
Enhanced Flush+Reload Attack on AES?

Milad Seddigh, Hadi Soleimany

Cyberspace Research Institute, Shahid Beheshti University

Abstract. In cloud computing, multiple users can share the same phys-
ical machine that can potentially leak secret information, in particular
when the memory de-duplication is enabled. Flush+Reload attack is a
cache-based attack that makes use of resource sharing. T-table implemen-
tation of AES is commonly used in the crypto libraries like OpenSSL. Sev-
eral Flush+Reload attacks on T-table implementation of AES have been
proposed in the literature which requires a notable number of encryp-
tions. In this paper, we present a technique to enhance the Flush+Reload
attack on AES in the ciphertext-only scenario by significantly reducing
the number of needed encryptions in both native and cross-VM setups.
In this paper, we focus on finding the wrong key candidates and keep
the right key by considering only the cache miss event. Our attack is
faster than previous Flush+Reload attacks. In particular, our method
can speed-up the Flush+Reload attack in cross-VM environment signif-
icantly. To verify the theoretical model, we implemented the proposed
attack.

1 Introduction

Micro-architectural attacks exploit leaked information from the common pro-
cessor components regardless of the operating systems and software. In these
attacks, the attacker needs some techniques to process a series of side informa-
tion as the secret information usually cannot directly be retrieved. In cache-based
attacks, the attacker makes use of different techniques in order to exploit the
time difference between cache access and memory access which identifies whether
or not a specific cache line has been accessed by the victim.

Cache-based attacks are classified into three categories of time-driven, access-
driven, and trace-driven attacks. In time-driven attacks, the attacker does not
have access to the cache and he should retrieve the secret key by only measur-
ing the execution time of the target algorithm. In the access-driven attacks, the
attacker has access to the cache and can invoke the cache. These attacks are
classified into two types of synchronous and asynchronous. It is assumed in syn-
chronous attacks that the attacker is able to trigger encryption or decryption.
In contrast, the activities of the non-privileged adversary are performed in par-
allel to the victim in asynchronous attacks. In trace-driven attacks, the attacker
observes a series of cache misses and cache hits during encryption [1, 2].

? “This paper is a postprint of a paper submitted to and accepted for publication in
ISC International Journal of Information Security”



Percival et al. introduced access-driven attacks by proposing Prime+Probe
and Evict+Time attacks [3]. In 2014, Yarom and Falkner [4] presented a pow-
erful cache attack on RSA, which is called Flush+Reload. As an advantage, the
Flush+Reload attack targets the last level cache which can be performed in the
virtualized environments [5]. In other words, it is assumed in the Flush+Reload
attack that the attacker and the victim have a same physical machine but two
different virtual machines. In the next years, Irazoqui et al. [6] applied the
Flush+Reload attack on AES for the first time which requires notable mea-
surements. In recent years, some efforts have been made in order to reduce
the number of required encryptions. In 2015, Gülmezoğlu et al. [7] proposed a
Flush+Reload attack on AES in the known-ciphertext only scenario and im-
proved the previous Flush+Reload attacks by flushing between the AES rounds,
and reduced the number of encryption samples using three different analysis ap-
proaches. After that, Gruss et al. demonstrated the number of encryptions can
significantly reduced in the chosen-plaintext scenario [8]. However, one should
note that an attack in the chosen-plaintext scenario is based on a much stronger
assumption than an attack in the only-ciphertext scenario.

Our Contribution

In this work, we propose a new technique to enhance Flush+Reload attack on
AES in the ciphertext-only scenario. This attack requires fewer encryptions than
previous Flush+Reload attacks. Compared to the attacks presented in [6] and [7],
our attack works with fewer measurements (about 6,000 encryption samples).
Also compared to the attack presented in [8], the new attack is applicable in
the only-ciphertext scenario which is more feasible than the chosen-plaintext
scenario.

The attack proposed in [6] is based on distinguishing between the cache hit
and cache miss events which are used to find the actual values of the internal
state in the last or first round of the cipher. The correct key can be determined
by the exclusive-or of the internal state in the last (first) round and ciphertext
(plaintext). However, the attacker is not able to monitor the cache hit and cache
miss events for a specific round. If a cache hit occurs for a specific value, it
is unclear whether or not the value is called during the last (or first) round.
Consequently, finding the actual values of the internal states by monitoring the
cache-hit ratio is an expensive step in the attack due to the existence of significant
amount of noise. In order to decrease the noise, the authors of [7] introduced a
new model for mounting Flush+Reload attack on AES by guessing the possible
key candidates for the last round of the cipher.

In this follow-up work, we present a more efficient method. In contrast to the
other previous attacks, our attack is only based on utilizing the cache miss events
which is used to recognize wrong key candidates for the last round of cipher. If a
cache miss occurs for a specific value, it is clear that the corresponding value is
not called during the encryption process at all. This fact can be used to eliminate
the wrong keys and keep the right key. We demonstrate that this simple trick



can enhance the Flush+Reload attack significantly as the amount of noise is less
than previous techniques.

Outline of the Paper

In section 2, we give brief introductions to cache-based side-channel attacks. In
section 3, we describe previous Flush+Reload attacks on AES. In section 4, we
present an enhanced Flush+Reload attack. In section 5, we present the exper-
imental results in the native and cross-VM settings. Finally, we conclude the
paper in section 6.

2 Cache-based Side-channel Attacks

Superscalar processors have very high access speed, while the main memory has
very low access speed. Cache memory is used to eliminate the delay in access to
the main memory. The cache is a small memory built with SRAM technology
which has high access speed. Cache memory is divided into a fixed number of
lines each of which stores a block of the main memory. Modern processors exploit
a multilevel cache hierarchy to increase the performance by providing a trade-
off between the miss rate and cache hit. In most of the Intel processors, the
cache memory is composed of three levels. The L1 level is the closest level to the
processor and has the smallest size which usually consists of two parts to store
the program data and instructions separately. The L2 level is located between
the two levels L1 and L3. The L3 level is the last level cache (LLC) which is
usually shared between all cores. LLC is inclusive in most Intel processors, i.e.,
all data in L1 and L2 are also present in LLC. If information required by the
processor exists in the cache, a cache hit occurs otherwise cache miss occurs.
The cache-based side-channel attacks are based on the difference between the
execution time of cache hit and cache miss events.

2.1 Related Work

In 1996, Kocher [9] presented the timing attacks on the implementations of some
cryptographic systems such as Diffie-Hellman, RSA and DES. In 2005, Bernstein
[1] performed the first practical time-driven attack on the AES encryption al-
gorithm. Later, Percival [3] suggested measuring the reloaded time for all cache
sets. In such a way the attacker can estimate which cache sets are occupied by
the victim. In the follow-up work, Osvic [10] proposed two basic techniques and
named them Evict+Time and Prime+Probe.

In 2009, Ristenpart [11] demonstrated that co-reside attack can be done in
the cloud environments in which the attacker and the victim place in different
virtual machines but on the same physical machine. Gullasch [12] performed
a strong attack on the L1 cache and suggested to block the execution of AES
encryption after each memory access. Thus, the attacker could retrieve the AES
keys with 100 encryptions. In 2014, Irazoqui et al. [13] implemented Bernstein’s



attack in the virtualized environment such as Amazon EC2 and Google clouds
and showed that there is a security risk in the AES implementation of popular li-
braries on clouds services. In 2014, Yarom and Falkner [4] improved the Gullasch
attack [12] by introducing an attack on the L3 level which is called Flush+Reload.
In the same year, Yarom and Benger [14] implemented a Flush+Reload attack
against elliptic curve cryptographic protocols. In addition, Irazoqui et al [6] im-
plemented a Flush+Reload attack on the last round of the AES-128 encryption
algorithm and retrieved all 16 bytes of the last-round key which requires 100,000
and 400,000 encryptions in the native and cross-VM environments, respectively.
In the next year, Golmezoglu et al. [7] proposed the Flush+Reload attack with
better performance than the attack [6]. They improved the attack [6] by guessing
the possible candidates for the last round of AES which leads to decreasing the
noise of the attack. Liu et al. [15] implemented a Prime+Probe attack against the
last level cache on GnuPG and obtained a high attack resolution without shar-
ing memory deduplication in the cross-VM environment. In 2016, Gruss et al. [8]
introduced Flush+Flush attack which works based on the execution time of the
clflush instruction. In this attack, no cache misses occur and a minimal number
of cache hits only occur. For this reason, Flush+Flush attacks are stealthy. In
the same year, Bruinderink et al. [16] presented a Flush+Reload cache attack on
the lattice-based signature scheme and targeted the discrete Gaussian sampler
in the Bimodal lattice signature scheme (BLISS). They derived the secret key
by measuring less than 3500 signatures. In 2018, Gruss et al. [17, 18] presented
Meltdown attack. In this attack, the attacker first reads an arbitrary kernel mem-
ory location. Then he runs a transient execution with a dependency on content
of kernel memory. Eventually, he exploits the Flush+Reload attack on cache
memory to recover the secret value stored at the arbitrary memory location.
One year later, Gruss et al. [19, 20] performed spectre attack. In this attack, the
attacker leverages the speculative execution, then performs the Flush+Reload
attack to leak the victim’s confidential information. In the same year, Minkin
et al. [21] presented Fallout attack, a new transient attack that recovers secret
information from store buffer by exploiting the Write Transient Forwarding op-
timization and performing the Flush+Reload attack. In concurrent work, Van
schaik et al. [22] proposed RIDL attack, a new class of speculative execution
that leaks secret information from a microarchitectural component called Line
Fill Buffer by using the Flush+Reload attack. Schwarz et al. [23] proposed a
microarchitectural attack named netspectre. In this attack, the attcker performs
a remote spectre attack and exposes 15 bits of confidential information per hour
using a remote Flush+Reload cache attack over network. In 2019, Vanhoef et al.
[24] presented the vulnerabilities in implementations of WPA3 and EAP-pwd. He
performed Flush+Reload attack against Dragonfly handshake’s password encod-
ing method (e.g. hash-to-curve), Then he extracted client’s secret information
by using brute-force attacks.



2.2 Memory Deduplication

VMMs use an optimization method that saves memory and allows multiple VMs
to run on the same physical machine. This method is called memory deduplica-
tion. Memory deduplication recognizes identical memory pages copies and keeps
only a single copy and removes multiple copies from the memory. Even though
this feature is useful in native and virtualized settings, a malicious VM can utilize
it to extract secret information from a victim VM running on the same physical
machine by using the Flush+Reload attack.

2.3 Flush+Reload Attack

Flush+Reload attack is applicable to the processors in which the LLC is inclusive.
Flush+Reload attack consists of three steps:

– Flush Step: The attacker uses the clflush command to flush the desired
cache lines.

– Victim Access Step: The attacker waits until the victim performs the
encryption operation.

– Reload step: The attacker reloads the previously flushed lines of memory
and measures the reloaded time (rdtsc).

If the measured time for a cache line is long, then one can deduce the victim
did not access the data flushed in the first step. Otherwise, the flushed data has
been accessed during the encryption performed by the victim.

In comparison to other access-driven attacks, Flush+Reload attack can be
more effective. First, the attacker can flush a specific line of the cache by utilizing
clflush instruction. Second, as the attack targets the last level cache which is
shared between all processor cores [4, 6].

3 Flush+Reload Attack on AES

3.1 Software Implementations of AES

Rijndael encryption algorithm was selected as Advanced Encryption Standard
(AES) by the National Institute of Technology and Standards in 2000. AES
is block cipher with a block size of 128 bits, and a key size of 128, 192 or
256 bits. AES operates on a 4 × 4 array of bytes. In this paper, we focus on
the variant of AES with the 128-bit key which is denoted as AES-128. AES-
128 has 10 rounds. Each round consists of four operations SubByte, ShiftRow,
MixColumn, and add round key. Exceptionally, the MixColumn operation is
eliminated in the last round of the cipher. In order to increase the speed of the
encryption algorithm, the combination of SubByte, ShiftRow, and MixColumn
operations are precomputed and saved as lookup tables which are described in
Equation 3.1. These tables are usually called T-tables in the literature and are
used in popular cryptographic libraries such as OpenSSL to implement the AES
encryption algorithm.



T0 =


02.S(z)
S(z)
S(z)

03.S(z)

 , T1 =


03.S(z)
02.S(z)
S(z)
S(z)

 , T2 =


S(z)

03.S(z)
02.S(z)
S(z)

 ,

T3 =


S(z)
S(z)

03.S(z)
02.S(z)

 (1)

T-tables described in Equation 3.1 cannot be directly used for the imple-
mentation of the last round due to the lack of MixColumns operation. There are
two popular methods for implementing the last round. The first method utilizes
another lookup table such as T4 for the last round. In the second method which
is used in OpenSSL1.1.0f, T-table can be used partially to compute the output
of the last round.

To store a T-table, 256 × 4 = 1024 bytes are required. If the capacity of
the cache line equals 64-byte, 16 cache lines are allocated to each T-table. Each
T-table is accessed 40 times during the AES encryption. When a cache hit event
occurs, the probability of a specific cache line of one T- table has been loaded
during AES encryption process equals to 1/16. Therefore, the probability of
cache miss occurs in a specific cache line of one T-table equals to 1 − (1/16).
Moreover, since each T table is accessed 40 times (for AES-128 in OpenSSL),
the probability that a specific cache line of T-table m has not been accessed by
the victim during the AES encryption process equals to [6, 7]:

Pr[no access toT [m]] = (1− 16

256
)40 (2)

3.2 Previous Flush+Reload Attacks on AES

In the Flush+Reload attacks [6, 7], the attacker monitors accesses to a single
cache line of T-tables used in the last round of AES. Let us assume that each
cache line can hold n T-table values. Without loss of generality, we assume the
adversary aims to monitor the memory line corresponds to the first positions of
table T. The targeted byte is the i-th byte of the state in the input of the last
round which is denoted by si.

In attack [6], if reload time of the monitored T-table memory block is greater
than the threshold, the attacker counts the value of the ciphertext byte (ci) and
derives the n values of ci with a zero reload counter. Then he uses Equation 3 to
get n possible key candidates for each ci with zero reload counter. Consequently,
the correct key is equal to the value which is common between n possible key
candidates of each ci with zero reload counter.

ci = ki ⊕ Tm[si] (3)

where m = [(i mod 4 + 2) mod 4] and i = 0, ..., 15. In this formula, si can take
n consecutive values and ci is also the value of the ciphertext byte.



Fig. 1. This histogram illustrates the data access time for cache miss and cache hit
event.

Two types of noise exist in the attack proposed in [6]. The attacker cannot
determine the cache hit and cache miss events for a specific round. In addition,
he cannot derive ci with zero reload counter due to the noise of the measurement.
Consequently, the attack [6] requires a large number of encryptions.

In attack [7], the attacker first measures the reload time of the monitored
T-table memory block. Then the attacker guesses the possible key candidates
(kguessed). If the reload time is greater than the threshold time, according to
Equation 3, he computes the exclusive-or of the ci and kguessed to obtain the
value (si). If si equals to one of the n values of the monitored memory block,
i.e. si ∈ T , then it can be interpreted that the monitored memory block has
been accessed during AES encryption. This case is referred to as H0−miss. But,
if si is in a different memory block, i.e. si /∈ T , then it can be interpreted that
the monitored memory block has not been accessed during the AES encryption.
This case is referred to as H1−miss.

In order to derive the correct key, the attacker should compare the distribu-
tion of the H0−miss and H1−miss for the guessed key. As a common method, the
attacker computes the means of H0−miss and H1−miss for each kguessed which we
denote by τH0 and τH1 , respectively. The kguessed which has the largest positive
difference of means equals to the correct key (Equation 4).

Dmeans = argmaxk(τH1
− τH0

) (4)

In the attack proposed [7], the noise of the Flush+Reload attack decreases in
comparison to the attack proposed in [6] as the attacker can distinguish the
cache miss and cache hit events for the last round of AES more efficiently. As
one can expect, the experimental results in [7] demonstrate that decreasing the
noise leads to reducing the number of needed encryption measurements.



4 Enhanced Flush+Reload Attack on AES

Follow up on the previous work [7], we introduce a simple yet effective method to
further decrease the noise of the Flush+Reload attack on AES. In our attack, we
aim to solely consider the cache miss events in order to eliminate all the wrong
key candidates instead of guessing the key. Our method leads to a decrease the
measurement noise and the correct key can be retrieved with a fewer number
of encryptions than the previous Flush+Reload attacks. Similar to the previous
Flush+Reload attacks on AES, we assume that the attacker monitors access to
a single block of the T-table used in the last round of AES encryption. The
attack consists of three steps. First, the attacker flushes the monitored T-table
memory block using the clflush command. After that, he waits for the victim
to perform the encryption operation. Finally, he reloads the monitored memory
block using the rdtsc instruction.

If the reload time measured in the last step is greater than the threshold
time, a cache miss occurs. If a cache miss occurs for a specific value, it is clear
that the corresponding value is not called during the encryption process at all.
According to Equation 3, the attacker computes exclusive-or of the ci and all
the n values of the monitored T-table memory block to obtains the wrong key
candidates. The attacker should continue this process in order to eliminate all
the wrong key candidates to derive the correct key.

In case the attacker interprets a cache hit event as the cache miss event
because of the existence of the noise, the correct key can be eliminated. Conse-
quently, one possible challenge of this approach can be eliminating the correct
key because of the measurement noise (Figure 1). To mitigate the effect of the
measurement noise on the attack, the attacker considers the threshold value large
enough such that a reload time larger than the threshold can be interpreted as
cache miss with high probability. By considering the threshold large enough, the
adversary only observes a minimal number of cache hits in the greater times
than the threshold. Consequently, the adversary can eliminate all the wrong key
candidates and retrieves the correct key with fewer encryptions than previous
Flush+Reload attacks. The process of the attack for retrieving the key byte k0
is described in Algorithm 1.

5 Experimental Results

5.1 Experiment Setup

We performed the attack on a machine featuring an Intel i5-4200U in native
and cross-VM scenarios. The Intel Core i5-4200U is a dual-core processor with
L1 data and instruction caches of 32 KB, the L2 cache of 256 KB and the
L3 cache of 3072 KB. The line capacity is 64 bytes. In this attack, the target
process is performed in Ubuntu 16.04 and uses the implementation of AES in
OpenSSL 1.1.0.f for encryption. In order to implement the attack, we first acquire
information about the offset of T-tables to flush or reload the specific cache lines.
Then we establish a threshold between the cache hit time and the cache miss



Algorithm 1 Recovery algorithm for key byte k0 in our attack

Require: c0;
Ensure: k0;
1: for iteration < total number of measurements (6000) do
2: for l = 0; l < 16; l + + do
3: clflush(T2 + 64× l);
4: end for
5: c = AESk(p);
6: for l = 0; l < 16; l + + do
7: time = Reload(T2 + 64× l);
8: if time > increased threshold then
9: for m = 0;m < 16;m + + do

10: //xor ciphertext with 16 values of cache line
11: and remove the obtained value;
12: K0[c0 ⊕ sbox[16× l + m]] + +;
13: end for
14: end if
15: end for
16: end for
17: return argmink(K0[k]);

Fig. 2. Comparison of the number of correct key bytes of AES encryption in the
Flush+Reload attacks in the native scenario.

time. If the reloaded time is less (larger) than the threshold, the cache hit (cache
miss) has occurred.

In order to compute the threshold, according to Equation 5, the attacker sim-
ulates a cache miss event and a cache hit event for all 256 values of ciphertext
and gets the reload time for both events. In other words, for simulating a cache
miss event, the attacker flushes a specific cache line and then reloads the same



cache line without any loads and measures the reload time. Likewise, for simu-
lating a cache hit event, the attacker flushes a specific cache line and then loads
the same cache line. Furthermore, he reloads the same cache line and measures
the reload time. Besides, he calculates the average of both reload times for all
256 ciphertexts. Finally, the attacker can get the threshold time by computing
the average time of 256 ciphertexts.

Threshold =

255∑
i=0

ti
2× 256

(5)

In this formula, ti is the overall timings for each ciphertext byte.
For the experiments, we have utilized the following setups:

– Native setup: In this setup, the attack process and the victim process run
on a native Ubuntu 16.04 in the same physical machine. Figure 2 shows
the number of correct key bytes of AES encryption over the number of AES
encryptions. The dash-dotted line indicates that the attack [6] completely
retrieves the AES keys after 30000 encryptions in the native setup. While,
the dash line shows that 20000 encryptions are sufficient for the AES keys
recovery in the attack [7]. The solid line also shows that our attack recovers
the correct keys with 6000 encryptions in the native setup which takes less
than 1 second in our experience.

– Cross-VM setup: In this setup, the attack process and the victim process
run on two different VMs (VMware Esxi 5.5.0) in two different cores and also
it is assumed that co-resident problem has been solved using the approaches
proposed in [11] and the attacker and the victim are running on the same
physical machine. In the cross-VM setting, our attack needs 10000 encryp-
tions to retrieve the AES keys in the FSA scenario which takes 3 seconds in
our experience.
Note that all the experiments use the read time stamp counter (RDTSC) in-
struction for timing measurements and utilize the Cache Line Flush (clflush)

instruction for flushing operation.

5.2 Comparison to Other Attacks

The Prime+Probe attack proposed in [10] targets OpenSSL’s 0.9.8 version of
AES. One should note that OpenSSL’s 0.9.8 utilizes a separate T-table (T4)
for the implementation of the last round of AES which significantly decreases
the noise of the attack. Consequently, as it is mentioned in previous papers,
the results presented in [10] is not better than Flush+Reload attack proposed
in [6] and [7] (and in this paper) as it is not applicable on the next version of
OpenSSL with the same number of measurements. In addition, the high accuracy
of Flush+Reload attack is another advantage compared to other attacks, includ-
ing Prime+Probe and Evict+Time which targets the L1 cache. As the attacker
and victim share the LLC cache in the Flush+Reload attack, the attack can be
performed across the cores. Of course, both Prime+Probe and Evict+Time can



Table 1. Comparison of fully synchronous attacks (FSA) against AES in the only-
ciphertext scenario. †: our experimental results that are obtained by performing the
previous attacks on i5-4200u machine.

Attack Platform Traces OpenSSL

Native Attacks:
Prime+probe [10] Pentium 4E 16000 0.9.8a
Evict+time [10] Athlon64 500000 0.9.8a
Flush+reload [6] i5-3320M 100000 1.0.1f
Flush+reload [7] i5-2430M 25000 1.0.1g

Our attack i5-4200u 6000 1.1.0f
Flush+reload † [6] i5-4200u 30000 1.1.0f
Flush+reload † [7] i5-4200u 20000 1.1.0f

Cross-VM Attacks:
Flush+reload [6] i5-3320M 400000 1.0.1f
Flush+reload [7] i5-2430M 30000 1.0.1g

Our attack i5-4200u 10000 1.1.0f
Flush+reload † [6] i5-4200u 100000 1.1.0f
Flush+reload † [7] i5-4200u 25000 1.1.0f

target LLC, but their performance reduces significantly due to a large number
of evictions/probings. Compared to the attack presented in [8], our attack is
performed in the only-ciphertext scenario which is more feasible than a chosen-
plaintext scenario.

In what follows, we focus on the comparison of our attack and the previ-
ous Flush+Reload attacks in the ciphertext-only scenario for the native and
cross-VM environments which are summarized in Table 1. It is common in the
literature to compare the results of attacks which are performed in different
platforms. However, to have a more fair and accurate comparison, we performed
the previous Flush+Reload attacks [6, 7] on the same machine that our attack
is tested.

Native Attacks: The best Flush+Reload attack on AES in the native set-
ting was performed on i5-2430M which requires 25000 encryptions in the fully
synchronous scenario [7]. To have a fair comparison, we performed the previous
Flush+Reload attacks on the same machine that our attack is performed. As
it is illustrated in Table1, Flush+Reload attacks proposed in [7] and [6] require
20000 and 30000 encryptions on the platform i5-4200u while our attack requires
only 6000 encryptions. Thus, our proposed attack succeeds faster than previous
Flush+Reload attacks.

Cross-VM Attacks: The best Flush+Reload attack on AES in the cross-
VM setting was performed on i5-2430M which requires 30000 encryptions in
the fully synchronous scenario [7]. Our attack only requires 10000 encryptions
to derive the AES keys. To have a fair comparison, we performed the previous
Flush+Reload attacks on the same machine that our attack is performed. As
it is illustrated in Table1, Flush+Reload attacks proposed in [7] and [6] require
25000 and 100000 encryptions on the platform i5-4200u while our attack requires



only 10000 encryptions. Thus, our proposed attack is significantly faster than
previous Flush+Reload attacks in cross-VM setting.

Comparison to Briongos et.al attacks: “We submitted our initial results
at the 27th Iranian Conference on Electrical Engineering (ICEE 2019). The sub-
mission day of the conference was 14/12/2018. In our paper at ICEE 2019 (in
Persian) we reported our results in the native setup. After that, we accomplished
our work by implementing our attack in VM setup later and submit this paper
at Isecure Journal. We are informed a new Flush+Reload attack on AES has
recently been published in March 2019 in Applied Sciences Journal [25]. Al-
though we could not understand the details of the proposed attacks in [25] and
the source code of the attacks is not available, we have noticed that the idea of
utilizing cache-miss is also discovered in [25] in parallel of our work to enhance
Flush+Reload attack.”

6 Conclusion

In this paper, we enhanced previous Flush+Reload attacks by introducing a
simple yet effective method which decreases the noise of attack. We focus on
finding wrong key candidates by considering only the cache miss event. Our
attack is faster than previous Flush+Reload attacks. In particular, our method
can speed-up the Flush+Reload attack in cross-VM environment significantly.



Bibliography

[1] Daniel J Bernstein. ”cache-timing attacks on aes”. Citeseer, 2005.

[2] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. ”a survey of mi-
croarchitectural timing attacks and countermeasures on contemporary hard-
ware”. Journal of Cryptographic Engineering, 8(1):1–27, 2018.

[3] Colin Percival. ”cache missing for fun and profit”. BSDCan, 2005.

[4] Yuval Yarom and Katrina Falkner. ”FLUSH+RELOAD: A High Resolu-
tion, Low Noise, L3 Cache Side-Channel Attack”. In Kevin Fu and Jaeyeon
Jung, editors, 23rd USENIX Security Symposium, pages 719–732. USENIX
Association, 2014.

[5] Eyal Ronen, Robert Gillham, Daniel Genkin, Adi Shamir, David Wong, and
Yuval Yarom. ”the 9 lives of bleichenbacher’s cat: New cache attacks on
tls implementations”. In 2019 IEEE Symposium on Security and Privacy
(SP), pages 435–452. IEEE, 2019.

[6] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk Sunar.
”wait a minute! a fast, cross-vm attack on aes”. In International Workshop
on Recent Advances in Intrusion Detection, pages 299–319. Springer, 2014.

[7] Berk Gülmezoğlu, Mehmet Sinan Inci, Gorka Irazoqui, Thomas Eisenbarth,
and Berk Sunar. ”a faster and more realistic flush+ reload attack on aes”. In
International Workshop on Constructive Side-Channel Analysis and Secure
Design, pages 111–126. Springer, 2015.

[8] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard.
”flush+ flush: a fast and stealthy cache attack”. In International Confer-
ence on Detection of Intrusions and Malware, and Vulnerability Assessment,
pages 279–299. Springer, 2016.

[9] Paul C Kocher. ”timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems”. In Annual International Cryptology Conference,
pages 104–113. Springer, 1996.

[10] Dag Arne Osvik, Adi Shamir, and Eran Tromer. ”cache attacks and coun-
termeasures: the case of aes”. pages 1–20, 2006.

[11] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage.
”hey, you, get off of my cloud: exploring information leakage in third-party
compute clouds”. In Proceedings of the 16th ACM conference on Computer
and communications security, pages 199–212. ACM, 2009.

[12] David Gullasch, Endre Bangerter, and Stephan Krenn. ”cache games–
bringing access-based cache attacks on aes to practice”. In 2011 IEEE
Symposium on Security and Privacy, pages 490–505. IEEE, 2011.

[13] Gorka Irazoqui Apecechea, Mehmet Sinan Inci, Thomas Eisenbarth, and
Berk Sunar. ”fine grain cross-vm attacks on xen and vmware are possible!”.
volume 2014, page 248. Citeseer, 2014.

[14] Yuval Yarom and Naomi Benger. ”recovering openssl ecdsa nonces using
the flush+ reload cache side-channel attack”. volume 2014, page 140, 2014.



[15] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. ”last-
level cache side-channel attacks are practical”. In 2015 IEEE Symposium
on Security and Privacy, pages 605–622. IEEE, 2015.

[16] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom.
”flush, gauss, and reload–a cache attack on the bliss lattice-based signa-
ture scheme”. In International Conference on Cryptographic Hardware and
Embedded Systems, pages 323–345. Springer, 2016.

[17] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and
Mike Hamburg. ”meltdown”. arXiv preprint arXiv:1801.01207, 2018.

[18] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Steck-
lina, Thomas Prescher, and Daniel Gruss. ”zombieload: Cross-privilege-
boundary data sampling”. In Proceedings of the 2019 ACM SIGSAC Con-
ference on Computer and Communications Security, pages 753–768, 2019.

[19] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, et al. ”spectre attacks: Exploiting speculative execution”. In
2019 IEEE Symposium on Security and Privacy (SP), pages 1–19. IEEE,
2019.

[20] Michael Schwarz, Robert Schilling, Florian Kargl, Moritz Lipp, Claudio
Canella, and Daniel Gruss. ”context: Leakage-free transient execution”.
arXiv preprint arXiv:1905.09100, 2019.

[21] Marina Minkin, Daniel Moghimi, Moritz Lipp, Michael Schwarz,
Jo Van Bulck, Daniel Genkin, Daniel Gruss, Frank Piessens, Berk Sunar,
and Yuval Yarom. ”fallout: Reading kernel writes from user space”. arXiv
preprint arXiv:1905.12701, 2019.

[22] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo,
Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
”ridl: Rogue in-flight data load”. S&P (May 2019), 2019.

[23] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters, and Daniel
Gruss. ”netspectre: Read arbitrary memory over network”. In European
Symposium on Research in Computer Security, pages 279–299. Springer,
2019.

[24] Mathy Vanhoef and Eyal Ronen. ”dragonblood: Analyzing the dragonfly
handshake of wpa3 and eap-pwd”. In Proceedings of the 2020 IEEE Sym-
posium on Security and Privacy-S&P 2020). IEEE, 2020.

[25] Samira Briongos, Pedro Malagón, Juan-Mariano de Goyeneche, and Jose M
Moya. ”cache misses and the recovery of the full aes 256 key”. Applied
Sciences, 9(5):944, 2019.


