Folding BIKE: Scalable Hardware
Implementation for Reconfigurable Devices

Jan Richter-Brockmann!, Johannes Mono! and Tim Giineysu'?

! Ruhr-Universitit Bochum, Horst-Gortz Institute for IT-Security, Germany
2 DFKI, Germany
firstname.lastname@rub.de

Abstract. Contemporary digital infrastructures and systems use and trust Public-Key
Cryptography to exchange keys over insecure communication channels. With the
development and progress in the research field of quantum computers, well established
schemes like RSA and ECC are more and more threatened. The urgent demand to
find and standardize new schemes — which are secure in a post-quantum world — was
also realized by the National Institute of Standards and Technology which announced
a Post-Quantum Cryptography Standardization Project in 2017. Recently, the round
three candidates were announced and one of the alternate candidates is the Key
Encapsulation Mechanism scheme BIKE.

In this work, we investigate different strategies to efficiently implement the BIKE
algorithm on Field-Programmable Gate Arrays (FPGAs). To this extend, we im-
prove already existing polynomial multipliers, propose efficient strategies to realize
polynomial inversions, and implement the Black-Gray-Flip decoder for the first time.
Additionally, our implementation is designed to be scalable and generic with the BIKE
specific parameters. All together, the fastest designs achieve latencies of 2.69 ms for
the key generation, 0.1 ms for the encapsulation, and 1.89ms for the decapsulation
considering the lowest security level.
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1 Introduction

In our contemporary life Public-Key Cryptography (PKC) plays a crucial part to exchange
keys over insecure communication channels. However, established schemes like RSA
[RSAT78] and ECC [Mil85] are threatened by the advancing development of quantum
computers [Gam20]. In 1999, Peter Shor already presented an algorithm breaking currently
used PKC schemes in polynomial time on quantum computers [Sho99]. Therefore, there is
extensive research to find new schemes which are secure even in the presence of quantum
adversaries. One such promising research area is code-based cryptography where hard
problems from coding-theory are used to create cryptographic schemes. The first scheme
based on linear error codes was proposed by McEliece in 1978 [McE78]. Even though
the McEliece cryptosystem is assumed to be secure against classical and quantum-based
attacks, one disadvantage is its large public key.

In order to decrease the key size (and the corresponding memory requirements and
transmission bandwidth), a new class of linear codes were designed, so called Quasi-
Cyclic Moderate-Density Parity-Check (QC-MDPC) codes. They were first presented
in [MTSB13] and gained more and more attention in recent years due to performance and
security features. In 2017, the National Institute of Standards and Technology (NIST)
announced the Post-Quantum Cryptography Standardization Project aiming to find and
standardize suitable Post-Quantum Cryptography (PQC) schemes. One of the submissions
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is the Bit Flipping Key Encapsulation (BIKE) scheme built upon QC-MDPC codes. With
the advancement of the submission to the third round, the BIKE team reduced the number
of algorithms proposed in earlier specifications [ABBT19] to one single algorithm, now just
called BIKE. The remaining algorithm (called BIKE-2 in earlier submissions) is based on
the Niederreiter framework [Nie86] including some tweaks [ABB*20]. Recently, the NIST
announced the round three candidates and selected BIKE as an alternate candidate which
means that the algorithm will still be considered for standardization [0ST20].

After the announcement of the PQC Standardization Project, NIST published a list
of selection-criteria including security, cost and performance as well as algorithm and
implementation characteristics on various platforms [AAAST19]. Currently, there is a
software reference implementation of BIKE, an optimized software implementation for
Intel CPUs [DGK20a], and an efficient microcontroller implementation [BOG19]. Until
now, there is no complete hardware implementation of the third round submission. In this
work, we propose an optimized hardware design of BIKE for FPGAs.

Related Work. After the introduction of QC-MDPC codes by Misoczki et al., the authors
of [HVMG13] were the first researchers who implemented the McEliece cryptosystem with
QC-MDPC codes on FPGAs. Besides an exploration of different decoders suited for
efficient hardware implementations, they decided to follow a design strategy targeting a
high-speed implementation. To this end, they stored all keys and intermediate results
directly in the FPGA logic and did not use any external or internal memories.

One year later, von Maurich and Giineysu presented a lightweight implementation of
McEliece using QC-MDPC codes [VMG14]. They divided each vector into chunks of 32 bit
and processed them separately. This approach incorporated internal memory of the FPGA
to keep the amount of registers as low as possible.

The authors of [HC17] proposed an area time efficient hardware implementation for
QC-MDPC codes outperforming the results from [HVMG13]. The improvements were
mainly gained by a custom designed decoder equipped with a hardware module estimating
the Hamming weight of larger vectors.

With the submission to the second round, the BIKE team presented an FPGA imple-
mentation of one of the discarded algorithms called BIKE-1 including the key generation
and encapsulation [ABBT19]. Their design strategy was very similar to the one presented
in [VMG14] but included two optimization levels which basically parallelized the encoding
process.

Recently, Reinders et al. proposed an efficient hardware design with a constant-time
decoder, also designed for the older BIKE-1 algorithm [RMGS20]. However, the proposed
decoder differs from the introduced decoder of the current BIKE specification. Additionally,
as they opted for BIKE-1, they did not implement any polynomial inversion.

An efficient algorithm to accomplish polynomial inversions was presented in [HGWC15]
and is based on the classic Itoh-Tsujii Algorithm (ITA) [IT88]. Here and in many other
parts of BIKE, polynomial multiplications are an essential building block which can be
realized by different design strategies. Two of them — i.e., a row-by-row strategy and
a strategy dividing the vectors into chunks — were described in the above mentioned
works [HVMG13] and [VMG14], respectively. Another strategy was recently introduced by
Hu et al. in [HWCW19] where the authors decomposed the quasi-cyclic matrix (constructed
from one of the polynomials) into sub-matrices achieving an enhanced area-time product.

Contribution. We present the first hardware implementation of the entire BIKE algorithm
selected as alternate candidate in the NIST PQC competition. The first challenging part
is the implementation of the polynomial inversion required for the key generation. We
investigate different optimization strategies for hardware platforms which eventually leads
to a highly optimized design. The inversion module as well as other parts of BIKE require
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a polynomial multiplier. We slightly improve the multiplier proposed in [HWCW19] and
reduce the overall latency. Additionally, we provide the first hardware implementation of
the Black-Gray-Flip (BGF) decoder originally proposed in [DGK20c|. The implementation
is constant-time with respect to the processing of secret values (i.e., the operation times of
all modules are independent of any secret values) and is thus secure against timing attacks.

By implementing a parameterized design, we can scale our approach down to small
devices (resulting in higher latency) or scale it up for low-latency applications (resulting in
a bigger implementation). Additionally, we wrote SageMath scripts to achieve a design
which is completely generic with respect to all parameters used in BIKE. All HDL-files
are available at https://github.com/Chair-for-Security-Engineering/BIKE.

Outline. The remainder of this work is structured as follows: In Section 2, we briefly
introduce BIKE. Afterwards, we present the hardware implementations of each individual
building block required to compose BIKE in Section 3. Following, Section 4 provides
detailed implementation results of each individual module as well as the evaluation of the
whole design. With Section 5, we conclude our work.

2 Preliminaries

In this chapter, we briefly state our notations and describe the BIKE algorithm. We closely
follow the notations of [ABB™20].

2.1 Notations

We define |v| as the Hamming weight of a given polynomial v. A uniform random sampling
of v is denoted by v & U. The notation {0, 1}l[t] describes the set of all I-bit strings with
Hamming weight ¢t. Throughout this work, we will use log(:) as the base 2 logarithm
log, (+).

2.2 BIKE

BIKE consists of three algorithms: key generation, encapsulation, and decapsulation.
Besides the security level A, three parameters r, w, and ¢ are specified. The parameter
r defines the block length and needs to be prime such that (X" —1)/(X — 1) € Fo[X] is
irreducible. The row weight w defines the number of bits set in the private key and is
chosen such that d = w/2 is odd. The parameter ¢ is a positive integer and determines the
decoding radius, i.e., the Hamming weight of an error vector ¢ = (eg, e1). As an additional
parameter, the shared secret size ¢ is defined as a positive integer. Note that the code
length n is set to n = 2r.

Additionally, BIKE defines a set of three functions H, K, L modeled as random oracles.
The functions are defined with the following domains and ranges.

H :{0,1}" — {0,1}]

K :{0,1}"72¢ - {0,1}*

L:{0,1}* — {0,1}
Algorithm 1, Algorithm 2, and Algorithm 3 formally describe the key generation, encap-
sulation, and decapsulation, respectively. Table 1 lists the suggested parameters for the

security levels 1 and 3. Note, the shared secret size £ is fixed to 256. For more details, we
refer the interested reader to the full specification of BIKE [ABB*20].
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Algorithm 1: Key Generation.

Input :BIKE parameters n,w,t, /.
Output : Private key (hg, h1,0) and public key h.

Generate (hg, h1) <& R? both of odd weight |ho| = |hy| = w/2.
Cenerate o < {0,1}* uniformly at random.

Compute h < hy hal.
Return (hg, h1,0) and h.

-

N

[

Algorithm 2: Encapsulation.

Input :Public key h.
Output : Encapsulated key K and ciphertext C' = (co, ¢1).

Generate m < {0,1}* uniformly at random.
Compute (eg, e1) < H(m).

Compute C' = (cg,¢1) < (eo + e1h,m @ L(eg, €1)).
Compute K + K(m, C).

Return (C, K).

[S B VN

Algorithm 3: Decapsulation.

Input :Private key (hg, h1,0) and ciphertext C' = (¢, ¢1).
Output : Decapsulated key K.

1 Compute syndrome s <— cohg.
2 Compute {(ep, ¢}), L} < decoder(s, ho, h1).
3 Compute m’ < ¢; ® L(eg, €}).
4 if H(m') # (e}, €}) then
5 | Compute K + K(o,0).
6 else
7 | Compute K + K(m/,C).
8 Return K.
2.3 Decoder

The decapsulation of BIKE invokes a decoder (cf. Algorithm 3) trying to determine the
error vector sampled in the encapsulation process in order to recover the message m. An
efficient algorithm for this task was presented in [DGK20c] and is called Black-Gray-Flip
decoder (cf. Algorithm 4). With the submission to the third round of the NIST PQC
competition, the BGF decoder is included in the BIKE specifications. The decoder is
an iterative algorithm, running for N Blter iterations, taking (s, hg,h1) as input, and
returning an error vector e = (eg,e1) in case of a successful decoding or 1 when the
decoding fails. Based on the Hamming weight of the sum s 4+ eH™, a threshold T is
computed by

threshold(x) = max(|fo -z + fi],¢) (1)

where fy, f1 and ¢ are constants associated with the security level. The procedure BFIter
counts the Unsatisfied-Parity-Check (UPC) equations by invoking ctr (i.e., the Hamming
weight of h; - s where h; is the j-th column of the matrix H) and flips all bits in the
error vector that were indicated by counter values exceeding the threshold T'. Additionally,
BFIter generates two lists — black and gray — which mark all positions where the counter
exceeds T or T — 7, respectively. In the first iteration of the decoder these two lists are
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Table 1: BIKE parameters.

BIKE Specific Decoder Specific
Security r w t fo f1 ¢ NBIter T
Level 1 12323 142 134 0.0069722 13.530 36 5 3
Level 3 24659 206 199 0.005265 15.2588 52 5 3

Algorithm 4: Black-Gray-Flip Decoder [DGK20c, ABB™20].
Data: H € Fy*", s € F}

1 e+ 0"

2 for i =1 to NBlIter do

3 T « threshold (|s + eH™|)

4 e,black, gray < BFIter (s +eHT e, T, H)

5 if ¢ =1 then

6 e < BFMIter (s+6HT,e,black, (d+1)/2+1,H)
7 e < BFMIter (s—i—eHT,e,gray, (d+1)/2+1,H)
8 end

9 end

10 if s=eH” then

11 ‘ return e

12 else

13 ‘ return |

14 end

15 procedure BFIter(s,e,T, H)
16 for j=0ton—1do
17 if ctr(H,s,j) > T then

18 eje; @1

19 black; <1

20 else if ctr(H,s,j) > T — 7 then
21 | gray; <1

22 end

23 return e, black, gray

24 procedure BFMIter(s,e, mask,T, H)
25 for j=0ton—1do
26 if ctr(H,s,j) > T then

27 | ej < e; ® mask;
28 end
29 end

30 return e

used to adjust the error vector by applying the procedure BFMIter. All parameters used
to define the decoder are summarized in Table 1 for both security levels.

3 Efficient Hardware Implementation

In this section, we first state and discuss our design considerations. Afterwards, we present
our design strategies for each required submodule to assemble BIKE and discuss our
approaches in more detail.
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3.1 Design Considerations

In general, our implementation tries to keep the footprint as small as possible while
providing a reasonable throughput. This goal is achieved by storing all polynomials in
Block-RAMs (BRAMs) instead of using registers even if that means forgoing the possibility
to access all bits of a polynomial at the same time. This strategy drastically reduces the
amount of required registers (and consequently slices) because otherwise each polynomial
(e.g., the error vectors, the public key, private key, ciphertext) would consume r registers
resulting in exploding implementation costs. Nevertheless, we decided to use registers
whenever values of ¢ bits (e.g., m or ¢1) need to be stored as spending an entire BRAM
would waste hardware resources.

Besides these trade-offs, our implementation is developed to be generic with the
BIKE specific parameters in case they need to be adapted (e.g., for security reasons).
Additionally, we introduce a scaling parameter b to define the internally applied data bus
width affecting the bus width of all BRAMs and the level of parallelization of several
submodules. Therefore, all polynomials are divided into chunks of b bits which will be
further processed by the required submodules (e. g., multiplier or inversion). By writing
ali], we denote b bits of the polynomial a which are stored at address i where the Least
Significant Bit (LSB) ag of a is stored in the LSB of a[0]. In our evaluation, we consider
b e B ={32,64,128} as these values are common bus widths and as larger values would
exceed the available hardware resources on Xilinx’s Artix-7 FPGAs!.

The generations of (hg, h1), o, and m require a source of randomness. In our design
we assume that the target device is equipped with an appropriate Random Number
Generator (RNG) since the implementation of a secure RNG is out of scope of this work.
All modules requiring such randomness have implemented ports which could be connected
to an available source of randomness.

Our goal is to comply with the BIKE specification. Thus, we can generate and extract
testvectors from the reference implementation and can validate the output of our design.

3.2 Sampler

With Predefined Hamming Weight The first step in the key generation (cf. Algorithm 1)
is to sample the polynomials (hg, h1) representing the first part of the secret key. Since
both polynomials are defined to have a Hamming weight of w/2, they can be sampled in
parallel.

The samplers are realized by rejection sampling [DG19] and both expect a [log,(r)]-bit
input Zyana,; of fresh randomness every two clock cycles with ¢ € {0,1}. The input Z and,i
determines the non-zero positions in the polynomial h;. For the sampler, we decided to
fix b to 32 bits. Increasing b would not improve the throughput because for each random
input Z;and,; only one bit in the target polynomial needs to be adjusted. Hence, working
on larger values of b would increase the required hardware resources in terms of reading
larger chunks from the memory which need to be processed by the sampler (more details
below).

The sampler divides the random input Zranq,; into two parts consisting of the lower five
bits pes,i and the remaining upper bits zaqdr,;. Within the first clock cycle of sampling
one single bit, the sampler reads the 32-bit chunk of the polynomial h;[zaqar]. The lower
five random bits . are buffered in registers. In the next clock cycle, these bits are
used to create a bit vector determined by 2%res:i (target bit position is set to one). The
vector is added (xored) to h;[Tadar:] and the result is written back to the memory. If a
bit is set and #yand,; < 7, a counter, which monitors the Hamming weight of the sampled
polynomial, is enabled. Given that, increasing b would not improve the throughput but

1Note that the NIST recommended to use Artix-7 FPGAs.
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instead more hardware resources would be necessary (more xor-gates) to adjust a single

Although rejection sampling avoids biased values obtained by e.g., reducing z,and,i
modulo 7, it does not finish in constant time. Therefore, we will briefly discuss its (timing)
side-channel security and its average latency. Each time Z;anq,; is larger than r the
randomness is rejected and not used to set a bit in h;. This, however, does not create
an attack surface because the algorithm finishes in constant time with respect to the
set bit positions in the polynomial. An attacker observing the sampling process would
not gain any information about the actual sampled bit position in h; and no confidential
information is revealed [DG19].

The probability of not getting rejected, i.e., the success probability is s = srz7-
However, this term needs to be adjusted as collisions getting more likely with an increased
number of bits already set in h; which is done by (1 — %) where j indicates the number
of bits that already have been set. Finally, Equation 2 is used to calculate the average
clock cycles Ngample,ave Tequired to finish the sample process for the polynomials h;. The
leading factor of two is due to the read and write accesses to the BRAM mentioned above.

w/2 1

Nsample,avg =2 . i1~ (2)
D=y

For the lowest security level Ngample,avg = 189.34.

Uniform Sampler The sampling process of the secret key o and m is done in a straight-
forward way by using a 32-bit input providing fresh randomness. The 256 random bits are
stored in registers as explained in Section 3.1.

3.3 Multiplication

Polynomial multiplication is a basic building block for each of the three algorithms involved
in BIKE. Our multiplier focuses on minimal BRAM usage as well as a good area-time
product and is formally defined in Algorithm 6 in Appendix A using the vector-matrix
representation. Although the runtime of our multiplication is O([r/b]?), we benefit from
carry-less and reduction-less multiplication in Fs.

We also considered using Karatsuba multiplication and reviewed the literature for
implementations. The authors in [ZGF20] provide one such implementation but due to the
high area costs (cf. Section 4.3 for more details) we do not follow their approach. Instead,
we compute columns block-wise which fits well with our design philosophy of processing
b bits in parallel and integrates well with other components.

A multiplication ¢ = m-h requires the constant overhang O = r mod b (cf. Algorithm 6),
that is the number of bits in the polynomial’s most significant word. The multiplier reads
b bits of m and b bits of A such that b - b partial products are computed at the same time.
This leads to the previously mentioned column-wise multiplication, i.e., all partial products
including the message’s bits m[i] are calculated before the next b bits of m are read from
the BRAM.

As an example, we graphically depict the multiplication process for = 10 and b = 3 in
Figure 1. For every column consisting of r - b partial products, there are two initial steps:
the first step computes the partial products of the upper triangle (in our example ms - hg),
the second step computes all partial products that include the current most O significant
bits of h and all bits from m[i] excluding the first bit (in our example my - hg and msq - hg).

Afterwards, the algorithm proceeds with a regular flow. In each clock cycle, the
multiplier reads h[j] and c[j] from the BRAMs and computes the related partial products
in the next clock cycle (illustrated by connected background colors). The lower b bits of



8 Folding BIKE: Scalable Hardware Implementation for Reconfigurable Devices

€0 = mg - ho+ ma - hg+m3 - hy + ...
€1 = mg - hi+m1 - ho+ m3 - hg + ...

- ha+mq - hi+mg - ho+m3 - ho + ...

€3 = - ha+ma - hi+m3-ho + ...
Cq4 = chi+ ...
C5 = ~ho + ...

-hs + ...
chg + ...
€8 = mg - hg+m1 - hr+ma - he+ m3 - hs + ...
094:-m1 - hg+ma - hy+m3 - he + ...

€7 = mg - hz+ma -

Figure 1: Exemplary decomposition of the partial products for a multiplication with » = 10
and b= 3.

the result are added to the intermediate result which was gained by the upper b — 1 bits
of the previous multiplication’s result. These intermediate results are stored in registers in
order to have direct access.

As the authors in [VMG14], we also use the read-first setting of the BRAMs enabling
to read a result and write a new value to a specific address in one clock cycles. Hence,
new results from the multiplication engine, which are added to the current intermediate
result c[j], are stored in the BRAM at position (5 + 1) mod r. Since there are [r/b]
columns, the final result ¢ is stored in the correct layout, i.e., ¢[0] contains the LSBs of the
final polynomial. The polynomial A is also rotated in the BRAM. This is tracked in the
implementation including special cases such as determining h[0] as it consists partly of
h[r — 1] and partly of h[r — 2] (in our example h[0] = (h7, hg, hg) for the second column).

The multiplier performs a multiplication within [r/b] - ([7/b] + 3) + 1 clock cycles. The
additional three clock cycles in every column originate from the two initial steps described
above and one additional clock cycle to read h[0]. The last clock cycle is required to switch
to a DONE state.

3.4 Inversion

With the decision of the BIKE team to only rely on the BIKE version being built upon
the Niederreiter framework, a new challenge of implementing a polynomial inversion in
hardware arose. Since BIKE is also designed to work with ephemeral keys, an efficient
implementation of an inversion algorithm is even more critical to achieve reasonable
throughput. To this end, we decided to implement the inversion of a polynomial a in R
using Fermat’s Little Theorem as

a~l=q2 2 (3)

holds for every a € R* with ord(a) | 2771 — 2.

To exponentiate a target polynomial ¢ with 2"~ — 2, we first rewrite the exponent
as 2 (2”2 — 1). Eventually, the exponentiation is accomplished by Algorithm 5 which
is based on the classic ITA [IT88] and a slightly adapted version of Algorithm 1 defined
in [HGWC15]. Note that we do not follow the recently proposed algorithm by Drucker et
al. [DGK20b] (which is used in the additional software implementation of BIKE [DGK20al)
as it performs slightly worse in hardware. The number of required multiplications is
the same for both algorithms but the number of squarings differs. Assuming that an
exponentiation f2° is divided into a chain of operations of the form f2° with k € K
and k <t where each operation has the same runtime (more details are given below),
Algorithm 5 requires less of these operations than Algorithm 2 from [DGK20b] as shown
in Table 2 for different sets of . Additionally, the proposed algorithm by Drucker et al.
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Algorithm 5: Inversion based on the classic ITA [IT88, HGWC15].

Data: r —2 = (r4_1,...,70) with r; € 0,1 and a € R*
Result: ¢!

f+a t+1

for i+ ¢—2to 0do

g« 1*

f<7r-yg

t <2t

if r; =1 then
g« f?
fa-yg
t—t+1

10 end

11 end

12 return f2

© 00 N O ok W N =

Table 2: Comparison between Algorithm 5 and Algorithm 2 from [DGK20b] indicating
the amount of squaring operations.

K k=1 k=2 k=3 k=4 Sum

Algorithm 2 from [DGK20b]

{1} 12355 0 0 0 12355

{1,2} 5 6175 0 0 6180

{1,2,3} 10 6 4111 0 4127

{1,2,3,4} 5 1 0 3087 3093
Algorithm 5 (used in this work)

{1} 12321 0 0 0 12321

{1,2} 7 6157 0 0 6164

{1,2,3} 8 2 4103 0 4113

{1,2,3,4} 6 2 1 3077 3086

would require one additional BRAM to hold the intermediate results res (cf. Algorithm 2,
line 8 in [DGK20b]).

However, Algorithm 5 executes the exponentiation of (2’”_2 — 1) described by lines 2-11
first and eventually the final squaring from line 12. To this end, the inversion consists of
exponentiations of the form f Qt, of polynomial squarings, and of polynomial multiplications.
The latter operation is realized by using the multiplier described in Section 3.3. The
strategies to implement a squaring module and to realize the exponentiation with 2¢ are
described in the following.

Squaring Module for Fixed k An exponentiation of a polynomial f with 2¢ for arbitrary
t can always be accomplished by dividing the exponentiation into a chain of ¢ squarings.
One possibility to speed up the calculation is to implement a module which performs k < ¢
squarings in the same time as a single squaring. A squaring chain would consist of |¢/k]
k-squarings and ¢ mod k single squarings.

The strategy implementing squaring modules with fixed k pursues our global design
consideration to achieve submodules which scales with b. A polynomial squaring g = f2k
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Source Polynomial
0 8 16 24 32 40 48 56

o B [16 [24 [32 40 48 [56 ‘

Target Polynomial

Figure 2: Exemplary permutation for a squaring module with £k = 1, r = 59, and b = 8.

for arbitrary k can be realized by a simple bit-permutation and is mathematically described
by
gi = fi~2*’C mod r (4)

where ¢ denotes the i-th element in the target polynomial. Equation 4 indicates that for
each b bits of the target polynomial g, bits from at least 2* different addresses of the
source polynomial f are required where the maximum number of different addresses is
bounded to 2-2* — 1. As an example, Figure 2 shows a draft of the permutation and
corresponding memory pattern for a squaring with £ =1, b =8, and r = 59. It is shown
that bits from three different addresses are required in order to combine them to the correct
result written to the first address implying that all necessary bits from f need to be loaded
from the BRAM first. This is done in an initial phase which is automatically calculated to
be optimal by our scripts. Additionally, the scripts ensure that all upcoming results can be
directly written to the BRAM containing the target polynomial by determining an optimal
read sequence of bits from the source polynomial. The amount of clock cycles required for
the initial phase also determines the number of b-bit registers holding the already read
parts from the source polynomial. Note, after the initial phase, which depends on k and r,
the squaring finishes within [r/b] clock cycles.

Squaring Module for Arbitrary k Besides the above described strategy, we explore
another approach implementing a squaring module which can accomplish a k-squaring
(ie., g= f2k) for arbitrary k& within r clock cycles. For Algorithm 5, this approach is
especially interesting for larger ¢ as the exponentiation has not to be decomposed into a
squaring chain but rather can directly be carried out. Figure 3 shows a schematic drawing
of the hardware implementation and the corresponding operations required to compute
the addresses of the source and target polynomial and the output data for the target
polynomial g. The bits of the target polynomial are determined in an ascending order
so that the corresponding bits from the source polynomial need to be computed by the
implementation. Therefore, the module requires an input INC which needs to be assigned
to 27% mod 7. Starting with 0, the implementation adds (modulo r) every clock cycle
INC to the current value where the upper bits determine the address and the lower log(b)
bits are used as a selection signal for a b-to-1 multiplexer. The input of the multiplexer is
the current b-bit chunk of the source polynomial. After selecting the desired bit from the
input, a barrel shifter is used to shift the desired bit to the correct position. The resulting
b bits are then added (xored) to the current intermediate result destined for the target
polynomial. After all b bits for a target address of g are collected and shifted to the correct
position, the implementation writes the result to the BRAM.

Squaring Strategies Given the two different modules to compute a k-squaring, we
t

investigate three optimization strategies to implement the exponentiation g = f? in

Algorithm 5, line 3. The three approaches are depicted in flow charts in Figure 4. The first



J. Richter-Brockmann et al. 11

Addition modulo r b xor

ADDR_POLY_IN
[log(r)—1: log(b)]

Counter | _ yphe pory_gur
0...|7/b)
[log(b)—1:0]
Barrel _HR
DIN_IN D T
- b 1 Shifter y OUT_OU

Figure 3: Schematic drawing of a module being able to perform a k-squaring for arbitrary
k in r clock cycles.

(a) Strategy 1. (b) Strategy 2. (c) Strategy 3.

Figure 4: Different strategies to implement g = f 2* required for the polynomial inversion.

strategy only utilizes a squaring module for a fixed & = 1. In this case all exponentiations
are carried out by chains of simple squarings. The second strategy implements two different
but fixed squaring modules: one with k = 1 and the other one with k = 4. Hence, as long
as t and the remaining exponent of the squaring chain is larger or equal four, the faster
module is used. If the remaining exponent is smaller the squaring module with k£ =1 is
applied. The last strategy uses a combination of a fixed squaring module with £ = 1 and
the module being able to perform arbitrary k-squarings. In this way, all k-squarings with
k > b are executed by the latter module.

Note that all strategies have implemented a fixed squaring module with & = 1 because
of two reasons: (1) simple squarings are always needed in the inversion process (cf.
Algorithm 5, line 7 and line 12), and (2) it consumes just a few hardware resources and
speeds up the computation notably (more information will be given in Section 4.1).

Independently of the strategy, the inversion process requires four BRAMs. One BRAM
stores the private key, i.e., (hg, h1). The other three BRAM modules are interchangeably
used to perform a squaring chain (two BRAMs are used in alternation as source and target
polynomial) and a subsequent multiplication by the squaring chain’s input polynomial (cf.
Algorithm 5, line 3 and line 4).

3.5 Decoder

The BGF decoder mainly consists of three submodules. The first module is the threshold
function described in Equation 1. Its argument |(s + eHT)| is computed by the second
module. The third module flips the bits of the error vector e and generates the black and
gray lists. In the following, we describe our implementations of these three modules.
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Figure 5: Hamming weight computation of a polynomial g divided into b-bit chunks a. In
each stage, as many as possible additions are carried out by one DSP.

Threshold Function The threshold for flipping a bit in the error vector is calculated
with a multiplication followed by an addition with a constant term. We use Digital
Signal Processor (DSP) instantiated with an output register stage as a straightforward
implementation choice. In order to ensure that the bus widths of the input ports are
used as optimal as possible, the corresponding VHDL-code is generated by a Sage script
producing binary representations of the constants fy and f;. The floor-function is realized
by omitting all fractional digits from the result. As this procedure sustains a loss of
precision, the script also checks that the result is still correct for all possible inputs x.

Hamming Weight The implementation of the Hamming weight module follows our design
strategy to scale submodules with the parameter b. Again, we utilize DSPs with one
register stage to add up all non-zero bits. To do so, each b-bit chunk a = g[i] of a target
polynomial g is separately feed into the module depicted in Figure 5. In log(b) stages, all

bits are accumulated where each stage consists of [%—‘ DSPs where bpsp denotes

the input bit width of the applied DSP and 1 < j <log(b). Hence, for each stage the full
width of each DSP is utilized. In total, the Hamming weight computation requires

log(b

. Z [b/QJ g+1)w )

bpsp

DSPs where the additional DSP is used to accumulate all intermediate results at the end.

Bit-Flipping The last module of the decoder is responsible for the bit-flipping of the
error vector’s bits, i.e., the functions BFIter and BFMIter from Algorithm 4. In our
implementation we realize both functions in one module and select the modes of operations
(i.e., BFIter producing the black and gray lists, BFIter without producing the lists,
BFMIter processing the black mask, and BFMIter processing the gray mask) with a control
signal MODE. The most interesting part is the process of counting the UPC equations
which is depicted in Figure 6. We follow our design strategy and instantiate b counters in
parallel where the ENABLE (EN) signals depend on the current part of the syndrome and
the secret key. For storing the secret key, we decided to rely on a compact representation,
i.e., only the positions of non-zero bits are stored instead of the entire polynomial. Hence,
to determine the enable signals of all b counters in the same clock cycle, we compute the
positions of the currently considered non-zero bit for the next b — 1 columns (considering
the secret key in its matrix representation) by adding the corresponding offsets (white
adders) which would be gained when shifting the polynomial to the right. The position
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Figure 6: Extract of the bit-flipping module.

of the non-zero bit of the secret key is also used to read the corresponding chunk of the
syndrome (depicted at the top in Figure 6). Here, we decide to duplicate the syndrome s
and store a copy in a separate BRAM. This is necessary since we need b successive bits
from s starting at the bit position determined by the current non-zero bit of the secret key
which is not aligned with the layout of the BRAMs. For r = 17 and b = 4 this behavior is
shown in the following example.

.
52 51 50 S16 | 515 S14 513 S12 | 511 510 S9 58 | 57 S6 55 S4 | 53 52 51 S0

The arrow indicates the position of the current non-zero bit of the secret key and the
underlined bits are required to determine the enable signals of the b counters. As we can
only read one chunk within one clock cycle, we decided to create the aforementioned copy
of the BRAM storing the syndrome to achieve a lower latency and read both chunks within
one clock cycle from two different memories. The careful reader may notice that the least
significant bits of the syndrome in the example are also stored in the most significant
chunk such that the chunk is completely filled with data. The least significant bits from s
are copied to the most significant chunk in an initial phase each time the BFIter module
is evoked. This is necessary in case the non-zero bit of the secret key (the arrow in the
example) would point for example to sy5.

After a non-zero bit position is read from the BRAM, b is added and the result is
written back to the memory for the next iteration, i.e., the next b columns. At the end of
each BFIter execution the original secret key is restored from a copy as it is required for
the next execution.

However, after each non-zero bit position is read once from the BRAM, the counter
values can be evaluated and compared to the threshold T'. In case a counter value exceeds
T the corresponding bit is set. The resulting b bit vector is added to the current chunk of
the error vector or is used to set the bits in the black list. The same procedure is applied
for the gray list but with a threshold reduced by .

The BFIter function finishes in constant time and only depends on r, w, and b as
shown in Equation 6.

Norier = 5 -2+ | 7] +6-2- [ 7] +5 (6)

3.6 Random Oracles

The BIKE specification defines the three functions H,K, and L as random oracles
[ABB*20]. K and L rely on a standard SHA384 core hashing m concatenated with
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Figure 7: Distribution of required clock cycles to sample one polynomial of the secret key
for r = 12323 and w = 142 based on 100000 simulations.

C and hashing (eg, e1), respectively. It is assumed that all data is stored in byte arrays so
that the input size to the SHA function is a multiple of eight. For our hardware design
we implemented the SHA core in a straightforward way, i.e., as a round-based approach
including retiming.

The H function relies on an AES256 core (instantiated in counter mode) where the
input to H serves as 256-bit key. After one execution of AES, the resulting ciphertext is
used as randomness generating the error vectors. More precisely, the 128-bit output is
divided into four 32-bit words which serve as inputs to the sampler described in Section 3.2.

4 Implementation and Analysis

Before we cover the composition of the key generation, encapsulation, and decapsulation, we
provide analyses of the above described submodules. Finally, we compare our approaches
to related work.

4.1 Analysis of Submodules

Sampler In order to verify our hardware implementation of the rejection sampler, we per-
formed 100000 simulations setting r = 12 323. Figure 7 shows a histogram of the required
clock cycles to finish the sampling process. The results confirm a correct functionality of
our implemented sampler and show the expected average number of clock cycles which we
deduced in Equation 2.

One sampler generating a single polynomial consumes 25 slices partitioned into 66
Look-Up Tables (LUTs) and 19 registers. For r = 12323 a half (i.e., a 18 KB) BRAM tile
is required to store the polynomial. Our final implementation instantiates two samplers to
generate (hg, k1) in parallel.

Multiplier Here, we just report the implementation results for the multiplier setting
b =32 and r = 12 323 which are summarized in Table 3. A more detailed analysis and a
comparison to related work is presented in Section 4.3.

Squaring Modules In Section 3.4 we introduced two different squaring modules. The first
module was designed to perform the operation fzk for a fixed k and a target polynomial f
in approximately [r/b] clock cycles. The implementation results for k =1 and k = 4 are
shown in Table 3. Increasing k significantly increases the amount of required hardware
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resources which can be explained by more complex control logic and more intermediate
values that need to be buffered in registers. Note that the gain in terms of throughput
only increases linearly.

Due to these exploding implementation costs, we investigated a second squaring strategy
which performs squarings of arbitrary k in approximately r clock cycles. For r = 12 323
and b = 32 this approach requires just 45 slices partitioned into 96 LUTs and 80 registers.
The utilization is very similar to that of the squaring module working with a fixed k =1
which makes it especially beneficial for larger k.

However, both modules require two 18 KB BRAM tiles which hold the source and the
target polynomial.

Decoder The decoder can be divided into three parts: the threshold computation, the
Hamming weight module, and the BFIter function. The threshold computation is realized
by one DSP configured as a multiplier with a subsequent addition. Therefore, it consumes
one DSP (independent of the security level and b) and a few LUTSs for control logic.

The Hamming weight module also uses DSPs as described in Section 3.5 while the
number of required DSPs depends on b (cf. Equation 5). Note, for Artix-7 FPGAs
bpsp = 28. No additional logic is required.

The hardware utilization for the BFIter function for » = 12323 and b = 32 adds up to
355 slices composed of 280 registers and 1125 LUTs. All together, the module needs to be
connected to 4.5 BRAMS to store two times the syndrome, the compact representation of
the secret key (a half memory is sufficient), the error vectors, and the black and gray lists.

Random Oracles Both, K and L, use a SHA384 which consumes 1171 slices (3636 LUTs
and 2110 registers). The wrapper to realize K consumes additional 114 slices while the
wrapper for L only requires 45 additional slices.

The realization of H utilizes additional 614 slices which includes the AES256 and the
wrapper logic.

Comparing these implementation results with them of the other submodules in Table 3,
it can clearly be seen that the hardware resources to realize the three random oracles
dominate the total utilization costs (especially for b = 32). Hence, from the hardware
implementation’s point of view switching to another cryptographic primitive like KECCAK
(used as SHAKE and SHA-3) could reduce this overhead.

4.2 Composed Key Encapsulation Mechanism

Now, we present implementation results of the composed designs of the three algorithms
involved in BIKE.

Key Generation Given all the submodules, we now describe the assemble of the key
generation module. On the top level, it consists of two samplers generating the private
key (ho, h1). The resulting key is written to a generic BRAM module which automatically
picks and connects the minimum number of required BRAM tiles based on the selected
parameters r and b. The private key o is generated by the sampler described in Section 3.2
and is stored in a 256-bit register. In order to generate the public key h = hihj 1 one
of the above introduced inversion modules is instantiated. The multiplication is also
performed inside the inversion module as it already contains a multiplication engine.
Table 4 summarizes the implementation results for the key generation for all three
introduced design strategies. Starting with Strategy 1, which utilizes only one squaring
module, the implementation requires in average for b = 32 7.37 million clock cycles? which
corresponds to a latency of 56.75 ms for a maximum possible frequency of 129.87 MHz.

2The average number of clock cycles was determined by performing a simulation and applying Equation 2.
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Table 3: Implementation results of the required submodules to assemble the BIKE algo-
rithms (r = 12323, b = 32).

Logic Memory Area
LUT DSP FF BRAM Slices
Sampler 66 0 19 0.5 25
Multiplier 886 0 119 1.5 274
Squaring k =1 81 0 105 1 38
Squaring k =4 4070 0 820 1 1124
Squaring arbitrary 96 0 80 1 45
Threshold Function 6 1 0 0 5
Hamming Weight 0 6 0 0 0
Bit-Flipping 1125 0 280 4.5 355
SHAS38 3636 0 2110 0 1171
Wrapper for K 220 0 29 0 114
Wrapper for L 45 0 22 0 45
H Function 1879 0 457 0 614

The latency can roughly be decreased by a factor of four setting b = 128. However, the
hardware utilization scales with a factor of five resulting in an area footprint of 3 354 slices.
A better ratio between latency and resource utilization is achieved with Strategy 3. The
utilization is very similar to the first strategy but the latency is notably decreased so
that the implementation for b = 128 requires just 2.69 ms to finish one key generation by
consuming 3 554 slices and 10 BRAMs. Hence, a distinct superiority is clearly visible.

Encapsulation Figure 8 shows a schematic of the encapsulation. To sample and store
m, an uniform sampler and a 256-bit register is instantiated. The message m is used
as input to H generating the error vector e = (eg,e1). Afterwards, cg = eg + e1h and
c¢1 = m @ L(eg, e1) are computed in parallel. A parallel computation is only possible due
to an additional BRAM which is placed in the conversion module and stores a copy of
e serving as input to L. The final result of the multiplication is stored in the part of
the BRAM which initially holds ey. The cryptogram and the message m are fed into a
conversion module Conv to generate the input to the SHA core realizing K.

Again, Table 4 summarizes the implementation results for the encapsulation module
for b € B. Since the main part of the encapsulation is the multiplication to generate cg, the
implementation perfectly scales with b. For b = 32 the design requires 3 BRAMs and 2133
slices while performing one encapsulation within 1.25 ms. Switching to b = 128, increases
the hardware utilization roughly by a factor of two while the latency is decreased by a
factor of twelve. The small increase of the hardware utilization originates from the relative
large footprints of the SHA384 and the AES256 which stay constant for each b. Both
modules consume together roughly 1800 slices (cf. Table 3) which are 83 % of the whole
design when setting b = 32.

Decapsulation The decapsulation uses most of the submodules including two multiplier,
the decoder, and all three random oracles (see Figure 9). After transmitting the private
key (ho, h1,0) and the ciphertext C' = (cp, ¢1), the decapsulation is started by computing
the syndrome s = cghg. Afterwards, the algorithm invokes the decoder enabling the
BFIter module which forms the center of the decapsulation. After each iteration the
two multipliers compute the updated syndrome by s’ =ef - ho + €} - hy + s where s is
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Figure 9: Top level view of the decapsulation module.

the initial syndrome determined in the first step. Next, the content of ¢’ is converted,
forwarded to the SHA core, and added to ¢;. The resulting message m’ serves as key for
the AES256 core generating an error vector which is stored in e’ and compared to the
content in e”. In case the polynomials are equal, the implementation forwards m’ to K
determining the shared key k. Otherwise o is used as input to K.

Again, Table 4 summarizes the implementation results for the decapsulation. The main
parts, i.e., the multipliers and the bit-flipping module, perfectly scale with the parameter
b. Hence, increasing b from 32 bits to 128 bits lowers the latency from 13.02 ms to 1.89 ms
by spending roughly three times more hardware recourses.

4.3 Comparison to Related Work and Discussion

In all three algorithms the multiplier represents an important part. Therefore, we first
compare our multiplier to designs from the literature. Afterwards, we provide a comparison
to other code-based PQC schemes and briefly discuss the advantages and disadvantages of
BIKE.

Multiplier In Table 5 we first compare our approach for the multiplication with the
Karatsuba implementation from [ZGF20] to reason the choice of our design. Note that
the corresponding results are generated for » = 24 533 as it is a valid polynomial size for
LEDAcrypt used as case study in [ZGF20] and is very similar to the parameter set for the
third security level of BIKE. Hence, we synthesized our multiplier for the same r in order
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Table 4: Implementation results for r = 12 323.

Resources Performance
Logic Memory Area  Cycles Freq. Latency
LuUT DSP FF BRAM Slices Cycles MHz ms

Key Generation

Strategy 1
32bit 2092 0 589 4 669 7370429 129.87  56.75
64bit 3607 O 631 5 1046 3070613 125 24.56
128bit 11838 0 861 10 3354 1409621 104 13.53

Strategy 2
32bit 6982 0 1396 4 1986 3804192 131.58  28.91
64bit 9140 0 2303 5 2570 1295190 123.46  10.49
128bit 23801 0 4567 10 6742 520374 106.38 4.89

Strategy 3
32bit 2074 O 659 4 649 2671076 131.58  20.30
64bit 4432 0 735 5 1285 748964 113.64 6.59
128 bit 12654 0 1044 10 3554 258750  96.15 2.69

Encapsulation
32bit 6730 0 3298 3 2143 152694 121.95 1.25
64bit 8253 0 3327 5 2538 40368  121.95 0.33
128 bit 14829 0 3471 10 4540 12240 121.95 0.10

Decapsulation
32bit 9380 7 3943 10 2971 1626674 125 13.01
64bit 16140 9 4307 15 4942 518105 116.28 4.46
128 bit 30430 13 5063 29 8785 188646 100 1.89

to allow a fair comparison. Our design achieves a better time-area product while consuming
considerably less BRAMs. As one design target of our work is to implement BIKE also
for low-cost FPGAs, we decided to use the multiplier design presented in Section 3.3.

In the second part of Table 5, we compare our multiplier to the recently proposed
design by Hu et al. [HWCW19] whose implementation conducts a multiplication within
[2]% 4+ 18[ %] — 9 clock cycles. Our multiplier achieves a latency of [£]% 4+ 3[%] + 1 clock
cycles with a slightly decreased linear part. Additionally, we included the design from the
Round-2 submission of the BIKE specifications [ABB*19].

These results were generated for » = 10 163 since Hu et al. reported their results for
the parameter set of the second round submission of BIKE. While our implementation
consumes slightly more hardware resources, the latency clearly decreases. However, the
area-time product only shows better results for b = 32 and b = 64. We cannot explain the
difference in the utilization of slices for b = 128. As Hu et al. mentioned in their work,
the required area increases quadratically with the scaling parameter b [HWCW19, Table
IV]. This roughly holds for our design but we cannot explain why Hu et al. achieve much
better results.

Complete BIKE Design In this paragraph we compare the complete hardware implemen-
tation of BIKE to related work that present hardware designs of code-based cryptography.
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Table 5: Comparison between different multipliers on Artix-7 FPGAs.

Resources Performance

Logic Memory Area Cycles  Freq. Latency Area-Time

b [bit] LUT FF BRAM Slices Cycles MHz ms Slices X ms

Karatsuba [ZGF20] *

64 67300 13440 165 16825 5715 143 0.04 673
This work *

64 2377 152 3 704 148609 163 0.565 397.76

Round-2 Implementation [ABB*19] ®
32 87 53 3 40 3252161 416 7.818 312.72
Multiplier by Hu et al. [HWCW19] ®
32 N/A N/A 2.5 219 106 839 205 0.521 114.099
64 N/A N/A 5 654 28134 180 0.156 102.024
128 N/A N/A 75 1596 7831 150 0.052 82.992
This work ®
32 886 90 1.5 274 102079 312 0.327 89.598
64 2384 119 3 740 25759 277 0.093 68.82
128 8864 248 6 2519 6641 147 0.045 113.355

ap=294533 bPr=10163

Recently, Dang et al. published a paper comparing round 2 candidates of the NIST PQC
standardization process [DFAT20]. The only code-based scheme reported in their work
is the Classic McEliece Public-Key Encryption (PKE) scheme whose hardware imple-
mentation was originally proposed in [WSN18]. Their design can also be configured and
instantiated as a lightweight or high-speed implementation. The corresponding imple-
mentation results are listed in Table 6 while also showing estimations of an composed
BIKE design using our introduced modules. Here, we assume that the AES and SHA
cores are only instantiated once on the chip such that the encapsulation and decapsulation
share them. Note, that this, however, still results in a very conservative estimation since
memory, registers, and the multiplier could be shared as well. Nevertheless, in terms of
latency, the Classic McEliece scheme clearly outperforms BIKE for all three operations and
for both implementation strategies (lightweight and high-speed). In return, the resource
utilization is considerably higher than for BIKE so that the Classic McEliece scheme is
not particularly suitable for implementations on low-cost devices. Considering the Artix-7
device family from Xilinx (recommended by the NIST), Classic McEliece could only by
implemented on the largest FPGAs (i.e., on XC7A200T devices) due to the high amount of
required BRAMs. Even if the huge amount of BRAM is neglegted, the design would still
require a XC7A50T or XC7A200T for the lightweight and high-speed version, respectively.
In comparison, our lightweight design can be instantiated on a low-cost XC7A35T device
while the high-speed design requires a XC7A100T FPGA. At the time of writing this
article, a XC7A200T FPGA costs around 196 $ while a low-cost XC7A35T device can be
purchased for roughly 35$. This makes our design also suitable for low-cost applications.

In Table 6 we additionally compare our design to the key generation approach from
[HWCW19] which was designed for an old parameter set with » = 10163. Even that our
design uses a slightly larger r, it clearly outperforms the implementation by Hu et al..
Setting b = 64, our key generation implementation consumes roughly the same amount of
slices but is as twice as fast (cf. Table 4).
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Table 6: Comparison to other code-based schemes.

Encaps/ Decaps/
Encode Decode

Design LUT FF Slices DSP BRAM Freq. cyclest us  cyclest us cyclesT us

Key Gen

mceliece348864P* (LW) [WSN18] 25327 49383 6332> 0 168 108 1600 14800 2.7 25.2 18.3 169.8
mceliece348864P*° (HS) [WSN18] 81339 132190 16524* 0 236 106 202.7 1920.3 2.7 25.8 12.7 120.7

BIKE-2 [HWCW19] 3874 2141 1312 O 10 160 2150 13437 — - - -
This work (LW) 12868 5354 4078 7 17 121 2671 21903 153 1252 1628 13349
This work (HS) 52967 7035 15187 13 49 96 259 2691 12 127 189 1972

pke Results are only for the PKE and not for the KEM. LW Lightweight implementation.
HS High-speed implementation.
" in MHz. Tin thousand. ? Estimation (assuming all slices are completely utilized).

Note, that we do not compare our hardware design to the implementation reported in
the Round-2 submission of BIKE as it was based on the older algorithm BIKE-1.

4.4 Discussion

In case a hardware implementation of BIKE does not have to perform the key generation,
encapsulation, and decapsulation in parallel, a composed design could further be optimized.
Besides instantiating the AES and SHA core only once, a shared multiplier, shared register
banks and shared BRAMs could be used as well.

In Section 4.1 we already discussed the huge footprint of the random oracles. Hence,
the choice of using AES and SHA as underlying building blocks appears not to be optimal
for hardware implementations. To this end, we would suggest to use other standardized
cores like KECCAK which could be used as hash function (for K and L) and as random
number generator (for H). This should reduce the overall footprint of a BIKE hardware
implementation.

5 Conclusion

In this work we present a complete hardware implementation of BIKE selected as an
alternate candidate in the NIST PQC standardization process. Our implementation is
scalable with respect to the used hardware resources and the corresponding latency while
performing all operation in constant time (i.e., there is no dependency on secret values).
As polynomial multiplications mainly determines the speed of the key generation and
encapsulation, we use carry-less vector-matrix-multiplication with a short feedback path.
For the key generation, we investigate three different implementation strategies resulting
in one outstanding design. Additionally, we propose the first hardware implementation
of the BGF decoder required in the decapsulation. With all these improvements and
optimizations we are able to implement a key generation which only takes 2.69 ms, an
encapsulation which can be accomplished in 0.1 ms, and a decapsulation which finishes in
1.89ms. Since multiplication is the most important operation with respect to performance,
we suggest to investigate other approaches for high-speed implementations in future work.
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A Supplementary Material

Algorithm 6 formally describes our approach to implement the polynomial multiplication.
The two initialization phases require each one clock cycle. Everything inside the for-loop
iterating over j is executed in parallel.

Algorithm 6: Polynomial Multiplication.

Data: Input polynomials h, m € R.
Result: Product ¢ = m - h € R which is written to a BRAM.

O < r mod b, mask < (2° — 1), addr < [r/b]

Juy

2 for i + 0 to addr — 1 do
3 temp < 0
/* Initialization Phase 1 */
foru< O+1tob—1do
| temp « temp & (m[i] >> u) & 1) - (hladdr — 2] >> (b+ O —u))
end
/* Initialization Phase 2 */
7 | t+ (hladdr —1] & (2° — 1)) << (b— O — 1);
foru+1tob—1do
9 | temp < temp ® (mfi] >>u) & 1) (t>> (b—1—u))
10 end
/* Regular Flow */
11 R’ < R[0], tmp_c_add < c[i]
12 for j < 0 to addr — 1 do
/* Parallel execution. */
13 temp2 < temp
14 temp < 0
15 foru+ 0tob—1do
16 p< ((mi] >>u) & 1)-h') <<u
17 temp2 «+ temp2 ® (p & mask)
18 temp < temp & ((p >> b) & mask)
19 end
20 tmp_c + c[(j +i+ 1) mod addr]
21 if j = (addr — 1) then
22 cl(7+i+1) mod addr] + tmp_c_add @ (tempZ & (20 — 1))
23 h[0] + ((F' << (b—=0)) | (h[j] >> O)) & mask
24 else
25 cl(j 4+ i+ 1) mod addr] < tmp_c_add ® temp2
26 tmp_h <« h'
27 B« hlj+1]
28 hlj+1] - tmp_h
29 end
30 tmp_c_add <+ tmp_c
31 end
32 end

33 return c

B Implementation Results for Level 3

Table 7 shows the Level 3 implementation results.
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Table 7: Implementation results for Level 3 (r = 24 659).

Resources Performance

Logic Memory Area Cycles Freq. Latency

LUT DSP FF BRAM Slices Cycles MHz ms

Key Generation (Strategy 3)
32bit 1757 0 628 5 561 11600207 135.14 85.84
64bit 4580 0 801 5 1303 3089329 111.11  27.80
128bit 12193 0 970 10 3491 930179 96.15 9.67

Encapsulation
32bit 6436 0 3305 5 1982 601099 121.95 4.93
64bit 8329 0 3366 5 2508 154499  119.05 1.30
128bit 15004 0 3441 10 4376 42173 125 0.34

Decapsulation
32bit 8515 7 3978 16 2912 5969105 125 47.75
64bit 13424 9 4359 16 4324 1804958 116.28 15.52
128bit 30635 13 5127 30 9727 609915 96.15 6.34
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