
A Power Side-Channel Attack on the
CCA2-Secure HQC KEM

Thomas Schamberger1, Julian Renner1, Georg Sigl1, and Antonia
Wachter-Zeh1

Technical University of Munich, Germany
{t.schamberger,julian.renner,sigl,antonia.wachter-zeh}@tum.de

Abstract. The Hamming Quasi-Cyclic (HQC) proposal is a promising
candidate in the second round of the NIST Post-Quantum Cryptogra-
phy Standardization project. It features small public key sizes, precise
estimation of its decryption failure rates and contrary to most of the
code-based systems, its security does not rely on hiding the structure of
an error-correcting code. In this paper, we propose the first power side-
channel attack on the Key Encapsulation Mechanism (KEM) version of
HQC. Our attack utilizes a power side-channel to build an oracle that
outputs whether the BCH decoder in HQC’s decryption algorithm cor-
rects an error for a chosen ciphertext. Based on the decoding algorithm
applied in HQC, it is shown how to design queries such that the output of
the oracle allows to retrieve a large part of the secret key. The remaining
part of the key can then be determined by an algorithm based on linear
algebra. It is shown in experiments that less than 10000 measurements
are sufficient to successfully mount the attack on the HQC reference
implementation running on an ARM Cortex-M4 microcontroller.

Keywords: Error Correction · HQC · Post-Quantum Cryptography ·
Power Analysis · Side-Channel Analysis

1 Introduction

In modern communication systems, asymmetric cryptography is widely applied
to enable secure communication between multiple parties. Since it is well known
that classic public-key algorithms such as ElGamal or RSA are vulnerable against
Shor’s quantum computer algorithm, the National Institute of Standards and
Technology (NIST) has started a standardization process for post-quantum se-
cure public-key cryptosystems [8]. The code-based system Hamming Quasi Cyclic
(HQC) [7] is a promising candidate in the second round of this NIST competi-
tion, as it offers several advantages. Established code-based cryptosystems like
McEliece or its derivatives rely on hiding the structure of the used error correct-
ing code. In contrast, the structure of the error-correcting code as well as the
efficient decoding algorithm used in HQC are publicly known and therefore its
security does not rely on hiding this knowledge. Instead, the security of HQC
can be reduced to instances of the Quasi-Cyclic Syndrome Decoding problem,
which is a well-understood problem in coding theory. Furthermore, HQC fea-
tures attractive key sizes and allows precise estimations of its decryption failure

2 Thomas Schamberger et al.

rate. It has been shown that the IND-CPA secure version of HQC can be at-
tacked requiring only a few thousand queries to the algorithm [5]. Nevertheless,
the IND-CCA2 secure version is not vulnerable to these sorts of attacks as the
decryption signals a failure if the ciphertext is not valid. Recent attacks on the
IND-CCA2 variant of HQC [9,12] use a timing side-channel in the implemen-
tation of the used BCH decoder to gather information about the decryption
despite its IND-CCA2 security. Utilizing this information both attacks are able
to successfully retrieve the used secret key. Fortunately, this attack vector has
been removed as the authors of [12] provide a constant-time implementation of a
BCH decoder, which has been merged into the HQC reference implementation.

In this paper we build upon the work of Ravi et al . [11], which describes
a power side-channel attack methodology against the error correction used in
the two lattice-based cryptosystems LAC [6] and Round5 [1]. We identify a
similar vulnerability in HQC and are the first to show a power side-channel
attack against the cryptosystem. Our attack is able to retrieve the whole secret
key despite the constant-time implementation of the BCH decoder. The attack
works by observing that the BCH decoder of the reference implementation shows
a characteristic and distinguishable power consumption dependent on whether
an error has to be corrected.

Contributions We show that the attack methodology from [11] can be used
to construct an oracle through the power side-channel that is able to identify
whether an error has to be corrected by the BCH decoder used in the HQC
reference implementation. The oracle is based on a template matching approach
using a sum of squared differences metric. The initialization of the oracle can
be performed without the knowledge of the secret key, which allows a direct
initialization on the device under attack. An evaluation of the oracle on our
measurement platform consisting of an STM32F415RE ARM Cortex-M4 micro-
controller indicated that a total of four traces is sufficient for the initialization.
The efficiency of the oracle is shown by the correct evaluation of 20000 test
traces.

Building on this oracle we are the first to show a successful power side-
channel attack against the Key Encapsulation Mechanism (KEM) version of
HQC. We show general formulas for all parameter sets of HQC describing how
to construct ciphertext inputs to the algorithm that lead to exploitable behavior
based on the value of the secret key. Through an evaluation of the oracle results
for these ciphertexts, we are able to sequentially retrieve the secret key. Due to
the fact that the secret key has a marginally larger size then ciphertext, there are
keys that can only be partially attacked with this technique. Using simulations,
we observe that the probabilities for such a key cannot be neglected, e.g., the
probability for HQC-128 is 29.23%, and provide a linear algebra solution that
is able to find the remaining part of the secret key. In general, the success of
our attack is highly dependent on the distribution of ones in the secret key. The
described ciphertext inputs are sufficient to attack 93.20% of the possible keys
in HQC-128, which we consider to be high enough to pose a significant threat to
system. Nevertheless, our attack methodology can be adapted to support a larger
range of keys with the trade-off of a significant increase in required measurement
traces. Although this trade-off exists, there are rare cases where we are not able to

A Power Side-Channel Attack on the CCA2-Secure HQC KEM 3

retrieve the entire key. For these cases, we propose a modification of information
set decoding (ISD) that utilizes the obtained side-channel information and thus
still results in an attack complexity far below the claimed security level.

Finally, we use our described attack and successfully retrieve the whole secret
key of the HQC-128 reference implementation using our measurement setup. In
addition to the required four initialization traces, the attack requires less than
10000 measurements of the decoding step during the HQC decryption.

2 Preliminaries

2.1 Notation

Let F2 be the finite field of size 2. Throughout this paper we use Fm×n
2 to denote

the set of all m× n matrices over F2, Fn
2 = F1×n

2 for the set of all row vectors of
length n over F2, and define the set of integers [a, b] := {i : a ≤ i ≤ b}. We index
rows and columns of m×n matrices by 0, . . . ,m− 1 and 0, . . . , n− 1, where the
entry in the i-th row and j-th column of the matrix A is denoted by Ai,j .

The Hamming weight of a vector a is indicated by HW(a) and the Hamming
support of a is denoted by supp(a) := {i ∈ Z : ai 6= 0}. A set A is called super
support (ssupp) of a if A ⊃ supp(a).

Let V be a vector space of dimension n over F2. We define the product of
u,v ∈ V as uv = u rot(v)> = v rot(u)> = vu, where

rot(v) :=


v0 vn−1 . . . v1
v1 v0 . . . v2
...

...
. . .

...
vn−1 vn−2 . . . v0

 ∈ Fn×n
2 .

As a consequence of this definition, elements of V can be interpreted as poly-
nomials in the ring R := F2[X]/(Xn − 1).

2.2 HQC

The HQC scheme is based on two different codes. It consists of a public code
C ⊆ Fn

2 of length n and dimension k, where it is assumed that both an efficient
encoding algorithm Encode and an efficient decoding algorithm Decode are
known publicly. Further, the decoding algorithm can correct δ errors with high
probability but fails for errors of large weight. HQC is also based on a second
code of length 2n and dimension n which has a parity-check matrix (I, rot(h)) ∈
Fn×2n
2 , where I denotes the n× n identity matrix. Contrary to C, it is assumed

that no party posses an efficient decoding algorithm for the second code. Note
that decoding in the second code is neither required in the encryption nor in the
decryption algorithm.

In the following we describe the IND-CPA secure HQC public key encryption
scheme as it is submitted to the second round of the NIST PQC competition
[7]. It consists of the three algorithms Key Generation, Encryption and Decryp-
tion, which are shown in Algorithms 1 to 3. The algorithms use the functions

4 Thomas Schamberger et al.

Encode and Decode which encode into and decode in C. These functions are
formally defined in Section 2.3. All parameter sets for different security levels
are shown in Table 1. In [4], Hofheinz et al. show a generic method to transform
an IND-CPA secure encryption scheme into an IND-CCA2 secure KEM. This
transformation is applied in the HQC proposal and results in the encapsula-
tion and decapsulation algorithms of the HQC KEM described in [7]. Note that
our attack especially targets the KEM version of HQC as the IND-CPA secure
PKE version has been shown to be vulnerable without using a side-channel [5].
Due to space restrictions we only show the PKE version, as the target of our
attack, namely the decryption (c.f. Algorithm 3), is the first step during the
decapsulation function of the KEM.

Table 1: Parameter sets proposed for HQC [7]

Instance n1 n2 n k w wr = we δ
HQC-128 766 31 23869 256 67 77 57
HQC-192 766 59 45197 256 101 117 57
HQC-256 796 87 69259 256 133 153 60

Algorithm 1: Key Generation

Input: param = (n, k, δ, w,wr, we)
Output: pk = (h, s) and sk = (x,y)

1 choose C
2 h

$←− R
3 (x,y)

$←− R2 such that HW(x) = HW(y) = w
4 s← x + hy
5 return pk = (h, s), sk = (x,y)

Algorithm 2: Encryption

Input: pk = (h, s), pt = (m) and randomness θ
Output: ct = (u,v)

1 e′
$←− R such that HW(e′) = we using θ

2 (r1, r2)
$←− R2 such that HW(r1) = HW(r2) = wr using θ

3 u← r1 + hr2
4 v ← Encode(m) + sr2 + e′

5 return ct = (u,v)

Algorithm 3: Decryption

Input: sk = (x,y), ct = (u,v)
Output: m

1 v′ ← v − uy
2 m← Decode(v′)
3 return m

A Power Side-Channel Attack on the CCA2-Secure HQC KEM 5

2.3 Choice of the error-correcting code C

In the original proposal, C is constructed using a product code of an [n1, k]

shortened BCH code C1 with a generator matrix G1 ∈ Fk×n1
2 and a [n2, 1] repe-

tition code C2. Note that the HQC proposal was recently extended and contains
now an additional variant called HQC-RMRS that uses a code concatenation
of a Reed-Muller code and a Reed-Solomon code for the error-correcting code
C. The extension is not motivated by security concerns regarding the original
HQC scheme but instead the new choice of C provides a better error correction
capability and thus allows to reduce the parameter sizes. The new variant is out
of the scope of this paper and for simplicity we denote the original proposal as
HQC for the remainder of this paper.

Encoding algorithm The encoding is defined as

Encode : Fk
2 → Fn

2 ,

m 7→ (m′0, . . . ,m
′
0︸ ︷︷ ︸

n2 times

,m′1, . . . ,m
′
1︸ ︷︷ ︸

n2 times

,m′2, . . . ,m
′
n1−1, 0, 0, . . . , 0︸ ︷︷ ︸

n− n1n2 times

),

where m′ = (m′0, . . . ,m
′
n1−1) = mG1 and G1 ∈ Fk×n1

2 is a generator matrix of
the [n1, k] shortened BCH code C1.

Decoding algorithm Given an input vector v′ = (v′0, . . . ,v
′
n1−1,v

′
n1

) ∈
Fn
2 , where v′0, . . . ,v

′
n1−1 ∈ Fn2

2 and v′n1
∈ Fn−n1n2

2 , the decoding algorithm

Decode : Fn
2 → Fk

2 consists of two steps. First the algorithm decodes the vec-
tors v′0, . . . ,v

′
n1−1 separately in the repetition code C2 using majority decoding

to a vector ṽ = (ṽ0, . . . , ṽn1−1) ∈ Fn1
2 , where ṽi is 1 if

∑n2

j=1 v
′
ij ≥

⌈
n2

2

⌉
and 0

otherwise. In the second step, the algorithm decodes ṽ in the BCH code C1 to the
vector m ∈ Fk

2 . In the proposal, a key equation based approach is used for decod-
ing in C1 which works as follows. First, the syndromes are computed using the
transpose of the additive Fast Fourier Transformation as in [2]. Then the error
locator polynomial is determined using a modification of Berlekamp’s algorithm
and the error values are computed with an additive Fast Fourier Transformation.

2.4 Security of HQC

For our proposed attack, it is important to recognize that retrieving the secret
key sk = (x,y) from the public key pk = (h, s) is equal to solving an instance of
the Computational 2-Quasi Cyclic Syndrome Decoding (QCSD) Problem. This

can be seen by s = x+hy = (x,y)(1, rot(h))> = eH>, where e := (x,y) ∈ F2n
2

with HW(x) = HW(y) = w and H := (1, rot(h)) ∈ Fn×2n
2 . The vector s can be

interpreted as the syndrome of the error e and the parity-check matrix H.
Using our proposed side-channel attack, we gain information about the sup-

port of y that we can incorporate in an information set decoding (ISD) algo-
rithm, like Prange’s algorithm [10], to reduce its complexity. We will later state
the exact information that we obtain by the side-channels. For now however, it

6 Thomas Schamberger et al.

is sufficient to consider a generalized version of the 2-QCSD problem. Let n′,
w′, k′ be integers with 1 ≤ n′ ≤ n, 1 ≤ w′ ≤ w and n′ ≤ k′ ≤ n. Further, let

y′ ∈ Fn′

2 with HW(y′) = w′, H ′ ∈ F(n+n′−k′)×(n+n′)
2 be a parity-check matrix of

an [n + n′, k′] code and s′ := (x,y′)H ′>. This can be solved by a modification
of Prange’s algorithm. As in the original algorithm, we are interested in finding
an error-free information set but we modify the method to guess the indices.
Instead of choosing k′ indices at random from {0, . . . , n+ n′ − 1}, we randomly
choose k′1 indices from {0, . . . , n− 1} and k′2 indices from {0, . . . , n′ − 1}, where
k′1 + k′2 = k′. The probability of guessing an error-free information set is then

approximately given by
(
n−k′1
w

)
/
(
n
w

)
·
(
n′−k′2
w′

)
/
(
n′

w′

)
. It follows that the complexity

of this modified algorithm evaluates to

WMPr = n3 min
k′1,k

′
2

s.t.k′1+k′2=k′

(
n
w

)(
n′

w′

)(
n−k′1
w

)(
n′−k′2
w′

) = n3 min
k′1

(
n
w

)(
n′

w′

)(
n−k′1
w

)(
n′−k′+k′1

w′

) .
where it is assumed that solving a linear system of equations is in O(n3).

3 Side-channel Attack on HQC

In this section, we propose an attack to retrieve the secret key y = (y(0),y(1)) ∈
Fn
2 , where y(0) ∈ Fn1n2

2 and y(1) ∈ Fn−n1n2
2 . Please note that although the secret

key additionally consists of x, it is sufficient to only retrieve y, as it is the only
secret needed for a successful decryption (c.f. Section 2.2). We will first analyze
the distribution of the non-zero positions in y and based on this analysis, we show
an algorithm that is able to obtain y(0) with high probability, given a decoding
oracle. A method to construct such an oracle through a power side-channel
is described in Section 4. Afterwards, we present a method to determine y(1)

assuming that y(0) was successfully recovered. Finally, we show the complexity
of a modified information set decoding algorithm in the unlikely case that the
support of y was only partly retrieved.

3.1 Support Distribution of y

The distribution of the non-zero position in the secret y is essential for our
attack. To simplify the notation, we decompose the vector y as follows y =

(y
(0)
0 , . . . ,y

(0)
n1−1,y

(1)) ∈ Fn
2 , where y

(0)
0 , . . . ,y

(0)
n1−1 ∈ Fn2

2 .
From the parameters in Table 1 it follows that y is a sparse vector and

thus the vectors y
(0)
0 , . . . ,y

(0)
n1−1,y

(1)
have Hamming weight close to zero with

high probability. We performed simulations, by generating one million secret

keys, in order to estimate the weight distribution of y
(0)
0 , . . . ,y

(0)
n1−1. The results

are shown in Table 2, where we observed that most of the secret keys have a

y
(0)
0 , . . . ,y

(0)
n1−1 of Hamming weight at most 3. Simulations showed further that

the probability that HW(y(1)) > 0 is approximately 29.23%, 0.69%, 1.52% for
HQC-128, HQC-192 and HQC-256, respectively.

A Power Side-Channel Attack on the CCA2-Secure HQC KEM 7

Table 2: Probabilities that y is generated such that the weight of y
(0)
i for i =

0, . . . , n1 − 1 is at most 1, 2 or 3 for the different parameter sets.

max{HW(y
(0)
0), . . . ,HW(y

(0)
n1−1)} HQC-128 HQC-192 HQC-256

1 5.59% 0.11% ≈ 0%
2 93.20% 77.98% 58.99%
3 99.86% 99.25% 97.99%

3.2 Retrieving y(0) Using a Decoding Oracle

In this section, we propose a chosen ciphertext attack that retrieves y
(0)
i for

i = 0, . . . , n1 − 1. Please note that our attack approach is similar to [12], but
we are using a power instead of a timing side-channel. Our attack methodology
works as follows.

First, we fix u to (1, 0, . . . , 0) ∈ Fn
2 such that the vector that is feed into the

decoder of C is given by v′ = v − y, as it can be seen in Algorithm 3. Then,
we choose specific vectors v and use a decoding oracle ODec

01 that is able to
determine whether an error is corrected in the BCH code. After the oracle has
been initialized it can be queried for different inputs v and returns 1 if an error
had to be corrected and 0 otherwise. We give detailed information on how to
construct such an oracle through a power side-channel in Section 4. Based on
the oracle results for different inputs v, we can obtain y(0).

To derive the chosen vectors v, recall that the code C is a product code
consisting of a BCH code C1 of length n1 and a repetition code C2 of length
n2 and only the first n1n2 positions of v′ are decoded in C. The decoder for C
divides the first n1n2 positions of v′ into chunks v′0, . . . ,v

′
n1−1 of size n2 that

are separately decoded in the repetition code. Decoding in C2 is performed by a
majority voting, meaning vectors of Hamming weight at least dn2

2 e are mapped
to 1 and the remaining vectors are mapped to 0. The outputs of the repetition
decoder are then decoded in the BCH code. Since the zero vector is in C1 and
vectors of Hamming weight one1 are not in C1, we observe the following. Setting
dn2

2 e entries of vi to 1 and vj to the zero vector, where j ∈ [0, n1 − 1] \ {i},
results in two cases that we can distinguish using ODec

01 :

1. | supp(y
(0)
i) ∩ supp(vi)| > HW(y

(0)
i)

2 : This leads to HW(v′i) < dn2

2 e and the
repetition decoder outputs 0. Then, no error is corrected in the BCH code.

2. | supp(y
(0)
i) ∩ supp(vi)| ≤ HW(y

(0)
i)

2 : This leads to HW(v′i) ≥ dn2

2 e and the
repetition decoder outputs 1, which is corrected in the BCH code.

This observation allows to determine the support of y
(0)
i in a two-step ap-

proach, where we first determine a super support of y
(0)
i and then refine these

approximate locations to obtain the exact non-zero positions of y
(0)
i . Note that

all y
(0)
0 , . . . ,y

(0)
n1−1 are examined separately in sequential manner.

1 This follows from the fact that the BCH code has a minimum distance larger than 1.

8 Thomas Schamberger et al.

Finding a super support of y
(0)
i In the following, we derive how to choose vi

to determine a super support of y
(0)
i under the assumption that HW(y

(0)
i) ≤ 2.

As shown in Table 2, this already covers a large part of the possible keys. Nev-

ertheless, a generalization of the proposed method to cases where HW(y
(0)
i) > 2

works accordingly. Assuming HW(y
(0)
i) ≤ 1, a super support of y

(0)
i can be found

by using only two patterns of vi. For pattern 0, we choose supp(vi) = [0, dn2

2 e−1]
and for pattern 1, we choose supp(vi) = [dn2

2 e − 1, n2 − 1]. The patterns for
n2 = 31 (HQC-128) are illustrated in Fig. 1.

0123456789101112131415161718192021222324252627282930

0123456789101112131415161718192021222324252627282930

0

1

Fig. 1: Pattern of vi to find a super support of y
(0)
i for n2 = 31 and HW(y

(0)
i) ≤ 1.

The black part indicates positions with value 1 and the white part positions with
value 0.

If the BCH decoder has to correct an error for both patterns, it follows that

HW(y
(0)
i) = 0 and in case no error was corrected by the BCH code in both cases,

we conclude that supp(y
(0)
i) = ssupp(y

(0)
i) = {dn2

2 e − 1}. Furthermore, if the
BCH decoder has to correct an error for the first pattern but not for the second

pattern we know that supp(y
(0)
i)∩ ssupp(y

(0)
i) = [dn2

2 e, n2 − 1]. Given the BCH
decoder does not correct an error in the first case but in the second we know
that supp(y

(0)
i) ∩ ssupp(y

(0)
i) = [0, dn2

2 e − 2].

For the case HW(y
(0)
i) ≤ 2 and 4 | (n2 + 1), we can generalize the described

method as follows2. Instead of only two patterns, we construct six different
patterns of vi. An illustration of the six patterns for n2 = 31 together with the
general formulas for the sets dependent on n2 is given in Fig. 2.

Similar to before, we can determine a super support of y
(0)
i based on the

output of the oracle for the different patterns of vi, where the logic is given in
Table 3. In the table, either one or two sets per row are shown. The union of

these sets give a super support of y
(0)
i and each set has a non-empty intersection

with the support of y
(0)
i . The latter property is important since it reduces the

complexity of the next step.

Finding the support of y
(0)
i From the super support of y

(0)
i , we can determine

supp(y
(0)
i) using the fact that all indices of y

(0)
i that are not in ssupp(y

(0)
i)

2 This condition is fulfilled for HQC-128, HQC-192 and HQC-256. In case of an HQC
instance with 4 - (n2 + 1), the algorithm works similarly but the patterns need to be
slightly modified.

A Power Side-Channel Attack on the CCA2-Secure HQC KEM 9

0123456789101112131415161718192021222324252627282930

0123456789101112131415161718192021222324252627282930

0123456789101112131415161718192021222324252627282930

0123456789101112131415161718192021222324252627282930

0123456789101112131415161718192021222324252627282930

0123456789101112131415161718192021222324252627282930

0

1

2

3

4

5

[0, n2+1
2
− 1]

[n2+1
2
− 1, n2 − 1]

[n2+1
4
− 1, n2+1

2
− 2] ∪ [3(n2+1)

4
− 1, n2 − 1]

[0, n2+1
4
− 1] ∪ [3(n2+1)

4
− 1, n2 − 1]

[n2+1
4
− 1, n2+1

2
− 2] ∪ [n2+1

2
, 3(n2+1)

4
− 1]

[0, n2+1
4
− 1] ∪ [n2+1

2
, 3(n2+1)

4
− 1]

Fig. 2: Patterns of vi to find a super support of y
(0)
i for n2=31 and HW(y

(0)
i) ≤ 2.

The black part indicates positions with value 1 and the white part entries with
value 0. In addition, the support of vi dependent on n2 is given.

Table 3: Super support of y
(0)
i depending on the oracle output for different

patterns of vi (see Fig. 2) and HW(y
(0)
i) ≤ 2.

ODec
01 (Pattern ?)

ssupp(y
(0)
i)

0 1 2 3 4 5

1 1 1 1 1 1 { }
0 1 - - - - [0, n2+1

2 − 1]

1 0 - - - - [n2+1
2 − 1, n2 − 1]

1 1 0 1 1 1 [n2+1
4 , n2+1

2 − 2], [3(n2+1)
4 , n2 − 1]

1 1 1 0 1 1 [0, n2+1
4 − 2], [3(n2+1)

4 , n2 − 1]

1 1 1 1 0 1 [n2+1
4 , n2+1

2 − 2], [n2+1
2 , 3(n2+1)

4 − 2]

1 1 1 1 1 0 [0, n2+1
4 − 2], [n2+1

2 , 3(n2+1)
4 − 2]

1 1 0 0 1 1 {n2+1
4 − 1}, [3(n2+1)

4 , n2 − 1]

1 1 0 1 0 1 [n2+1
4 , n2+1

2 − 2], { 3(n2+1)
4 − 1}

1 1 1 0 1 0 [0, n2+1
4 − 2], { 3(n2+1)

4 − 1}
1 1 1 1 0 0 {n2+1

4 − 1}, [n2+1
2 , 3(n2+1)

4 − 2]

1 1 0 0 0 0 {n2+1
4 − 1}, { 3(n2+1)

4 − 1}

10 Thomas Schamberger et al.

correspond to entries with value zero. As already discussed, we describe the

proposed method for HW(y
(0)
i) ≤ 2 which can then be easily generalized to the

case HW(y
(0)
i) > 2.

Assume that HW(y
(0)
i) = 1. We can find the support of y

(0)
i by setting

dn2

2 e−1 entries in vi to 1 for indices which are not in ssupp(y
(0)
i). Keeping these

entries fixed, we iterate through all vectors vi with | supp(vi) ∩ ssupp(y
(0)
i)| =

1. This procedure is depicted for n2 = 31 and ssupp(y
(0)
i) = {0, . . . , 14} in

Fig. 3. Every time when the BCH decoder corrects an error, we know that

supp(vi)∩ssupp(y
(0)
i) 6= supp(y

(0)
i) and when the BCH decoder does not correct

an error, we can conclude that supp(vi) ∩ ssupp(y
(0)
i) = supp(y

(0)
i).

0123456789101112131415161718192021222324252627282930

0123456789101112131415161718192021222324252627282930

0123456789101112131415161718192021222324252627282930

...
0

1

14

Fig. 3: Patterns to determine supp(y
(0)
i) from ssupp(y

(0)
i) for n2 = 31 and

ssupp(y
(0)
i) = {0, . . . , 14}.

For HW(y
(0)
i) = 2, we fix dn2

2 e − 2 entries in vi to 1 for indices which are

not in ssupp(y
(0)
i). In case Table 3 refers to one set as the super support of

y
(0)
i , we brute-force all vectors vi, where | supp(vi) ∩ ssupp(y

(0)
i)| = 2. In case

Table 3 refers to two sets, we iterate through all vectors vi that have a non-empty
intersection with both sets. As before, every time the BCH decoder corrects an

error, we know that supp(vi) ∩ ssupp(y
(0)
i) 6= supp(y

(0)
i) and when the BCH

decoder does not correct an error, we state supp(vi)∩ ssupp(y
(0)
i) = supp(y

(0)
i).

3.3 Retrieving y(1) Using Linear Algebra

Due to fact that only the first n1n2 positions of v′ ∈ Fn
2 are decoded in C, we

are so far not able to determine the support of the last n− n1n2 positions of y
for keys with HW(y(1)) > 0. In the following, we propose a method to obtain
supp(y(1)) in these cases assuming that supp(y(0)) was successfully recovered.

Let J = {j0, . . . , jt−1} denote the known support of y(0) and let L =
{l0, . . . , lw−t−1} be the support of y(1) that we want to determine. First, observe

that s = x+hy = x+H>n+j0 + . . .+H>n+jt−1
+H>n+l0 + . . .+H>n+lw−t−1

, where

Hi denotes the i-th column of H = (1, rot(h)). Since s, h and J are known, we

A Power Side-Channel Attack on the CCA2-Secure HQC KEM 11

can compute s̃ = s+H>n+j0+. . .+H>n+jt−1
= x+H>n+l0+. . .+H>n+lw−t−1

. Then,

we repeatedly sample w− t indices l̂0, . . . , l̂w−t−1 from {0, . . . , n−n1n2−1} and

compute x̂ := s̃+H>
n+l̂0

+. . .+H>
n+l̂w−t−1

until HW(x̂) = w. In this case, x̂ = x

which means that
{
l̂0, . . . , l̂w−t−1

}
= L. We finally output J ∪ {l̂0, . . . , l̂w−t−1}

as estimation of supp(y).

The probability that {l̂0, . . . , l̂w−t−1} = L is
(
n−n1n2

w−t
)−1

and checking

whether {l̂0, . . . , l̂w−t−1} is equal to L requires w − t column additions which
is in O

(
n(w − t)

)
. This results in a complexity of WL = n(w − t)

(
n−n1n2

w−t
)
.

Although the described method has an exponential complexity, it is easily
solvable since n−n1n2 is small for all parameter sets3 and w− t is close to zero
with high probability. Assuming w − t ≤ 2, the complexity is 228.42, 218.05 and
221.47 for the parameter sets of HQC-128, HQC-192 and HQC-256.

3.4 Information Set Decoding

Due to errors during the power measurements or due to certain secret keys with

y
(0)
i of rather large Hamming weight, we might in some very rare cases not be able

to determine the support of y but only a subset P = {p0, . . . , pt−1} ⊂ supp(y)
of it. Then we can use P to reduce the complexity of information set decoding.
To do so, we compute s′ = s + H>n+p0

+ . . .+ H>n+pt−1
. We observe that s′ is a

syndrome of the parity-check matrix H and an error (e′0, e
′
1), where e′0 ∈ Fn

2 has
weight w and e′1 ∈ Fn

2 has weight w = w− t. Thus, we can use the modification
of Prange’s algorithm as described in Section 2.4 which has a complexity of

WBCH = n3·mink1

(n
w)

(n−k1
w)

(n
w−t)

(k1
w−t)

. We show the complexity of the modified Prange’s

algorithm for the parameters of HQC-128, HQC-192 and HQC-256 as a function
of t in Fig. 4. It can be observed that if t is close to w, the complexity of the
modified Prange’s algorithm is far below the claimed security level.

4 Decoding Oracle based on a Power Side-Channel

This section introduces a method to construct a decoding oracle through the
power side-channel, which allows an attacker to identify whether the BCH de-
coder has to correct an error during the decoding step of the decryption of HQC.
As explained in Section 3, this allows the attacker to retrieve the used secret key
y regardless of the constant time implementation of the BCH decoder. First, we
introduce the Welch’s t-test, which is used to identify point of interest (POI)
in the power measurements. Then the oracle itself is described, which is based
on template matching through a sum of squared differences metric. Finally, we
discuss our measurement setup and show attack results for the reference imple-
mentation of HQC.

3 The variable n−n1n2 is equal to 123, 3 and 7 for HQC-128, HQC-192 and HQC-256,
respectively.

12 Thomas Schamberger et al.

0 20 40 60 80 100 120

100

200

300

t

lo
g
2
(W

F
B
C
H

)

HQC-128

HQC-192

HQC-256

Fig. 4: ComplexityWBCH for HQC-128, HQC-192 and HQC-256 as a function of
t, where t is the number of non-zero positions in y that are correctly obtained
by the proposed side-channel attack.

4.1 Welch’s t-test

The Test Vector Leakage Assessment (TVLA) [3] is an established tool to sta-
tistically evaluate a cryptographic implementation for existing and exploitable
side-channel leakage. To achieve this goal, it uses Welch’s t-test, which in essence
evaluates whether two sets of data significantly differ from each other in the
sense of their means being different. Given two sets S0 and S1 with their re-
spective mean µ0, µ1 and variance s0, s1 the resulting t-value is calculated as
t = (µ0 − µ1)/(

√
s20/n0 + s21/n1), where n denotes the respective cardinality of

the set. Usually a threshold of |t| > 4.5 is defined, which states that there is a
confidence of > 0.99999 that both sets can not be distinguished if the resulting
t-value stays below this threshold. As the t-test can be individually performed
for all the samples of a measurement trace, it acts as an efficient method for POI
detection.

4.2 Construction of the Decoding Oracle

In [11] Ravi et al . mounted a successful attack against the NIST PQ candidates
LAC [6] and Round5 [1], by utilizing a power side-channel that allows to dis-
tinguish whether the used error correction had to correct an error. This section
introduces their attack methodology based on a POI-reduced template match-
ing approach with respect to its application on HQC. The result of this attack
methodology is an oracle ODec

01 that returns 0 if no error had to be corrected by
the BCH decoder and outputs 1 otherwise.

In order to initialize the oracle, templates for the two different classes are
built using the ciphertext inputs shown in Table 4. We refer to Section 3.2 for
an explanation on how these values are derived. Please note that an attacker
does not need to know the used secret key y in order to construct the templates.
This allows to directly build the templates on the device under attack, which
significantly increases the strength of the attack. To start building the templates,
a limited amount of Nt power traces for both classes, which will be denoted as T0

A Power Side-Channel Attack on the CCA2-Secure HQC KEM 13

Table 4: Ciphertext input used for the initialization of the oracle.

ODec
01 u ∈ Fn

2 v = (v0, . . . ,vn1−1) ∈ Fn1n2
2 with vi ∈ Fn2

2

0 (no error) 0 (0, . . . , 0)
1 (error) 0 (HW(v0) = dn2

2 e, 0, . . . , 0)

and T1, are recorded during the BCH decoding step of the function Decode in
the decryption algorithm of HQC (c.f. Algorithm 3). In order to cope with envi-
ronment changes during the measurement phase, e.g., DC offsets, the individual
power traces ti are normalized for both classes. This is done by subtracting the
respective mean ti, such that t′i = ti − ti1. Now, the t-test (c.f. Section 4.1)
is used to identify measurement samples that can be used to distinguish be-
tween the two classes. Based on these t-test results and a chosen threshold value
Thattack both trace sets can be reduced to their respective POIs resulting in T ′0
and T ′1 . Finally, the templates for both classes can be calculated as the mean
over all traces in their respective set, resulting in t0m and t1m, respectively.

In order to evaluate the oracle for a given ciphertext input (u,v) the corre-
sponding power trace tc has to be captured by the attacker. The classification
process is performed by an evaluation of the sum of squared differences SSD∗
to both templates. The trace tc is classified as the class with the lowest SSD
value. Note that tc also has to be reduced to the previously found POI. If both
the templates t1m, t

0
m and attack trace tc are seen as a vector of their respective

sample values, the evaluation can be written as

SSD0 = ((tc − tc1)− t0m)T · ((tc − tc1)− t0m)

SSD1 = ((tc − tc1)− t1m)T · ((tc − tc1)− t1m).

4.3 Oracle Evaluation

In order to evaluate the oracle we implemented the reference implementation of
HQC-128 on our test platform consisting of an STM32F415RGT6 ARM Cortex-
M4 microcontroller. The microcontroller is part of an CW308T-STM32F target
board which is mounted on a CW308 UFO board running at a clock frequency
of 10 MHz. The clock is provided by an external clock generator. We measured
the power consumption through an integrated shunt resistor with a PicoScope
6402D USB-oscilloscope at a sampling rate of 156.25 MHz. A dedicated GPIO
pin is used to provide a trigger signal to the oscilloscope indicating the duration
of the function that is evaluated.

First we evaluated if both classes can be distinguished through the power side-
channel using our setup. Therefore, we perform a t-test on 1000 measurements
with a randomly chosen classes. As described in Section 2.3, there are three main
steps during the BCH decoding, where each step could potentially be used for
the distinction. In the original proposal of the attack methodology by Ravi et al .
[11] the authors find the computation of syndromes a suitable operation during
the decoding. The t-test results for this attack vector is shown in Fig. 5a.

14 Thomas Schamberger et al.

0.0 0.5 1.0 1.5
sample number ×107

−500

−400

−300

−200

−100

0

100

200

300

400

t-v
al

ue

t-test threshold (t = ±4.5)
poi selection border (Thattack = ±10)

(a) Compute Syndromes

0 1 2 3 4 5
sample number ×106

−500

−400

−300

−200

−100

0

100

200

300

400

t-v
al

ue

t-test threshold (t = ±4.5)
poi selection border (Thattack = ±100)

(b) Error locator polynomial

Fig. 5: T-test result using 1000 measurements for different functions of the BCH
decoding during the HQC decryption. The computation of syndromes corre-
sponds to the function compute syndromes() and the error locator polynomial
computation to the function compute elp() of the reference implementation.

It can be seen that there are some measurement samples with a t-value that
indicates a sufficient amount of side-channel leakage in order to distinguish both
classes. Nevertheless, we opted to additionally examine the computation of the
error locator polynomial, as seen in Fig. 5b. The result shows a significantly
higher t-value in addition with an execution time of only ≈ 33.3% in comparison
to the syndrome computation. Therefore, we use the computation of the error
locator polynomial as our attack target.

In a second step, we prove the efficiency of the oracle by building the tem-
plates t0m and t1m using a total of 1000 template traces (500 for each class) using
only the POI given by the attack threshold Thattack depicted in Fig. 5b. The
resulting templates are shown in Fig. 6. It can be clearly seen that there is a sig-
nificant difference between both templates. After the initialization, we evaluated
20000 queries to the oracle given traces with a randomly chosen class. The oracle
was able to correctly classify all measurements. In an effort to lower the required
amount of traces for the initialization, we iteratively evaluated the classification
results with a decreasing number of template traces. As a result, we were able
to successfully classify all 20000 traces with exactly two template traces for each
class. Please note that this includes the fact that the POI detection with the
t-test also works with this low amount of traces.

Finally, we were able to successfully retrieve the complete secret key y of the
reference implementation of HQC-128 using our measurement setup. In addition
to the traces needed to initialize the oracle our complete attack, given a maxi-

mum HW(y
(0)
i) = 1, requires 1532 traces to find ssupp(y(0)) and 1005 traces for

the final supp(y(0)). In case of a maximum HW(y
(0)
i) = 2 the amount of pattern

increases to six and therefore 4596 traces are needed to find ssupp(y(0)). The
amount of traces to retrieve the final supp(y(0)) is highly dependent on the result

A Power Side-Channel Attack on the CCA2-Secure HQC KEM 15

0 200 400 600 800 1000 1200
poi reduced sample number

−40

−30

−20

−10

0

10

20

30

m
ea

n
po

we
rc

on
su

m
pt

io
n

(a) t0m

0 200 400 600 800 1000 1200
poi reduced sample number

−40

−30

−20

−10

0

10

20

30

m
ea

n
po

we
rc

on
su

m
pt

io
n

(b) t1m

Fig. 6: Computed templates after the initialization step of the oracle using 500
traces for each class.

of ssupp(y(0)) and therefore we only provide a worst case estimation, which is a
total of 3976 traces.

5 Conclusion

In this paper we show the first power side-channel attack against the code-based
post-quantum algorithm HQC in its Key Encapsulation Mechanism (KEM) ver-
sion. We observe that the success of the attack significantly depends on the
distribution of non-zero elements in the secret key under attack. Therefore, we
additionally provide attack solutions for special types of keys through the use of
linear algebra and in rare cases a modification of information set decoding. Using
our measurement setup containing an ARM Cortex-M4 microcontroller, we are
able to attack 93.2% of possible keys of the reference implementation of HQC-
128 with less than 10000 measurement traces. Our attack threatens the security
of the HQC KEM and makes the development of side-channel countermeasures
for the used BCH decoder a high priority research task.

References

1. Baan, H., et al.: NIST Post-Quantum Cryptography Standardization Round 2 Sub-
mission: Round5: compact and fast post-quantum public-key encryption, https:
//round5.org

2. Bernstein, D.J., Chou, T., Schwabe, P.: McBits: Fast Constant-Time Code-Based
Cryptography. In: Bertoni, G., Coron, J.S. (eds.) Cryptographic Hardware and
Embedded Systems - CHES 2013. pp. 250–272. Springer Berlin Heidelberg, Berlin,
Heidelberg (2013)

3. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side-channel
resistance validation. In: NIST non-invasive attack testing workshop. vol. 7, pp.
115–136 (2011)

https://round5.org
https://round5.org

16 Thomas Schamberger et al.

4. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A Modular Analysis of the Fujisaki-
Okamoto Transformation. In: Theory of Cryptography : 15th International Con-
ference, TCC 2017, Baltimore, USA, 12th - 15th November, 2017. Ed.: Y. Kalai.
Lecture notes in computer science, vol. 10677, pp. 341–371. Springer, Cham (2017)

5. Huguenin-Dumittan, L., Vaudenay, S.: Classical Misuse Attacks on NIST Round
2 PQC: The Power of Rank-Based Schemes. Cryptology ePrint Archive, Report
2020/409 (2020), https://eprint.iacr.org/2020/409

6. Lu, X., et al.: NIST Post-Quantum Cryptography Standardization Round 2 Sub-
mission: LAC: Lattice-based Cryptosystems, https://csrc.nist.gov/Projects/
post-quantum-cryptography/round-2-submissions

7. Melchor, C.A., et al.: NIST Post-Quantum Cryptography Standardization Round
2 Submission: Hamming Quasi-Cyclic (HQC), http://pqc-hqc.org/

8. National Institute of Standards and Technology (NIST), U.S. Department of Com-
merce: Post-quantum cryptography standardization (2017)

9. Paiva, T.B., Terada, R.: A Timing Attack on the HQC Encryption Scheme. In:
Paterson, K.G., Stebila, D. (eds.) Selected Areas in Cryptography – SAC 2019.
pp. 551–573. Springer International Publishing, Cham (2020)

10. Prange, E.: The use of information sets in decoding cyclic codes. IRE Transactions
on Information Theory 8(5), 5–9 (1962)

11. Ravi, P., Roy, S.S., Chattopadhyay, A., Bhasin, S.: Generic Side-channel attacks
on CCA-secure lattice-based PKE and KEM schemes. Cryptology ePrint Archive,
Report 2019/948 (2019), https://eprint.iacr.org/2019/948

12. Wafo-Tapa, G., Bettaieb, S., Bidoux, L., Gaborit, P., Marcatel, E.: A Practicable
Timing Attack Against HQC and its Countermeasure. Cryptology ePrint Archive,
Report 2019/909 (2019), https://eprint.iacr.org/2019/909

https://eprint.iacr.org/2020/409
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-2-submissions
http://pqc-hqc.org/
https://eprint.iacr.org/2019/948
https://eprint.iacr.org/2019/909

	A Power Side-Channel Attack on the CCA2-Secure HQC KEM

