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Abstract

Time-lock puzzles are a mechanism for sending messages “to the future”, by allowing a sender
to quickly generate a puzzle with an underlying message that remains hidden until a receiver
spends a moderately large amount of time solving it. We introduce and construct a variant
of a time-lock puzzle which is non-malleable, which roughly guarantees that it is impossible to
“maul” a puzzle into one for a related message without solving it.

Using non-malleable time-lock puzzles, we achieve the following applications:

e The first fair non-interactive multi-party protocols for coin flipping and auctions in the
plain model without setup.

e Practically efficient fair multi-party protocols for coin flipping and auctions proven secure
in the (auxiliary-input) random oracle model.

As a key step towards proving the security of our protocols, we introduce the notion of func-
tional non-malleability, which protects against tampering attacks that affect a specific function
of the related messages. To support an unbounded number of participants in our protocols,
our time-lock puzzles satisfy functional non-malleability in the fully concurrent setting. We
additionally show that standard (non-functional) non-malleability is impossible to achieve in
the concurrent setting (even in the random oracle model).
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1 Introduction

Time-lock puzzles (TLPs), introduced by Rivest, Shamir, and Wagner [RSW96], are a crypto-
graphic mechanism for committing to a message, where a sender can (quickly) generate a puzzle
with a solution that remains hidden until the receiver spends a moderately large amount of time
solving it (even in the presence of parallel processors). Rivest et al. [RSW96] gave a very efficient
construction of TLPs where security relies on the repeated squaring assumption. This assumption
postulates, roughly, that it is impossible to significantly speed up repeated modular exponentia-
tions in a group of unknown order, even when using many parallel processors. This construction
and assumption have proven extremely useful in various (and sometimes unexpected) applica-
tions [BN0OO, LPS17, Piel9, Wesl9, EFKP19, MT19, DKP21], some of which have already been
implemented and deployed in existing systems.

Non-malleability. In a Man-In-the-Middle (MIM) attack, an eavesdropper tries to actively maul
intermediate messages to compromise the integrity of the underlying values. To address such
attacks, Dolev, Dwork and Naor [DDN91] introduced the general concept of non-malleability in
the context of cryptographic commitments. Roughly speaking, non-malleable commitments are
an extension of plain cryptographic commitments (that guarantee binding and hiding) with the
additional property that no adversary can maul a commitment for a given value into a commitment
to a “related” value. As this is a fundamental concept with many applications, there has been a
tremendous amount of research on this topic [Bar02, PR05b, PR05a, LPV08, PPV08, LP09, PW10,
Weel0, Goyll, LP11, GLOV12, GPR16, COSV16, COSV17, Khul7, LPS17, KS17, KK19].

Non-malleable TLPs and applications. To date, non-malleability has not been considered in
the context of TLPs (or other timed primitives).' Indeed, the construction of TLPs of [RSW96] is
malleable.” This fact actually has negative consequences in various settings where TLPs could be
useful. For instance, consider a scenario where n parties perform an auction by posting bids on a
public bulletin board. To implement this fairly, a natural approach is to use a commit-and-reveal
style protocol, where each party commits to its bid on the board, and once all bids are posted
each party publishes its opening. Clearly, one has to use non-malleable commitments to guarantee
that bids are independent (otherwise, a malicious party can potentially bid for the maximal other
bid plus 1). However, non-malleability is not enough since there is a fairness issue: a malicious
party may refuse to open after seeing all other bids and so other parties will never know what the
unopened bid was.

Using non-malleable TLPs to “commit” to the bids solves this problem. Indeed, the puzzle
of a party who refuses to reveal its bid can be recovered after some moderately large amount of
time by all honest parties. This style of protocol can also be used for fair multi-party collective
coin flipping where n parties wish to agree on a common unbiased coin. There, each party encodes
a random bit via a TLP and all parties will eventually agree on the parity of those bits.” This

!The concurrent works of [KLX20, BDD"20, BDD"21] consider similar notions of non-malleability for time-lock
puzzles. See Section 1.3 for a detailed comparison.

2The puzzle of [RSW96] for a message s and difficulty T is a tuple (g, N,T,s @ g2T mod N), where N is an RSA
group modulus and g is a random element from Zy. The puzzle is trivially malleable since the message is one-time
padded.

3In the context of coin flipping, if a malicious party aborts prematurely, this can bias the output [Cle86] causing
the fairness issue mentioned above. Boneh and Naor [BN0O] used timed primitives and interaction to circumvent
the issue in the two-party case, but we care about the multi-party case and prefer to avoid interaction as much as
possible.



gives a highly desirable collective coin flipping protocol with an important property that we refer
to as optimistic efficiency: when all parties are honest and publish their “openings” immediately
after seeing all puzzles, the protocol terminates and all parties agree on an unbiased bit. As we
will see, no other known protocol for this (highly important) task has this property. Even ignoring
optimistic efficiency, such a protocol yields a fully non-interactive coin flipping protocol where each
participant solves all published puzzles.

1.1 Owur Results

To present our results, we start with a high level definition of a non-malleable TLP. Recall that for
some secret s and difficulty ¢, a time-lock puzzle enables sampling a puzzle z which can be solved
in time t to recover s, but guarantees that s remains hidden to any adversary running in time less
than t.

For non-malleability, we require that any man-in-the-middle (MIM) attacker A that receives a
puzzle z “on the left” cannot output a different puzzle z “on the right” to a related value. Formally,
we consider the (inefficient) distribution mim 4(¢, s) that samples a puzzle z to s, gets z + A(z), and
outputs the value s computed by solving z. However, if z = Z, then 5 = L (since simply forwarding
the commitment does not count as a valid mauling attack). Then, non-malleability requires that
for any solution s and MIM attacker with depth much less than t (so it cannot break hiding), the
distribution for a value s given by mim4(¢, s) is indistinguishable from the distribution mim4(¢,0)
for an unrelated value, 0. We emphasize that indistinguishability should hold even against arbitrary
polynomial time or even unbounded distinguishers that, in particular, can solve the TLP. We also
consider the natural extension to the bounded concurrent setting [PR08], where the MIM attacker
A receives njef; concurrent puzzles on the left and attempts to generate nyght puzzles on the right
to related values. In this setting, the distinguisher receives the solutions to all nyght puzzles. We
refer to this as (7eft, Nright)-concurrency.

We next give our main results. In Section 1.1.1, we present our results on non-malleable time-
lock puzzles, and we discuss the various notions of non-malleability that we consider in this setting.
In Section 1.1.2, we show how to additionally satisfy a strong public verifiability property using
a specific time-lock puzzle based on repeated squaring. Finally, in Section 1.1.3, we discuss the
applications of our constructions for fair multi-party protocols.

1.1.1 Non-Malleable Time-Lock Puzzles

We give two different constructions of non-malleable TLPs. We emphasize that, as explained above,
this primitive is not only natural on its own right, but also has important applications to the design
of secure protocols for various basic tasks. Our first construction is practically efficient, relies on
the existence of any given TLP [RSW96, BGJ'16], and is proven secure in the (auxiliary-input)
random oracle model [Unr07].

Theorem 1.1 (Informal; See Theorem 4.2 and Corollary 4.3). For every nief, nright, L € poly(A),
assuming that there is a TLP (supporting 1-bit messages) that is secure for attackers of size
23nright L . poly(A), there exists an (meft,nright)—concurrent non-malleable TLP supporting messages
of length L. The scheme is proven secure in the auxiliary-input random oracle model.

In terms of security, our reduction is depth preserving: if the given TLP is secure against
attackers of depth T'(\)/a(\), where T is the time required to solve the puzzle and a(-) is a
fixed polynomial independent of T' denoting the advantage of an attacker, then the resulting non-
malleable TLP is secure against attackers of depth T'(\)/a/(\) for a related fixed polynomial o/(+).



In particular, the dependence on 7" in hardness is preserved. Additionally, note that if nygh: - L €
O(log A), then the underlying TLP only needs to be polynomially secure.

Instantiating the TLP with the construction of [RSW96], our scheme is extremely efficient:
encoding a message requires a single invocation of a random oracle and few (modular) exponentia-
tions. Additionally, our construction is very simple to describe: to generate a puzzle for a solution
s with randomness r, we sample a puzzle for (s,r) using randomness which itself depends (via the
random oracle) on s and r.* Nevertheless, the proof of security turns out to be somewhat tricky
and non-trivial; see Section 2 for details.

We prove that our scheme is non-malleable against all polynomial-size attackers that cannot
solve the puzzles (and this is inherent as the latter ones can easily maul any puzzle). We even allow
the attacker’s description to depend arbitrarily on the random oracle. We formalize this notion by
showing that our TLP is non-malleable in the auziliary-input random oracle model, a model that
was introduced by Unruh [Unr07] (see also [CDGS18]) in order to capture preprocessing attacks,
where a non-uniform attacker obtains an advice string that depends arbitrarily on the random
oracle. Thus, in a sense, our construction does not require any form of attacker-independent setup.

Our second construction is proven secure in the plain model (without any form of setup)
and is based on the non-malleable code for bounded polynomial depth tampering functions due
to [DKP21]. This construction relies on a variety of assumptions (including keyless hash functions
and non-interactive witness indistinguishable proofs) and is less practically efficient. While the
main technical ideas for the construction and proof are given in [DKP21], the threat model they
consider is weaker than what we require for non-malleable TLPs; for example, they only consider
plain (non-concurrent) non-malleability and do not require security against re-randomization at-
tacks (mauling a code word for m into a different code word for m). We show how to extend their
construction to our setting, thereby proving the following theorem.

Theorem 1.2 (Informal; See Theorem A.1 and Corollary A.2). Assume a time-lock puzzle, a
keyless multi-collision resistant hash function, a non-interactive witness indistinguishable proof for
NP, and injective one-way functions, all sub-exponentially secure. Then, there exists a bounded
concurrent non-malleable time-lock puzzle secure against polynomial size adversaries.

We emphasize that both of our constructions only achieve bounded concurrency, where the
number of instances the attacker participates in is a priori bounded (and the scheme may depend
on this bound). We show that the stronger notion of full concurrency, which does not place such
limitations and is achievable in all other standard settings of non-malleability, is actually impossible
to achieve for TLPs. Therefore, our result is best possible in this sense.

Theorem 1.3 (Informal; See Theorem 4.16). There is no fully concurrent non-malleable TLP
(even in the random oracle model).

In a nutshell, the impossibility from Theorem 1.3 is proven by the following generic MIM attack.
Given a puzzle z, if the number of “sessions” the attacker can participate in is at least as large as
|z|, they can essentially generate |z| puzzles encoding the bits of z. Since the distinguisher of the
MIM game (which is now given those bits) can run in arbitrary polynomial time, it can simply solve
the original puzzle and recover the original solution in full. We emphasize that this attack only
requires a polynomial-time distinguisher. This attack is circumvented in the bounded concurrency

“We note that our construction is conceptually similar to the Fujisaki-Okamoto (FO) transformation [FO13] used
to generically transform any CPA-secure public-key encryption scheme into a CCA-secure one using a random oracle.
However, since our setting and required guarantees are different, the actual proof turns out to be much more delicate
and challenging.



setting (Theorem 1.1) by setting the length of the puzzle to be longer than the concurrency bound.
Specifically, to support n concurrent puzzles on the right, we can set the message length to L - n,
which is what results in exponential security loss 2™ in our construction discussed above.

Functional non-malleability. We note that the attack on fully concurrent non-malleable time-
lock puzzles crucially relies on the fact that the distinguisher in the MIM game can solve the
underlying puzzles. However, it is easy to see that if the distinguisher is restricted to bounded
depth, this attack fails. One could define a weaker notion of non-malleability where the MIM
distinguisher is depth-bounded, but this results in a weaker security guarantee. In particular,
we show in Appendix C that there exists a natural TLP construction that satisfies this (weaker)
definition yet has a valid mauling attack.’

In light of this observation, we introduce a new definition of non-malleability that generalizes
the standard definition considered in Theorem 1.1. We call the notion functional non-malleability
and, as the name suggests, the security notion is parameterized by a class of functions F. Denote by
L the bit-length of the messages we want to support and by n the number of sessions that the MIM
attacker participates in on the right. We think of f € F as some bounded depth function of the form
f: ({0,1}5)™ — {0, 1}™, which is the target function of the input messages that the MIM adversary
is trying to bias. Specifically, the distinguisher of the MIM game now receives the output of the
function f when applied to the values underlying the puzzles given by the MIM adversary. When
F includes all identity functions (which are bounded depth and have output length m = n - L),
functional non-malleability implies the standard definition of concurrent non-malleability (as the
distinguisher just gets all the messages from the n mauled puzzles).

Naturally, it makes sense to ask what guarantees can we get if we a priori restrict f, say in its
output length, without limiting the number of sessions n. This turns out to particularly useful when
the application at hand only requires non-malleability against a specific form of tampering functions
(this indeed will be the case for us below). Concretely, let F,, be the class of all functions whose
output length is at most m bits and which can be computed in depth polynomial in the security
parameter A and in log(n - L) (using the notation given above). Then, we have the following result.

Theorem 1.4 (Informal; See Theorem 4.2). Assuming that there exists a TLP, then for every
m € poly(\) there exists a fully concurrent functional non-malleable TLP for the class of functions
Fm. The scheme is proven secure in the auxiliary-input random oracle model assuming the given
TLP is secure for all attackers of size at most 25™ - poly(\).

The above construction is depth preserving in the same way as the construction from Theo-
rem |.1. Further, note that as long as m € O(log \), we only require standard polynomial hardness
from the given TLP. We remark that Theorem 1.4 will turn out to be instrumental for our ap-
plications we discuss below. We also believe that the abstraction of functional non-malleability
is important on its own right and view it as an independent contribution. We also show how to
achieve fully concurrent functional non-malleability for our plain model construction.

1.1.2 Publicly Verifiable Time-Lock Puzzles

In addition to non-malleability, we construct TLPs that also have a public verifiability property:
after a party solves the puzzle, they can publish the underlying solution together with a proof which
can be later used by anyone to quickly verify the correctness of the solution. We emphasize that
this must hold even if the solver determines that the puzzle has no valid solution. We believe this
primitive is of independent interest.

5As we discuss in the Section 1.3, concurrent works allow the distinguisher to be bounded depth.



We build our non-malleable, publicly verifiable TLP assuming a very weak form of (partially)
trusted setup. The setup of our TLP consists of a set of many public parameters where we only
assume that at least one of them was generated honestly. We call this model the All-But-One-
string (ABO-string) model.” We design this to fit into our multi-party protocol application (see
Theorem 1.7 below) in such a way where the parties themselves will generate this setup in the
puzzle generation phase. Indeed, as we discuss below, publicly verifiable TLPs in the ABO-string
model will imply coin flipping without setup.

Theorem 1.5 (Informal; See Corollary 5.10). Assuming the repeated squaring assumption, there
exists a publicly verifiable non-malleable TLP in the ABO-string model. The construction is proven
secure in the auxiliary-input random oracle model.

Our construction is depth preserving and has security which depends on the message length.
In particular, the security of the resulting TLP is the same as in the constructions in Theorem 1.1
and Theorem 1.4, depending on the type of non-malleability desired for the resulting TLP.

To construct our publicly verifiable TLP, we use a strong trapdoor VDF (formalized in Def-
inition 5.3), which is why our construction is not generic from any time-lock puzzle. Somewhat
surprisingly, we need to leverage specific properties of the trapdoor VDF of Pietrzak’s [Pie19] using
the group of signed quadratic residues QR} where N is a product of safe primes.” For an overview

of our construction, see Section 2.2, or Section 5 for full details.

1.1.3 Fair Multi-Party Auctions and Coin Flipping

As we mentioned above, an appealing application of non-malleable TLPs is for tasks such as fair
multi-party auctions or coin flipping. Our protocols (for both tasks) are extremely efficient and
consist of just two phases: first each party “commits” to their bid/randomness using some puzzle,
and then after all puzzles are made public, each party publishes its solution. If some party refuses
to open their puzzle, a force-opening phase is performed. Alternatively, we can instantiate our
protocols in the fully non-interactive setting where all parties solve every other puzzle.

In what follows, we focus on the task of fair multi-party coin flipping, which is a core building
block in recent proof-of-stake blockchain designs; see below. The application to auctions follows
in a similar manner. It is convenient to consider our protocol in a setting where there is a public
bulletin board. Any party can publish a puzzle to the bulletin board during the commit phase and
then publish its solution after some pre-specified amount of time has elapsed.

Relying only our concurrent, functional non-malleable (not necessarily publicly verifiable) TLP
constructions, all of our protocols (both non-interactive and two-phase) satisfy fairness, informally
defined as follows:

e Fairness: No malicious adversary (controlling all but one party) can bias the output of the
protocol, even by aborting early. Namely, as long as there is at least one honest participating
party, the output will be a (nearly) uniformly random value.

Our two-phase “commit-and-reveal” style protocols have the additional efficiency guarantee:

e Optimistic Efficiency: If all participating parties are honest, then the protocol terminates
within two message rounds (without the need to wait the pre-specified amount of time for
the second phase), and all parties can efficiently verify the output of the protocol.

50ur ABO-string model is a variant of the multi-string model of Groth and Ostrovsky [GO14], where it is assumed
that a majority of the public parameters are honestly generated.

"For this, we assume that sampling uniformly random safe primes can be done efficiently; this is a pretty common
assumption, see [VZGS13] for more details.



Using our construction of a publicly verifiable non-malleable TLP, we satisfy the following public
verifiability property:

e Public Verifiability: In the case that any participating party is dishonest and does not publish
their solution, any party can break the puzzle in a moderate amount of time and provide a
publicly verifiable proof of the solution. We even require that an honest party can prove that
a published puzzle has no valid solution.

We focus on two main results from the above discussion, although we get a variety of different
protocols depending on what TLP we start with and how we instantiate the protocol. First, we
construct fully non-interactive protocols in the plain model without any setup.

Theorem 1.6 (Informal; see Theorem 6.3). Assume a time-lock puzzle, a keyless multi-collision
resistant hash function, a non-interactive witness indistinguishable proof for NP, and injective one-
way functions, all sub-exponentially secure. Then, there exist fully non-interactive, fair multi-party
coin flipping and auction protocols. The protocols support an unbounded number of participants and
require no setup.

Next, we achieve efficient, publicly verifiable two-phase protocols in the auxiliary input random
oracle model.

Theorem 1.7 (Informal; See Theorem 6.1). Assuming the repeated squaring assumption, there
exist two-phase fair multi-party coin flipping and auction protocols that satisfy optimistic efficiency
and public verifiability. The protocols support an unbounded number of participants and require no
trusted setup. Security is proven in the auxiliary-input random oracle.

The differences between the protocols achieved in these two theorems is that the first is non-
interactive and has no setup, while the second is two rounds and is in the random oracle model,
yet leverages this to achieve public verifiability and better concrete efficiency. We emphasize that
both of the protocols support polynomial-length outputs, relying on sub-exponential security of the
underlying time-lock puzzle.

We also emphasize that our protocols support an a priori unbounded number of participants.
This may seems strange in light of our impossibility from Theorem 1.3. We bypass this lower bound
(as mentioned above) by observing that for most natural applications (including coin flipping and
auctions), the notion of functional non-malleability from Theorem 1.4 suffices. The key insight
is that we only need indistinguishability with respect to specific depth-bounded functions with a
priori bounded output lengths (e.g., parity for coin flipping, or taking the maximum for auctions).
Since the output length in both cases is known, we can actually support full concurrency which
translates into having an unbounded number of participants.

For auctions, we note that our protocols are the first multi-party protocols under any assumption
that satisfy fairness against malicious adversaries and requires no adversary-independent setup—
using the timed commitments of [BNOO] works only in the two-party setting and additionally relies
on trusted setup, and using the homomorphic time-lock puzzles of [MT19] does not satisfy fairness
in the presence of malicious adversaries. For coin flipping, our two-round protocol is the first multi-
party protocol that is fair against malicious adversaries while satisfying optimistic efficiency. Next,
we provide a more in depth comparison of our non-interactive coin flipping protocol with existing
solutions.

Non-interactive coin flipping. We emphasize that our non-interactive coin flipping protocol
of Theorem 1.6 is the first such protocol without any form of setup in the plain model. Specifically,



we mean that there is no common random string or any assumed common function. Still, our
practically efficient protocol of Theorem 1.7 as a non-interactive protocol still enjoys some benefits
over existing schemes.

In the non-interactive setting, Boneh et al. [BBBF18] proposed a VDF-based protocol. Specifi-
cally, each party publishes a random string r; and then the agreed upon coin is defined by running
a VDF on the seed H(r1]|...|rn), where H is a random oracle. As the VDF must be evaluated
to obtain the output, this type of protocol does not satisfy optimistic efficiency. Nevertheless, the
VDF-based protocol has the advantage that only a single slow computation needs to be computed,
whereas our non-interactive protocol requires n such computations for n participants (which can
be done in parallel). Malavolta and Thyagarajan [MT19] address this inefficiency in the context
of time-lock puzzles (which do allow for the option of optimistic efficiency) by constructing homo-
morphic time-lock puzzles, where many separate puzzles can be combined into a single puzzle to
be solved. However, their TLP scheme is malleable and so cannot be directly used to obtain a fair
protocol against malicious adversaries.” In the two-phase setting, however, our publicly verifiable
protocol has the property that only a single honest party needs to solve each puzzle, and this
computation can easily be delegated to an external server.

The VDF-based scheme of [BBBF18] can be based on repeated squaring in a group of unknown
order based on the publicly verifiable proofs of [Wes19, Piel9]. In this setting, the protocols can
either be instantiated using RSA groups that require attacker-independent trusted setup, or based
on class groups that rely only on a common random string. As we do in this work, the common
random string can be implemented in the ABO-string model using a random oracle (which the at-
tacker may depend on arbitrarily). Therefore, when restricting our attention to protocols without
attacker-independent setup, the previous VDF-based protocols are based on less standard assump-
tions on class groups, whereas we give a protocol that can be instantiated from more standard
assumptions on RSA groups with better concrete efficiency.

Simulation-based fairness in the ROM. As mentioned above, we show that our protocols are
fair in the sense that no malicious adversary can bias the output of the protocol. This suffices for
applications which only use the output of the protocol. To capture applications that additionally
depend on the protocol transcript, we show that our protocol satisfies simulation-based security
with full fairness in the programmable random oracle model. This guarantees that the protocol
execution in the presence of a malicious adversary (even one aborting early) can be simulated by a
uniformly random output in an ideal model where every honest party receives the output (regardless
of whether any malicious party aborts early).

1.2 Related Work

Timed commitments. Boneh and Naor [BN00O] introduced timed commitments, which can be
viewed as a publicly verifiable and interactive TLP. They additionally require that the puzzle (which
is an interactive commitment) convinces the receiver that if they brute-force the solution, they will
succeed. Because of this additional property, their commitment scheme is interactive and relies on
a less standard assumption called the generalized Blum-Blum-Shub assumption. Their scheme is
additionally malleable.

8Tt is possible to make this protocol maliciously secure using concurrent non-malleable zero-knowledge proofs
[BPS06, OPV10, LPTV10, LP11], proving that each party acted honestly, but this (1) makes the construction
significantly less efficient, and (2) requires either trusted setup and additional hardness assumptions, or additional
rounds of interaction.



Fair coin flipping in blockchains. Generating unbiased bits is one of the largest bottlenecks in
modern proof-of-stake crypto-currency designs [BPS16, DPS19, DGKR18]. Recall that in a proof-
of-stake blockchains, the idea is, very roughly speaking, to enforce “one vote per unit of stake”.
This is usually implemented by choosing random small committees at every epoch and letting that
committee decide on the next block. The main question is how to obtain “pure” randomness so
that the chosen committee is really “random”.

One option is to use the hash of an old-enough block as the randomness. Unfortunately, it
is known that the hash of a block is not completely unbiased: an attacker can essentially fully
control about logarithmically many of its bits. In existing systems, this is mitigated by “blowing
up” parameters to compensate for the (small yet meaningful) advantage the attacker has, making
those systems much less efficient. Using a mechanism that generates unbiased bits, we could make
proof-of-stake crypto-currencies much more efficient.

1.3 Concurrent Work

Several related papers [BDD'21, BDD 20, KL.X20] have been developed concurrently and inde-
pendently to this work.” The works of Baum et al. [BDD 21, BDD"20] formalize and construct
various (publicly verifiable) time-based primitives, including TLPs, under the Universal Compos-
ability (UC) framework [Can0O1]. Katz et al. [KLX20] (among other results, less related to ours)
introduce and construct non-malleable non-interactive timed commitments. While the notions
that are introduced and studied are related, the results are all incomparable as each paper has a
somewhat different motivation which leads to different definitions and results.

Comparison with [KLX20]. Let us start by comparing definitions. Katz et al. consider a
CCA-style definition adapted to the depth-bounded setting. In the classical setting of unbounded
polynomial-time attackers, CCA security is usually stronger than “only” non-malleability, but this
is not generally true in the depth-bounded setting.

In more detail, they consider a depth-bounded version of CCA security, where the attacker (who
is also the distinguisher) is bounded to run in time less than the hardness of the timed primitive.
We, on the other hand, allow the distinguisher of the MIM game to be unbounded (while only the
attacker is bounded). We believe this is an important distinction and we provide more insights into
the differences between the bounded and unbounded distinguisher settings in Appendix C. Specifi-
cally, we show that non-malleability with a depth-bounded distinguisher is (essentially) equivalent
to our definition of functional non-malleability with output length 1. (In particular, our con-
struction of Theorem 1.4 immediately gives a concurrent non-malleable time-lock puzzle against
depth-bounded distinguishers assuming only polynomially secure TLPs in the auxiliary-input ran-
dom oracle model.) Next, we give a construction separating the definitions of non-malleability
with an unbounded vs. depth-bounded distinguisher, showing that non-malleability in the bounded
distinguisher setting gives a strictly weaker security guarantee. We additionally give a discussion
comparing these definitions to different settings of functional non-malleability in Appendix D.

Regarding the primitives constructed, recall that timed commitments [BNOO| (ignoring non-
malleability for now) allow one to commit to a message m in such a way that the commitment
hides m up to some time T, yet the verifier can be sure that it can be force opened to some value
after roughly 7' time. In contrast, plain TLPs are not necessarily guaranteed to contain valid
messages. In this context, our notion of publicly-verifiable TLPs is in between these two notions:
we treat puzzles without a solution as invalid (say encoding 1) but we additionally provide a way

9We emphasize that only Section 1.3, Appendix C, and Appendix D were added based on these works. All other
definitions and results that appear are completely independent of these works.



to publicly verify that this is the case after it has been solved. Nevertheless, we note that the
construction of Katz et al. does not imply a TLP since their commitment procedure takes T time
(while TLP generation should take time essentially independent of T').

Additionally, their constructions achieve non-malleability through the use of NIZKs follow-
ing the Naor-Yung [NY90] paradigm for CCA-secure encryption. Known (even interactive) zero-
knowledge proofs for correctness of time-lock puzzles are quite expensive (see, e.g., Boneh-Naor
[BNOO] which requires parallel repetition). Using generic NIZKs (even in the random oracle model)
would be even worse.

Regarding assumptions, their construction is proven secure in the algebraic group model [FKL 18]
and relies on trusted setup, while ours is proven secure in the (auxiliary-input) random oracle model
and hence requires no trusted setup independent of the adversary. Both constructions rely on re-
peated squaring as the source of depth-hardness, and theirs additionally makes use of NIZKs (which
require setup).

Comparison with [BDDT21, BDD"20]. Baum et al consider a UC-style definition, which
is generally stronger than non-malleability. In this setting, the environment takes the place of
the distinguisher in the MIM game. Their definition is closer to ours as the environment may
run for an arbitrary polynomial number of rounds and thus does not restrict the depth of the
distinguisher. In terms of modeling, the construction of a UC-secure TLP in [BDD"21] relies on a
programmable random oracle, whereas our construction relies on a non-programmable (auxiliary-
input) random oracle. In fact, they prove that their notion of UC security cannot be achieved in
the non-programmable random oracle model.

In a follow-up work [BDD"20], they show that their time-lock puzzle construction satisfies a
notion of public verifiability. However, they achieve public verifiability only for honestly generated
puzzles, that is, one can prove that a puzzle has a solution s, but cannot prove that a puzzle has no
solution. In our terminology, we refer to this as one-sided public verifiability (see Definition 5.2).
In contrast, our construction achieves full verifiability. This property is crucial for our efficient coin
flipping protocol since it allows only one honest party to (attempt to) solve any invalid puzzle.
With only one-sided public verifiability, every participant would need to solve all invalid puzzles,
and the output of the coin-flip can only be efficiently verified (in time less than T') in the case that
all puzzles are honestly generated.

2 Technical Overview

In Section 2.1, we give an overview of our non-malleable time-lock puzzle construction (in the
random oracle model) and its proof of security. Then in Section 2.2, we overview our construction
of publicly verifiable (and non-malleable) time-lock puzzles from repeated squaring. Finally in
Section 2.3, we discuss how our non-malleable time-lock puzzle constructions can be used for fair
multi-party coin flipping with various desirable properties. The corresponding full constructions
and proofs are provided in Sections 4, 5, and 6, respectively.

We start by recalling the definition of TLPs, as necessary to give an overview of our techniques.
A TLP consists of two algorithms (Gen, Sol). Gen is a probabilistic procedure that takes as input
an embedded solution s and a time parameter ¢, and outputs a puzzle z. Sol is a deterministic
procedure that on input a puzzle z for time bound ¢, outputs a solution in depth (or parallel time)
roughly £. We note that TLPs can be thought of as a fine-grained analogue to commitments where
“hardness” of the puzzle means that the puzzles are hiding against distinguishers of depth less than
t. On the other hand, hiding can be broken in depth ¢ (using Sol). Additionally, we require that Sol



always finds the correct underlying solution s for a puzzle z. This corresponds to perfect binding
in the language of commitments.

2.1 Non-Malleability for Time-Lock Puzzles

In this section, we overview our non-malleable time-lock puzzle construction in the random oracle
model (for the plain model construction, we refer the reader to the overview in [DKP21], as the
main ideas are the same). Our construction relies on any time-lock puzzle TLP and a common
random oracle O. We construct our non-malleable TLP, denoted nmTLP, as follows. In order to
generate a puzzle for a solution s that can be broken in time ¢, nmTLP.Gen uses randomness r and
feeds s||r into the random oracle to get a string ryp. It then uses TLP.Gen to create a puzzle with
difficulty ¢ for s||r using randomness ryp. That is,

nmTLP.Gen(t, s;7) := TLP.Gen(t, s||r; O(s||r)).

Note that in order to solve the puzzle output by nmTLP.Gen, it suffices to just solve the puzzle
generated using TLP.Gen, which takes time ¢. In other words, nmTLP.Sol(¢, z) simply computes
s|jr = TLP.Sol(¢, z) and outputs s. In fact, the solver can even check to make sure that the solutions
s is valid by checking that z = nmTLP.Gen(¢, s;7).

We note that our construction is conceptually similar to the Fujisaki-Okamoto (FO) transfor-
mation [FO13] for transforming CPA-secure encryption to CCA-secure encryption using a random
oracle. However, as we will see below, our proof is substantially different. In particular, the FO
transformation achieves unbounded CCA security, which we show is impossible in our setting!

Hardness. To show the hardness of nmTLP relative to a random oracle, we rely on the hardness
of TLP in the plain model, against attackers of depth much less than ¢. At a high level, we show that
breaking the hardness of nmTLP requires either guessing the randomness r used to generate the
randomness 7y, = O(s||r) for the underlying puzzle, or directly breaking the hardness of TLP, both
of which are infeasible for bounded attackers. To formalize this, we consider any depth-bounded
distinguisher D9, who receives as input a nmTLP puzzle z corresponding to solution sg or s; and
distinguishes the two cases with non-negligible probability. By construction, z actually corresponds
to a TLP puzzle for sg||rg or si||r1, so we would like to use D to construct a distinguisher against
the hardness of TLP.

We first note that if D never makes a query to O containing the randomness r; underlying z,
then we can simulate O by lazily sampling it in the plain model, and hence use D as a distinguisher
for the hardness of TLP. If D does make a query containing r, then with overwhelming probability
it must have received a puzzle corresponding to sp||rp (since in this case, r1_p is independent of D
and its input z). Moreover, all of its queries up until that point have uniformly random answers
independent of z, so we can simulate them as well, up until receiving this query. Therefore, in both
cases, we can carry out this attack in the plain model and rely on the hardness of TLP.

Non-malleability. To show non-malleability of nmTLP, we want to argue that any depth-
bounded man-in-the-middle (MIM) attacker A cannot maul a puzzle z for s (received on the left) to
a puzzle z (output on the right) for a related value s # s. At a high level, whenever A changes the
underlying value s to s, then the output of the random oracle on § is now uniformly random and
independent of z. Indeed, we show that for any fixed puzzle Z and a value s, a randomly generated
puzzle for s will not be equal to Z with high probability (otherwise we show how to break the
hardness of TLP). So, intuitively, the only way to generate a valid puzzle Z for 5 is to “know” the
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underlying value s, but hardness intuitively implies that no depth-bounded adversary can “know”
s since it is related to s.

We formalize this intuition by a hybrid argument to show that the MIM distribution s «+
mimy4(¢, s) is indistinguishable from mim4(¢,0). At a high level, we first replace the inefficient
distribution mim_4(¢, s) by a low-depth circuit 5. We then show how to use the hiding property of
the puzzle to indistinguishably swap the puzzle to one for 0, so the hybrid is now unrelated to s.
We describe the key ideas for these hybrids below.

For the first hybrid, the key insight is that we can compute mim4(¢,s) in low depth using an
algorithm B by simply looking at the oracle queries made by A. In this sense, we are relying on the
extractability property of random oracles to say that A must know any valid value s it generates
a puzzle for. Specifically, let z be the output of A. For every query (s;||r;) that A makes to O, B
outputs s; if Z = nmTLP(¢, s;||ri; O(s;||r;)). If there are no such queries, B outputs L. B requires
depth comparable to the depth of A since all of these checks can be done in parallel. Furthermore,
the output of B is indistinguishable from the true output given the above observation that A cannot
output a valid puzzle for a value it does not query.

For the next hybrid, we would like to indistinguishably replace the underlying puzzle for s with
a puzzle for 0, which would suffice to show non-malleability. Because B is low-depth, it seems
that we should be able to use the hiding property of nmTLP to say that the output of B does
not depend on the underlying value s. Specifically, we want to conclude that if the output of B
(who outputs many bits) is statistically far when the underlying value is s versus 0, then there
exists a distinguisher (who outputs a single bit) that can distinguish puzzles for s and 0. Towards
this claim, we show how to “flatten” any (possibly unbounded) distinguisher D who distinguishes
between the output of B in the case where the underlying value is s versus 0. Specifically, we encode
the truth table of D as a low-depth distinguishing circuit of size roughly 2/*!/ to make this reduction
go through. As a result, we need to rely on a sub-exponentially security of the underlying TLP
when |s| = A. Namely, the underlying TLP cannot be broken by sub-exponential sized circuits with
depth much less than t. However, when |s| € O(log A), we only need to rely on polynomial security
of the underlying TLP.

Impossibility of fully concurrent non-malleability. Ideally, we would like to achieve fully
concurrent non-malleability, meaning that any MIM attacker that receives any polynomial n number
of puzzles on the left cannot maul them to n puzzles for related values. However, we show that
this is impossible to achieve.

Consider an arbitrary TLP for a polynomial time bound ¢. We construct a MIM attacker A
that receives only a single puzzle z on the left with solution s where the length of z is L. Then,
A can split z into L bits and output a puzzle on the right for each bit of the puzzle z. Then, the
values underlying the puzzles output by A when viewed together yield z, which is related to the
value s! More formally, there exists a polynomial time distinguisher that solves the puzzle z in
polynomial time ¢ and can distinguish A’s output in the case when it receives a puzzle for s or an
unrelated value, say 0.

This implies that for any n which is greater than the size of a puzzle, the TLP cannot be non-
malleable against MIM attackers who output at most n puzzles on the right. At a high level, the
impossibility follows from the fact that hardness does not hold against arbitrary polynomial-time
distinguishers (which usually is the case for hiding of standard commitments).

Despite this impossibility, we show that we actually can achieve concurrent non-malleability
against a specific class of distinguishers in the non-malleability game. We refer to this notion as
concurrent functional non-malleability.
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Achieving concurrent functional non-malleability. In many applications, we only need a
form of non-malleability to hold with respect to certain classes of functions. For example, in our
application to coin flipping, we only need that a puzzle z with solution s cannot be mauled to a set
of puzzles 71, . .., z, with underlying values $1, .. ., 8, such that @ie[n] 3; “depends on” s. With this
in mind, we define a concurrent functional non-malleability with respect to a class of functions F.
We say that a TLP satisfies functional non-malleability for a class F if the output of f(mim_4(t,s))
is indistinguishable from f(mimy4(¢,0)) for any f € F, which also naturally generalizes to the
concurrent setting. We note that functional non-malleability for a class F actually implies standard
non-malleability whenever the class F contains the identity function, so functional non-malleability
generalizes the standard notion of non-malleability.

Going back to the proof of standard (non-concurrent) non-malleability for our construction
nmTLP, we observe that the security we need for the underlying time-lock puzzle we use depends
on 2%l where |s| is the size of the puzzle solutions. Specifically, given any distinguisher in the non-
malleability that had input of size |s|, we were able to construct a distinguisher for hardness of size
2lsl In fact, this exact same proof works in the context of concurrent functional non-malleability
for functions f that have low depth and bounded output length m. We require f to be low depth
so the reduction constitutes a valid attack against hardness, and then we only require security
proportional to 2!

We briefly discuss how our nmTLP construction works for concurrent functional non-malleability
for the class F;, of function with low depth and output length m. Specifically, for every m, we define
a scheme nmTLP,,, assuming that TLP is secure against attackers of size roughly 2. Because TLP
requires security against 2" size attackers, our construction nmTLP,, also only achieves security
against 2" size attackers. As such, our nmTLP.Gen algorithm needs to use at least Q(m+ \) bits of
randomness (otherwise an attacker could cycle through all choices of randomness to break security).
Recall that nmTLP,,.Gen with randomness r outputs a puzzle using TLP.Gen with solution s||r.
As a result, if we want to support solutions of size |s| in nmTLP,,, we need our underlying TLP
to support solutions of size O(|s| +m + A). By correctness, this implies that our schemes outputs
puzzles of size roughly O([s| +m + A).

Bounded concurrent non-malleability. Our construction of time-lock puzzles for concurrent
functional non-malleability can also be seen as a construction for bounded concurrent (plain) non-
malleability. Specifically, consider the case where the MIM attacker outputs at most n puzzles
on the right. We can think of this as functional non-malleability where the low depth function is
simply identity on n - |s| bits. From the above discussion, this implies a protocol assuming a TLP
with security against size 21*l attackers, with puzzles of size roughly O(n - |s| + \).

Security in the auxiliary-input random oracle model. Finally, we note that the most of
our constructions and formal proofs are in the auxiliary-input random oracle model (AI-ROM)
introduced by Unruh [Unr07]. In this model, the non-uniform attacker is allowed to depend arbi-
trarily on the random oracle, so there is no attacker-independent non-uniform advice. At a high
level, we use the result from [Unr07] (restated in Lemma 3.6)to conclude that the view of any
bounded-size MIM attacker A with oracle access to O (where A may depend arbitrarily on O) is
indistinguishable the view of A with access to a “lazily sampled” oracle P that is fixed at a set of
points F' (which depend on A). Formally, in the non-malleability analysis, we switch to an inter-
mediate hybrid where the MIM attacker has access to a partially fixed, lazily sampled oracle P.
Then, because the MIM attacker A must maul honestly generated puzzles that have high entropy,
we show that it is necessary for A to query the oracle P outside the fixed set of points F. From
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this, we carefully show that a similar analysis follows as discussed above for the ROM.

2.2 Publicly Verifiable Time-Lock Puzzles

We observe that the non-malleable time-lock puzzle construction nmTLP we described above has
a very natural—yet incomplete—public verifiability property. Solving a puzzle yields both the
solution s and the randomness r use to generate that puzzle. As such, anyone who solves a valid
puzzle can send the opening r to another party, and convince them that s is the unique valid
solution to the puzzle. However, we emphasize that this only works for valid puzzles and solutions.

Consider the following problematic scenario for our nmTLP construction. Suppose a party
“commits” to a value via a puzzle z and refuses to open the commitment. As we said before, if z
is a valid puzzle, any party can solve the puzzle, get the solution s and an opening r that proves
that s is the unique solution. What if the puzzle corresponds to no solution? We refer to this
scenario by saying that the puzzle corresponds to the solution L. In this case (by definition), there
is no solution s and opening r for any such that z = Gen(t, s;7). Anyone who solve the invalid
puzzle—which requires a lot of computational power—uwill be able to conclude that the puzzle is
malformed, but they will not be able to convince anyone else that this is the case. Ideally, we
would have a time-lock puzzle where Sol additionally outputs a publicly verifiable proof 7 that the
solution it computes is correct, even if the solution may be 1! We refer to such a time-lock puzzle
as a publicly verifiable time-lock puzzle. We next discuss the definition and our construction of
publicly verifiable time-lock puzzles.

Defining public verifiability. More formally, a publicly verifiable time-lock puzzle consists of
algorithms (Gen, Sol, Verify). As with normal time-lock puzzles, Gen(t, s) outputs a puzzle z. The
algorithm Sol(t, z) outputs the solution s as well as a proof 7 that it computed s correctly. Finally
Verify(t, z, (s, 7)) checks that s is indeed the correct solution for the puzzle z (corresponding to
Sol(t,z)), using the proof m. In addition to (Gen,Sol) being a valid time-lock puzzle, we require
that Sol and Verify constitute a sound non-interactive argument. In fact, we require a very strong
notion of soundness. We need it to be the case that even for maliciously chosen puzzles that have
no solution, the time-lock puzzle is still sound—even against the adversary that generated the
malformed puzzle. In other words, we require that no attacker can compute a puzzle z, a value s,
and a proof 7’ such that Verify(t, z, (s', 7)) accepts yet s’ is not the value s computed by Sol(¢, z),
which may be L.

Ideally, we would want a publicly verifiable time-lock puzzle that requires no setup. We instead
consider a weak form of setup which we refer to as the All-But-One-string (ABO-string) model. In
this model, Sol and Verify additionally take as input a string mcrs = (crsy, ..., crs,) € ({0,1}*)",
and we require that soundness holds as long as one of the values of crs; is sampled uniformly
(without necessarily knowing which one); this is why we refer to it as the all-but-one string model.
We note that in multi-party protocols, the ABO-string model is realistic as each participant i € [n]
can post a value for crs;. Then, we require soundness to hold as long as one participant is honest,
which is a reasonable assumption in this multi-party setting.

Constructing publicly verifiable time-lock puzzles. Our construction of a publicly verifi-
able time-lock puzzle follows the blueprint of Rivest, Shamir, and Wagner [RSW96] for construct-
ing time-lock puzzles from repeated squaring. Namely, we use the output of a sequential function
(repeated squaring in a suitable group) essentially as one-time pad to mask the value underlying
the time-lock puzzle. As in [RSW96], we require that the sequential function has a trapdoor so that
puzzles can be generated efficiently. Unlike [RSW96], we additionally require that the sequential
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function is publicly verifiable to enable publicly verifiability for the time-lock puzzle. Finally, we
apply the non-malleability transformation described above to achieve full public verifiability. In
what follows, we describe each of these steps in more detail.

For the underlying sequential function, we use what we call a strong trapdoor verifiable delay
function (VDF). A VDF (introduced by Boneh et al. [BBBF18]) is a publicly verifiable sequential
function that can be computed in time ¢ but not much faster, even with lots of parallelism. A
trapdoor VDF (formalized by Wesolowski [Wes19]) additionally has a trapdoor for quick evaluation.
We require a trapdoor VDF in the ABO-string model that satisfies additional properties required
by our application. While the properties we define—and achieve—are heavily tailored towards our
application, we believe some of the techniques may be of independent interest. More specifically, a
strong trapdoor VDF comes with a Sample algorithm to generate inputs for an evaluation algorithm
Eval. We emphasize that, even in the ABO-string model, Sample is independent of any form of
setup. Previous definitions of VDF's require the proof to be sound with probability over an honestly
sampled input. In contrast, we require that the proof is sound for any maliciously chosen input that
is in the support of the Sample algorithm. We note that this property is satisfied by a variant of
Pietrzak’s VDF [Piel9] based on repeated squaring. At a high level, this is because Pietrzak’s VDF
is sound (at least in the random oracle model) for any group of unknown order where no adversary
can find a group of low order (see e.g.[BBF18] for further discussion), so by using any RSA group
with no low order elements (as in [Piel9]), the proof is sound even if the group is maliciously chosen
(yet still a valid RSA group), which gives the strong property we need. We note that the proof
of soundness for our strong trapdoor VDF in the ABO-string and auxiliary-input random oracle
model follows by a similar argument to that of [Piel9] in the (plain) random oracle model after
applying Unruh’s Lemma [Unr(07] (stated in Lemma 3.6).

Next, we construct what we refer to as a one-sided publicly verifiable time-lock puzzle in the
ABO-string model by using the strong trapdoor VDF in the RSW-style construction described
above. By one-sided, we mean that completeness and soundness hold only for puzzles in the
support of Gen (again, we emphasize that this is in contrast to a randomly sampled puzzle). Then,
our full construction applies our non-malleability transformation to a one-sided publicly verifiable
time-lock puzzle. We already argued that the non-malleability transformation provides a form of
public verifiability for puzzles z in the support of Gen. Namely, anyone can prove to another party
that a valid puzzle z has a solution s, but the proof may not be sound when trying to prove that
a puzzle has no solution. However, we next show that if the underlying puzzle satisfies one-sided
public verifiability, then the resulting (non-malleable) publicly verifiable TLP is sound for any
z € {0,1}* (possibly not in the support of Gen).

Proof of full public verifiability. Let (Gen, Sol, Verify) be the TLP resulting from applying our
non-malleability transformation to a one-sided PV TLP (Genyp, Solyp, Verify,,). Consider any puz-
zle z € {0,1}*. If 2 is in the support of Gen, we want to ensure that no one can prove that s’ = L
is a valid solution. At the same time, if z is not in the support of Gen, we want to ensure that no
one can prove that s’ # L is a valid solution.

When we run Sol(t, z), we first run Solyp(t, 2) and get a solution sy, = 5[|7* with a proof myp.
If # is a valid opening for the proposed solution §, then Sol can simply output the solution s = §
and the proof m = #. If # is not a valid opening for §, Sol must output 1 and a proof 7 that this
is the case. We set m = (Stip, Ttlp), which intuitively gives anyone else a way to “shortcut” the
computation of Solyp.

Now suppose that an adversary tries to falsely convince you that a puzzle z with no solution
has a solution s’ # | using a proof 7’ = r’. To do so, it must be the case that r’ is a valid opening
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for s’ with respect to Gen. But if that were the case, then z would have a solution, in contradiction.

On the other hand, suppose that an adversary tries to falsely convince you that a puzzle z with
solution s has no solution, i.e. s = L, using a proof n’ = (s,ilp,wélp). Since z has a solution, it
means that z is in the support of Geny,. By one-sided public verifiability, this means that 7r{|p isa
valid proof that sélp = §||7 is the correct solution to z with respect to Genyp. So if 7 is not a valid
opening for § with respect to Gen, we know the adversary must be lying. In other words, the only
way the adversary can cheat is by cheating in the underlying one-sided PV TLP on a puzzle z in

the support of Genyp.

Discussion of our non-malleable PV TLP. We note that the publicly verifiable time-lock
puzzle we described above can be made to satisfy the same non-malleability guarantees as we
discuss in Section 2.1 (as we construct it using the same transformation but with a specific un-
derlying time-lock puzzle). Thus, assuming the repeated squaring assumption, we get a publicly
verifiable time-lock puzzle that satisfies concurrent function non-malleability for any class of low
depth functions JF;, with output length m. Our construction is in the ABO-string model, and we
prove security in the auxiliary-input random oracle model (which is needed for soundness of the
strong trapdoor VDF in the ABO-string model in addition to the non-malleability transformation).
This model is reasonable for our practical applications to multi-party protocols, as we will see be-
low. Due to the fact that this is a non-black box construction, we note that it does not apply to
our non-malleable TLP construction in the plain model.

We also note that our explicit repeated squaring assumption states that repeated squaring in
RSA groups for n-bit integers cannot be sped up even by adversaries of size roughly 2"*. The
repeated squaring assumption is closely related to the assumption on factoring (which has recently
been formalized in different generic models by the works of [RS20, KL.X20]). The current best
known algorithms for factoring run in time at least 27""* " In the case where m € O(log A), for
example, we only require that polynomial-size attackers cannot speed up repeated squaring, which
is a relatively mild assumption. In the case where m is larger, say m = A, then we need to choose
n to be at least A3 (based on known algorithms for factoring). This gives an example of the various
trade-offs we get for the security and efficiency of our construction depending on the class of low
depth functions F,, that we want non-malleability for.

2.3 Fair Multi-Party Protocols

We will focus on coin flipping for concreteness, and note that for auctions the ideas are similar. We
give a protocol in auxiliary-input random oracle model, and one in the plain model, depending on
which non-malleable TLP construction we use to instantiate it (which result in different guarantees).
Here, we describe our random oracle protocol, which captures the main ideas and various properties
we can achieve.

At a high level, the coin flipping protocol is very simple. Each party chooses a random bit
and publishes a time-lock puzzle that encodes the chosen bit. After all puzzles are published,
each party opens their puzzle by revealing the bit that they used as well as the randomness used
to generate the puzzle. Any puzzle that is not opened can be “solved” after a moderately large
amount of time ¢. Once all puzzles have been opened, the agreed upon bit (i.e., the output of the
protocol) is the XOR of all revealed bits. The above protocol template is appealing because it
naturally satisfies optimistic efficiency: if all parties are honest and open their puzzles, the protocol
terminates immediately. When using time-lock puzzles which are both non-malleable (as discussed
in Section 2.1) and publicly verifiable (as discussed in Section 2.2), we achieve the following highly
desirable properties:
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e Fairness: No malicious party can bias the output of the protocol.

This crucially relies on non-malleability for the underlying time-lock puzzle. For a protocol
with n participants, we need the time-lock puzzle to satisfy n-concurrent non-malleability.
This guarantees that as long as one party is honest, the output of the protocol will be (at
least statistically close to) a uniformly random bit.

e Unbounded participants: Anyone can participate in the protocol.

This property might come as a surprise since we show fully concurrent non-malleability is
impossible to achieve. However, we emphasize that our time-lock puzzle achieves fully con-
current functional non-malleability for the XOR, function. This allows us to deal with any
a priori unbounded number of participants, which is important in many decentralized and
distributed settings.

e Public verifiability: Only one party needs to solve each unopened puzzle, and can provide a
publicly verifiable proof that it solved it correctly.

This follows immediately by the public verifiability property we achieve for the underlying
time-lock puzzle. Without this property, any unopened puzzles may need to be solved by
every party that want to know the output of the protocol, which is prohibitively expensive.
However, public verifiability instead opens up the application to any party, not even involved
in the protocol. Furthermore, this work can even be delegated to an external server since
trust is guaranteed by the attached proof.

We note that our non-malleable and publicly verifiable time-lock puzzle is defined in the All-But-
One-string (ABO-string) model, which is required for public verifiability. To implement this model,
we have each participant i publish a fresh random string crs; < {0,1}* in addition to its puzzle
z;. Then, whenever some party tries to solve (or verify) a puzzle, it puts all of the random strings
together as a multi-common random string mcrs = (crsy, . .., crsy,) from all n participants, and uses
this for the publicly verifiable proof. As long as a single party is honest and publishes a random
string crs; independent of all other participants, then the publicly verifiable proof system will be
sound. Putting everything together, this results in a multiparty coin-flipping protocol satisfying
the above three properties in the auxiliary-input random oracle, without any other form of setup.
We remark that the fairness notion we achieve is a game-based notion stating that no adversary
controlling all but one party can bias the output of the protocol. Next, we discuss an extension to
a stronger fairness definition.

Simulation-based fairness in the ROM. As an alternative construction, we briefly discuss
how fairness in the above protocol can be strengthened to achieve a simulation-based definition of
security; this, however, will come at the cost of the protocol/analysis being in the programmable
random oracle model. Consider running our protocol to get a value s, where s is the XOR of bits
underlying the adversary’s and honest players’ time-lock puzzles. In our simulation-based secure
protocol (given in Appendix B), we will set the output to O(s) where O is a programmable random
oracle. This enables a simulator running in polynomial time to solve the adversary’s puzzles and
program O(s) to the desired output value. It then suffices to show that the adversary A does not
detect this change in the oracle, meaning that A does not query s before publishing its time-lock
puzzles. We observe that if A does indeed query s, it implies an adversary against the game-based
fairness of our protocol, that runs A to get s and outputs a TLP to s along with A’s puzzles,
thus biasing the output to s @ s = 01¥l. As a caveat, this argument requires |s| to be sufficiently
large (specifically, w(log \) for security parameter \), as otherwise we do not get a protocol that
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is noticeably biased. Hence, when combining this with our non-malleable TLP construction, this
result requires sub-exponential security from the underlying TLP, but nevertheless achieves the
strong notion of simulation-based fairness.

3 Preliminaries

We denote by x < X the process of sampling a value x from the distribution X. For a set X, we
denote by x < X the process of sampling a value x from the uniform distribution on X. We let
Supp (X ) denote the support of the distribution X. For an integer n € N we denote by [n] the set
{1,2,...,n}. We use PPT as an acronym for probabilistic polynomial time. A function negl: N — R
is megligible if it is asymptotically smaller than any inverse-polynomial function, namely, for every
constant ¢ > 0 there exists an integer N, such that negl(\) < A7¢ for all A > N..

A non-uniform algorithm A = {A)},cy is a sequence of circuits for all A € N. We assume
that Ay always implicitly receives 1* as its first input. We define size(Ay) to be the size of the
circuit (corresponding to total time) and depth(Ay) to be the depth of the circuit (corresponding
to parallel time).

For two ensembles of random variables X = {X)},cy and YV = {Y)},oy, We say that & is
computationally indistinguishable from ), denoted X' ~ Y, if for all non-uniform PPT D = {Dy }
there exists a negligible function negl such that for all A\ € N, it holds that |Pr[Dy(X)\) =1] —
Pr[DA(h) = 1]| < negl(\).

For a,b € N, we let RF® denote the set of all functions f: {0,1}% — {0,1}°. A partial assignment
to {0,1}%is a function F: S — {0,1}" where S C {0,1}*. We let RF’[F] denote the set of functions
f consistent with F, namely functions f € RF® where f(z) = F(z) for all z € S.

3.1 Time-Lock Puzzles
We first define time-lock puzzles without any additional properties.

Definition 3.1. Let B: N — N. A B-hard time-lock puzzle (TLP) is a tuple (Gen, Sol) with the
following syntax:

e 2 < Gen(1Mt,5): A PPT algorithm that on input a security parameter X € N, a difficulty
parameter t € N, and a solution s € {0,1}*, outputs a puzzle z € {0,1}*.

e 5 = Sol(1*,t,2): A deterministic algorithm that on input a security parameter X € N, a difficulty
parameter t € N, and a puzzle z € {0,1}*, outputs a solution s € ({0,13 N U{L}).

We require (Gen, Sol) to satisfy the following properties.

e Correctness: For every A\t € N, solution s € {0,1}*, and z € Supp (Gen(l)‘,t,s)), it holds
that Sol(1*,t, z) = s.

e Efficiency: There exist a polynomial p such that for all A\;t € N, Sol(l)‘,t, -) is computable in
time t - p(\,logt).

e B-Hardness: There exists a positive polynomial function o such that for all functions T and
non-uniform distinguishers A = { Ay} ¢y satisfying a(X) < T(X) € B(A)-poly(X), size(Ay) €
B()) - poly(A), and depth(Ay) < T(N)/a(N) for all X € N, there exists a negligible function
negl such that for all A € N, and s,s € {0,1}*,

Pr {A,\(Gen(l’\,T(/\),s)) - 1} —Pr [A,\(Gen(l)‘,T()\), §)) = 1} ] < negl(\),
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where the probabilities are over the randomness of Gen and Ay.
When B(\) € poly()), we say that the TLP is polynomially-hard.

In the above definition, we assume for simplicity that the solutions s are A-bits long. We can
naturally generalize this to consider the case where solutions have some specified length L(\). We
emphasize that the notion of B-hardness above suffices to capture both polynomial security and
sub-exponential security, as it captures hardness against adversaries of size B(\), up to polynomial
factors.

Comparison with the definition of [BGJT16]. We discuss the definition of B-hardness in
comparison with the definition given by Bitansky et al. [BGJ"16]. First, they consider only poly-
nomial B, whereas we expand this notion to possibly allow for possibly super-polynomial functions
B. Second, their definition only requires that the depth of A is bounded by T for a constant
€ € (0,1). In other words, the adversary has an advantage which depends on T' over the running
time of the honest evaluator. We instead have a stronger requirement where adversary’s advantage
« only depends on A and is independent of 7. We remark that one could relax our definition to
theirs by allowing « to be a function of 1" and A.

3.2 Non-Malleable Time-Lock Puzzles

To formalize non-malleability in the context of time-lock puzzles, we introduce a Man-In-the-Middle
(MIM) adversary. Because time-lock puzzles are designed to be broken in some depth ¢, we restrict
our MIM adversary to have at most depth ¢/a()\) for a function « denoting the advantage of the
adversary. Furthermore, we allow for concurrent MIM adversaries that possibly interact with many
senders and receivers at the same time.

Definition 3.2 (MIM Adversaries). Let nr,ng, Bam,®,T: N — N. An (nr,ng, Bam, @, T)-Man-
In-the-Middle (MIM) adversary is a non-uniform algorithm A = { Ay} oy satisfying depth(Ay) <
T(N)/a(X) and size(Ay) € Bam(A) - poly(N) for all X € N that receives np,(\) puzzles on the left and
outputs nr(\) puzzles on the right.

We next define the MIM distribution, which corresponds to the values underlying the puzzles
output by the MIM adversary. To capture adversaries that simply forward one of the puzzles on
the left to a receiver on the right, we set the value for any forwarded puzzle to be L.

Definition 3.3 (MIM Distribution). Let np,ng, Bom,o,T: N — N. Let A = {A\},oy be an
(nr,nR, Bam, o, T)-MIM adversary. For any A\ € N and § = (s1,...,5,,(x)) € ({0,132 e
define the distribution

(:Svl, . ’gnR()\)) — mimA(l)‘, T()\), g)
as follows. Ay receives puzzles z; + Gen(1),T(N\),s;) for all i € [np(N)] and outputs puzzles
(Z1,-++» Zng(r))- Then for each i € [nr(N)], we define
_ 1 if there exists a j € [nr(A]) such that z; = zj,
5 = -
Sol(1M,T(\), %)  otherwise.

Intuitively, a time-lock puzzle is non-malleable if the MIM distribution of a bounded depth
attacker does not depend on the solutions underlying the puzzles it receives on the left. We
formalize this definition below.
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Definition 3.4 (Concurrent Non-malleable). Let np,ng, Bam: N — N. A time-lock puzzle is
(nr,ng)-concurrent non-malleable against adversaries of size By, if there exists a positive polyno-
mial o such that for every function T with a(X) < T'(X\) € Bam(A) - poly(A) for all X € N, and every
(nL,nR, Bam, o, T)-MIM adversary A = { A} ey, the following holds.

For any distinguisher D, there exists a negligible function negl such that for all A € N and
§= (515, 8n,00) € ({0, 13)2 0,

Pr [D(mimA(ﬂ,T(A), 7)) = 1] Py [D(mimA(l)‘,T(A), (02 N)) = 1} ‘
< negl(A).

When Bnm(A) = 1, we say the TLP is (ng,ng)-concurrent non-malleable. When this only holds
against non-uniform PPT distinguishers D, we say that the time-lock puzzle is computationally
(nr,ng)-concurrent non-malleable.

Relation to non-malleable commitments. When defining non-malleability for TLPs, a nat-
ural approach is to view TLPs as commitments, and give a definition analogous to non-malleable
commitments. This is usually formalized as either non-malleability with respect to commitment, or
non-malleability with respect to extraction. The former notion requires that no man-in-the-middle
adversary can maul a commitment z to s into a commitment z whose unique underlying value
is related to s, whereas the latter notion requires that £(Z) is unrelated to s, where £ is a given
extractor. When &£ has the guarantee that it outputs the committed value on valid commitments
and L on invalid ones, these notions are equivalent. However, when considering extractors that
may output arbitrary values when given invalid commitments, these notions are incomparable in
general. In the context of time-lock puzzles, we observe that Sol is the natural extractor for Gen,
and moreover that non-malleability should capture adversaries that maul a puzzle into one that
solves to a related value. Therefore, our definition above is analogous to non-malleability with
respect to extraction, where Sol is the extractor. Lastly, we note that when the TLP satisfies full
correctness (Definition 5.1) instead of standard correctness above, the two notions are equivalent.
Next, we consider standard variants for the definition of non-malleable above.

Definition 3.5. We say the a TLP satisfies the following non-malleability properties when Defi-
nition 3./ holds against (ng,ng, Bam, o, T)-MIM adversaries for the following settings of ny and
ngR:

e fully concurrent non-malleable if the definition holds against any ng,ngr € poly(A),
e one-many non-malleable if the definition holds for any ng(\) € poly(\) and ny, =1,
e n-concurrent non-malleable if the definition holds for np, = ng =n,

e one-n non-malleable for np(\) =1 and ng = n,

e and simply non-malleable (not concurrent) for np,(\) = ng(A) = 1.

3.3 Time-Lock Puzzles in the Auxiliary-Input Random Oracle Model

In the random oracle model [BR93]|, security is proven in the case where all relevant parties have
oracle access to a common random function. For security in the (plain) random oracle model, it
is assumed that a fixed adversary is independent of the common random function and must break
security with probability over the choice of the random function. Security in the auxiliary-input
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random oracle model, introduced by [Unr07], is proven assuming that the attacker may depend
arbitrarily on the random oracle, as long as the attacker is of polynomial (or bounded) size.

One of the main benefits of proving security in the random oracle model is that you can argue
security when the random oracle is sampled “lazily.” The following lemma, adapted from Un-
ruh [Unr07], shows how we can use similar lazy sampling techniques in the auxiliary-input random
oracle model without significant loss in security. At a high level, it says that for any computation-
ally bounded adversary A in the AI-ROM model, we can “switch” a random O (that the attacker
may depend arbitrarily on) with an oracle P that is lazily sampled on almost all points. In other
words, A cannot distinguish the output of O from P on a random query.

Lemma 3.6 (Unruh [Unr07]). For any functions p, f, A € N, and unbounded algorithm Z that
on input a random oracle © € RF} outputs p(\)-size oracle machines, there is an (inefficient)
algorithm Sam that outputs a partial assignment F to {0,1} on f(\) points, such that for any
A € N and unbounded distinguisher D,

O « RF}
O « RF} A=Z(0) (P2
Pr| A=Z(0) :D(y)=1| —Pr| F=Sam(A) :D(y)=1|| < .
y < A% P « RF}[F] ey
y +— AP

We note that the above lemma also holds in the case where the random oracle has input and
output length are fixed polynomials in A.

We now formalize non-malleable time-lock puzzles in the auxiliary-input random oracle model.
As the AI-ROM only affects the security properties against computationally bounded adversaries,
the syntax, correctness, efficiency, and completeness properties are left relatively unchanged. As
a result, we focus on the definitions of hardness and non-malleability. In the AI-ROM, we model
computationally bounded adversaries that are allowed to depend arbitrarily on the random oracle.
To formalize this, we consider inefficient algorithms Z that, for any A € N, take as input a random
oracle O € RF3 (of exponential size) and output circuits of bounded size. Additionally, we consider
a MIM distribution for a (n,n, Bam, «, T')-oracle adversary A, mimf?‘, where A and the distribution
have oracle access to the same oracle O.

Definition 3.7. Let B,n: N — N. A B-hard n-concurrent non-malleable time-lock puzzle in the
AI-ROM is a tuple of oracle algorithms (Gen, Sol) that satisfy correctness, efficiency, and complete-
ness relative to any O € RFﬁ, and the following:

e B-Hardness: There exists a polynomial o such that for any function T with a(X\) < T(\) €
B(A) - poly(A) for all X € N and unbounded algorithm Z that on input O € RFi‘ outputs
circuits of size B(\) - poly(X) and depth at most T'(\)/a(X), there exists a negligible function
negl such that for all A\ € N and values sg, s1 € {0, 1})‘,

O + RF}
Pr| A+ Z(0) : A%(2) =1
2+ Gen® (11, T()), s0)
O + RF}
—-Pr| A=2Z(0) : A9(z) =1 || < negl()).

z + Gen® (11, T(N), s1)
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e Concurrent Non-malleable against B,,-size adversaries: There exist a positive polyno-
mial o such that for every function T with a(\) < T(N) € Bam(A) - poly(A) for all X €
N, polynomials nr,ngr, and unbounded algorithm Z that on input O € RF§ outputs an
(np,nR, Bam, @, T)-MIM adversary, the following holds.

For any distinguisher D, there exists a negligible function negl such that for all A € N and
§= (817 B Sn()\)) € ({07 1}>\)nL()\)7

O + RF}
Pr .fl:Z((’)) : D(; =1
5 < mimQ(1Y, T (), 5)
O + RF}
—Pr| A« Z(0) : DG) =1 || < negl(N).

5 < mimG (1Y, T(N), (01)"N)
When Bnm = 1, we say that the TLP s concurrent non-malleable. When this only holds

against non-uniform PPT distinguishers D, we say that the TLP is computationally concur-
rent non-malleable.

We note that the above definitions can also be naturally extended to hold relative to random
oracles with input and output length that are fixed polynomials in A.

4 Non-Malleable Time-Lock Puzzles

In this section, we give our results on concurrent functional non-malleable time-lock puzzles in the
auxiliary-input random oracle model. We start by defining the notion of concurrent functional non-
malleability for a class of functions F in Section 4.1. Then, in Section 4.2, we give a transformation
from any time-lock puzzle to one that satisfies concurrent functional non-malleable for depth-
bounded functions F, in the auxiliary-input random oracle model. We then discuss how this
general result for concurrent functional non-malleability implies our result for bounded concurrent
(standard) non-malleability. The proofs for our construction are given in Section 4.3. In Section 4.4,
we show that no time-lock puzzle satisfies fully concurrent (standard) non-malleability.

4.1 Functional Non-Malleable Time-Lock Puzzles

We next formally define concurrent functional non-malleability. For simplicity, we define it in
the case of unbounded concurrency, but we note that it can be defined for restricted cases as in
Definition 3.5.

Definition 4.1 (Concurrent Functional Non-malleable). Let Bym, L: N — N, and (Gen, Sol) be a
time-lock puzzle for messages of length L(X). Let F be a class of functions of the form f: ({0, I}L()‘))*
— {0,1}*. We say that (Gen,Sol) is concurrent functional non-malleable for F against Bnm-size
adversaries if for any function f € F and polynomial n, there exists a polynomial o such that for
every function T with a(X) < T'(X\) € Bam(A) - poly(A) for all A € N, every (n,n, Bam, , T')-MIM
adversary A = { Ay} ey, the following holds.

For any distinguisher D, there exists a negligible function negl such that for all A € N and
§=(51,-+,8n(n) € ({0, 11N,

‘Pr [§“<— mim (1}, T(\), ) : D(f(3)) = 1}

_Pr [’§<— mim_a(1%, T(\), (0E)" N . D(£(3)) = 1} ‘ < negl(\).

21



When Bam(A) = 1, we say the TLP is concurrent functional non-malleable for F. When the
above only holds against non-uniform PPT distinguishers D, we say the TLP is computationally
functional non-malleable for F.

We note that functional non-malleability for a class F that contains the identity function id

-

implies standard non-malleability as D(id(s)) = D(?’)

4.2 Non-Malleable Time-Lock Puzzle Construction

In this section, we give our construction of a fully concurrent functional non-malleable time-lock
puzzle for functions with bounded depth and output length. We rely on the following building
blocks and parameters.

— A function m denoting the output length for our function non-malleability. We require m(\) €
poly(A). Throughout this section, where A is clear from context, we let m = m(\).

— A Byp-hard time-lock puzzle TLP = (Genyp, Solyp) for Byp(A) = 23m We let Atp = Atp(A) €
poly(A,m) be the bits of randomness needed for TLP on security parameter A, for solutions
of length 2m + 2.

— A class of functions F,, of the form f: ({0,1}*)* — {0,1}™®™). We assume that there exists
a polynomial d such that for every polynomial n, every function f € F,, can be computed in
depth d(A,logn(\)) and polynomial size on inputs of length at most X - n(\).

)‘tlp

oxtam> Where O on input (s,r) € {0, 1+ Gutputs a random

— A random oracle O € RF
value 1’ € {0, 1} .

Our construction nmTLP,, = (Gen, Sol) in the random oracle model:
o z=Gen(1* t, s;7):
1. Get v = O(s,r).
2. Output z = Genyp (14, ¢, (s[|r); 7).
o 5 =501, 2):
1. Compute s’ = Solyy(1*, ¢, 2) and parse s’ = s||r.
2. If z= Geno(lA,t, s;r), output s.
3. If not, output L.

Theorem 4.2 (Fully Concurrent Functional Non-Malleable TLPs). Let m(\) € poly(A), Bhard(A) =
Qm()‘), and Byp(\) = 23m(X) Assuming TLP is a Byp-hard time-lock puzzle, then nmTLP,, is a
Bhard-hard fully concurrent functional non-malleable time-lock puzzle in the AI-ROM for the class
of functions Fp,.

We observe the following corollaries to the above theorem:
e If m(A\) € O(log(\)) then we can simply assume a polynomially-hard TLP.

e For any m(\) € poly(\), our theorem follows by assuming a sub-exponentially secure TLP.
Specifically, it suffices that there exists a constant v € (0, 1) such that By,(\) = 2", and we
can instantiate this with Ayp = (A + 3m (X)) bits of randomness.
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We also observe that the above theorem can be used to get n-bounded concurrency for any
polynomial n, simply by setting the output length m of the functions in F,,, to A-n(X). Specifically,
let fig be the identity function with input and output length A - n(A). Since fig € Fy.,n), a fully
concurrent functional non-malleable TLP for F).,() implies an n-concurrent non-malleable TLP,
which gives the following corollary.

Corollary 4.3 (n-Concurrent Non-Malleable TLPs). Let n()\) € poly(\), Bhara(A) = 22" | and
Bup(\) = 282N Assuming TLP is a Byp-hard time-lock puzzle, then nmTLPy.,(\) i @ Bharg-hard
n-concurrent non-malleable time-lock puzzle in the AI-ROM.

4.3 Proof of Concurrent Functional Non-Malleability

We prove Theorem 4.2 by showing correctness in Lemma 4.4, efficiency in Lemma 4.5, hardness in
Lemma 4.6, and non-malleability in Lemma 4.11.

Lemma 4.4 (Correctness). Assuming (Genyp, Solyp) satisfies correctness, then (Gen,Sol) satisfies
correctness.
)‘tlp

Proof. Fix any A,t € N and O in RF,)", . We want to show that for every z = Geno(l)‘,t,s;r)
for some s € {0,1}* and 7 € {0,1}?"*+*, it holds that Sol®(1*,t,2) = s.

This follows from correctness of TLP. Recall that the algorithm Sol®(1*,t, z) computes 3||7 =
Solyp (17, ¢, 2) and outputs 3 if z = Gen®(1*,t,5;7). Since we assumed z was in the support of Gen?,
it follows by definition of Gen® that z = Genyp(1*, ¢, (s||7); O(s, 1)) for some s,r. By correctness of
TLP, this implies that Soly,(1*,¢,2) = s||r so s||r = 5||7" and Sol outputs the correct solution. [

Lemma 4.5 (Efficiency). Assuming that (Genyp, Solyp) satisfies efficiency, then (Gen, Sol) satisfies
efficiency.

Proof. Fix any A\t € N and O € RF;\;'Zer. First, we show that Gen? is PPT. We have that
Gen®(1*,t,-) makes a single oracle call to O, which takes time poly (), m) to read the output, and
evaluates Genyy(1*,¢,-), which takes time poly(),logt). It follows that there exists a polynomial
p1 such that Gen®(1*,¢,) can be computed in time p; (A, logt).

For Sol?, recall that Sol®(1*,,-) runs Solyy(1*, ¢, ) and Gen®(1*,t,-). By the above, Gen® can
be run in time p1(A,logt). For Solyp, recall that by the efficiency of TLP there exists a polynomial
po such that for all A\,t € N, Soly,(1*,¢,-) can be computed in time ¢ - po(A,logt). Putting these
together, we have that Solo(l)‘, t,-) can be computed in time p; (A, logt) + ¢ - p2(A,logt). O

Lemma 4.6 (Hardness). Assuming that (Genyp, Solyp) satisfies Byp-hardness, then (Gen,Sol) sat-
isfies Bharq-hardness in the AI-ROM.

Proof. To show hardness, suppose for contradiction that for all polynomials «, there exists a func-
tion T with a(\) < T'(A) € Bhard(A) - poly(A) for all A € N, an unbounded algorithm Z that outputs
circuits of size Bpad(A) - poly(N) and depth at most T'(\)/a()\), and a polynomial ¢ such that for
infinitely many A € N, there exist values sg, 51 € {0, 1}* such that

)‘tlp
O < RFyo,

Pr| D=2(0) : Do(z)zl
z + Gen® (1, T(N), s0)

Atlp
O < RFy o

-Pr| D=2(0) : Do(z)zl >
2+ Gen? (11, T(N), 51)

23



As the above holds for all a by assumption, we will give a specific polynomial o and use it to
reach a contradiction. Specifically, let oy, be the polynomial guaranteed by the hardness of TLP.
We will show a contradiction for a(A) = ayp(A) - p(A), where p is a fixed polynomial specified in
the proof of Claim 4.10. To derive a contradiction, we will define a sequence of hybrid experiments,
and we will use the fact that the statistical distance between the above probabilities is noticeable
to construct an adversary that breaks the hardness of TLP. For any A € N and s € {0,1}*, we
define the following sequence of hybrid experiments. Throughout these hybrids, we let ¢ = T'(\).

e Hyb§(\) : This hybrid is equivalent to the terms in the probabilities above for a puzzle generated
with solution s € {0,1}*, where Gen® is written out explicitly.

O« RF¥, . D=2(0)

Hybj(A) =9 7« {0,1}2m T o/ = O(s,r) : D9(z) =1
z = Gent|p(1)‘,t7 (s||r);7")

e Hybj(\) : Let Z’ be the algorithm such that for any O € RF;;{’;%L and D = Z(0O), the algorithm

Z'(D) outputs an oracle algorithm A® which does the following:
1. Sample 7 < {0,1}?™** and query v’ = O(s,r).
2. Compute z = Geny, (11,1, (s||r); 7).
3. Output D (2).

This hybrid uses A to determine the output of the experiment.
Hybi(A) = { O« RFP, © D=270); A=2z(D) :A%= 1}

Note that size(A) € 2™ - poly(A), which holds by the efficiency of Gen, because Ayp €
poly (A, m), and because size(D) € Bhard(A) - poly(A) = 2™ - poly(A).

e Hyb5(\) : Let g4 be the polynomial such that size(A) = 2™ - g4(\). Let fhard(A) = (2™ - qa(N) -
4q(X\))?, and let Sam be the inefficient algorithm from Lemma 3.6 that on input an adversary
A outputs a partial assignment F' on fhaq(A) points. This hybrid swaps O with a random
function P fixed at the set of points F' determined by Sam.

)\tlp . o . _ !
Hybs () = J O R D_Z(S), A=Z'D) | p_,
F < Sam(A); P <« RF\,,,[F]

e Hyb5(\) : This hybrid samples 7' uniformly randomly from {0,1}* rather than using the
oracle P to compute it. It also gives D oracle access to a modified version of P, where on
input (s,r) it outputs 7/, and agrees with P on all other inputs. We denote this oracle by
P[(s,7) — r']. In this hybrid, we additionally write out A’s actions explicitly.

O« RFP, © D=270); A=Z(D)

A
Hybj(A) = § 7 Sam(A); P RFy g, ] : DPIeDr(2) =1
r o {0,1}2mHA {0, 1} e
z= Gent|p(1)‘,t, (s|lr);7")
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To conclude the proof, fix any A € N and values sg,s; € {0,1}* for which Equation 4.1
holds. Since Hyby’(X) is equal to the probability in Equation 4.1 for value s, we get that
[Hybg® (A) — Hybg! (A)] > ﬁ. In the following claims, we bound the distance between each pair of

consecutive hybrids for every s € {0,1}*. Specifically, we show in Claim 4.7 that Pr[Hyb§()\)] =
Pr [Hybj(\)]. Then, in Claim 4.8, we bound the statistical distance between Hybj(A) and Hyb3(\)
by ﬁ(/\). Then, we show in Claim 4.9 that there exists a negligible function negl such that
|Pr[Hyb5(\)] — Pr [Hybs( )]| < negl(A). Combining these claims with the above, |Pr[Hyb3()\)] —
Pr[Hyb3' (V)] > ( 3 for infinitely many A € N. To conclude the proof, we show in Claim 4.10
that this implies that there exists an adversary that breaks the hardness of TLP with probability
1/(8¢())), in contradiction.

Claim 4.7. For all s € {0,1}*, Pr[Hyb$(\)] = Pr[Hyb5(\)].
Proof. This follows immediately from the definition of A. Specifically, in Hyb{(\), the algorithm

A samples r, ', and z exactly as done in Hyb{(\), and then outputs 1 exactly in the event that
Hybg(\) holds. [

Claim 4.8. For all s € {0,1}*, |Pr [Hyb5(\)] — Pr [Hyb5(\)]| < 1/(4q(N)).

Proof. Recall that size(A) = 2™ - g4(A\). We can therefore apply Lemma 3.6 (by viewing Z and
Z' as a single sampling algorithm outputting A based on ), and partially fixing a set F of
frard(A) = (2™ - ga()\) - 4g(N\))? points. Note that fhag(A) € 22™ - poly()\), and so this is well-
defined for sufficiently large X since the domain of the oracle contains 222%™ points. Therefore,
the statistical distance between the output of A® and AP is at most

\/( - ga(V))? \/ @m qa0)? 1
Frara (V) @ qa(V) - 4g(N)2 ~ 4g(0)’

which implies the claim. [ |

Claim 4.9. There exists a negligible function negl such that for all s € {0,1}?,
[Pr [Hyb5(A)] — Pr [Hyb3(A)]| < negly(2).

Proof. We start by using the definition of A to rewrite Hyb5(\) as

At
O RF2£Z_2m; D= Z(/\O); .A = ZI(D)

r < {0,1}2mFA ol = P(s, T)

z = Gen(1%,1, (s][r); ")

The difference between this and Hyb3(\) is that 7 is sampled uniformly at random in Hyb3()), and
D has oracle access to P|[(s,r) — r'] rather than P. Let us denote this oracle by P’. We will show
that the events in these hybrids occur with the same probability, except in the case that the query
to P in Hyb5(\) (which results in 7’) appears in F', where we recall that F is the partial assignment
on fhard(A) points given by Sam(.A).

To show this, let E be the event that (s,7) ¢ F. When E holds, then the distribution of
(P,r,r") in Hyb5(X) is identical to that of (P’,r,r') in Hyb3(\). Namely, in both hybrids r is
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uniformly sampled from {0,1}2™*+*. For the oracles, in Hyb5(\), P is sampled uniformly from
Rng\'z_Qm[F] and " = P(s,r), whereas in Hyb5()), P’ can be sampled according to Rngﬂer [F] for
all points except 7, and then lazily evaluated it on r to obtain r’. As long as E holds, these are the
same distribution, as otherwise P on input r would be determined by F. As D’s view consists of
oracle access to either P or P’, and contains its input z which is fully determined by r,7’, it follows
that for all A € N,

Pr{Hybi(A) | E] = Pr[Hyb3(}) | EJ.

Furthermore, since r < {0,1}2™+2, the probability that E fails to hold, i.e. that (s,r) € F, is at
most

frard(N) (2™ - qa(N) -49(N)* _ 2™ - poly())
22m+X T 922m+X 92m-+\

= negl()‘)a

which is negligible. So, it holds that for all A € N, Pr[-E] = negl()\). Putting these together, we
conclude that for all A € N,

[Pr [Hybi (A)] — Pr [Hyb3(A)]]
= | PrE] - (Pr[Hyb(A) [ E] — Pr[Hyb3(}) | EJ)

+ Pr[=E] - (Pr[Hybi(A) | =E] — PrHyb3(A) [ —E)) |
<1-0+ negl(A)-1=negl(N),

so the claim follows. [ |

Claim 4.10. If there exists function p such that for infinitely many A € N and values sg,s1 €
{0,1}*, it holds that
|[Pr [Hyb3”(A)] — Pr [Hyb3' (A)]| = n(A),

then there exists an adversary that breaks the hardness of TLP with probability ju(\)/2.

Proof. We first note that by an averaging argument, the inequality in the statement of the claim

implies that for infinitely many A € N there exists an O € RF;;i:-zm and F' € Supp(Sam(.A)), where

D = Z(0), A= Z'(D) such that

P« RF)®, [F]

Pr| ry < {0, 1}2m+)‘,7“6 + {0, 1})‘“9 : DP[(SO’TO)_”M(ZO) =1
20 = Gentlp(l)\v t7 (SOHTO); T{))

P« RFg\j\liZm[F}

— Pr r {07 1}2m+)\’7n/1 — {07 1})\t|p :DP[(SLTl)—)r’l](zl) -1 > M()\)
2] = Gent|p(1)‘,t, (s1llr1); 7))

The above implies that

>\t|p

P RFy\ o, [F] ! o)
b+ {0,1} yPlsnrs) =] (0 1
P ’ : DR =b| > -+ —=. 4.2
3 B {0117 1 {0, 1} (2) 25+ (4.2)

25 = Genyp (12,1, (sp]|75); 7)

Note that D’s success at guessing b may depend on it’s ability to “hit” the randomness 7, in
one of its oracle queries, since in this case, it can trivially check if z, corresponds to a puzzle for
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sp||ry. Looking ahead, we will be fixing values of ¢, 7, and using D to try to distinguish a puzzle
corresponding to sg||ro from a puzzle corresponding to s1||r1, based on which values of rj, he queries.
Therefore, it will also be important to consider the event that D(z,) makes a query corresponding
to r1_p. Next, we formally define these two events:

e Let hit = hit(D, P, z) denote the event that D on input a puzzle corresponding to (s||r) queries
(s,7). Note that in the case that hit does not occur, then the answers to the oracle queries
made by D are distributed according to P.

e Let bad = bad(D, F, P, 2,15, 71—p) denote the event that either D(z) queries (s1_p,r1-p) OF
that (s1-p,71-p) € F, where z;, is generated using 7.

To bound the probability that bad occurs, where the probability is over P, b, 7o, r1, 1, and the
randomness of D, we note that the event bad occurs either when (s;_p,71_p) is in F', or when
($1-b,71-p) is not in F' yet D makes the query to the oracle. We therefore have

7 .
Pr [bad] < |F| size(B)
olri—sl 9lri-sl
270400 490 | Bra(N) - poly(Y)
- 2lri—sl 2lri-b|
2™ - poly(A) | 2™ - poly())
= T 2mta amiA = negl(}),

for all A € N. In particular, the bound on the second event above (that D queries (s1_p,71-p)
without it being in F') holds because D has size Bpad(A) - poly(A), and r1_p is independent of F
and the answers to D’s queries. Combining this with Equation 4.2, we get the following, where
all probabilities are over the choice of P <« RF;\f\"erm[F], b« {0,1}, ro,r1 « {0,1}2™*+ and
2y < Genﬂp(lk,t, (SbHTb)):

r [DP[(Sb,rb)—)Tf,](zb) = b}
< Pr [DPK%MHT&](%) —b A ﬁ] + Pr [bad]

[DP[(sb”’bH’”lﬂ(zb) —b A Bit A @} +Pr[hit A bad] + negl(\)
=Pr[D"(z) =b A hit A bad] +Pr[hit A bad] + negl(}),

where in the last line we used the fact that when hit occurs, the answers to D’s queries are distributed
according to P.

By an averaging argument, there exist fized values 7o, r; such that the above holds for those
fixed values, namely,

Pr [Dp(zb) =b A hit A bad] + Pr[hit A bad] + negl()) > 3 + 5 (4.3)

where the probability is only over P < RF;§:2m[F]v b+ {0,1}, and 2, < Genyp (12,2, (sp]|75))-

We will use this to construct an adversary B that breaks the hardness of TLP. The adversary
B has sg, s1, 1,71, F, and D hardcoded, and receives as input a TLP puzzle z corresponding to
either sg||ro or si||r1. It does the following:

1. Run D(‘)(z). For each query ¢ made by D, if ¢ € F, give the corresponding answer; otherwise,
if ¢ has been asked previously, give the same answer as before; otherwise, give a uniformly
random answer sampled from {0, 1}*e.
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2. If there exists unique bit b such that D queries (sp,75) but not (s1_p,71-4), output b. Other-
wise, output the bit output by D.

To analyze the success probability of B, we can look at whether hit or bad occur. By definition
of B, we have the following, where all probabilities are over P <« RF;;’:F%L [F], b < {0,1}, and

2y Gent|p(1)\>ta (SbHrb)):

e Pr[B(z) =b A hit A bad] = Pr[hit A bad], since when hit and bad occur, then B(z)
always outputs b.

e Pr[B(z)=b A hit A bad] =Pr[D”(z)=05b A hit A bad], since when neither hit nor bad
occur, then the query answers that B gives to D are distributed identically to P (by lazy
sampling), and B simply outputs what D outputs.

We therefore get that

Pr(B(z) =b] = Pr [B(z) =b A hit A bad] +Pr[B(z) =b A hit A bad] +Pr[B(z) =b A bad]

> Pr[hit A bad] +Pr[D”(z) =b A hit A bad
1 p(d) 1 p(D)

> 4L >4 =L

Z 5 + 5 negl(A) > 5 + 1

for infinitely many A € N, where the last line uses Equation 4.3, and where the probabilities are
over P «+ RF;‘ﬁ\'z_Qm[F], b+ {0,1}, and z, Gent|p(1)‘,t7 (sp]|rp))-

To put everything together and letting s = sg||rg and s’ = s1||r1, the above implies that

‘Pr [z — Genyp (11,1, 8) : B(2) = 1} — Pr [z = Genyp(1*,t,8') : B(z) = 1} ‘ > M(;\)
To complete the proof, we discuss the bounds on T and the efficiency of B, and show that these
suffice to contradict the hardness of TLP for T'. To bound T', we want to show that ayp(A) < T'(\) €
Byp(X) - poly()), where we recall that oy, is the polynomial guaranteed to exist by the hardness
of TLP. For the upper bound, by assumption we have T'(\) € Bpard(A) - poly(A) = 2™ - poly(\) <
23™ . poly(A) = Byp(A) - poly(A). For the lower bound, by assumption T'(A) > a(A) = aup(A) - p(A)
for a polynomial p(A) > 1 defined below, so the bounds on 7T suffice to break hardness of TLP.
For the size and depth of B, we have that B needs to run D, and needs to be able to answer
D’s oracle queries consistently with F' and with each other. One way to implement this is for B
to keep track of a set Q of the queries asked so far, initialized to F. At any point during the
emulation of B, the set Q contains at most size(D) + fhard(A) queries. For each query made by B,
checking if it appears in Q and adding it to Q if necessary can be done in size O(|Q| - log(]|Q])),
and so in total results in adding size(D) - O(|Q| - log(]Q|)) to the size of B to account for all
the queries. For the depth, each query can be checked in poly(),log|Q|) depth and added to
Q (while keeping Q sorted) with an additional poly(A,log|Q|) depth. Finally, for queries made
in parallel, we can answer them in parallel.'’ Overall, this results in an extra additive depth of

depth(D) - poly (A, log fhard(A), log Bhard(A)).

10Tn more detail, when given n parallel queries, we can check membership in Q in parallel, and then sort the new
queries in O(logn) depth, remove duplicates from the sorted list in parallel, and then add them to Q along with
corresponding answers.
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To put everything together, recall that size(D) € Bhard(A)-poly(N), fhard(A) = (2™-qa(N)-4q(N))?,
Bup(A) € 23™ - poly()), and Bhard(A) € 2™ - poly(A). Therefore, we get that

size(B) € O(size(D) - |Q] - log |QJ)
€ O(size(D) - (size(D) + fhard(N)) - log(size(D) + fhard(N)))
€ 2%™ . poly(\,m) € 2°™ - poly(\) = Byp()\) - poly(\)

and

depth(B) < depth(D) + depth(D) - poly (A, log fhard(N), 1og Bhard(A))
€ depth(D) - poly(A,m) € depth(D) - p())

for a fixed polynomial p, depending only on m and on log fhard(A). Note that log fhard(A) is in
poly (X, m,log(q()\))). Since g was assumed to be a polynomial, this can be upper bounded by a
fixed polynomial in A\, which is independent of ¢, for sufficiently large A. It follows that we can
assume p is independent of q.

Recall that depth(D) < T'(A\)/a(X) where a()\) = ayp - p(A). We can therefore upper bound
depth(D) in the above to get that

depth(B) < T(A)/(a(A)) - p(A) = T(N)/(aup(A) - p(A)) - p(A) = T(N)/(auip(X))-

Therefore, B breaks the hardness of TLP with probability p(A)/2 for infinitely many . |

This completes the proof of Lemma 4.6. O

Lemma 4.11 (Functional non-malleability). Assuming that (Gen,Sol) is a correct and Bharg-hard
TLP, and that (Genyp,Solyp) is a Bup-hard TLP, then (Gen,Sol) is fully concurrent functional
non-malleable for F,.

Proof. We will show that (Gen, Sol) satisfies one-many functional non-malleability for F,, against
polynomial size adversaries, which suffices for fully concurrent functional non-malleability for F,,
by Lemma E.1.

To show one-many functional non-malleability, suppose for contradiction that there exists an
f € Fin such that for all polynomials «, there exists a function T satisfying a(\) < T'(\) € poly(X)
for all A € N, an unbounded algorithm Z, and polynomial n such that Z outputs (1,7, 1, a, T')-MIM
adversaries, an unbounded distinguisher D, and a polynomial ¢, such that for infinitely many A € N
and s € {0,1}*, it holds that

O « RFP
22+2m .
Pr| A=20) L D(fG) =1 (4.4)
5+ mimG (1%, T ()), s)

>\t|p
O« RFZA—i—Qm

~Pr| A=2Z(0) DG =1 || > —- (4.5)

5 < mimQ (1%, T(\),0M)

Let oharg and ayp be the positive polynomials from the hardness properties of nmTLP,, (given

by 4.6) and TLP, respectively. We will derive a contradiction to the above for « given by a(\) =

Ohard - P1(A) + auip - p2(A), where pq is a fixed polynomial specified in the proof of Claim 4.15, and
p2 is a fixed polynomial specified in the proof of Subclaim 4.14.
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In order to show a contradiction, we will give a sequence of hybrid experiments starting with
the event in the first probability above and ending with the second, and we will show that each
consecutive pair either has large statistical distance, or can be used to break hardness of nmTLP,,
or of TLP. Before giving the formal description of the hybrids, we give a short overview. At a
high level, our strategy will be to change the way that 5 is computed, so as to make it independent
of s. Specifically, we start with a hybrid corresponding to the first probability above, where 5 is
computed using the sampler mim 4. Since mim_4 consists of sampling puzzles, running A, and then
solving the resulting puzzles in polynomial time T'()\), it has polynomial size. This implies we can
transition from the random oracle O to an oracle P that is lazily sampled on most points using
Lemma 3.6, so that the MIM adversary A only depends on a small fraction of points in the oracle
(rather than the whole oracle). This enables us to then switch to sampling 5 using a depth-bounded,
but sub-expenential size sampler. Once we have done so, we can apply the hardness of our time-
lock puzzle to switch the initial puzzle for s to a puzzle for 0%, thereby making the experiment
independent of s. The hybrids are formalized next.

For any A € N and value s € {0,1}*, we consider the following sequence of hybrid experiments.
Throughout these hybrids, we let t = T'(\).

e Hyb$(\) : This hybrid is equivalent to the terms in the probabilities above for s € {0, 1}

)‘tlp

sy ) O« REY L A=2(0) 2\
Hﬂn@)—{ L s D) =1 }

e Hyb3(\) : In this hybrid, we switch the random oracle O with a random function P fixed on a
set of points F'. To describe this, we start with some notation.

Let mim[A, 1%, ¢, s] be the oracle algorithm that computes mim_4 on hardcoded input (1*, ¢, s).
Note that this algorithm has polynomial size, which follows by the efficiency of Gen, Sol, and
because size(A),t € poly(\). Therefore, let gmim be the polynomial such that mim[A, 1}, ¢, s]
can be computed in size gmim(A).

Let fam(A) = (gmim(A) - 2¢(\))? and let Sam be the inefficient algorithm given in Lemma 3.6
that on input an adversary, outputs a partial assignment F' on fym(A) points. The hybrid is
defined as follows:

O+ RF)FL,; A= Z(0);

F < Sam(mim[A, 1}, ¢, 5]); -
Hyb5 () = : =

5 mim’ (12, 5)

e Hyb3(\) : In this hybrid, we change the experiment so that 5 can be computed in depth less
than ¢ (given A and F'). Specifically, we define the distribution bmim (standing for “bounded
MIM”) and replace mim with this distribution, defined as follows.

bmimﬁ,F(l)‘, t,s):

1. Sample z + Gen” (1%, ¢, 5)
2. Run z « AU (2) by forwarding all of A’s queries to the oracle P.

3. Let Q be the set containing all oracle queries made by A and all points in the partial
assignment F', where the jth query is denoted Q; = (s;,7;) for each j € [|Q]].
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4. Next, we form the output vector s. For each i € [n(N)], if z; = 2, set 5; = L. Otherwise,
check if there exists a query Q; € Q with z; = GenP(l)‘,t,sj;rj), and if so set 5; = s;.
Otherwise, set s; = L. Note that this check can be done in parallel for each pair (7, 7).

5. Output 3

We define this hybrid experiment from the previous one by using bmim instead of mim to
compute 3, as follows. Note that the set F is still based on the algorithm mim4[1*, ¢, s].

O REY,; A= 2(0);
F < Sam(mim[A, 1}, ¢, 5])
P RFy [ F]

R bmimﬁ’F(l/\,t, s)

Hyb3(A) = :D(f(3) =1

To complete the proof, we show that for each consecutive pair of hybrids, either the sta-
tistical distance between them is bounded, or that a noticeable gap in the statistical distance
can be used to break security of TLP or nmTLP,,. Specifically, we show in Claim 4.12 that
| Pr [Hyb5 (A\)] — Pr[Hyb5(\)]| < 1/(2¢(\)), for all A € N and s € {0,1}*. Combining this with
Equation 4.4, we get that for infinitely many A € N, there exists a value s € {0,1}* such that
Pr [Hyb5(\)] — Pr [HbeA ()\)} ‘ > 1/(2q()N)). It follows that for infinitely many A € N, there exists

a value s € {0,1}* and a pair of consecutive hybrids in the sequence Hyb5(\), Hyb$(\), HybgA(A),
HybgA (M) whose statistical distance is at least 1/(6g())).

In the first case where the statistical distance between Hyb3(\) and Hyb3(\) is at least 1/(6g())),
we show in Claim 4.13 that this implies an adversary that breaks the hardness of TLP with proba-
bility 1/(6¢(\) - n(\)) which is a contradiction, since n is a polynomial. In the second case where
the statistical distance between Hyb3(\) and Hybgk()\) is at least 1/(6¢()\)), we show in Claim 4.15
that this implies an adversary that breaks the hardness of nmTLP,, with probability 1/(12¢(\)),
which contradicts the hardness of nmTLP,,. The third case follows identically to the first one,
which concludes the proof.

Claim 4.12. For all s € {0,1}*, [Pr[Hyb$()\)] — Pr[Hyb5()\)]| < 1/(2¢())).

Proof. This follows immediately from Lemma 3.6, relative to the algorithm mim[A, 1}, ¢, s] which
can be sampled directly based on O. Note that |F| = fam(A) = (gmim(A) - 2¢(\))? € poly()), and so
is smaller than the domain size 22227 of O for sufficiently large A. It therefore holds by Lemma, 3.6
the statistical distance between these hybrids is at most

\/Qmim()\)2 _ \/ Qmim()\)2 _ 1
fnm()‘) (Qmim(/\) ’ 2Q()‘))2 2Q()‘)

where we recall that mim 4 can be computed in size gmim(\). |

Claim 4.13. If there exists a function p such that for infinitely many X € N there exists a value
s € {0, 1} with

[Pr [Hyb5(A)] — Pr [Hyb3(A)]| = n(A),
then there exists an adversary that breaks the hardness of TLP with probability pu(X)/n(X) for in-
finitely many A € N,
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Proof. The difference between these two hybrids is that in Hyb5(\), the values 5 are sampled from
mim’;(1*,¢, s), while in Hyb$(\) they are sampled by bmimz’F(l’\,t, s). We will show that if these
two distributions are far, then we can construct an adversary that breaks the hardness of TLP with
probability roughly the statistical distance between the two hybrids.

In more detail, in each hybrid 3 is sampled as follows. Both mimﬁ(lA7 t,s) and bmimZF(l)‘, t,s)
first sample a puzzle z for s, and then run Z A(z). They then calculate 5 as follows. For ease of
understanding, denote this vector as computed by mim in Hyb5(\) as 53, and denote the vector as
computed by bmim in Hyb$()\) as 33). Then, we have that for each output element 7, mimﬁ(l)‘, t,s)
computes it as

5@ _ 1 ifz; =2
‘ s’ otherwise, where s’ = Sol” (1}, ¢, %;)

while bmimiF(l’\t7 s) computes it as

1 iz ==z
3% = v; if there exists a Q; = (sj,7;) € Q with z; = Genp(lk,t, 55575)

)

1 otherwise,

where we recall that Q consists of all queries made by A and all elements of the partial assignment
F. Unless otherwise stated, note that all following probabilities are over O «+ RF;\;i’jr2m, A=7(0),

F = Sam(mima[1\,1,5]), P < RE2¥, [F], 57« mim5(1%,5), 5 « bmim’ »(1),¢,5). By
assumption, we have that
(A) < [Pr [Hyb3 ()] — Pr[Hybj(\)]| < Pr |5 £ 5]
— Pr [EIZ'E [n(N)] : 32 £ ] Pr[ 7M3>}

i€[n(M)]

by a union bound. Therefore, there exists some i € [n(\)] such that

Pr 5 £5%] = w()/n(). (4.6)

Fix this index i. We will continue by expanding this probability.
Let E be the event that there exists a Q; = (s;,r;) € Q such that z; = Gen” (17, t, sj;ri). We
have that

(2 (2 2 2

< Pr [é%&gf”) | E] 4 Pr [g‘?);«ég@ | ﬁE], (4.7)

(2 K3 K3

Po[5 £ 50) — b 5 50 & ]+ Pe[50 25 A ]

We continue by bounding each term in Equation 4.7 separately. For the first term, we have that
pr[s® #57 | E| =0

To see this, note that conditioning on E implies E{ig) = sj, where Q; = (sj,7;) € Q is the query
such that z; = Genp(lA, t,s;;7;) (note that correctness implies that if there is more than one such
query, it must correspond to the same value of s;). By the correctness of nmTLP,,, this implies

that Sol” (1, ¢, Z;) outputs 54, SO 3§2) = sj.
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To bound the second term of Equation 4.7, conditioning on —E implies Ef’) = 1, and so

Pr[s? 25 | g =P[5 21 | g,
Recall that 5?) is sampled as Sol”(1*,¢,%;). By definition of Sol, it holds that its output is not

L when Z; = Gen” (1%, ', t;7) for s'||r = Soly,(1*,t,%;), when additionally s’ # L. Therefore, the
above is equal to

Pr |Sol”(1*,t,%;) # L | —|E} =Pr [Z = Gen” (1, s/, t;r) NS’ # L | ﬂE}
<Pr [EZ = Gen” (1M, ' ;1) | —E}
=Pr [E,» = Genyp (1)‘,t, (s'||r); P(s’,r)) | ﬂE}

where the above probabilities are over the choice of O, A, F,P and the randomness used by A
to produce z;. Since we are conditioning on —E, it follows that P(s’,r) is uniformly random and
independent from F' and hence from A and Z;, so it suffices to bound the following probability,
relative to any z;. Therefore, by combining this with equations 4.7 and 4.6, we get the following,
where the probability is only over 7/ < {0, 1} e:

Pr [r' — {0,130 : Genyy (17, ¢, (s'||r); 1) = g@] = p(A)/n(A).

In the following sub-claim, we show that this implies we can break the hardness of TLP with the
same probability, which completes the claim. Note that the following sub-claim is general, so the
notation is independent from the above.

Subclaim 4.14. If for infinitely many X\ € N there exist values z* € {0,1}* and v € {0,1}2*+2m
with
Pr [r « {0,1} : Genyp (1, T(N), v;7) = 2*| >/ (N),

then there exists an adversary that breaks the hardness of TLP with probability p'(\).

Proof. We will show that there exists a depth-bounded distinguisher D’ = {D} } aen that breaks
the hardness of the time-lock puzzle with respect to T" and inputs v, v’ for any input v’ # v. For
any A € N, we define D) on input z to simply output 1 if z = z* and 0 otherwise.

To show that D) contradicts the hardness of TLP, we start by bounding the distinguishing
probabilities. Let A be the infinitely large set of A € N such that the statement of the claim holds.
It follows that for all A € A,

Pr [D} (Gengp(1*, T(\), v)) = 1} — Pr [Genﬂp(l)‘,T()\),v) — | > ().
In particular, it holds that z* is in the support of Gent|p(1)‘, T(\),v) for all A € A. By correctness
of TLP, this implies that Soly,(1*, T(\), 2*) = v. Correctness also implies that 2* is not in the
support of Gent|p(1’\,T()\),v’) for any A € A. As a result, for all A € A,

Pr [ D} (Genyp (17, T(N),0')) = 1} =Pr [Genﬂp(l/\,T(/\),v') =2"=0

and therefore D) distinguishes puzzles corresponding to s from s’ with probability p'(\).

33



To complete the proof, we discuss the bounds on T and the efficiency of D’. For the bounds
on T, we want to show that oyp(A) < T(X) € Byp(A) - poly(A), where we recall that oy is the
positive polynomial given by the hardness of TLP. For the upper bound, by assumption T'(\) €
poly(A) € Byp(A) - poly(X) and for the lower bound, by assumption 7'(A) > a(A) = auip(A) - p1(N),
for a polynomial p;(\) > 1 specified below.

It remains to bound the size and depth of D’. For each A € N, the size of D) depends on the
hardcoded value z* for that security parameter. When A € A then z* is in the support of Gen, so
the efficiency of TLP implies that |2*| € poly(A,logT()\)) € poly(\) by the above bounds on T'. For
the cases where A ¢ A, then we can assume D, simply has 1 encoded instead of a value for z*,
and compares its input, which also has length poly(A,log T (A)) € poly()\), to the hardcoded value.
Putting everything together, for every A € N the size and depth of D) can be bounded by a fixed
polynomial p;. Therefore

size(D}) < p1 (V)

which suffices as the security of TLP holds against polynomial-size adversaries. For the depth,
recalling that a(X) > agp(A) - p1(A) and T'(A) > a(X), we have

A) T

depth(D}) < pr () < -2 < ,

PRSPV S G000 = )

which completes the proof of the subclaim. |
This completes the proof of Claim 4.13. |

Claim 4.15. If there exists a function p such that for infinitely many X\ € N there exists a value
s € {0, 1} with
Pr [Hyb3 (V)] = Pr [Hyb§ (V)] | = (),

then there exists an adversary that breaks the hardness of nmTLP,, with probability u(\)/2 for
infinitely many A € N.

Proof. By an averaging argument, the inequality in the statement of the claim implies that for in-
finitely many A\ € N, there exists an O € RFQj\'z_Qm, such that for A = Z(0) and F' = Sam(mim[A, 1,
t,s]), it holds that

)‘tlp

P + RF [F] .
P . 224-2m -D =1
' [ 5 4 bmimﬁ}F(lA,t,s) (%) ]

>\tlp

P+ RF [F] =
- P . 224-2m - D =1
' [ R bmimZF(l’\,t,())‘) (®) ]

In order to complete the proof of the claim, our goal is to use bmim and D to construct an
adversary against the hardness of nmTLP,,, for which we need the probability to be over the choice
gg/random oracle @' rather than a partially fixed on P. Toward that goal, for any oracle @', let
bmimﬁj F(l)‘, t,s) be the same as bmim, except that whenever any internal algorithm (such as A or
Gen) makes an oracle query @, bmim first checks if @ € F. If so, it returns the corresponding point
as given by F', and otherwise it forwards the query to its oracle O'.
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>\t|p
22+2m

as sampling a fully-defined oracle O «+ RFJ‘;Q and then 5 < mﬁjF(l)‘,t, s). Therefore, we
have that

We observe that sampling P < RF [F] and 5 bmimfl’F(lA, t, s) has the same distribution

A
/ tlp
. O« RFy\ o,

D(f(3)) = 1]

5« bmim§ n(1%, 1, 5)

O < RFt

S , > u(N). 48
S+ bmimg,F(lk,t,OA) HX) (48)

— Pr

We will use this to break the hiding of nmTLP,, by constructing an algorithm D’ that receives
a puzzle z either to s or 0, behaves exactly as bmim does to obtain 3 s computes f (N) and finally
uses D to distinguish between the two cases. Specifically, let D’ 9" be the oracle algorithm with F'
hardcoded that on input a puzzle z, does the following;:

1. Run 7 « AL)(z), where for each query @ made by A, if Q € F then answer with the
corresponding image given by F', and otherwise forward @ to O'. Let Q be the set containing
all queries and answers made by A as well as all points in F.

~ ——()
2. In parallel, for each i € [n(\)] and j € [|Q|], compute s; as done by bmlmAF(l)‘,t,-) by
checking if z; is the result of generating a puzzle using @Q; € Q.

3. Compute y = f(3).

4. Let ttp be the circuit with width 2™ and depth O(m) corresponding to the truth table of D.
Run ttp(y) to get b = D(y), and output b."'

To analyze the success probability of D’ in breaking the hardness/(_)\f/'l' LP, we observe that the only
difference between running 'Y and running D on the output of bmim% r is that the puzzle z given
to D’ is sampled using ', while the puzzle that bmim uses is sampled using (', but replacing any
queries to F' with the image given in F. Specifically, let z be the puzzle given as input to D’ and
let 7 be randomness sampled for running Gen. In the first case, where z is a puzzle for s, then
z = Genyp (17, t, (s||r); O'(s,7)). Whenever (s,7) ¢ F, it follows that the output of D’ is distributed
as in the first probability in Equation 4.8. By the same argument, when z is a puzzle for 0* then
the output of D’ is distributed according to the second probability in Equation 4.8, so long as
(0),7) ¢ F. As r is chosen uniformly at random from {0,1}2™+* it follows that the probability
that this occurs is at most

nm>\ mim>\‘2)\2 oly(\ ’
;m(w\) - 4 (223n+/\Q( ) € p22r};i(+>\) = (M)

which is negligible. Therefore

/ Atlp ,
O <_RF(,2)%‘+2>T”‘ :D/O (Z):l
z + Gen™ (11,1, s)
O « RF)P / ()
— Pr 2>‘+2m DO () = 1| > u(\) — negl’'(\) > 222
z « Gen? (1’\t0)‘) ) ] = 1Y) gy 2

"This trick, of ”flattening” D using its truth table, was used in this context by [DKP21].
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for infinitely many A\ € N. It will follow that D’ succeeds at breaking the hardness of nmTLP,,
for T as long as its size is in Bhard(\) - poly()), its depth is bounded by T(\)/(chard(N)), and
Ohard(A) < T'(A) € Bhard(A) -poly(A) for all A € N, where apaq is the positive polynomial guaranteed
by the hardness of nmTLP,,. We bound the size and depth required for each step of D’ next, and
then bound T'. For the size and depth of D', we have that:

1. The first step requires running A and checking if each of its queries appears in F', and if so
returning the correct answer, and so requires size O(size(A) - |F| -log|F|) and can be done in
depth depth(A) - poly (A, log | F|) since for each of A’s queries, it takes depth poly(A,log|F|)
to check in parallel if the query appears in I’ and output the answer.

2. The second step can be done with size |Q| - poly (A, m,logt,n(\)) and depth poly (A, m,logt)
since it requires generating a puzzle in parallel for each i € [n(\)] and j € [|Q|].

3. The third step requires computing y = f @) Since the input length is n()), this can be done
in depth poly(A,logn(A)) and polynomial size poly(\, n()\)) by assumption on f € F,.

4. The third step requires running ttps(y), which can be done with size 2 poly (A, m) and depth
poly(A, m).

Putting everything together, we have that

size(D') € O(size(A) - fam(A) - log(fam(N)) + size(A) - poly (A, m, logt, n()\)) + poly(A, n(X))
+ 2™ - poly (A, m)
€ (fam(A) +2) - poly(A, m, log t, n(A))
€ 2™ - poly(A, m,log t,n(A)) € 2™ - poly(A) = Bhard(A) - poly(A),

where we used the fact that n(\) € poly(}), size(A) € poly(N), and |F| = fam(A) = (gmim(A) -
2¢(\))2. For the depth,

depth(D’) < depth(A) - poly(),log |F|) + poly(A, m,logn()),log T()\))
< depth(A) - poly (A, m,logn(A)) < depth(A) - p2(A)

for a fixed polynomial py (which depends only on m, logn, and log fhard(A)), where we used the fact
that m(\) € poly(\) and T'(\) € poly(XA). Note that log(n(\)) can be bounded by A for sufficiently
large A. Similarly, log fhard(A) can be bounded by a fixed polynomial in A which depends on
log g(\). As q is a polynomial, this can also be bounded by a fixed polynomial in A independently
of ¢, for sufficiently large A. Moreover, we can simply have D’ output L on security parameters
which are not sufficiently large. Therefore, depth(D’) < depth(A) - p2(\) for all A € N. Recall that
depth(A) < T(N\)/a(N), where we set a(A\) > anard - p2(A). Therefore, the above is bounded by
T(A)/(ctnard(A)).

Finally, to bound 7', we have that T'(A) > a(A) > apard(A) - p2(A) > ahard(A) since we can set
p2(A) > 1, and T(A) € poly(A) € Bhard(A) - poly(A) by assumption. It follows that D’ breaks the
hardness of nmTLP,,, with probability p(\) — negl’(\), which completes the claim. [

This completes the proof of Lemma 4.11. O
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4.4 Impossibility of Fully Concurrent Non-malleability

In the following theorem, we show that there does not exist a fully concurrent non-malleable
time-lock puzzle. Specifically, consider a time-lock puzzle with message length L that has puzzles
of length at most L. We give an explicit attack that violates m-concurrent non-malleability for
n = [L'/L]. As L,L’ are polynomial, this is an explicit polynomial for which non-malleability
cannot hold. Furthermore, this attack works even in the random oracle model. This means that for
a time-lock puzzle to satisfy n-concurrent non-malleability, the puzzles must be sufficiently long.

Theorem 4.16. Let B,L,L': N — N where B()\) € 2Poly(N) gnd L e poly(X). Suppose that
(Gen, Sol) is a B-hard time-lock puzzle for messages of length L(\) with puzzles of length at most
L'(X\). Then, (Gen,Sol) does not satisfy n(\)-concurrent non-malleability for n(\) = [L'(X\)/L(\)].

Proof. We note that as n-concurrent non-malleability implies one-n non-malleability, it suffices to
break one-n non-malleability.

For any A € N, let L = L(\), L' = L'(\), and n = n(\) = [L'/L]. Note that, since Gen is
a PPT algorithm, L is at most poly(X, L(A),log T'(\)) for any 7. This implies that L’ and n are
both bounded by polynomials.

Let a be any positive polynomial and 7" be any function with a(\) < T'(A) € poly(A). For
a polynomial By specified below, we define a (1,7, Bym, a, T)-MIM adversary A = {A)},cy as
follows. On input a puzzle z € {0,1}%, A\ splits z into n parts z,...,z, € {0,1}~, padding
the last part with zeroes if necessary. Ay outputs (M, ... Z(" where 20V « Gen(1*,T()\), z)
for all ¢ € [n]. Note that the size (and depth) of Ay is at most n - poly(\,logT'(\)) € n - q(N)
for some polynomial ¢ since Gen is a PPT algorithm and T'(\) € poly(\). Thus, A is a valid
(1,1, Bpm, o, T')-MIM adversary for any 7" such that n - g(A) < T(\)/a(A). In particular, this is
true for T(A) = n - q(\) - a(\). We show for this function T', A violates one-n non-malleability.

For any A € N and message s € {0,1}*, consider the following distinguisher D for the MIM
distribution of Ay. D gets as input values 31, ..., 3™ corresponding to (Z(V),...Z"). D computes
% to be the first L' bits of 3V|...||5 and then computes s’ = Sol(1*,T()\),2). D outputs 1
if s = s’ and 0 otherwise. By correctness of (Gen,Sol), it holds that D outputs 1 only on input
mim 4 (1%, T(\), s), which contradicts one-n non-malleability of (Gen, Sol), as required. Furthermore,
we note that D only needs to run in depth T'(A) - poly (A, log T'(X)). O

5 Publicly Verifiable Non-Malleable Time-Lock Puzzles

In this section, we define and construct a publicly verifiable time-lock puzzle (PV TLP) that is
additionally non-malleable as in Section 4. At a high level, a PV TLP is one where the Sol function
additionally outputs a succinct proof of correctness that can be checked by a Verify function.

In order for the proof to be sound, we use a weak form of setup independent of a cheating
prover’s advice. Specifically, we rely on what we call the all-but-one (ABO) string model. In this
model, the Sol and Verify algorithms take as input a multi-common random string, mcrs € ({0, 1}*)"
for some n € N, and we require soundness to hold as long as a single random string is honest. In the
case that n = 1, this corresponds to the standard common random string model. The ABO-string
model is also very related to the multi-string model of [GO14], except that the ABO-string model
requires that only one string—as opposed to a majority of strings—is honestly generated.

While the ABO-string model is a weak form of setup, we prove security in the relatively strong
auxiliary-input random oracle model (AI-ROM). At a high level, we do this to ensure that the
puzzles generated by Gen are independent of any setup, while also being able to prove a meaningful
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notion of security in essentially the “plain” random oracle model. Furthermore, the combination is
realistic for our application in Section 6.

We define a publicly verifiable time-lock puzzle in the ABO-string model as follows. We note
that we don’t explicitly define the functions and properties with respect a random oracle, and defer
such a treatment to the proofs of security.

Definition 5.1 (Publicly Verifiable Time-Lock Puzzle). A tuple (Gen,Sol, Verify) is a B-hard
publicly-verifiable time-lock puzzle in the ABO-string model if (Gen, Sol, Verify) have the following
syntax:

o 2z « Gen(1Mt,s): A PPT algorithm that on input a security parameter X € N, a difficulty
parameter t € N, and a solution s € {0,1}*, outputs a puzzle z € {0,1}*.

e (s,m) + Sol(1*, mcrs,t,2): A randomized algorithm that on input the security parameter
X € N, a multi-common random string mcrs € ({0, 1}M)*, a difficulty parameter t € N, and a
puzzle z, outputs a solution s € ({0,131 U{L}) and a proof = € {0,1}*. We denote Sol; and
Soly as the first and second outputs of Sol, respectively.

o b= Verify(l)‘, mcrs, t, z, (s,m)): A deterministic algorithm that on input a security parameter
A € N, a multi-common random string mcrs € ({0,1})*, a difficulty parameter t € N, a
puzzle z, a possible solution s € ({0,1}* U{L}), and a proof m, outputs a bit b indicating
whether to accept or reject.

We require that (Gen, Sol, Verify) satisfy the following properties.
e Full correctness: For every A\, t,n € N, mcrs € ({0,13M)", and z € {0, 1}*, the following hold:

e If z € Supp (Gen(l)‘,t,s)) for some s € {0,1}*, then Soly (1}, mcrs, t,2) = s.
e If z & Supp (Gen(lA,t,s)) for any s € {0,1}*, then Soly (1, mcrs, t,2) = L.

e Efficiency: There exist a polynomial p such that for all \,t,n € N, and mcrs € ({0,1}*)", it
holds that Sol(1*, mcrs, t,-) is computable in time t - p(\,logt,n).

e B-Hardness: The same as for time-lock puzzles as in Definition 5.1.
e Completeness: For any \,t,n € N, z € {0,1}*, mcrs € ({0,1}M)", it holds that

Verify(1}, mcrs, t, z, Sol (1}, mers, t, 2)) = 1.

e Soundness: For all non-uniform probabilistic polynomial-time adversaries A = { Ay} oy and
polynomials T, there exists a negligible function negl such that for all \,n € N and i € [n], it
holds that

crsi + {0,1}*
(2,8, m mers_;) + Ax(1*,crs;, T(N))  Verify(1*, mers, T(N), z, (s, 7)) = 1

Pr :
mcrs = (crsy, ..., Crsy) Ns#s
s = Soly (1%, mers, T(N), 2)
< negl(}),
where mcrs_; is a tuple of n — 1 common random strings (crsi,...,Crs;—1,Crsit1,...,Crsy).
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We note that the above notion of full correctness is stronger than the standard definition of
correctness for TLPs given in Definition 3.1. Also, the soundness notion is strong in the sense that
the adversary can try to break soundness even for invalid puzzles. We emphasize that puzzles can
be generated independently of the setup mcrs, as the setup is only used for soundness of the proof
given by Sol.

Towards achieving this strong definition, we define a notion of a one-sided publicly verifiable
time-lock puzzle in which correctness holds only for z in the support of Gen (as in the standard
definition of TLPs) and soundness only holds against adversaries that cheat on puzzles in the
support of Gen. We formalize this as follows.

Definition 5.2 (One-sided PV TLP). A tuple (Gen, Sol, Verify) is a B-hard one-sided publicly-
verifiable time-lock puzzle in the ABO-string model if correctness holds only for z in the support
of Gen(1*,t,-) and the soundness property is replaced with the following:

e One-sided Soundness: For all non-uniform probabilistic polynomial-time adversaries A =
{AxFaen and polynomials T, there exists a negligible function negl such that for all \,n € N
and i € [n], it holds that

crsi + {0,1}*

. A / _
(2.8 7, mers_i) A,\(l’\,crsi,T()\)) Verify(1*, mers, T (M), z, (s', 7)) = 1

As#s

mcrs = (crsy, ..., Crsy,) \ .
s = Soll(l)‘, mcrs, T'(A), z) Nze Supp(Gen(l ,T(N), ))
< negl(\).

In Section 5.1, we formalize the notion of a strong trapdoor verifiable delay function (VDF),
which satisfies the requirements needed for our one-sided PV TLP construction. We then give a
construction of a strong trapdoor VDF based on the repeated squaring assumption. We note that it
may be possible to give a construction that satisfies the necessary properties based on randomized
encodings as in [BGJT16], but we instead focus on a more practical construction.

In Section 5.2, we formalize the construction of a one-sided PV TLP given a strong trapdoor
VDEF. Finally in Section 5.3, we construct a full PV TLP by applying our non-malleability trans-
formation of Section 4.

5.1 Strong Trapdoor VDFs

A trapdoor VDF provides a way to generate inputs to a function that takes a long time to com-
pute. At the same time, the function can be computed efficiently using a trapdoor, and even
without the trapdoor, can be efficiently verified given a proof. Trapdoor VDFs were first defined
by Wesolowski [Wes19] as an extension of standard VDFs [BBBF18, Piel9, Wes19, FMPS19].

We define a strong notion of a trapdoor VDF in the ABO-string model. While the formal
definition is highly tailored towards our definition of PV TLPs and application to multi-party coin-
flipping, we believe that some of the stronger requirements we define—and achieve—may be of
independent interest. Conceptually, we require the following additional properties over previous
definitions of VDF's (or trapdoor VDFs):

1. We have no setup algorithm, and instead are in the ABO-string model. In particular, this
means that sampling inputs for the VDF can be done completely independently of any trusted
setup.

2. We allow the sampling procedure to specify the domain X of the evaluation function.
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3. We require completeness to hold for all inputs = € {0,1}* and domains X € {0, 1}* rather
than only honestly generated inputs.

4. We require soundness to hold for any adversarially chosen—yet in the support of the Sample
algorithm—input  and domain X, rather than with high probability over randomly sampled
x and X.

5. We require a natural encoding property for elements in the domain X to binary strings, and
additionally require that X defines a natural bijection that is amenable to being used as a
one-time pad (e.g., @ for strings or + for rings).

We formally define the requirements of a strong trapdoor VDF in the ABO-string model as
follows.

Definition 5.3. Let B: N — N. A B-sequential strong trapdoor verifiable delay function in the
ABO-string model is a tuple (Sample, Eval, TDEval, Verify) with the following syntaz:

o (z,X,td) < Sample(1*,t): A PPT algorithm that on input a security parameter X € N, a diffi-
culty parameter t € N, outputs a value x in a specified domain X, and a trapdoor td € {0,1}*.

e (y,m) < Eval(1*, mers, t, (z, X)): An algorithm that on input a security parameter X € N, a
difficulty parameter t € N, and a value x in a specified domain X, outputs a value y € X
and a proof m € {0,1}*. We denote Evaly and Evaly as the first and second outputs of Eval,
respectively, and require that Evaly can be implemented as a deterministic function.

e y = TDEval(1*,t, (z,X),td): A polynomial-time algorithm that on input a security parameter
A € N, a difficulty parameter t € N, a value x in a specified domain X, and a trapdoor
td € {0,1}*, outputs a value y € X.

e b = Verify(1*, mcrs, ¢, (x, X), (y,7)): A polynomial-time algorithm that on input a security pa-
rameter A € N, a difficulty parameter t € N, values z,y in a specified domain X, and a proof
m € {0,1}*, outputs a bit b indicating whether to accept or reject.

We require that (Sample, Eval, TDEval, Verify) satisfy the following properties.
e Completeness: For every A\, t,n € N, z, X € {0,1}*, mcrs € ({0,1}")", it holds that
Verify(l)‘, mcrs, t, (z, X), Eval(l)‘, mcrs, t, (z, X))) = 1.
e Soundness: For all non-uniform PPT adversaries A = {Ax},cy and polynomials T, there
exists a negligible function negl such that for all \,n € N, i € [n], it holds that
crs; « {0,137

(z, X,y m, mcrs_;) Verify(1*, mers, T()), (z, X), (¢, 7)) = 1
Pr — (WP ersi, T(\),n) @ Ay#y
mcrs = (crsy, ..., Crsy) A (z, X, ) € Supp (Sample(1*, (X))
y = Evaly (1%, mers, T()), (z, X))
< negl(A).

e Trapdoor Evaluation: For every A\, t,n € N, (x,X,td) € Supp (Sample(l’\,t)), and mcrs €
({0, 13N, it holds that

Evaly (1}, mers, ¢, (z, X)) = TDEval(1}, ¢, (z, X), td).
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e Honest Evaluation: There exists a polynomial p such that for all \;t,n € N, and mcrs €
({0, 13N, Eval(1*, mcrs, t,-) is computable in time t - p(\,logt,n).

e B-Sequentiality: There exists a positive polynomial function o such that for all functions
T and non-uniform adversaries A = { Ay} ey satisfying a(A) < T(X) € B(A) - poly(A),
size(Ay) € B(\) - poly(A), and depth(Ay) < T'(X)/a(X) for all X € N, there exists a negligible
function negl such that for all A € N, n € N, mcrs € ({0,1}*)",

’P { (z, X,td) < Sample(1*, T(\))
"y = Evali (1}, mers, T(N), (2, X))

Py { (z,X,td) + Sample(1*, T'(\))

C Az, X, y) = 1}

: = < .

e X Ay (z, X, r) 1] ’ < negl(\)

e Encoding: For \,t € N, and any domain X output by Sample(1*,t), it holds that strings in
{0, 1}/\ can be uniquely encoded as elements in X, and elements in X can be uniquely decoded
to elements in {0,1}*. Additionally, for any element x € X, there is an efficiently computable
bijective map fr: X — X, written as f.(y) =x D y.

In the above definition, we note that only Eval and Verify receive as input the multi-common
random string mcrs, as they require it for public verifiability. In particular, TDEval can be computed
without access to mcrs since we do not require it to output a proof of correctness (in fact, the
trapdoor itself can be thought of as a privately verifiable proof). By trapdoor evaluation, this
implies that the output y of the function is actually independent of mcrs. Lastly, we note that we
have adapted the notion of sequentiality for VDFs to fit with our notion of hardness for time-lock
puzzles.

Candidate strong trapdoor VDF. Our candidate strong trapdoor VDF is based on repeated
squaring with a publicly verifiable proof of correctness from Pietrzak [Piel9]. As in [Piel9], we
use the group G = QRE of signed quadratic residues mod N, where N is the product of safe
primes p,q such that (p — 1)/2 and (¢ — 1)/2 are A-bit primes. We note that QRX, has size
|IQRY| = (p — 1) - (¢ — 1)/4 and has the property that it only subgroups are of size (p —1)/2 and
(g — 1)/2 which are both at least 2* by construction. Elements in this group can be encoded as
integers in [0, (N — 1)/2]. For any two elements a,b € QR}, we can define multiplication (and
similarly addition) by computing 2z = a - b mod N and taking the smaller of x and N — z, which is
in [0, (N — 1)/2]. For further discussion of the group, we refer the reader to [Piel9].

To generate such a group, we can sample random numbers in [2**1 2*+2) until we find two
safe primes p and ¢ and output QR} where N = p-q. As discussed in [Piel9], it is conjectured
(in [VZGS13]) that for some constant ¢, there are ¢-2* /A2 safe A-bit primes. Under this conjecture,
it takes expected polynomial time to sample N which is a product of two safe primes. Rather
than doing this, we define a group generator algorithm RSWGen(1*) that samples a number in
[2A+12242) " checks if it is a safe prime, and repeats this process for some fized polynomial time
until it fails to halt with probability at most 27*. Specifically, suppose it takes expected p(\) time
to find two safe primes. If we run for 2- X-p()\) time, we will halt with probability at least 1 —27*.
When this failure event occurs, RSWGen (1) deterministically searches for safe primes starting
with 221 221 11 until finding the first two safe primes (alternatively, we could hard code
these safe primes with preprocessing). Assuming that the safe primes are evenly spread out, this
will only need to search through O(A\?) numbers. We additionally define RSWGen(1%) to output a
random group element and the size of the group to be used as a trapdoor. In summary, we have
the following:
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¢ (9,G,|G|) < RSWGen(1*): An algorithm that outputs (g, G, |G|) where G = QR}; such that
N is the product of two safe primes p and ¢, g < G is a random element in the group, and
|G| = (p—1)-(g—1)/4 is the size of the group. It holds that with probability at least 1 —27*,
p and ¢ are uniformly random safe primes in [2A+1, 22+2),

We next formalize the repeated squaring assumption we make for RSWGen.

Assumption 5.4 (Repeated Squaring Assumption for RSWGen). Let B: N — N. We say that the
B-repeated squaring assumption for RSWGen holds if there exists a PPT algorithm implementing
RSWGen and there exists a positive polynomial function « such that for all functions T and non-
uniform distinguishers A = { Ay} ey satisfying a(X) < T'(X) € B(A) - poly(A), size(Ay) € B(A) -
poly(X), and depth(Ay) < T(X)/a(X) for all X € N, there exists a negligible function negl such that
for all A € N,

,G,|G|) + RSWGen(1*
‘ [yg_ngl 19 :Ax(g,G,y)Zl]

_pr [ (9,G,|G|) + RSWGen(1*)

e G t Ax(g, G, 1) = 1] ' < negl()).

We emphasize again that the assumption that RSWGen can be implemented by a PPT algorithm
follows from a conjecture of [VZGS13] about the density of safe primes. As discussed in [Piel9)],
the hardness assumption for repeated squaring in QRE is implied by the more standard hardness
assumption for repeated squaring in Z3 with at most a factor of 8 loss in advantage. Recent
works [RS20, KLX20] show that generically speeding-up repeated squaring is equivalent to factoring.
Rotem and Segev [RS20] show this in a generic-ring model relative to an RSA modulus. Katz et
al. [KLX20] show this within a strengthened version of the algebraic group model model [FKL18]
relative to the group of quadratic residues.

Remark 1 (Choice of Group). As pointed out by Boneh et al. [BBF'18], it is possible to instantiate
Pietrzak’s proof of repeated squaring [Pie19] with any group that does not have low order elements
while still maintaining statistical soundness. As done in [Piel9] and is common in this line of work,
we use the group QRJJ\F, where N is a product of two (A + 1)-bit safe primes because its smallest
subgroups have size at least 2. However, it is unknown whether a random such group can be
sampled in fixed polynomial time.

Proof of repeated squaring. We next discuss the publicly verifiable proof of repeated squaring
for the group QR}C given in Pietrzak [Piel9]. We use a slightly modified version of this protocol,
which is in the ABO-string model and where we explicitly assume access to a random oracle
O:{0,1}* — [2*].

We first describe the interactive protocol of [Piel9]. In order to prove the claim that a2 = Y
in QRE“, the interactive protocol does the following. If T' = 1, the verifier directly checks that
22 = y. Otherwise, the prover sends to the verifier the value j = 22"? and the verifier replies with
r < [2)]. The prover and verifier recursively engage in a protocol to prove that (xTM)T/ 2= u"y.
This interactive proof consists of 2-log T" rounds of communication, where the prover sends a single
group element and the verifier responds with a A-bit challenge. The proof has soundness error at
most 3 - logT/2* even against unbounded cheating provers. In particular, [Pic19] shows that at

12We assume for simplicity that T is a power of 2, which can be easily dealt with as in [Piel9] if this is not the
case.
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there are at most 3 “bad challenges” that the verifier might send in each round of the protocol,
in the sense that a bad challenge might cause the verifier to wrongly accept a proof of a false
statement.

In order to make the above protocol non-interactive via the Fiat-Shamir heuristic, the prover
uses the random oracle O on the transcript so far to generate the random challenges of the verifier
itself. The verifier then accepts the proof if all challenges are consistent with O and if the interactive
verifier would have accepted. We emphasize that in our version of the protocol, the oracle O is
indexed with mcrs, which is assumed to have at least A bits of entropy independent of any possible
adversary. Following the above idea, we formalize the algorithms RSWProve and RSWVerify that
we use:

o T = RSWProveO(lA7 mcers, t, (9,G),y):

1. Let x9 = g, yo = y.

2. Fort=1,...,logt,
(a) Compute m; = x?i/f §
(b) Let Ty = O(lAa meS,t, (ga G)7y77rla R 771')'
(c) Compute z; = x;" | - m; and y; = 7" - yi—1.

3. Output @ = (71, ..., Mogt)-
e b= RSWVerifyO(lk, mcers, t, (g, G),y, 7):

1. Let x9 = g, yo = y.
2. Fort=1,...,logt,
(a) Let r; = O(1*, mcers, t, (9,G),y, 71, ..., ;).
(b) Compute x; = z* ;- m and y; = 7" - yi—1.
3. Output 1 if and only if x120gt = Ylog -

We note that RSWProve can be computed in time ¢ - poly(\,logt,n) and RSWVerify can be
computed in time poly(A,logt,n). We also note that [Piel9] shows how to compute RSWProve in
time ¢ 4+ /¢ when using v/f memory from computing y = g2 (ignoring poly(), n) factors).

In the following lemmas, we show that these algorithms satisfy the following completeness and

soundness properties. We let £, = lin(\,n,t) denote the input length of O, where lijn(\,n,t) =
A+n-A+logt+ (3+logt)* (2X +2).

Lemma 5.5 (Completeness). For any A\, t,n € N, G which is a valid representation of QRX] for
some N, g € G, and mcrs € ({0,1}")", and O € RF?W let y = g21t and ™ = RSWProve® (1}, mers, t,
(9,G),y). Then, it holds that

RSWVerifyO(l)‘, mcrs, t, (g,G),y,m) = 1.
Completeness follows immediately from [Piel9)].

Lemma 5.6 (Soundness). For any polynomial T and unbounded algorithm Z that on input a
random oracle O outputs polynomial-size circuits, there exists a negligible function negl such that
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for all \,n € N, i € [n], it holds that

[ O+ RF}
A=27Z(0)
crs; < {0, 1}
(9,G,y/, 7w, mers_;)
— A9(1* crs;, T(N),n)
| mcrs = (crsy, ..., crsy)

RSWVerify® (1}, mers, T()), (9,G), y/, 7) = 1
DAy £ g2 < negl(A).
A (9,G, ) € Supp (RSWGen(1*,T())))

At a high level, the proof follows by a simple application of Lemma 3.6 of Unruh [Unr07] followed
by an analysis of Pietrzak’s VDF [Piel9] in the (plain) random oracle model. We give the proof in
Appendix F.

Strong trapdoor VDF construction. We are now ready to state our strong trapdoor VDF
construction VDF = (Sample y¢, Evalygf, TDEvalygs, Verify,4¢) in the ABO-string model. We give
Eval,gf and Verify, 4 access to an oracle function . We note that we can efficiently check if G is
a valid representation of QRX, for some NNV, and we can efficiently check membership in G = QRE.
In particular, we say that (g, G) are valid if G can be parsed as a valid representation of QRTV and
g €G.

e (9,G,|G|) + Samplevdf(lA,t):
1. Output (g, G, |G|) + RSWGen(1?).
o (y,m)« Eval\(,gdf(l)‘, mcrs, t, (g, G)):

1. If (¢, G) are invalid, output y =7 = L.
2. Otherwise, compute y = g2t in G and w = RSWProveO(l/\, mcrs, t, (g, G),y).

o Y= TDEvaIVdf(lA, mcrs, ¢, (g, G)a ’G’)

1. If (g9, G) are invalid, output y = L.
2. Otherwise, output y = ¢(2 mod [G]),

o b= Verify\%f(]-)\v mcrs, t, (ga G)7 (ya ﬂ-)):
1. If (g9, G) are invalid, output 1 if and only if y =7 = L.
2. Otherwise, output 1 if and only if RSWVerifyO(l)‘, mcers, t, (g,G),y,m) = 1.

Theorem 5.7. Let B: N — N. Assuming the B-repeated squaring assumption for RSWGen holds,
then there exists a B-sequential strong trapdoor VDF in the ABO-string model. Soundness holds
in the auziliary-input random oracle model.

Each of the required properties follow almost directly from the definition of a strong trapdoor
VDEF. We provide the full proof in Appendix F.
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5.2 One-sided PV TLPs from Strong Trapdoor VDF's

Let VDF = (Sample, 4, Evalygf, TDEvalygt, Verify, 4¢) be any strong trapdoor VDF. Our construction
is given by the tuple TLP = (Genyp, Soly, Verifyy,) defined as follows.

* 2 Gent|p(1)‘,t7 s):

1. Compute (z, X, td) < Sample,4(1*,t) and y = TDEvalyg (1, ¢, (x, X), td).
2. Encode s as an element x; € X and compute ¢ = x5 B y.
3. Output z = (z, X, ¢).

o (5,7) ¢ Solyp(1*, mers, ¢, 2):

1. Parse z as (z, X, ¢). If z cannot be parsed this way, output (L, L).
2. Compute (y, mygr) < Evalygs (1}, mers, ¢, (2, X)).
3. Let 3 = y ® ¢, and let s be the string encoding of x.
4. Output (s, (y, mydf))-
e b= Verifyt|p(1’\, mcrs, t, z, (s, 7)):
1. Parse z as (x,X,c) and 7 as (y,myqf). If z cannot be parsed this way, output 1 if and
only if s=7= 1.

2. Otherwise, output 1 if and only if Verify, (1%, mcrs, ¢, (2, X), (y, Taf)) = 1 and c@y = x4
where z, is the encoding of s in &.

In the following theorem, we show that TLP is a one-sided publicly verifiable time-lock puzzle
in the ABO-string model, assuming that VDF is any strong trapdoor VDF. However, we emphasize
that for our explicit construction of VDF, soundness holds in the auxiliary-input random oracle
model, so we achieve the same soundness for our explicit TLP construction.

Theorem 5.8. Let B: N — N. Suppose there exists a B-sequential strong trapdoor VDF. Then,
there exists a B-hard one-sided publicly verifiable time-lock puzzle.

We provide a full proof of this theorem in Appendix F.

5.3 Non-Malleable PV TLP from One-sided PV TLPs

By applying a similar transformation as in Section 4 to any one-sided PV TLP, we achieve a
publicly verifiable time-lock puzzle (with full correctness and soundness) that is additionally non-
malleable. For completeness, we restate the transformation with the syntax of publicly verifiable
time-lock puzzles, and note that we assume the same parameters as in Section 4. Let m be
a polynomial representing the output length for our function non-malleability, and let TLPys =
(Gengs, Solgs, Verifyo) be a one-sided PV TLP that uses A\os bits of randomness on messages of
length 2m+ 2\ with security parameter A\. We construct a non-malleable PV TLP (Gen, Sol, Verify)
in the ABO-string model, where all algorithms have oracle access to a function O € RF;;\S L om-

° 2= Geno(lk,t, s;7):

1. Get 1o = O(s,T).
2. Output z < Genes(17,t, (8]|7); Tos)-
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e (5,7m) + Sol®(1*, mcrs, t, 2):

1. Compute (Ses, Tos) = Solos(1*, mcrs, t, z) and parse ses = s||7.
2. If z = Gen®(17,t, s;7), output (s,7).
3. Otherwise, output (L, (Sos, Tos))-

o b= Verify® (1}, mers, t, z, (s, 7)):

1. If s # L, parse 7 = r. Output 1 if and only if z = Gen® (1, ;7).
2. If s = L, parse ™ = (Sos, Tos) and sos = s||r. Output 1 if and only if z # Gen®(1*,t, 5;7)
and Verify (1}, mcrs, 2, 2, (Sos, Tos)) = 1.

Recall the class of depth-bounded functions F,, with m(\)-bit outputs defined in Section 4. We
get the following theorem.

Theorem 5.9 (Non-malleable PV TLP from one-sided PV TLP). Let m()) € poly(\), B(\) =
2m(N | and Byp(N) = 23m(N) - Assuming the existence of a Byp-hard one-sided publicly verifiable
time-lock puzzle in the ABO-string model, then there exists a B-hard publicly verifiable time-lock
puzzle in the ABO-string model. Soundness holds in the auziliary-input random oracle model.
Furthermore, the construction satisfies fully concurrent functional non-malleability for the class of
functions Fy,.

Before proving the above theorem, we state the following corollary by combining Theorems 5.7,
5.8, and 5.9. We emphasize that the resulting construction is proven secure in the auxiliary-input
random oracle model.

Corollary 5.10 (NM PV TLP from Repeated Squaring). Let m()\) € poly()\), B € 2™ and
Bup(X) € 23m() - Assuming the Byp-repeated squaring assumption for RSWGen holds, then there
exists a B-hard publicly verifiable time-lock puzzle in the ABO-string model. Soundness holds in the
auziliary-input random oracle model. Furthermore, the construction satisfies concurrent functional
non-malleability for the class of functions F,.

The proof of Theorem 5.9 follows by considering the construction (Gen, Sol, Verify) assuming
(Genos, Solos, Verify,) is a 23™-hard one-sided publicly verifiable time-lock puzzle. The proofs of ef-
ficiency, hardness, and concurrent functional non-malleability follow immediately from Theorem 4.2.
We provide proofs of full correctness and completeness in Appendix F. We proceed to prove that
the construction satisfies the full notion of soundness in the auxiliary-input random oracle model
assuming the underlying TLP satisfies only one-sided soundness.

Lemma 5.11 (Soundness). Let B: N — N. Assuming (Genes, Soles, Verify ) is a B-hard one-sided
publicly verifiable time-lock puzzle, then the construction (Gen,Sol, Verify) satisfies the soundness

property in the auziliary-input random oracle model for publicly verifiable time-lock puzzles in the
ABO-string model.

Proof. Suppose by way of contradiction that (Gen, Sol, Verify) does not satisfy soundness. Namely,
there exists a polynomial 7', unbounded algorithm Z that outputs polynomial-size circuits, a poly-
nomial ¢, and integers n € N, i € [n] such that for infinitely many A € N, it holds that

0 RElL, -
A=27(0)
crs; «+ {0,1}* ~ Verify© (1, mers, T(M), z, (', 7)) = 1
Pr (2,8, 7, mers_;) + AP (1} crs;, T(\)) = As' #s > 1/40)-
mcrs = (crsy, ..., Crsy,)
| s =Sol? (1}, mers, T(N), 2) i
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Fix any A for which this holds. Throughout the proof, we let t = T'()\). Additionally, it will be
helpful to define (s,7) = Sol®(1*, mers,t, z) to be the output of Sol for the values given by A.
Furthermore, by completeness, we know that Verifyo(l’\, mcrs, t, z, (s, 7)) = 1.

We consider three possible events that may occur when A succeeds in the above experiment.
Either (1) s # Land s’ # 1, (2) s=Land s’ # L, or (3) s # L and s = L. As s # s’ when
A succeeds, this covers all of the possible cases. We show that (1) and (2) cannot occur, and then
proceed to bound the probability that (3) occurs.

For (1), suppose that it is the case that neither s nor s’ are equal to L. We know that
Verify® (1}, mers, , z, (s, 7)) = 1 and Verify® (1}, mcrs, t, z, (s',7')) = 1. This implies, by definition
of Verify, that z is both in the support of GenO(l)‘, t,s) and the support of Geno(l’\, t,s), but this
contradicts correctness since it means that Sol?(lk, mcrs, ¢, 2) must be equal to both s and s'.

For (2), suppose that s = 1 and s’ # 1. Becuase Verify® (1}, mers, ¢, z, (s,7')) = 1 and
s’ # 1, this means that z = Gen?(1*,¢,s';7’) where ' = 7/. Then by correctness, it holds that
Sol? (1%, mers, t, z) = §', which contradicts the fact that s’ # s.

As a result, we know that (3) occurs with probability at least 1/¢()\), meaning that when 4
wins, s # L and ' = L. We show that this can be used to break the one-sided soundness of
(Gengs, Solgs, Verify ).

We define a non-uniform algorithm B = {B)},cy as follows. In order for By to use A in the
reduction, By needs to simulate the oracle calls that A makes to @. To do so, we need to make use of
Lemma 3.6 of Unruh [Unr07]. Specifically, let p(A) be an upper bound on the size of the algorithm
A’ that runs A, Soly, and Verify, all on their respective inputs given in the above probability,
where A is the adversary output by Z. Note that p is polynomially bounded by definition of Z
and since T is polynomially bounded. For the polynomial function f(\) =4 - (p(A))? - (¢(N))?, we
consider the inefficient algorithm Sam that on input A’ outputs a partial assignment F of size f()\).

By Lemma 3.6, it holds that the output distribution of A" with access to P < RFgf\erm [F] has

statistical distance at most \/p(A\)2/f(A) = 1/(2- ¢(\)) from before. Thus, it holds that

[ O+ RF),,: A= Z(0)
F=Sam(A); P« RF)%,, [F]

22+2m
o | ersi e 0.1y | Verify” (1Y mers, T(V, 2, (7)) = 1 [ 1
(2,8, 7' mers_;) < AP (1% crs;, T(\)) ~ A s #s 2-q(\)
mcrs = (crsy, ..., Crsy)

| s= Sol} (1*, mers, T'()), 2)

Now, for each A € N, Z wins with at least 1/(2-¢())) probability over a random O < RFé\g\s om-
By a simple averaging argument, there must exist a fixed oracle O such that Z wins with at least
1/(2-q(X\)) probability on that oracle. Let A be the output of Z on such an O and let F' = Sam(A")
for A’ defined based on A as above. We give By the description of A hardcoded as non-uniform
advice as well as the set of points F. As |F| and A are polynomial-size, it holds that B} is also be
polynomial-size.

We are now ready to define the behavior of By. On input (1*,crs;, t), By computes (z, s, 7,
mers_;) < AP (1%, crs;, t). Whenever A queries the oracle P, By responds using F if possible, and
otherwise responds with a uniformly random value (responding consistently if the same query is

/

made multiple times). B) then parses 7’ as (sl, m.s) and outputs (z, s, 7L, mcrs_;) if possible.

For correctness, we have already shown that when A wins, it must be the case that s’ = 1 and
s # L. Since s’ = L and Verify” (1*, mcrs, t, z, (s', 7')) = 1, it holds that =/ = (s, 7’5) and both (A)
Verify, (1}, mers, t, z, (s, 7)) = 1 and (B) z # Gen” (17, t, s/.; /) where s.,_ = s/ ||r”.. However,

because s # L and Verify” (1}, mers, t, z, (s, 7)) = 1, it must be the case that (C) z = Gen” (1%, t, s;7)
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for 7 = r. This implies that that z is in the support of Genes(1,t, s0s) Where sos = s|7. By
correctness of the underlying TLP, sos = Solos 1(17, mers, ¢, 2). Finally, by (B) and (C), it holds that
that s||r # sk||rls, 0 Sos # She. Putting everything together, this implies that By wins whenever .4

wins as sl # sos, Verify, (1, mcrs, t, 2, (shg, 7)) = 1 by (A), and z € Supp (Genos(l)‘,t, -)). More
precisely, By satisfies the following for infinitely many A € N:

crs; + {0, 1}

(2,80, mhe, mcrs_;) Verify (1}, mers, T(N), 2, (she, 7)) = 1
Pr — BA(l)‘,crsi,T()\)) © A Sl F Sos >1/(2-q(N)),
mcrs = (crsy, ..., crs,) A z € Supp (Genos(14,, ) )

Sos = Solos’l(l)‘, mcrs, T'(A), z)

which contradicts one-sided soundness of the underlying TLP. O

6 Applications to Multi-Party Coin Flipping and Auctions

In this section, we discuss our fair multi-party protocols. We focus on the case of multi-party coin
flipping and address auctions in Remark 2 below. We note that this section focuses on game-based
fairness, and the extension to simulation-based fairness is given in Section B.

Our multi-party coin flipping protocol is based generically on any time-lock puzzle. Fairness
follows when the time-lock puzzle satisfies concurrent functional non-malleability for the XOR
function fg. Specifically, in order to produce L bits of randomness, we need concurrent func-
tional non-malleability for the function fas: ({0,1}*)* — {0,1}* that on input (r1,...,r,) outputs
@” 21 Tie Our protocol satisfies various additional properties, depending on the time-lock puzzle:

e Given a publicly verifiable time-lock puzzle, the resulting protocol is publicly verifiable. In
this setting, our protocol can either be made interactive, or non-interactive.

e If the time-lock puzzle is not publicly verifiable, the resulting protocol is non-interactive, and
does not achieve public verifiability.

In what follows, we present our results in the public verifiability setting, and discuss differences
with the non-publicly verifiable setting when relevant.

We describe our protocol in a public bulletin board model, where any party may “publish” a
message that all other parties will see within some fixed time. Our protocol consists four phases:
a commit phase, open phase, force open phase, and output phase. The commit and open phases
consist of a single synchronous round of communication where all participating parties publish a
message on the bulletin board. The force open phase can be computed by any party, and only needs
to be computed by a single (honest) party if the underlying time-lock puzzle is publicly verifiable.
Once all puzzles have been opened (or force opened), any party can run the output phase to get the
output of the protocol. In the non-interactive version of the protocol, the open phase is omitted
and every party runs the force open phase themselves, and uses the resulting values to compute
the output of the protocol locally. When we refer to an honest participant, we mean a party that
runs the protocol as specified, independent of all other participants.

For any L: N — N, let (Gen, Sol, Verify) be a publicly verifiable time-lock puzzle (in the ABO
string model) with message length L(\) that satisfies concurrent functional non-malleability for
the function fg (which has output length L()\)). We additionally let a(\) be the advantage of any
attacker guaranteed by the functional non-malleability of the time-lock puzzle. The protocol takes
as common input a security parameter A and a polynomial time bound ¢ = T'(\) that satisfies the
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following requirements. First, we require that the commit phase takes time less than T'(\)/a(A)
such that functional non-malleability (and hence hardness) are preserved during the protocol. At
the same time, the commit phase needs to be long enough so that all participants can generate and
publish their puzzles.

e Commit phase: Each participant i samples s; < {0, 1}X™) and r;, crs; « {0, 1}*, computes
z; = Gen(1*,t, s;;7;), and publishes z; and crs;. Let mcrs = (crsy,. .., crs,). Any puzzle that
is a copy of a previously posted puzzle is ignored.

e Open phase: Each participant ¢ that published in the commit phase publishes the solution
s; and with an opening r;.

e Force open phase: For each puzzle z;, if either (a) there is no published solution s; and
opening r; or (b) if z; # Gen(1*,t, s;;7;), compute and publish (s;, ;) < Sol(1*, mcrs, t, z;)
(where s; might be L).

e Output phase: If for every puzzle z; and solution s;, either (a) there is a published opening
rj such that z; = Gen(1*,t, sj;1;) or (b) a published proof 7; such that Verify (1%, mcrs, t, zj,
(sj,mj)) =1, then output s = @Sj#_ s;.

We note that the protocol above does not assume an a priori bound on the number of partici-
pants. Furthermore, there is no external setup needed by the protocol. All participants, however,
do publish a random string crs; < {0,1}* that can be used to implement the ABO-string model
for (Gen, Sol, Verify).

Theorem 6.1. Let L(\) € poly()). Assume the existence of a publicly verifiable time-lock puzzle
for L(\) bit messages in the ABO-string model that satisfies concurrent function non-malleability
for fo with L(\) bit output. Then, there exists a multi-party coin flipping protocol that outputs
L(\) bits and satisfies optimistic efficiency, fairness, and public verifiability. The protocol supports
an unbounded number of participants and requires no adversary-independent trusted setup.

We note the following result by plugging Corollary 5.10 into Theorem 6.1.

Corollary 6.2. Let B,L: N — N where B(\) = 23LN) - Assuming the B-repeated squaring as-
sumption for RSWGen, there exists a multi-party coin flipping protocol that outputs L(\) bits and
satisfies optimistic efficiency, fairness, and public verifiability. The protocol supports an unbounded
number of participants and requires no adversary-independent trusted setup. Security is proven in
the auxiliary-input random oracle model.

Finally, we note that if we instead start with our non-malleable time-lock puzzle in the plain
model (which is not publicly verifiable) the non-interactive variant of our protocol gives non-
interactive coin flipping in the plain model. In particular, we obtain the following theorem based
on our construction of Theorem A.1.

Theorem 6.3. Let L: N — N and S(\) = 2’V Assume a time-lock puzzle, a keyless multi-
collision resistant hash function, a non-interactive witness indistinguishable proof for NP, and in-
jective one-way functions, all sub-exponentially secure, where in particular the time-lock puzzle is
secure against polynomial-depth adversaries of size S. Then, there exist fully non-interactive fair
multi-party coin flipping protocol that outputs L(\) bits, where fairness holds against non-uniform
polynomial time distinguishers. The protocol supports an unbounded number of participants and
requires no setup.
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We note that if we only consider protocols that output L(\) € O(log\) bits, then fairness
against polynomial time distinguishers implies statistical fairness. This is because if there is an
unbounded distinguisher for O(log A) bits, we can construct a polynomial time distinguisher that
simply hard codes the truth table of the unbounded distinguisher.

We remark how we can adapt our protocol to deal with auctions.

Remark 2 (Multi-Party Auctions). For our application to auctions, we consider a standard second-
price, sealed-bid auction, in which the auctioned item is assigned to the highest bidder who pays
the second highest bid for the item. We assume some form of authenticated channels so we can
know the bidders’ identities in order to distribute the auctioned items. We leave these as external
implementation details for the protocol. The main protocol proceeds as follows.

In the commit phase, each participant computes a time-lock puzzle to their bid. The open and
force open phases are identical to the case of coin flipping. Then in the output phase, we need to
determine the identity of the highest bidder and the value of the second highest bid.

The function that computes the output consists of finding the top two values in a set. This
can be computed in low depth (doing a tree of comparisons in parallel) and has output length
log n+log M where n is the number of participants and M is a bound on the largest valid bid. Thus,
using our publicly verifiable time-lock puzzle that satisfies concurrent functional non-malleability
for this function, the resulting protocol is secure assuming n - M - poly(X) security for the repeated
squaring assumption. Assuming n and M are polynomially bounded, we only need polynomial
security assumptions.

In the remainder of this section, we discuss the various properties satisfied by our construction
of Theorem 6.1.

Complexity. We discuss the efficiency of each phase in the our coin-flipping protocol. As men-
tioned above, the commit and open phase consist of a single round of synchronous communication.
For the commit phase, each participating party requires at most poly(A,logt) local computation
time by the efficiency of Gen, and we require that all messages be posted within a specified time
at most t/a(\). After this specified time, all participating parties can publish their solutions and
openings as part of the open phase, and if needed, unopened puzzles can be force opened. By
the efficiency of Sol, force open requires time t - poly(A,logt) per unopened puzzle and can be
computed by a single party. The output phase can be computed by anyone and requires at most
n-poly (A, logt) time by the efficiency of Gen and Verify, where n is the number of puzzles submitted
during the commit phase.

Optimistic efficiency. If all parties that publish a puzzle in the commit phase also publish a
valid solution and opening in the open phase, then the output phase can be run immediately
without running the force open phase.

Public verifiability. Let z; be any puzzle which was not opened, or was opened incorrectly dur-
ing the open phase. Suppose an honest party runs the force open phase for puzzle z; and publishes
(sj,mj) Sol(1*, mers, t, zj). By completeness of (Gen, Sol, Verify), it follows that Verify(1*, mers, t,
zj,(sj,mj)) = 1 for any z; € {0,1}*, so that check in the output phase will pass. Thus, if a single
honest party runs the entire force open phase, then any party can run the output phase and all
checks will pass.

50



Fairness. We formalize and prove fairness in the following lemma. At a high level, we show that
as long as there is a single honest participant (who only needs to publish an honestly sampled
puzzle independent of all other participants), the output of the protocol is statistically close to a
uniformly random distribution over L(\) bits. We note that we use a game-based definition of
fairness for simplicity, and show an extension to a simulation-style definition in Section B.

We first prove fairness for our interactive protocol in the publicly verifiable setting, and then
discuss fairness of the non-interactive protocol (which will capture the non-publicly verifiable set-
ting).

Lemma 6.4 (Fairness). For any distinguisher D, there exists a negligible function negl such that
for all A € N, the following holds. Suppose that at most n(\) € poly(\) parties participate for the
commit phase, and at least one honest party runs the commit phase. Let s be the output of the open
phase at the end of the protocol for security parameter X\, and let r < {0, 1}L(A). It holds that

|Pr[D(s) = 1] — Pr[D(r) = 1]| < negl(\).

Proof. Suppose by way of contradiction that there exists a distinguisher D and polynomial ¢ such
that for infinitely many A € N,

|Pr[D(s) =1] — Pr[D(r) = 1]| > 1/q()).

Fix any A € N for which the above holds, and let n = n(\), L = L()\), and t = T(\). Let
Z1,...,2n be the (unique) puzzles published in the commit phase and let mcrs = (crsy, ..., crsy,).
Without loss of generality, suppose that participant “1” is honest, so z; and crs; are generated
honestly and published to the bulletin board. More specifically, s; « {0,1}F, 71, crs; « {0,1}},
Z1 Gen(1>‘7 t,s1;71), and only z; and crs; are published before the open phase begins. Note that
since z7 is generated honestly and independently of all other parties, it will be unique with all but
negligible probability, so will be successfully published to the bulletin board.

Let A = {A)},cy be a non-uniform algorithm with crs; hardcoded where Ay consists of the
actions of all parties in the protocol other than participant 1, and outputs puzzles zo, ..., z, dur-
ing the commit phase. By definition of the protocol and «, A, has polynomial size and depth
bounded by T'(A)/a(A). Thus, A is a valid (1,n,1,a, T)-MIM adversary, and we can consider the
corresponding distribution mim4(1*,¢,v) for any v € {0, 1}%.

Let B = {B)} ¢y be a non-uniform algorithm with z; hardcoded where By receives as input
(1)‘, crsy, t), where crs; is the random string output by the honest party, and then simulates the
actions of all parties in the protocol and eventually computes the output s. In particular, we assume
that By publishes all of the relevant values on the public bulletin board.

We consider the following hybrid distributions:

HybO()\) =S,

By assumption, we have that

| Pr[D(Hybg(A)) = 1] — Pr[D(Hyby(A)) = 1}[ > 1/¢(}).
Towards a contradiction, we will show that for each i € {1,2,3,4} that |Pr [D(Hyb;_;(\)) = 1] —
Pr[D(Hyb;(A)) = 1] < 1/(4 - ¢(N)).
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e |Pr[D(Hyby(A)) = 1] — Pr[D(Hyb; (V) = 1]| < 1/(4- ¢(V))

By definition of B, Hyby(A) and Hyb; () are identically distributed, so it holds that
| Pr[D(Hyby(A)) = 1] — Pr[D(Hyb, (X)) = 1]| = 0.

e |Pr[D(Hyb;(A)) = 1] = Pr[D(Hyby (V) = 1]| < 1/(4- ¢(V))

Assume by way of contradiction that | Pr [D(Hyb,(A\)) = 1] — Pr[D(Hyby(\)) =1]| > 1/(4 -
g(A)). Under this assumption, we show how to break soundness of (Gen, Sol, Verify).

Consider a non-uniform algorithm C = {Cy }, .y defined as follows. Cy on input (1%, crs;, t)
simulates By (1%, crsy,t). For i € [2,n], let crs; be the random string posted, and s; be the
solution published on the bulletin board for puzzle z; with valid opening r; or proof . If z;
is equal to a puzzle z; for j < i, set s; = L, and otherwise let (s;,m;) = Sol(1*, mers, t, z;).

If there exists an i € [n] with s; # s, Cy outputs (z;, s}, 7}, crs_1), and outputs L otherwise.

IREAT R
Since there are a polynomial n number of participants, each of which is polynomial time, and
since t is polynomially bounded, B) and hence C) runs in polynomial time. We proceed to

argue that Cy breaks soundness with 1/(4 - ¢(\)) probability.

Recall that s; is the solution given by Sol. It follows that (ss,...,s,) is the output of
mim A(l’\, t,s1) (as we can assume without loss of generality that duplicate puzzles are ignored
by By). Thus, in the event where s; = s, for all i € [n], it follows that Hyb,(\) = Hyby())
and hence D(Hyb;(\)) is identically distributed to D(Hyb,y(A)). However, we assumed that
these differ with at least 1/(4 - g()\)) probability, so it follows that there exists an i € [n] such
that s; # s; with the same probability.

Whenever s; # s, we claim that Cy breaks soundness. We have that By outputs fg(s],. ..,
s!,). We know that the checks in the output phase pass for s, so either (a) z; = Gen(1*, ¢, s%; 1)
or (b) Verify(1*, mcrs, t, z;, (s}, 7)) = 1. We have that (a) is impossible since if z; is in the
support of Gen(1>‘,t, s;), this means that s; = s by correctness. Thus, it must be the case
that (b) holds with at least 1/(4 - ¢(\)) probability. This implies that for infinitely many

AeN,

crsy + {0,132

(2,85, mhers_1) < Ca(1%, crsy,t)  Verify(1*, mers, t, 2, (s, 7)) = 1
mcrs = (crsy, ..., Crsy) " A s # s

s; = Soly (1}, mcrs, ¢, z;)

Pr > 1/(4-q(N),

which contradicts soundness.

e |Pr[D(Hyby(A)) = 1] — Pr[D(Hybs (V) = 1]| < 1/(4- ¢(V))

Assume by way of contradiction that | Pr [D(Hyby(A\)) = 1] — Pr[D(Hybs(\)) =1]| > 1/(4 -
¢(A\)). Under this assumption, we show how to break concurrent functional non-malleability
of (Gen, Sol, Verify) for the function fg.

We already mentioned that A is a valid (1,7, 1, «, T)-MIM adversary. Thus, it suffices to
come up with a distinguisher D, for non-malleability that can distinguish fg(mim_4(1*,¢,v))
for v = s1 or v = 0L,

Dom on input feg(mim_4(1*,¢,v)) has s; hardcoded and simply outputs D(s1® fe (mim_4(17,
t,v))). By definition of fg, it holds that

51@ f@(mimA(lAatan)) = fEB(Slv mimA(lkvta U))
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Thus, Dpm distinguishes v = s; and v = 0% with the same probability as D, so it holds that

|Pr [ Do (fo(mima(12, 1, 1)) = 1} —Pr [Dnm(f@(mimA(l’\,t,OL))) 1] >1/(4-q\),
in contradiction.

e |Pr[D(Hybs(A)) = 1] — Pr[D(Hyb, (V) = 1]| < 1/(4 - ¢(V))

By assumption that participant 1 is honest, it holds that mim4(1*,¢,0%) is independent of
51. Since s1 < {0, 1}*, this implies that fa(s1, mim4(1*,¢,0%) is uniformly random. Thus, it
is identically distributed to r <— {0,1}*. Tt follows that

| Pr [D(Hybs (X)) = 1] — Pr [D(Hyb, (A)) = 1] | = 0.

This completes the proof of the lemma for the interactive, publicly verifiable setting. ]

Lastly, we discuss changes to the above proof in the non-interactive setting using our non-
malleable TLP construction in the plain model. As this TLP only satisfies non-malleability with
respect to non-uniform (a priori unbounded) polynomial time distinguishers, we restrict the distin-
guisher D to be non-uniform PPT. Relative to the non-interactive protocol, the adversary A would
be the same as above. The adversary B would run the force open phase to solve each published
puzzle z; and obtain a solution s;, and then it would compute the output s as s = fg(s1,...,5n)).
It follows that the output of By is identically distributed to fe(s1, mim4(1*,t,s1), regardless of
whether the time-lock puzzle is publicly verifiable, which implies that Hyb;(A) = Hyby(A). The
proof of indistinguishability between the other adjacent hybrids is identical, relying on computa-
tional non-malleability.
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A  Non-Malleable TLPs in the Plain Model

In this section, we give a construction of a fully concurrent functional non-malleable time-lock
puzzle for functions with bounded depth and output length in the plain model. This construction
is adapted from that of [DKP21], who construct non-malleable codes based on time-lock puzzles,
zero-knowledge arguments, and non-malleable commitments.

At a high level, the differences between our setting and that of [DKP21] is that we require a
slightly different notion of non-malleability, and we focus on concurrency. Specifically, the time-
lock puzzle setting requires non-malleability even against re-randomization attacks (mauling a
puzzle for a message m into a different puzzle for m), which they do not explicitly consider for
their non-malleable codes. Nevertheless, we show that their construction actually satisfies this
stronger definition. Additionally, we extend their construction and proof to capture concurrent
functional non-malleability, whereas [DKP21] focus on plain one-one non-malleability. To upgrade
their construction to this setting, we show that it suffices to rely on a concurrent functional non-
malleable commitment for the underlying commitment.

Construction. The construction relies on the following building blocks and parameters. Since
this section is largely based on [DKP21], we refer to their paper for the formal definitions for one-
message SPS zero-knowledge and one-message non-malleable commitments, as well as a discussion
of the choices of parameters.

— A function m(A) € poly(A) denoting the output length for our functional non-malleability.
When A is clear from context, we let m = m(\).
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— A class of functions F, of the form f: ({0,1}*)* — {0,1}™*), We assume that there exists
a polynomial d such that for every polynomial n, every function f € F,, can be computed in
depth d(A,logn(\)) and polynomial size on inputs of length at most A - n(X).

— A time-lock puzzle TLP = (TLP.Gen, TLP.Sol) which is hard against exponential size adver-
saries of size STP(\) = 2™,

— A one-message tag-based commitment scheme NMC = (NMC.Com, NMC.Open) which is fully
concurrent functional non-malleable for the class F; against quasi-polynomial-size adversaries
and extractable in quasi-polynomial size.

Specifically, it is hiding and non-malleable against adversaries of size SNMC()\) = QIOgQ(A), and

extractable with NMC.Ext in size SNMC(\) = 9log”(A)

— A one-message SPS zero-knowledge argument system ZK = (ZK.Prove,ZK.Ver) which is
weakly sound with respect to all non-uniform polynomial-size attackers and zero knowledge
with respect to sub-exponential size adversaries.

Specifically, it is (S5X, K%K)-weakly sound for all polynomials S%K and for a fixed polynomial
K%K and is zero knowledge against distinguishers of size S&X(\) = 22" for n € (0,1).

Following [DKP21], we use the scheme for a language whose instances x are given as two
parts (x1,z2), and we require the scheme to satisfy the notion of S%K—tuned zero knowledge
relative to the first part z1, which modifies the weak soundness and simulation efficiency.
Weak soundness in this setting means that for every PPT adversary A, there is a polynomial-
size set Z of values 1 such that A only succeeds at cheating on false statements whose
first part is in Z. For the zero-knowledge property, there exists a super-polynomial time
simulator ZK.Sim that can be decomposed into two algorithms (ZK.SimP®, ZK.SimPo), where
ZK.SimP"®(1*, 1) receives only the first part of the statement and runs in sub-exponential
size and fixed polynomial depth to output a trapdoor td, and ZK.SimPoSt(td, (x1,x2)) receives
the trapdoor and full statement and outputs the simulated proof in polynomial time.

We will use the scheme for the relation Ry, where a statement (vk, z, ¢) with witness (s, r1_p,
rnmc) is in Ry if 2 = TLP.Gen(1, ¢, s;711p) and NMC.Open(c, s, rnmc, vk) = 1, and the tuned
zero-knowledge property will hold with respect to the puzzle z in the statement.

— A one-time signature scheme Sig = (Sig.Gen, Sig.Sign, Sig.Ver) which is unforgeable for polynomial-
size attackers.

Our construction nmTLP = (Gen, Sol):
e puzz < Gen(1*,t,5):

Sample (vk,sk) < Sig.Gen(1%).

Compute a TLP z + TLP.Gen(lA, t,s;r1Lp) using uniform randomness | p.
Compute a commitment (¢, rymc) < NMC.Com(1%, s, vk) using vk as the tag.
Compute a proof 7 < ZK.Prove(1?*, (vk, 2, ¢), (s, r1Lp, rnmc)) for the relation Ry.
Compute a signature o < Sig.Sign(sk, (z, ¢, m)).

ANl

Output puzz = (vk, z,¢, 7, 0).

e 5= Sol(1*,t, puzz):

o8



1. Parse puzz = (vk, z, ¢, 7, 0).
2. Check that Sig.Ver(vk, (z,¢,7),0) = 1 and ZK.Ver(1*, (vk, z,¢),7) = 1.
3. If both of these hold, output s = TLP.Sol(1*,t, z), and otherwise output L.

We show the following theorem. For the formal parameters, see the description above.

Theorem A.1. Let m()\) € poly(\). Assume that there exists

o A time-lock puzzle secure against M) _gize adversaries with polynomial depth.

e A one-message weakly-sound SPS zero-knowledge argument, where weak soundness holds
against polynomial-size adversaries and zero-knowledge holds against sub-exponential-size dis-
tinguishers.

o A one-message non-malleable commitment scheme which is fully concurrent functional non-
malleable for efficient functions with one-bit outputs, hiding against quasi-polynomial-size
attackers, and extractable in quasi-polynomial time.

o A one-time signature scheme.

Then, there exists a fully concurrent functional non-malleable TLP for F,, where non-malleability
holds against polynomial size adversaries and computationally bounded distinguishers.

We can instantiate the primitives in this theorem following [DKP21] (in the non-uniform set-
ting). As noted in [DKP21], the time-lock puzzle can be instantiated based on the repeated squaring
assumption [RSW96], the one-message SPS zero-knowledge argument follows by instantiating the
scheme of [BP04] with keyless multi-collision resistant hash functions following [BL18], and the non-
malleable commitment scheme follows from [BL18], which is in turn based on [LPS17]. We note that
we additionally require the commitment scheme to be fully concurrent functional non-malleable.
Since [BL18] is fully concurrent, this implies concurrent functional non-malleability. Finally, the
one-time signature scheme can be instantiated with Lamport’s signature scheme. Putting every-
thing together, we get the following corollary.

Corollary A.2. Let m(\) € poly(\). Assume the repeated squaring assumption, a keyless multi-
collision resistant hash function, a NIWI for NP, and an injective one-way function, all sub-
exponentially secure. Then, there exists a fully concurrent functional non-malleable time-lock puz-
Zle for F,, where non-malleability holds against polynomial size adversaries and computationally
bounded distinguishers.

In the remainder of this section, we prove Theorem A.1 by showing that nmTLP is a fully
concurrent functional non-malleable TLP against polynomial-size adversaries and computationally-
bounded distinguishers. Correctness follows immediately from the correctness of TLP and Sig, and
completeness of ZK. Efficiency follows directly from the efficiency of the underlying time-lock puzzle.
Below, we prove concurrent functional non-malleability of our scheme. Since non-malleability
implies hardness, this will complete the proof.

Lemma A.3 (Non-malleability). Suppose TLP, ZK, Com, and Sig are secure with the parameters
specified above, and in particular that TLP is hard for size ST-P(\) = 2M™ attackers. Then, the
construction nmTLP fully concurrent functional non-malleable for the class of functions Fp, against
computationally-bounded distinguishers.
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Proof. We will show that (Gen, Sol) satisfies one-many functional non-malleability for F,, against
polynomial-size adversaries and computationally-bounded distinguishers, which suffices to show
fully concurrent functional non-malleability for F,,, by Lemma FE.1.

To show one-many functional non-malleability, fix any function f € F,,, and let a(\) = arp(N)-
q(\), where aTLp is the polynomial guaranteed by the hardness of TLP and g is a fixed polynomial
specified below in the proof of Claim A.6. Fix any function T satisfying a(A) < T'(\) € poly(\)
for all A € N, polynomial n, (1,7, 1, o, T)-MIM adversary A = { A\ },cy, and s € {0, 1}, We will
show that f(mim4(1*,T(\), s)) is computationally indistinguishable from f(mim4(1*,T()),0%)).

For any A € N, we consider the following sequence of hybrid distributions. In each hybrid, we
will slowly change either the way that the puzzle puzz is generated in the MIM experiment or the
way that the output values 5 are computed based on the mauled puzzles given by the adversary,
and show that the hybrids are computationally indistinguishable. Since the first hybrid is the real
MIM experiment corresponding to s and the last hybrid is independent of s, this will complete the
proof. Throughout these hybrids, we let t = T'(A) and n = n(\).

e Hyb;(\) : This is the real MIM experiment corresponding to s. We can write this hybrid as

1. Sample puzz = (vk, z, ¢, 7, 0) < Gen(1*, ¢, s).

2. Let pAu_'z/z + Ax(puzz). Throughout this proof we denote the ith puzzle in pTIzQ by
puzz; = (vk;, 2, ¢;, m;, 0;) for i € [n].

3. For each i € [n], if puzz; = puzz, set 5; = L. Otherwise, let 5; = Sol(1*, ¢, puzz;).

4. Output f(?)

e Hyby(\) : This hybrid is identical to the previous one, except that we use the ZK simulator to
compute the proof 7 as ZK.Sim(1?, (vk, z, c)).

e Hyb;()\) : In this hybrid, we change ¢ to be a commitment to 0* rather than s, by computing
it as ¢ <~ NMC.Com(1*,0*, vk).

e Hyb,(A) : In this hybrid, we compute each output value s; by extracting from the commitment
¢; instead of solving the puzzle z;. To formalize this, we will need to define the adversary we
intend to use in the reduction later on, so that we can break weak soundness relative to this
adversary. Let B = {B) },cy be the algorithm such that By does the following:

1. Sample puzz <+ Gen(1*,¢,s) and puzz A (puzz).
2. Sample i < [n] and output (vk;, z;, ¢;, m;) from puzz,.

Let Z be the set of puzzles z for which weak soundness holds against By. In this hybrid, we
compute s; from puzz; as follows:

1. Check that Sig.Ver(vk;, (2, ci,m;),0:) = 1, ZK.Ver(1*, (vk;, 2, ¢;), ;) = 1, and puzz; #
puzz. If any of these does not hold, output L.

2. If z; € Z, set = TLP.SO'(l)‘,t,Zi).

3. Otherwise, set s; +— NMC.Ext(c;).

e Hyb;(\) : In this hybrid, we change the way we extract from the commitment when computing
s; for each i so that we can extract in small depth. Specifically, instead of extracting from
the commitment with NMC.Ext, we brute-force solve the commitment by trying all options in
parallel, which can be done (for example) in size 2* and fixed polynomial depth. Let NMC.Ext’
be this parallelized brute-force algorithm. Then, each 3; is computed as NMC.Ext'(c;).
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e Hybg(\) : In this hybrid, we change z to a TLP for 0* instead of s, by computing it as z <
TLP.Gen(1*,¢,0%).

Next, we show computational indistinguishability between the hybrids. We note that the main
ideas in the proof are from [DKP21], but we give the formal proofs here due to emphasize the
difference between the two settings.

Claim A.4. It holds that {Hyb;(\) } \ey & {Hyba(A) }yen-

Proof. The difference between these two hybrids is in the way they generate the proof m, either
as an honest proof using ZK.Prove or as a simulated proof. Aside from generating this proof,
sampling from each hybrid distribution requires generating the other elements of puzz, running
Ay, solving each resulting puzzle using Sol to obtain s, and computing f A) Since this can all be
done in polynomial size, the zero-knowledge property of ZK implies that the two distributions are
computationally indistinguishable. |

Claim A.5. It holds that {Hyby(\) } ey = {Hyb3(A) }yen-

Proof. The difference between these two hybrids is in the way they generate the commitment ¢ in
the puzzle puzz, either as a commitment to s or to 0*. We will show that any PPT distinguisher
that distinguishes the two distributions with noticeable probability can be used to break the hiding
of the commitment scheme.

Toward that goal, suppose for contradiction that there exists a non-uniform PPT distinguisher
D = {D)},cy that distinguishes between these two distributions with probability 1/p()) for a
polynomial p and infinitely many A € N. In both of these hybrids, the puzzle puzz on the left
contains a TLP z to s. It follows by an averaging argument that there exists some fixed z* in the
support of TLP.Gen(1*,¢,s) such that Dy succeeds at distinguishing with noticeable probability
when the puzzle is fixed to z*.

Given z*, we observe that the rest of the values in each hybrid can be sampled efficiently when
additionally given access to a trapdoor td < ZK.SimP™(1*, z*), which enables computing the simu-
lated proof 7 in puzz efficiently. Specifically, a non-uniform algorithm that has z* and td hardcoded
can compute the values in each hybrid and run Dy in time that depends on ZK.Sim"st, A,, Sol,
f, and Dy, all of which can be done in polynomial time. Since the hiding of the commitment holds
against adversaries of quasi-polynomial size, it follows that the two hybrids are computationally
indistinguishable. u

Claim A.6. It holds that {Hybs(\) } oy = {Hybs () }yen-

Proof. The difference between these hybrids is that in the first hybrid, each value s; is computed
by solving the puzzle puzz;, and in the second hybrid, it is computed by extracting from the
corresponding commitment using NMC.Ext. To show the claim, we start by introducing some
notation. Let Val®(puzz, pfu?z/z) be the algorithm which computes 5 in Hybs(\), and let Val* denote
the corresponding algorithm from Hyb,(\). It then suffices to bound

Pr [Val®(puzz, Ay (puzz)) # Val*(puzz, Ay (puzz))] .
To bound this, it will be helpful to define the more general value

PJ £ Pr [Val(puzz/, A, (puzz?)) # Val4(puzzj,A,\(puzzj))] ,
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for j € {1,2,3}, where puzz/ is sampled according to Hyb;(A). Using this notation, the value we
want to bound is P3. We bound this over a sequence of claims.

Subclaim A.7. There exists a negligible function negl such that Py < negl(}).

Proof. Suppose for contradiction that there exists a polynomial p such that for infinitely many
A € N it holds that P; > 1/p(\). It follows that there exists some ¢* for which the values of s;+
are not equal (when solving puzz;. via the two decoding methods) with probability at least 1/p()).
When this event occurs, it must be the case that the puzzle z; and commitment c¢;« in puzz;.
correspond to different underlying values and z;+ € Z, yet the proof 7 is accepting. Let E be the
event that this occurs.

Recall that Z is the set of puzzles corresponding to statements on which By can produce false
proofs, where we defined the B) as the algorithm that samples puzz according to Hyb;(\), then
computes [ﬁfz/z « Ay (puzz) outputs (vk;, 2, ¢;, m;) from puzz; for a uniformly random i. Combining
this with the observations above, it follows that B) breaks the weak soundness of ZK whenever it
samples ¢ = ¢* and when E occurs, which together occur with probability at least 1/(n-p(\)). Since
By has polynomial size, this is a contradiction to weak soundness. |

Subclaim A.8. There exists a negligible function negl such that |P; — Pa| < negl()).

Proof. The difference between P, and P» is that one starts with a puzzle containing an honest
proof m, whereas the other contains a simulated proof. Computing the values in these probabilities
other than the proof 7 is dominated by running Gen, .AA, Sol, NMC.Ext, and checking membership
in the set Z. Since NMC.Ext runs in size SEMC()\) = 210e’(\) | Z has fixed polynomial size, and the
other algorithms run in polynomial time, it follows that thls can be done in size SEX(\) = 2",
Therefore, if the difference |P; — P»| is noticeable, it would contradict the zero-knowledge property
of ZK. |

Subclaim A.9. There ezists a negligible function negl such that |Py — P3| < negl(A).

Proof. Suppose for contradiction that |P» — P3| > 1/p()) for a polynomial p and infinitely many
A € N. We show that this can be used to break functional non-malleability of the commitment
scheme NMC for the function f” such that f'(z,y) = 1 if  # y, and 0 otherwise, where z,y €
{0,1}™. We note that f’ is low depth and has a one bit output, so f’ € Fi.

We first note that both puzz? and puzz® contain a TLP to s, and so it follows by averaging that
there exists a puzzle z* such that the difference |P» — P3| is at least 1/p(\) even when puzz? and
puzz® both contain the TLP z*. Let td be a trapdoor given by ZK.Sim""¢(1*, 2*) for the puzzle z*.
Henceforth, our attacker will have z* and td hardcoded in order to be able to sample each hybrid
efficiently.

Next, we show how to break functional non-malleability of NMC. To do so, we specify a
distinguisher Dy and a MIM attacker A} (with z* and td hardcoded) that receives one commitment,
and outputs 2n commitments, as follows. The MIM attacker A} samples (vk,sk) «+ Sig.Gen(1%)
and sets the tag for the left interaction to vk. It then receives a commitment ¢ (either to 0
or to s). Next, it samples 7 and o as in the hybrids, where 7 is a simulated proof (computed
using ZK.Sim and td) of the statement (vk, z,¢) and o is a signature using sk for (z,c,m). It sets

puzz = (vk, z, ¢, m,0) and computes puzz + Ay (puzz). Next, it forms its output d consisting of 2n
commitments. For each ¢ € [n], it does the following:
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1. Check that puzz; # puzz, that the proof 7; and signature o; in puzz; verify, and that z; ¢ Z.
If any of these do not hold, set ¢, = ¢}, = L.

2. If the above checks pass, solve the TLP z; in puzz; to get an underlying value s,. Set ¢} = ¢;
and ¢, = NMC.Com(1*, s}, vk;).
Define the distinguisher D), on input a bit b, to simply output b.

To show that A and D, succeed at breaking non-malleability, we first analyze the input
given to D). Recall that in the functional non-malleability game, the distinguisher D) receives
b= f (8_;), where s’ consists of the unique values underlying each commitment in ¢/, unless any
of the commitments in ¢ reuse the tag vk used on the left. For each i € [n], the tag used in ¢
and ¢, (when they are not set to L) is vk;. Note A’ already checked that the signature under vk;
verified and that puzz; # puzz, which implies that vk; # vk except with negligible probability, by
the unforgability of the signature scheme.

Therefore, Dy receives f’ (s_; ) where each entry in s is the value underlying the corresponding
commitment in ¢. Specifically, for each i € [n], either ¢, = ¢}, = L if the checks done by A don’t
pass, and otherwise s} corresponds to the value underlying the commitment ¢;, and sj,; corresponds
to the value underlying the puzzle z;. It follows that f’ (s_; ) outputs 1 if and only if there exists
some 7 such that the signature o; and proof m; verify, z; € Z, and z; and ¢; correspond to different
underlying values. These are the same conditions which make the events in P» and Ps occur, and
so it follows that Dy outputs 1 with probability P, in the case that the commitment ¢ on the left
is a commitment to s, and outputs 1 with probability Pz in the case that ¢ is a commitment to 0%,
and so D, succeeds at distinguishing with noticeable probability.

Lastly, we discuss the efficiency of A,. The running time of A} is dominated by running
ZK.Sim™st A\, and TLP.Sol, and checking membership in Z, which are all polynomial. Since
the functional non-malleability of NMC holds against adversaries of size SNMC()\) = 2log”(N) | this
contradicts the functional non-malleability of NMC. |

This completes the proof of Claim A.6. |

Claim A.10. It holds that {Hyb(X) },cny = {Hybs(A) }ren-

Proof. The difference between these hybrids is that we switch from extracting using NMC.Ext to
NMC.Ext’ when computing s; for each i € [n]. Since both extraction procedures have the same
functionality, these hybrids are identically distributed. |

Claim A.11. It holds that {Hybs(\) },cn = {Hybg(A) }ren-

Proof. The difference between these hybrids is that we switch the time-lock puzzle z from a puzzle
for s to one for 0*. Suppose for contradiction that there is a PPT distinguisher D = {D} zen that
distinguishes these two distributions with noticeable probability for infinitely many A € N. We will
use D to construct an adversary A" = { A} },_ against the hardness of TLP.

Let A) be the adversary that on input a time-lock puzzle z* (either to s or 0%), samples a
signature key pair sk, vk, a commitment ¢, a simulated proof 7, and signature ¢ as in the hybrids,
and forms the puzzle puzz = (vk, z*,¢,7,0). It then runs pT%zz + Ay (puzz) and decodes each
resulting puzzle as in the hybrids using NMC.Ext’ to obtain 5 and then computes y = f (f;) Lastly,
it needs to run the distinguisher D), which in general has arbitrary polynomial depth. Let ttp be
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the circuit of width 2™ and depth O(m) that has the same truth table as D. Then, A\ computes
and outputs b = ttp(y).

Since A}, uses the challenge puzzle z* when forming puzz, the values it computes are distributed
either according to Hybs(\) or Hybg()). To show that A, contradicts the hardness of TLP, it
remains to analyze its efficiency. Specifically, we need to show that the size of A} is bounded by
STLP(X) - poly()) = 22 . poly (), its depth is bounded by T'(\)/atip()), and atp(N) < T(\) €
STLP(X) - poly()\) where atip is the polynomial guaranteed by the hardness of TLP.

The efficiency of A} is dominated by running Gen, ZK.Sim, NMC.Ext’, A,, ttp, and f, and
checking membership in Z, where we recall that | Z| = K?K(|B|). Note that ZK.Sim can be run in
subexponential time, and NMC.Ext’ can be run in time 2* - poly()\). Putting everything together,
we can bound its size by

SEK 1 INMC.Ext'| + |ttp| + KZK(|B]) + poly())
< 2% +2* . poly(\) + 2™ + poly(A) + poly(A) < 22™ - poly(A) = STEP(A) - poly())

for sufficiently large .

For the depth, we have that the depth of NMC.Ext’ is a priori bounded, ttp has depth O(m)
which is an a priori fixed polynomial in \, checking membership in Z can be done in O(log K2X(|8]))
depth which can be bounded by a fixed polynomial in A, and f can be computed in fixed depth
poly(A,logn) which can be bounded by a fixed polynomial in A. For ZK.Sim, we recall that
ZK.Sim""® can be computed in fixed polynomial depth with sub-exponential size, and ZK.SimP°® is

a PPT algorithm. Therefore, we can bound the depth of A} by

depth(ZK.Sim) + depth(NMC.Ext’) + depth(A,) + poly(\)
< depth(Ax) + poly(A) < depth(Ay) - ¢(})

for a fixed polynomial ¢ (which is independent of D and its distinguishing advantage). Recall
that depth(Ay) < T'(A)/(a(X)) by assumption, where we set a(A) > atp(A) - ¢(A). Therefore,
the depth of A} is bounded by T'(\)/atip()). Lastly, to bound T, we have that T'(\) > a(\) >
atp(A) - ¢(A) > atp(A), and T'(A) is properly upper bounded by assumption. Therefore, A’

contradicts the hardness of TLP. |
This completes the proof of Lemma A.3. O

B Simulation-Based Fairness

Recall that in Section 6, we showed that our coin-flipping protocol satisfies a game-based definition
of fairness, which says that no malicious adversary controlling all but one party can noticeably bias
the output of the protocol. This definition suffices for many applications that only use the output
of the coin toss, but where the transcript of the protocol is independent of the application. In this
section, we show how to modify our protocol to achieve a stronger simulation-based definition of
fairness in the programmable random oracle model, following the real vs. ideal paradigm [Can00,
Gol04].

At a high level, we will be feeding the output of our previous protocol into the random oracle.
This will enable a simulator than runs in polynomial time to break the time-lock puzzles given by
the adversary in order to properly program the random oracle to the desired output. Even though
this requires a stronger model than the (non-programmable) random oracle model used for our
other results, it nonetheless gives evidence that our protocol achieves a strong notion of fairness.
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As in Section 6, we consider PPT malicious adversaries which may behave arbitrarily in the
protocol, and which may statically corrupt all but one party. We give a simulation-based definition
of full fairness below using the real versus ideal paradigm, and then give a proof sketch showing how
to achieve this definition with our protocol. For simplicity, we focus on computing functionalities
that do not receive any inputs from the parties, only take as input the security parameter, and
output the same value to all parties, as will be the case in our setting.

Real model. Let II be an n-party protocol computing a (possibly randomized), no-input function
f, and let A be an adversary controlling a set of at most n — 1 parties. We let realry_4¢(\) be the
random variable denoting the output of the honest parties and the view of A in a random execution
of II. Since our protocol is time-based, we will restrict .4 to have bounded depth, analogous to the
adversary in our game-based definition.

Ideal model. We consider an ideal model that captures complete fairness, where all players
receive the output even if the adversary aborts before the protocol is complete. The ideal-model
adversary, denoted Sim, may run in arbitrary polynomial time rather than bounded depth. Given
a protocol II computing a function f, a PPT simulator Sim, and a subset C of corrupted parties,
the ideal model experiment is as follows:

1. The trusted party computes y + f(1*) (using uniform randomness in the case that f is
randomized).

2. The trusted party sends y to all parties. The honest parties output y.

We let ideal ¢ sim ¢(A) denote the output of the honest players as well as the view of Sim in the ideal
model experiment. We emphasize that even if Sim aborts, all parties still receive the output y.

Definition B.1. Let n € N, L()\) € poly(\) and let f be a (possibly randomized) no-input func-
tionality. A n-party protocol 11 satisfies simulation-based fairness for f if for every C C [n] and
every non-uniform PPT real-model adversary A, there exists non-uniform PPT adversary Sim and
a negligible function negl such that for all A € N, A(realr _4,¢(A),idealfsimc(A)) < negl(N).

As we are concerned with time-based protocols, we will restrict to real-model adversaries A
with depth less than a bound () included in the description of II (in Section 6, this corresponds
to T'(\)/a(A) which bounds the time of the commit phase). Specifically, we say that II satisfies
depth-bounded simulation-based fairness for f if the above definition holds relative to any non-
uniform PPT real-model adversary A = { Ay } ¢y satisfying depth(Ay) < x(A), where II on security
parameter \ has time parameter x(\).

The above definition can naturally be extended to the programmable random oracle model,
where parties in both the real and ideal models have access to a random oracle, and the simulator
has the additional ability to program input-output pairs. We note that this oracle will only be used
to lift our game-based fairness to simulation-based fairness, and hence is independent of the other
random oracles used in this work (such as the one used to implement the underlying TLP).

Simulation-based fair coin-flipping. Next, we present our protocol. We focus on the interac-
tive version, but we note that the result for the non-interactive version follows similarly. We use
the following building blocks and parameters:

e Let Il denote the protocol from Section 6 for producing A bits of randomness and let x(\)
be the bound on the running time of the commit phase.
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e Let L be the function specifying the output length of the protocol, so that we produce L(\)
bits of randomness on security parameter .

e Let O = {O)},cy be a programmable random oracle where Oy: {0,1}* — {0, 1M for
AeN.

Our protocol is the following: on security parameter A, all parties run IIy to get a value v, and
then set their outputs to s = O(v).

To show that this is a fair coin-flipping protocol, let fe be the function that on input 1* samples
and outputs a uniformly random value {0, 1}L()‘). We show the following theorem, stating that our
protocol fairly computes fo relative to depth-bounded adversaries in the sense of Definition B.1
above.

Theorem B.2. Let L(\) € poly(\), let fg be the function that computes the XOR of its inputs, and
let fs be the function such on input 1* outputs a uniformly random value in {0, 1}L(’\). Assuming
the existence of a fully concurrent functional non-malleable TLP for fg with \-bit outputs, there
exists a multi-party coin-flipping protocol for L(\)-bit output that satisfies optimistic efficiency,
public verifiability, and depth-bounded simulation-based fairness in the programmable random oracle
model.

As a corollary, the TLP in the above theorem can be instantiated from the B-repeated squaring
assumption with B()\) = 23} (where the TLP construction is also in the ROM), by following our
non-malleable TLP construction in the auxiliary-input random oracle model, or from our plain
model construction.

Next, we prove Theorem B.2. The properties other than simulation-based fairness follow from
those of our protocol given in Section 6. We prove simulation-based fairness below.

Proof of simulation-based fairness. Consider a real-model adversary A = {A)},cy controlling all
but one party (the case where less than n — 1 parties are corrupted follows similarly) with depth
bounded by x()). We define the ideal-model adversary Sim as follows. On input 1* and s < fef(1%),
Sim will emulate A) internally (using uniformly sampled randomness for A) ), and eventually output
Ay’s view from the interaction. Specifically, Sim(1*, s) does the following:

1. Sample a TLP 21 to a uniformly random string s; « {0,1}*, as well as crs; < {0,1}*. Send
(z1,crs1) to Ay to simulate the message from the honest party.

2. Let z9,..., 2z, denote the n — 1 puzzles given in response by A, (where any number may be
set to L corresponding to corrupted parties that abort early). If Ay makes any oracle queries
before giving its response, answer them honestly.

3. Solve the puzzles to obtain values sa,. .., s, (setting s; to L if z; = L fori € {2,...,n}), and
compute v = fg(s1,...,s,). Program the random oracle to output s on input v.

4. Simulate any further messages from the honest party for Ay, and answer Ay’s oracle queries
using the programmed oracle. Upon receiving Ay’s output, output the view of A in the
interaction.

It remains to show that the real experiment is indistinguishable from the ideal one. We do this
in two steps. First, we switch from the real experiment to an intermediate hybrid corresponding
to a standard commit-and-reveal protocol, relying on soundness of the underlying TLP. We then
show that this is statistically close to the ideal experiment, relying on the game-based fairness of
the standard commit-and-reveal protocol.
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For the first step, recall that our protocol runs Il and then feeds the result into a random oracle.
We could alternatively consider a standard commit-and-reveal protocol in place of II. Specifically,
let Hf\zom be the protocol where each party posts a puzzle in the commit phase, force opens every
puzzle in the reveal phase, and outputs the XOR of the solutions. The difference between these
protocols in that in Iy, each puzzle z; has a posted solution s}, which the honest parties verify and
then use to compute the output fg(s),...,s),), whereas in H§°m, each party instead solves z; to
get a value s; to use in place of s, when computing the output.

In the real experiment, we observe that the view of the adversary when II is used is statistically
close to its view when H/C\"m is used. In particular, a noticeable difference would directly imply an
adversary against the soundness of the underlying TLP. The formal proof of this is immediate from
the proof showing that Hyb, (\) is statistically close to Hyb,y(A) in Section 6.

Next, we discuss the second step, which requires bounding the statistical distance between the
real experiment using H§°m and the ideal experiment. To do so, we consider the commit phase
and reveal phase separately. In the real model, the adversary’s view in the commit phase consists
of a time-lock puzzle z; to a uniformly sampled value s1, the CRS crs; given by the honest party,
and any query-answer pairs from . These are identically distributed in the commit phase of the
ideal protocol. In the reveal phase, the difference is that Sim computes the value v and programs
the random oracle to output s on input v. As s is uniformly distributed, this oracle has the same
distribution as the real oracle and is consistent with the one from the commit phase unless A)
made a query to v in the commit phase.

To bound the probability of this bad event, suppose for contradiction that there exists some
polynomial ¢ such that

S1 < {0,1})‘

21 < TLP.Gen(l”\ t 51) . 1
Pr '\ . A, queries v where v = 81,...,8 >

29y .y 2 — ALt 21) A a fa(s1 n) 0

s; = Sol(1*t,2;) Vi €{2,...,n}

Since Ay is a PPT algorithm, there exists some polynomial p such that Ay makes at most p(\)
queries. It follows by averaging that there exists an index j such that the jth query satisfies the
event above with probability at least 1/(¢g(\) - p())), namely that v; = fe(s1,...,s,), where v; is
the jth query made by A,.

We can use this to break the game-based fairness of an (n+ 1)-party version of the commit-and-
reveal protocol H§°m (which indeed was shown to satisfy game-based fairness in Section 6). To do
so, we will construct an adversary By based on A as follows. By has j hardcoded, receives the TLP
z1 from the honest party, and then runs A, by using z; to simulate the honest party’s message.
It answers any oracle queries using lazy sampling. When Ay makes it’s jth query v;, By creates
a commitment z* to v;, and continues running Ay. Upon receiving all of A\’s puzzles 2, ..., 2zp,
it outputs these along with z*. It then acts exactly as A does in the reveal phase, forwarding any
messages from the honest party, and additionally posts v; as the opening to z*.

Since Ay succeeds at querying the value v; = fg(s1,...,s,) with probability 1/(g(\) - p(N)),

it follows that the output of Hgom in the presence of By is fg(S1,...,8n,0j) = v; B v; = 0" with
the same probability. As ¢, p are polynomial, this is noticeably larger than 1/2*, and hence the
protocol is noticeably biased, which is a contradiction to game-based fairness. O

C Non-malleability Against Depth-Bounded Distinguishers

In this section we consider the notion of non-malleability with a depth-bounded MIM attacker as
well as a depth-bounded distinguisher. This section was added after posting the initial version and
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was motivated by the (concurrent and independent) works of [BDD*21, KLX20, BDD*20] who
studied similar strenghtenings of plain timed primitives to ours yet their definitions are different.
The definition of [BDD"21, BDD"20] is a UC-style definition and the definition of [KLX20] is
a CCA-style one, where in both the attacker/distinguisher/environment are depth-bounded and
cannot brute-force solve any puzzle. Here, we show that such a modification for our non-malleability
definition gives a strictly weaker security guarantees which, in particular, may be insufficient for
some applications.
We first define the notion of non-malleability where the distinguisher runs in bounded depth.

Definition C.1 (Depth-Bounded Distinguisher Non-malleability). Let np,ng, Bpm: N — N. A
time-lock puzzle (Gen, Sol) is (nr,ng)-concurrent non-malleable against depth-bounded distinguish-
ers and size B, adversaries if there exists a positive polynomial o such that for every function T
with a(A) < T(A) € Bam(A) - poly(A) for all A € N and every (nr,ng, Bam, @, T')-MIM adversary
A ={A\} ey, the following holds.

For any non-uniform distinguisher D = {Dy } oy satisfying depth(Dy) < T'(N)/a(X) and size(Dy)
€ Bnym(A) - poly(A) for all X € N, there exists a negligible function negl such that for all A € N and
§= (51,580, 00) € ({0,132,

| Pr {Dk(mimA(l)‘,T(A),(?)) - 1}

—Pr {D,\(mimA(l’\,T()\), (02 (Vy) = 1} | < negl(\).

When Bam(A) = 1, we say that the TLP is (nr,ng)-concurrent non-malleable against depth-
bounded distinguishers.

We note that the definition of non-malleability given in Definition 3.4 corresponds to when the
distinguisher D is unbounded. We can also consider an in between notion of non-malleability where
the distinguisher D) may run in polynomial time that depends on 7', e.g. poly(A,T(A)). When T'
is restricted to a polynomial, this corresponds to a more standard notion of computational non-
malleability. As in Definition 3.5, we can similarly define the relevant extensions of non-malleability
specifying the number of left and right puzzles in the MIM experiment.

C.1 Equivalence to Functional Non-malleability with One Bit Output

Recall that, at a high level, we defined F,, as the class of functions f: ({0,1}*)* — {0,1}™
computable in polynomial size and “low depth” which depends only polynomially on A and poly-
logarithmically on the number of inputs it receives. We could have instead explicitly allowed the
class of functions F, to be low depth in a way that depends on the time bound 7. Specifically,
for T, o from the definition of non-malleability, we could consider the class of functions D, 7, of
the form f: ({0,1}*)* — {0,1}™ computable in polynomial size and depth T'(\)/(a(\)). When
the output length is 1, functional non-malleability with respect to this class D, 7, is definitionally
equivalent to depth-bounded distinguisher non-malleability.

We briefly argue why the two notions are equivalent. We focus on the case of plain (non-
concurrent) non-malleability, but the intuition extends to general concurrent setting as well. To see
this, note that the functional non-malleability intuitively says that no depth-bounded MIM attacker
A can statistically influence the distribution of f(mim4(s)) for any f € D,r1 and s € {0,1}*.
More specifically, for any s € {0,1}*,

f(mimy(s)) & f(mim4(0%)).
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On the other hand, depth-bounded distinguisher non-malleability says that no polynomial-size,
depth-bounded distinguisher D can distinguish mim4(s) from mim_4(0*), meaning that the output
is statistically close. Because both f and D have output length 1, the definitions are equivalent.

As a consequence, it suffices to show that our construction nmTLP; given in Section 4 actually
satisfies functional non-malleability for D, 71 in addition to F;. The proof only requires slight
modification where we use the fact that the function f is computable in low depth. Therefore,
combining this with the above, nmTLP; actually satisfies concurrent non-malleability against depth-
bounded distinguishers and only relies on polynomial security.

Lemma C.2. Assuming the existence of a polynomially secure time-lock puzzle, there exists a
polynomaially secure time-lock puzzle that is concurrent non-malleable against depth-bounded distin-
guishers. Security is proven in the auziliary-input random oracle model.

C.2 Separating Depth-Bounded Distinguishers from Unbounded Ones

We next give our construction separating non-malleability with a depth-bounded distinguisher from
non-malleability with a non-uniform poly(\, T'(\))-size distinguisher.

We first give a high-level overview of the separation. Our construction TLP* will be for messages
of length m(\) and will rely on an underlying non-malleable time-lock puzzle TLPgpo for shorter
messages whose output length is m()). The main idea is that TLP* will split up a message s €
{0,1}™ into two parts s, and sr and generate puzzles z;, and zp for each of them. This leads to
the following very natural MIM attack with an unbounded distinguisher. Let A be a MIM attacker
that on input z = zr||zg simply outputs a puzzle Z for TLP* with solution zy,, which has the right
length m by assumption. An unbounded distinguisher receives as input zr, can solve the puzzle,
and check if the solution corresponds to sy. It remains to show how to generate the puzzles zy and
2R such that TLP* does satisfy non-malleability against depth-bounded distinguishers.

If the solutions underlying the TLPgyq,+ puzzles 2y, and zr are simply sy, and sy, respectively, this
will clearly not satisfy non-malleability as it allows for a “mix-and-match” style attack. Specifically,
on input z = zp|zr, a MIM attacker can output Z = zg||zy or Z = zp||z* where z* is any valid
TLPghort puzzle (other than zgr). The underlying solution in these attacks are clearly related to
s = s||sr in a way that can be easily checked in bounded depth. To prevent such attacks, we make
two key modifications. First, we add a bit at the beginning of each solution indicating whether
that part of the puzzle is intended to correspond to the left or right half of the solution s. This
prevents the attack that “swaps” zp and zr. Second, we append a random string r < {0, 1}>‘ to
the solutions and require that both parts for any valid puzzle for TLP* end in the same string. This
prevents the attacker from replacing one of the puzzles with a new value, possibly unrelated to s.
If it could do so, it would intuitively need to know what the underlying value for r is. With these
two modifications, we can prove that no other MIM attacks succeed with a bounded distinguisher
(assuming TLPgpert is concurrent non-malleable against depth-bounded distinguishers). We next
formalize our construction.

Let m: N — N be a function with even output, and TLPgot = (Genghort, Solshort) be a (1,2)-
concurrent non-malleable TLP for 1+ m(\)/2 + XA bit messages with output length m(X). We will
construct a time-lock puzzle TLP* = (Gen*, Sol*) for m(\) bit messages. For simplicity, we write
m = m(\) when the context is clear. For a string s € {0,1}™, we use s[a : b] to denote the substring
of length b — a starting at the ath character in s.

e Gen*(1M,t,5):

1. Sample 7 < {0, 1}
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2. Compute zy, <+ Gengyort (1%, £,0]|s[0 : m/2]||r).
3. CompU-te ZR Genshort(]-)\utv 1H5[m/2 + 1: m]HT)
4. Output z = zL||zR.

e Sol*(1Mt, 2):

Parse z = zp||2R.

Compute by ||sp||r = Solsnort (1,2, 21.).

Compute bg||sg|rr = Solshort (17, £, 2).

If by =0, br =1, and r, = rg, output sz ||sg.

A

Otherwise, output 1.

Theorem C.3. Let m: N — N where m(X) is at least 4\ + 2 and is even for all A € N. Assuming
the existence of a time-lock puzzle that is (1,2)-concurrent non-malleable against depth-bounded dis-
tinguishers for messages of length 1 +m(\)/2 + X and output length m(\), there exists a time-lock
puzzle for messages of length m(\) that satisfies non-malleability against depth-bounded distinguish-
ers but does not satisfy non-malleability against distinguishers with size and depth t - poly(\,logt).

We note that, in order for TLPgyo¢ to provide at least A bits of security, it must be the case that
its output length is at least A bits longer than its input length. This implies that m > 1+m/2+2),
or m > 4\ + 2. Additionally, we note that by Lemma C.2, our construction nmTLP; of Section 4
when instantiated for messages of length 1+m /24 \ gives a candidate for TLPgpop¢ in the auxiliary-
input random oracle model assuming any polynomially-hard TLP.

The proof of the theorem follows by considering the construction TLP* based on TLPgort.
Correctness, efficiency, and hardness of TLP* are straightforward to show from the corresponding
properties of TLPghort, S0 we focus on the relevant notions of non-malleability below.

Lemma C.4. Assuming TLPgnort is a correct time-lock puzzle, TLP* is not (1,1)-concurrent non-
malleable against distinguishers with size and depth t - poly(\,logt).

Proof. Let B(\) be a bound on the running time Gen*(1*,T()),-) for any T'(A) € poly()\), which
is a polynomial by efficiency of Gen*. Let o be any positive polynomial, and consider the function
T(A) = a(A) - B(A). We construct a MIM adversary A = {A)},cy that on input z = zr||zr
Gen*(1*,T(\), s) outputs Z < Gen*(1*,¢,21). By efficiency of Gen*, A, runs in time B()\) =
T(N)/a(N) sois a valid (1,1, 8, a, T)-MIM adversary.

Let D be the distinguishing algorithm that on input § computes by, ||31||77, = Solshort (1%, T'()), 3)
and outputs 57[0]. Since 7 is in the support of Gen*(1*,t,21), it follows that 5 = z; as long as
21, is not equal to z (which is the case with high probability over the randomness of Gen* used
to generate z = zp||zr). By correctness of TLPgyot, it holds that 57 = s[0 : m/2], so D outputs
s[0] with high probability. This violates (1, 1)-concurrent non-malleability by considering the string
s = 1™, which differs from 0 in the first bit. Furthermore, D runs in time ¢ - poly(A,logt) by
efficiency of Solgport . O

Lemma C.5. Assuming that TLPgyort is a (1,2)-concurrent non- malleable time-lock puzzle against
depth-bounded distinguishers, then TLP* is (1,1)-concurrent non-malleable against depth-bounded
distinguishers.
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Proof. Suppose that TLP* is not non-malleable against depth-bounded distinguishers. Then, for
any positive polynomial «, there is a function 7" with a(A\) < T(\) € poly(A) for all A € N, a
(1,1,1,,T)-MIM adversary A = {A)},cy, & polynomial-size distinguisher D = {Dy } oy satis-
fying depth(D)) < T'(A)/(a(A)), a polynomial ¢, and a string s € {0,1}™ such that for infinitely
many A € N it holds that

Pr {DA(mimA(l)‘,T()\), 5)) = 1} ~Pr [D,\(mimA(l/\,T()\),Om)) - 1} ’ > 1/q()).

We show, by a hybrid argument, that this implies we can break (2,2)-concurrent non-malleability
of TLPghor¢ against a depth-bounded distinguisher. As (1, 2)-concurrent non-malleability implies
(2, 2)-concurrent non-malleability (see Lemma [.1), this suffices to reach a contradiction. Since the
above holds for any «, we will show it for the case where a(\) = aghort(A) - (1 4+ B1(A) + B2(N)),
where aghort is the polynomial specified for the (2,2)-concurrent non-malleability of TLPgyor¢ and
b1, B2 are fixed polynomials, greater than 1, specified in the proofs of Claim C.6 and Claim C.7,
respectively.

Throughout the proof, let t = T'(\). For any s € {0,1}"™ and each A\ € N, we define the following
hybrid experiments.

e Hyb5(\): The first hybrid is identical to mim4(1*,¢,s) with Gen* written out explicitly.
r <+ {0,1}}

21, < Gengport (11,1, 05[]0 : m/2]||7)
2R < Genguors (14,1, 1|[s[m/2 4+ 1 : m]||r)

Hybj(\) ={ 2 =2zlizr .5
Z + Ax(2)
_ Lifz==%
S =
| Sol*(1*, ¢, 2) otherwise

e Hyb{(\): The next hybrid sets § = L if either Z;, or Zr are copied, instead of only if both are
copied.

r+ {0,1}*
21, Gengpors (11, 2, 0]|5[0 : m/2]||r)
2R < Genghors (14,1, 1||s[m/2 4+ 1 : m]||r)
HybS(\) ={ 2= zLll2r X
zZ= 5L||2R — A,\(Z)

L if Z;, or Zg equal zy, or zp

5= N '
Sol*(1%,¢, 2) otherwise

e Hyb3(\): The next hybrid computes z;, and zg using 0™/2 in place of s[0:m/2] and s[m/2+1:
(r <« {0,1}*

2L Genshort(l)‘,t,OHOm/QHr)

2R — Genguor (17,1, 1/|0™/2|7)
Hybs(\) ={ 2= zLll2r L5
Z AA(Z)

. 1L if Zf, or Zgr equal zy, or zp
L °T Sol*(1*,t, 2) otherwise
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e Hyb3(\): The final hybrid set 5§ to L only if Z is invalid or Z = 2z (equivalently, Z;, = 2z, and
Zr = zr). Note that this hybrid is identical to mim_4(17,¢,0™).

(7 {Oa 1}/\
L Genshort(l)\a t’ OHOm/QHr)
ZR < Genshort(lAa t, 1||0m/2||r)

Hyb§(\) =4 2 =2zli2r .5
zZ+ Ax(2)
B lifz==z
5=

| Sol*(1*, ¢, 2) otherwise

It follows that, for infinitely many A € N, D, distinguishes at least one pair of consecutive
hybrids with at least 1/(3-¢()\)) probability. We show that, if this is true for any pair of consecutive
hybrids, D) can be used to violate (2,2)-concurrent non-malleability of TLPgyo¢ with a depth-
bounded distinguisher. At a high level, we show in the first claim that if D) distinguishes either
Hybg(A) from Hybj () or Hyb3(\) from Hyb3()\), then it can be used to generate a new puzzle that
depends on the randomness r. In the next claim, we make use of the fact that Hybj(\) and Hyb5(\)
now set § to be L as the MIM distribution would for (2, 2)-concurrent non-malleability of TLPgpoyt.

Claim C.6. Let s € {0,1}"™ and for any A\ € N, define p(\) as
p(A) = [Pr[Dx(Hybj(A)) = 1] — Pr[Dx(Hybi () = 1]] .

Then, there exists a reduction that violates (2, 2)-concurrent non-malleability against depth-bounded
distinguishers for TLPguore with probability at least p(\) — 277,

Proof. Fix any value of s. Throughout the proof, we denote by sy, the first m/2 bits of s, and by
sg the second m/2 bits.

We start by noting that Hyb{()) sets § = L if and only if either Z solves to L, or Z, = zp,
and Zr = zr. The difference between this and Hybj()) is that in the latter, the value of § might
additionally be set to L if neither of the above cases occur (so Z solves to a non-L value and
(2LllZr) # (2Lll2R)), yet ZL or Zr are equal to either zy, or zp.

We have the following observations about this event. First, because Z solves to a non-L value
using Sol*, then Z7, has the solution 0||S.||7 and Zgr has the solution 1||5g||7 for some values of
31, 8R, 7, when solving using Solg,ot. Moreover, since one of the puzzles is copied, then 7 = r.
Therefore, whenever the output of the hybrids differs, then the following event, denoted E, occurs:

At least one of 1, Z is not copied from zy, or zg, and solves to b||3||r for some b € {0,1}
and 5 € {0,1}™/2.

It follows that E occurs with probability at least p(\) when r, 21, zr, 21, Zr are sampled as in the
hybrid distributions. Formally, we have that

[ {07 1})\

zL Genshort(lkvta OHSLHT)
ZR Genshort(l)\vta 1HSRHT) ‘
Zrl|Zr < Ax(zzllzR)

Pr > p(A).

Looking ahead, we want to use this to break the (2, 2)-concurrent non-malleability of TLPgpot,
where we receive puzzles (zr, zg) either corresponding to solutions (0||sz||r, 1||sg||r) or (0™/2FA+1,
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0™/2+2+1) To do so, it will be helpful to consider the probability that E occurs when z7, and zp are
generated as puzzles for 07/2tA+1, Because r is chosen uniformly from {0,1}* and z7, and zp are
independent of r, it follows that in this case E occurs with at most 27 probability over r. Namely,

r <+ {0,1}*

2L, — Genshort(l)‘, t, Om/2+)‘+1)
ZR < Genshort(l)‘, t, 0m/2+/\+1)
ZrlIZr < Ax(zLll2R)

Pr CE|l <27

It follows that there exists a fixed value of r, denoted r*, such that the difference in the above
two probabilities relative to 7* is at least p(\) — 27*. We will use 7* to give an adversary and
distinguisher against the non-malleability of TLPgpoy-

Consider the MIM adversary Agport against the (2, 2)-non-malleability of TLPgyo¢ that on input
(2L, 2Rr), computes Zr ||Zr < Ax(zL|zr) and outputs (21, Zr). Let Dghort be the distinguisher that
has r* hardcoded and receives two solutions as input. If at least one of them can be parsed as
BHé |lr* for some b, §, then Dgyore outputs 1. Otherwise, Daport Outputs a random bit.

We observe that Doy outputs 1 (rather than a random bit) if and only if E occurs, which
follows by definition of E and Dgpot. It therefore follows that

Pr [Dasenemim o (1, Ol [, o)) = 1]

short (

= Pr [Dapors(mim g, (1,8, (072 gr/200H) — 1] | > p() — 27

To complete the reduction, we discuss the efficiency of Agnort and Dgport and the parameters used
in the reduction. For Ag,ort, it only runs Ay while formatting the inputs and outputs appropriately.
For Dgnory, it simply checks if its input can be parsed correctly based on r*, which takes time
polynomial in its input length m + 2A 4 1, which is a fixed polynomial in A. Let 51 be a polynomial
in A upper bounding the overheads for each algorithm, so both algorithms have size poly(\) and
depth at most T'(\)/a(A) + B1(A). Recall that we set a(A\) > agnort (1 + B1(N)) where agnert is the
polynomial given by the (2,2)-non-malleability of TLPgo+t against depth-bounded distinguishers.
We can therefore bound depth(Agport) and depth(Dgport) by

TO) o T e A0 _ TO) +T0) - A
oy TAN = o) = o)

_ T AT AN T

T ashort(A) - (T+ B1(N)) ashort()‘)7

where we used the fact that a(\) < T(A\). Therefore, Agnort is a valid (2,2, 1, aghort, 7')-MIM
adversary and Dgpo¢ has bounded depth, as required. Finally, we note that that since () is
greater than agpert(A), it follows that T satisfies aghort(A) < T(N) € poly(\), which completes the
proof. O

T\

Claim C.7. Let s € {0,1}™ and for any A\ € N, define p(\) as
p(A) = [Pr[DA(Hybi (X)) = 1] — Pr[Dx(Hyb3 (X)) = 1]].

Then, there exists a reduction that violates (2, 2)-concurrent non-malleability against depth-bounded
distinguishers for TLPgnory with probability at least p(\).
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Proof. Let T, D, A, and s be as above. As
p(A) = [Pr[Da(Hybi(A)) = 1] — Pr[Di(Hyb3())) = 1][ ,

it follows by an averaging argument there exists a fixed choice of r in the experiment such that the
distinguishing probability is at least p(A) with respect to r. We refer to the hybrid experiments
above in this setting as HybfX°d(\) and Hybi*ed()).

We construct an adversary Aghort and a distinguisher Dgpor that violates (2, 2)-concurrent non-
malleability of TLPgyo for s; and sg equal to either (1) 0||s[0 : m/2]||r and 0||s[m/2 4+ 1 : m]||r
or (2) 0]0™/2||r and 0]|0"/2||r, corresponding to hybrids 1 and 2, as follows. Aguer¢ on input
21+ Genghort (14,1, 51) and zp + Genguor (14,1, sg) runs Ay (zz||zg) to obtain Z = Z;||Zg and
outputs the puzzles Z;, and Zr. The distinguisher Dy, receives as input the solutions BLHE oll7r
and bg|3g||Fr corresponding to solving the puzzles Zj, and Zg, respectively (unless either puzzle
is copied, in which case it receives L in place of the solution for that puzzle, which we deal with
separately). If it holds that by, =0, bg = 1, and 7, = 7', Dshort OUtpuUts Da(51]|5r). Otherwise (or
if either input is L), Dgport outputs Dy(L).

To prove the claim, we show that in case (1), the output of Dgyort, when given as input the
solution underlying the output of Agport(2), is distributed identically to D )\(Hyb?"ed(}\)). The proof
that the output of Dgyo is distributed according to Dy (Hybi*d (X)) in case (2) follows similarly.
We note that the input to Ay in Hybf*d()\) is identically distributed to its input when run by
Aghort, since both z7, and zr are generated identically. Therefore, the output Z of Ay(zr||zr) is
identically distributed in both cases.

We next argue that the input to D, is identically distributed in each case. In particular, we
want to show that Hybﬁixed sets the input to L if and only if mim 4, . or Dgnort cause the input of
Dy to be L. In the forward direction, Hybi*d sets the input to L if (a) Z;, or Zg are copied or (b)
% solves to L, meaning either Z;, or Zg solve to L or by, 40, br # 1, or 7, # 7p. In case (a) where
either are copied, Dgport receives L for the corresponding value and outputs Dy(L). In case (b),
Dghort directly checks that both solutions are non—_1 values, that b, = 1, BR =1, and 7, = 7R.
For the reverse direction Dgport(A) outputs Dy (L) if either input it receives is L or if the checks it
makes don’t pass. Dgnort receives an input of L if either Z or Zr are invalid or copied, in which
case HybfliXEd sets § to L. Similarly, the checks Dgp ot make exactly correspond to checking whether
Z solves to L under Sol*, in which case Hyb{ixed also sets § to L. Thus, the output of Dgport is
identically distributed to the output of Dy (Hybi*ed())).

Finally, we remark on the efficiency of Agnort and Dgpory and the corresponding parameters used
in the full reduction. Agpop¢ simply runs Ay while formatting the inputs and outputs appropriately.
Dshort Tuns D)y, after making the necessary equality checks. Let (85 be a polynomial in A upper
bounding the overhead for each algorithm, so both algorithms have size poly(\) and depth at most
T(N)/a(X) + B2(X), where we recall that a(X) > agnore (M) (1 + B2(N)). Tt follows that depth(Aghort)
and depth(Dgport) are bounded by

() CTO)+a(N) - BN T + T - Bo(N)
oy TN = 2\ = o)
_ T AT B0 TR

B ashort()‘) ’ (1 + 62()‘)) B O‘short()‘)’

where we used the fact that a(A) < T'(A). This means that Ago¢ is a valid (2,2,1,«a,T)-
MIM adversary and Dgpopt satisfies the necessary properties of depth-bounded distinguisher non-
malleability. Finally, we note that that since a/(\) is greater than agpet (), it follows that 7" satisfies
ashort (A) < T'(A) € poly(XA), which completes the proof. O
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This completes the proof of the Lemma. O

D Discussion of Non-Malleable Definitions

We briefly discuss the different notions of non-malleability studied in this work. Specifically, we
compare standard non-malleability (Definition 3.4), non- malleability against depth-bounded dis-
tinguishers (Definition C.1),and functional non-malleability (Definition 4.1). In section 1.3, we also
discuss the definitions considered in the concurrent works of [KLX20, BDD*20, BDD*21].

Common to all of our definitions, there is a depth-bounded man-in-the-middle (MIM) attacker,
which we call A, that on input a puzzle z with solution s tries to output a different puzzle Z to a
related value 5. Here, A is depth-bounded relative to the difficulty of the puzzle, so it should not
be able to solve the puzzle. The definitions vary in what it means for § to be “related” to s. For
our standard notion of non-malleability, we require that no unbounded distinguisher D on input §
can tell if it came from the experiment starting with s or the all-zero string. In the definition of
non-malleability against depth-bounded distinguishers, D is restricted to be depth-bounded in the
same way as A. In the case of functional non-malleability, the (unbounded) distinguisher D receives
instead as input f(3) where f is a low-depth function. We parameterize functional non-malleability
by an output length m. When m = |s|, this captures plain non-malleability by considering f to
be the identity function. When m = 1, this captures depth-bounded distinguisher non-malleability
as f essentially plays the role of the depth-bounded distinguisher D. In Theorem 4.2, we show
how to construct a time-lock puzzle satisfying functional non-malleability for any output length m
assuming a time-lock puzzle that is 2™ - poly()) secure.

When considering concurrent non-malleability, the MIM attacker A receives possibly multiple
puzzles zi,...,z,, that have solutions si,...,s,, as input and tries to output multiple puzzles
Z1,. .., 2Zny (different from its inputs) corresponding to §i, ..., §,,. In the most general form, we can
consider some distinguisher D that receives as input f(51,...,3,,) and tries to tell if it came from
the experiment starting with sq,...,s,, or with n;, all-zero strings. We show in Theorem 4.16that
if the MIM attacker can encode a time-lock puzzle into the value f(s1,...,5,,) (where f may
be the identity), then the construction cannot be secure against an unbounded distinguisher. In
particular, if the function’s output length m is greater than the output length of the time-lock
puzzle, the scheme may not be secure. On the other hand, our construction of Theorem 4.2 works
for functional non-malleability even in the fully concurrent setting, as the output length of f is
bounded. So, as long as the output length of the function f is sufficiently small, we can support
unbounded concurrency.

Finally, our separation in Appendix (.2 gives a construction that satisfies plain (non-concurrent)
non-malleability against depth-bounded distinguishers yet does not satisfy non-malleability against
unbounded distinguishers. We remark that in the setting where the message length for the puzzle
is 1 bit, these notions are equivalent by simply considering the depth-bounded distinguisher that
outputs the bit it gets as input. Moreover, it can be shown that they are equivalent as long as
the message length is in O(log \). Therefore, this separation necessarily relies on the fact that the
message length for the puzzle is in w(log ).

We summarize the various relationships between the definitions in Figure 1. Specifically, an
arrow from definition A to definition B indicates that any construction satisfying A also satisfies
B. We let Fy be class of depth-bounded functions with ¢-bit output. We denote by m the message
length of the TLP scheme, and by n the concurrency. Unless otherwise specified, the arrows hold
for all concurrency bounds n. First, the implications going from left to right for the top and
bottoms rows hold directly since they only restrict the power of the distinguisher. Next, we note
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FNM for —— FNM for /) ———  FNM for F;

all functions / /

NM —mm Depth bounded NM

nzl

Figure 1: Relationship between notions of non-malleability. An arrow from A to B indicates that
any construction satisfying A also satisfies B. Here, m is the message length, n is the concurrency,
and Fy is class of depth-bounded functions with ¢-bit output.

that functional NM for all functions f is equivalent to NM with an unbounded distinguisher D.
From FNM to NM, we can let f be the identity (as long as the output length £ > m-n), and in the
other direction, we can construct a new distinguisher D’ that simply runs (D o f) for any f. We
argued in Appendix C.1 that FNM for depth-bounded functions with output length 1 is equivalent
to depth-bounded NM since both f and D are depth-bounded and have output length 1. Finally,
the negative arrow from depth-bounded NM to NM follows in the setting of n = 1 by Theorem C.3.

E One-Many Non-Malleability

We show that one-m functional non-malleable time-lock puzzles for any class of functions F
are in fact m-concurrent functional non-malleable for F. We note that this captures standard
non-malleability whenever F contains the identity function. The structure of the proof follows
from [LPV08], who show the claim for standard non-malleable commitments. We note that their
proof requires relying on a definition of non-malleable commitments where the distinguisher also
gets the view of the attacker. Similar to the setting of non-malleable codes, we cannot achieve such
a notion for time-lock puzzles since a (even polynomial-time) distinguisher can trivially distinguish
when receiving the view as input. However, because time-lock puzzles are non-interactive, we can
still show the following composition theorem.

Lemma E.1 (One-many to concurrent). If (Gen,Sol) is a time-lock puzzle that is one-many func-
tional non-malleable for a class of functions F, then it is also fully concurrent function non-
malleable for F.

Proof. Let (Gen,Sol) be a one-many functional non-malleable time-lock puzzle for a class of func-
tions F.

To show the claim, suppose for contradiction that the time-lock puzzle is not fully-concurrent
non-malleable, meaning that there exists a function f € F such that for every positive polynomial
a, there exists a function T with a(A) < T'(\) € poly(A) and polynomial n such that the following
holds. Fix a probabilistic polynomial-time (n,n,1,a,T)-MIM adversary A = {A)},cy, and sup-
pose there exists a distinguisher D = {D) },y, a polynomial ¢, and a vector § = (s1,...,5,(\))
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such that for infinitely many A € N it holds that

[ Pr [ DA(f(mim (1), T(Y), 5)) = 1]

= Pr [Dy(f(mima(1, (M), (0)"V)) = 1] | >

Looking ahead, let ayp be the positive polynomial associated with the functional non-malleability
of (Gen, Sol) for f. We will show that this implies a (1,n,1, cp, T')-MIM adversary B such that
for infinitely many A € N, there exists a value s € {0,1}* such that Dy can be used to distinguish
the output of f(mimg(1*,T(\), s)) from f(mimg(1*,T()\),0*)), which will contradict the one-many
functional non-malleability of the time-lock puzzle. As the above holds for any «, we will show a
contradiction when a(\) = ayp(A)(1 4 26(N)), for a polynomial 3 specified below.

To so do, fix any A for which D) succeeds at distinguishing above, and for i € {0,...,n(\)}
define 7¥) to be the vector where the first i entries are (s1,. .., s;) and the remaining n(\) —i entries
are set to 0}, As 7"M) = 3 and #(© = (0))"V it follows by a hybrid argument that there exists
an i € [n(\)] such that

Pr [D,\(f(mimA(l)‘,T()\),E(i_l))) - 1]
1

vy (®1)

~Pr [D,\(f(mimA(l’\,T()\),W))) —1

We can now define the (1,n, B}, atip, T)-MIM adversary By, which we will use to contradict
the one-many non-malleability of the time-lock puzzle relative to the value s;. The adversary B
has 7 hardcoded, and receives as input a puzzle z* either to s; or 0*. It then does the following:

1. Sample puzzles z; < Gen(l’\,T()\),ﬁj(.i)) in parallel for j € [n(A)] \ {7}
2. Let 2= (21,...,2i-1,2", Zi+1, - -, Zp(n) ), and run Z Ax(2).

3. In parallel, check if any of the puzzles in Z are equal to any puzzles in Z. If so, replace the
matching puzzles with |, and output the resulting vector.

We will show that B) succeeds at breaking the one-n functional non-malleability of the time-lock
puzzle, which suffices to break one-many functional non-malleability. We first analyze its success
probability, and then its efficiency. To analyze its success probability, we claim that when B)
receives a puzzle for s;, then

mimg(1%, T(\), 5;) = mimA(l)\7T()\)7qj’(i))
and when B) receives a puzzle for 0, it holds that
mimg(1*, T(X),0%) = mim (1}, T(\), 70~ Y).

To see this, recall that for any vector 5, the distribution mim_4(1*, T(\), 5) is given by (a) sampling
a vector of puzzles for &, (b) running 4y on that vector to obtain its output vector, (c) replacing
any puzzle that appear in both vectors with L, and (d) finding the unique solutions to the resulting
puzzles (or L). Next, we compare this to the output of mimg, both on input 0 and s;:
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e The distribution mimg first samples the puzzle z*, either to 0* or to s;, and proceeds to run
By (z*), who computes the vector 2. When B) receives a puzzle for s;, then it sets 2’ to be a
puzzle vector to 7, and when By, receives a puzzle for 0%, it sets the puzzle vector to corre-
spond to #*~1). Therefore, Z as computed by mimz(1*,T()\), s;) has the same distribution as
the input to A computed by mim4(1*, T()\),7®), and Z as computed by mimg(1*,T'()), 0*)
has the same distribution as the input to A computed by mim_4(1*, T(\), 70~—1).

e Next, By computes Z Ay (Z), exactly as done in step (b) of mim 4.

e [3) then replaces any puzzles in Z that have been copied from Z with L, exactly as in step (c)
of mim 4. Note that at this point By outputs z, so mimg is done running B).

e Finally, mimg compares the puzzles in Z with 2* and replaces any that have been copied, but
since z* is part of 2, this has already been done by By and so doesn’t change z. Lastly, mimg
uniquely solves these puzzles, exactly as in step (d) of mim 4.

We conclude that mimg(1*,T(\), s;) = mim4(1*, T()\)), 7)) and mimg(1*, T(X),0") = mim4(1%,
T(X\),7%=1). When coupling this with Equation F.1, it implies that for infinitely many A € N,
the distinguisher Dy can distinguish f(mimg(1*, T(\), s;)) and f(mimg(1*,T()\),0")) with inverse
polynomial probability.

We next analyze the efficiency of By. Recall that By samples n(\) — 1 puzzles to form the
vector Z, runs Ay (%), and then compares the resulting puzzles given by Ay to those in z. As
Gen(1*,T()),-) runs in poly(A,log T(\)) time, T()\) € poly()), and size(Ay) € poly()), it follows
that

size(By) € poly(A, n(A),log T (X)) € poly(A).

To analyze its depth, since the puzzles are sampled in parallel, this can be done in fixed polynomial
depth in A and log T'(\) by the efficiency of Gen. As T'(A) € poly(}), this is bounded by a fixed
polynomial S(A) (independent of n). Running Ay requires at most T'(A)/(a(\)) depth since it is an
(n,m,1,a, T)-MIM adversary. Finally, comparing the resulting puzzles to the original also requires
B(A) depth, by comparing each of the (n()))? pairs in parallel, since the length of each puzzle is a
priori bounded by (). Putting everything together, we have that

depth(ti) = Z0) + 9g(n) = LALZ2 A SO)
_TO) 42T B0) T +2-T() - B0) _ TV
=T o owp) (L +2000)  aup()

where we used the fact that () < T'(A). Lastly, we need to show that ayp(A) < T'(X\) € poly(A).
We are given that a(\) < T'(A) € poly(A) and () > aup(A). Therefore, this gives the desired
bound on 7', which gives the contradiction. O

F Proofs from Section 5

In this section, we state and prove the remaining theorems for our construction of publicly verifiable,
non-malleable time-lock puzzles of Section 5.

Lemma F.1 (Soundness, Restatement of Lemma 5.6). For any polynomial T and unbounded algo-
rithm Z that on input a random oracle O outputs polynomial-size circuits, there exists a negligible
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function negl such that for all \,n € N, i € [n], it holds that

[ O+ RF} T
A B Z<(8)1 \ RSWVerify® (1}, mers, T()), (9,G), y/, 7)) = 1
Crs; < { ’ } COA yl # QZTO‘) < negl()\)

g, Gay/77ra mcrs_;
( - Ao(l’\,crsz,T(A),n) A (g9,G, %) € Supp(RSWGen(l)‘,T(/\)))

| mcrs = (crsy, ..., crsy)

Proof. Let C be a checking algorithm that has hardcoded A\, T'(\), n, i and on input (g, G, v/, 7, mcrs)
outputs 1 if and only if the event in the experiment of the lemma statement holds. Then, we can
rephrase what we want to show as Pr[Hybg(A))] < negl(\) where Hyby(\) is defined as follows:

O« RFy; A=Z(0)

crs; + {0,132

(9,G, 5/, 7, mers_;) < AP (1% crs;, T(\),n)
mcrs = (crsy, . .., Crsy)

Hybo(A) = C(9,G,y',m,mers) = 1

Let f(\) = 2V/2 and let Sam be the inefficient algorithm given in Lemma 3.6 that on input

an adversary, outputs a partial assignment F' on f(A) points. Consider the hybrid distribution
Hyb, ()), defined as follows:

O« RF ;. A= Z(0)
F < Sam(A); P« RF?‘in [F]

Hyb;(A) =< crs; « {0,1}* : C(g,G,y,m,mers) =1
(9,G,y, m,mers_;) < AP (1}, crs;, T(N), n)
mcrs = (crsy, ..., Crsy)

By Lemma 3.6, it follows that there exists a negligible function negl,(\) € +/poly(\)/2*/2 such
that | Pr [Hyb;(\)] — Pr[Hyby(M)] | < negl; ().

Next, we define an inefficient checking algorithm C’ that additionally receives F as input and
outputs 1 if and only if C'(g, G, y’, 7, mcrs) = 1 and F does not contain an assignment for any inputs
to O that contain crs;. We next consider the hybrid Hyb, () defined as follows:

O« RF; A=2Z(0)
F + Sam(A); P <« RF}, [F]

Hyby(A) =< crs; « {0,1}* : C'(g,G,y/,m,mers, F) =1
(9,G,y, m,mers_;) « AP (1} crs;, T(N), n)
mcrs = (crsy, ..., Crsy,)

Since |F| = 2?2 and crs; is uniform over 2* different values, this implies that | Pr[Hyby(\)] —
Pr [Hyb; ()] | < negly()\) for negligible function negly(\) = 2*/2/2* = 2-3/2,

Finally, we have that Pr[Hyby(A)] is bounded by the probability that a non-uniform PPT
algorithm can break the soundness of Pietrzak’s VDF in the plain random oracle model for any
group QRE where N is the product of two safe primes (which is the case since G is in the support
of RSWGen). This relies on the fact that soundness of Pietrzak’s VDF holds for any choice of N
and F' does not contain an assignment for any inputs that contain crs;. Thus, by the analysis
in [Piel9], it follows that any adversary that makes at most () queries to the random oracle can
break soundness with probability at most @ - (3/2*) < negls()\), which is negligible when Q is
bounded by a polynomial.
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Finally, we conclude that there exists a negligible function negl(\) = negl; (\)+negly(\)+negls ()
such that Pr [Hybg(\)] < negl(\), as required. O

Theorem F.2 (Restatement of Theorem 5.7). Let B: N — N. Assuming the B-repeated squaring
assumption holds for RSWGen, then there exists a B-sequential strong trapdoor VDF in the ABO-
string model. Soundness holds in the auzxiliary-input random oracle model.

Proof. Let RSWGen, RSWProve, RSWVerify be defined as above. The theorem follows by considering
VDF = (Sample, 4, Evalyqf, TDEval,gf, Verify,4¢). In what follows, we separately argue completeness,
soundness, trapdoor evaluation, honest evaluation, and sequentiality.

Completeness. Let \,t,n € N, ¢,G € {0,1}*, mcrs € ({0,1}M)", and O € RFz\in. If (9,G) is
invalid, then Eval,gf outputs y = m = L. In this case, Verify, 4 outputs 1 as required. Otherwise, it
must be the case that ¢ € G and G = QR% for some N. In this case, Eval\?df computes y = th and
7 = RSWProve® (1}, mers, ¢, (9, G), ). Verifyf?df outputs 1 if RSWVerify® (1%, mers, t, (¢, G), y, 7) =
1, which holds by completeness of (RSWProve, RSWVerify), given in Lemma 5.5.

Soundness. Let A = {A) },cy be a non-uniform PPT adversary and T" be a polynomial. We note
that we only require soundness to hold for valid (g, G) which are in the support of Sample ¢ (1%, T())).
By definition of Sample g, this implies that (g, G) are in the support of RSWGen(1*, T'())). Tt fol-
lows by definition of Eval,gs and Verify, 4 that if A violates soundness of VDF, then it also violates
soundness for the proof of repeated squaring. By Lemma 5.6, this can happen with at most negli-
gible probability in the auxiliary-input random oracle model.

Trapdoor evaluation. Let A\, t,n € N, (g,G, |G|) € Supp (Sample,4¢(1*,t)), mers € ({0, 1}1),
and O € RFan. Since (g,G) are in the support of Sample ¢, they must be valid. In this case,
TDEval,gs outputs y = g2t mod |G| 47 Eval\(,?jf outputs y' = gzt. Since |G| is the order of the group,
y =y by definition.

Honest evaluation. Computing y = th takes time ¢ - poly(\) to compute ¢ sequential squares
in G. As discussed above, RSWProve takes time ¢ - poly(\,logt,n) to compute. It follows that
there exists a polynomial p such that for all \,t,n € N, mcrs € ({0,1}M)", and O € RFIZ\;n’
Evalf,odf(l)‘, mcrs, t, -) can be computed in time ¢ - p(\,logt,n), as required.

Sequentiality. B-Sequentiality of VDF follows immediately from the B-repeated squaring as-
sumption for RSWGen stated in Assumption 5.4. Namely, Sample 4 simply outputs (g, G) given

by RSWGen, and Eval; simply computes gQT(A). So sequentiality follows syntactically.

Encoding. Thegroup G = QR% isaring. The group can be encoded by the integer N represented
by a string in {0, 1}*. Elements can be encoded by the string representation of integers in [0, (N —
1)/2]. The natural bijective function f;(y) is simply addition x + y in this group. O

Theorem F.3 (Restatement of Theorem 5.8). Let B: N — N. Suppose there exists a B-sequential
strong trapdoor VDF. Then, there exists a B-hard one-sided publicly verifiable time-lock puzzle.

Proof. Let VDF = (Genygs, Evalygs, TDEvalygs, Verify,4¢) be any strong trapdoor VDF. The theorem
follows by considering the construction TLP = (Genyp, Sol,, Verify,) given in Section 5.2. In what
follows, we separately argue correctness, efficiency, hardness, completeness, and soundness for this
transformation.
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Correctness. Let \,t € N, s € {0,1}, z = (z,X,c) € Supp(Genﬂp(l)‘,t,s)), and s’ =
Solyp.1(1*, mcrs, t,2) for any n € N and mers € ({0,1}*)". We need to show that s’ = s. By
definition of Genyp, it holds that (x, X',td) € Supp (Genvdf(l)‘,t)), y = TDEval,gs (17, ¢, (z, X), td),
and ¢ = y @ xs where z is the encoding of s. In particular, this implies that zs = y @ ¢ since @
is a bijection over X' by the encoding property of VDF. By definition of Soly, it also holds that
y' = Evalygr,1(1*, mers, ¢, (z, X)) and z¢ = y' @ ¢ where xy is the encoding of s'. By the trapdoor
evaluation property of VDF, it holds that ¢/ = y, so g = z,. Since the string encodings are unique,
this implies that s’ = s, as required.

Efficiency. We note that by the honest evaluation property of VDF, there exists a polynomial
puds such that Evalyge(1*, mers, t,-) is computable in time ¢ - pygs(), logt, n). Computing y @ ¢ and
encoding s as xs takes fixed polynomial time B(\) independent of ¢. This implies that there exists
a polynomial pyy (A, logt) > puar(A, logt, n) + B(A)/t such that Soly,(1*, mers, ¢, -) can be computed
in time ¢ - pyar(A, logt,n) + B(A) <t - pup(A,logt, n), as required.

Hardness. We show that B-hardness of TLP follows from the B-sequentiality of VDF. Suppose by
way of contradiction that B-hardness of TLP does not hold. Specifically, for any positive polynomial
aylp there exists a function T'(A) € B(A) - poly(A) with ayip(A) < T'(A) for all X € N, a non-uniform
adversary A = {Aj } ¢y Where size(Ay) € B()\)-poly()) and depth(Ay) < T'(A)/a(A) for all X € N,
a polynomial ¢, and strings s, s’ € {0,1}* such that for infinitely many ), it holds that

‘Pr [A,\(Genﬂp(l’\,T()\),s)) _ 1} —Pr [A,\(Gent|p(1A7T()\),s')) - 1” > 1/q(N),

where the probabilities are over the randomness of Geny, and Aj.

For any value v € {0,1}*, let Hyb,(\) be the distribution Geny,(1*,T()\),v). By assumption,

it holds that

| Pr[Ax(Hyby(A)) = 1] — Pr [Ax(Hyby (A))] | > 1/q(X).
Let Hybr"()\) be the distribution that outputs z = (z, X, ¢) where (z, X', td) < Sample g (1%, T(\))
and ¢ = r ® xs; where x4 is the encoding of s and r < X is uniformly sampled.

We note that Hyb™"()) and Hyb"4()\) are identically distributed. This is because the random
element r <— X is uniformly random and, by the encoding property of VDF, & is a bijective function
on X. It follows that ¢ is uniformly distributed over X in both Hyb™"()\) and Hyb3"()\).

As a result, it must be the case that

| Pr[Ax(Hyb, (X)) = 1] = Pr [ Ay(HybZ™ () | | > 1/(2- a(M)

for either s or s’. Assume that this holds for s without loss of generality. We show that this breaks
the B-sequentiality of VDF.

We first define a reduction from adversaries against hardness of TLP to adversaries against
sequentiality of VDF. Given any adversary A = {A\},.y for TLP and string s € {0,1}*, we
construct an adversary B = {B)},cy against the sequentiality of the strong trapdoor VDF as
follows. By on input (z,X,a) computes ¢ = a @ xs where z, is the encoding of s and outputs
Ax(z, X, c). Whenever a is equal to y = TDEval,gs(1*,¢,2), we note that the distribution output
by B, is indentically distributed to Ay (Hyb,(\)). Whenever a is a random element r < X, it holds
that the output of By is indentically distributed to Ay(Hyb™"¢()\)). Thus, for any adversary A and
string s, it holds that

[Pr [Ba(z,y) = 1] = Pr[Bx(z,r) = 1|
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We next argue that this reduction can be used to break the B-sequentiality of VDF. Let cuq4f
be any positive polynomial, and let p(\) be the polynomial function representing the time to do an
encoding and compute @ for any domain X" specified by VDF.

Consider the polynomial ouip(A) = ayar(A) - (1 +p(A)). Note that oy, is positive, polynomially
bounded, and greater than ayqf as aygf, p are polynomials and 1 + p(A) is greater than 1. Thus,
by assumption, there exists a function T € B(\) - poly(A) with ayp(X) < T'(X), an adversary
A = {A) }ren With size(Ay) € B()) - poly()) and depth(Ay) < T'(A)/awp(A), a polynomial ¢, and
a string s satisfying

| Pr[Ax(Hyb, (X)) = 1] = Pr [ Ay(HybZ™ () | | > 1/(2 - a(M)

for infinitely many A € N, as defined above.

For the same function T', consider an adversary B = {B)},cy based on A and s given by the
reduction above. Since auip(A) > aygr(A), it holds that T" satisfies anaf(A) < T'(A) for all A € N. Next,
we note that size(B)) < size(Ay) + p(A) € B(A) - poly(A). Also, depth(B)) < depth(Ay) + p(A) <
T(N)/owp(X) + p(A). Given that ayp(X) = anar(A) - (1 4+ p(A)) and T(X) > ouip(A), it holds that

:at.p(x)_lzatlpm( 1 )ST(A)( 1 >

af () avdf(A)  aup(A) avdf(A)  aap(A)
This implies that
T\ T\ 1 1
denth(By) < L0 +90) < 0+ T (G~ )
_TK)
B CVvd‘f()‘y

as required. Finally, we recall that, for 2 +— Genygs(1*,t), y = TDEvalygs(1*, ¢, ) and 7 < {0,1}*,
[Pr[Ba(z,y) = 1] — Pr[Bx(z,r) = 1]
= [Pr Ay (Hyb, (V) = 1] = Pr [ Ay (HybZ™ () = 1] |
>1/(2-q(A)),

for infinitely many A € N by assumption, in contradiction.

Completeness. Let \,t,n € N, z € {0,1}*, and mcrs € ({0,1}M)". If z cannot be parsed
as (v, X,c), Soly, outputs (s,7) = (L, L). As Verify,, can also check if z is parsed this way,
it outputs 1 in this case, as required. Otherwise, z can be parsed as (x,X,c). Let (y,myar) =
Evalygs (1%, mers, ¢, (, X)) and x, = y & ¢ with string encoding s as computed by Solyp. As z, X €
{0,1}*, it follows by completeness of VDF that Verify,g¢(1*, mers, t, (z, X), (y, mygf)) = 1. Since
zs =y @ c by definition, it follows that Verify,, outputs 1, as required.

One-sided soundness. Suppose there is a non-uniform PPT adversary A = {A\},cy that
breaks one-sided soundness of TLP. Specifically, suppose there exist polynomials T, ¢, integers
n € N and i € [n] such that for infinitely many A € N, it holds that

crs; + {0,1}*

e 1A / _
(2,8, m,mers_;) « Ax(1*, crs;, T(N),n) Verify(1%, mers, T(A), 2, (s', m)) = 1

Pr : Ns# s

mcrs = (crsy, ..., Crsy) \ .
s = Soly (1*, mers, T(\), 2) A z € Supp (Gen(l , T(N), ))
> 1/q(N).

82



We construct an adversary B = {B) },cy such that for the polynomial 7', integers n € N and
i € [n], B breaks the soundness of VDF with probability 1/¢(A) for infinitely many A € N. B
on input (1%, crs;, T(N),n) computes (2,8, m, mers_;) = Ay(1*, crs;, T(\),n), parses z = (z, X, ¢),
m = (y, mydf), and outputs (z, X,y , myaf, mers_;). Note that since Ay runs in polynomial time, so
does B,.

We next analyze the success probability of B for security parameter A. First we note that when
Aj succeeds, the puzzle z = (z, X, c) output by A, is in the support of Gen(1*,7'()),-), so it also
holds that (z, X', x) € Supp (Sample g (1*,T())). Next, whenever Verifyﬂp(l)‘, mcers, T'(A), z, (8, 7))
outputs 1, it holds that zy = ¢ @ 3y and Verify, (1, mers, T()), (z, X), (¢, 7af)) = 1. Next, by
completeness of TLP, it holds that z5 = c®y, where y = Evalygf 1(1*, mers, T()), (z, X)) as computed
by SoltLp(1*, mers, T'()\), z). However, since s # s, it holds that x, # 2+ so y # 3. It follows that
for the polynomial T, integers n € N and i € [n], for infinitely many A € N, it holds that

crs; + {0,1}*

(x, X,y s, mers_;) Verify, ¢ (1%, mers, T(N), (z, X), (3, Tgr)) = 1
Pr — By(1*,crs;, T(N),n) C ANy #£yY
mcrs = (crsy, ..., Crsy) A (z, X,*) € Supp (Sample 4 (1*,T(N)))
y = Evalygr,1 (1%, mers, T(N), (z, X))
> 1/q(N),
in contradiction. O

Lemma F.4 (Correctness and completeness proofs for Theorem 5.9). Let (Gen, Sol, Verify) be the
construction of a publicly verifiable time-lock puzzle from any one-sided publicly verifiable time-lock
puzzle from Section 5.5. Then, (Gen, Sol, Verify) satisfies full correctness and completeness.

Proof. We separately prove full correctness and completeness.

Full correctness. Let A\,t € N, z € {0,1}*, and &' = So|t|p71(1’\,mcrs,t,z) for any n € N and
mcrs € ({0, 1})".

In the case that z € Supp (Geno(l)‘, t, s)) for some s € {0,1}*, we need to show that s’ = s. Let
r be a value such that z = Gen®(1*,t,s;7). First note that z € Supp (Genos(1*, 2, (s||r)) ). Next,
Sol computes (305, Tos) = Solos(1*, mers, t, ) and parses 805 = §||#. By correctness of Solys, it holds
that § = s and # = r. Then, by assumption, it holds that z = Geno(l’\,t,s;r), so Sol outputs
s’ = s, as required.

In the case that z € Supp (Geno(l’\,t, s)) for any s € {0,1}*, we need to show that s’ = L.
Note that Sol only outputs a value s’ # L if z = Geno(l’\, t,s;r) for some s. By definition, this can
only be the case for z € Supp (Gen(l)‘, t, s)) for some s. Thus, s’ must be equal to L in this case.

Completeness. Let \,t,n € N, z € {0,1}*, mcrs € ({0,1}M)". Let (s,7) = Sol® (1}, mcrs, t, 2).
We need to show that Verify®(1*, mers, t, z, (s, 7)) = 1.

First, we consider the case where z € Supp (Geno(l)‘, t, s)) for some s € {0,1}*. This means
that z = Geno(l)‘, t,s;r) for some r € {0,1}*. In the proof of correctness above, we showed that
Solo(lA7 mcrs, ¢, z) output (s,r) in this case. Since s # L, Verifyo(l)‘7 mcrs, t, z, (s,7)) outputs 1 if
any only if z = Geno(l)‘, t,s;7), which holds by assumption.

Next, we consider the case where z € Supp (Geno(l)‘, t, s)) for any s € {0,1}*. In this case, we
argued in correctness that s = L, so it must be the case that 7 = (Ses, Tos) = Solos(1*, mers, ¢, 2).
By completeness of the underlying TLP, we know that Verify (1}, mcrs, ¢, 2, (Sos, Tos)) = 1. Thus,
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Verifyo(l)‘, mcrs, t, z, (s, 7)) outputs 1 as long as z # Geno(lA,t, s;7), but this must be the case as
z & Supp(GenO(l)‘,t, )) by assumption. O
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