
Linear Complexity Private Set Intersection for
Secure Two-Party Protocols?

Ferhat Karakoç1 and Alptekin Küpçü2

1 Ericsson Research, İstanbul, Turkey
ferhat.karakoc@ericsson.com

2 Koç University, İstanbul, Turkey
akupcu@ku.edu.tr

Abstract. In this paper, we propose a new private set intersection
(PSI) protocol with bi-oblivious data transfer that computes the fol-
lowing functionality. One of the parties P1 inputs a set of items X and
a set of data pairs D1 = {(dj0, d

j
1)} and the other party P2 inputs a

set of items Y . While P1 outputs nothing, P2 outputs a set of data
D2 = {djbj | bj ∈ {0, 1}} dependent on the intersection of X and Y . This
functionality is generally required when the PSI protocol is used as a
part of a larger secure two-party secure computation such as threshold
PSI or any function of the whole intersecting set in general. Pinkas et al.
presented a PSI protocol at Eurocrypt 2019 for this type of functional-
ity, which has linear complexity only in communication. While there are
PSI protocols with linear computation and communication complexities
in the classical PSI setting where the intersection itself is revealed to
one party, to the best of our knowledge, there is no PSI protocol, which
outputs a function of the membership results and satisfies linear complex-
ity in both communication and computation. We present the first PSI
protocol that outputs only a function of the membership results with
linear communication and computation complexities. While creating the
protocol, as a side contribution, we provide a one-time batch oblivious
programmable pseudo-random function based on garbled Bloom filters.
We also implemented our protocol and provide performance results.

Keywords: Private set intersection, two-party computation, Bloom filters, obliv-
ious transfer, cuckoo hashing, circuit-PSI, OPPRF

1 Introduction

Private set intersection (PSI) protocols are one of the commonly used two party
secure communication primitives where two parties, P1 and P2, have their own
respective private sets, X and Y , and at least one of the parties learn the in-
tersection X ∩ Y but nothing more. In the last decade, considerable amount
? This is the full extended version. The original version was presented at CANS 2020
and the authenticated publication is available via https://doi.org/10.1007/978-3-
030-65411-5_20

of custom PSI protocols have been proposed in the literature. However, most
of the proposed solutions reveal the intersection to at least one of the parties,
which makes the protocols not usable as a building block in a larger secure
computation protocol, because in that larger protocol, intermediate informa-
tion would leak due to the nature of the employed PSI protocol. In this work,
we focus on designing a PSI protocol in the semi-honest security model, which
allows P1 obliviously to send data to P2 where neither P1 nor P2 know the
choice bits, which depend on the intersection. The name PSI with bi-oblivious
data transfer comes from this functionality. More precisely, P2 inputs a set
of items Y = {yi | 1 ≤ i ≤ ny} as usual and P1 inputs a set of data pairs
D1 = {(dj0, d

j
1) | 1 ≤ j ≤ β = O(max(nx, ny))} in addition to the set of items

X = {xi | 1 ≤ i ≤ nx}. While P1 outputs nothing, P2 outputs a set of data
D2 = {djbj | 1 ≤ j ≤ β, bj ∈ {0, 1}} where bj = 1 for j = f(i) if yi ∈ X,
bj = 0 otherwise, and f is a mapping known or computed by P2 such that
f : {1, 2, ..., n} −→ {1, 2, ..., β}. When each (dj0, d

j
1) = (0, 1), we obtain regular

PSI. When (dj0, d
j
1) is a pair of two strings, we obtain PSI with data transfer [7,

35]. While (dj0, d
j
1) appears to be general, it fails to cover general computation

over (X ∩ Y), e.g., cardinality [6] or threshold PSI [35, 36], because each dj0 or
dj1 is leaked individually to P2 but not the computation over (X ∩ Y). Luckily,
we can compose PSI with bi-oblivious data transfer with another layer of secure
two-party computation protocol. For example, consider dj0 and dj1 respectively
as additively-homomorphic encryption of ‘0’ and ‘1’ (Ek(0) and Ek(1) for key
k picked by P1), and that our protocol is followed by additively-homomorphic
evaluation of the obtained values by P2, and then P1 decrypts the result. This
corresponds to PSI cardinality. Alternatively, dj0 and dj1 output values can be
secret shares of the result for each item in the result set or labels for the corre-
sponding input wires for circuit-based secure computation protocols. For exam-
ple, the value dj0 can be a wire label for wire zero and dj1 can be wire label for
wire one. This means that all wire labels are input for the larger protocol that
employs our set intersection. This larger protocol can be, for example, comput-
ing a threshold over the intersection cardinality, or any other secure two-party
computation protocol whose input should be the intersection. More applications
and details are given in Section 7.

Related Work: To the best of our knowledge, protocols that output a func-
tion of the membership results were proposed by Ciampi and Orlandi [5], Pinkas
et al. [27], and Falk et al. [11] in addition to the circuit based solutions of [14,
30]. In [5], a custom private set membership protocol (PSM) (where one of the
parties has only one item instead of a set) based on oblivious navigation of a
graph was introduced and this PSM protocol was converted to a PSI protocol
with O(n log n/ log log n) communication and computation complexities using
the hashing techniques proposed in [29, 26, 30], where n is the number of items
in the sets. [11] has a communication complexity of O(n log log n) when the out-
put can be secret shared. In [27], Pinkas et al. proposed a PSI protocol with O(n)
communication and ω(n(log log n)2) computation complexities using the oblivi-
ous programmable pseudo-random function (OPPRF) in [20]. That protocol uses

2

OPPRF to check the private set membership relation in the hashed bins, where
the result is not output in clear text, and then deploys a comparison circuit for
the output of the membership result that can be given to a function as the input.
Also in literature, there have been special purpose PSI protocols such as [33, 22,
6, 19, 9, 8, 36, 15, 16], which output a specific function of the intersection such as
cardinality of the set, intersection-sum, or a threshold function.

In our solution, we follow the idea of Pinkas et al. [27] in that we first run a
PSM protocol for each bin in the cuckoo hash table and then execute a compar-
ison protocol. We diverge from their idea in the following ways. The first one is
that we construct a Bloom-filter (BF) based PSM protocol by modifying Dong
et al. PSI solution [10] to reduce the computation complexity. The second point
is that, instead of using a comparison circuit, we execute Ciampi-Orlandi PSM
protocol as a secure equality testing protocol such as the one used in [18], which
makes the equality testing free by using the base oblivious transfer already ex-
ecuted in the BF-based PSM protocol. Following these two methods along the
idea of Pinkas et al., we are able construct the first custom PSI protocol having
linear computation and communication complexities in the number of items for
the functionality we consider (outputting not the result set, but a function of
the membership results), to the best of our knowledge. Note that there have
been PSI solutions with linear complexities such as the protocols in [7, 10] and
malicious secure solutions such as the recent proposals [13, 25] having linear com-
munication complexity, but in these protocols the intersection is revealed to at
least one party while in our protocol no party learns the intersection in cleart-
ext. We implemented our PSM and PSI protocols and the Ciampi-Orlandi PSM
protocol to make a fair comparison. Experimental performance results, which
validate our performance analysis, are given in Section 8.

2 Preliminaries and Similar Protocols

Notation: P1 and P2 are the parties who run the protocol, X and Y are the
corresponding item sets of the parties, D1 is the set of message pairs inputted
by P1, and D2 is the set of corresponding received messages by P2 depending on
the intersection X ∩ Y .

The remaining notation we use throughout the paper is as follows:
` : The length of the items in the sets
κ : Security parameter
η : Statistical correctness parameter
nx : The number of items in X
ny : The number of items in Y
n : max(nx, ny)
m : Bloom filter size
k : Number of hash functions used in Bloom filter
Hi : Set of k hash functions used in the construction of Bloom filters

for i-th bin in the cuckoo table where Hi = {hi,1, ..., hi,k}
β : The number of bins in cuckoo table

3

2.1 Sub-Protocols

Oblivious Transfer: A 1-out-of-2 oblivious transfer (OT) [31] is a secure two-
party protocol that realizes Functionality 1. While OT is one of the commonly
used primitives in secure protocols, the main drawback of this primitive is the
need of asymmetric key operation executions. With the help of OT extension
(OTE) method proposed in [1] and practically realized with some studies such
as [17], to execute 1-out-of-2 OT for m pairs of length ` (OTm`) it is enough to
run OTκκ, called as base OTs, where κ is the security parameter, which keeps
the number of heavy public key operations as a constant independent from the
number of pairs m and item lengths `.

In recent works, it was shown that the number of rounds can be 2 instead of 3
for an OT extension protocol by executing some of the computations in the offline
phase of the protocol [3, 4]. In our solution, we don’t consider the preprocessing
operations and so we don’t use these constructions in our protocols.

Cuckoo hashing [23] is a hashing primitive that allows to map items of a set
to the bins, where there is at most one item in each bin. This primitive employs
two hash functions h0 and h1 and maps n items to a table T of (1+ ε)n bins. An
item xi is inserted into bin T [hb(xi)]. If this bin already accommodates a previous
item xj , then xj is relocated to bin T [h1−b(xj)]. If in that bin there is another
item, then this procedure is repeated until there is no need or a replacement
threshold is reached. If a threshold is employed, then a stash is used to store the
items that are not located into the bins.

Bloom Filter Based PSI: A Bloom filter (BF) [2] is a representation
of a set X = x1, ..., xn of n elements using an m-bit string BF . BF is con-
structed with the help of a set of k independent and uniform hash functions
(H = h1, ..., hk) where hi : {0, 1}` → {1, 2, ...,m} as follows: BF is first set
to 0m. Then, for each item in X, BF [hi(xj)] is set to 1 where 1 ≤ i ≤ k and
1 ≤ j ≤ n. To check whether an item x is in the set X, one checks BF [hi(x)] is
equal to 1 or not for each i (1 ≤ i ≤ k). If for all i (1 ≤ i ≤ k) the corresponding
bit in BF is equal to 1, then it means that the item is probably in the set.
Otherwise (for some i the corresponding bit is 0), the item is not in the set.

A Bloom filter based PSI was proposed by Dong et al. [10]. In that solution, a
variant of BF called as Garbled Bloom Filter (GBF) was used. A GBF of a setX,
GBF , is similar to BF except that while for each hash function hi in H we have
BF [hi(x)] = 1, GBF [hi(x)] is a secret share of x: that is,

⊕k
i=1GBF [hi(x)] = x

and other cells are random values instead of simple zeros. In the first step of the
protocol, P1 and P2 construct a GBF (GBFX) using the GBF building algorithm
provided in [10] and a BF (BFY), respectively. Then, P1 and P2 run m-pair

Functionality 1 Oblivious Transfer
Inputs. The sender inputs a pair (x0, x1), the receiver inputs a choice bit b ∈ {0, 1}.

Outputs. The functionality returns the message xb to the receiver and returns nothing
to the sender.

4

oblivious transfer of `-bit strings (OTm`) where P1’s input is (0`, GBFX [i]) and
P2’s input is BFY [i] for the i-th OT, and the output of P2 is GBFY [i]. In this
way, P2 learns GBFX [i] if BFY [i] = 1. P2 checks, for each item yj ∈ Y , whether
it is in X or not, by comparing

⊕k
i=1GBFY [hi(yj)]

?
= yj .

Oblivious Pseudo-Random Function Based PSM:An oblivious pseudo-
random function (OPRF), introduced in [12], is a two-party protocol where party
P1 holds a key K, party P2 holds a string x, and at the end of the protocol P1

learns nothing, while P2 learns FK(x) where F is a pseudo-random function
family that gets a κ-bit key K and an `-bit input string x and outputs an `-
bit random-looking result. An oblivious programmable pseudo-random function
(OPPRF) [20] is similar to an OPRF except that in OPPRF, the protocol out-
puts predefined values for some of the programmed inputs. In that protocol P2

should not be able to distinguish which inputs are programmed. Note that OP-
PRF is very similar to PSI with data transfer [7, 35] by just setting the data of
the latter to random values. Indeed, the GBF-based construction of OPPRF in
[20] is essentially the GBF-based construction in [35]. In this paper, we extend
this GBF-based construction to batch OPPRF.

The basic idea in OPRF based PSM protocols are as follows. P1 holds a key
K to compute a pseudo-random function FK , P2 learns FK(y) for his item y
obliviously, and P1 sends FK(xi) for her items xi ∈ X to P2. P2 checks if FK(y)
is in the set {FK(xi)}. An example PSI protocol can be found in [30]. In the
OPRF solution, P2 learns whether or not his item is in the set of P1. This solution
cannot be used in our setting where nobody learns the result in cleartext and the
parties only learn a function result of the intersection. Pinkas et al. [27] converted
the OPRF solution to the setting we consider using an oblivious programmable
pseudo-random function. In that solution, P1 sends the same (random) output r
for the items in her set. Otherwise, she sends some random output to P2. Then
P1 and P2 run a circuit to check the equality of r and the outputs P1 sent to P2.
At the end of this equality check circuit, one party obtains a function based on
the result of the equality, i.e, of the membership.

Usage of Ciampi-Orlandi PSM Protocol to Test Equality of Two
Strings: The private set membership (PSM) protocol proposed by Ciampi and
Orlandi [5] works on the setting that P1 and P2’s inputs are a set of items X
and an item y, respectively, and at the end of the protocol, P2 learns a func-
tion of the membership relation and P1 learns nothing. The protocol is based on
oblivious graph tracing and uses oblivious transfer. In our construction, we use
that protocol for the case that P1’s input is just one item instead of a set, as
considered in [18]. In this case, the PSM protocol becomes a secure equality test-
ing outputting a function (we call functional equality testing - FEQT) protocol
that realizes Functionality 2. This simplification also greatly increases efficiency,
helping us achieve linear costs. Protocol 1 presents the steps of Ciampi-Orlandi
PSM protocol for the case of testing two strings as used in [18].

5

Functionality 2 Functional Secure Equality Testing
Inputs. P1 inputs x and a pair of strings (d0, d1), P2 inputs y.

Outputs. The functionality checks the equality of x and y and returns d0 or d1 according
to the truth value of x ?

= y to P2.

Protocol 1 (Ciampi-Orlandi PSM Protocol to test equality of two strings.)
Parameters. Ek(.) is a symmetric encryption under the key k with a polynomial-time
verification algorithm outputting whether a given ciphertext is in the range of Ek(.)
with false positive probability being 2−η.
Inputs. P1 inputs x and a string pair (d0, d1), P2 inputs y.

Outputs. P2 outputs d0 or d1 according to the truth value of x ?
= y. P1 outputs nothing.

The protocol steps:

1. P1 prepares the message pairs (Si0, Si1) for x[i] (1 < i < `) as follows: (x[i] denotes
the i-th bit of x and x[1] is the right-most bit)
– chooses random symmetric keys k` and k∗` and sets S`x[`] = k` and S`1−x[`] = k∗`
– For i = (`− 1) to 1
• chooses random symmetric keys ki and k∗i and sets Six[i] =

{Eki+1(ki), Ek∗i+1
(k∗i)} and Si1−x[i] = {Eki+1(k

∗
i), Ek∗i+1

(k∗i)}.
• permutes the ciphertexts in Six[i] and S

i
1−x[i] randomly.

2. P1 sends Ek1(d1) and Ek∗1 (d0) to P2 in random order.
3. P2 learns corresponding Siy[i]’s by running OT from P1 for 1 < i < `.
4. P2 recovers only one of the keys k1 or k∗1 by decrypting the ciphertexts in the

following way:
– decrypts the ciphertexts in S`−1

y[`−1] using S
`
y[`] as the key where the plaintext in

the encryption domain is the key that will be used to decrypt the ciphertexts
in S`−2

y[`−2].
– decrypts the ciphertexts in Siy[i] using the plaintext recovered from Si+1

y[i+1] as
the key to recover the key used in the next received message Si−1

y[i−1].
5. P2 decrypts the ciphertexts Ek1(d1) and Ek∗1 (d0) using the key recovered in Step

4 where only one of the plaintexts will be in the domain and this plantext will be
equal to d1 or d0. P2 outputs the result.

2.2 Security Definitions

Since there are two parties who run the protocol, it is enough to prove that the
protocol is secure when one of the parties is corrupted. There are two possible
cases: either P1 or P2 is corrupted.

We follow the simulation-based security proof paradigm. Since we only con-
sider honest-but-curious adversaries, the existence of a simulation in the “ideal
world” whose protocol transcript is computationally indistinguishable from the
adversary’s view in the protocol execution in the “real world” (together with the
parties’ outputs in both worlds) proves that the protocol is secure. The basic

6

idea in this proof paradigm is that if it is possible for the simulator to create
a protocol transcript indistinguishable from the real execution transcript, then
the transcript doesn’t reveal any piece of information about the private input of
the honest party. This security proof paradigm was formalized in [21] as follows.
Protocol π implements the functionality F = (F1,F2) where the output of P1

and P2 are F1(x, y) and F2(x, y), respectively, and x and y are the inputs of the
parties. The view of Pi for i ∈ {1, 2} (denoted as viewπi (x, y)) in the execution
of the protocol π is the input of Pi, the internal random number coin tosses,
the messages received from the other party in the execution of the protocol, and
the outputs. The existence of probabilistic polynomial-time (PPT) algorithms
Si (the simulators) that takes the input of Pi and the output of Pi such that

{Si(wi,Fi(x, y))}x,y ≈ {viewπi (x, y)}x,y

for i ∈ {1, 2} where w1 = x and w2 = y proves that the protocol π realizes the
functionality F securely.

As for the underlying primitives, namely OT and FEQT, whose functionali-
ties were presented as Functionalities 1 and 2, respectively, there exists simulators
who can simulate the view for both parties. These simulators take the input and
output of the corresponding party as input, and produce indistinguishable views
as output. In our proofs, we make use of these simulators for the underlying
primitives.

Lastly, in our proofs, we provide the simulators for semi-honest adversaries.
Note that the simulated view (including the outputs) must be indistinguishable
from the real view. In all our proofs, this is either obvious (directly comes from
the security of the underlying primitive, or comes from the fact that the simu-
lated values are picked from the same distribution as the original ones), or were
proven by others (in which case we also cite those papers). Thus, we do not delve
deep into the indistinguishability discussions, considering also the page limits.

3 Bloom Filter Based OPPRF Construction

We present a one-time OPPRF construction based on PSI protocols proposed
in [10] and [35]. For our usage, we put secret shares of random values chosen by
the sender as the data to be transferred by the PSI protocol [35].

The OPPRF functionality we use in our PSM protocol is given in Function-
ality 3 and our construction that implements the functionality is presented in
Protocol 2. The probability of false negative is zero because when y ∈ X, P2

learns all shares required to recover the related programmed value. There may be
false positives only with probability that is negligible in k and η, where k is the
number of hash functions used in GBF construction and η is the minimum bit
length of each cell in GBF, as shown in [10]. Note that we allow the programmed
values (ti) to be correlated. Because of that, the functionality is secure only if
the receiver makes only one query. For the purposes of PSM, we notice that one
query is enough. In our PSM solution the programmed values will be the same;
that is, all the ti values will be equal.

7

Functionality 3 (One-Time) Oblivious Programmable Pseudo Random Function
Inputs. P1 inputs predefined items X = {x1, ..., xn} and corresponding programmed
values T = {t1, ..., tn}, P2 inputs y
Outputs. The functionality checks the membership y ∈ X and returns ti to P2 if
∃xi s.t. y = xi (1 ≤ i ≤ n); returns a random value otherwise to P2, and returns
nothing to P1.

Protocol 2 Our One-Time OPPRF Protocol
Parameters. A set of hash functions H = {h1, ..., hk}

Inputs. P1 inputs a set of items X = {x1, ..., xn} and corresponding programmed values
T = {t1, ..., tn}, P2 inputs an item y.
Outputs. P1 outputs nothing and P2 outputs ti if ∃xi s.t. y = xi (1 ≤ i ≤ n), otherwise
outputs a random value.
The protocol steps:

1. P1 constructs a garbled Bloom filter GBFX having max(η, `)-bit strings in each
cell such that

k⊕
i=1

GBFX [hi(xj)] = tj

for 1 ≤ j ≤ n.
2. P2 constructs a (standard) Bloom filter BFy for the item y.
3. P1 and P2 runm oblivious transfers where P1’s input is (0, GBFX [i]) and P2’s input

is BFy[i] for the i-th oblivious transfer, and the output of P2 is 0 if BFy[i] = 0 or
GBFX [i] if BFy[i] = 1. Call the output of P2 as GBFy[i].

4. P1 outputs nothing and P2 outputs
⊕k

i=1GBFy[hi(y)].

Asymptotic Complexity. Since the number of hash functions used in the con-
struction of Bloom filters is a constant related to the statistical correctness pa-
rameter that is independent of the number of items, Protocol 2 requires O(n)
hash function computations for the construction of garbled Bloom filter in Step
1. Also, the size of the Bloom filters is m = O(n), which makes the total asymp-
totic complexity of running oblivious transfers in Step 3 O(n). Step 2 requires
O(n) non-cryptographic computation and space. Considering the complexity of
Step 4 as O(1), we conclude that the OPPRF protocol has a communication,
computation, and space complexity of O(n).

Theorem 1. Protocol 2 securely realizes Functionality 3 when P1 is corrupted
by a semi-honest adversary A, assuming that the OT protocol is semi-honest
secure.

Proof. The input set X and the programmed values T are given to the simula-
tor S. The simulator computes a garbled Bloom filter GBFX using its random
tape such that

⊕k
i GBFX [hi(xj)] = tj for 1 ≤ j ≤ n. S runs the simulator of

OT as the sender m times, where for the i-th run, the input of the simulator

8

is ((0, GBFX [i]),⊥). Here, (0, GBFX [i]) is the input of the sender in the OT
protocol and there in no output of the sender. Thus, the simulated view and
output of the parties, and the view of the adversary in the real execution of the
protocol and the output of the parties are indistinguishable.

Theorem 2. Protocol 2 securely realizes Functionality 3 when P2 is corrupted
by a semi-honest adversary A, assuming that the OT protocol is semi-honest
secure.

Proof. The input item y and the output
⊕k

i=1GBFy[hi(y)] are given to the
simulator S. The simulator constructs the Bloom filter using y regularly, and
creates GBF ′y by running the following steps:

1. Set random values to GBF ′y[hi(y)] for 1 ≤ i < k.
2. Set GBF ′y[hk(y)] =

⊕k
i=1GBFy[hi(y)]⊕

⊕k−1
i=1 GBF

′
y[hi(y)].

3. Set GBF ′y[i] = 0 if BFy[i] = 0.

Finally, S runs the OT simulator as the receiver m times, where in the i-th, run
the receiver’s input is BFy[i] and the receiver’s output is GBF ′y[i]. The proof
concludes when we show that GBF ′y is indistinguishable from GBFy. The cells
in both GBF ′y and GBFy are equal to ‘0’ for the indices i where BFy[i] = 0. Now
we need to show that for the remaining k cells these GBFs are indistinguishable.
Any combination of (k−1) cells are random due to the property of secret sharing
and the xor of k cells equals to

⊕k
i=1GBFy[hi(y)] in both GBFs, which concludes

the proof.

4 Our Private Set Membership Protocol

In this section, we propose a new PSM protocol that realizes Functionality 4.
As discussed in the introduction, our protocol does not output the membership
result, but instead outputs some function of it, so that it can be directly inte-
grated into a larger secure computation protocol. After this section, we show
how to extend our protocol to set intersection as well.

In the construction of the protocol, we use the following idea of [27]: If y ∈ X,
then both parties learn the same random value. Otherwise, they learn different
random values. Then, the parties run a comparison protocol that outputs a func-
tion of the equality instead of the equality itself (Functionality 2). Our solution
diverges from the solution of [27] in two folds. To realize the first part, [27] makes
use of an OPPRF construction based on polynomials. We propose a new OPPRF
construction based on Bloom filters. The selection of Bloom filters enables us to
reduce the computation complexity of the protocol to a linear complexity. The
other difference is that we utilize Ciampi-Orlandi PSM protocol [5] for secure
equality testing as done in [18] for Functionality 2, instead of running a compar-
ison circuit. Thus, our overall construction is not a circuit-based construction.

The overall view of our PSM protocol is as follow. To achieve private set
membership, the parties first run the one-time OPPRF protocol based on garbled

9

Functionality 4 Private Set Membership
Inputs. P1 inputs X = {x1, ..., xn} and a pair of strings (d0, d1), P2 inputs y.

Outputs. The functionality checks the membership of y in X and returns d1 to P2 if
y ∈ X. Otherwise, returns d0 to P2.

Bloom filters, where P1 outputs r (a random value chosen by P1), whereas P2

learns some random value that may be r or something different. The value P2

learns is always random and indistinguishable; but, this random value is equal
to r if and only if y ∈ X. Following this part, the parties run a secure functional
equality testing protocol, where at the end of the protocol P2 learns the function
result of the equality relation, which is also the function result of the membership
relation. We make use of the PSM protocol of Ciampi-Orlandi [5] for secure
functional equality testing by reducing the number of items of the sender set to
one. We present our semi-honest secure PSM solution in Protocol 3.

Protocol 3 Our Private Set Membership Protocol
Parameters. A set of hash functions H = {h1, ..., hk}.

Inputs. P1 inputs a set of items X = {x1, ..., xn} and a pair of strings (d0, d1), P2 inputs
an item y.
Outputs. P2 outputs d1 if y ∈ X. Otherwise, P2 outputs d0. P1 outputs nothing.

The protocol steps:

1. P1 picks an η-bit random value r and sets T = {t1 = r, ..., tn = r}.
2. P1 and P2 run Protocol 2 for one-time OPPRF with the respective inputs (X,T)

and y. Denote the output of P2 as r′.
3. P1 and P2 run Protocol 1 for functional equality testing with the respective inputs

(r, (d0, d1)) and r′. The output of the PSM protocol is the output of Protocol 1.

Asymptotic Complexity of our PSM protocol. Protocol 2 requires O(n) hash
function computations as stated in the previous section. FEQT employs O(η)
operations for η oblivious transfers in the Ciampi-Orlandi PSM protocol. Thus,
the asymptotic computation complexity of our PSM protocol becomes O(n). The
communication complexity comes from the oblivious transfers. Considering the
oblivious transfer extension communication complexity as linear in the number
of OTs, the communication complexity of Protocol 3 is also O(n).

Theorem 3. Protocol 3 securely realizes Functionality 4 when P1 is corrupted
by a semi-honest adversary A, assuming that the OPPRF and FEQT protocols
are semi-honest secure.

10

Proof. The simulator S is given the input set X. S picks a random value r
using its random tape and sets T = {t1 = r, ..., tn = r}. The simulator S
runs the simulator of OPPRF protocol with the input ((X,T),⊥). Then, S runs
the simulator of FEQT protocol with the input (r,⊥). This completes the whole
simulation, and indistinguishability is a direct result of the underlying simulators.

Theorem 4. Protocol 3 securely realizes Functionality 4 when P2 is corrupted
by a semi-honest adversary A, assuming that the OPPRF and FEQT protocols
are semi-honest secure.

Proof. The simulator S is given the input item y and the output db for b = y
?
∈ X.

The simulator picks a η-bit random value r′′. S runs the simulator of OPPRF
with the input (y, r′′) and the simulator of FEQT with the input (r′′, db). S
does not know the uniform random value r′ used in the real execution, but it
follows the same distribution as r′′, and therefore they are perfectly indistin-
guishable. The computational indistinguishability comes from the FEQT and
OPPRF simulations, which are based on OT simulations.

5 Batch One-Time OPPRF

We propose a new batch one-time OPPRF construction in Protocol 4 that im-
plements Functionality 5, to be used in our PSI protocol. For the construction of
a batch OPPRF from Protocol 2, instead of using different garbled Bloom filters
for each programmed value set, we construct only one garbled Bloom filter, and
store the shares of programmed values in the same garbled Bloom filter. Note
that for each set Xi, a different set of hash functions (hash function set Hi for
the programmed value set Xi) is used, since there might be some items which
belong to more than one set. In our PSI protocol the programmed values in each
Ti will be the same; that is, all the ti,l values will be equal within each Ti.

Functionality 5 Batch One-Time Oblivious Programmable Pseudo Random Function

Inputs. P1 inputs a predefined set of item sets X = {X1, ..., Xβ}, where Xi =
{xi,1, ..., xi,n}, and corresponding programmed value sets T = {T1, ..., Tβ}, where
Ti = {ti,1, ..., ti,n}, and P2 inputs a set of items Y = {y1, ..., yβ}
Outputs. The functionality checks the membership relations yi ∈ Xi and returns r′i =
ti,j if ∃xi,j s.t. yi = xi,j (1 ≤ j ≤ n); returns a random r′i otherwise, for each i where
1 ≤ i ≤ β.

Asymptotic Complexity. Since the size of the garbled Bloom filter is linear in the
number of items to be stored in it and OT extension is also linear in the number
of OT executions, the computation and communication complexities of our batch
one-time OPPRF protocol becomes linear in the total number of programmed
values in the programmed value sets.

11

Protocol 4 Bloom Filter Based Batch One-Time OPPRF Protocol
Parameters. A set of hash function sets H = {H1, ..., Hβ} where Hi = {hi,0, ...hi,k}

Inputs. P1 inputs a set of item sets X = {X1, ..., Xβ}, where Xi = {xi,1, ..., xi,n}, and
corresponding programmed value sets T = {T1, ..., Tβ}, where Ti = {ti,1, ..., ti,n}, and
P2 inputs a set of items Y = {y1, ...yβ}.
Outputs. P2 outputs a set of random values R′ = {r′1, ..., r′β}, where r′i = ti,j if
∃xi,j s.t. yi = xi,j (1 ≤ j ≤ n); otherwise r′i is a random value; for 1 ≤ i ≤ β.

The protocol steps:

1. P1 constructs a garbled Bloom filter GBFX having max(η, `)-bit strings in each
cell such that

k⊕
j=1

GBFX [hi,j(xi,l)] = ti,l

for 1 ≤ i ≤ β and 1 ≤ j ≤ k.
2. P2 constructs a Bloom filter BFY for the items in Y .
3. P1 and P2 runm oblivious transfers where P1’s input is (0, GBFX [i]) and P2’s input

is BFY [i] for the i-th oblivious transfer, and the output of P2 is 0 if BFy[i] = 0 or
GBFX [i] if BFY [i] = 1. Call the OT output P2 obtains as GBFY [i].

4. P2 outputs R′ = {r′1, ..., r′β} where r′i =
⊕k

j=1GBFY [hi,j(yi)].

Theorem 5. Protocol 4 securely realizes Functionality 5 when P1 is corrupted
by a semi-honest adversary A, assuming that the OT protocol is semi-honest
secure.

Proof. The simulator S is given the input set of sets X and the programmed
values set T . The simulator computes a garbled Bloom filter using its random
tape such that

⊕k
j=1GBFX [hi,j(xi,l)] = ti,l. S runs the simulator of the OT

protocol as the sender with the input (GBFX ,⊥). This concludes the simulation.
Indistinguishability directly comes from the garbled Bloom filter construction
following the protocol, and the OT simulator.

Theorem 6. Protocol 4 securely realizes Functionality 5 when P2 is corrupted
by a semi-honest adversary A, assuming that the OT protocol is semi-honest
secure.

Proof. The input set Y and the output R′ are given to the simulator S. The
simulator constructs a Bloom filter for Y and a garbled Bloom filter GBF ′Y
following the steps:

1. Constructs a BF BFY for Y .
2. Constructs a GBF GBF ′Y such that

⊕k
j=1GBF

′
Y [hi,j(yi)] = r′i for 1 ≤ i ≤ β.

3. Sets GBF ′Y [i] = 0 if BFY [i] = 0.

Then, S runs the simulator of the OT protocol as the receiver with the input
(BFY , GBF

′
Y). Note that the garbled bloom filters GBF ′Y and GBFY are indis-

tinguishable as discussed in the proof of Theorem 2.

12

6 Our Private Set Intersection Protocol

Our PSM protocol can be used to build an efficient PSI protocol using the hash-
ing techniques introduced in [29, 26]. In this technique, one party constructs a
cuckoo table as mentioned in Section 2.1 using two hash functions and the other
party maps her items into bins in a hash table using the two hash functions that
are applied on each item. Then, a private set membership protocol is applied
on each bin where the party who constructs the cuckoo table inputs the (single)
item in the i-th bin, and the other party inputs the set of items in the i-th bin
of its hash table, for the i-th execution of the PSM protocol. If one were to
directly employ our PSM construction to obtain a PSI protocol using this hash-
ing technique, the computation and communication complexities of the full PSI
protocol would be O(n log n/ log log n), since the number of items in each hash
table bin is O(log n/ log log n) and the number of bins is O(n). Note that with
this usage, for each bin, P2 and P1 run O(n) parallel OPPRF protocols and then
apply O(n) parallel FEQT protocols. Instead of following this straightforward
way, we show that it is possible to make the communication and computation
complexities linear while extending our PSM solution to a PSI solution using
our batch one-time OPPRF protocol.

Our full PSI protocol that realizes Functionality 6 is introduced in Protocol
5. Note that in Step 4 of the protocol, the bins of the hash table are given as
the item sets to the batch one-time OPPRF protocol. While there are many
items in the bins of the hash table, most of them are random values and the
total number of non-random items in the hash table will be the product of the
number of items (n) and the number of cuckoo hash functions (chosen as 3 in
our protocol). Thus, the size of the garbled Bloom filter constructed in the batch
one-time OPPRF protocol will be O(n), which allows our PSI protocol to have
linear complexity.

Note that when we use two hash functions for cuckoo hashing, then there
will be some items in Y which cannot be placed into the table and have to be
moved to a stash. For each of these items in the stash, a PSM protocol also
has to be executed. When we consider the number of these items as ω(1), then
the complexity of our PSI protocol becomes bigger than O(n). To make the
complexity linear, Pinkas et al. proposed to use dual execution or a stash-less
cuckoo hashing [27]. In dual execution, after the first run of the PSI protocol,
P2 learns the membership result for its items except the ones in the stash. Then
the parties run the PSI protocol swapping their roles, that is, P1 constructs a

Functionality 6 Private Set Intersection
Inputs. P1 inputs X = {x1, ..., xnx} and D1 = {(dj0, d

j
1) | 1 ≤ j ≤ β}. P2 inputs

Y = {y1, ..., yny}.
Outputs. P1 outputs nothing. P2 outputs D2 = {djbj | 1 ≤ j ≤ β, bj ∈ {0, 1}} where
bj = 1 for j = f(i) if yi ∈ X, bj = 0 otherwise , and f is a mapping such that
f : {1, 2, ..., n} −→ {1, 2, ..., O(n)}.

13

Protocol 5 Bloom Filter Based Private Set Intersection Protocol
Parameters. A set of hash function sets H = {H1, ..., hβ} where Hi = {hi,1, ..., hi,k}
for 1 ≤ i ≤ β.
Inputs. P1 inputs a set of items X = {x1, ..., xnx} and D1 = {(dj0, d

j
1) | 1 ≤ j ≤ β}. P2

inputs a set of items Y = {y1, ..., yny}.
Outputs. P1 outputs nothing. P2 outputs D2 = {djbj | 1 ≤ j ≤ β, bj ∈ {0, 1}} where
bj = 1 for j = f(i) if yi ∈ X, bj = 0 otherwise , and f is a mapping such that
f : {1, 2, ..., n} −→ {1, 2, ..., β}.
The protocol steps:

1. P1 constructs a hash table for the set X.
2. P2 constructs a cuckoo table for the set Y and the mapping f such that f(i) = j

if yi is mapped to the j-th bin of the cuckoo table.
3. P1 picks a set of β η-bit random values R = {r1, ..., rβ}.
4. P1 and P2 run Protocol 4 with their respective inputs: (hash table, R) and cuckoo

table. Let the output of P2 be R′ = {r′1, ..., r′β}.
5. P1 and P2 run β parallel executions of Protocol 1 for functional equality testing,

where for the i-th run, the inputs of P1 and P2 are (ri, (d
i
0, d

i
1)) and r′i.

cuckoo table forX and P2 constructs a hash table for the items in the stash. Since
there may be some items of P1 which have not been placed in the cuckoo table
and moved to a stash, P1 and P2 should run the PSM protocol for their items
in the stashes. However, this usage does not realize the Functionality 6 that we
consider, since in the second run, P2 learns the function of the membership result
between its items in the stash and the set X, and in the final PSM protocols
run for the items in the stashes, P2 again learns the function of the membership
result between its items in the stash and P1’s items in the stash. That is, P2

learns two different results for its items in the stash that makes the protocol
diverge from Functionality 6. Because of these two reasons, we make use of the
second method of Pinkas et al., which is the usage of stash-less cuckoo hashing
with three hash functions.

Asymptotic Complexity. For simplicity we take n = nx = ny. While it seems
that there are O(n log n/ log log n) items in the hash table of P1, which makes
the length of the Bloom filters O(n log n/ log log n), the actual number of items
is O(3n) = O(n) since the other items are random values padded to the bins to
make the number of items in the bins O(log n/ log log n). Thus, the complexity
of Step 4 of Protocol 5 becomes O(n). Since the number of bins is O(n) and for
each bin only one equality testing is executed in Step 5, the complexity of Step
5 will be O(n). Thus the communication and computation complexities of our
PSI protocol becomes O(n).

Theorem 7. Protocol 5 securely realizes Functionality 6 when P1 is corrupted by
a semi-honest adversary A, assuming that the batch OPPRF and FEQT protocols
are semi-honest secure.

14

Proof. The input set X is given to the simulator S. The simulator computes the
hash table for X and picks β η-bit random values R′′ = {r′′1 , ..., r′′β} using its ran-
dom tape. Then S runs the simulator of batch OPPRF protocol with the input
((hash table, R),⊥). Finally, S runs the simulator of FEQT protocol β times,
where the input in the i-th run is (ri,⊥). Since r′′i and ri are random numbers
from a uniform distribution, they are indistinguishable. Hence, indistinguisha-
bility of S follows the indistinguishability of the underlying batch OPPRF and
FEQT simulators.

Theorem 8. Protocol 5 securely realizes Functionality 6 when P2 is corrupted by
a semi-honest adversary A, assuming that the batch OPPRF and FEQT protocols
are semi-honest secure.

Proof. The simulator S is given the input set Y and the output dib for 1 ≤ i ≤ β.
S computes a cuckoo table for the set Y and the mapping f executing Step 2
of the protocol, and picks β η-bit random values R′′ = {r′′1 , ..., r′′β}. S runs the
simulator of batch OPPRF protocol with the input (cuckoo table, R′′) and the
simulator of FEQT protocol β times, where the input in the i-th run is (r′′i , dib).
Since R′ in the real execution and R′′ in the ideal world are uniformly selected
sets of random numbers, they are indistinguishable. Hence, indistinguishability
of S follows the indistinguishability of the underlying batch OPPRF and FEQT
simulators.

7 Some Applications of our PSI Protocol

In this section, we present some applications of our protocol to exemplify how
it can be integrated into a larger two-party protocol.

7.1 Having a Classical PSI Protocol

P1 prepares the set D1 by setting (dj0, d
j
1) = (0, 1) for 1 ≤ j ≤ β and inputs its

set X and D1 to the our PSI protocol. P2 inputs its set Y . After running our PSI
protocol, P1 learns nothing and P2 learns the set D2 = {djbj | 1 ≤ j ≤ β, djbj ∈
{0, 1}} and the function f that maps the items of Y into the bins of the cuckoo
table such that f(i) = j means i-th item of Y is mapped into the j-th bin of the
cuckoo table, where β is the number of bins in the cuckoo table. For each item
yi in Y , P2 checks whether df(i) equals to ‘1’ or not. If the df(i) = 1, P2 learns
that yi is in the intersection. In this way P2 learns the intersection itself.

7.2 Having a PSI Cardinality Protocol

To allow just to learn the cardinality of the intersection and no additional in-
formation about the intersection, P1 chooses a key pair for an additively homo-
morphic encryption scheme and prepares the data set D1 by setting (dj0, d

j
1) =

(Epk(0), Epk(1)) for 1 ≤ j ≤ β. P1 inputs X and D1 and P2 inputs Y to our

15

protocol and P2 learns the mapping f and the data set D2 where df(i) = Epk(1)
if yi ∈ X and the other dj values are encryption of ‘0’ under the public key of P1.
P2 homomorphically sums up the dj values using the additive homomorphism
property of the encryption scheme and obtains the result

∑
Epk(d

j), where the
number of dj values that are equal to Epk(1) is the number of items in the inter-
section and the other dj values equal to Epk(0). Thus

∑
Epk(d

j) = Epk(|X∩Y |).
P2 sends Epk(|X ∩ Y |) to P1 and P1 learns the cardinality by decrypting the
received ciphertext.

7.3 Having a Threshold PSI Protocol

Assume that the parties want to learn the PSI if the cardinality of the PSI
is equal to or bigger than a threshold t. Our PSI protocol can be utilized as
follows. P1 generates a key (K) for a probabilistic encryption scheme and divides
the decryption key into β secret shares such that t of the shares are enough
to construct the key (using a t out of β threshold secret sharing scheme). P1

also sets (dj0, d
j
1) = ((EK(0), rj), (EK(1), kj)) where EK(.) is the probabilistic

encryption operation under the key chosen by P1, rj is a random value having
the same length with the key, and kj is the j-th secret share of the corresponding
decryption key. After running our PSI protocol P2 learns the mapping f and the
data set D2 such that df(i) = (EK(1), kf(i)) for the i-th items that are in the
intersection. If the number of items are equal to or bigger than the threshold
t then P2 will be able to construct the decryption key and able to decrypt the
left parts of the dj values that are the encryption result of ‘0’ or ‘1’, which
allows P2 to learn the intersection in a similar way as explained in subsection
7.1. Otherwise, if the number of items in the intersection is less than t, P2 will
not be able to construct the decryption key and will not be able to decrypt
the ciphertexts of ‘0’ and ‘1’ correctly, which means that P2 will not be able
to learn the intersection. When a threshold secret scheme such as [32] is used,
P2 needs to compute all possible (potentially exponentially-many, depending on
t and n) combinations of secret shares to construct the decryption key. When
a verifiable secret sharing scheme such as [24] is used, then P2 will be able to
learn which secret shares are valid ones, which allows P2 to learn which items in
the cuckoo table is in the hash table of P1 and so leak more information than
what is desired. To avoid considering all possible combinations of secret shares
for construction of the decryption key and to not leak more information, usage
of other tools such as the Reed-Solomon decoding algorithm, as done in [34], can
be investigated as future work.

7.4 General Secure Computation over Set Intersection

Consider that parties would like to compute some general function over the in-
tersection, without revealing the intersection as an intermediate output. For this
case, P2 prepares the cuckoo table in advance and constructs a circuit consider-
ing the places of its items in the cuckoo table and then sends the circuit to P1.
This circuit is usually a Boolean or arithmetic gate circuit that computes the

16

desired functionality over the set intersection. Since we are in the honest-but-
curious setting, this is the correct circuit for the desired task. Next, P1 chooses
the wire labels of the circuit and garbles it before sending the garbled circuit
to P2. P1 sets dj0 and dj1 values as the labels for the corresponding input wires,
such that the value dj0 is a wire label for wire j corresponding to the bit zero
and dj1 is wire label for wire j corresponding to the bit one. This larger protocol
can be any secure two-party computation protocol whose input should be the
intersection.

To handle the associated data, the following additional steps, similar to the
steps proposed in [27], need to be implemented. P1 chooses a random number
si for the i-th bin and encodes the pairs (ri, (si ⊕ xi,l)) into the garbled Bloom
filter instead of encoding only ri in the OPPRF protocol, in step 1 of Protocol 4.
P2’s output for the i-th bin becomes (r′i, s′i) =

⊕
GBFY [hi,j(yi)] where r′i = ri

and s′i = si ⊕ xi,l if the item of Y in the i-th bin equals to xi,l. Then P1 and
P2 also respectively input si and s′i in addition to the d values to the circuit.
For each bin, the circuit constructs the associated data from the shares if the
equality holds for that bin and computes the required function of the associated
data for the items in the intersection.

8 Performance Evaluation

8.1 Concrete Complexity

Parameter Choices. We take the number of hash functions used in the construc-
tion of Bloom filters as k = η and follow the choice of [10] to set the size of the
Bloom filter as taking m = 1.44kn. Note that taking k = η doesn’t reduce the
security level to statistical correctness parameter because the result of BF-based
OPPRF protocol are random numbers which then be inputs of the equality test-
ing protocol. Following the parameters in [27], we choose the number of bins as
1.27n and the number of cuckoo hashes as 3, which makes the probability of hav-
ing at least one item in the stash 2−40, consistent with our preferred statistical
correctness parameter η.

Concrete Complexity of our PSM protocol. For the Bloom filters, P1 and P2

compute nk and k hash functions, respectively. For the OT-extension in the OP-
PRF part, they run m oblivious transfer whose total computation complexity
is approximately equal to 3m symmetric key operations thanks to the obliv-
ious transfer extension [17]. Finally, the parties execute Ciampi-Orlandi PSM
protocol where the number of items in the set of P1 is one, which makes the
computation complexity 6η symmetric key operations at P1 and 5η symmetric
key operations at P2 (the reader can refer to [18] for the complexity calculation
for the FEQT protocol) 1. Thus the computation complexity of the protocol at
1 The item lengths in the GBF and so the lengths of the items to be tested for equality
are max(η, `) bits as stated in Protocol 2. In concrete complexity analysis, we take
it as η for simplicity considering that in practice generally η > `.

17

the party where majority of workload is done is nk + 3m+ 6η. Since we choose
m = 1.44kn and k = η then the complexity becomes 5.32nη+6η. For the param-
eter η = 40 the complexity will be 212.8n+ 240 symmetric key operations. The
communication complexity comes from the oblivious transfers. In the OPPRF
step, the message lengths in the oblivious transfer is η bits, while for the FEQT
part, it is 2(κ+ η) bits. Considering that the total number of bits transferred in
the OT extension equals to 2 times the items’ length times number of pairs, the
communication complexity of the protocol becomes 2×m×η+2×η×2×(κ+η) =
2× (1.44× n× η)× η + 2η × 2× (κ+ η) = 2.88nη2 + 4κη + 4η2.

Concrete Complexity of our PSI protocol. To construct the cuckoo hash table, P2

and P1 perform at most 3n hash operations. Then, they construct BF performing
kn and 3kn hash computations, respectively. They execute 4.32nη OTs using
OT extension, which costs 3 × 4.32nη hash computations. In the last step, P1

and P2 perform 1.27n× (5η) and 1.27n× (6η) hash computations, respectively.
Thus the total computation cost on the party who has the maximum overhead
is 3n + 3nk + 3 × 4.32nη + 1.27n × (6η) = 26.58nη + 3n. The communication
cost comes from the OT executions for Bloom filter and equality test. Since for
the Bloom filter, 4.32nη η-bit message pairs are obliviously sent, the dominant
cost is 2 × 4.32nη × η = 8.64nη2. For the equality test, the length of the pairs
is 2 × (κ + η) and the number of pairs is 1.27n; hence, the dominant part is
2 × 1.27n × 2(κ + η). Thus, the total communication cost is approximately is
8.64nη2 + 5.08n(κ+ η).

8.2 Experimental Verification

Setup. We implemented Ciampi-Orlandi and our PSM protocol using C pro-
gramming language and GMP library. In our experiment setup, P1 and P2 run
on the same machine as different processes and communicate with each other
over a TCP channel. We run the protocols for different size of sets and item
lengths on a single CPU core of a computer that has 2.1 Ghz 16-core Intel Xeon
CPU with 64 GB RAM. In the experiments, we chose RSA 2048 as asymmetric
encryption algorithm in base OT, the statistical correctness parameter η as 40
bits, AES as the encryption algorithm, SHA-256 with different initialization vec-
tors as the hash functions. We take the f function such that it outputs 128-bit
wire labels. We take the number of hash functions in the construction of Bloom
filters in our protocols as k = 40. The results are the averages over 10 executions
of the protocols.

PSM. Table 1 shows the total amount of data transmitted between P1 and
P2 during the execution of the protocols and the run-times in LAN and WAN
setting. As can be seen from the table, our BF-based semi-honest PSM protocol
has linear complexity both on computation and communication, and we provide
comparable performance. Our asymptotic advantage becomes visible with larger
` values.

18

Table 1. Performance results of Ciampi-Orlandi and our PSM protocols. Run-time
estimates are done for LAN and WAN under the assumption that the bandwidth in
LAN (respectively in WAN) is 1 Gbps (100 Mbps) and RTT is 1 ms (100 ms).

Protocol Ciampi-Orlandi PSM Our PSM
Set size n n = 212 n = 214 n = 216 n = 212 n = 214 n = 216

Comm. [MB] ` = 32 5.4 21.3 84.5 6.0 23.6 93.8
` = 48 8.1 31.8 126.5 6.5 25.4 101.0
` = 64 10.7 42.3 168.5 7.4 29.0 115.4

LAN [ms] ` = 32 2045 4195 11717 2583 6508 22031
` = 48 2444 5759 18115 2655 6564 22337
` = 64 2793 7361 24396 2656 6599 22542

WAN [ms] ` = 32 10207 36389 139436 11651 42118 163745
` = 48 14686 53824 209315 12419 44895 174973
` = 64 18966 71296 279050 13781 50371 196904

PSI. We also implemented our PSI protocol to validate our performance analysis
and compare the efficiency of our protocol with the existing solutions. We choose
the number of hash functions in cuckoo hashing as 3, the number of bins as 1.27n,
and the size of the BF as n×1.44×3×k where k is the number of hash functions
used in BF and 3 comes from the number of hash functions in cuckoo hashing.
We evaluated the effect of k on the performance of our PSI protocol running the
protocol for different k values which is related to the correctness of our protocol.
The results are given in Table 2.

Table 2. Effect of number of hash functions in Bloom filter on the performance of our
PSI protocol.

Comm [MB] LAN [ms] WAN [ms]
n = 210 n = 212 n = 214 n = 210 n = 212 n = 214 n = 210 n = 212 n = 214

k = 40 9.4 36.9 147.4 2604 6804 22488 16812 62577 245277
k = 60 11.5 45.7 182.5 3018 8586 28725 20400 77660 304566
k = 80 13.8 54.5 217.6 3545 10278 35086 24403 92652 363980

We run our PSI protocol for different item bit lengths and set sizes choosing
k = 40, which satisfies enough correctness in practical applications, and obtained
the results in Table 3. The table verifies our complexity claims and shows that
our PSI protocol has linear communication and computation complexities. We
also present the linear trend in computation complexity of our protocol in Figure
1 where the numbers are taken from Table 3 for ` = 32 and LAN setting.

Table 3 shows that for n = 212 and ` = 32 our protocol’s communication and
computation complexity is (36.9 MB, 6804 ms in LAN) while the numbers for
other circuit based PSI protocols of [27], [28] and [26] respectively are (9 MB,
1199 ms), (51 MB, 5031 ms) and (130 MB, 7825 ms) as given in [27].

With Figure 2, we compare concrete computation complexity of our PSI
protocol with the complexity of no-stash PSI solution of [27] for the case that
` = 32 and the setting is LAN. In practice, circuit-based solutions like [27]
enjoy the benefits of recent advances in the two-party computation techniques.

19

Table 3. Performance results of our PSI protocol.

Comm [MB] LAN [ms] WAN [ms]
` = 32 ` = 48 ` = 64 ` = 32 ` = 48 ` = 64 ` = 32 ` = 48 ` = 64

n = 28 2.4 2.8 3.5 1407 1498 1556 5034 5730 6847
n = 210 9.4 10.6 13.2 2604 2710 3024 16812 18731 22976
n = 212 36.9 42.1 52.4 6804 7323 7891 62577 70956 87091
n = 214 147.4 168.0 209.3 22488 24486 27757 245277 278412 344105
n = 216 589.0 671.5 836.6 85134 92271 106268 975384 1107216 1370755

1 2 3 4 5 6

·104

20

40

60

80

100

of items

C
om

pu
ta
ti
on

ti
m
e
[s
]

` = 64

` = 48

` = 32

Fig. 1. Computation complexity of our PSI protocol for different set sizes and item bit
lengths in the LAN setting.

Therefore, we conclude that Bloom filter based solutions and oblivious transfer
extension techniques should be investigated further in practice.

6 8 10 12 14 16 18 20 22

20

40

60

80

100

120

log2 of # of items

C
om

pu
ta
ti
on

ti
m
e
in

L
A
N

[s
] Our PSI protocol

No-stash solution of [27]

Fig. 2. Comparison of our protocol with no-stash PSI solution of [27].

20

9 Conclusion

We proposed the first private set intersection (PSI) protocol achieving linear
communication and computation complexities while outputting a function of the
membership results to be used in larger secure two-party protocols to compute
other functionalities over the intersection set. To construct such a protocol, we
first used one-time oblivious programmable pseduo-random function (OPPRF)
based on existing Bloom filter based PSI solutions and then proposed a private
set membership (PSM) protocol. To reduce the complexity while converting
the PSM solution to a PSI protocol using hashing techniques, we constructed
another primitive that is called a batch one-time OPPRF. Finally, using these
new constructions, we introduced our PSI protocol with linear communication
and computation complexities. We also implemented our protocols to validate
our performance analysis and show concrete efficiency of our protocols. We leave
security against malicious adversaries, and multi-party PSI with bi-oblivious
data transfer as future work.

Acknowledgements

We acknowledge support from TÜBİTAK, the Scientific and Technological Re-
search Council of Turkey, under project number 119E088. The authors thank
Sherman Chow for his valuable comments.

References

1. D. Beaver. Correlated pseudorandomness and the complexity of private computa-
tions. In ACM STOC, 1996.

2. B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun.
ACM, 13(7):422–426, 1970.

3. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, P. Rindal, and P. Scholl.
Efficient two-round OT extension and silent non-interactive secure computation.
In ACM CCS, 2019.

4. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl. Efficient pseu-
dorandom correlation generators: Silent OT extension and more. In CRYPTO,
2019.

5. M. Ciampi and C. Orlandi. Combining private set-intersection with secure two-
party computation. In SCN, pages 464–482, 2018.

6. E. D. Cristofaro, P. Gasti, and G. Tsudik. Fast and private computation of cardi-
nality of set intersection and union. In CANS, 2012.

7. E. D. Cristofaro and G. Tsudik. Practical private set intersection protocols with
linear complexity. In R. Sion, editor, FC, 2010.

8. A. Davidson and C. Cid. An efficient toolkit for computing private set operations.
In ACISP, 2017.

9. S. K. Debnath and R. Dutta. Secure and efficient private set intersection cardinality
using bloom filter. In ISC, 2015.

10. C. Dong, L. Chen, and Z. Wen. When private set intersection meets big data: an
efficient and scalable protocol. In ACM CCS, 2013.

21

11. B. H. Falk, D. Noble, and R. Ostrovsky. Private set intersection with linear com-
munication from general assumptions. In ACM WPES, 2019.

12. M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search and obliv-
ious pseudorandom functions. In TCC, 2005.

13. S. Ghosh and T. Nilges. An algebraic approach to maliciously secure private set
intersection. In EUROCRYPT, 2019.

14. Y. Huang, D. Evans, and J. Katz. Private set intersection: Are garbled circuits
better than custom protocols? In NDSS, 2012.

15. M. Ion, B. Kreuter, A. E. Nergiz, S. Patel, M. Raykova, S. Saxena, K. Seth,
D. Shanahan, and M. Yung. On deploying secure computing commercially: Pri-
vate intersection-sum protocols and their business applications. In IEEE EuroS&P,
2020.

16. M. Ion, B. Kreuter, E. Nergiz, S. Patel, S. Saxena, K. Seth, D. Shanahan, and
M. Yung. Private intersection-sum protocol with applications to attributing ag-
gregate ad conversions. IACR Cryptol. ePrint Arch., 2017:738, 2017.

17. Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers
efficiently. In CRYPTO, 2003.

18. F. Karakoç, M. Nateghizad, and Z. Erkin. SET-OT: A secure equality testing
protocol based on oblivious transfer. In ARES, 2019.

19. V. Kolesnikov, R. Kumaresan, M. Rosulek, and N. Trieu. Efficient batched oblivi-
ous PRF with applications to private set intersection. In ACM CCS, 2016.

20. V. Kolesnikov, N. Matania, B. Pinkas, M. Rosulek, and N. Trieu. Practical multi-
party private set intersection from symmetric-key techniques. In ACM CCS, 2017.

21. Y. Lindell. How to simulate it - A tutorial on the simulation proof technique. In
Y. Lindell, editor, Tutorials on the Foundations of Cryptography., pages 277–346.
Springer International Publishing, 2017.

22. C. A. Meadows. A more efficient cryptographic matchmaking protocol for use in
the absence of a continuously available third party. In IEEE S&P, 1986.

23. R. Pagh and F. F. Rodler. Cuckoo hashing. J. Algorithms, 51(2):122–144, 2004.
24. T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret

sharing. In J. Feigenbaum, editor, Advances in Cryptology - CRYPTO ’91, 11th
Annual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 11-15, 1991, Proceedings, volume 576 of Lecture Notes in Computer Science,
pages 129–140. Springer, 1991.

25. B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai. PSI from paxos: Fast, malicious
private set intersection. In EUROCRYPT, 2020.

26. B. Pinkas, T. Schneider, G. Segev, and M. Zohner. Phasing: Private set intersection
using permutation-based hashing. In USENIX Security, 2015.

27. B. Pinkas, T. Schneider, O. Tkachenko, and A. Yanai. Efficient circuit-based PSI
with linear communication. In EUROCRYPT, pages 122–153, 2019.

28. B. Pinkas, T. Schneider, C. Weinert, and U. Wieder. Efficient circuit-based PSI
via cuckoo hashing. In EUROCRYPT, 2018.

29. B. Pinkas, T. Schneider, and M. Zohner. Faster private set intersection based on
OT extension. In USENIX Security, 2014.

30. B. Pinkas, T. Schneider, and M. Zohner. Scalable private set intersection based on
OT extension. ACM Trans. Priv. Secur., 21(2):7:1–7:35, 2018.

31. M. O. Rabin. How to exchange secrets by oblivious transfer. Technical report,
Harvard Aiken Computation Laboratory Technical Report TR-81, 1981.

32. A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
33. A. Shamir. On the power of commutativity in cryptography. In ICALP, 1980.

22

34. E. Zhang, J. Chang, and Y. Li. Efficient threshold private set intersection. IEEE
Access, 9:6560–6570, 2021.

35. Y. Zhao and S. S. M. Chow. Are you the one to share? secret transfer with access
structure. Proc. Priv. Enhancing Technol., 2017(1):149–169, 2017.

36. Y. Zhao and S. S. M. Chow. Can you find the one for me? ACM WPES, 2018.

23

