}κ to A.

This concludes the description of the simulation in the case that the sender is honest and the receiver is
corrupted. Below, we first show that the simulated execution is indistinguishable from the real protocol
execution. In the real protocol execution, the OT message Ki

αi
for each i ∈ {1, . . . , h} is the sum of all

the nodes at the either left-hand side (αi = 0) or right-hand side (αi = 1) in the i-level of the GGM
tree. Nevertheless, Ki

αi
for each i ∈ {1, . . . , h} is sampled at random by S in the ideal world execution.

For each i ∈ {1, . . . , h}, A never obtains the PRG seed on node α1 · · ·αi. In other words, the PRG
seed siα∗i (where α∗i := α1 · · ·αi−1αi) is computationally indistinguishable from a random value, as G and
G′ are both pseudorandom generators. Therefore, we have that Ki

αi
for all i ∈ {1, . . . , h} generated in

the real protocol execution are computationally indistinguishable from random values. Furthermore, the
value v[α] is computationally indistinguishable from a random value under the assumption that G and G′

are pseudorandom generators. Thus, c = ∆ + v[α] +
∑

i∈[n]\{α} v[i] in the real protocol execution is
computationally indistinguishable from a random value sent in the simulation.

In the real protocol execution, the honest sender computes y := y∗ + x′ ·∆ = y∗ + x∗ ·∆ + x ·∆ =
z∗ + x · ∆. The malicious receiver may send any vector x′ such that x = x′ + x∗ may not correspond
to χα. Let χ′ be the element in F2κ computed by

∑
i∈[κ] x[i] · Xi. Therefore, Y =

∑
i∈[κ] y[i] · Xi =∑

i∈[κ] z
∗[i] · Xi + (

∑
i∈[κ] x[i] · Xi) · ∆ = Z + χ′ · ∆. Since w[α] = v[α] + ∆ and w[i] = v[i] for

i ∈ [n], i 6= α, we have the following holds:

V =
∑
i∈[n]

χi · v[i] + Y =
∑
i∈[n]

χi · v[i] + Z + χ′ ·∆

=
∑
i∈[n]

χi ·w[i] + Z + χα ·∆ + χ′ ·∆ = W +
(
χα + χ′

)
·∆.

31

If χ′ = χα, we have V = W , meaning that the simulation is perfect in this case. Otherwise, the corrupt
receiver will receive H ′(V) = H ′ (W + (χα + χ′) ·∆). In the following, we prove that this value is
indistinguishable from a random value under the tweakable correlation robustness (TCR) assumption in
the random oracle model. Simultaneously, we also prove that the adversary A cannot distinguish M i

αi =
Ki
αi ⊕ H(ti ⊕ ∆, i‖l) in the real protocol execution from a random string in the ideal world for each

i ∈ {1, . . . , h}. Specifically, we construct a distinguisher Dtcr, which is given a oracle O(·) that is either
O∆(·) or a random function f(·), and interacts withA. Using the simulator S,Dtcr simulates the adversary’s
view, except for the following differences:

– For each i ∈ {1, . . . , h}, Dtcr sends (ti, i‖l) to oracle O(·), and receives a string Ui ∈ {0, 1}κ.

– For each i ∈ {1, . . . , h}, Dtcr samples a random Ki
αi ∈ {0, 1}

κ and computes M i
αi := Ki

αi ⊕ Ui.

– Dtcr simulates the random oracleH ′, and records all queries. If χ′ 6= χα, for each queryQ,Dtcr computes
∆′ := (χα +χ′)−1 · (Q+W) over finite field F2κ , and then checks whether Ui = H(ti⊕∆′, i‖l) for all
i ∈ {1, . . . , h}. If such ∆′ = ∆ is found, Dtcr outputs 1 indicating that it is given a oracle O∆(·).

If adversary A can distinguish the real value H ′ (W + (χα + χ′) ·∆) from a random value, then it must
query W + (χα + χ′) ·∆ to random oracle H ′. In this case, Dtcr breaks the TCR assumption by recovering
the ∆. Below, we only need to consider the case thatA cannot distinguish between the real value and random
value. If O = O∆ returns Ui = H(ti ⊕ ∆, i‖l) for all i ∈ {1, . . . , h}, the protocol execution simulated
by Dtcr is indistinguishable from the real execution. If O = f returns random values, Dtcr behaves exactly
as in the ideal-world execution. If adversary A can distinguish the real ciphertexts {M i

αi}i∈{1,...,h} in the
real protocol execution from the random strings in the ideal world execution, Dtcr can break the tweakable
correlation robustness of H .

Finally, based on the proof of Lemma 1, we can easily see that the honest sender will output a vector
v such that v + w = I(n, {α}) · ∆ in the real protocol execution. Overall, we obtain that the real world
execution is computationally indistinguishable from the ideal world execution, which completes the proof.

C Batched Consistency Check for Our SPCOT Protocol
In this section, we present the batched consistency check for maliciously secure protocol ΠSPCOT. Specifi-
cally, after both parties execute the extend phasem times in parallel, the sender S and the receiverR perform
a single batched consistency check as follows:

1. Let n0, . . . , nm−1 be the lengths of single-point COTs for the m extend executions. Let α0, . . . , αm−1

be the receiver’s input points where αl ∈ [nl] for l ∈ [m]. Let vl ∈ Fnl2κ and wl ∈ Fnl2κ be the output
vector computed respectively by sender S and receiver R in the l-th execution.

2. Both parties call FCOT to generate vectors y∗ and (x∗, z∗) such that y∗+ z∗ = x∗ ·∆, where S gets y∗

and R obtains (x∗, z∗).

3. R samples χli ← F2κ for each l ∈ [m], i ∈ [nl], and then sends the coefficients {χli}l∈[m],i∈[nl] to S.
Then R computes ϕ :=

∑
l∈[m] χ

l
αl
∈ F2κ and interprets ϕ as x such that ϕ =

∑
i∈[κ] x[i] ·Xi ∈ F2κ .

R sends x′ := x+ x∗ ∈ Fκ2 to S in parallel with sending the coefficients.

4. S computes y := y∗ + x′ ·∆ and Y :=
∑

i∈[κ] y[i] ·Xi ∈ F2κ , and then computes the following value:

V :=
∑
l∈[m]

∑
i∈[nl]

χli · vl[i] + Y.

Then, S sends H ′(V) to R.

32

5. R computes Z :=
∑

i∈[κ] z
∗[i] ·Xi ∈ F2κ where Y + Z = ϕ ·∆. R also computes

W :=
∑
l∈[m]

∑
i∈[nl]

χli ·wl[i] + Z.

Then R checks that H ′(V) = H ′(W). If the check fails, R aborts.

The batched consistency check described above can be further optimized by using the approach described
in Section 4.2 to generate the coefficients {χli}l∈[m],i∈[nl]. The correctness for an honest protocol execution
is easy to be analyzed as follows. As vl+wl = I(nl, {αl}) ·∆ for all l ∈ [m], we have

∑
i∈[nl]

χli ·
(
vl[i] +

wl[i]
)

= χlαl ·∆. Thus, we have

V +W =

∑
l∈[m]

χlαl

 ·∆ + Y + Z = ϕ ·∆ + ϕ ·∆ = 0,

and thus H ′(V) = H ′(W).

C.1 Security Analysis
If the receiver is corrupted or neither parties is corrupted, the security is easy to be proved following the
proof of Theorem 1, where m executions instead of one execution need to be considered. Below, we focus
on the security for the case of malicious sender and honest receiver. We first analyze the correctness of
outputs and the consistency of global key ∆ across multiple executions in the presence of malicious sender.
Let A be a PPT adversary corrupting the sender. Let N = [n0]× · · · [nm−1]. We define a set

I = {α ∈ N |Wα = V },

which corresponds to the adversary’s guess on the honest receiver’s input α∗ = (α∗0, . . . , α
∗
m−1), where

α∗l ∈ [nl] for l ∈ [m]. For each l ∈ [m], we also define a set Il corresponding to the adversary’s guess on
the receiver’s input point α∗l . Therefore, it holds that I = I0× · · · × Im−1. We note that H ′(Wα) = H ′(V)
if and only if Wα = V , unless there exists a collision for random oracle H ′ with probability negl(κ). If
α∗ ∈ I , the check passes; otherwise, the protocol execution aborts.

Let S be a PPT simulator which interacts with adversary A. Simulator S can simulate the adver-
sary’s view following the proof of Theorem 1. Specifically, in the l-th execution, S is able to extract{

(Ki,l
0 ,K

i,l
1)
}
i∈{1,...,hl}

from the ciphertexts sent by A, and also receives an element cl from A, where
hl = log nl. Given these values, S can compute a vector wαl for each αl ∈ [nl] following the simulation in
the proof of Theorem 1. Following the protocol specification, S can also compute the coefficients

{
χli
}
i∈[nl]

for each l ∈ [m], and computes a value Y from the values from FCOT and a random value x′ sent by itself.
For any α = (α0, . . . , αm−1) ∈ N , S can compute the following:

Wα :=
∑
l∈[m]

∑
i∈[nl]

χli ·wl
αl

[i] +
∑
l∈[m]

χlαl ·∆ + Y.

Simulator S can extract a single element V from the value H ′(V) sent by adversary A with probability
1− negl(κ), as H ′ is a random oracle controlled by S. Given the set I , for each l ∈ [m], S can compute an
output vector vl as follows:

1. Choose any αl ∈ Il and compute vαl [i] for each i ∈ [nl] from
{

(Kj,l
0 ,Kj,l

1)
}h
j=1

.

2. Compute Eαl := cl +
∑

i∈[nl]
vαl [i] + ∆.

33

3. Define vector vl as vl[αl] = vαl [αl] + Eαl and vl[i] = vαl [i] for i ∈ [nl], i 6= αl.

We prove that: except with probability 2−κ, for each l ∈ [m], all choices of αl, α′l ∈ Il in the above
procedure lead to the same vector vl. If |I| = 1, this trivially holds. If |I| > 1, we prove that for any
αl, α

′
l ∈ Il and i ∈ [nl]\{αl, α′l}, vαl [i] = vα′l [i]. Specifically, from Wα = Wα′ , we have the following:

Wα +Wα′ = 0 ⇔
∑
l∈[m]

∑
i∈[nl]

χli ·wαl [i] +

∑
l∈[m]

χlαl

 ·∆+

∑
l∈[m]

∑
i∈[nl]

χli ·wα′l
[i] +

∑
l∈[m]

χlα′l

 ·∆ = 0

⇔
∑
l∈[m]

(∑
i∈[nl]\{αl,α′l}

χli ·
(
wαl [i] +wα′l

[i]
)

+ χlαl ·

(
wαl [αl] +wα′l

[αl] + ∆
)

+ χlα′l
·
(
wα′l

[α′l] +wαl [α
′
l] + ∆

))
= 0

Since {χli}l∈[m],i∈[nl] are uniformly random and independent from all the vectors {wαl}l∈[m] and {wα′l
}l∈[m]

and ∆, we have except with probability 2−κ, for each l ∈ [m], the following holds:

wαl [i] = wα′l
[i] for each i ∈ [nl]\{αl, α′l},

wαl [αl] +wα′l
[αl] = wα′l

[α′l] +wαl [α
′
l] = ∆.

For each l ∈ [m], for all αl ∈ [nl], we have that vαl [i] = wαl [i] for i 6= αl. Thus, we guarantee that
vαl [i] = vα′l [i] for each i ∈ [nl]\{αl, α′l}. Following the analysis in the proof of Theorem 1, we further
have that vα′l [αl] = vαl [αl] + Eαl . Therefore, for each l ∈ [m], all choices of αl, α′l ∈ Il, S computes
the same vector vl, except with probability 2−κ. If the receiver does not abort, then α∗ ∈ I and thus
vl +wl = I(nl, {α∗l }) ·∆ for l ∈ [m] following the analysis in the proof of Theorem 1, where wl is the
output of the honest receiver. As adversary A knows the set I , it can compute the sender’s outputs vl for all
l ∈ [m], following the approach used by the simulator S. According to the above analysis, we have that the
sender’s outputs computed by adversary A are correct and consistent to the same global key ∆.

If m is a constant (i.e., the size of N is polynomial in κ), the simulator S can use the enumeration
approach implied in the proof of Theorem 1 to extract the set I related to the adversary’s guesses on the
input indices of honest receiver. If m is large (i.e., |N | is super-polynomial), we are unclear how to extract
the set I in a polynomial time. When applying the SPCOT protocol with batched consistency check to
construct the COT protocol shown in Section 6, the set I ∈ N corresponds to the selective failure attack on
the noise vector e of LPN after a function φn,t such as the constant function or Cuckoo mapping CHMapn,t
is used. We refer the reader to Section 5 and Section 6 for the details. In a direct approach, we can execute
m consistency checks without the batched optimization for m SPCOT extend executions. In this case, the
adversary can use the sets I0, . . . , Im−1 to guess the sorted indices α0, . . . , αt−1 of non-zero entries in e,
where the check passes if and only if αi ∈ Iβi for all i ∈ [t] and −1 ∈ Ij for all j ∈ [m]\T , where
T = {β0, . . . , βt−1} := φn,t({α0, . . . , αt−1}). Below, we show that this batched consistency check does
not reveal more information on noise vector e than the direct approach. To pass the batched consistency
check, the adversary needs to use a set I to compute a value V and H ′(V). Otherwise, the check will pass
with probability negl(κ). A correct guess set I will enable the check to pass. An incorrect set I will allow
to pass the check with probability 2−κ, as the coefficients {χli}l∈[m],i∈[nl] are sampled uniformly at random

34

after all values {vαl}l∈[m], {cl}l∈[m] and ∆ have been defined, where αl ∈ Il. Therefore, we conclude
that the batched consistency check will not leak more information on the noise vector. Thus, the batched
consistency check does not weaken the security, when it is used to construct the standard COT protocol as
shown in Section 6.

D Proof of Theorem 2
Before giving the formal proof of Theorem 2, we first prove the following lemma.

Lemma 2. If the (semi-)honest receiver successfully inserts t points {αi}i∈[t] to the Cuckoo hash table with
probability 1− 2−ρ and both parties are (semi-)honest, the parties can output two vectors s and r such that
s+ r = e ·∆ in an execution of protocol ΠMPCOT described in Figure 7, where e = I(n, {α0, . . . , αt−1}).

Proof. For each j ∈ [m], we define ẽj ∈ F|Bj |+1
2 as the pj-th unit vector (i.e., ẽj = I(|Bj | + 1, {pj})),

where pj = |Bj |+ 1 if T [j] = ⊥ and pj = posj(T [j]) otherwise. From the definition of FSPCOT, we know
that r̃j + s̃j = ẽj ·∆ for j ∈ [m]. According to the calculations of s and r, we have the following holds:

s[x] + r[x] =

∑
i∈[τ]

ẽhi(x)[poshi(x)(x)]

 ·∆ for x ∈ [n].

If x ∈ {α0, . . . , αt−1}, then
∑

i∈[τ] ẽhi(x)[poshi(x)(x)] = 1 and thus s[x] + r[x] = ∆. Otherwise, the two
sums are 0. Therefore, r + s = e ·∆, which completes the proof.

Theorem 2. Protocol ΠMPCOT shown in Figure 7 securely computes functionality FMPCOT(CHash) with
malicious security in the FSPCOT-hybrid model.

Proof. We consider separately two cases of a malicious sender and a malicious receiver, where the cases that
neither parties is corrupted and both parties are corrupted are trivial. Let A be a PPT adversary who allows
to corrupt either the sender or the receiver. We construct a PPT simulator S with access toFMPCOT(CHash),
which simulates the adversary’s view. If S would abort or terminate the simulation, S outputs whatever A
outputs. For each of two cases, we prove that the joint distribution over the outputs of A and the honest
party in the real world execution is indistinguishable from the joint distribution over the outputs of S and
the honest party in the ideal world execution. Firstly, we describe the simulation below.

– Corrupt sender: Simulator S plays the role of FSPCOT and interacts with adversary A as follows:

1. Given CHash = {CHashn,t}n,t∈N fromFMPCOT, S uses the universal hash functions {hi}i∈[τ] implied
in Cuckoo mapping CHashn,t as the parameters of protocol ΠMPCOT.

2. S emulates FSPCOT and receives ∆ from A, and then forwards ∆ to FMPCOT.

3. For each j ∈ [m], S emulates FSPCOT and receives s̃j from A. Following the protocol specification,
S computes a vector s, and then sends (mp-extend, n, t) and s to FMPCOT.

4. A may make selective failure queries to FSPCOT. That is, for each j ∈ [m], S receives a set Ij ⊆
[|Bj |+ 1] from A, and computes a set I ′j as follows:

I ′j :=

{
y
∣∣∣ ∀x ∈ Ij , y = pos−1

j (x) if x < |Bj |+ 1 and y = −1 if x = |Bj |+ 1

}
,

where pos−1
j denotes the inverse mapping of posj that maps a position to the corresponding value in

the j-th bucket. Then, S sends I ′0, . . . , I
′
m−1 toFMPCOT, and aborts if it receives abort fromFMPCOT.

– Corrupt receiver: Simulator S plays the role of FSPCOT and interacts with adversary A as follows:

35

1. For each j ∈ [m], S emulates FSPCOT, and receives pj and r̃j from A.

2. S builds m buckets B0, . . . ,Bm−1 by doing simple hashing with {hi}i∈[τ]. Then S computes a vector
r following the specification of the protocol.

3. S defines a sorted subset Q as follows:

– Initialize l = 0. From j = 0 to m− 1, if pj 6= |Bj |+ 1, then compute αl := pos−1
j (pj) and increase

l by 1. Let m′ be the size of set {j ∈ [m] | pj 6= |Bj |+ 1}.
– Sort α0, . . . , αm′−1 in an increasing order. If there exists one value that occurs in even times, remove

all the same values. If there is one value that occurs in odd times, remain the first value and remove
all the other same values.

– Let Q be the sorted set consisting of the remaining indices.

4. S sends (mp-extend, n, t, Q) and vector r to FMPCOT.

This concludes the description of the simulation. Below, we prove that the real world execution is statisti-
cally indistinguishable from the ideal world execution.

For the case of corrupt sender, there is a one-to-one mapping posj between values and positions in the
j-th bucket. Using the inverse mapping pos−1

j , S can compute a set I ′j of values corresponding to the set Ij
of positions. Therefore, FMPCOT aborts if and only if the adversary A guesses incorrectly (i.e., there exists
one set Ij that does not include the correct position pj).

For the case of corrupt receiver, adversary A may use the same values in several different buckets to
determine the positions sent to FSPCOT. In this case, if A uses the same value α ∈ [n] in even times, then
there are even pairs (s̃j , r̃j) such that s̃j [posj(α)] + r̃j [posj(α)] = ∆, where j = hi(α) for i ∈ [τ]. As a
result, s[α] + r[α] = 0. If A uses the same value α ∈ [n] in odd times, there exists odd pairs (s̃j , r̃j) such
that s̃j [posj(α)] + r̃j [posj(α)] = ∆, where j = hi(α) for i ∈ [τ]. This results in s[α] + r[α] = ∆. Note
that it does not matter for the order of extracted set Q in the case of corrupt receiver. Overall, the indices in
set Q extracted by S are the actual input of the corrupt receiver.

In conclusion, we have that the simulation is perfect. Based on Lemma 2, we know the outputs of two
parties have the same correlation between the real protocol execution and the ideal world execution, if in the
real protocol execution the honest receiver successfully inserts t points {αi}i∈[t] to the Cuckoo hash table
with probability 1 − 2−ρ. Therefore, the real world is indistinguishable from the ideal world except with
probability 2−ρ.

E LPN with Selective Failure Leakage
E.1 LPN with Static Leakage
We recall the primal version of LPN with static leakage by Boyle et al. [BCG+19a] as follows.

Definition 4 (LPN with static leakage [BCG+19a]). Let A ∈ Fk×n2 be a matrix generated by C(k, n,F2),
where C is a probabilistic code generation algorithm as in Definition 2. Consider the following game Gb(κ)
with a PPT adversary A, parameterized by a bit b and security parameter κ.

– Sample u ← Fk2 and e ← HWt. Let {α0, . . . , αt−1} ⊆ [n] be the sorted indices of non-zero entries in
noise vector e.

– A sends t sets I1, . . . , It ⊆ [n]. If αi ∈ Ii for all i ∈ [t], then send success to A. Otherwise, abort and
define the A’s output as ⊥.

– If b = 1, set b := u ·A + e. Otherwise, sample b← Fn2 .

– Send b to A, who then outputs a bit b′.

36

The (HWt, C,F2)-LPN(k, n) assumption with static leakage states that∣∣∣Pr
[
AG0(κ) = 1

]
− Pr

[
AG1(κ) = 1

]∣∣∣ ≤ negl(κ).

E.2 LPN with Static, Functional Leakage
Our maliciously secure COT protocol relies on a variant of the LPN assumption, called as LPN with static,
functional leakage. Specifically, before receiving the challenge vector (either b = uA + e or b← Fn2), the
adversary is allowed a single selective failure query to guess the sorted indices Q = {α0, . . . , αt−1} of non-
zero entries of noise vector e in a somewhat restricted way. In more detail, our LPN variant is associated
with an efficiently computable function φn,t, which maps a sorted set Q = {α0, . . . , αt−1} ⊆ [n] of size t
to another same size set T = {β0, . . . , βt−1} ⊆ [m] for some integer t ≤ m ≤ n. The adversary is required
to provide m sets such that the set indexed by βi includes αi for all i ∈ [t] and the other m− t sets contain
a special value −1, and then will see the challenge vector b if and only if its guess is correct. Clearly, the
LPN assumption with static leakage by Boyle et al. [BCG+19a] is a special case of our LPN variant with
constant function φn,t(·) = {0, . . . , t−1} and m = t. Formally, the LPN assumption with static, functional
leakage is defined as follows.

Definition 5 (LPN with static, functional leakage). Let φ = {φn,t}n,t∈N be a family of efficiently computable
functions such that for any n, t ∈ N with n ≥ t, φn,t takes as input a sorted set Q = {α0, . . . , αt−1} ⊆ [n]
of size t, and outputs another set T = {β0, . . . , βt−1} ⊆ [m] of size t form ∈ N, t ≤ m ≤ n. Let A ∈ Fk×n2

be a matrix generated by C(k, n,F2), where C is a probabilistic code generation algorithm. Consider the
following game Gb(κ) with a PPT adversary A, parameterized by a bit b and the security parameter κ.

– Sample u← Fk2 and e← HWt. Let Q = {α0, . . . , αt−1} ⊆ [n] be the sorted indices of non-zero entries
in e. Let T = φn,t(Q) = {β0, . . . , βt−1} ⊆ [m].

– A sends m sets I0, . . . , Im−1 ⊆ [n] ∪ {−1}. If αi ∈ Iβi for all i ∈ [t] and −1 ∈ Ij for all j ∈ [m]\T ,
then send success to A. Otherwise, abort and define the output of A to be ⊥.

– If b = 1, set b := u ·A + e. Otherwise, sample b← Fn2 .

– Send b to A, who then outputs a bit b′.

The (HWt, C,F2, φ)-LPN(k, n,m) assumption with static, functional leakage states that∣∣∣Pr
[
AG0(κ) = 1

]
− Pr

[
AG1(κ) = 1

]∣∣∣ ≤ negl(κ).

In the above definition, both matrix A and function φn,t are given to adversary A. We allow the adver-
sary to guess which indices in [m] do not correspond to any index in set Q by using the special value−1. At
the first glance, one might think: we can simply restrict the adversary to output m sets I0, . . . , Im−1 ⊆ [n]
and remove the check “−1 ∈ Ij for all j ∈ [m]\T ”, since the adversary can simply add −1 to all the sets
I0, . . . , Im−1. We do not use such definition, as Definition 5 captures more subtle knowledge of the adver-
sary on the set T , which is needed for proving the malicious security of our COT protocol using a uniform
noise distribution.

In the following lemma, we prove that the LPN with static leakage given in [BCG+19a] (i.e., the
(HWt, C,F2)-LPN(k, n) with static leakage as defined in Appendix E.1) is an instantiation of the (HWt, C,
F2, φ)-LPN(k, n,m) assumption with static, functional leakage where φ is a family of trivial constant func-
tions.

37

Lemma 3. Let φ = {φn,t}n,t∈N be a family of constant functions such that for any n, t ∈ N (n ≥ t),
φn,t(·) = {0, . . . , t − 1}. If there exists a PPT algorithm A breaking the (HWt, C,F2, φ)-LPN(k, n,m)
assumption with static, functional leakage, there is a PPT algorithm B which breaks the (HWt, C,F2)
-LPN(k, n) assumption with static leakage with the same successful probability.

Proof. Given a matrix A generated by C(k, n,F2), B sends A toA. Upon receiving m sets I0, . . . , Im−1 ⊆
{−1, 0, . . . , n − 1} from A, B first checks if −1 ∈ Ij for all j ∈ [t,m). If the check fails, B aborts and
outputs ⊥. Otherwise, it removes −1 from Ii for all i ∈ [t] if exists, and obtains sets I ′0, . . . , I

′
t−1. Then, B

sends I ′0, . . . , I
′
t−1 to its own game of the (HWt, C,F2)-LPN(k, n) with static leakage. If the game aborts,

B aborts and outputs ⊥. Otherwise, it will receive success and a challenge vector b, B sends success and
b to A. Then B outputs the bit output by A.

Note that B will send success to A if and only if 1) −1 ∈ Ij holds for all j ∈ [t,m); and 2) it receives
success from its own game, which in turn means that αi ∈ I ′i ⊆ Ii for all i ∈ [t]. In other words, B
simulates the game perfectly for (HWt, C,F2, φ)-LPN(k, n,m) with static, functional leakage. As B will
outputA’s output bit after receiving success, we have that B has the same advantage asA. This completes
the proof.

Note that φn,t(·) = {0, . . . , t − 1} in Lemma 3 is a trivial constant function. That is, its output does
not depend on the input set Q = {α0, . . . , αt−1} and the adversary can always compute the output {β0 =
0, . . . , βt−1 = t − 1} without knowing the input Q. However, if φn,t is a random function or a Cuckoo
mapping CHMapn,t, it may be a little bit harder for the adversary to obtain useful information on the noise
vector e from a single selective failure query that checks whether αi ∈ Iβi holds for all i ∈ [t]. This
is because in this case it is already hard for the adversary to compute φn,t(Q) = {β0, . . . , βt−1} without
knowing the input set Q = {α0, . . . , αt−1}. Thus, we believe that our LPN variant has a similar hardness as
(even may be harder than) the LPN problem with static leakage by Boyle et al. [BCG+19a], if our variant is
instantiated with a function sensitive to the input set Q (i.e., a non-constant function).2

F Proof of Theorem 3
Before giving the proof of Theorem 3, we prove the following lemma.

Lemma 4. If the sender is (semi-)honest and the receiver is honest, then in each iteration of protocol ΠCOT

shown in Figure 9, the resulting correlated OTs computed by both parties satisfy z = y + x · ∆, and the
choice-bit vector x is indistinguishable from a random vector in Fn2 under the (HWt, C,F2)-LPN(k, n)
assumption.

Proof. From the protocol description, we have that y+z = (v+w) ·A+ (s+r). In the first iteration, we
know that v +w = u ·∆. Moreover, according to the definition of MPCOT, we obtain that s+ r = e ·∆.
Therefore, y + z = (u ·A) ·∆ + e ·∆ = (u ·A + e) ·∆ = x ·∆. In the subsequent iterations, we still
have that v +w = u ·∆, as y + z = x ·∆ in the previous iteration. Overall, in each iteration, the vectors
y and (x, z) computed by two parties satisfy the correct correlation.

Below, we prove that the choice-bit vector x in each iteration is indistinguishable from a random vector
under the LPN assumption. This proof proceeds via a sequence of games. In Game 0, we simulate the
adversary’s view by emulating Fdeal and using code generator C to generate a matrix A in each iteration.
In Game i (i ≥ 1), we replace the vector x computed by the honest receiver in the i-th iteration with a
uniformly random vector. In the final game, we have that the choice-bit vectors computed by the honest
receiver in all iterations are uniformly random. If there exists a PPT adversary A which can distinguish
Game i− 1 from Game i, then we can construct a PPT algorithm Dlpn who can break the LPN assumption.
Specifically, given an LPN instance (A, b), Dlpn behaves exactly as in Game i, except that using A as the

2It is not clear if there is a PPT reduction from their LPN variant [BCG+19a] to ours for non-constant functions.

38

matrix sent in the i-th iteration and setting b as the choice-bit vector x in the i-th iteration. Note that the
secret vector u from either the (i− 1)-th iteration or the functionality Fdeal.COT has already been uniform.
If b is sampled from a uniform distribution, thenDlpn behaves exactly as in Game i. Otherwise,Dlpn behaves
exactly as in Game i−1. Therefore, the choice-bit vector x computed by the honest receiver in each iteration
is indistinguishable from a random vector under the LPN assumption, which completes the proof.

Based on Lemma 4, we prove the following theorem.

Theorem 3. Protocol ΠCOT shown in Figure 9 securely computes functionality FCOT with malicious secu-
rity and any polynomial number of resulting COTs in the Fdeal(φ)-hybrid model, based on the (HWt, C,F2,
φ)-LPN(k, n,m) assumption with static, functional leakage.

Proof. Let A be a PPT adversary who allows to corrupt the sender or the receiver. We construct a PPT
simulator S with access to functionality FCOT that simulates the adversary’s view. If S would abort or
terminate the simulation, S outputs whatever A outputs. In the following, we consider separately three
cases of two honest parties, a malicious sender and a malicious receiver. The proof is trivial for the case of
two malicious parties. For each case, we will prove that the joint distribution over the outputs of adversary
A and the honest party in the real world execution is indistinguishable from the joint distribution over the
outputs of simulator S and the honest party in the ideal world execution.

Two honest parties. If neither parties is corrupted, S only needs to send a matrix generated by C(k, n,F2)
between the sender and the receiver in each iteration. Obviously, the simulation is perfect. In the real
execution, y and z computed in each iteration are uniform under the condition that y+z = x ·∆, as s and r
output byFdeal.MPCOT in the same iteration are uniform such that s+r = e·∆. From Lemma 4, we know
that the choice-bit vector x computed in each iteration is indistinguishable from a uniform vector under the
LPN assumption. Therefore, the outputs of two honest parties are indistinguishable between the real world
and ideal world. Overall, we have that the real world execution is computationally indistinguishable from
the ideal world execution.

Corrupt sender. Simulator S emulates functionality Fdeal.COT, and records ∆ and vector v received from
A. Then, S forwards ∆ to FCOT. For each iteration, S simulates as follows:

1. S uses code generator C to generate a matrix A ∈ Fk×n2 and sends it to A.

2. S emulates Fdeal.MPCOT, and receives a vector s from A.

3. A may send m subsets I0, . . . , Im−1 ⊆ [n] to S who plays the role of Fdeal.MPCOT(φ). Simulator S
samples a noise vector e← HWt and defines {α0, . . . , αt−1} to be the sorted indices of non-zero entries
of e. Then, S computes T = {β0, . . . , βt−1} := φn,t({α0, . . . , αt−1}), and checks that αi ∈ Iβi for all
i ∈ [t] and −1 ∈ Ij for all j ∈ [m]\T . If the check fails, S aborts.

4. S computes y := v ·A + s, and updates v := y[0 : k]. Then, S sends y[k : n] to FCOT.

Note that the probability of aborting is the same in both the real world and the ideal world, as simulator
S samples a noise vector e just as in the real protocol execution.

Corrupt receiver. S emulates Fdeal.COT and records vectors (u,w) received from A. For each iteration,
S simulates as follows:

– S plays the role of Fdeal.MPCOT, receives a subset Q = {α0, . . . , αt′−1} ⊆ [n] with 0 ≤ t′ ≤ n from
A, and records a vector r received from A. Then, S defines the t′-weight noise vector e using the set Q.

– S receives a matrix A ∈ Fk×n2 from A.

39

– S computes x := u ·A + e and z := w ·A + r, and updates u := x[0 : k] and w := z[0 : k]. Then, S
sends x[k : n] and z[k : n] to FCOT.

In both cases of a corrupt sender and a corrupt receiver, it is easy to see that the simulation of S is
perfect. Based on Lemma 4, we have that the outputs of two parties in the real protocol execution satisfy
the correct correlation, if the outputs are computed following the protocol specification. Below, we focus
on proving that the honest party’s output is indistinguishable between the real world and the ideal world,
where the case of corrupt sender is computationally indistinguishable under the LPN assumption with static,
functional leakage, and the other case is perfectly indistinguishable.

We first consider the case that the receiver is honest and the sender is corrupted. The output vector
z = y + x ·∆ by the honest receiver is totally determined by its choice-bit vector x and the input ∆ and
output y of the corrupt sender. Therefore, we only need to prove that the choice-bit vector x computed by
the honest receiver in each iteration is computationally indistinguishable from a uniform vector under the
(HWt, C,F2, φ)-LPN(k, n,m) assumption. This proof proceeds via a sequence of games.

– In Game 0, we use the simulator S to simulate the protocol execution, which has the identical distribution
as the real protocol execution.

– In Game i (i ≥ 1), we replace the choice-bit vectors x computed by the honest receiver in the first i
iterations with uniform vectors.

– In the final game, we have that the choice-bit vectors computed by the honest receiver in all iterations are
uniform, and thus the honest receiver’s output in this game has the same distribution as that in the ideal
world execution.

If there exists a PPT adversary A which can distinguish Game i − 1 from Game i, then we can construct a
PPT algorithm Dlpn who can break the LPN assumption with static, functional leakage. Specifically, given
a matrix A ∈ Fk×n2 and a polynomial-time function φn,t from the LPN game, Dlpn behaves exactly as in
Game i, except for the following differences in the i-th iteration:

– Use A as the matrix of this iteration.

– When receiving m subsets I0, . . . , Im−1 ⊆ [n] from A, forward the sets to the LPN game. If this game
aborts, then abort and output ⊥. Otherwise, receive success from the LPN game, and continue to the
simulation.

– After receiving a challenge vector b, set b as the choice-bit vector x in the i-th iteration.

The probability that the LPN game aborts is the same as the probability that the simulator S aborts, and thus
is identical to that of aborting in the real protocol execution. Note that the secret vector u from either the
(i− 1)-th iteration or Fdeal.COT is uniform. If b is sampled from a uniform distribution, then Dlpn behaves
exactly as in Game i. Otherwise, Dlpn behaves exactly as in Game i− 1. Therefore, the choice-bit vector x
computed by the honest receiver in each iteration is indistinguishable from a random vector under the LPN
assumption with static, functional leakage.

In the case that the receiver is corrupted and the sender is honest, the vector y computed by the honest
sender in each iteration is determined by the global key ∆ and the vectors (x, z) computed by the adversary
in the same iteration. Therefore, we have that the sender’s output is perfectly indistinguishable between the
real world and the ideal world in this case. This completes the proof.

As described in Section 5, protocol ΠMPCOT shown in Figure 7 introduces a very small probability 2−ρ

that fails to insert all t points {α0, . . . , αt−1} into the Cuckoo hash table. If we use the protocol ΠMPCOT to

40

instantiate Fdeal.MPCOT, the noise distribution of LPN will slightly deviate fromHWt in the case of such
an insertion failure, where a few entries of e become 0 instead of 1 with probability at most 2−ρ. This is
also the case for the recent VOLE protocols by Boyle et al. [BCGI18] and by Schoppmann et al. [SGRR19].
However, as pointed out by Boyle et al. [BCGI18], the LPN assumption for such slightly skewed noise
distribution remains a very conservation assumption. If the receiver successfully inserts all t points into
the Cuckoo hash table with probability 1 − 2−ρ in protocol ΠMPCOT, our protocol ΠCOT as described in
Figure 9 is secure under the LPN assumption with a fixed t-weight noise distribution. In addition, if we rely
on LPN with a regular noise distribution without using a Cuckoo hashing approach, the noise vector e will
always has a fixed weight t.

41

	Introduction
	Our Contribution
	More Discussion
	Paper Organization

	Preliminaries
	Notation
	Correlated Oblivious Transfer

	Background and Technical Overview
	Overview of the PCG Framework
	Single-Point Correlated OT
	Multi-Point Correlated OT
	Random Correlated OT

	Single-Point Correlated OT
	Security of Our SPCOT Protocol
	Optimizations and Complexity Analysis

	Multi-Point Correlated OT
	Iterative Correlated OT Extension
	Our COT with Bootstrapped Iterations
	Optimizations and Complexity Analysis

	Performance Evaluation
	Parameter Selection
	Efficiency of the Main Iteration
	Performance of One-Time Setup
	Micro-benchmark

	More Preliminaries
	Security Model
	Learning Parity with Noise
	Correlation Robust Hash Functions

	Proof of Theorem 1
	Batched Consistency Check for Our SPCOT Protocol
	Security Analysis

	Proof of Theorem 2
	LPN with Selective Failure Leakage
	LPN with Static Leakage
	LPN with Static, Functional Leakage

	Proof of Theorem 3

