SAKE™: Strengthened Symmetric-Key Authenticated
Key Exchange with Perfect Forward Secrecy for IoT

Seyed Farhad Aghili', Amirhossein Adavoudi Jolfaei? and Aysajan Abidin'

! imec-COSIC KU Leuven, Kasteelpark Arenberg 10-bus 2452, 3001 Heverlee, Belgium
{seyedfarhad.aghili, aysajan}@kuleuven.be
2 Department of Computer Engineering, University of Isfahan, Isfahan, Iran
a_adavoudi@eng.ui.ac.ir

Abstract. Lightweight authenticated key exchange (AKE) protocols based on symmetric-
key cryptography are important in securing the Internet of Things (IoT). However, achiev-
ing perfect forward secrecy (PFS) is not trivial for AKE based on symmetric-key cryptog-
raphy, as opposed to AKE based on public-key cryptography. The most recent proposals
that provide PFS are SAKE and SAKE-AM. In this paper, we first take a closer look at
these protocols and observe that they have some limitations, specially when deployed in
the context of (industrial) IoT. Specifically, we show that if SAKE is used to establish
parallel sessions between a server and multiple IoT nodes, then SAKE is susceptible to
timeful attack. As for SAKE-AM, we show that an adversary can disrupt the availability
by replaying messages from previous protocol sessions. We then propose SAKE™ that
mitigates the timeful attack and that allows for concurrent execution of the protocol.
Since traceability is a barrier for an AKE scheme in (industrial) IoT applications and
SAKE-AM does not provide untraceability property, we improve upon SAKE-AM and
propose SAKET-AM that offers untraceability in addition to mitigating the replay at-
tack. Finally, we prove the security and soundness of our schemes, and verify using a
formal verification tool ProVerif.

Keywords: Authenticated key exchange, Forward secrecy, [oT, Symmetric-key crypto.

1 Introduction

Key Exchange (KE) is a cryptographic building block that enables two parties to ne-
gotiate a shared key securely over an insecure channel. KE protocols are widely used in
secure communication protocols, including IPSec, SSH, SSL/TLS, etc., where two par-
ties aim to share a key to securely communicate with each other. The resulted shared
key may further be used to provide some cryptographic goals such as authentication, in-
tegrity, and confidentiality [10]. For instance, the shared key could be used in symmetric
cryptographic algorithms such as AES, 3DES, etc., (which are embedded in the men-
tioned protocols, i.e., IPSec, SSH etc.,) to provide confidentiality [38]. Authenticated
key exchange (AKE) schemes are a wide selection of KE protocols in which a user and
server authenticate each other and establish a session key that is used for transmitting
data securely [10,|38]. The Needham-Schroeder protocol is one of the AKE schemes
designed in the earliest publications [31]. TLS handshake is also the most widely-used

protocol on the Internet, which is an example of AKE protocol [5,31]. In [9], Blake-
Wilson, Johnson, and Menezes have identified several major security attributes of an
AKE protocol as below.

— known session keys: If an adversary learns the previous session keys, s/he will not
compromise the security of the protocol.

— (perfect) forward secrecy (PFS): PFS attribute prevents an adversary who has
obtained the current long-term secret key from learning the previous session keys.

— unknown key-share (UK S): Considering this attack, the party A believes that he
has shared a key K with the party B, while the party B mistakenly believes that
he has shared the key K with another party C; see also [10].

— key-compromise impersonation: Let’s assume that the adversary & has compro-
mised the party A’s long-term key (K). It is trivial that £ can easily impersonate
the party A to any other parties using the key K. However, it is not sensible that
the adversary £ masquerades as another party, say B, to establish a valid session
with the corrupted party A; see also [35].

— loss of information: Comprising any information that is usually not available to
an adversary should not impact the security of the protocol.

— message independence: The flows of a protocol run between two honest parties need
to be independent of each other per session.

AKE protocols could be designed in various settings, including a two-party, three-
party, asymmetric, symmetric, group key exchange, and password-based settings. The
work [3], for example, made use of two-party and symmetric settings, while the research
paper [2] used three-party and symmetric settings. Several studies attempt to achieve
PFS among the attributes mentioned above. Researchers tend to take advantage of
Diffie-Hellman key agreement (DHKA) schemes to provide PFS, e.g., [16,/17,36,37];
however, these protocols are not suitable for use in lightweight applications. In fact,
DHKA schemes use two heavy modular exponentiation operations (or elliptic curve
operations), which makes it too heavy for resource-limited devices such as the Internet
of Things (IoT), the Industrial Internet of Things (ITIoT), the Internet of Medical Things
(IoMT), etc. Hence, a few proposed schemes [1},3,8,13,20,34] aim at achieving PFS by
employing symmetric key settings in which long-term keys (from which the session keys
are derived) are modified regularly [20]. Such schemes based on the regular update of
the long-term keys are Key-Evolving Schemes [20}21].

In |20] the authors state that the symmetric key based AKE protocols are designed
in ad hoc fashion, and such protocols are susceptible to several attacks such as de-
synchronization. Therefore, design of symmetric key based protocols in a systematic
way to ensure the security and privacy issues is crucial. Recently, Avoine, Canard, and
Ferreira presented two symmetric key based AKE schemes, namely, SAKE and SAKE-
AM, to achieve PFS in [3]. Unlike most of the previous ad hoc designs, SAKE and
SAKE-AM are designed in a systematic manner.

Contributions. In this paper we observe that although the SAKE and SAKE-AM
offer several key security features, these schemes have some limitations. We then propose
improvements to both protocols. Our specific contributions are as follows.

— We demonstrate that although SAKE and SAKE-AM offer several key security
features, SAKE is vulnerable to timeful attack in some real world scenarios, and
SAKE-AM is to replay attacks that can cause unavailability.

— We propose SAKE™, which not only does inherit the merits of SAKE, including the
PFS and mutual authentication, but also mitigates the timeful attack.

— We present SAKET-AM which mitigates replay attack as well as offers an important
privacy feature, i.e., untraceability.

— Our proposed scheme SAKE™ supports concurrent /parallel protocol execution, while
SAKE only allows sequential execution. The concurrency of our scheme makes it
more appropriate for IoT applications.

— In addition to formally proving security, we demonstrate the properties, such as,
soundness, secrecy, and mutual authentication, of our schemes using ProVerif [12].

1.1 Related work

Here we discuss the related work concerning the symmetric key based protocols that
ensure PFS. Various research studies have used different terms for PFS [3,20], including
forward security [8}/13},20,34] and forward secrecy [3,13]. In |3], the authors claim that
symmetric key based protocols generally do not ensure security as much as asymmetric
key-based protocols do. Particularly, they do not ensure forward secrecy. So far, a few
research studies have been conducted with regard to symmetric key based protocols
which are discussed in the following. Authors of [20] introduced a definition and model
for AKE protocols. They presented an algorithm for their model/definition that can
be used by automatic verification tools. They proved that their protocol named FOR-
SAKES is secure within the model. FORSAKES is unconditionally secure in the random
oracle model. The notion of FORSAKES is based on the key-evolving scheme in which
the long-term keys of the protocol get updated. The proposed scheme assumes a uni-
versal clock that is shared between the parties; however, making such an assumption is
strong given that achieving perfect time synchronization, in any context, is complicated
in practice. Additionally, the presented scheme has not considered an adversary with
the capability to desynchronize the long-term keys between two parties [3]. The authors
left the side channel attack resistance of their protocol as a future work. The presented
scheme in [§] made use of pseudo-random bit generators as the main cryptographic
building block to ensure forward security. A pseudo-random generator is secure if its
output is computationally indistinguishable from a random string with the same size.
Their scheme provides forward-secure symmetric encryption and forward-secure mes-
sage authentication. Forward-secure message authentication prevents an adversary, who
obtained the key used for message authentication, from compromising future uses of the
key and from making the previously authenticated data untrustworthy. However, their
scheme has not considered the issue of de-synchronization between two parties [3]. The

work [34] extended a previous framework for RFID protocols that supports anonymity,
authenticity, and availability. This extension attempts to provide forward security when
the long-term keys are compromised by an adversary. The new proposed protocols ben-
efited from a pseudo-random bit generator to address the resource-constraint issues by
providing a lightweight mechanism. The schemes have been designed in the Universal
Composability framework [15]. To ensure forward security, they assumed that the ad-
versary is able to compromise the activated tag, getting access to keys and memory
parameters that are persistent. On the contrary, the server is assumed to be incorrupt-
ible. Considering the strong security model where the adversary is capable of corrupting
either a tag or a server, the proposed scheme is inherently insecure [3]. The proposed
scheme also did not consider attacks that exploit side-channel vulnerabilities of the tags.
Authors of [1] posed questions regarding “re-keying” and attempted to answer them.
Forward security is one of the benefits gained by re-keying. The authors separated the
re-keying process that is dealt with producing sub-keys from the associated application
which makes use of these sub-keys. They analyzed different methods of re-keying and
their respective applications and demonstrated that re-keying increases the life-time
of the master key. However, they did not consider the de-synchronization issue that
arises from key-evolving [3]. Recently, authors of [3] proposed a symmetric key based
AKE protocol named SAKE that provides PFS for resource-constrained devices. In this
protocol, first, an initiator and a server attempt to authenticate each other mutually,
and afterward, a session key will be established between them. This protocol makes
use of the symmetric-key setting to ensure PFS, whereas many existing schemes use
the asymmetric-key setting to do so. However, the resource-constrained devices such
as IoT, WSNs, passive RFID tags, and smart cards cannot exploit such schemes since
they are too heavy in terms of computation. The authors made several major contribu-
tions which makes their scheme distinguishable from their counterparts. In the case of
de-synchronization, the parties involved in the protocol can be resynchronized without
using a clock or any extra resynchronizing mechanism. The protocol, in fact, benefits
from the second chain of master keys to provide synchronization. These master keys
provide the tracking the internal state of the protocol and allow resynchronization in
case the parties are desynchronized. Moreover, this scheme uses bandwidth efficiently
in the sense that it prevents from sending additional data such as large counters. The
authors also presented a second scheme called SAKE-AM which is derived from the
SAKE protocol. In SAKE-AM, a resource constrained device can be an initiator or a
responder. In this case, the end-device does less computation compared to the server.

1.2 Relevance

The authors of [3] made use of the security model which is based on the model pre-
sented in [14]. This security model [14] is considered for the authenticated key exchange
protocols that work using the asymmetric methods (e.g., protocols designed based on
the DH scheme with signature). Considering this model, the parties can participate in
multiple executions of the protocol either sequentially or concurrently /parallelly; how-
ever, the designers of the SAKE in [3] presented a security model that does not support

the concurrent/parallel executions in the context of (industrial) IoT. More precisely,
their presented model conflicts with the way IoT devices act in the real world envi-
ronment. For example, the research study [34] - discussed in the related work section
of the reference [3] - states that almost all the RFID systems operate in a concurrent
environment. The article [34], more precisely, discusses that a tag reader in a commer-
cialized RFID system should be able to simultaneously identify several tag devices. The
work [30] explains that in an IoT application, hundred or thousands of IoT devices send
simultaneously their collected data every few seconds to a server. Hence, a symmetric
key based AKE scheme that is resistant to timeful and replay attacks and untraceable,
and that allows for concurrent protocol executions is highly relevant.

Outline. We discuss the security of building blocks used in this paper and also list
some notation used in the paper’s body in Section [2| In Section [3] we explain the secu-
rity model used in our proposed protocol. We provide a brief description of the SAKE
and SAKE-AM protocols and their security analysis in Sections [4] and [5], respectively.
In Section @ we present our proposed SAKET and SAKET-AM protocols. We evalu-
ate the soundness and security of the proposed SAKE™ protocol in Sections [7] and
respectively. Finally, we conclude the paper and discuss future work in Section [9]

2 Security definitions of building blocks

In this section we review the security definition of the building blocks used in this
paper. Our definition is based on the research paper [3]. We will further make use of
the notations explained in this section in our results. The definition of a negligible
function, secure pseudo-random function (PRF), strong unforgeability under chosen-
message attacks (SUF-CMA), and matching conversations are discussed as follows:

Definition 1 (Negligible function): A function € : N — N is said to be a negligible
function of k if for every positive polynomial p(.) we have e(k) < ﬁ for all sufficiently
large k which is a security parameter of a cryptographic building block.

PRF: A PRF F : {0,1}* x {0,1}* + {0,1}"7, where), are positive integers, is
a family of functions that takes one input of length A and another input of arbitrary
length, and returns an output of length . For any & & {0,1}*, one can define fj, :
{0,1}* — {0,1}" by fx(x) = f(k,x). Then, fi is an instance of F.

We describe the security of F' using an experiment between an Adversary A and a

challenger below. Note that x & X denotes sampling x uniformly at random from X.

— Let fi is an instance of the PRF family function F', and the challenger samples the
following values uniformly at random: K & {0,1}*, G S , and b & {0,1};

— The adversary adaptively sends the values x to the oracles O-PRF'(-) and O-T'est(-).
The responses are as follows: the oracle O-Test(-) either returns y = f(k,z) for
b =0, or returns y = G(x) for b = 1; the oracle O-PRF(-) returns f(k,z) if z ¢ X

— Finally, the adversary makes a guess b/ € {0,1} of b.

The experiment between the adversary and the challenger described above is sum-
marized as the following pseudo codes.

. O-Test(x):
EXP PRF: O-PRF (x): g esi(>1<))
K& KeyGen(1*) if X: if (c=1) Vv (z € X):
$ Hzea: return L
b+ {0,1} lre'turnj_ c+ ;X +— X U{z}
X =0;c+0 else: if (b=0):y <« f(k,z)
b & AO—-Test(),0—PRF(-) X« XU{z} Ise: y & G(a)
, return f(k,x) else: y z
return b = b return y

Based on the experiment EXP PRF, we have the advantage of A as

1
advﬁRF(A) = |Prlb="¥]- §|

Definition 2 (Secure PRF’) If for all probabilistic polynomial time (PPT) adver-
sary A, advﬁRF(.A) is a negligible in A, then f; : {0,1}* — {0,1}7 is a secure PRF.

Secure Message authentication code (MAC): It consists of three different
algorithms named KeyGen, MAC(-,-) and Vrf(-,-,-) [23]. These algorithms are de-
scribed as follows:

— KeyGen: This randomized algorithm generates a k—bit key K that is used as a
parameter in the algorithms MAC(-,-) and Vrf(-,-,-).

— MAC(-,-): This algorithm (tagging) takes as input a key K € {0, 1} and a message
m € {0,1}* and returns an output named tag 7 € {0,1}7.

— Vrf(-,-,-): This verification algorithm takes as input a key K, a message m, and a
corresponding tag 7, and outputs 1 if a tag on message m is valid, otherwise 0.

Strong unforgeability under chosen-message attacks (SUF-CMA)
We define the notion of SUF-CMA for a M AC G = (KeyGen, MAC(-,-),Vrf(-,-,-))
with the help of the experiment between a challenger and an adversary A as follows:

— The challenger sets S < () and then samples K & {0,1}*.

— The adversary may send values m to the challenger, and it sends back the respective
values 7 = M AC(K,m) and then saves (m,7) : S <— S U {(m,7)}. The adversary,
additionally, may send the values (m/,7’) to the challenger, and it returns the re-
spective values Vrf(K, m’, ') to the challenger.

— At the end, A sends to the challenger the pair (m*, 7).

The experiment between the adversary and the challenger described above is sum-
marized as the following pseudo codes.

EXP SUF-CMA: MAC(K, m): Vrf(K,m', ')
K& KeyGen(1%) T=MAC(K,m) if (m/,7') ¢ S:
S=0 saves (m,T) return Vrf(K,m’, ')
(m*,7%) « AMACC,) Vi) S« SU{(m,7)} else:
return (m*, 7*) return M AC(K,m) return L

The advantage of A is as advsGuf_cma(.A) = Pr[Vrf(K,m*,7%) = 1A (m*,7%) ¢ S].

Definition 3 (SUF-CMA): If for all PPT adversary A, adeGuf_cma(A) is a
negligible function in k, then G = (KeyGen, MAC(-,-),Vrf(-,-,-)) with MAC
{0,1}% x {0,1}* — {0,1}" is secure against SUF-CMA.

Sessions and Instances: Before explaining the matching conversation, we discuss
the session as follows. A session refers to one run of the protocol, and each party can
create at most ¢ sessions. We associate an instance 7 to the party F;’s sth session,
which has access to the master keys K and K.

Definition 4 (Matching Conversations): The authors of [4] discussed the def-
inition of matching conversations proposed by [6,[25]. We assume that T; is the the
sequence of all messages in chronological order which are sent and received by an in-
stance ;. Considering two transcripts T} ; and T; s, if T; s includes one message at least,
and the messages in T} ; are the same as the first |T; ;| messages of T} ; then we say that
T; s is a prefix of Tj;. The instance m; has a matching conversation to 7T§<, if [T is a
prefix of T; 5, and 7} has sent all protocol messages], or [T; s = T}, and 7T§- has sent all
protocol messages].

2.1 Preliminaries

In this section the notations (Table and preliminaries used in the paper are described.

Table 1. Notations

Notation Description

A, B Identities of an initiator and a responder, respectively.

K The master key used for authentication purpose.

K’ The master key used for session key generation.

Kj’-il, K;, K;-+1 These values refer to the protocol states j — 1, j and j + 1, respectively.

TA,TB Random numbers generated by the entities A and B, respectively

kdf (-, -) This function updates the session key sk such that sk < kdf (K, g(ra,rp)) the function g(.,.)

can be the bit string concatenation.
upd;(-), upd}(-) These functions are used for updating the master keys of entity 4.
Vrf(K,m,T) This function returns true if the tag 7 on message m is true, otherwise it returns false.
I Concatenation operation

These master keys K, K', K ;, K and K}, are initialized such that K and K’
are random values, K}_l «—1, K]’~ + K’ and KJ,'+1 + update(K').
The initiator A and the responser B update their master keys using, respectively,

upd4(-) and updp(-) functions as follows:

upda(+): ‘ updp(-):

K <+ update(K) K <« update(K)
K, + K] K’ + update(K")
K; — K}H

K,y < update(K;)
Session Key generation: It is based on the key-evolving method. Using this

method, both the initiator and responder update the master key K regularly per ses-
sion. This protects against computing the past session keys by an adversary who has

corrupted either the initiator or responder, and gained the current session key sk. Con-
sidering the session key generation process, the key point is that the session key must
be computed after the mutual authentication, not during the session. In fact, if the
session key sk is computed in the session, this can cause a de-synchronization problem.

3 Security model

We profit from the model explained in [3] which itself is based on the work |14]. The
adversary in this model has a full control over the channel in that s/he is capable of
forwarding, altering, dropping any messages sent by honest parties, or even s/he is able
to create new messages. We later discuss in detail the concurrent approach versus of
sequential approach in the Section [3.2]

Parties: We assume that all the parties in our protocol constitute the set P =
{Po, P1,. .., P,_1}. Each party has its own unique master keys K, K’. The key K is used
for the purpose of session key creation, while the key K’ is used for the authentication
purpose. Each party in our scheme can take part in multiple concurrent executions of
the protocol. Each instance 7] comprises the following states:

Table 2. The States of an Instance

States Description

p This state denotes the role of the session that belongs to the set p € {init,resp}. The init
and resp values refer to the roles initiator and responder, respectively.

pid This identity is associated with the intended communication partner of 77, and pid € P.

o It shows the state of the instance which could be one of the following elements {L
, running, accepted, rejected}.

sk It denotes the session key that is derived by 7.

K It indicates the status of the session key w7 - sk, and x € {L, revealed}.
sid It refers to the the identifier of the session.
b It indicates a random bit b € {0, 1} that is sampled at initialization of 77.

Below we define two correctness requirements with the help of variables «, sk, sid,
and pid as follows:

(7§ - a = accepted) = (5 - sk #L A w} - sid #1) (1)
sk = 7T§- - sk
(77 = 7r§- -a = accepted A\ ;- sid = 7T§- - sid) = § 7f - pid = P (2)

J

Adversarial Queries: The adversary interacts with the instances by means of the
following queries:

— NewSession(P;, p, pid): This query creates an instance 7} with the role p and the
intended partner pid.

— Send(w?, m): Using this query, the adversary can send a message m to the instance
m; and the instance responds as follows: it returns L, if 7} - o # running; otherwise,
77 responds according to the protocol specification.

— Corrupt(P;): The adversary, using this query, can obtain the long-term key P; - Itk
of P;. We say that P; is v-corrupted if Corrupt(F;) is the v-th query sent by the
adversary. If v = +o00, it means that the party has not been corrupted.

— Reveal(n?): It returns the session key 7} - sk, and then the value revealed will be
assigned to 7 - K.

— Test(m;): Through the game, this query can be called only once. This query returns

L if m - a # accepted. Otherwise, it creates an independent key skg & K, and
returns sk (Test-challenge), where sky = 7} - sk.

Definition 5 (Partnership): If 7} - sid = 77} - sid, we say that these two instances
are partners.
Definition 6 (Freshness): An instance 7} is fresh with intended partner P;, if

— m; - o = accepted and 3 - pid = P; when the adversary sends its vo-th query,

1
— 7f - k # revealed and P; is uncorrupted (resp. v — corrupted with vy < v), and
— for any partner instance 775» of w7, we have that 7r§- -k # revealed and Pj is v' —
corrupted with vy < v'.

An AKE protocol satisfies the two aforementioned correctness requirements (1) and (2),
and its security is defined using the AKE experiment that is played between a challenger
and an adversary A. Following definitions 7 and 8, A can win this experiment.

Definition 7 (Entity Authentication (EA)): The adversary can win the AKE
experiment by making an instance accepts maliciously. An instance 7} of a protocol IT
accepts maliciously with intended partner P, if

— 7 - a = accepted and 7} - pid = P; when the adversary A sends its vo-th query,
— P; and P; are uncorrupted (resp. v— and v’ — corrupted with vy < v,v’), and

— there is no unique instance 7T§- such that 77 and W;- are partners.

The adversary’s advantage is defined as adv =" (A) = Pr[A wins the EA game].

Definition 8 (Key Indistinguishability): An adversary A can win the AKE
experiment by guessing the secret bit of the Test-instance. The adversary A sends the
Test-query to the instance mj during this experiment and answers the Test-challenge
correctly if the output &' and the instance 77 are as follows:

— 7} is fresh with some intended partner P;, and

—mib=1.

The adversary’s advantage is defined as advfjeyfmd(A) = |Prixf-b=1V]—3|

It is worth mentioning that an adversary can make use of the definitions 7 and 8 in
order to corrupt an instance involved in the experiment.

Definition 9 (AKE Security): A two-party AKE protocol II is secure if it

meets the correctness requirements (1) and (2), and the advantages advir'= """ (A)
and adv®V"""(A) are negligible.

3.1 Data search operation

Our proposed protocols SAKET and SAKE-AM™ benefit from a technique named
content-addressable memory (CAM, associative memory or associative storage) [29].
The merit of this technique is that we can find the desired data in a CAM memory just
in a single clock cycle compared to traditional memories. The function fetch() used in
our schemes makes use of this technique. In fact, the initiator (resp. responder) uses the
fetch() to search the digest of a respoder’s (initiator’s) identity against all the digests
stored in the database and obtain the corresponding address. This search takes constant
time; that is, with the complexity O(1) which makes our protocol independent of the
number of the responders involved. By means of this method, not only the initiator can
search within a constant time and independent of number of end devices involved in
the protocol, but also this technique prevents from the timeful attack in that the server
spends the same amount of time to look for all responders’ data and authentication at
every execution of the protocol (see Section [5| for details).

3.2 Concurrent vs. sequential

Let P = {P, Ps,...,P,} denote a set of parties participating in a two-party proto-
col. In a sequential approach, two parties, e.g., P, and P, each one executes just one
instance of a protocol. Considering the concurrent approach, there are two different
scenarios. In the first scenario, the initiator simultaneously communicates with a set
of parties. For instance, in an IoT application, hundred or thousands of parties (IoT
nodes) send simultaneously their collected data every few seconds to an initiator [30].
Our proposed SAKET and SAKE™-AM protocols support this approach. The second
concurrent scenario is that two parties run parallel executions of the protocol [3,/14].
Regarding this scenario, the AKE protocols that operate based on the DH scheme
support unlimited number of concurrent executions between two parties, whereas the
AKE symmetric-based protocols do not allow this in the sense that the shared master
keys that evolves regularly cause abortion problem to some sessions [3]. However, we
overcome this problem using separate master keys associated with parties’ identity.

4 Description of the SAKE and the SAKE-AM protocols

In this section, a brief review of the SAKE and its variant SAKE-AM is presented.
In these schemes, with the help of two type of pre-shared master keys K and K’,
both parties, the end device and back end device, not only mutually authenticate each
other but also establish a session key to support confidentiality. More precisely, the
key K’ along with two other pseudo-random values r4, and rp are used in MAC(-,)
as MAC(K', B||A||rg||ra) (on the responder’s side) and M AC(K', A||B||ral|rs) (on
the initiator’s side) for mutual authentication purpose, whereas the master key K to-
gether with r4, and rp values are utilized in the pseudo-random generator kdf(-,-) as
kdf (K, g(ra,rp)) for the session key generation purpose.

10

AK K\, KL KD SAKE (B.K,K")
S o134
(013 Allry s
> rg<—{0,1}*
m 7p < MAC(K , B||Allr||ry)
, B
if (Vrf(K;,B||Allrgllrs,t5)= true) -« mp < 13||7p
Syp — 0
K'— Kj';kdf; upd,; E—0
elseif (Vrf(Kjl_l,B||A||rB||rA,TB)=true)
Syp — 1
K'— Kjil; E—1
elseif (Vrf(Kj,1,BllAllrsllrs,ts)=true)
Sup — -1
elsle(< K, ;updyskdf; updy; € <0 my if (Vrf(K', || Al|B|Irallrs) =false)
abort > abort
T4 — MAC(K', E||A|B]Ir,|Irs) if(€=1)
my — &ty updg
5 kdf ;updg
< T'p «— MAC(K , rg|Iry)
if (€= 0)
K —K
if (Vrf(K' xyllry T's)=false)
abort
elseif (€= 1)
K — Kj+,1 ,
if (Vrf U rgliry Ts)=false) v,
abort > . ' '
kdf;upd, if (Vrf(K rpllrg» T a)=false)
T’y — MAC(K rallrg) abort
A KK KK D SAKE-AM (B.K,K)
$)
rg<—{0,1}*
if (Vrf(Ky BllAllryts)= true) m 75 — MAC(K', B||Allry)
543 — 0 < £ mg < B||rp||7p
K — K;;kdf; upd,; € <0
elseif (Vrf(K,1,B||A|lrgts)=true)
Spp — 1
K'— Kj’_l; E—1
else if (Vrf(K,1,BlAllrgts)=true)
Spp — -1
K'e— K ;upd,kdf; upd,; € <0
else /
abort) my
Ty <= MAC(K, E||A||Brallrs) >
my — E||tyllra . [Same as the SAKE]
B
[Same as the SAKE] T4 > [Same as the SAKE]

Fig.1. SAKE and SAKE-AM Protocols.

11

4.1 SAKE protocol

As depicted in Figure [the SAKE protocol starts with initiator A sending the fresh
random value r4 along with its identity A. In response, the responder B sends the
message mp = rg||Tp in which rp is the new random value generated by B and 75
generated using the MAC function to inform the A about the current state of the B
securely. Using the DRSP (see Section[6.1]), A distinguishes in which state the party B is
and generates the session key in the case of € = 0. Then, A responds with the message
my that includes the current state of the party B. At this point, B syncs itself and
generates the session key after the verification and informs A by sending the message
Ti;. After receiving the message, A verifies the message and generates the session key
in the case € = 1. Then, A sends the confirmation message 7y to B. Finally, B finishes
the session if and only if the received message is valid.

4.2 SAKE-AM protocol

The authors of 3], presented a variant of the SAKE scheme named SAKE-AM in which
the end device can be an initiator (see Figure . Due to this variant, the authors claim
that SAKE-AM is suitable for IoT applications where a resource-constrained end device
establishes a connection with a central server. The SAKE and the SAKE-AM protocols
differ as follows: the initiator A in the SAKE has the master keys (K, K7, K}, K} _;),
whereas B in the SAKE-AM scheme has those master keys. The initiator A in the
SAKE does most of the operation, while the initiator A in the SAKE-AM does the

lease calculations.

5 Security analysis of SAKE and SAKE-AM

Although SAKE and SAKE-AM do offer some nice security properties, they have some
limitations that may hinder their usability in (industrial) IoT. Below, we analyse those
limitations.

5.1 Exhaustive search problem

Let’s consider an application scenario for SAKE where many IoT nodes are responding
to an initiator’s message to establish a secure session. In this scenario, the initiator must
perform a complete search in its database upon receiving a message mp from a respon-
der. This is due to the fact that the responder does not send its identity along with
mp, therefore the initiator does not know which end device has sent the mp message.
The initiator, hence, has to check all the conditional if statements (four if statements)
against all the different identities exist in the database until it finds the identity associ-
ated with the message mp. For example, if there are n number of end devices in a real
scenario, the initiator must at least execute 4n/2 number of if statements on average
along with the computation of 74 and m4, (In case of 45 = 0 and 045 = —1, the
PRF function is executed at least twice within the if statements) to find the identity

12

corresponding to the message mp. To address this problem, in our scheme SAKE™
the responder sends its identity, which is random, along with the message mp to the
initiator. The initiator, then, benefits from an efficient search technique called CAM to
find the corresponding responder’s information in its database.

5.2 Timeful attack

Timeful attack is an attack where an adversary identifies which responder has just been
authenticated by an initiator by observing the amount of time required to authenticate
the responder [4[22,24]. This attack can be performed against an AKE protocol in
which the initiator must perform exhaustive search to find the responder’s identity.
The adversary then exploits the fact that it takes the same amount of time for the
initiator to authenticate and accordingly respond to a particular responder in every
execution of the protocol. This allows the adversary to detect which responder has been
authenticated by the initiator. The SAKE protocol is vulnerable to this attack as the
initiator does exhaustive search to authenticate a responder in the scenario described
before. In our scheme SAKE™, we mitigate timeful attack by including the identity of
the responder in its messages (cf. Section [6.2]).

5.3 Unavailability

An adversary can cause unavailability by replaying the message mp = B||rp||Tp sent
by the initiator B in the SAKE-AM protocol. To do so, the attacker first captures the
valid message mp related to the last session between the initiator and the responder A.
Then, the adversary resends the captured message mp to A, repeatedly. After receiving
the message mp by A, it will use the Vrf(-,-,-) function to check the validity of the
value 7p attached to mp. Whatever the master key K’ is (it could be either (K7, or
K]’ or K }1))» the value 75 computed by one of the if statements will equal ¢true. This
is due to the assumption that the captured message mp by the adversary is valid. After
the verification of 75, A will compute 74 = MAC(K',¢€||A||B||rallrg) and create the
message m4 = €||74||ra. Now, A sends the created message to the initiator B. Hence,
the adversary succeeded in forcing the party A to perform unnecessary calculations, i.e.,
all the if blocks. In SAKET-AM (cf. Section , we mitigate this attack by checking
the freshness of the received messages.

5.4 Traceability

Traceability is a privacy obstacle for an AKE scheme to be applicable in (industrial)
IoT context [18,26]. In SAKE-AM, an adversary can easily relate all the messages
mp that has been captured from valid sessions between B and A. This is because the
initiator B attaches its fixed identity, B, to mp in plaintext; hence, the adversary is able
to eavesdrop this identity and track B. Based on the privacy model presented in [28],
untraceability is formally defined by the following queries. The untraceability (UNT)
is the fact that an adversary A cannot distinguish two responders.

13

— Ezecute(A, B, j) query. The adversary A requests for access to the messages of the
j-the session between A and B.

— Test(By, B1,j+ 1) query. For a random b € {0, 1}, A is challenged by the messages
exchanged between B and A in their j + 1-th session, and has to guess b.

Following the above queries, A can trace a target responder B as follows.

— In round j, A sends an Ezxecute(A, By, j) query and obtains By ;;
— The attacker A selects two responders By and B, sends a Test(B1, By, j+ 1) query,

and obtains By, where b & {0,1};
— Then, A sends an Execute(A, By, j + 1) query and obtains By j1;
— Alearns that b = 0 if By ; = By j;1, otherwise b = 1;
Since the value of B in the message mp is constant (i.e., the responder’s identity is
ﬁxed), Bb,j—i—l = BOJ’ implies that Bb = Bo.

As a result, AdvYNT (k) = (Pr[A guesses b correctly] —1/2) =1—1/2 = 1/2. In our
scheme SAKE'-AM, we achieve untraceability by updating the parties’ identities in
each session.

6 Description of our proposed protocols SAKET and SAKE+t-AM

This section presents our enhanced protocols SAKE™ and SAKE™-AM, addressing the
aforementioned security and privacy issues associated with SAKE and SAKE-AM. We
begin by describing the intended security properties of our improved protocols.

6.1 Intended properties of our protocols

To enhance the SAKE protocol the (PFSP), (SP) and (DRSP) solutions are inherited
from SAKE and the rest are proposed in the current article.

Perfect forward secrecy property (PFSP): Considering that the SAKE scheme
guarantees the synchronization of the master key K and benefits from the key-evolving
technique, it ensures the perfect forward secrecy, which is the goal of SAKE™ protocol.

Synchronization property (SS): The SAKE™ scheme takes advantage of K’
used for mutual authentication to prevent from synchronization problem. The initiator
makes use of three keys, namely update(K}), K}, K _; to track the session key. This
tracking is guaranteed by ensuring that the master keys, K and K’, will be updated
simultaneously. It is the initiator, in fact, that makes the responder (with the help of
€) how to behave. This behaviour is discussed as follows: if € = 0, it means that the
initiator and responder are synchronized, so B will update its session key sk along with
its master keys (K, K') (using updy(-)), and if € = 1, it means that the initiator and
responder are not synchronized and B must first update its master keys (K, K’) and
then update its session key sk together with the master keys (K, K') for the second
time.

Distinguishing the responder’s state property (DRSP): The initiator (A)
uses the message mpg, sent by the responder (B), to distinguish in which state the party

14

B is. The value K’ which is used in mp indicates the state of the party B. The party
A makes use of the parameters update(K]’), K ;-, K ;-71 and the message mp to compute
the value 6 4p. The value d4p is interpreted as follows:

— dap = 0: This means that A and B both are synchronized, thus updating their
session key sk using kdf (-, -) function as well as updating their corresponding master
keys with the help of upd’ (-) and updy(-) functions, respectively.

— d4p = 1: This means that A is one step further, and, therefore, B needs first to
resynchronize its master keys (K, K’). Then B behaves just the same as the case
where §45 = 0, i.e., to compute the new session key sk and its master keys (K, K').

— d4p = -1: This means that A is one step behind; hence, A must resynchronize its
master keys (K, update(K]’-), K;,]’~_1). Then, A follows the protocol to update the
session key sk and its master keys (K, update(Kj‘), KJ’-, Kj’-fl).

Tracking resistance (TR): The identity of a responder B is updated per session
on both initiator and responder sides. This update is intended to prevent a traceability
issue. It is noteworthy that our architecture includes several responders communicating
concurrently with one initiator. So, employing the fixed identity for the typical respon-
der makes it vulnerable to following issue. An adversary creates a message A||r4, sends
it continually to B, and receives a response containing the responder’s identity (B) for
each message. By linking the identities in the responses, the adversary can successfully
trace the target responder. To overcome this privacy threat, the responder B saves a
one-bit flag ¢ in it’s memory. This flag is used to prevent this privacy threat. Let us
say that in SAKE™, the user has set the flag ¢ to one at the beginning of the protocol,
and the value of the flag has reset to zero (after updating the identity B), then, the
responder can easily recognize whether the adversary is trying to track:

— ¢ = 1: This means that B has received the message Al/r4, responded with the
message mp and is waiting to receive the corresponding message m4.

— ¢ = 0: This means that B has received the message m 4, verified this message and
successfully executed the updj;(-) and kdf(-,-) functions.

Security Against Replay Attack: The entity A stores (K, K} 1, K}, Bj—1, Bj, Ttemp)
in which B; and Bj;_; are the identity of the entity B in a current and a previous
sessions, respectively. Using an identity B in the responder’s messages makes it possible
for A to search with O(1) (we refer the reader to the subsection . The 7¢emp is the
temporary set that includes [rp,_,,75,_,]. The elements of the ey, are initialized with
a random number and stored on A’s side to protect the protocol against the replay
attack. The following comparisons are made by A using the equal(-,-) function. Note

that by equal(a,b or ¢) we mean equal(a,b) or equal(a,c).

— rp;_, = rp;: This means that the attacker is trying to replay the message mp.
— rp;_, # rp;: This means that A has received the fresh message mp. In this case, A
starts to verify this message.

Moreover, A does not need to store K J’ 41; it can compute this value using K]’
However, A retains the value K although it can compute the value K’ using Kj_;; in

15

fact, it needs to run upda(-) function per session, and thus causing the computation
overhead. The same logic applies to the B value (i.e., A does not need to store Bj1).

It is worth mentioning that in SAKE™, there are some changes with regard to
upd () and updp(-) functions as follows (the new changes are shown in blue). The new
functions are named upd’ (-) and updp(-).

upd*A(~): ‘ upd*B(~):

K <+ update(K) K <+ update(K)
Bj_1 + Bj B + update(B|| K")
Bj < update(B;||K})| K’ « update(K')
K |+ K;

K < update(K})
6.2 Description of the SAKET protocol

In this subsection, we propose our solutions to overcome the drawbacks of the SAKE
protocol. To enhance this protocol, we just made several changes illustrated in Figure
[2] with blue color. Considering the intended properties discussed in Section [6.1] the
protocol runs as below. The initiator A generates a random number r4 and starts the
new session by broadcasting a challenge Al|r4 to all the responderﬂ Upon receiving
the message, the responder B generates a random number rg and computes 7g. At this
point, the responder runs the equal(-, -) functionﬁ In case of ¢ equal to 0, the responder
learns that the protocol is well done in the last session and computes mp as Bl|rg||7p
and sets p = 1. Conversely, if the value of the bit ¢ equals to 1, the responder concludes
that the attacker may be trying to execute the tracking attack. Then, it generates the
random number r, and computes mp as ro||rg|/7p. Finally, the responder sends the
message mp to the initiator. Once the initiator receives the message mp, it runs the
fetch() function to obtain the corresponding values related to one of the identities
Bj_1, Bj or update(B| K}) i.e., (K, K}, K}, Ttemp). Then, if A cannot find rp in the
set Ttemp, it will Tun the next three ¢f — else conditions as the same as the SAKE
protocol does to distinguish the responder’s state and to set the d 4p value. In the case
that the if (equal(B,B; or Bj_1 or update(Bj||k})) statement returns false, A will
find the responder’s identity with the help of the if — else statements. In this case,
if the fetched associated set 7¢emp includes rp, the initiator aborts the protocol. It is
worth mentioning that this case only occurs when A receives r,, instead of responder’s
identity. Finally, A updates riemp as [rp,_,,7B;_,] < [rB,_,,7B] and sends m4 to the
responder. At this point, the responder B authenticates the initiator A by verification
of the received message m, and runs the kdf(-,-) and updp(-) functions based on the
¢ value. Finally, B resets the value of the ¢ to ‘0" and sends the message B||7}; to
the initiator. By resetting the value of the ¢, B indicates for the next session that the
message m 4 was received successfully in the last session and it was valid. The rest flows
and computations of the protocol are the same as those in the SAKE protocol. The

3 As we discussed in subsection the SAKE™ is a concurrent protocol. For the sake of simplification,
when explaining a protocol, we only consider one responder.

4 This function takes two inputs and performs as follows: if the given inputs are equal to each other,
it returns true, otherwise it returns false.

16

AK, K ,K_1,B_1,B), Tiemp) SAKE™* B,K.K', p)

$,
e oL Al s
> rg<—{0,1}*
7 < MAC(K ', B||A|Ir|lrs)
if (equal(p,0) = true)
mg < B ||rglltp
mp p—1
< else ¢)
if (equal(B, B; or B;_; or update(B; ||Kj/)) = true) 17;;: ‘(—_{2.1”}; e
B,K; , K;_1, Tiemp < fetch() B «llTsllTs
lf (rB € rtemp)
abort
if (Vrf(K;,Bl|Allrg|lra,75)= true)
S4p <0
K'— K; ;kdf; upd*,; € <0
elseif (Vrf(ij_l,B||A||rB||rA,TB)=true)
Spp — 1
K'— Kj’_l; Ee—1
else if (Vrf (K1, BllAllrslirs p)=true)
Spp — -1
K'e— K ;upd*y;kdf; upd*y; € — 0
else /
abort)
Ty < MAC(K , E||A|IB||rylIrs)
my
my — €|ty »
’ i *
‘ B|th [Same as the SAKE with upd*;, ¢ < 0]
[Same as the SAKE] B[4 % [Same as the SAKE]
(AK, K,K_1,B_1,B}, Tiemp) SAKE+*-AM B.K.K,9)
$)
rg<—{0,1}*
< e t5 — MAC(K', BI|Allry)
if (equal(B, B; or B;_ or update(B; ||I(}-’)) = true) if (equal(qé, 0) = true)
B,K;,K; 1, Ttemp < fetch() ::Ej—(_l Iz llzs
"f (rB € rtemp) else s
if (Vg/l‘)&;t'B”AHr)= true) e (0,1}
Sy 0 my — rllrglits
K — K].’;kdf; upd*,; €0
elseif (Vrf(K;Bl|Allrs,t5)=true)
Sup — 1
K'— Kj’_l; Ee—1
else if (Vrf (K1 BllAlr,,t5)=true)
Syp — -1
K'— K ;upd*,;kdf; upd*y; € — 0
else /
abort ,
7y <= MAC(K , E||AlIB|rallrs) ™4 -
My < EllTallra) [Same as the SAKE*]
_ Bl|s
[Same as the SAKE™] B||T'4 [Same as the SAKE']

Fig.2. SAKE™ and SAKE*-AM Protocols.

17

only difference is with regard to the identity of B. It is concatenated with the protocol
messages in order to preserve the concurrency property.

6.3 Description of the SAKET-AM protocol

In this subsection, we describe our proposed protocol SAKET-AM. The SAKET-AM is
based on the SAKE™ with some modifications. These modifications are shown in Figure
(in blue color). These changes are related to the message my4, input of the M AC(-,-),
and Vrf(-, -,) functions because of the absence of the party A’s random number r 4. The
SAKET-AM renders it possible that a party involved in the protocol becomes either an
initiator or a responder. The SAKE™-AM scheme is resistant against the vulnerabilities
of SAKE-AM discussed in Section [5] It is appropriate for IoT applications in that it is
a lightweight protocol in terms of computation and communication; additionally, using
the SAKE'T-AM scheme, resource-constrained devices establishing a connection to a
server perform the least computation as the initiator, in this scheme, does lightweight
calculations compared to the responder.

7 Soundness of SAKET

In this section we discuss that our proposed scheme is sound, which means once a correct
session is finished, both parties have shared the same new session key and the same new
identities, updated their respective internal states, and are synchronized successfully.
For showing the soundness of our scheme, we make use of the similar notions used
in [3]. We first define a lemma and then try to prove the corresponding items. We use
the following notations in our proof:

— c4,cp: These are the monotonically increasing counters that are initialized with 0.
The c4 follows the master keys K, KJ’-, K]’-_l, Bj, Bj_1, while cp follows the master
keys K, K', B.

— d4p: As we mentioned earlier, the d 45 denotes the gap between A and B, and it is
computed as dap = c4 — ¢B.

— (i4,1p): This notation means that the last valid message received by A is the value
i4, and similarly the last valid message received by B is ip (we assume that the
session is completed).

— (ia,ip)-session: This is a session where the last message received by A is iy, and
the last message received by B is ip.

— 14 = 0: It means that A has received no message.

— A and B send back and forth the messages which are numbered from 1 to 5.

We consider that by default the value (4,5) is set for (iq,ip), and the only possible
valid values for (i4,ip) are as follows: (0,1),(2,1),(2,3), (4,3), (4,5).

Lemma 1: We assume that the initiator A and the responder B are participating
in a session of the SAKE™ protocol. Considering this assumption, we can conclude that
dap € {—1,0,1}, and after termination of the session between A and B, independent

18

of the value of d 4, the following conditions holds: A and B have updated their master
keys at least once, A and B are synchronized which means d4p is set to 0, A and B
share the same session key K, and finally A and B share the same identity.

The proof of this lemma is given in Appendix [A]

8 Security of SAKE™T

We make use of the security model described earlier in Section 3] and the sequence of
games [7,33] approach to prove the security of the SAKE™ protocol. With the help of
matching conversations, we define the partnering between two instances. Additionally,
we use the ProVerif tool |12] to automatically analyze the security of our proposed
scheme.

8.1 Security of SAKE™T using the sequence of games

We use the sequence of games approach in which an attack game is played between an
adversary and a challenger, and the security is linked to an event S. Security means
that considering every efficient adversary, the probability that event S happens is very
close to some specified target probability. The target probability is either 0, %, or the
probability of some event 7" in some other game [33|. To prove using this approach, one
builds a sequence of games, i.e., Game 0, Game 1, ..., Game n, where Game 0 is the
original attack game regarding a cryptographic primitive and a given adversary [33].

We use the notations presented in Table (3| in our proof.

Table 3. Notations for sequence of games

Notation Description Notation Description

n a number of parties E; an event that A wins experiment in Game 4

A the size of values (r4,7p) B an adversary against P RF-security of update(-)
q a maximum number of instances per party|C an adversary against SUF-CMA-security

T an instance that is targeted by A D an adversary against PRF-security of kdf(-,-)
update(-) K < f(k,z), for some (constant) value =

Theorem 1: The protocol SAKE™ is a secure AKE protocol, and for any PPT
adversary A in the AKE security experiment against protocol SAKE™, the following
conditions hold:

advi' M (A) < ng((ng — 1)27* + (g + 1)adv 3 (B) + 2adviH M (C))

key—ind ent—au
advi Y (A) < ng((q — VadolBE, (B) + advbf¥ (D)) + advSl et (A)

The proof can be found in Appendix

19

8.2 Formal verification using ProVerif

We verify that SAKE™T is robust and that it ensures forward secrecy, synchronisation,
and mutual authentication using ProVerif tool [12], which is an automated formal ver-
ification tool. The source code and its description are presented in Appendix [C]

9 Conclusion

In this paper we reviewed the symmetric-based AKE protocols, namely, SAKE and
SAKE-AM, that offer perfect forward secrecy. We have shown that, in some scenarios,
SAKE has exhaustive search problem and thus is vulnerable to timeful attack, while
SAKE-AM is susceptible to unavailability by accepting replayed messages from previous
sessions. We then proposed improvements to both protocols. In SAKE™, we improved
upon SAKE to mitigate timeful attack and to make concurrent executions of the pro-
tocol possible. In SAKE'-AM, not only did we mitigate replay attack by introducing
freshness checks, but also offered untraceability, which is a key property required for
an AKE scheme to be applicable in IoT. Finally, we formally proved the security of
our protocols, and also used a formal verification tool Proverif to verify their security
and soundness. Implementation of our proposed protocols in a real world context is an
interesting future work.

References

1. M. Abdalla and M. Bellare. Increasing the lifetime of a key: a comparative analysis of the security
of re-keying techniques. In ASTACRYPT, pages 546-559. Springer, 2000.
2. G. Avoine, S. Canard, and L. Ferreira. IoT-friendly AKE: forward secrecy and session resumption
meet symmetric-key cryptography. In ESORICS, pages 463—483. Springer, 2019.
3. G. Avoine, S. Canard, and L. Ferreira. Symmetric-key authenticated key exchange (SAKE) with
perfect forward secrecy. In CT-RSA, pages 199-224. Springer, 2020.
4. G. Avoine, I. Coisel, and T. Martin. Time measurement threatens privacy-friendly RFID authen-
tication protocols. In RFIDSec, pages 138-157. Springer, 2010.
5. C. Bader, D. Hofheinz, T. Jager, E. Kiltz, and Y. Li. Tightly-secure authenticated key exchange.
In TCC, pages 629-658. Springer, 2015.
6. M. Bellare and P. Rogaway. Entity authentication and key distribution. In CRYPTO, pages
232-249. Springer, 1993.
7. M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based
game-playing proofs. In FUROCRYPT, pages 409-426. Springer, 2006.
8. M. Bellare and B. Yee. Forward-security in private-key cryptography. In CT-RSA, pages 1-18.
Springer, 2003.
9. S. Blake-Wilson, D. Johnson, and A. Menezes. Key agreement protocols and their security analysis.
In IMA International Conference on Cryptography and Coding, pages 30-45. Springer, 1997.
10. S. Blake-Wilson and A. Menezes. Unknown key-share attacks on the station-to-station (STS)
protocol. In PKC, pages 154-170. Springer, 1999.
11. B. Blanchet. Automatic verification of correspondences for security protocols. Journal of Computer
Security, 17(4):363-434, 2009.
12. B. Blanchet, B. Smyth, V. Cheval, and M. Sylvestre. ProVerif 2.00: automatic cryptographic
protocol verifier, user manual and tutorial, 2018.
13. E. Brier and T. Peyrin. A forward-secure symmetric-key derivation protocol. In ASIACRYPT,
pages 250—267. Springer, 2010.

20

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

C. Brzuska, H. Jacobsen, and D. Stebila. Safely exporting keys from secure channels. In FURO-
CRYPT, pages 670-698. Springer, 2016.

R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
FOCS, pages 136-145, 2001.

C.-C. Chang and H.-D. Le. A provably secure, efficient, and flexible authentication scheme for
ad hoc wireless sensor networks. IEEE Transactions on Wireless Commaunications, 15(1):357-366,
2015.

A. K. Das, S. Kumari, V. Odelu, X. Li, F. Wu, and X. Huang. Provably secure user authentication
and key agreement scheme for wireless sensor networks. SCN, 9(16):3670-3687, 2016.

A. K. Das, M. Wazid, N. Kumar, A. V. Vasilakos, and J. J. Rodrigues. Biometrics-based privacy-
preserving user authentication scheme for cloud-based industrial Internet of Things deployment.
IEEE Internet of Things Journal, 5(6):4900-4913, 2018.

D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions on Information
Theory, 29(2):198-208, 1983.

M. S. Dousti and R. Jalili. Forsakes: A forward-secure authenticated key exchange protocol based
on symmetric key-evolving schemes. Advances in Mathematics of Communications, 9(4):471-514,
2015.

M. Franklin. A survey of key evolving cryptosystems. International Journal of Security and
Networks, 1(1-2):46-53, 2006.

V. Gholami and M. R. Alagheband. Provably privacy analysis and improvements of the lightweight
RFID authentication protocols. Wireless Networks, pages 1-17, 2019.

H. Handschuh and B. Preneel. Key-recovery attacks on universal hash function based MAC algo-
rithms. In CRYPTO, pages 144-161. Springer, 2008.

A. Ibrahim and G. Dalkilic. Review of different classes of RFID authentication protocols. Wireless
Networks, 25(3):961-974, 2019.

T. Jager, F. Kohlar, S. Schage, and J. Schwenk. On the security of TLS-DHE in the standard
model. In CRYPTO, pages 273-293. Springer, 2012.

X. Li, J. Peng, J. Niu, F. Wu, J. Liao, and K.-K. R. Choo. A robust and energy efficient authenti-
cation protocol for industrial internet of things. IEEFE Internet of Things Journal, 5(3):1606-1615,
2017.

G. Lowe. A hierarchy of authentication specifications. In CSF, pages 31-43. IEEE, 1997.

K. Ouafi and R. C.-W. Phan. Privacy of recent RFID authentication protocols. In ISPEC, pages
263-277. Springer, 2008.

K. Pagiamtzis and A. Sheikholeslami. Content-addressable memory (CAM) circuits and architec-
tures: A tutorial and survey. IEEE Journal of Solid-State Circuits, 41(3):712-727, 2006.

N. Pathak and A. Bhandari. Understanding the Internet of Things and Azure IoT Suite. In IoT,
Al and Blockchain for. NET, pages 25-51. Springer, 2018.

E. Rescorla and T. Dierks. The transport layer security (TLS) protocol version 1.3. 2018.

M. D. Ryan and B. Smyth. Applied pi calculus. 2011.

V. Shoup. Sequences of games: a tool for taming complexity in security proofs. IACR ePrint,
2004:332, 2004.

T. Van Le, M. Burmester, and B. De Medeiros. Universally composable and forward-secure RFID
authentication and authenticated key exchange. In AsiaCCS, pages 242-252, 2007.

S. Wang, Z. Cao, M. A. Strangio, and L. Wang. Cryptanalysis and improvement of an elliptic curve
Diffie-Hellman key agreement protocol. IEEE Communications Letters, 12(2):149-151, 2008.

F. Wu, L. Xu, S. Kumari, and X. Li. A new and secure authentication scheme for wireless sensor
networks with formal proof. Peer-to-Peer Networking and Applications, 10(1):16-30, 2017.

Z. Yang, J. He, Y. Tian, and J. Zhou. Faster Authenticated Key Agreement with Perfect Forward
Secrecy for Industrial Internet-of-Things. IEEE Transactions on Industrial Informatics, 2019.

J. Zhang, Z. Zhang, J. Ding, M. Snook, and O. Dagdelen. Authenticated key exchange from ideal
lattices. In EUROCRYPT, pages 719-751. Springer, 2015.

21

A Proof of Lemma 1

Proof of Lemma 1 (item1) We first prove the item 1 of Lemma 1 and consider the
following three different cases:

— when A and B both are synchronized, i.e., dap = ca — cg = 0. After all valid
(i4,1p)-sessions, the values for (ca,cp) and d4p are as follows:

After a (0,1)—session = (ca,cp) = (4,7) and 45 =0

After a (2,1)—session = (ca,cp) = (i+ 1,7) and dap =1

After a (2,3)—session = (c4,cp) = (i+1,i+ 1) and 045 =0

After a (4,3)—session = (cq,cp) = (i+1,i+ 1) and 045 =0

After a (4,5)—session = (ca,cg) =(i+1,i+1) and dup =0

It is obvious that, in this case, the possible values for d 45 are 0 and 1.

— When A is one step further, i.e., d4p = c4 —cp = 1. After all valid (i, ip)-sessions,
the values for (ca,cp) and d4p are as follows:

o After a (0,1)—session = (ca,cp) = (i +1,4) and dap =1

o After a (2,1)—session = (ca,cp) = (1 +1,4) and d4p =1

o After a (2,3)—session = (ca,cp) = (1 +1,i+2) and dap = —1
o After a (4,3)—session = (ca,cp) = (i +2,i+2) and 045 =0
o After a (4,5)—session = (ca,cg) = (i+2,i+2) and 645 =0

We see that all possible values for 45 are 0, 1, and -1.

— When A is one step behind, i.e., 45 = c4—cp = —1. After all valid (i4, ip)-sessions,
the values for (ca,cp) and d4p are as follows:

After a (0,1)—session = (ca,cp) = (i,7+ 1) and a5 = —1

After a (2,1)—session = (cq,cp) = (i+2,i+ 1) and dap =1

After a (2,3)—session = (cq,cp) = (i +2,i+2) and 045 =0

After a (4,3)—session = (ca,cp) = (i +2,i+2) and dap =0

After a (4,5)—session = (ca,c) = (i+2,i+2) and d4ap =0

Similar to the previous case, the only possible values for d45 are 0, 1, and -1.

Based on the discussed cases, we can conclude that the only possible values for d 45 are
0, 1, and -1, i.e., 045 € {0,1, —1}.

Proof of Lemma 1 (item2) As we can see, the item 2 of Lemma 1 has four
different cases. We discuss each case as follows:

— A and B have updated their master keys at least once: Whatever the value of d4p
at the beginning of each session, after the (4,5)—session, the value of the tuple
(ca,cp) is incremented at least by one (shown in bold). This means that A and B
have updated their internal states at least once.

— A and B are synchronized: Whatever the value of 45 at the beginning of each
session, after the (4,5)—session, the value of d4p equals 0 (shown in bold). This
means that when the session is completed, the initiator A and responder B will
eventually be synchronized.

22

— A and B share the same session key K: Considering that the master keys K and K’
are updated simultaneously on the B side (resp K, K j’;l, and K]’ on the A side),
and the function kdf (K, g(ra,r5)) updates the session key immediately after K has
been updated, we can guarantee that A and B share the same session key sk. More
precisely, after a correct and complete session ((4,5)-session), and using the same
values r4 and 7pg, the initiator and responder share the same session key sk.

— A and B share the same identity value: Considering that the master keys K’, Bj_1,
and B; are updated simultaneously on the A side within upd’ (-), and the master
keys K’ and B are updated together on the B side within upd(-), we claim that A
and B share the same identity B after a correct and complete session ((4, 5)-session).

B Proof of Theorem 1

Before starting our proof, we discuss the following notes that could be helpful during
the proof of the security of SAKE™. Note: An initiator instance 7f at some party P;
accepts, if two valid messages mp and 75 (valid MAC tags) are received by m7. We
can reduce the security of the MAC function to the ability to forge a valid output. We
assume that the value K’, used during the first session between the initiator and the
responder, is uniformly chosen at random. Considering that K’ is random, we can rely
on the pseudo-randomness of the function update(-) = PRF(-,-). On the other hand,
since f(k',-) can be replaced with a truly random function, the updated K’ accordingly
is random. Hence, we can conclude that we can rely on the pseudo-randomness of the
function update(-) with the new updated key K’, and so forth. Each update of K’ means
a loss (advfpgaFte(B)) that corresponds to the ability of an adversary B to distinguish
between the update(-) function and a random function.

Note: P; updates its keys at most once per session on average. This is due to the
following facts:

— dap = 0: In this case P; updates its master keys only once.
— d4p = 1: P; updates its keys at most once.
— dap = —1: P, updates its keys twice.

Note: P; updates its keys at most once per session on average. Where, in the case
dap = 0, P; updates its master keys only once; in the case d4p = 1, P; updates its keys
at most once; and in the case d4p = —1, P; updates its keys twice.

We conclude that when P; starts the u-session, it has updated its keys at most u—1
times on average, and P; updates its keys at most two times upon receiving the message
Th-

Note: The previous note also applies to the responder. It means that it updates its
keys at most once per session on average. This is due to the following facts:

— € = 0: In this case (upon reception of the message m,), the responders updates its
keys only once.
— € = 1: Upon reception of the message m 4, the responders updates its keys twice.

23

Note: The previous note also applies to the responder, meaning that it updates
its keys at most once per session on average. Where, in the case ¢ = 0, the responder
updates its keys only once, and in the case ¢ = 1, the responder updates its keys twice.

The responder P; has updated its keys at most u — 1 times on average, when it
starts the u-session. It updates its keys twice when receiving the message m 4.

Proof of entity authentication: In our proof, each consecutive game aims at
reducing the challenger’s dependency on the functions M AC(-, -), update(-) and kdf (-, -).

— Game 0: This game is associated with the experiment between the adversary and
the challenger defined in definition 7 (Entity Authentication). The probability that
the adversary wins the entity authentication is:

t—auth
Pr[Ey] = advd’y 54" (A).

— Game 1: There is at most n x ¢ random values 4 or g chosen uniformly at random
in {0, 1})‘. Hence, the probability that at least two random values be equal is at

most %. If there exists any instance that chooses a random value r4 or rp

that is not unique, then the challenger will abort. Therefore

nq(ng — 1)

PT’[E()] < PY’[El] + A

— Game 2: The challenger tries to guess which instance will be the first to accept
maliciously. The game is aborted if the guess is wrong. The number of instances is
at most ng. Hence

1
PT[EQ] = PT[El] X —.
ng

— Game 3: We define an abort rule as follows:

If 7 receives a valid message mp (resp. m4), the challenger aborts the experiment.
We reduce the probability of this event to the security of the function M AC(:,-)
and update(-).

Pr(Ey] < PrBs] + (q — Dadvl il (B) + advyif™ (C)

— Game 4: In this game, we reduce the probability of the adversary to win the game
to the security of the M AC(-,-) function (for 75 (resp.7/y) computation). In fact, we
must rely on the randomness of the M AC(-, -) key and accordingly to the security of
the function update(-) which is used for updating K’ (i.e., used as an input for the
function M AC(-,-)). Considering that the master keys are updated at most twice
between the message mp (resp. m4) being received by 7 and the message 75 (resp.
7'y) being received by 7, we conclude that

Pr(Es] < Pr(Ey] + 2advlBE, (B) + adviyic™(C).

24

By adding up all the probabilities from Game 0 to 4, we reach the mentioned bound

advZ R (A) < ng((ng — 1)27 + (¢ + 1)advl BE, (B) + 2adviyi o™ (C)).

Proof of the key indistinguishability security: We assume that E! is an event
that an adversary wins the key indistinguishability experiment in Game ¢, and

1
adv; = Pr[E}] — 7

Game 0: This game is concerned with the experiment between the adversary and the
challenger defined in definition 8 (Key Indistinguishability). The probability that
the adversary wins the key indistinguishability experiment is computed as
1 key—ind 1
Pr|E)] = 5t advg n (A) = 5T advy.

Game 1: If there exists an instance that accepts maliciously, the challenger aborts
the experiment and chooses b’ € {0,1} uniformly at random. Hence

advy < advy + advgﬁf}‘g‘ﬁh (A).
Game 2: The challenger tries to guess which instance is targeted by the adversary.
If the guess is wrong, the game is aborted. Hence

advg = adv1 X i
ng
Game 3: We reduce the advantage of the adversary to win this game to the security
of the pseudo-random function kdf (-, -). By assumption, the value of K used by this
function is uniformly chosen. On average, the key K is updated at most once per
session as discussed earlier. Hence, K has been updated at most u—1 times when the
u—th session starts. We must, therefore, consider the successive losses caused by the
key update using the update(-) function. This loss is at most (¢ — 1)ad05p§£6 (B) as
there is at most ¢ sessions per party. Therefore, we consider truly random functions
Gy" date G.” %ate instead of each function update(K) = f(k,z). Additionally, to
key update, if an instance uses the same key K = K;,0 < ¢ < g — 1, then we
use G instead of the update(-). Hence, we reduce the ability of A to win the
security of the function kdf(-,-) as

advy < advs + (q — 1)adv5p]§§e(8) + adv,fd?F(D).
The value of advs is zero as to that point the session key is random. Indeed, the
adversary has no advantage in guessing whether 7 -b = b'.
By summation of all the probabilities from Game 0 to 3, we reach the mentioned
bound

advg i (A) < nq((q — Dadvli. (B) + advfyf (D)) + adu gt 54" (A).

25

1
2

3

C Security verification of the SAKET with ProVerif

We use the ProVerif tool [12] to formally prove the SAKE™ protocol. The ProVerif en-
ables us to verify the concurrent execution of our protocol and to make sure whether
our protocol achieves the desired security objectives or not. Parties involved in the pro-
tocol use a channel to communicate with each other. This channel is assumed to be
controlled by an adversary that is able to read, change, delete, and create messages,
and the model in which the attacker operates is called “Dolev-Yao” [19]. The attacker
is capable of the modification of the protocol’s messages in that s/he can decrypt mes-
sages (if s/he gets access to the related keys) and can even compute the iy, element
of a tuple. We can encode our desired protocol and its objectives using the ProVerif’s
input language formally, enabling the ProVerif tool to verify our claimed security prop-
erties. The cryptographic primitives used in ProVerif is assumed to be perfect, i.e.,
the adversary is not able to make use of any polynomial-time algorithm and s/he can
only makes use of the cryptographic primitives defined by the user. With the help of
rewrite rules and/or an equational theory, the cryptographic primitives are associated
with each other.

A protocol that is written in the ProVerif tool’s input language (the typed pi calculus
[32]) includes the following components: the declarations, the processmacros and the
mainprocess. These components are discussed as follows:

— Declarations: The declarations consists of the user types, the functions describing
the cryptographic primitives, and the security properties as well.

— Process macros: The process macros include sub-process definitions; each sub-
process is a sequence of events.

— Main process: It is defined with the help of macros. In our particular SAKE™ pro-
tocol, the main process is defined as the parallel composition (denoted by |) of
the unbounded replication (denoted by !) of two process macros representing the
processInitiator, and process Responder nodes.

ProVerif can prove both reachability property and correspondence assertions [11].
The Reachability property allows us to check which information an attacker can access,
i.e. secrecy. Correspondence property is of the form “if some event is executed, then
another event has been executed previously”, and could be used for checking various
types of authentication [27]. We encoded the SAKET AKFE protocol in the ProVerif
language. In general, a protocol model can be divided into three different parts: the
declarations (lines 1-49), the process macros (lines 49-255), and the main process (lines
256-264).

(*-SAKE+ channel -*)
free c: channel.
(*-SAKE+ types—*)
type key.

type nonce.

type host.

(*-SAKE+ keys-x*)

26

free SKa,SKb,K,KjO,Kjl,Kj2:bitstring [privatel].

free BjO,Bj1,Bj2,Rb0O,Rbl1,B:bitstring.

free A: host.

(x-SAKE+ constants -*)

const f0,f1,DhelO,Dhell ,DhelN,EpsiO,Epsil,X: bitstring.

table TA(host,key,bitstring,bitstring,bitstring,bitstring ,nonce,nonce).
table TB(bitstring,key,bitstring,bitstring).

(x-SAKE+ functions -*)

fun nonce_to_bitstring(nonce): bitstring [data,typeConverter].
fun bitstring_to_key(bitstring): key [data,typeConverter].

fun host_to_bitstring(host): bitstring [data,typeConverter].
fun bitstring_to_nonce(bitstring): nonce [data,typeConverter].
fun mac(bitstring, key): bitstring.

reduc forall m: bitstring, k: key; get_message(mac(m,k)) = m.
fun PRF(bitstring,key): bitstring.

3 fun con(bitstring,bitstring): bitstring.

(x-SAKE+ events -x*)

event beginAparam(host, nonce).

event endAAuth (host, nonce).

event beginBparam(bitstring, nonce).

event endBAuth(bitstring, nonce).

event beginsyncBkey(bitstring, host, nonce, key).
event endsyncBkey(bitstring, host, nonce, key).
(*-SAKE+ queries-%)

query attacker (SKa).

query attacker (SKb).

query attacker (K).

query attacker (KjO).

query attacker (Kjl).

7 query attacker(Kj2).

query x: host, y: nonce; inj-event(endAAuth(x, y)) ==> inj-event(
beginAparam(x, y)).
query x: bitstring, y: nonce; inj-event(endBAuth(x, y)) ==> inj-event(

beginBparam(x, y)).
query x: bitstring, y: host, z: nonce, t: key; inj-event(endsyncBkey(x,y
,Z,t)) ==> inj-event(beginsyncBkey(x,y,z,t)).

C.1 Declarations

The declarations include the user types, the functions that describe the cryptographic
primitives, and the security properties. Additional user types can be declared as in lines
4-6 apart from the built-in types: channel and bitstring. Free names are defined as in
lines 2 and 8-10 where the channel with names c is declared. By default, the free names
are accessible to the attacker unless qualified by [Private]. Finally, constant values are
declared by const. The language supports tables for persistent storage. In lines 13 and
14, tables that model the subscribers database is declared.

Constructors are functions used to build terms. A constructor is declared by defining
its names, the types of its arguments and the return value (see lines 16-20, 22-23).
Functions, by default, are one-way; i.e., the attacker cannot infer the arguments from
the return value, unless qualified by [data]. Destructors (line 21) are special functions

27

that are used to manipulate terms. Constructors and destructors jointly are used to
capture the relationship between cryptographic primitives.

Message authentication codes (MAC) can be declared by a constructor (with no
associated destructor or equation), much like a keyed hash function as follow:

type key.

fun mac (bitstring,key):bitstring.

This model is strong in the sense that it considers the MAC as a random oracle. If
the MAC is considered to be a pseudo-random function (PRF), it is probably the best
possible model (in line 22, it is presented as fun PRF (bitstring,key):bitstring.).

Considering that the MAC is unforgeable (UF-CMA), one can declare a destructor
which leaks the MACed message as follow:

reduc for all m:bitstring, k: key; getmessage (mac(m,k)) = m.

A sequences of events presented in lines 25-30, are defined as follows:

— The beginAparam event declares that the initiator A starts the authentication pro-
tocol with its identity A and a fresh nonce.

— The endAAuth event declares that the initiator A will authenticated with the re-
sponder that received the fresh nonce generated by A.

— The events beginBparam and endBAuth for the entity B are the same as
beginAparam and end AAuth events for the entity A, respectively.

— The eginsyncBkey and endsyncBkey events declare that the responder B is in the
synchronize state with the initiator A.

We model correspondence assertions of the form: “if an event end has been executed,
then event begin has been previously executed.” with the queries presented in lines
38-40 that the first two queries (lines 38 and 39) are for the mutual authentication
and the last one is for the synchronization. The rest of the queries which are presented
in lines 32-37 is base on a built-in predicate attacker used to check which terms are
compromised.

C.2 Process macros

The process macros consist of sub-process definitions that are a sequence of events.
Messages are represented by terms, i.e., a name, a variable, a tuple of terms, a con-
structor or destructor application. The language, additionally, supports some common
Boolean functions (=, &&, ||, <>) with the infix notation.

There are term evaluation, restriction, communication and condition events defined
as follows:

— The pattern x : t matches any term of type t and binds it to x.

— the let x = M in binds the term M to x.

— The name restriction event new declares a fresh name of a specific type and binds
it inside the events. For instance, line 43 binds the type nonce to the fresh name R,.

— The communication event in (c,(x:host,y:nonce)) listen from a channel ¢ and binds
the received terms to x and y where the first one has type host and the second one
has type nonce.

28

— The communication event textbfout (c,(x:host,y:nonce)), sends the terms x and y on
channel c.

— The conditional if M else P then Q continues as the process P if the term M evaluates
to true, continues as the process Q if M evaluates to another value.

(* Role of the initiator *)

let processInitiator =

new Ra: nonce;

new aDhel: bitstring;

new aEpsi: bitstring;

new akj: bitstring;

get TA(aA,aK,akKjO0,aKj1l,aBjo0,aBjl,aRb0,aRbl) in
let A = aA in

let mO = (A,Ra) in

event beginAparam(A, Ra);

(x ====->Allr_A *)
out (c,m0) ;
(* m_B<---- x%)

in(c,(aB:bitstring,aRb:nonce,aTb:bitstring));

let aBj2 = PRF(X, bitstring_to_key(aBjl)) in

if aB = aBjO0 then let B = aBjO0 in

if aB = aBjl then let B = aBjl in

if aB aBj2 then let B = aBj2 in

if aB <> aBjO0 && aB <> aBjl && aB <> aBj2 then let B = aBjl in
if aRb0 <> aRb && aRbl <> aRb then

(

let Tbin = con(B,con(host_to_bitstring(A),con(nonce_to_bitstring(aRb),
nonce_to_bitstring(Ra)))) in
let Tb = mac(Tbin, bitstring_to_key(akKjl)) in
if Tb = aTb then
(
let aDhel = DhelO in
let akj = aKjl in
let SKa = PRF(con(nonce_to_bitstring(Ra),nonce_to_bitstring(aRb)), akK)
in
let aK = PRF(X, aK) in
let aBjl = PRF(X, bitstring_to_key(con(aBjl,aKjl))) in
let aKjO = aKjl in
let aKjl = PRF(X, bitstring_to_key(akKj1l)) in
let aBjO = aBjl in
let aEpsi = EpsiO in
let aRb0 = aRbl in let aRbl = aRb in
insert TA(A,bitstring_to_key(aK),aKjO0,aKjl,aBj0,aBjl,aRb0,aRbl);
let Tain = con(aEpsi,con(host_to_bitstring(A),con(B,(
nonce_to_bitstring(Ra) ,nonce_to_bitstring(aRb))))) in
let Ta = mac(Tain, bitstring_to_key(akj)) in
let ma = (B,aEpsi,Ta) in
out (c,ma)
(x ——=->m_A x*)
)
else
let Tbin = con(B,con(host_to_bitstring(A),con(nonce_to_bitstring(aRb),
nonce_to_bitstring(Ra)))) in

29

99

let Tb =
if Tb =
(
let
let

mac (Tbin,
aTb then

bitstring_to_key(aKjo0)) in

aDhel = Dhell in

akj = aKjO in

let aEpsi = Epsil in

let aRb0 = aRbl in let aRbl = aRb in

insert TA(A,aK,aKjO0,aKjl,aBjO,aBjl,aRb0,aRbl);
let Tain =

nonce_to_bitstring(Ra) ,nonce_to_bitstring(aRb)))))

let Ta = mac(Tain, bitstring_to_key(akj)) in
let ma = (B,aEpsi,Ta) in
out (c,ma)
(¥ —---->m_A *)
)
else
let Tbin =

nonce_to_bitstring(Ra)))) in

con(aEpsi,con(host_to_bitstring(A),con(B,(

in

con(B,con(host_to_bitstring(A),con(nonce_to_bitstring(aRb),

bitstring_to_key(akKj1))))

let Tb = mac(Tbin, bitstring_to_key (PRF(X,
in
if Tb = aTb then
(
let aDhel = DhellN in
let akj = PRF(X, bitstring_to_key(aKjl)) in
let aK = PRF(X, aK) in
let aBjl = PRF(X, bitstring_to_key(con(aBjl,akKj1))) in
let aKjO = aKjl in
let aKjl = PRF(X, bitstring_to_key(aKjl)) in
let aBjO = aBjl in
let SKa = PRF(con(nonce_to_bitstring(Ra) ,nonce_to_bitstring(aRb)),

bitstring_to_key(aK)) in

let aK = PRF(X, bitstring_to_key(aK)) in

let aBjl = PRF(X, bitstring_to_key(con(aBjl,aKjl))) in
let aKjO = aKjl in

let aKjl = PRF(X, bitstring_to_key(aKjl)) in

let aBjO = aBjl in

let aEpsi = EpsiO in

let aRbO0 = aRbl in let aRbl = aRb in

insert TA(A,bitstring_to_key(aK),aKjO0,aKjl,aBj0,aBjl,aRb0,aRbl);

let Tain =
nonce_to_bitstring(Ra) ,nonce_to_bitstring(aRb)))))

let Ta = mac(Tain, bitstring_to_key(akj)) in
let ma = (B,aEpsi,Ta) in
out (c,ma)
(x ——=->m_A x*)
)
else
yield
)
else

(x BIIT"P_B<---- %)
in(c,(aB:bitstring,aTpb:bitstring));

let B = aB in

30

con(aEpsi,con(host_to_bitstring(A),con(B, (

in

133 if aEpsi = EpsiO then

134 (

135 let akj = aKjl in

136 let Tpbin = con(nonce_to_bitstring(aRb) ,nonce_to_bitstring(Ra)) in
137 let Tpb = mac(Tpbin, bitstring_to_key(akj)) in

138 if Tpb = aTpb then

139 (

140 let Tpain = con(nonce_to_bitstring(Ra),nonce_to_bitstring(aRb)) in
141 let Tpa = mac(Tpain, bitstring_to_key(akj)) in

142 let m3 = (B,Tpa) in

143 event beginsyncBkey(B, A, aRb, bitstring_to_key(akj));

144 out (c,m3)

145 (¥ -==-->B| [T p_A x*)

146)

147 else

148 yield

149)

150 else

151 if aEpsi = Epsil then

152 (

153 let akj = PRF(X, bitstring_to_key(aKjl)) in
154 let Tpbin = con(nonce_to_bitstring(aRb) ,nonce_to_bitstring(Ra)) in

155 let Tpb = mac(Tpbin, bitstring_to_key(akj)) in
156 if Tpb = aTpb then

157 (

158 let SKa = PRF(con(nonce_to_bitstring(Ra) ,nonce_to_bitstring(aRb)),
aK) in

159 let aK = PRF(X, aK) in

160 let aBjl = PRF(X, bitstring_to_key(con(aBjl,akKj1))) in

161 let aKjO = aKjl in

162 let aKjl = PRF(X, bitstring_to_key(aKjl)) in

163 let aBjO = aBjl in

164 let Tpain = con(nonce_to_bitstring(Ra),nonce_to_bitstring(aRb)) in

165 let Tpa = mac(Tpain, bitstring_to_key(akj)) in

166 let m3 = (B,Tpa) in

167 event beginsyncBkey(B, A, aRb, bitstring_to_key(akj));

168 event endBAuth (B, aRb);

169 out (c,m3)

170 (¥ ===->BI||T"p_A *)

171)

172 else

173 yield

174)

175 else

176 0.

177 (* Role of the responder x*)

17¢ let processResponder =

179 (k Al lr_A<---- %)

150 in(c,(bA:host, bRa:nonce));

181 get TB(bB,bK,bKj,bf) in

182 new Rb: nonce;

183 let bTbin = con(bB,con(host_to_bitstring(bA),con(nonce_to_bitstring(Rb),
nonce_to_bitstring(bRa)))) in

31

let bTb = mac(bTbin, bitstring_to_key(bKj)) in

new Ralfa: nonce;

let mb = (if bf= f1 then (nonce_to_bitstring(Ralfa),Rb,bTb) else (bB,Rb,
bTb)) in

7 let bf= f1 in
; event beginBparam(bB, Rb);

(x ---->m_B x)
out (c, (mb));
(* m_A<---- %)

2 in(c,(bBp: bitstring,bEpsi: bitstring,bTa: bitstring));

let Tapin = con(bEpsi,con(host_to_bitstring(bA),con(bB, con(
nonce_to_bitstring(bRa) ,nonce_to_bitstring(Rb))))) in
let Tap = mac(Tapin, bitstring_to_key(bKj)) in
if Tap = bTa then
if bEpsi = Epsil then
(
let DbK PRF (X, bK) in
let bB PRF (X, bitstring_to_key(con(bB,bKj))) in
let bKj = PRF(X, bitstring_to_key(bKj)) in
let SKb = PRF(con(nonce_to_bitstring(bRa) ,nonce_to_bitstring(Rb)),
bitstring_to_key(bK)) in
let bK = PRF(X, bitstring_to_key(bK)) in
let bB = PRF(X, bitstring_to_key(con(bB,bKj))) in
let bKj = PRF(X, bitstring_to_key(bKj)) in
let bf= f0 in
insert TB(bB,bitstring_to_key (bK) ,bKj,bf);
let Tpbpin = con(nonce_to_bitstring(Rb) ,nonce_to_bitstring(bRa)) in

let Tpbp = mac(Tpbpin, bitstring_to_key(bKj)) in
let m2 = (bB,Tpbp) in
(¥ -=-->B|IT"p_B *)
out (¢, m2)
)

213 else

let SKb = PRF(con(nonce_to_bitstring(bRa),nonce_to_bitstring(Rb)), bK)
in

let bK = PRF(X, bK) in

let bB = PRF(X, bitstring_to_key(con(bB,bKj))) in

let bKj = PRF(X, bitstring_to_key(bKj)) in

let bf= f0 in

insert TB(bB,bitstring_to_key(bK) ,bKj,bf);

let Tpbpin = con(nonce_to_bitstring(Rb) ,nonce_to_bitstring(bRa)) in

let Tpbp = mac(Tpbpin, bitstring_to_key(bKj)) in

let m2 = (bB,Tpbp) in

(¥ ===->B|IT"p_B *)
out (c,m2);
(* BIIT p_A<---- %)

in(c,(bBpp:bitstring ,bTpa:bitstring));

let bTpapin = con(nonce_to_bitstring(bRa) ,nonce_to_bitstring(Rb)) in
let bTpap = mac(bTpapin, bitstring_to_key(bKj)) in

if bTpap = bTpa then

(

event endsyncBkey (bBpp, bA, Rb, bitstring_to_key(bKj));

event endAAuth(bA, DbRa)

32

233
234

235

)

else
0.

C.3 Main process

Finally, the main process is defined by means of two process macros that represent the
processInitiator (line 242) and processInitiator (line 243) nodes. The initialization
phase of the scheme is presented in lines 237-240 for an initiator A and a responder B
in line 237, and lines 238-240, respectively. Finally, in lines 240-243, the parallel com-
positions of processInitiator and process Responder denoted by | with the unbounded
replication (denoted by !).
process

insert TA(A,bitstring_to_key(XK),KjO,Kj1,BjO,Bjl,bitstring_to_nonce (RbO

) ,bitstring_to_nonce (Rbl));

new f: bitstring;

let £ = f0 in

insert TB(B,bitstring_to_key(XK),Kjo,f);

(

(!processInitiator) |

(! processResponder)

)

C.4 Security properties

Security properties are declared with the keyword. In our example of SAKE™, the
goal is to establish the shared session key SK, = SK; between A and B after mutual
authentication by preserving the forward secrecy. The protocol should be robust against
the traceability and de-synchronization attacks. In order to check this, we consider the
following queries.

(*-SAKE+ queries-*)

query attacker (SKa).

query attacker (SKb).
query attacker (K).

5 query attacker (KjoO).

query attacker (Kjl).
query attacker (Kj2).

query x: host, y: nonce; inj-event(endAAuth(x, y)) ==> inj-event(
beginAparam(x, y)).
query x: bitstring, y: nonce; inj-event(endBAuth(x, y)) ==> inj-event(

beginBparam(x, y)).
query x: bitstring, y: host, z: nonce, t: key; inj-event(endsyncBkey(x,y
,Z,t)) ==> inj-event(beginsyncBkey(x,y,z,t)).

— The first six queries presented in lines 32-37 is base on a built-in predicate attacker
used to check which terms are compromised.

33

— The query presented in line 38 proves that B successfully authenticates A, if ProVerif
returns true. The event beginAparam is called in line 50 on the new nonce R,
generated by the initiator A and the event endAAuth is called by the responder B
in line 23 after successful authentication of the initiator and establishing the session
key:.

— The query presented in line 39 proves that A successfully authenticates B, if ProVerif
returns true. The events of this query are presented as beginBparam and endBAuth
in lines 188 and 168, respectively.

— The query presented in line 40 proves that the responder B will be successful in
the synchronization state using the events eginsyncBkey and endsyncBkey on the
master key K’ (see lines 143,167 and 231) in case that true is resulted from ProVerif.

The results are illustrated bellow and show that all the events result in true, which
prove that the SAKE™ can preserve all the mentioned security queries.

Verification summary:

Query not attacker(SKa[]) is true.
Query not attacker (SKb[]) is true.
Query not attacker(K[]) is true.

5 Query not attacker(KjoO[]) is true.

Query not attacker (Kji[]) is true.

Query not attacker (Kj2[]) is true.

Query inj-event (endAAuth(x,y)) ==> inj-event(beginAparam(x,y)) is true.

Query inj-event (endBAuth(x,y)) ==> inj-event(beginBparam(x,y)) is true.

Query inj-event (endsyncBkey(x,y,z,t)) ==> inj-event(beginsyncBkey(x,y,2z,
t)) is true.

C.5 Analysis and discussion

As mentioned earlier, all the queries are solved as expected, that is, the correspondence
and secrecy ones are proved. We encode our security goals using the ProVerif queries
as follows:

Secrecy for a message, such as mg, encoded using MAC function that asks the ad-
versary to guess the value of K ;; if the adversary succeeds, the ProVerif issues false to
the query query attacker(Kj0).. We have the same discussion for the other terms free
X:bitstring [private]. in our scheme. For all of these queries, we received the result true
from ProVerif, which means that the protocol satisfies secrecy.

Forward secrecy for a master key K j’._l, we use the free Kjl:bitstring. instead of free
Kj1:bitstring [private]., which gives the attacker knowledge of the current master key K ;
and asks the adversary to guess the value of K ;_1 using the query query attacker(Kj0).;
if the adversary succeeds, the ProVerif issues false to the query. We received the result
true from ProVerif meaning that the protocol satisfies forward secrecy.

34

Authentication Considering the query presented in line 38, if ProVerif returns true,
it proves that B successfully authenticates A and considering the query presented in
line 39, if ProVerif returns true, it proves that A successfully authenticates B. By satis-
fying these two queries, we can ensure that our scheme provides mutual authentication
successfully.

Replay The events beginAparam, endAAuth, beginBparam and endB Auth used for
the authentication are based on the fresh nonces R, and R,. With regard to the result
true from both queries presented in lines 38 and 39, it proves that the scheme is secure
against the replay attack.

Synchronization The query presented in line 40 proves that the responder B
will be successful in the synchronization state using the events eginsyncBkey and
endsyncBkey on the master key K’ (see lines 143,167 and 231) in case that ProVerif
shows the true results.

In addition to the above queries, our scripts also include built-in predicate attacker
used to check which terms are compromised (presented in lines 32-37).

35

	SAKE+: Strengthened Symmetric-Key Authenticated Key Exchange with Perfect Forward Secrecy for IoT

