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Abstract

Dynamic group signatures (DGS) enable a user to generate a signature on behalf of a group of users,
allowing a prospective user to join via an appropriate join protocol. A natural security requirement in
the dynamic setting is to permit an adversary to concurrently perform join protocol executions. To date,
most of DGS schemes do not provide the efficient concurrent join protocols in their security analysis,
because of the need to use knowledge extractors. Also, DGS schemes have to provide efficient batch
verifications for practical applications such as Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure
(V2I) communication, where a large number of group signatures should be verified in a very short
time. In this paper, we propose a new practical DGS scheme that supports not only efficient concurrent
joins but also batch verifications. The concurrent security is proven by showing that our join protocols
are simulated without any knowledge extractor in security analysis. To do this, we introduce a modified
Pointcheval-Sanders (PS) problem that can guarantee efficiently checking equality of discrete logarithms.
In terms of efficiency, when considering a type-3 pairing, our DGS scheme has the advantages that the
signature generation and verification are faster and especially our batch verification is at least 7 times
faster in case of verifying 100 signatures, compared to other comparable pairing-based DGS schemes in
the literature.

Keywords: Batch verification, Concurrent join, Dynamic group signature, Pointcheval-Sanders.

1 Introduction

A group signature [22] is a useful primitive that allows a user to anonymously sign a message on behalf of
a group of users. In a group signature setting, a group manager (called an issuer) issues a group signing
key to each user, and a group signature produced by a user is verified under a group public key associated
with the group. A valid group signature preserves the signer’s anonymity, but if necessary another group
manager (called an opener) is able to identify the signer who produced a signature in question, breaking the
anonymity. In general, group signatures are classified according to whether the group is static or dynamic.
If the group is static (as in [5]), the issuer generates a group signing key for each user and distribute it to
each user in the group, and thus a static group signature scheme can be used only in an environment that
fully trusts the issuer. On the other hand, if the group is (partially) dynamic (as in [6, 36]), a prospective
user chooses its own secret key with which the user joins the group by performing a join protocol with
the issuer. Although there is a fully dynamic group setting where users can join and leave the group (as
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in [13]), dynamic group signatures (DGS) can indeed be transformed easily into other privacy-preserving
cryptographic primitives (e.g., direct anonymous attestations [15] and enhanced privacy ID [16]). Hence, it
is hard to overstate the importance of DGS .

Motivation. The basic security requirements for a DGS scheme have been formalized by the work of
Bellare, Shi, and Zhang [6] (and also by the independent work of Kiayias and Yung [36]), where they define
three security notions called anonymity, non-frameability, and traceability. Among the three notions, the
security of the join protocol executions in a dynamic group is related to the traceability, where malicious
users interact with the issuer to obtain group signing keys. The goal of malicious users is then to create a
new group signature that cannot be traced back to the signer who produced the signature in question. In
the BSZ model, the traceability is defined in considering concurrent join protocols where an adversary is
allowed to schedule all message delivery in any number of concurrent join sessions [6]. The property of
concurrent join is a very attractive since many users can join at the same time, which could not be avoided
in many practical applications. However, many of DGS schemes [10, 42] have proved the traceability only
by allowing join protocol executions in a sequential order, meaning that more realistic joining processes,
such as performing multiple sessions or interleaving separate sessions, are not permitted in their security
analysis of the traceability. The reason of such incompleteness is that the previous DGS schemes require
the so-called knowledge extractor. The knowledge extractor is a polynomial time algorithm that enables to
extract a witness of a proof generated by a Fiat-Shamir transform. In fact, a personal secret key chosen by a
malicious user needs to be extracted during their traceability proofs.

Moreover, what is worse is that all secret keys have to be extracted using the knowledge extractor,
every time malicious users join via the sequential join protocols. In particular, when the traceability proof
needs to rewind the adversary and redefine the outputs of the random oracles to extract the secret key,1 it
is known that those n sequential extractions end up with an exponential running time of 2n [7]. Because
of the exponential blowup, the number n of joining users should be sometimes limited to be a logarithmic
size of O(logn), thereby allowing a very small number of users (e.g., n = 80) to join a DGS scheme. To
overcome the drawback from the rewinding problem, there have been several approaches called straight-line
extraction techniques, including online extractors [29] and adaptive proofs of knowledge [7]. Unfortunately,
those straight-line extraction approaches result in fairly inefficient DGS schemes. For example, Bootel et
al. [13] used straight-line extractable proofs of knowledge as well as accountable ring signatures in order to
construct a fully DGS scheme. However, their group signature scheme yields public parameters of linear
size and signatures of logarithmic size in the number of group members. In particular, although Fiat-Shamir
transformed Sigma protocols have been useful for many DGS constructions, [8] showed that they cannot
have straight-line extractors. Also, the existingDGS construction [24] was based on an Omega protocol [30]
in which the Paillier encryption [41] is used as an extractable commitment in common reference string
(CRS) model. Though such a CRS model allows to remove knowledge extractor in a more efficient way, it
is required in reality to establish an additional highly-trusted setup for CRS (distinct from the DGS setup)
which publishes the CRS but does not have access to an extraction trapdoor (i.e., decryption key for the
Paillier encryption). Naturally, a better solution than those straight-line extractors and CRS models is to
eliminate the need of knowledge extractors when dealing with the join protocols. Recently, Derler and
Slamanig [25] proposed aDGS scheme where the traceability proof does not rely on a knowledge extractor,
meaning that their join protocols are concurrently secure.

However, despite achieving concurrent security, those DGS schemes [24] and [25] are still not suffi-
cient for practical applications where efficient batch verifications are required, such as privacy-preserving
authentication for Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communication [26,40,46]

1Sometimes, it is called ‘freeze-extract-resume’ approach. [7]
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and compact e-cash [20]. Indeed, according to the dedicated short range communication (DSRC) specifi-
cation [43] (based on IEEE 802.11p [34]), each vehicle has to broadcast its status message every 300 ms.
In such an environment, a vehicle may periodically receive a large number of group signatures and thus
verifying such group signatures in a very short time becomes an inevitable challenge. Until now, almost all
of DGS schemes are constructed based on bilinear maps, i.e., parings denoted by e : G1×G2→ GT , and
when taking a type-3 pairing like BN curves [3] the efficiency for batch verifications is largely determined
by the number of expensive operations such as exponentiations over {G2,GT} and pairings. To the best of
our knowledge, almost all previous pairing-based DGS schemes in the literature suffer from those expen-
sive operations that increase linearly with the number n of signatures. This can be a critical reason why it is
difficult to apply group signatures actively in the V2V and V2I communication.

Our Contribution. The goal of this paper is to propose a new practical DGS scheme which supports
not only efficient concurrent joins but also pairing-batch verifications. Our DGS scheme follows the sign-
randomize-prove (SRP) paradigm [10], where a randomizable signature is used as a building block. We
adopt the randomizable signature suggested by Pointcheval and Sanders [42], but suggest a novel and effi-
cient way of producing a group signature. In terms of efficiency, ourDGS scheme features that all exponen-
tiations (but pairings) during signature generation and verification are all computed over G1 with relatively
small-sized group elements, and a batch verification for n signatures requires only the constant 3 pairings,
regardless of the number n, and 2n exponentiations over G1. When considering a type-3 BN curve [3], for
instance, the signature generation and verification are faster than other pairing-based DGS schemes in the
literature. Moreover, our batch verification is at least 5 times faster for n = 20, and at least 7 times faster
for n = 100, compared to the recent work [25] and the efficiently batch-verifiable variant [27] of Boneh,
Boyen, and Shacham [11]. The opening of our DGS requires O(n) search operations in the number n of
group members, which inherently comes from the SRP paradigm.

In terms of security, our DGS scheme provides concurrently secure joins by showing that our join
protocol executions are simulated without knowledge extractor in the traceability proof. We achieve the
concurrent security under a modified Pointcheval-Sanders (PS) problem [42]. Originally, the PS problem is
equipped with a signing oracle that takes (u,m)∈G1×Zp as input and outputs v = ux+my ∈G1, where p is a
group order of G1. Requesting the exponent m to the input straightforwardly leads to the need of knowledge
extractor to obtain m. Importantly, changing an exponent m to a group element um is the key to eliminate
the knowledge extractor in joining protocol executions of our traceability proof. Instead, along with the
oracle input, the modified PS problem requires an adversary to additionally submit (g, f = gm), where g is a
public element, in order to ensure that logg f = logu w. However, we notice that given an adversary’s forgery
(u∗,w∗ = (u∗)m∗) ∈G2

1 in the traceability proof, the knowledge extractor is still needed to extract a message
m∗ ∈ Zp (as a discrete logarithm) to solve the modified PS problem. In Section 8, we will prove that the
modified PS problem holds in the generic group model [45].

1.1 Organization

We begin by describing preliminaries in Section 2. In Section 3, we present complexity assumptions in-
cluding a new assumption that is a variant of the PS assumption. We give definitions of group signatures in
Section 4. We then propose a practical dynamic group signature scheme being able to support efficient batch
verifications in Section 5, and prove it using the new assumption in Section 6. We compare the proposed
scheme with existing group signature schemes in Section 7. Section 8 provides proofs of assumptions that
we introduced. We finally conclude the result of this paper in Section 9.
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2 Preliminaries

We will denote by Zp the set {0, . . . , p−1}, where p is a prime. A function f :R→R is called negligible
if for any d > 0, | f (k)| < 1/kd for sufficiently large k. We write P(A(strA)↔ B(strB))→ (outA;outB)
to indicate that the protocol P is composed of the interactive algorithms A and B, where the algorithms
respectively take as inputs strA and strB and then output results outA and outB. As usual, we will use λ to
denote a security parameter. Throughout this paper, all group operations are performed modulo p unless
otherwise stated for the sake of clarity.

2.1 Bilinear Maps

Let a bilinear group be denoted by G = (p,G1,G2,GT ,e,g, ĝ), where G1, G2, and GT are groups of prime
order p, e is a bilinear map such that e : G1×G2→ GT , g and ĝ are generators of G1 and G2 respectively.
A bilinear map (i.e., pairing) e satisfies the following properties for any g and ĝ; (1) bilinearity: e(gx, ĝy) =
e(g, ĝ)xy holds, (2) non-degeneracy: e(g, ĝ) is a generator of GT , and (3) efficiency: computing e(·, ·) is
efficient. In this paper, we will make use of a type-3 pairing for efficient operations in G1, such as BN
curves [3].

2.2 Digital Signatures

A digital signature scheme consists of three algorithms; (1) DSKg(1λ )→ (sk,vk): a key generation algo-
rithm, which outputs a signing key sk and a public key vk under a security parameter λ , (2) DSSig(sk,m)→
σDS: a signing algorithm, which takes as inputs a singing key sk and a message m to be signed and then
outputs a signature σDS, and (3) DSVf(vk,m′,σ)→ {0,1}: a verifying algorithm, which takes a verifying
key vk, a message m′, and a signature σDS and then returns 1 if (m,σ) is valid under vk; otherwise 0. We con-
sider existential unforgeability under chosen message attacks (EUF-CMA) [31] as the security of a digital
signature scheme.

2.3 Proof Protocols

A signature proof of knowledge (SPK) is a non-interactive zero-knowledge (NIZK) proof using the Fiat–
Shamir transformation [28] in the random oracle model. An SPK π on a message m is formally denoted in
[21], and is described in a generic way in [10] for proving a pre-image of a group homomorphism φ :G→G′
with two groups of prime order p as below:

π = SPK{(x) : y = φ(x)}(m), where m ∈ {0,1}∗∪{⊥}.

Without loss of generality, we use the additive notation for G and the multiplicative notion for G′. Let
h : {0,1}∗→G be a hash function. The proof π is set to the tuple (c,s) such that c = h(φ ,y,φ(rnd),m) and
s = rnd− c · x ∈G where rnd ∈G is chosen at random. If π is valid then c = h(φ ,y,ycφ(s),m) holds. The
syntax languages of this SPK can be connected by the AND operator (i.e., ∧). We use y1 = φ1(x1)∧ y2 =
φ2(x2) to denote φ(x1,x2) = (φ1(x1),φ2(x2)) or use y1 = φ1(x)∧y2 = φ2(x) to denote φ(x) = (φ1(x),φ2(x)).

The properties of SPKs (i.e., NIZKs) have been defined in [9, 32], which can be informally described
with notions of SPK as follows:

- Completeness. A signature generated by an honest signer should be verified successfully.
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- Zero-knowledge (ZK). There exists a zero-knowledge simulator S, not knowing witness, which is able
to simulate a valid proof (i.e., a signature of SPK) indistinguishable from a real one.

- Simulation soundness (SS). A cheating signer with no witness is unable to generate a new proof for a
false statement even if receiving simulated proofs.

- Simulation-sound extractability (SE). There exists a knowledge extractor E to extract a correct wit-
ness from a valid proof generated by a cheating signer, who receives simulated proofs for arbitrary
statements.

Definition 2.1. An SPK is a simulation-sound extractable NIZK if it satisfies completeness, zero-knowledge,
and simulation-sound extractability.

3 Complexity Assumptions

We introduce complexity assumptions that hold in type-3 pairing groups. Let (p,G1,G2,GT ,e,g, ĝ) be a
type-3 pairing group.

3.1 Variants of the PS assumption

PS Assumption [42]. Given a tuple (ĝx, ĝy) and an oracle OPS(m)→ (u,ux+ym) ∈ G2
1, where m ∈ Zp and

u ∈ G1 is uniformly distributed, the PS problem is to find a tuple (u′,v′,m) ∈ G2
1×Zp such that u′ 6= 1,

v′ = u′x+ym, and m has not been queried.

Generalized PS Assumption. Given a tuple (ĝx, ĝy) and two oracles such that; OGPS
0 (·)→ u, where u ∈G1

is uniformly distributed, OGPS
1 (u,m)→ v, where u ∈ G1, m ∈ Zp, and v = ux+ym ∈ G1 as output only if u

was provided by OGPS
0 and was not queried before. The generalized PS (GPS) problem is to find a tuple

(u′,v′,m) ∈G2
1×Zp such that u′ 6= 1, v′ = u′x+ym, and m has not been queried.

Modified GPS Assumption. Given a tuple (ĝx, ĝy) and the following three oracles;

• OMGPS
0 (·)→ u, where u ∈G1 is random.

• OMGPS
1 (g,u, f ,w)→ v, where (g,u, f ,w) ∈ G4

1 as input and v = uxwy ∈ G1. The output v is returned
only if (1) u was not queried to this oracle before, (2) u was previously appeared in OMGPS

0 as output,
and (3) logg f = loguw.

The modified GPS problem is to find a tuple (u′,v′,m) ∈G2
1×Zp such that u′ 6= 1 and v′ = u′x+ym for a new

m. That is, for any pair (u,w) queried to OMGPS
1 the equality w = um does not hold.

The GPS assumption is almost identical to the generalized LRSW [17] previously obtained by expanding
the LRSW [38]. Here, the GPS assumption is defined as one step towards reaching the next modified
GPS assumption, and thus is not used for our security analysis. Nevertheless, it might be useful for some
constructions where the base u should be randomly chosen before determining a message m.

The modified GPS assumption has the following difference, which is that (u,w) (and others) are given
to OMGPS

1 as input and the corresponding output is computed as v = uxwy. The GPS assumption requires
(u,m)∈G1×Zp as input to generate v= ux+ym, but eventually requesting m as the exponent causes a knowl-
edge extractor to be required in security analysis. That is, the change from m ∈ Zp to w ∈G1 enables us to
remove a knowledge extractor. Instead, the modified GPS assumption additionally requires an adversary to

5



provide a pair (g, f = gm) to ensure that ‘it really knows the exponent m’. Specifically, given a random base
u (as the output of OMGPS

0 ), it is infeasible to compute (g,u, f ,w) (as the input of OMGPS
1 ) such that f = gm

and w = um without knowing m. This is assured basically by the knowledge of exponent (KEA) assump-
tion2 [23] defined without knowledge extractors. In Section 8, we will prove that those two assumptions
(defined here) hold in the generic group model [45].

3.2 Other complexity assumptions

Symmetric External Diffie–Hellman (XDH) Assumption [11]. Given a tuple (g, ga, gb, T ), where a,b
are random in Zp, the XDH problem in G1 (XDHG1) is to determine whether T is gab or random in G1.
The XDHG1 assumption holds if the advantage of solving this problem is negligible in λ . Similarly, the
XDH assumption in G2 (XDHG2) holds if the advantage of solving such a problem is negligible in G2. The
symmetric XDH (SXDH) assumption holds if the XDH assumptions hold in both G1 and G2.

Symmetric Discrete Logarithm (SDL) Assumption [10]. Given a tuple (g,gd , ĝ, ĝd), where d is random in
Zp, the SDL problem is to find d. The SDL assumption holds if the advantage of solving the SDL problem
is negligible in λ .

4 Definitions

Following [6], we begin with the syntax for DGS and then provide formal security models of DGS .

4.1 Syntax

GKg(1λ )→ (gpk, ik,ok). The group-key generation is run by the trusted party. Given a security parameter
λ , this algorithm outputs the issuer’s public/secret key pair (ipk, ik) and the opener’s public/secret key
pair (opk,ok). A group public key is published by gpk = (ipk,opk).

UKg(1λ , i)→ (upki,uski). A user i invokes the user-key generation algorithm to produce its public key
upki and secret key uski. We assume that upki is authenticated by a certification authority (CA).

GJoin(Join(i,uski,gpk)↔ Iss(i,upki, ik))→ (gski,regi). A user i executes the GJoin protocol with the
issuer. The algorithm Join (run by the user i) takes the user secret key uski and the group public key
gpk. The algorithm Iss (run by the issuer) takes the user public key upki and its secret key ik. At
the end of the protocol, the user obtains a group signing key gski and the issuer adds the registration
information regi on the user i into the registration list reg. This list will be shared with the opener, so
that the opener has access to read reg.

GSig(gski,m)→ σ . A user i having its group signing key gski invokes the signing algorithm to produce a
signature σ on a message m ∈ {0,1}∗ on behalf of the group.

GVf(gpk,m,σ)→ {0,1}. Anyone can invoke the verification algorithm to verify a group signature. The
algorithm takes the group public key gpk, a message m, and a signature σ and then outputs 1 if σ is
valid on m; otherwise, it outputs 0.

2This assumption was introduced by Damgård [23]. The definition is that for an adversary that takes a tuple (g,u = gς ), it is
infeasible to compute ( f ,w = f ς ) if it does not know m such that gm = f .
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GOpen(ok,m,σ ,reg)→ (i,Π) or ⊥. The opener invokes the opening algorithm to open an identity i of a
user who produced a given signature. The algorithm takes the opening key ok, a message m, a valid
signature σ , and the registration list reg. If such a user i exists, the algorithm outputs the identity i
and a proof Π claiming that the user i produced σ on m; otherwise, it outputs ⊥.

GJudge(m,σ ,gpk, i,upki,Π)→{0,1}. Anyone invokes the judging algorithm to verify the opener’s open-
ing. The algorithm takes a message m, a valid signature σ on m, the group public key gpk, an identity
i along with its public key upki, and a proof Π generated while opening. It outputs 1 if Π is valid;
otherwise, it outputs 0.

Definition 4.1. A DGS scheme is correct if the following three conditions hold:

Pr



(gpk, ik,ok)←GKg(1λ ),

(upki,uski)← UKg(1λ ),
GVf(gpk,m,σ) = 1∧ (gski,regi)←GJoin

(
Join(i,uski,gpk)

GJudge(m,σ ,gpk, i,upki,Π) = 1 : ↔ Iss(i,upki, ik)
)
,

∧i = j regi ∈ reg, σ ←GSig(gski,m),
( j,Π)←GOpen(ok,m,σ ,reg)

= 1.

4.2 Formal Security Models

We mainly refer to the BSZ model [6] that is considered as the strongest security model forDGS to date. Our
security model is almost the same as the BSZ model, except that we provide a slightly weaker anonymity
notion called the ‘selfless anonymity’ where signing key queries with respect to target users are disallowed.
The relaxed anonymity allows us to obtain a much more efficient DGS scheme, especially in terms of
pairing-batch verifications.

4.2.1 Oracle Description.

To define security models in which the challenger C interacts with an adversary A, we give the description
of oracles used by A.

AddU(i). A uses this oracle to add and then join an honest user i.

CrptU(i,upk). A uses this oracle to corrupt a user i and set the user public key to be upk of its choice.

SndToI(i). A (on behalf of a malicious user i) uses this oracle to join a malicious user i, by executing
GJoin with an honest issuer. A does not need to follow the way scheduled in GJoin.

SndToU(i). A (on behalf of a malicious issuer) executes GJoin with an honest user i in order to join. A
does not need to follow the way scheduled in Iss.

USK(i). A uses this oracle to get private information such as gski and uski that an honest user i internally
stored.

RReg(i). Using this oracle, A can read the entry for a user i stored in the registration list.

WReg(i,ρ). Using this oracle, A can write (or modify) the entry for a user i as ρ of its choice.
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AddU(i):
- (upki,uski)← UKg(1λ , i).

- (gski;regi)←GJoin(Join(i,uski,gpk)

↔ Iss(i,upki, ik)).

- reg← reg∪{regi}.

- Lh←Lh∪{i}.

- Return upki.

CrptU(i,upk):
- upki← upk.

- Lc←Lc∪{(i,cont)}.

SndToI(i):
- If (i,cont) /∈ Lc then return ⊥.

- regi←GJoin(A↔ Iss(i,upki, ik)).

- reg← reg∪{regi}.

- Lc←Lc∪{(i,accept)}.

SndToU(i):
- (upki,uski)← UKg(1λ , i).

- gski←GJoin(Join(i,uski,gpk)↔A).

- Lh←Lh∪{i}.

USK(i):
- If (i,∗,∗) ∈ Lch then return ⊥.

- Lsk←Lsk ∪{i}.

- Return (gski,uski).

RReg(i):
- Return regi.

WReg(i,ρ):
- regi← ρ .

Sig(i,m):
- If i /∈ Lh, then return ⊥.

- σ ←GSig(gski,m).

- Lσ ←Lσ ∪{(i,m,σ)}

- Return σ .

Open(m,σ):
- If (∗,m∗,σ∗) ∈ Lch, then return ⊥.

- Return GOpen(ok,m,σ ,reg).

CHb(i∗0, i
∗
1,m

∗):
- If i∗0 /∈ Lh or i∗1 /∈ Lh then return ⊥.

- If i∗0 ∈ Lsk or i∗1 ∈ Lsk then return ⊥.

- σ∗←GSig(gski∗b
,m∗).

- Lch←{(i∗0,m∗,σ∗),(i∗1,m∗,σ∗)}.

- Return σ∗.

Figure 1: Oracles used by an adversary

Sig(i,m). A uses this oracle to obtain a signature on a message m under a group signing key gski corre-
sponding to an honest user i.

CHb(i∗0, i
∗
1,m

∗). For two i∗0, i
∗
1 and a message m∗ chosen by A, this oracle outputs a challenge signature σ∗

on m∗ under i∗b for a random bit b ∈ {0,1}.

Open(m,σ). Using this oracle, A can obtain the result of the opening algorithm run by an honest opener,
with respect to a message m and a signature σ . The challenge signature σ∗ output by Chb is not
allowed to query to this oracle.

These oracles are specifically described in code type in Figure 1. In addition, C maintains the following
lists to control those oracles. These lists are set to be initially empty.

- Lh: a list of honest users.
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- Lc: a list of a corrupted user and its current state cont or accept. cont indicates that the user is
corrupted but not yet joined, and accept indicates that the user is corrupted and also accepted to join
the system.

- Lsk: a list of identities queried to the user secret key oracle.

- Lσ : a list of queried identity and message, and a signature in response to the signing oracle.

- Lch: a list of challenged message and identities, and a signature in response to the challenge oracle.

4.2.2 Security Models.

Figure 2 presents the security models for anonymity, non-frameability, and traceability.

Anonymity. Anonymity ensures that no adversary can identify the signer from the target group signature.
This notion allows A to collude with a malicious issuer, but an opener should be essentially kept honest.
Since the issuer is fully corrupted,A is initially given ik, the issuer’s secret key. A thereby uses the SndToU
oracle to allow an honest user to join, but does not need to use the CrptU oracle. A is also allowed to
modify a registration list via the WReg oracle and use the Open oracle to obtain the opening result by the
honest opener. A has access to the CHb oracle for two challenge identities (i∗0, i

∗
1) and a message m∗. A

challenge signature σ∗ returned from CHb(i∗0, i
∗
1,m

∗) is given to A. Of course, (m∗,σ∗) is not permitted to
be queried to the Open oracle. Especially, regarding the USK oracle, A can use the oracle to obtain secret
keys for all users except the target users with identities i∗0, i

∗
1, which is called the selfless anonymity [12, 19].

Obviously, the restriction makes the anonymity (defined here) weaker than that of the BSZ model [6], but
the selfless anonymity is sufficient for realistic applications, when considering existing anonymity notions of
anonymous identity-based encryption [1] and direct anonymous attestation [18]. A also uses the Sig oracle
to obtain group signatures for any identity, including the target identities.

For any λ and any polynomial-time adversary A, we define the advantage in the anonymity experiment
in Figure 2 as

AdvAnon
DGS,A(λ ) =

∣∣∣Pr[ExpAnon−0
DGS,A(λ ) = 1]−Pr[ExpAnon−1

DGS,A(λ ) = 1]
∣∣∣.

Definition 4.2. A group signature scheme DGS is anonymous if AdvAnon
DGS,A(λ ) is negligible for any A and

any λ .

Non-frameability. This notion means that no adversary can create a valid signature and a judge-accepted
proof of an honest user who has not actually produced such a signature. In other words, this notion ensures
that an honest user is not falsely accused of producing a certain group signature unless the user really did
produce the signature. In this notion, the issuer and the opener are assumed to be all corrupted, so that A
receives the issuer’s secret key (ik) as well as the opener’s secret key (ok). Thus, A is allowed to use the
SndToU oracle, but does not need to use the CrptU, WReg, and Open oracles. Also, A has access to the
USK oracle except for the target identity i∗ (A outputs) and the Sig oracle except for the pair (i∗,m∗) (A
outputs). The goal of A is then to create a valid forgery σ∗ on a message m∗, and a target (opened) identity
i∗, and a proof Π∗ that are accepted by the GJudge algorithm.

For any λ and any polynomial-time adversary A, we define the advantage in the non-frameability ex-
periment in Figure 2 as

AdvN f
DGS,A(λ ) = Pr[ExpN f

DGS,A(λ ) = 1].
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ExpAnon−b
DGS,A(λ ):

- (gpk, ik,ok)←GKg(1λ ).

- b′←ASndToU, USK, WReg, Sig, Open,CHb(gpk, ik).

- Return b′.

ExpN f
DGS,A(λ ):

- (gpk, ik,ok)←GKg(1λ ).

- (m∗,σ∗, i∗,Π∗)←ASndToU, USK, Sig(gpk, ik,ok).

- If the following conditions hold, then return 1.

(1) GVf(gpk,m∗,σ∗) = 1.

(2) i∗ ∈ Lh and i∗ /∈ Lsk and (i∗,m∗,∗) /∈ Lσ .

(3) GJudge(m∗,σ∗,gpk, i∗,upk∗,Π∗) = 1.

- Return 0.

ExpTrace
DGS,A(λ ):

- (gpk, ik,ok)←GKg(1λ ).

- (m∗,σ∗)←AAddU, CrptU, SndToI, USK, RReg(gpk,ok).

- If the following conditions hold, then return 1.

(1) GVf(gpk,m∗,σ∗) = 1.

(2) When (i∗,Π∗)←GOpen(ok,m∗,σ∗,reg),

i∗ =⊥ or GJudge(m∗,σ∗,gpk, i∗,upk∗,Π∗) = 0.

– Return 0.

Figure 2: Security experiments for DGS

Definition 4.3. A group signature scheme DGS is non-frameable if AdvN f
DGS,A(λ ) is negligible for any A

and any λ .

Traceability. Traceability implies that no adversary can produce a valid signature that is eventually un-
traceable via the GOpen and GJudge algorithms. This notion holds when the issuer is honest and the
opener is partially corrupt, where being partially corrupt means that A controls the opener but the opening
executions must follow the prescribed program. A is allowed to call the AddU oracle to join an honest user,
the CrptU and SndToI oracles to join a corrupt user, and eventually the USK oracle to obtain secrets for
all honest users. Since secret keys of all users are available to A, the Sig oracle is redundant and thus not
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given. The only unknown information toA then becomes the issuer’s secret key (ik), and thus via the RReg
oracleA is able to read a registration list under the control of the honest issuer. Now, there are two ways that
A succeeds. One is to generate a valid signature generated by an unjoined user, meaning that the GOpen
algorithm fails to identify the origin of the forged signature. The other is to produce a valid signature that
is generated by a joined (corrupted) user i∗ but not traced back to the user i∗ via the GOpen and GJudge
algorithms. The latter should include the case where the GOpen algorithm outputs j∗ although the forged
signature is produced by the user i∗. However, by checking whether a user’s secret key is uniquely regis-
tered during the join protocol executions, such a case of breaking the soundness of the GOpen algorithm
can be easily removed. The latter thus includes the case of breaking the soundness of the GJudge algorithm,
meaning that a proof Π∗ by the GOpen algorithm is rejected by the GJudge algorithm.

For any λ and any polynomial-time adversaryA, we define the advantage in the traceability experiment
in Figure 2 as

AdvTrace
DGS,A(λ ) = Pr[ExpTrace

DGS,A(λ ) = 1].

Definition 4.4. A group signature scheme DGS is traceable if AdvTrace
DGS,A(λ ) is negligible for any A and

any λ .

5 Our Dynamic Group Signature Scheme

5.1 Overview

Our DGS scheme follows the SRP paradigm, based on the PS signature [42] as an underlying randomizable
signature scheme. The original PS signature on a message m is composed of (u,v = ux+ym), where u,v ∈G1
and x,y are signing key. Now, we transform it to add one more element such that w = um ∈ G1 into the
signature, borrowing the idea from the DAA construction [18]. In the PS signature, such w is redundant
because m and u are known to any verifier. However, in our group signature, m is randomly chosen by a
joining user from an exponentially large space, and used as a signing key. Then, randomizing a signature
(u,v,w) is still simply done by rasing a random exponent r to each group element. This change entails
a slight increase in the signature size, but we can achieve significantly better computational efficiency as
follows: when singing a real message m̃, after randomization, we use (u,w = um) to produce a SPK proof π

of knowledge of m. Importantly, all of these signing operations take place in G1 with relatively smaller-sized
group elements. Given a group signature (u,v,w) and π , the verification is done by two steps; (1) check if
e(v, ĝ) ?

= e(u, X̂)e(w,Ŷ ), using public parameters ĝ, X̂ = ĝx,Ŷ = ĝy ∈ G2, and (2) check if π is valid (along
with the message m̃). Fortunately, when verifying n signatures at once, those pairing operations can be
aggregated and performed with the constant 3 parings, regardless of the number n. Of course, n verifications
of {π} should be carried out respectively, but such verifications are all done in G1. Consequently, all signing
and verification operations can be done in G1, except for the three pairings.

During the interactive join protocol in our DGS scheme, the primary task of a prospective user is to
generate an SPK proof π0 and a digital signature σDS. Importantly, our security analysis shows that there
is no need to use any knowledge extractor with respect to that proof. More precisely, π0 is the proof of
equality of discrete logarithms (α,s0,s1) with the statement that (1) α is the exponent of f = gα and w = uα

and (2) α is also the exponent of the encrypted message ĝα of the double ElGamal encryption scheme
{ĝsb , ĝα Ẑsb

b }b∈{0,1} with random values s0 and s1. The fact that f = gα and w= uα is necessary for generating
the randomizable PS signature v = uxwy ∈G1, using the issuer’s key (x,y). In the original PS problem [42],
v is obtained in response to the oracle input (u,α), and therefore it is required to find out α from π0 using a
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knowledge extractor. However, in the modified GPS problem (defined in Section 3), v is obtained in response
to the oracle input (u,w), and thus w as is in the statement can be used without knowledge extractor. Here, u
is determined by u = H( f ) so that u is eventually assigned to the user according to α (chosen by the user).
Because of the statistical soundness property of π0, the issuer is convinced that v = uxwy becomes v = ux+αy

for some secret α known to the joining user. Such a difference in the oracle input determines whether or
not to exclude a knowledge extractor in security analysis. Meanwhile, the other statement is necessary for
the opener to obtain ĝα (not α) as an opening trapdoor via decryption, while ensuring the well-formness of
the double ElGamal encryption. Indeed, π0 plus the double ElGamal encryption can be viewed as a variant
of the Naor-Yung double encryption technique [39] under the opener’s public key (Ẑ0, Ẑ1). The reason why
ĝα ∈G2 is an opening trapdoor is that, given a group signature (u,v,w) and π such that w = uα for the same
α , the opener checks if e(u, ĝα)

?
= e(w, ĝ) for the public parameter ĝ. If so, the owner of ĝα is identified as

the signer. If such an opening process works, ĝα (and thus implicitly α) must be uniquely registered, one
per each user. To do this, the issuer needs to additionally check if f = gα is fresh across all join protocol
executions so far, thereby forcing all users to join with different α .

5.2 Construction

Let pp = (G,H) denote a public parameter, where G = (p,G1,G2,GT ,e,g, ĝ) is a type-3 bilinear group and
H : {0,1}∗→G1 is a cryptographic hash function. Let DS={DSKg, DSSig, DSVf} be a digital signature
scheme. Our DGS scheme is constructed as follows:

GKg. The group-key generation does the followings.

1. It chooses random x,y ∈ Zp and computes X̂ = ĝx, Ŷ = ĝy.

2. It chooses random z0,z1 ∈ Zp and computes Ẑ0 = ĝz0 and Ẑ1 = ĝz1 .

3. The group public key is gpk = (X̂ ,Ŷ , Ẑ0, Ẑ1), and the issuer’s secret key is ik = (x,y), and the
opener’s secret key is ok = (z0,z1).

UKg. The user i obtains a user key pair (upki,uski) by running DSKg.

GJoin. As shown in Figure 3, the user i and the issuer executes the group-joining protocol, using the
algorithms Join and Iss, respectively.

1. Join: The user chooses α,s0,s1 ∈ Zp randomly, and computes f = gα , u = H( f ), w = uα ,
Ŝ0 = ĝs0 , Ŝ1 = ĝs1 , f̂ ′0 = ĝα Ẑs0

0 , f̂ ′1 = ĝα Ẑs1
1 .

(1) The proof π0 is generated as

π0 = SPK0{(α,s0,s1) : f = gα ∧w = uα ∧ Ŝ0 = ĝs0 ∧ Ŝ1 = ĝs1 ∧ f̂ ′0 = ĝα Ẑs0
0 ∧ f̂ ′1 = ĝα Ẑs1

1 }.

(2) The user obtains σDS by running DSSig(uski,τ), where τ = e( f , ĝ).

(3) The tuple ( f ,w, Ŝ0, Ŝ1, f̂ ′0, f̂ ′1,π0,σDS) is sent to the issuer.

2. Iss: Given the above tuple, the issuer computes u = H( f ) and τ = e( f , ĝ). It then checks the
followings:

(1) f was not appeared in a previous or current joining session.
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Join (i,uski,gpk) Iss (i,upki, ik)

Choose α,s0,s1 ∈ Zp
f = gα , u = H( f ), w = uα

Ŝ0 = ĝs0 , Ŝ1 = ĝs1

f̂ ′0 = ĝα Ẑs0
0 , f̂ ′1 = ĝα Ẑs1

1

π0 = SPK0{(α,s0,s1) : f = gα ∧w = uα

∧Ŝ0 = ĝs0 ∧ Ŝ1 = ĝs1

∧ f̂ ′0 = ĝα Ẑs0
0 ∧ f̂ ′1 = ĝα Ẑs1

1 }

τ = e( f , ĝ), σDS← DSSig(uski,τ)

f ,w,{Ŝb, f̂ ′b}b∈{0,1},π0,σDS−−−−−−−−−−−−−−→
If f is fresh and

π0 and σDS are valid:
v = uxwy

regi = (i, Ŝ0, Ŝ1, f̂ ′0, f̂ ′1,τ,σDS)
reg← reg∪{regi}

v←−−−−−−−−−−

Check e(v, ĝ) ?
= e(u, X̂)e(w,Ŷ )

Store gski = (α,u,v,w)

Figure 3: Overview of the GJoin protocol

(2) π0 is valid on the given tuple.

(3) σDS is valid on τ under upki.

(4) If all conditions are satisfied, then it computes v= uxwy. It adds regi =(i, Ŝ0, Ŝ1, f̂ ′0, f̂ ′1,τ,σDS)
to the list reg.

(5) v is sent to the user.

3. Join: If the conditions e(v, ĝ) = e(u, X̂) · e(w,Ŷ ) and u 6= 1 hold, the user stores the following
group signing key

gski = (α, u, v = ux+yα , w = uα) ∈ Zp×G3
1.

GSig. Given a message m to be signed, the user invokes this algorithm as follows:

1. It chooses r ∈ Zp randomly and computes u′ = ur, v′ = vr, and w′ = wr.

2. π1 as a proof of knowledge of the user’s secret α is generated with

π1 = SPK1{(α) : w′ = u′α}(m).

3. The group signature is σ = (u′, v′, w′, π1) ∈G3
1×Z2

p.

GVf. A verifier checks if a signature σ = (u′,v′,w′,π1) is valid on a message m as follows:
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1. It checks if π1 is valid with respect to (u′,w′) and m.

2. If so, it checks if e(v′, ĝ) = e(u′, X̂) · e(w′,Ŷ ).
3. If both conditions hold, it outputs 1, and otherwise 0.

GOpen. Given a valid σ = (u′,v′,w′,π1) on a message m, the opener does as follows:

1. For each regi = (i, Ŝ0, Ŝ1, f̂ ′0, f̂ ′0,τ,σDS) ∈ reg,

(1) it derives f̂ = f̂ ′b · (Ŝ
zb
b )
−1 for a randomly chosen bit b ∈ {0,1}.

(2) it checks if e(u′, f̂ ) = e(w′, ĝ) and τ = e(g, f̂ ).

2. If Step 1 fails for all regi, it outputs ⊥.

3. Otherwise, i.e., if f̂ is found for a certain regi, π2 as a proof of knowledge of f̂ is generated by

π2 = SPK2{( f̂ ) : e(w′, ĝ) = e(u′, f̂ )∧ τ = e(g, f̂ )}.

4. It outputs the identity i along with Π = (τ,σDS,π2).

GJudge. Given (m,σ ,gpk, i,upki,Π) where σ = (u′,v′,w′,π1) is a valid signature and Π = (τ,σDS,π2),
this algorithm does as follows:

1. It checks if π2 is valid.

2. It also checks if DSVf(upki,τ,σDS) = 1.

3. It outputs 1 if the above conditions holds; otherwise 0.

It is easily checked that ourDGS is correct because of the completeness of the SPKs and the correctness
of DS. We omit the details.

5.3 Batch Verification

We note that n group signatures from different signers can be verified efficiently via pairing-batch computa-
tions. The batch verification algorithm BGVf is described as follows:

BGVf. It takes n group signatures {σi}n
i=1. Let ` be a small prime and let σi = (u′i, v′i, w′i, πi,1) be the i-th

group signature on a message mi. A verifier does as follows:

1. For each i = 0, . . . ,n, it checks if πi,1 is valid on (u′i,w
′
i) and mi.

2. If so, it randomly chooses e1, ...,en ∈ {0,1}` and computes {ũi = u′i
ei , ṽi = v′i

ei , w̃i = w′i
ei}n

i=1.

3. It checks if e(∏n
i=1 ṽi, ĝ) = e(∏n

i=1 ũi, X̂) · e(∏n
i=1 w̃i,Ŷ ).

4. If all checks succeed, it outputs 1; otherwise 0.

We note that this batch verification reduces the most expensive operation, 3n pairings, to the constant 3
pairings. In the first step, however, n proofs {πi,1}n

i=1 can not be batched and must be verified respectively.
Fortunately, all of those operations necessary for verifying the SPKs {πi,1}n

i=1 are performed over G1 with
relatively smaller-sized group elements, compared to G2 and GT . In addition, our pairing-batch computation
is performed with re-randomization of signatures by employing small exponents test [4]. In Section 7, we
will give efficiency comparison between previous group signature schemes and ours.
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6 Security Proofs

We now prove that our DGS in Section 5 satisfies the security properties of anonymity, non-frameability,
and traceability. Throughout our security analysis, let G = (p,G1,G2,GT ,e,g, ĝ) be a type-3 bilinear group
as a public parameter, and let Lh,Lc,Lsk,Lσ and Lch (described in Section 4.2) be initially empty.

6.1 Anonymity

A challenger C can assume that i∗0 and i∗1 are queried to the SndToU oracle. Let q j be the number of the
SndToU oracle queries. C picks a random k among {1, . . . ,q j}, hoping that the k-th query is related to i∗0.
Let i∗ be the identity i∗0 of the k-th query and reg∗ = (i∗, Ŝ∗0, Ŝ

∗
1, f̂ ′∗0 , f̂ ′∗1 ,τ∗,σ∗DS) be the entry registered during

the execution of SndToU for i∗.
As shown in Figure 1, to prove anonymity with respect to a challenge signature σ∗ = (u∗,v∗,w∗,π∗1 ),

we use a hybrid argument by chaining the game G0 into the game GR. G0 is the original anonymity game
of ExpAnon−0

DGS,A(λ ) with respect to the target identity i∗, and GR is the game where α∗, as a secret value that
identifies i∗, is not leaked from σ∗, reg∗, and all signatures returned in response to the Sig oracle queries.
The next hybrid argument is to change the game GR to the anonymity game of ExpAnon−1

DGS,A(λ ), but we omit
it because the next argument is easily done by reversing the first hybrid argument.

Table 1: Hybrid games for proving anonymity of our DGS

Note Indistinguishability

G0
This is the same as ExpAnon−0

DGS,A(λ ), where σ∗ is generated by the
i∗0’s group signing key.

G1
This is the same as G0, except that C’s proofs of the SPKs are all
simulated. ZK of the SPKs

G2
This is the same as G1 except that, in SndToU(i∗), C sends A
random R̂0, R̂1 ∈G2 instead of f̂ ′∗0 , f̂ ′∗1 in reg∗, respectively. XDHG2 assumption

GR This is the same as G2 except that w∗ in σ∗ is chosen at random. XDHG1 assumption,
non-fraemability

Lemma 6.1. G0 and G1 are indistinguishable under the ZK of the SPKs.

Proof. By the definition of the ZK in Section 2.3, all proofs can be simulated by the zero-knowledge simu-
lator S, which is statistically indistinguishable from a real one.

Lemma 6.2. Let all SPKs be simulation-sound extractable NIZKs and let H be modeled as a random oracle.
Then, G1 and G2 are indistinguishable under the XDHG2 assumption.

Proof. Without loss of generality, we first change f̂ ′∗0 and sequentially f̂ ′∗1 at random. To show this, we
define an intermediate game (denoted by G′) where a random R̂0 ∈G2 is replaced with f̂ ′∗0 in reg∗. We now
demonstrate how to change G1 into G′ as follows.

G1 ≈G′: C is given (ĝ, Â = ĝa, B̂ = ĝb,T ), an instance of the XDHG2 problem, and uses the zero-knowledge
simulator S of the SPKs. The proof idea is that the first opening key z0 is set to b = logĝB and thus Ẑ0 = B.
When the user i∗ is queried to the SndToU oracle, f̂ ∗0 = ĝα Ẑs0

0 is determined by T , by setting s0 = a = loggÂ.
Initially, C chooses x,y,z1 ∈Zp, and sets ik=(x,y), ipk=(X̂ = ĝx,Ŷ = ĝy), and opk=(Ẑ0 = B̂, Ẑ1 = ĝz1).

C gives gpk = (ipk,opk) and ik to A. The hash oracle Hash-H is managed by returning a random value
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for a new input as usual, and thus we omit the details of the hash oracle. A makes the following queries
adaptively.

• SndToU. For a queried identity i 6= i∗, C invokes UKg(1λ , i) and performs GJoin(Join(i,uski,gpk)↔A)
as in the real scheme, except that π0 is simulated by S. If i = i∗ is queried, C chooses α,s1 ∈ Zp randomly
and then uses S to generate π0 for the following elements

( f = gα ,w = H( f )α , Ŝ0 = Â, Ŝ1 = ĝs1 , f̂ ′0 = ĝα ·T, f̂ ′1 = ĝα · Ẑs1
1 ).

The above elements and (π0,σDS) is given to A, where σDS is a digital signature on τ = e( f , ĝ). At the end
of the protocol, C receives v from A and stores gski = (α,u,v,w). The list of honest users is updated as
Lh←Lh∪{i}.
• USK. For an identity i ∈ Lh, C aborts if i = i∗. Otherwise, C outputs uski and gski and updates Lsk ←
Lsk∪{i}.
•WReg. For an identity i and an entry ρ , C sets regi = ρ .

• Sig. For an identity i ∈ Lh and a message m, C obtains a group signature σ by performing GSig(gski,m),
except for a simulated proof π1. C outputs the signature and updates Lσ ←Lσ ∪{(i,m,σ)}.
•Open. For a message m and a signature σ such that (∗,m,σ) /∈Lch, C can open the identity i that produced
σ , using the other opening key z1.
• CH0. Given identities i∗0, i

∗
1 ∈ Lh\Lsk and a message m∗, C aborts if i∗ 6= i∗0. Otherwise, C outputs the

challenge signature σ∗ generated by GSig(gski∗0 ,m
∗) and updates Lch←Lch∪{(i∗0,m∗,σ∗),(i∗1,m∗,σ∗)}.

The probability that C does not abort is at least 1/q j. C simulates G1 if T = gab; otherwise, it simulates
G′. Hence, as long as C does not abort, C can solve the XDHG2 problem, using A.

G′ ≈G2: Similarly, C changes f̂ ′∗1 of reg∗ into a random R̂1 ∈ G2 under the XDHG2 . The simulation for
this change is almost similar to the previous one, except that C chooses the first opening key z0 by itself
and sets the second key to be the unknown z1 = b = logĝ B̂. Because of the distinction, when dealing with
the SndToU oracle for i∗, C chooses α,s0 ∈ Zp randomly and then uses S to generate π0 for the following
elements

( f = gα , w = H( f )α , Ŝ0 = ĝs0 , Ŝ1 = Â, f̂ ′0 = R̂0, f̂ ′1 = ĝα ·T ),

where R̂0 ∈G2 are randomly chosen by C and the values Â,T come from the instance of the XDHG2 problem.
In response to the Open oracle, C can open the identity i that produced σ , using the other opening key

z0. Additionally, given (m,σ) that would be generated by i∗, C can use ĝα and pairing checks to open the
target identity i∗.

Similarly to the previous proof, the probability that C does not abort is at least 1/q j. C simulates G′ if
T = gab; otherwise, it simulates G2. Hence, as long as C does not abort, C can solve the XDHG2 problem,
using A.

Lemma 6.3. Let all SPKs be simulation-sound extractable NIZKs and let H be modeled as a random oracle.
Then G2 and GR are indistinguishable under the XDHG1 assumption and non-frameability.

Proof. Let (g,A = ga,B = gb,T ) be an instance of the XDHG1 problem, and let S be the zero-knowledge
simulator given to a challenger C. The proof idea is that the secret α∗ of the target user i∗ is set to b = loggB
and the random r∗ chosen in CH0 is set to a = loggA.
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C sets ik = (x,y) and ok = (z1,z2), where x,y,z1,z2 ∈ Zp are chosen by itself, and gives gpk = (X̂ =
ĝx,Ŷ = ĝy, Ẑ1 = ĝz1 , Ẑ2 = ĝz2) and ik to A. The Hash-H oracle is managed with a hash list LH as follows:

• Hash-H. For a queried input n, if n is new, C computes ζ = gδn by choosing a random δn ∈ Zp. C
returns ζ and updates LH ←LH ∪{(n,δn,ζ )}. If n was already used, C returns a previously computed ζ

corresponding to n in LH .

• SndToU. If i 6= i∗, C obtains from UKg a user key pair (uski,upki). By using the keys, it executes
GJoin(Join(i,uski,gpk)↔A), except for simulating π0. If i = i∗, C executes the joining protocol without
knowing α∗ = b = logg B. At the end of the protocol, A is given the following elements

( f = B, w∗ = Bδ ∗n , Ŝ0 = ĝs0 , Ŝ1 = ĝs1 , f̂ ′0 = R̂0, f̂ ′1 = R̂1, π0, σDS),

where δ ∗n is the value associated with f in LH , and s0,s1 ∈ Zp and R̂0, R̂1 ∈ G2 are randomly chosen, and
π0 is a simulated proof by using S, and σDS is a digital signature on τ = e(B, ĝ). Eventually, C stores gski =
(α,u,v,w) for all users except i∗, and stores gski∗ = (⊥,u∗,v∗,w∗) for i∗ where u∗ = gδ ∗n and v∗ = u∗xw∗y.
The list of honest users is updated as Lh←Lh∪{i}.
• USK. For an identity i ∈ Lh, C sends uski and gski to A and updates Lsk←Lsk∪{i}. If i = i∗, C aborts.

•WReg. For an identity i and an entry ρ , C sets regi = ρ .

• Sig. If i 6= i∗ such that i ∈ Lh, a group signature σ on a message m can be produced by performing
GSig except for a simulated proof π1. If i = i∗, C uses gski∗ = (⊥,u∗,v∗,w∗) to compute a signature σ =
(u∗r,w∗r,v∗r,π1), where r ∈ Zp is chosen randomly and the proof π1 is generated as a simulated proof of
knowledge of α∗ = b. C outputs σ to A and updates Lσ ←Lσ ∪{(i,m,σ)}.
• Open. Given a message m and a signature σ such that (∗,m,σ) /∈ Lch, C uses either Lσ or one of the
opening keys to open (m,σ). If σ is generated by a non-target user, C performs the GOpen algorithm
and returns the result. However, if σ is generated by i∗ and (i∗,m,σ) ∈ Lσ , C uses Lσ to realize that σ

was produced in response to the oracle Sig(i∗,m). The problem is the case when σ is generated by i∗ and
(i∗,m,σ) /∈ Lσ . However, this happens when A forges a valid signature for i∗, giving rise to breaking the
non-frameability. Thus, by proving Theorem 6.5, such a troublesome case can be excluded.

• CH0. Given two identities i∗0, i
∗
1 ∈ Lh\Lsk and a message m, C aborts if i∗0 6= i∗. Otherwise, using gski∗ =

(⊥,u∗,v∗,w∗) and ik = (x,y), C computes a challenge signature as below.

σ
∗ = (u′∗ = Aδ ∗n , v′∗ = (u′∗)x · (w′∗)y, w′∗ = T δ ∗n , π

∗
1 ),

where r∗= a= logg A is used to randomize (u∗,v∗,w∗) and π∗1 is generated as a simulated proof of knowledge
α∗ = b. C outputs σ∗ and updates Lch←Lch∪{(i∗,m∗,σ∗),(i∗1,m∗,σ∗)}.

Then, the probability that C does not abort is at least 1/q j. C simulates G2 if T = gab; otherwise it
simulates GR. Therefore, as long as C does not abort, C can solve the XDHG1 problem by using A.

By putting the Lemmas 6.1, 6.2, and 6.3 and considering the second hybrid argument (we omitted) all
together, we can get the following result.

Theorem 6.4. Let all SPKs be simulation-sound extractable NIZKs and let H be modeled as a random
oracle. Then our DGS in Section 5 is anonymous under the ZK of the SPKs, the SXDH assumption, non-
frameability of DGS .
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6.2 Non-frameability

Theorem 6.5. Let all SPKs be simulation-sound extractable NIZKs and let H be modeled as a random
oracle. Then our DGS in Section 5 is non-frameable under the SS of the SPK2, the EUF-CMA of the
underlying digital signature scheme, and the SDL assumption.

Proof. Let (g, ĝ,D = gd , D̂ = ĝd) be an instance of the SDL problem, and let S and E be the zero-knowledge
simulator and the knowledge extractor for the SPKs, respectively. Also, let DS = {DSKg, DSSig, DSVf}
be a digital signature scheme.

A challenger C can assume that a target user i∗ is queried to the SndToU oracle. Let q j be the number
of the SndToU oracle queries. C picks a random k among {1, . . . ,q j}, hoping that the k-th query is related
to i∗. For simplicity, let i∗ be the identity of the k-th query.

The proof idea is that C sets the unknown d = loggD = logĝD̂ as a group signing key of the target user
i∗. When A succeeds in forging a signature with respect to d, C can solve the SDL problem (using E), or
break the EUF-CMA of DS, or break the SS of the SPK2.
C generates ik = (x,y) and ok = (z0,z1), where x,y,z0,z1 ∈ Z∗p are randomly chosen by itself. A is given

those ik and ok. The Hash-H oracle is managed with a hash list LH as follows:

• Hash-H. For a queried input n, if n is new, C computes ζ = gδn by choosing a random δn ∈ Zp. C
returns ζ and updates LH ←LH ∪{(n,δn,ζ )}. If n was already used, C returns a previously computed ζ

corresponding to n in LH .

• SndToU. For a queried identity i, if i 6= i∗, C generates a user key pair (uski,upki) by DSKg, and then
executes GJoin(Join(i,uski,gpk)↔A) as in the real scheme. If i = i∗, C chooses s0,s1 ∈ Zp and finds the
value δ ∗n related to D in LH . It then computes the following tuple

( f = D, w = Dδ ∗n , Ŝ0 = ĝs0 , Ŝ1 = ĝs1 , f̂ ′0 = D̂ · Ẑs0
0 ,

f̂ ′1 = D̂ · Ẑs0
0 , π0, σDS = DSSig(uski∗ ,τ)),

where τ = e( f , ĝ) = e(D, ĝ) and π0 is a simulated proof of knowledge d = loggD = logĝD̂ by using S. At
the end of the protocol, C receives v from A. C then stores gski = (α,u,v,w) if i 6= i∗; otherwise (⊥,u,v,w).
C updates Lh←Lh∪{i}.
• USK. For an identity i ∈ Lh, C sends uski and gski to A and updates Lsk←Lsk∪{i}. If i = i∗, C aborts.

• Sig. For a queried identity i ∈ Lh and a message m, if i 6= i∗, C is able to generate a group signature
on any message that C chooses, because C knows gski. On the other hand, if i = i∗, C can produce a
signature by using S , although C does not know d. The resulting signature σ is given to A, and C updates
Lσ ←Lσ ∪{(i,m,σ)}.

At the end, A outputs a forged signature σ∗ = (u∗,v∗,w∗,π∗1 ) on a message m∗ and also the opening
result (i∗,Π∗ = (τ∗,σ∗DS,π

∗
2 )) together. If i∗ is not the k-th user, C aborts. Otherwise, C proceeds. Since

(m∗,σ∗, i∗,Π∗) should be verified by the GJudge algorithm, C is convinced that (1) π∗2 is valid and (2) τ∗

is verified by σ∗DS using the public key upki∗ for i∗.
Recall that τ = e( f , ĝ) = e(D, ĝ) and σDS = DSSig(uski∗ ,τ) are values initially registered by i∗ via

the SndToU oracle. Also, the statement of Π∗ consists of two equations such that e(w∗, ĝ) = e(u∗, f̂ ) and
τ∗ = e(g, f̂ ) for some witness f̂ . We can consider three possible cases of the A’s forgery:

1) τ 6= τ∗∧DSVf(upk∗,τ∗,σ∗DS) = 1. This case indicates that the unforgeability of DS is broken by the
forgery σ∗DS on the message τ∗.
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2) τ = τ∗∧ e(w∗, ĝ) = e(u∗, f̂ ′)∧DSVf(upk∗,τ∗,σ∗DS) = 1: This case indicates that a false statement with
respect to two distinct witnesses f̂ and f̂ ′ is proven to be valid, leading to breaking the SS of the SPK2.

3) τ = τ∗∧ e(w∗, ĝ) = e(u∗, f̂ )∧DSVf(upk∗,τ∗,σ∗DS) = 1: This case indicates that, since f̂ = D̂, the expo-
nent d = logĝD̂ as a witness is used to prove the statement that w∗ = (u∗)d of π∗1 . In that case, C can
extract d from π∗1 using E , which is the solution of the SDL problem.

6.3 Traceability

Theorem 6.6. Let all SPKs be simulation-sound extractable NIZKs and let H be modeled as a random
oracle. Then ourDGS in Section 5 is traceable under the modified GPS assumption and the SS of the SPK0.

Proof. A challenger C, who does not know the issuer’s secret key, will use the oracles of the modified GPS
problem to act as the honest issuer. We show that C can solve the problem by using A, as long as A cannot
break the SS of the SPK0.

Let C be given an instance of the modified GPS problem, (X̂ ,Ŷ ) equipped with oracles OMGPS
0 and

OMGPS
1 . Throughout the proof, C maintains additional lists LMGPS

0 and LMGPS
1 containing a pair of in-

put/output values to each oracle. Also, C is allowed to have access to the zero-knowledge simulator S and
the knowledge extractor E with respect to the SPK1.
C sets ipk = (X̂ ,Ŷ ), meaning that ik = (x,y) such that X̂ = ĝx and Ŷ = ĝy is unknown to C. C chooses

z0,z1 ∈ Zp randomly, and providesA with gpk = (X̂ ,Ŷ , Ẑ0 = ĝz0 , Ẑ1 = ĝz1) and ok = (z0,z1). C manages the
following hash oracle with a list LH .

• Hash-H. For an input n ∈ {0,1}∗, if n exists in LH = {(n,u)}, C outputs u. If n ∈G1 and (n,∗) is not in
LH , C calls OMGPS

0 to obtain u ∈G1. Then, u is added into LMGPS
0 and (n,u) is added into LH . C outputs u.

Otherwise, C chooses a random u ∈G1 adds (n,u) into LH . C outputs u.

• AddU. For an identity i, C generates a user key pair (upki,uski), and executes GJoin(Join(i,uski,gpk)↔
Iss(i,upki, ik)) without knowing ik = (x,y). More precisely, C chooses α,s0,s1 ∈ Zp randomly, and obtains
f = gα and u = H( f ) (eventually using OMGPS

0 ), w = uα , f̂ ′0 = ĝα Ẑs0
0 , f̂ ′1 = ĝα Ẑs1

1 , Ŝ0 = ĝs0 , Ŝ1 = ĝs1 , and
τ = e( f , ĝ). After that, by callingOMGPS

1 on the input (g,u, f ,w), C obtains v = uxwy. The tuple (g,u, f ,w,v)
is added into LMGPS

1 .
At the end of the protocol, C sets gski = (α,u,v,w) and regi = (i, Ŝ0, Ŝ1, f̂ ′0, f̂ ′1, τ , σDS), where σDS is a

digital signature on τ under uski. C updates reg← reg∪{regi} and Lh←Lh∪{i}.
• CrptU. For an identity i, C sets the i’s public key to be upk provided from A. C marks the status of the
user i with ‘cont’, and updates Lc←Lc∪{(i,cont)}.
• SndToI. For an identity i such that (i,cont) ∈ Lc, C and A together execute GJoin(A↔ Iss(i,upki, ik)).
In the protocol execution, C first receives ( f ,w, Ŝ0, Ŝ1, f̂ ′0, f̂ ′1,π0,σDS). C checks if (1) f is fresh and (2) π0
and σDS are valid. In this process, when A calls H oracle, C answers the oracle queries, using OMGPS

0 .
If all conditions are satisfied, C calls OMGPS

1 on the input (g,u, f ,w) to obtain v = uxwy. Note that this
input should be well-formed to OMGPS

1 ; otherwise, π0 breaks the SS of the SPK0. C computes regi =
(i, Ŝ0, Ŝ1, f̂ ′0, f̂ ′1,τ,σDS), where τ = e( f , ĝ). During this process, the input/output values that appeared in the
calls to OMGPS

0 and OMGPS
1 are stored into LMGPS

0 , LMGPS
1 , and LH , appropriately. C ends the protocol by

sending v to A.
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Now,A obtains gski = (α,u,v,w), where α is unknown to C. The point is that α is uniquely used across
all join protocol executions, because of the freshness check about f = gα , and simultaneously because of the
SS of the SPK0. This means that f̂ = ĝα embedded into ( f̂ ′0, f̂ ′1) can also be uniquely used for the GOpen
algorithm. Finally, the following lists are updated as reg← reg∪{regi}, where regi is the registration entry
for the joined user i as before, and Lc←Lc∪{(i,accept)}.

Contrary to the previous proofs [10, 42], C does not need to use the knowledge extractor E with respect
to π0, thereby allowing to make polynomially-many SndToI oracle queries.

• USK. For an identity i ∈ Lh, C outputs uski and gski.

• RReg. For an identity i, C outputs regi.

A outputs a forgery σ∗ = (u∗,v∗,w∗,π∗1 ) on a message m∗. By the definition of the traceability game, if
A succeeds, then GVf(gpk,m∗,σ∗) = 1 holds and either of the following two cases should hold.

1) GOpen(ok,m∗,σ∗,reg) =⊥: This case indicates that for each f̂ derived from regi = (i, Ŝ0, Ŝ1, f̂ ′0, f̂ ′1,τ,
σDS) ∈ reg, the two pairing checks in the GOpen algorithm3 are not satisfied, i.e., e(u∗, f̂ ) 6= e(w∗, ĝ)
or τ 6= (g, f̂ ). The second inequality would contradict the SS of the SPK0. Thus, the failure of
the GOpen algorithm leads to the first inequality for all f̂ , which means that w∗ 6= (u∗)α for each
α = logĝ f̂ . Eventually, we see that α∗ = logu∗ w∗ is new. Based on this fact, C uses E (with respect
to the SPK1) to extract α∗, and outputs (u∗,v∗,α∗) as a solution of the modified GPS problem.

2) GOpen(ok,m∗,σ∗,reg) = (i∗,Π∗) ∧ GJudge(m∗,σ∗,gpk, i∗,upk∗,Π∗) = 0: Let Π∗ be parsed as (τ∗,
σ∗DS,π

∗
2 ). Since each user has a unique exponent α via the SndToI oracle and u∗ 6= 1 is assured by the

GVf algorithm, the probability that multiple identities are traced by the GOpen algorithm is 0. We
assume that there is only one entry reg∗ ∈ reg which opens the user i∗, given (m∗,σ∗). As the open
algorithm runs honestly, f̂ ∗ derived from reg∗ has to satisfy e(u∗, f̂ ∗) = e(w∗, ĝ) and τ∗ = (g, f̂ ∗).
This implies that the statement of the SPK2 is true, and thus π∗2 is correctly verified because of the
completeness of the SPK2. In addition, σ∗DS should be verified on a message τ∗ under upk∗, because
C was already convinced of its validity when handling the SndToI oracle queries. Consequently, the
judge algorithm should output 1.

7 Comparison with Previous Schemes

In the following comparison, we use SEP-GS to denote GS schemes based on the sign-encrypt-prove
paradigm, and SRP-GS to denote GS schemes on the sign-randomize-prove paradigm. For comparison,
we consider the following pairing-based GS schemes secure in the random oracle model; the GS scheme
by Boneh, Boyen, and Shacham (BBS04 [11]), a variant of this BBS04 for suggesting efficient bath ver-
ification (BBS04* [27]), two of the most recent SEP-GS schemes with high efficiency (DP06 [24] and
LMP+16 [37]), and the existing SRP-GS schemes (BCN+10 [10], PS16 [42], and DS18 [25]).

Efficiency. The efficiency relies on which pairing-friendly curve is chosen. In general, at the same security
level, it is known that type-3 pairings offer efficiency benefits. For example, over the 256-bit BN curve
[3] standardized in ISO/IEC 15946-5 [35] (aiming at the 100-bit security level [2]), each group has the
following bit-length: |Zp|= 256, |G1|= 256, |G2|= 512, and |GT |= 3072. Many of recent cryptographic

3Recall that the GOpen algorithm is partially corrupt, so that the opening executions must follow the prescribed program.
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Table 2: Efficiency comparison between previous GS schemes and ours

Scheme Signature size (bytes) Sign (ms) Verify (ms)
SEP-GS
BBS04 [11] 3G1,6Zp (288) 3ET ,9E1 (6.0) 1P,3ET ,2E2,8E1 (9.3)
BBS04* [27] 1GT ,3G1,6Zp (672) 3ET ,9E1 (6.0) 1P,3ET ,2E2,8E1 (9.3)
DP06 [24] 4G1,5Zp (288) 4ET ,7E1 (6.5) 2P,3ET ,9E1 (10.8)
LMP+16 [37] 7G1,3Zp (320) 4P,2ET ,13E1 (15.7) 4P,4E2,11E1 (15.3)
SRP-GS
BCN+10 [10] 3G1,2Zp (160) 1ET ,3E1 (2.0) 4P,3E1 (10.5)
PS16 [42] 2G1,2Zp (128) 1ET ,2E1 (1.7) 3P,3E1 (8.1)
DS18 [25] 4G2,3G1,3Zp (448) 5E2,6E1 (4.8) 5P,2E2,4E1 (14.4)
This work 3G1,2Zp (160) 4E1 (1.2) 3P,2E1 (7.8)

◦ For i ∈ {1,2,T}, Ei indicates an exponentiation in Gi, respectively. ◦ P is a pairing operation. ◦ The numbers in
parentheses are when using the BN-256 curve from [14].

Table 3: Batch verification comparison between previous GS schemes and ours

Scheme Batch Verify n = 20 (Ratio) n = 100 (Ratio)
SEP-GS
BBS04 [11] nP,3nET ,2nE2,8nE1 186.0ms (9.3) 930.0ms (13.7)
BBS04* [27] 2P,nET ,13nE1 104.8ms (5.2) 504.8ms (7.4)
DP06 [24] 2nP,3nET ,9nE1 216.0ms (10.7) 1080.0ms (15.9)
LMP+16 [37] 4nP,4nE2,11nE1 306.0ms (15.2) 1530.0ms (22.5)
SRP-GS
BCN+10 [10] (2n+2)P,3nE1 118.8ms (5.9) 574.8ms (8.4)
PS16 [42] 3nP,3nE1 162.2ms (8.1) 810.0ms (11.9)
DS18 [25] (n+4)P,2nE2,4nE1 105.6ms (5.3) 489.6ms (7.2)
This work 3P,(2n+3§)E1 20.1ms (1) 68.1ms (1)

◦ For i ∈ {1,2,T}, Ei indicates an exponentiation in Gi, respectively. ◦ P is a pairing operation. ◦ n is the
number of signatures to be batch-verified. ◦ The timing of each verification is estimated over the BN-256 curve
from [14]. ◦ § indicates the cost for small exponents test.

protocols with resource-constrained devices have been implemented over such Type-3 pairings to attain
better efficiency. To provide efficiency comparison, we adopt the result from [14] where an exponentiation
{E1, E2, ET} in {G1, G2, GT}, and a pairing P over the BN-256 curve take about 0.3ms, 0.6ms, 1.1ms,
2.4ms on a 2.9GHz Intel Core i7-3520M CPU, respectively.

Table 2 shows that the SRP-GS schemes generally provide better efficiency than the SEP-GS schemes.
Especially, PS16 and ours seem to be outstanding. Compared with PS16, ours contains one more element
in G1 in the signature size. However, this would be a slight increase in the setting of type-3 pairings.
Instead, our scheme is slightly more efficient than PS16 in terms of the signing and verification costs. It is
because, in ours, the signature generation takes place only in G1, and the verification does not require any
computation in neither G2 nor GT . Indeed, when taking the BN-256 curve [14], the signing time of ours is
estimated to 1.2 ms and the verifying time of ours to 7.8 ms, which are currently the fastest to the best of
our knowledge.

Furthermore, we emphasize that our scheme is more favourable for batch verification than the other
compared GS schemes. As shown in Table 3, BBS04* and ours have the feature that the number of pairings
(which would be the dominant task) is constant, regardless of n signatures. Nevertheless, BBS04* suffers
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from the fact that it still requires another expensive operation ET , dependent on n. The other GS schemes
all require a number of parings that increase linearly with the number n. On the other hand, our batch
verification requires only constant 3 pairings and about 2n+3 exponentiations in G1 for n signatures. This
results in the remarkable efficiency improvement for batch verification. In fact, when taking the BN-256
curve [14], ours is 8.1 times faster when n = 20, and 11.9 times faster when n = 100, compared with PS16.

Table 4: Security comparison between previous GS schemes and ours

Scheme
Security
Model Anony.

Rewinding
in GJoin♣ Assumption♣ Opening

SEP-GS
BBS04 [11] BMW CPA No GJoin q-Type Sound
BBS04* [27] BMW CPA No GJoin q-Type Sound
DP06 [24] BSZ CCA2 No q-Type Sound
LMP+16 [37] KY CCA2 Yes SXDH Sound
SRP-GS
BCN+10 [10] BMW* CCA- Yes Interactive Sound
PS16 [42] BMW* CCA- Yes Interactive Sound
DS18 [25] BSZ CCA2 No GGM Weak
This work BSZ CCA- No Interactive Sound

◦ BMW = (static group, issuer and opener not separated). ◦ BMW∗ = (dynamic group, issuer and opener not separated).
◦ BSZ, KY = (dynamic group, issuer and opener separated). ◦ ♣ relates to the security proof of the traceability.

Security. Table 4 presents the security comparison between the previous GS schemes and ours. Among
the GS schemes supporting dynamic groups, LMP+16, BCN+10, and PS16 require knowledge extractions
(using rewinding) to simulate GJoin protocol executions in their traceability proofs. In contrary, DP06 uses
a knowledge extractor without any rewinding, and DS18 and ours do not require it so that they support
efficient and concurrently-secure GJoin protocols. Regarding security assumptions for the traceability,
BBS04, BBS04*, and DS06 are based on q-type assumptions where q is the number of the SndToI oracle
queries. LMP+16 relies on the SXDH assumption, and DS18 relies on a structure preserving signature on
equivalence classes [33] that are secure in the generic group model. The other schemes (including ours)
are based on interactive assumptions such as the LRSW [38] in BCN+10, and the PS [42] in PS16, and
the modified PS assumption in ours. In terms of anonymity, DS06, LMP+16 and DS18 provide the full
(CCA2) anonymity by allowing both opening queries and group signing key queries even for target users,
and BBS04 and BBS04* provide the weaker CPA anonymity by disallowing any opening query. BCN+10,
PS16, and ours provide the slightly weaker type of the selfless (CCA-) anonymity only by disallowing
signing key queries for target users. However, compared to other anonymity notions [1, 18], the selfless
anonymity is generally considered as an acceptable level of anonymity for practical use. Regarding the
soundness of the GOpen algorithm, DS18 provides the weak opening soundness [44], which realistically
has the weakness that a group of malicious users can share one and the same opening trapdoor without being
detected by the issuer, and thus the GOpen algorithm cannot identify the user who created a signature in
question. The other GS schemes except for DS18, however, provide the opening soundness4 by which the
GOpen algorithm can always find the user as the owner of a valid signature.

4This is slightly different from the ordinary opening soundness in [44].
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8 Proofs of the Assumptions

We recall the Schwarz-Zippel lemma and present the proof of the modified GPS assumptions in the generic
group model [45]. Based on the proof result, we can easily prove that the GPS assumption also holds.

Lemma 8.1 (Schwarz-Zippel Lemma). Let P ∈ F[x1, ...,xn] be a non-zero polynomial of total degree d ≥ 0
over a field F. If the values r1, ...,rn are independently chosen at random from a finite subset S ⊂ F, then
Pr[P(r1, ...,rn) = 0]≤ d

|S| .

Theorem 8.2. The modified GPS assumption described in Section 3 holds in the generic group model.

Proof. A simulator B maintains lists, for i ∈ {1,2,T}, LGi = {(Fi, j,γi, j) : j = 0, ...,ηi− 1}, where γi, j ∈
{0,1}∗ is an encoded value of Fi, j, and ηi is the maximum number of encoded values that an adversary A
can obtain.
B initially sets the values as F1,0 = 1, F2,0 = 1, F2,1 = x, F2,2 = y, and FT,0 = 1, and gives the assigned

values γ1,0, γ2,0, γ2,1, γ2,2, and γT,0 to A. It then sets the counter values as θ1 = θT = 1, and θ2 = 3. If θi

eventually reaches ηi during the following simulation, the corresponding oracle does not work.

• Group Operation. A asks either multiplication or division while giving γi, j and γi,k where i ∈ {1,2,T}
and j,k < θi. B then computes Fi,θi = Fi, j±Fi,k for the queried operation. If Fi,θi previously existed as Fi,l
for some l < θi, B sets γi,θi = γi,l; otherwise, chooses γi,θi randomly. B outputs γi,θi to A, and then updates
LGi ←LGi ∪{(Fi,θi ,γi,θi)} and θi← θi +1.

• Pairing Operation. For γ1, j and γ2,k where j < θ1 and k < θ2, B computes FT,θT = F1, j ·F2,k. If FT,θT

previously existed as FT,l for some l < θT , B sets γT,θi = γT,l; otherwise, chooses γT,θT randomly. B outputs
γT,θT to A, and then updates LGT ←LGT ∪{(FT,θT ,γT,θT )} and θT ← θT +1.

• OMGPS
0 . Let n be the maximum number of the OMGPS

0 oracle queries. For the k-th query such as k ≤ n,
B chooses rk ∈ Zp randomly and sets F1,θ1 = rk. If F1,θ1 previously existed as F1,l for some l < θ1, B
sets γ1,θ1 = γ1,l; otherwise, B sets chooses γ1,θ1 randomly and outputs γ1,θ1 to A. B then updates LG1 ←
LG1 ∪{(F1,θ1 ,γ1,θ1)} and θ1← θ1 +1.

• OMGPS
1 . For (γ1,0,γ1,iu ,γ1,i f ,γ1,iw) where iu, i f , iw < θ1, B checks the validity by the following conditions;

(1) γ1,iu was not queried to this oracle before, (2) γ1,iu has appeared in OMGPS
0 as output, and (3) the equality

F1,iw = F1,iuF1,i f holds. If all conditions are satisfied, B computes F1,θ1 = xF1,iu + yF1,iw . If F1,θ1 previously
existed as F1,l for some l < θ1, B sets γ1,θ1 = γ1,l; otherwise (i.e., if F1,θ1 is new), B chooses γ1,θ1 randomly.
B outputs γ1,θ1 and updates LG1←LG1∪{(F1,θ1 ,γ1,θ1)} and θ1← θ1+1. Otherwise, B returns⊥. Addition-
ally, to check the validity ofA′s output later, Bmaintains a listL∗ that is updated asL∗←L∗∪{(F1,iu ,F1,iw)}
after B returns v.

The goal of the above MGPS-related oracles is to ensure that F1,i f = αF1,0 and F1,iw = αF1,iu for some
polynomial α ∈ Zp[x,y,r1, . . . ,rn] of A’s choice. In this case, A obtains a value from the OMGPS

1 oracle as
the encoded value of F1,θ1 = F1,iu(x+ yα) for some α (known to A).

At the end, A collects encoded values of elements in G1 via those oracles; Group Operation, OMGPS
0 ,

and OMGPS
1 . It is obvious that elements of the other groups G2 and GT do not help produce a tuple

whose elements are in G1. Thus, A has to combine previously obtained values in G1 to produce a valid
(γ∗1,iu ,γ

∗
1,iv ,m

∗), where iu, iv < η1, satisfying (1) F∗1,iu 6= 0, (2) F∗1,iv = F∗1,iu(x+ym∗), and (3) F1,iw 6= m∗F1,iu for
all (F1,iu ,F1,iw) ∈ L∗. We now show that A cannot symbolically succeed in producing such a tuple.

Let ri be an output in response to theOMGPS
0 oracle queries for i = 1, . . . ,n, and let Pi, j ∈Zp[x,y,r1, ...,rn]

be a polynomial associated with Fi, j. If the A′s output (γ∗1,i,γ
∗
1, j,m

∗) is valid, the polynomials corre-
sponding to both γ∗1,i and γ∗1, j can be represented by P∗1,i = a1 +∑

n
k=1
(
bk,1rk + ck,1(x+ yαk)rk

)
and P∗1, j =
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a2 +∑
n
k=1
(
bk,2rk + ck,2(x+ yαk)rk

)
for some a1,a2,{αk, bk,1, bk,2, ck,1, ck,2}n

k=1 in Zp, which are known to
A. Moreover, the equation P∗1, j = P∗1,i · (x+ ym∗) should hold, that is:

a2 +
n

∑
k=1

(
bk,2rk + ck,2(x+ yαk)rk

)
= a1x+

n

∑
k=1

(
bk,1rkx+ ck,1(x2 + xyαk)rk

)
+m∗

(
a1y+

n

∑
k=1

(
bk,1rky+ ck,1(xy+ y2

αk)rk
))

.

Since the two polynomials are equal, each monomial on both sides is also same. Hence, we have the
following: ck,1 = 0 for all k, as no monomial of degree 3 exists on the left side. a1 = 0 as neither of
monomial x nor y exist on the left side. bk,2 = 0 for all k, as no monomial rk exists on the right side. a2 = 0
as no constant exists on the right side. ck,2 = bk,1 for all k, due to the monomial xrk on each side.

With the above fact, the equation can be simplified as follows:

n

∑
k=1

αkdkrky = m∗
n

∑
k=1

dkrky, where ck,2 = bk,1 = dk.

Since P∗1,i 6= 0 and a1,ck,1, ...,cn,1 are all zero, there is at least one non-zero bk,1 = dk for some k, leading
to m∗ = αk. Consequently, for one of the previous tuple (F1,uk ,F1,wk) in L∗, m∗ meets F1,wk = m∗F1,uk . This
implies the invalidity of the A’s output.

Next, the simulation by B is complete with overwhelming probability. This means that two different
polynomials should not be evaluated to the same value. Let qi < ηi be the number of the queries to the
Group Operation for i ∈ {1,2,T}. Regarding G1, every P1,i has degree at most 2 when A queries to
OMGPS

1 . A obtains at most q1 +2n+1 encoded elements, and thus there are at most (q1 +2n+1)2/2 pairs
of distinct polynomials. By Lemma 8.1, the probability that two of them evaluate the same value is less
than (q1 + 2n+ 1)2/p. Similarly, regarding G2, P2,i has degree at most 1 and (q2 + 3)2/2 pairs of distinct
polynomials exist. Hence, the probability that the collision of evaluation occurs is less than (q2 + 3)2/2p.
Since PT,i has at most degree 3 and (qT +1)2/2 pairs possibly exist, the simulation in GT is incorrect with
probability less then 3(qT +1)2/2p. It is obvious that the sum of those probabilities is negligible.

Theorem 8.3. The GPS assumption described in Section 3 holds if the modified GPS assumption holds.

Proof. Let B play the role of both a simulator of the GPS problem and an adversary of the modified GPS
problem. We show that B uses A, an adversary of the GPS problem, to solve the modified GPS problem.

Whenever A calls OGPS
0 oracle, B calls OMGPS

0 oracle and relays the output to A. Whenever A calls
OGPS

1 oracle with input (u,m), B calls theOMGPS
1 oracle by setting f = gm and w = um. Notice that B knows

m that is from theA’ input. B receives v as output, and then relays it toA. Finally,A outputs (u′,v′,m) such
that v′ = u′x+ym for a new m that has not been queried. B outputs the tuple as a solution of the modified GPS
solution. Clearly, it is easily shown that the ability ofA to solve the GPS problem can be converted into that
of B to solve the modified GPS problem.

9 Conclusion

In constructing a DGS scheme, concurrent joins and batch verifications are features necessary for realistic
applications such as vehicular ad-hoc networks. We have constructed the practical DGS scheme that pro-
vides both features. For the proof of concurrent joins, we have introduced the new assumption, called the

24



modified GPS assumption, thereby removing knowledge extractors while simulating join protocol execu-
tions in the traceability proof. In addition, our DGS scheme supports efficient pairing-batched verifications
at the expense of slightly increasing the size of a signature. In terms of computational cost, our construction
is able to achieve the fastest signing and (batch) verification, compared with all of the existing pairing-based
GS schemes.
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