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Abstract

Privacy protection and scalability are significant issues with blockchain. We propose an anonymous
probabilistic payment under the general functionality for solving them. We consider the situation that
several payers pay several payees through a tumbler. We have mediated the tumbler of the payment
channel hub between payers and payees. Unlinkability means that the link, which payer pays which payee
via the tumbler, is broken. A cryptographic puzzle plays a role in controlling the intermediation and
execution of transactions. Masking the puzzle enables the payer and the payee to unlink their payments.
The overview of the proposed protocol is similar to TumbleBit (NDSS 2017). We confirm the protocol
realizes the ideal functionalities discussed in TumbleBit. The functionality required for our proposal is the
hashed time lock contract that various cryptocurrencies use. This request is general, not restricted to any
particular cryptocurrency. Our proposal includes a probabilistic payment. In probabilistic payment, one
pays an ordinary mount with a certain probability. One pays a small amount as an expected value. One
can run fewer transactions than a deterministic payment. It contributes scalability. We introduce a novel
fractional oblivious transfer for probabilistic payment. We call it the ring fractional oblivious transfer
(RFOT). RFOT is based on the ring learning with errors (RLWE) encryption. Our trick is based on the
fact that an element of the ring is indistinguishable from the circular shifted element. We confirm that
RFOT holds the properties of fractional hiding and binding presented in the DAM scheme (Eurocrypt
2017).

1 Introduction

The Bitcoin [Nak08] announced by Nakamoto has spread all over the world. This underlying technology is
now called the blockchain. There are many other cryptocurrencies based on blockchain technology. Cryp-
tocurrencies also have spread and usable in the real world. There are many problems that blockchain needs
to be solved. Scalability and privacy protection are significant problems in blockchain. However, there are a
few proposals to solve these problems at the same time.

Let us state privacy protection. The transaction normally links a payer and a payee. One can figure
out their balance and trading frequency by analyzing the links of transactions. Privacy is not protected.
Breaking the transaction link is necessary to protect privacy.

Let us describe scalability. It is costly to write all the small transactions into the blockchain. The payment
of a small amount of money is called micropayment. For such micropayments, Wheeler [Whe97] and Rivest
[Riv97] proposed a probabilistic payment before blockchain appears. It reduces costs for micropayment. In
probabilistic payment, one pays an ordinary mount m with a certain probability p. One pays a small amount
mp as an expected value. By the probability p (e.g. p ≈ 0.1 ∼ 0.001), one can reduce 1/p times transactions
compared to deterministic payment. Micropay [Ps15], the DAM scheme [CGL+17] and Microcash [ABCar]
have proposed a new micropayment on the blockchain. It is attracting attention as one of the leading solutions
for scalability in the blockchain.
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1 INTRODUCTION 2

1.1 Our contribution

We propose an anonymous probabilistic payment. It aims to solve both scalability and privacy protection. In
this work, we realize a kind of unlinkability, which is ”k-anonymity in an epoch.” This definition is mentioned
in TumbleBit [HAB+17] and their earlier work [HBG16]. The link means that which payer pays which payee
via a tumbler within an epoch. Anonymity says the link is broken. Even a tumbler never knows the link. The
”k” is the number of participants trading via the tumbler. The epoch is the period during which transactions
are completed.

Our proposal includes a probabilistic payment. In probabilistic payment, one pays an ordinary mount
m with a certain probability p (e.g. p ≈ 0.1 ∼ 0.001). One pays a small amount mp as an expected value.
One can reduce 1/p times transactions compared to deterministic payment. We introduce a novel fractional
oblivious transfer for adopting the probabilistic payment. We call it the ring fractional oblivious transfer. It
is based on the ring learning with errors (RLWE) encryption. The functionality required for our proposal
is hashed time lock contract (HTLC). Various cryptocurrencies adapt HTLC. This request is general, not
restricted to any particular cryptocurrency.

1.2 Related work

In this subsection, we describe the related work regarding anonymity in blockchain, probabilistic payment,
fractional oblivious transfer, and the comparison with a concurrent work.

1.2.1 Anonymity in blockchain

There are researches on a new anonymous cryptocurrency. Zerocash [SCG+14] is a famous anonymous cryp-
tocurrency and is implemented as ZCash. Regarding ZCash, their group has proposed continuous researches
such as BOLT [GM17] and DAM scheme [CGL+17]. Monero is also a famous anonymous cryptocurrency and
provided with incredible works [Noe15,SALY17,YSL+ar,MSRL+19]. There are studies to realize anonymity
for existing cryptocurrencies by using off-chain technology. TumbleBit [HAB+17] is compatible with Bitcoin.
Zether [BAZBar] is compatible with Ethereum.

1.2.2 Probabilistic payments

Wheeler [Whe97] and Rivest [Riv97] proposed a probabilistic payment. Micropay [Ps15] is compatible with
Bitcoin. Microcash [ABCar] can be implemented as a smart contract. The DAM scheme, which is the
extension of anonymous ZCash, also realizes a probabilistic payment.

1.2.3 Fractional oblivious transfer over the ring

Bellare and Micali [BM90] and Bellare and Rivest [BR99] proposed the fractional oblivious transfer based on
the computational Diffie-Hellman assumption as the early works. The DAM scheme [CGL+17,CGL+16] also
proposed a novel fractional oblivious transfer based on the decisional Diffie-Hellman assumption as fractional
message transfer. Note that [CGL+16] is the full version of [CGL+17].

Brakerski and Döttling proposed an oblivious transfer based on the learning with errors [BD18]. This
work is the first oblivious transfer in the post-quantum cryptography. Liu and Hu first proposed an efficient
1-out-of-2 oblivious transfer (OT) on the RLWE assumption and extends 1-out-of-n OT [LH19]. To the best
of our knowledge, we first propose the fractional oblivious transfer over the ring.

1.2.4 Comparison with a concurrent work

The DAM scheme [CGL+17,CGL+16] is an anonymous probabilistic payment, which passes ZCash transac-
tion by a fractional oblivious transfer. Since the scheme includes a ZCash transaction in the message, it is a
ZCash specific implementation. Although we also propose an anonymous probabilistic payment, the required
functionality is the hashed time lock contract (HTLC). Various cryptocurrencies such as Bitcoin, implement
HTLC. Therefore our proposal is not limited to a specific cryptocurrency.
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1.3 Our approach

We present the approach of the anonymous probabilistic payment and the ring fractional oblivious transfer,
which is a vital ingredient in our proposal.

1.3.1 Anonymous probabilistic payment

We propose an anonymous probabilistic payment that a payer pays a payee via a tumbler. We name the
payer Alice and the payee Bob. Suppose that she wants to send one coin to him through the tumbler with
a certain probability p. We show the overview of the protocol in Fig. 1. Our protocol mostly follows
TumbleBit [HAB+17].

Let us explain each phase in the protocol, setup, puzzle promise, and puzzle solver as follows. In the setup
phase, the tumbler generates a one-time key pair consisting of a public key and a private key. The tumbler
also attaches proof of the zero-knowledge proof. The tumbler publishes this proof and the public key.

In the promise phase, the tumbler and Bob interact. The tumbler prepares an escrow transaction that
pays one coin to him from the tumbler. Both the signatures of the tumbler and he can execute this escrow
transaction. The tumbler does not present its signature to him in this phase. Instead, the tumbler creates
puzzles and promises from its signature and presents them to him. If he has this puzzle answer, then he
obtains the tumbler signature from the promise and puzzle.

To gain the answer, Bob will ask Alice to solve the puzzle. Then, he masks the puzzle to delete his link
and sends it to her. She also masks the received puzzle from him to delete her link. She will pay and get the
answer to the puzzle with probability p in the next phase.

In the solver phase, Alice interacts with the tumbler to get the puzzle answer. She makes a probability
payment to the tumbler, paying one coin with probability p. Then, she sends the double-masked puzzle to the
tumbler. She issues a transaction to the tumbler and asks the tumbler to post the puzzle answer. She asks
the tumbler to decrypt in exchange for the commitment to the transaction. The tumbler posts the answer
and executes the transaction. Alice demasks the decrypted answer and sends the single masked answer to
Bob.

In the cash-out phase, Bob receives the single masked answer from Alice. He demasks it and obtains
the answer. As the tumbler and he promised in the promise phase, he gets the tumbler signature from the
answer. Finally, he executes the escrow transaction and gain one coin.

For the probabilistic payment in the solver phase, we introduce a novel ingredient. It is a fractional
oblivious transfer based on the ring learning with errors (RLWE) encryption. We call it the ring fractional
oblivious transfer (RFOT).

Alice A Tumbler T Bob B
Puzzle promise protocol

Obtain puzzle z from T
y = mask(z)
Send y to A

Puzzle solver protocol
β = mask(y)
Send β to T
Learn s from T
m′ = demask(s)
Send m′ to B

m = demask(m′)
Obtain T ’s singnature from m and post it

Figure 1: Overview of the proposed protocol

1.3.2 Ring fractional oblivious transfer

Let us describe the ring fractional oblivious transfer (RFOT).
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Basic idea. In the RLWE encryption, it is essential to operate on the ring Rq = Zq[X]/〈Xnd + 1〉. Let
us compare an element a ∈ Rq with aXk multiplied by Xk with an integer k. One can choose k randomly
from the set {1, . . . , n}, where n < nd. Because Xnd = −1, the original coefficient of the element a is
cyclically shifted regardless of the sign. In key generation or encryption, one samples coefficients of the
element a randomly from the uniform distribution or the discrete Gaussian distribution. These distributions
are positive and negative symmetric. The element a chosen from the distributions and the shifted aXk are
indistinguishable. Looking at the aXk, one cannot identify how much the shift is.

Procedure. Suppose that a sender sends a message m to a receiver. We name the sender Alice and the
receiver Bob. First, he creates a one-time key pair, a public key and private key. He randomly chooses an
integer k ∈ {1, . . . , n}, cyclically shifts the public key by multiplying X−k. Furthermore, he issues this shifted
public key to her. She creates the ciphertext by the shifted public key. She does not know the shift amount
of k. She also randomly chooses an integer l ∈ {1, . . . , n}, and shifts the ciphertext by multiplying X l. He
receives the shifted ciphertext and decrypts it by the secret key. If both shifted amounts l and k match,
he can obtain a message m in the specified format. If they do not match, he has a broken message ∅. The
probability that both l and k match is 1/n.

Security. We prove that the RFOT satisfies the fractional hiding and fractional binding. The DAM scheme
[CGL+17,CGL+16] introduced the two properties. Fractional hiding is a property that a ciphertext created
by an honest encryptor can be decrypted exactly with probability p. Fractional binding is a property that
a malicious encryptor cannot create valid ciphertext that can be decrypted with probability p′ 6= p. We
prove the security of the fractional hiding and fractional binding with the simulation-based security like
[CGL+17, CGL+16]. We adopt a trapdoor to simulate the RFOT. Let us explain the trapdoor for the
simulated RFOT. We use the scheme for the trapdoor proposed in the identity-based encryption over NTRU
lattice [DLP14]. The trapdoor requires the decisional small polynomial ratio (DSPR) assumption. We
regard the one-time public key and private key as a user key and the simulated trapdoor as a master
key. It can directly produce the small elements of the RLWE encryption. One can simulate a shifted
secret key or plaintext and randomness from the randomly sampled elements s1, s2 such that y = as1 + 2s2

for the given y and the trapped a. A trapdoor using a gadget matrix is known. Micciancio and Peikert
proposed a gadget matrix based trapdoor [MP12]. Following this work, Genise and Micciancio proposed
an efficient Gaussian sampler for the trapdoor [GM18]. Cousins et al. proposed the implementation of the
RLWE encryption [CDG+18]. However, this method does not output the small elements required for RLWE
encryption.

1.4 Chapter organization

We describe the organization of this work. In Section 2, we state the building blocks. In Section 3, we
introduce the ring fractional oblivious transfer. In Section 4, we introduce the puzzle solver protocol and the
puzzle promise protocol and discuss the security of the protocols. In Section 5, we conclude this work.

2 Building blocks

In this section, we describe the building blocks.

2.1 Notation

Let N,Z,Q and R be the set of natural numbers, the set of integers, the set of rational numbers and the set
of real numbers, respectively. Let the finite field Zq = Z/qZ = {0, 1, . . . , q − 1}, where q is a prime number.
Let Z[X] be the ring of polynomials over the integers. Let Φl ∈ Z[X] be the l-th cyclotomic polynomial. We
set l to a power of 2. We have the cyclotomic polynomial Φl = Xnd + 1, where nd = φ(l). φ is the Euler
function. Let the ring of integers R = Z[X]/〈Xnd + 1〉, and let Rq = Zq[X]/〈Xnd + 1〉 = Z[X]/〈Xnd + 1, q〉.
Rq is the ring of integers R modulo q. We identify a vector (a0, . . . , and−1) ∈ Znd with a polynomial
a0 +a1X+ · · ·+and−1X

nd−1 ∈ R. We denote the norms of a = a0 +a1X+ · · ·+and−1X
nd−1 ∈ R as follows.

|ai| is the absolute value of ai.
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• l2-norm |a| =
√
a2

0 + a2
1 + · · ·+ a2

nd−1

• l∞-norm |a|∞ = max (|a0|, |a1|, . . . , |and−1|)

If ∀c ∈ N, ∃nc such that ∀n > nc, f(n) < 1/nc, then we denote the function f as a negligible function
negl(n). If an element a is sampled randomly from a distribution A or a uniform distribution over the set A,

then we denote a
$←− A.

2.2 Ring learning with errors encryption

We introduce the definitions regarding the ring learning with errors (RLWE) encryption.

2.2.1 Discrete Gaussian distribution

we describe the discrete Gaussian distribution.

• ρndv,σ(x) = ( 1√
2πσ

)nde
−|x−v|2

2σ2 is the continuous normal distribution over Rnd centered at v with standard

deviation σ. If v = 0, then we write ρndv,σ as ρndσ .

• Dnd
v,σ(x) = ρndv,σ(x)/ρndσ (Znd) is the discrete normal distribution over Znd centered at v ∈ Znd with

standard deviation σ. In this definition, the quantity ρndσ (Znd) = Σz∈Zndρ
nd
σ (z) is just a normalized

quantity. It is necessary to express the function as a probability distribution. We also mention that
∀v ∈ Znd , ρndv,σ(Znd) = ρndσ (Znd). The scaling factor is the same for all v. If the dimension nd is clear
from the context, then we omit nd and write Dnd

σ as Dσ. We also denote Dσ as χ.

We introduce the below lemma regarding the discrete Gaussian distribution.

Lemma 1 (Lemma 4.4 in [MR07]). Let nd ∈ N. For any number σ > ω(
√

log nd), we have

Pr
x

$←−Dσ
[|x|∞ > σ

√
nd] ≤ 2−nd+1.

Remark 1. According to Lemma 1, |x| ≤ B with overwhelming probability if x
$←− Dσ. B is a constant value.

2.2.2 Assumption

First, we present the problems over the ring as follows.

Definition 1 (Ring learning with errors (RLWEφ,q,χ) problem). Let φ(X) ∈ Z[X] be a polynomial of degree
nd, let q ∈ Z be a prime integer, let χ denote a distribution over the ring R = Z[X]/〈φ(X)〉, and let
Rq = R/qR. The ring learning with errors problem RLWEφ,q,χ is to distinguish between the following two

distributions: (a, y) ∈ R2
q such that a

$←− Rq, s, e
$←− χ, y = as+ e, and (a, y)

$←− R2
q.

The RLWE assumption indicates that the RLWE problem is hard for any probabilistic polynomial time
algorithm. The RLWE assumption still holds even if we choose the secret s according to the error distribution
Dσ rather than uniformly [LPR13].

Definition 2 (Decisional small polynomial ratio (DSPRφ,q,χ) problem (Definition 3.4 in [LATV12])). Let
φ(X) ∈ Z[X] be a polynomial of degree nd, let q ∈ Z be a prime integer, and let χ denote a distribution over
the ring R = Z[X]/〈φ(X)〉. The decisional small polynomial ratio problem DSPRφ,q,χ is to distinguish between
the following two distributions: a polynomial h = g/f , where f and g are sampled from the distribution χ

(conditioned on f being invertible over Rq = R/qR), and a polynomial h
$←− Rq.

According to [LATV12], let us explain a standard deviation of the discrete Gaussian distribution Dσ and
DSPR assumption. It is known that the DSPR problem is hard if the standard deviation is large. For the
calculation using homomorphic encryption, we want to take a small one. In this case, it is assumed that the
DSPR problem is still hard. This is called DSPR assumption.
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2.2.3 RLWE encryption and its syntax

Now we introduce Brakerski-Vaikuntanathan (BV) scheme [BV11]. We describe plaintext space, key gener-
ation, encryption and decryption as follows.

• The plaintext space M = Rp = Z[X]/〈Xnd + 1, p〉. In this work, we set p = 2 in M.

• To generate key, a, s
$←− Rq, es

$←− Dσ, b = as+ es, where (a, b) is a public key and s is a secret key.

• To encrypt a plaintext m ∈M, choose a set of randomness v, e, f
$←− Dσ, and compute the ciphertext

c = (c1, c2) = (bv + pe + m, av + pf) ∈ C. We also denote the procedure as c = RLWE.Enc(pk,m) or
c = RLWE.Enc(pk,m, v, e, f). The latter is the case of specifing the randomness.

• To decrypt c = (c1, c2) with secret key s and obtain a plaintext m, compute m = (c1 − s · c2 mod q)
mod p. We also denote the procedure as m = RLWE.Dec(sk, c).

3 Ring fractional oblivious transfer

In this section, we introduce a fractional oblivious transfer over the ring. First, we describe the trapdoor and
the zero-knowledge proof. Next, we introduce the syntax and the definition of the scheme and its simulator,
and its properties, referring to [CGL+16]. Finally, we present the construction of a novel fractional oblivious
transfer and discuss the security.

3.1 Trapdoor

We introduce the trapdoor based on DSPR assumption according to [DLP14]. We use IBE.MasterKeygen(nd, q)
and IBE.Extract(B, t) of [DLP14]. We show the functions in Fig. 2. We state the difference between our
functions and [DLP14]. [DLP14] calculates the hash value of the second argument in the function IBE.Extract.
However, we use the target value t as it is.

• Master key generation: IBE.MasterKeygen(nd, q)→ (a,B, ga, fa)

On input a dimension nd of the ring R and a modulo q of the ring Rq = R/qR, IBE.MasterKeygen
outputs a master public key a, a master secret key B, and small polynomials ga, fa such that a = ga·f−1

a .

• Extractor: IBE.Extract(B, t)→ (s1, s2)

On input a master secret key B and a target value t, IBE.Extract outputs a pair of small polynomials
(s1, s2) such that t = as1 + 2s2, where a is the master public key.

Figure 2: Trapdoor by identity-based encryption [DLP14]

3.2 Non-interactive zero-knowledge proof

Let us state the non-interactive zero-knowledge proof (NIZK). We show the syntax of NIZK in Fig. 3,
referring to [CGL+16]. In this work, we represent NIZK according to the syntax. R is a relation regarding
an instance x and a witness w. If x and w satisfy the relation R, then we denote (x,w) ∈ R.

The non-interactive zero-knowledge proof for the relation R is a protocol that satisfies the below proper-
ties.

1. Completeness For any (x,w) ∈ R, the conditional probability

Pr[NIZK.Verify(crs, x, π) = 1 ∧ (x,w) ∈ R |
crs← NIZK.Setup(1λ,R), π ← NIZK.Prove(crs, x, w)] ≥ 1− negl(λ).
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• Setup: NIZK.Setup(1λ,R)→ crs

On input a security parameter λ and a relation R, NIZK.Setup outputs a common reference strings crs.

• Prove: NIZK.Prove(crs, x, w)→ π

On input a common reference strings crs, an instance x, and a witness w, NIZK.Prove outputs a proof
π.

• Verify: NIZK.Verify(crs, x, π)→ 1 or 0

On input a common reference strings crs, an instance x, and a proof π, NIZK.Verify outputs 1 if π is
valid, otherwise 0.

• Simulated setup: NIZK.SimSetup(1λ,R)→ (crs, td)

On input a security parameter λ and a relation R, NIZK.SimSetup outputs a common reference strings
crs and a trapdoor td.

• Knowledge extractor: NIZK.Extract(crs, td, x, π)→ w

On input a common reference strings crs, a trapdoor td, an instance x, and a proof π, NIZK.Extract
outputs a witness w.

• Simulator: NIZK.Simulate(crs, td, x)→ π

On input a common reference strings crs, a trapdoor td, and an instance x, NIZK.Simulate outputs a
proof π.

• Knowledge extracting simulator: NIZK.ExtSimulate(crs, td, x)→ π

On input a common reference strings crs, a trapdoor td, and an instance x, NIZK.ExtSimulate outputs
a proof π.

Figure 3: Syntax of NIZK [CGL+16]
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2. Soundness

Let a knowledge extractor NIZK.Extract for any adversary A exist. For all (x,w) 6∈ R, the conditional
probability

Pr[NIZK.Verify(crs, x, π′) = 1 ∧ (x,w′) 6∈ R |
(crs, td)← NIZK.SimSetup(1λ,R), π ← NIZK.Prove(crs, x, w),

w′ ← NIZK.Extract(crs, td, x, π), π′ ← A(crs, x, w′)] ≤ negl(λ).

3. Zero-knowledge

For any adversary, the below two distribution ensembles E real
Z , E ideal

Z are computationally indistinguish-
able.

E real
Z = {(R, crs, x, π) | crs← NIZK.Setup(1λ,R), π ← NIZK.Prove(crs, x, w)}
E ideal
Z = {(R, crs, x, π) | (crs, td)← NIZK.SimSetup(1λ,R),

π ← NIZK.Simulate(crs, td, x)}

We introduce the following relations RK ,R0 and RE . We describe the concrete protocols for these
relations in Appendix A.

RK = {((a, y), (s, e)) | y = as+ 2e ∧ |s|, |e| ≤ Õ(
√
ndα)}

R0 = {((c1, c2), (v, e, f)) : (c1, c2) = (bv + pe, av + pf) ∧ |v|, |e|, |f | ≤ Õ(
√
ndα)}

RE = {((c1, c2, a, y), (m, v, e, f)) | c1 = yv + 2e+m ∧ c2 = av + 2f

∧ |m|∞ ≤ 1 ∧ |v|, |e|, |f | ≤ Õ(
√
ndα)}

Let us explain NIZK.ExtSimulate regarding the relation RE for a randomly sampled pair (c1, c2) as follows.
We adopt the special trapdoor tdI since a pair (c1, c2) is randomly sampled.

Definition 3 (Extract Simulate with trapdoor). NIZK.ExtSimulate regarding the relation RE for a given

pair (c1, c2)
$←− C is stated as follows.

• NIZK.ExtSimulate(crsE , tdI , x)→ π

1. Parse x as (c1, c2, a, y).

2. Parse tdI as (B, ga, fa).

3. Compute (v′, f ′) = IBE.Extract(B, c2).

4. Compute (s1, s2) = IBE.Extract(B, (c1 − yv′)f−1
a ).

5. Compute m′, e′ from (c1 − yv′)f−1
a = as1 + 2s2.

6. Compute π = NIZK.Prove(crsE , x, (m
′, v′, e′, f ′)).

7. Output π.

Remark 2. Let us confirm how to obtain m′, e′ from (c1− yv′)f−1
a = as1 + 2s2. Note that a = gaf

−1
a , where

fa and ga are small polynomials.

(c1 − yv′)f−1
a = as1 + 2s2

(c1 − yv′)f−1
a = s1gaf

−1
a + 2s2

c1 − yv′ = s1ga + 2s2fa

c1 = yv′ + s1ga + 2s2fa

We have m′ = s1ga mod 2 and e′ = s2fa. We obtain c1 = yv′ + 2e′ +m′.
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Lemma 2. Let NIZK.ExtSimulate be defined as Definition 3. The below two distribution ensembles E real
Z′ and

E ideal
Z′ are computationally indistinguishable.

E real
Z′ = {(RE , crs, x, π) | crs← NIZK.Setup(1λ,RE), π ← NIZK.Prove(crs, x, w)}
E ideal
Z′ = {(RE , crs, x, π) | (crs, td)← NIZK.SimSetup(1λ,RE),

π ← NIZK.ExtSimulate(crs, td, x)}

Proof. Let us confirm Definition 3 of ExtSimulate. A simulated witness w′ = (m′, v′, e′, f ′) is generated from
the trapdoor tdI . Then the true witness w is entirely unnecessary. We can choose a small witness w′ that fits
the norm constraint by IBE.Extract. Besides, we can call the actual proving function NIZK.Prove inline. The
simulated proof by NIZK.ExtSimulate is computationally indistinguishable from the proof by NIZK.Prove. We
conclude that the two distribution ensembles E real

Z′ and E ideal
Z′ are computationally indistinguishable.

3.3 Syntax and definition

We introduce the definitions of the scheme, the correctness, and the simulator, fractional hiding, and fractional
binding. These definitions appear initially as fractional message transfer in [CGL+16]. We follow the syntax
and the definition in [CGL+16], and realize our original scheme and its security in Section 3.4.

3.3.1 Syntax and definition of scheme and simulator

We state the syntax and the definition regarding the scheme and its simulator. We show the syntax and
definition of the scheme in Fig. 4.

Definition 4 (Correctness [CGL+16]). A scheme is correct if for every security parameter λ, public pa-
rameters pp ∈ RFOT.Setup(1λ), probability p ∈ [0, 1], key pair (pk, sk) ∈ RFOT.Keygen(pp, p), and message
m ∈M,

RFOT.Decrypt(pp, sk,RFOT.Encrypt(pp, pk,m)) =

{
m with probability p

∅ with probability 1− p

Remark 3. The types of a decrypted message m′ are as follows. Let us name valid/invalid message hit/miss
since we illustrate a probabilistic payment as a lottery ticket.

• m : well formatted valid message. We also call it ”hit.”

• ∅ : broken formatted invalid message. We also call it ”miss.”

• ⊥ : error message reporting error occurrence

3.3.2 Fractional hiding and binding

In this subsection, we introduce the definitions of fractional hiding and binding, according to [CGL+16].

Definition 5 (Fractional hiding (Claim A.7 in [CGL+16])). The hiding property holds when the following
distribution ensembles E real

H and E ideal
H are computationally indistinguishable for any adversary AH , where

E real
H = {out | RFOT.Setup(1λ)→ pp,AH(pp)→ (pk,m),

RFOT.Encrypt(pp, pk,m)→ c,AH(c)→ out}

and

E ideal
H = {out | RFOT.SimSetup(1λ)→ (pp, td),AH(pp)→ (pk,m),

”1 with probability p and 0 otherwise”→ b,

if b = 1, set m′ = m; else set m′ = ∅,
RFOT.SimEncrypt(pp, td, pk, b,m′)→ c,AH(c)→ out}.
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The syntax of the scheme

• Setup: RFOT.Setup(1λ)→ pp

On input a security parameter λ, RFOT.Setup outputs a public parameter pp.

• Key generation: RFOT.Keygen(pp, p)→ (pk, sk)

On input a public parameter pp and a probability p ∈ [0, 1], RFOT.Keygen outputs a public key pk and
a secret key sk.

• Encryption: RFOT.Encrypt(pp, pk,m)→ c

On input a public parameter pp, a public key pk, and a message m, RFOT.Encrypt outputs a ciphertext
c.

• Decryption: RFOT.Decrypt(pp, sk, c)→ m′

On input a public parameter pp, a secret key sk, and a ciphertext c, RFOT.Decrypt outputs a message
m′.

The simulator regarding the security for the scheme

• Simulated setup: RFOT.SimSetup(1λ)→ (pp, td)

On input a security parameter λ, RFOT.SimSetup outputs a public parameter pp and a trapdoor td.

• Simulated key generation: RFOT.SimKeygen(pp, td, p)→ (pk, sk)

On input a public parameter pp, a trapdoor td, and a probability p ∈ [0, 1], RFOT.SimKeygen outputs
a public key pk and a secret key sk.

• Simulated encryption: RFOT.SimEncrypt(pp, td, pk, b,m′)→ c

On input a public parameter pp, a trapdoor td, a public key pk, a bit b, and a message m′,
RFOT.SimEncrypt outputs a ciphertext c.

• Extracting decryption: RFOT.ExtDecrypt(pp, td, sk, c)→ m

On input a public parameter pp, a trapdoor td, a secret key sk, and a ciphertext c, RFOT.ExtDecrypt
outputs a message m.

• Simulated decryption: RFOT.SimDecrypt(pp, td, sk, b)→ sk′

On input a public parameter pp, a trapdoor td, a secret key sk, and a bit b, RFOT.SimDecrypt outputs
a simulated secret key sk′.

Figure 4: Syntax of the scheme and its simulator [CGL+16]
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Definition 6 (Fractional binding (Claim A.8 in [CGL+16])). The binding property holds when the following
distribution ensembles E real

B and E ideal
B are computationally indistinguishable for any adversary AB, where

E real
B = {(pp, pk, sk, c,m) | RFOT.Setup(1λ)→ pp,RFOT.Keygen(pp, p)→ (pk, sk),

AB(pp, pk)→ c,RFOT.Decrypt(pp, sk, c)→ m}

and

E ideal
B = {(pp, pk, sk′, c,m′) | ”1 with probability p and 0 otherwise”→ b,

RFOT.SimSetup(1λ)→ (pp, td),

RFOT.SimKeygen(pp, td, p)→ (pk, sk),

AB(pp, pk)→ c,RFOT.ExtDecrypt(pp, td, sk, c)→ m,

RFOT.SimDecrypt(pp, td, sk, b)→ sk′,

if b = 1, set m′ = m; else set m′ = ∅}.

3.4 Construction

We describe the scheme, the correctness, and simulation-based security.

3.4.1 Scheme

Let us introduce the formal definition of our scheme.

Definition 7 (Ring fractional oblivious transfer). The ring fractional oblivious transfer (RFOT)

RFOT = (RFOT.Setup,RFOT.Keygen,RFOT.Encrypt,RFOT.Decrypt)

is defined in Fig. 5.

Remark 4. We denote the encryption as c = RFOT.Encrypt(pk,m; v, e, f) if an encryptor specifies the
randomness v, e, f .

3.4.2 Correctness

Let us confirm the correctness of decryption in our scheme. If l = k, then

(c1 − c2s)X−k = ((yX−kv + 2e+m)X l − (av + 2f)s)X−k

= ((yX l−k − as)v + 2(eX l − fs))X−k +mX l−k

= ((y − as)v + 2(eX l − fs))X−k +m

= 2(esv + eX l − fs)X−k +m

(esv + eX l − fs)X−k is small. We have m′ = (c1 − c2s)X−k mod 2 = m.

3.4.3 Security

In this subsection, we state the simulation-based security.

Definition 8 (Simulated ring fractional oblivious transfer). The simulated ring fractional oblivious transfer

RFOTsim = (RFOT.SimSetup,RFOT.SimKeygen,RFOT.SimEncrypt,

RFOT.ExtDecrypt,RFOT.SimDecrypt)

is defined in Fig. 6.
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• RFOT.Setup(1λ)→ pp

1. Compute crsK ← NIZK.Setup(1λ,RK).

2. Compute crsE ← NIZK.Setup(1λ,RE).

3. Set a
$←− Rq.

4. Output pp = (crsK , crsE , a).

• RFOT.Keygen(pp, 1/n)→ (pk, sk)

1. Parse pp as (crsK , crsE , a).

2. Set s, es
$←− χ.

3. Compute y = as+ 2es.

4. Set k
$←− {1, . . . , n}.

5. Compute y0 = yX−k.

6. Compute πK = NIZK.Prove(crsK , (a, y0), (sX−k, esX
−k)).

7. Set pk = (1/n, a, y0, πK).

8. Set sk = (1/n, s, es, k, πK).

9. Output key pair (pk, sk).

• RFOT.Encrypt(pp, pk,m)→ c

1. Parse pp as (crsK , crsE , a).

2. Parse pk as (1/n, a, y0, πK).

3. Set l
$←− {1, . . . , n}.

4. Compute c′1 = y0v + 2e+m, c2 = av + 2f .

5. Compute c1 = c′1X
l = (y0v + 2e+m)X l.

6. Compute πE = NIZK.Prove(crsE , (c1, c2, a, y0), (m, v, e, f)).

7. Output c = (l, c1, c2, πE).

• RFOT.Decrypt(pp, sk, c)→ m′

1. Parse pp as (crsK , crsE , a).

2. Parse sk as (1/n, s, es, k, πK).

3. Parse c as (l, c1, c2, πE).

4. If l 6∈ {1, . . . , n}, then output ⊥.

5. If NIZK.Verify(crsE , (c1, c2, a, y0), πE) = 0, then output ⊥.

6. If l 6= k, then output m′ = ∅.
7. If l = k, then output m′ = (c1 − c2s)X−k mod 2.

Figure 5: Construction of the ring fractional oblivious transfer
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• RFOT.SimSetup(1λ)→ (pp, td)

1. Compute
(crsK , tdK)← NIZK.SimSetup(1λ,RK).

2. Compute
(crsE , tdE)← NIZK.SimSetup(1λ,RE).

3. Compute
(a,B, ga, fa) = IBE.MasterKeygen(nd, q).

4. Set tdI = (B, ga, fa).

5. Set pp = (crsK , crsE , a).

6. Set td = (tdK , tdE , tdI).

7. Output (pp, td).

• RFOT.SimKeygen(pp, td, 1/n)→ (pk, sk)

1. Parse pp as (crsK , crsE , a).

2. Parse td as (tdK , tdE , tdI).

3. Set s, es
$←− χ.

4. Compute y = as+ 2es.

5. Set k
$←− {1, . . . , n}.

6. Compute y0 = yX−k.

7. Compute
πK = NIZK.Simulate(crsK , tdK , (a, y0)).

8. Set pk = (1/n, a, y0, πK).

9. Set sk = (1/n, s, es, k, πK).

10. Output key pair (pk, sk).

• RFOT.ExtDecrypt(pp, td, sk, c)→ m

1. Parse sk as (1/n, s, es, k, πK).

2. Parse c as (l, c1, c2, πE).

3. Output
m = (c1X

−l − c2sX−k) mod 2.

• RFOT.SimDecrypt(pp, td, sk, b)→ sk′

1. Parse pp as (crsK , crsE , a).

2. Parse td as (tdK , tdE , tdI).

3. Parse tdI as (B, ga, fa).

4. Parse sk as (1/n, s, es, k, πK).

5. If b = 0,

– Compute
(s′, e′s) = IBE.Extract(B, y0)

– Set sk′ = (1/n, s′, e′s, k, πK).

6. If b = 1, then output sk.

• RFOT.SimEncrypt(pp, td, pk, b,m′)→ c

1. Parse pp as (crsK , crsE , a).

2. Parse td as (tdK , tdE , tdI).

3. Parse pk as (1/n, a, y0, πK).

4. Set l
$←− {1, . . . , n}.

5. If b = 0, then

– Set (c1, c2)
$←− C.

– Compute πE = NIZK.ExtSimulate(crsE , tdI , (c1, c2, a, y0)).

6. If b = 1, then

– Compute c′1 = y0v + 2e+m′, c2 = av + 2f, c1 = c′1X
l.

– Compute πE = NIZK.Prove(crsE , (c1, c2, a, y0), (m′, v, e, f)).

7. Output c = (l, c1, c2, πE).

Figure 6: Simulator of the ring fractional oblivious transfer
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Remark 5. Let us confirm that one can extract the plaintext with RFOT.ExtDecrypt, even if l 6= k.

c1X
−l − c2sX−k = (y0v + 2e+m)− (av + 2f)sX−k

= (yX−kv + 2e+m)− (av + 2f)sX−k

= (y − as)vX−k + 2(e− fsX−k) +m

= 2(esv + e− fs)X−k +m

(esv + e− fs)X−k is small. We obtain (c1X
−l − c2sX−k) mod 2 = m.

Lemma 3. The below two distribution ensembles are computationally indistinguishable:

{pp | RFOT.Setup(1λ)→ pp} and {pp | RFOT.SimSetup(1λ)→ (pp, td)}.

Proof. We suppose that an adversary distinguishes the two pp. Let us confirm the variable a ∈ pp. The one
is randomly sampled from Rq, and the other is equal to ga · f−1

a . If the adversary distinguishes the two a,
then the adversary could break the DSPR assumption regarding Definition 2. This is a contradiction. We
conclude that RFOT.Setup and RFOT.SimSetup are computationally indistinguishable.

Lemma 4. The below two distribution ensembles are computationally indistinguishable:

{(pp, pk) | RFOT.Setup(1λ)→ pp, RFOT.Keygen(pp, p)→ (pk, sk)} and

{(pp, pk) | RFOT.SimSetup(1λ)→ (pp, td), RFOT.SimKeygen(pp, td, p)→ (pk, sk)}.

Proof. The difference between RFOT.Keygen and RFOT.SimKeygen are each function that outputs each proof.
One is NIZK.Prove. The other is NIZK.Simulate. The proofs by NIZK.Prove and NIZK.Simulate are compu-
tationally indistinguishable because NIZK scheme satisfies zero-knowledge. We conclude that the lemma
holds.

Lemma 5 (Fractional hiding). The scheme of Definition 7 holds the fractional hiding of Definition 5.

Proof. Let us compare E real
H with E ideal

H . There are two differences between the two ensembles. The one is
NIZK.Prove or NIZK.ExtSimulate. These proofs are indistinguishable from Lemma 2.

The other difference is the encryption or the ramdom sampling. c′1 = y0v+2e+m′, c1 = c′1X
l, c2 = av+2f

in E real
H or (c1, c2)

$←− C in E ideal
H . If an adversary A can distinguish E real

H and E ideal
H , then A could distinguish

the true ciphertext (c1, c2) from the randomly sampled element (c1, c2)
$←− C. This situation goes against

the RLWE assumption regarding Definition 1. We conclude that E real
H and E ideal

H are indistinguishable. The
scheme holds the fractional hiding.

Lemma 6 (Fractional binding). The scheme of Definition 7 holds the fractional hiding of Definition 6.

Proof. Let us compare E real
B with E ideal

B . RFOT.Keygen and RFOT.SimKeygen are computationally indistin-
guishable because of Lemma 4. RFOT.ExtDecrypt outputs a unique plaintext m for a valid ciphertext even
if l 6= k. The simulated secret key sk′ is distributed independently of the actual secret key sk. When b = 1,
output the actual secret key itself. When b = 0, a different secret key (s′, e′s) is output, satisfying the rela-
tionship y0 = as′+ 2e′s with the fixed public key (a, y0) with IBE.Extract. We conclude that the scheme holds
the fractional binding.

4 Protocol and security

In this section, we present the protocols, the ideal functionalities, the theorems that each protocol realizes each
ideal functionality, and the proofs regarding the puzzle solver and puzzle promise. Let us outline the security
discussion. We present a simulation-based proof of the real/ideal world paradigm. We build simulators in
the cases of each corrupt participant. We discuss the indistinguishability of the game sequence by using a
hybrid argument. The discussion is based on TumbleBit [HAB+17, HAB+16]. We also combine the DAM
scheme [CGL+17,CGL+16] regarding the puzzle solver protocol related to RFOT.
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4.1 Puzzle solver protocol

We present the puzzle solver protocol, the ideal functionality, the theorem, and the proof. We show the puzzle
solver protocol in Fig. 7 and the ideal functionality in Fig. 8. We also show the simulators in Fig. 9 and Fig.
10. The simulator in Fig. 9 corresponds to the corrupt Alice. The simulator in Fig. 10 corresponds to the
corrupt the tumbler. Let us present the quick look at the protocol, the overview of the ideal functionality,
and proof sketch as the below paragraphs.

Quick look at the protocol. We change the procedure by the RSA encryption in TumbleBit [HAB+17,
HAB+16], into the one by the RLWE encryption. Also, we combine RFOT with the procedure in TumbleBit.
The tumbler and Alice interact at the protocol. We use a cut-and-choose technique in the procedure. Alice
creates real puzzles and fake puzzles, respectively. At Step 1, She further masks the masked puzzle (ciphertext)
she receives for the real puzzles. She creates ciphertext by randomly choosing a plaintext by herself. She
adds this with the puzzle. At Step 2, she creates a ciphertext from randomly chosen plaintext for the fake
puzzles. She does not add the received puzzle to the ciphertext. At Step 3, she mixes these puzzles and
executes the RFOT encryption. She permutes and mixes real puzzles and fake puzzles. These puzzles are
just RLWE ciphertexts. She chooses the integer l randomly and shifts all puzzles by the single amount l.
In this way, she produces the RFOT ciphertext from the RLWE ciphertexts. She passes the puzzles to the
tumbler. At Step 4, the tumbler decrypts all the puzzles it receives. If the puzzles are miss/error, then the
tumbler cannot obtain the correct message. In this case, the tumbler aborts. (Even if the tumbler chooses
s randomly, she will notice that it does not match her plaintext at Step 7. Moreover, the tumbler does not
know which puzzle is in the fake set at this stage.) The tumbler creates a ciphertext c for the decrypted
message by using symmetric key encryption. The tumbler also selects the hash value h of k randomly. The
tumbler sends these (c, h) to her for commitment. At Step 5, upon receiving the commitment (c, h), she
informs the tumbler of which puzzle belongs to the fake set. She sends a message and randomness to the
tumbler for opening. At Step 6, the tumbler verifies the received message and randomness, by matching
the ciphertext received earlier. If all can be verified correctly, the tumbler sends k belonging to the fake set
to her. At Step 7, she obtains s by the decryption process from the received k and the ciphertext c of the
symmetric key encryption. If s matches the original plaintext, she continues. Otherwise, she aborts. At Step
8, she fills in the transaction on the blockchain. Both the preimages of h and the tumbler’s signature can
fulfill this transaction. She sends the received puzzle to the tumbler and the message and the randomness
in the real set. At Step 9, the tumbler verifies the ciphertext from the received message, randomness, and
puzzle. If it is OK, the tumbler fills k in the transaction offered at Step 10. At Step 11, she gets k from the
transaction, executes the symmetric key encryption, and gets s. She removes her message by XOR operation
and gets the message of the received puzzle y.

Overview of the ideal functionality. We combine the functionality of TumbleBit and the functionality
of fractional message transfer (FMT) in the DAM scheme for the ideal functionality. First, we incorporate
mutual fairness into functionalities, following TumbleBit. Fairness for Alice means that the tumbler earns
one coin if and only if she gets the correct answer. Fairness for the tumbler means that the protocol executes
decrypting the puzzle selected by her. Upon setup, the functionality receives the key from the tumbler and
verifies if it is valid. If the verification is successful, the functionality sends the key to her and Simulator. At
the evaluation, the functionality receives the request containing the ciphertext from her and sends it to the
tumbler. Also, the functionality receives the plaintext result from the tumbler, sends it to Alice, and pays to
the tumbler.

Next, we append a probabilistic payment to the functionality, following the DAM scheme. The function-
ality conveys a valid message with probability p. Alice sends to the functionality at the request, including
bit b and probability pA. The functionality confirms the bit b to determine whether there is an error. The
tumbler sends the key to the functionality together with the probability pT . The functionality judges that a
lottery is an error in the case that b = 0 or the probabilities do not match. If b = 1 and the probabilities are
equal, the functionality runs that the ciphertext is a hit with probability p and is a failure with probability
1− p. The functionality stores the judged value in Q as a pair (sid,mid). Let us confirm the behavior after
the functionality receives the evaluation result from the tumbler. The functionality searches Q for mid paired
with sid. If mid is a hit and the message x from the tumbler is valid, the functionality sends x to her and
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pays the tumbler. Otherwise, the tumbler refunds to her as a missing lottery or an error.

Proof sketch. In the case of corrupt Alice, she cannot learn more than the decrypted message.
Let us confirm the case of corrupt the tumbler. The protocol adopts a cut-and-choose technique like

TumbleBit. Therefore, the tumbler must present invalid ciphertexts to the real set while correctly responding
to the fake set. The tumbler cannot obtain the information regarding the fake set and the real set before her
opening. The probability of corrupt tumbler’s success is negligible.

Theorem 1. Let λ be a security parameter. Let nd ≥ 2λ. Assume that H and Hprg are independent random
oracles, and the RLWE and DSPR problems are hard. Then, the protocol in Fig. 7 securely realizes the
functionality Fsolver in Fig. 8 with the following security guarantees. The security for T is 1 − negl(λ) and
the security for A is 1− 1/

(
µ+η
η

)
− negl(λ).

Proof. We divide the proof into two cases. One is the case of the corrupt Alice. The other is the case of the
corrupt the tumbler. The simulator S in Fig. 9 corresponds to the corrupt Alice A∗. The simulator S in
Fig. 10 corresponds to the corrupt the tumbler T ∗.

Case that Alice is corrupt. We adopt a hybrid argument and confirm the indistinguishability between
the real world and the ideal world. The simulator S in Fig. 9 plays a role of the corrupt Alice A∗.

a0: This is the real game.
a1: The difference between a0 and a1 is how the key ki is computed. If x′ = RFOT.Decrypt(sk, βi) 6= ∅

with salt, the simulator in this hybrid a1 sends k′i = Equivocate(ci, x, hi), instead of ki. If x′ = ∅, then both
games receive refund and halt. From the assumption regarding the random oracle, ci and hi statistically hide
the encrypted message and the preimage. The probability of the event Collision is negligible. So the view in
a1 is indistinguishable from the view in a0.

a2: The difference between a1 and a2 is what one inputs Equivocate. The simulator in this hybrid a2

computes Equivocate(ci, ρi, hi) instead of Equivocate(ci, x+ ri, hi). Then x is a valid message of y. x is taken
from Fsolver after Adv has sent Tpuzzle. Both games receive refund instead of x and halt. The view in a2 is
generated by just a single value x. The view in a2 is indistinguishable from the view in a1. The simulator
in a2 corresponds to Simulator S in Fig. 9.

Case that the tumbler is corrupt. The simulator S in Fig. 10 plays a role of the corrupt the tumbler
T ∗. Because of the RLWE assumption, all ciphertexts β1, . . . , βµ+η are uniformly distributed. They reveal
no information about the sets F,R. Furthermore, H,Hprg are modeled as a random oracle. The encryption of
the key is binding. It is impossible for an adversary Adv to change the values after the sets F,R are revealed.
Then, we denote the event that an adversary presumes the set F as the event BAD. The probability of the
event BAD is as follows.

Pr[BAD] =
1(
µ+η
η

) +
1

2λ1

The difference between the transcript by the simulator S in Fig. 10 in the ideal world and the one in
the real world is if the event BAD happens or not. The two worlds are distinguishable with the negligible
probability Pr[BAD].

We conclude that the protocol in Fig. 7 securely realizes the functionality Fsolver in Fig. 8.

4.2 Puzzle promise protocol

We present the puzzle promise protocol, the ideal functionality, the theorem, and the proof. We show the
protocol in Fig. 11 and the ideal functionality in Fig. 12. We also show the simulators in Fig. 13 and Fig.
14. The simulator in Fig. 13 corresponds to the corrupt Bob. The simulator in Fig. 14 corresponds to the
corrupt the tumbler. Let us present the quick look at the protocol, the overview of the ideal functionality,
and proof sketch as the below paragraphs.
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Public input: pk. πK in pk proves validity of pk in a one time setup phase.
Alice A. Input: puzzle y the tumbler T . Secret input: sk
1. Prepare real puzzles R

salt
$←− {0, 1}λ

For j = 1, . . . , µ:

rj
$←− {0, 1}λ, vj , ej , fj

$←− χ
dj = RLWE.Enc(pk, salt||rj ; vj , ej , fj) + y

2. Prepare fake values F
For i = 1, . . . , η:

ρi
$←− {0, 1}λ, vi, ei, fi

$←− χ
δi = RLWE.Enc(pk, salt||ρi; vi, ei, fi)

3. Mix sets and RFOT
Permute {d1, . . . , dµ, δ1, . . . , δη} randomly
and obtain {β′

1, . . . , β
′
µ+η}

l
$←− {1, . . . , n}

For i = 1, . . . , µ+ η:
Parse β′

i as (c′1, c2) and set c1 = c′1X
l

Set βi = (c′1, c2)
salt,l,β1,...,βµ+η−−−−−−−−−−−→

Let R be the indices of the di
Let F be the indices of the δi

4. Evaluation.
For i = 1, . . . , µ+ η:

Evaluate βi: si = RFOT.Decrypt(sk, βi)
Check if si = ∅ with salt. If not, abort.
Encrypt the result si:

ki
$←− {0, 1}λ1

ci = Hprg(ki)⊕ si
(c1,h1),...,(cµ+η,hµ+η)
←−−−−−−−−−−−−−−−−− Commit to the keys: hi = H(ki)

5. Identify fake set.
F,ρi,vi,eifi ∀i∈F−−−−−−−−−−−−−→

6. Check fake set.
For all i ∈ F : Verify βi =

RFOT.Encrypt(pk, salt||ρi; vi, ei, fi, l)
ki ∀i∈F←−−−−−− If yes, reveal ki ∀i ∈ F . Else abort.

7. Check fake set.
For all i ∈ F :

Verify hi = H(ki)
Decrypt si = Hprg(ki)⊕ ci
Verify si = ρi

Abort if any check fails
8. Post transaction Tpuzzle

Tpuzzle offers one coin within timewindow tw1

under condition ”the fulfilling transaction is signed

by T and has preimages of hj ∀j ∈ R”.
y,rj ,vj ,ej ,fj ∀j∈R
−−−−−−−−−−−−−→

9. Check βi unblind to y ∀j ∈ R
For all j ∈ R: Verify βi =
RFOT.Encrypt(pk, salt||rj ; vj , ej , fj , l) + y
If not, abort.
10. Post transaction Tpuzzle

Tpuzzle contains kj ∀j ∈ R
11. Obtain puzzle solution.
For j ∈ R:

Learn kj from Tpuzzle

Decrypt sj = Hprg(kj)⊕ cj
Verify βj = RFOT.Encrypt(pk, salt||sj ; vj , ej , fj , l) + y
Obtain solution sj + rj mod 2

Figure 7: Puzzle solver protocol. We model H and Hprg as random oracles.
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Parties.

• A, T and adversary S.

Setup.

• Receive (Setup, pk, sk, pT ) from T .

• If pk or sk are invalid, then

– do nothing.

• Else,

– Send (Setup, pk) to A and S.

Evaluation.

• On input (request, sid, y, 1coin, pA, b) from A:

– If b = 1 and pA = pT ,

∗ Set mid = hit with probability pA or mid = miss with probability 1− pA.

– Else if b = 0 or pA 6= pT , set mid = error.

– Send (request, sid,A, y) to T .

– Append (sid,mid) to Qid.

– Start counter twsid = 0.

• On input (evaluate, sid,A, x) from T :

– Obtain mid corresponding sid from Qid.

– If mid = hit and x 6= ∅, then

∗ Send (sid, x) to A.

∗ Send (payment, sid, 1coin) to T .

– Else, send (refund, sid, 1coin) to A.

• If twsid = tw, send (refund, sid, 1coin) to A.

Figure 8: Ideal functionality Fsolver
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1. Receive salt, l, β1, . . . , βµ+η from Adv. Choose ci
$←− {0, 1}λ and hi ∈ {0, 1}λ2 for i ∈ [µ+ η]. Send them

to Adv.

2. Receive F, ρi, vi, ei, fi for i ∈ F . For all i ∈ F , check if βi = RFOT.Encrypt(pk, salt||ρi; vi, ei, fi, l). If
check fails, output whatever Adv outputs, send (request, sid, y, 1coin, pA, b = 0) to Fsolver and halt. Else,
run k′i = Equivocate(ci, ρi, hi). Send k′i for i ∈ F to Adv.

3. Receive y, ri, vi, ei, fi for i ∈ R. Check if βi = RFOT.Encrypt(pk, salt||ri; vi, ei, fi, l) + y for all i ∈ R. If
the check succeeds, transaction Tpuzzle is correctly formed, execute as follows.

• Send (request, sid, y, 1coin, pA, b = 1) to Fsolver and obtain x or refund.

• If obtain x,

– Run k′i = Equivocate(ci, x+ ri, hi) with i ∈ R.

– Send transaction Tsolve with values k′i.

• Else if obtain refund, halt.

Else, checks have failed so output whatever Adv outputs, send (request, sid, y, 1coin, pA, b = 0) to Fsolver

and halt.

Procedure random oracle simulation for QH ,QHprg is as follows:
Receive query q for H(resp., Hprg):

1. If query q ∈ QH(resp., Hprg), retrieve entry (q, a) from the set and output a.

2. Else a
$←− {0, 1}λ2(resp., λ1), and (q, a) to QH(resp., Hprg) and output a.

Procedure Equivocate(ci,mi, hi) is stated as below:

1. k′i
$←− {0, 1}λ1 . If k′i ∈ QH or QHprg , output Collision and abort.

2. Compute ai = ci ⊕mi, then append (k′i, ai) to QHprg .

3. Append (k′i, hi) to QH .

4. Output k′i.

Figure 9: Simulator for the puzzle solver protocol in the case that Alice is corrupt

1. If pk and sk are valid, S receives (request, sid,A, y) from Fsolver.

2. Compute x′ = RFOT.ExtDecrypt(pp, td, sk, y) and extract x from x′ = salt||x.

3. Receiving {ki} for all i ∈ F from Adv, S checks if all {ci}i∈F are correct. If yes, S sends message
(evaluate, sid,A, x) to Fsolver. Then, Fsolver sends the puzzle solution x or refund to A. Meanwhile, S
sends Tpuzzle to Adv.

4. S receives Tsolve from Adv. If all keys {ki} ∀i ∈ R decrypt ciphertexts ci, not containing valid puzzle
solutions, then S outputs BAD and aborts. Else, S outputs whatever Adv outputs and halts.

Figure 10: Simulator for the puzzle solver protocol in the case that the tumbler is corrupt
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Quick look at the protocol. The tumbler and Bob interact at the protocol. As with the puzzle solver
protocol, we also use the cut-and-choose technique. At Step 1, the tumbler sets up the escrow transaction.
From Step 2 to Step 4, Bob creates real and fake hash values and sends the shuffled hash values to the
tumbler. At Step 5, the tumbler signs everything does corresponding puzzles and sends these with promises.
At Step 6, he opens fake set to the tumbler. At Step 7, the tumbler verifies them and presents to him the
puzzle answers corresponding to the fake values. At Step 8, he verifies these answers. Note that we must
arrange a situation where it is sufficient for him to send one of the real puzzles to Alice. At Step 9, the
tumbler sends the difference from other elements and proves that the ciphertext is zero. The tumbler uses
the non-interactive zero-knowledge proof for the relation R0. At Step 10 and 12, he can agree that it is
sufficient to send either one to her by verifying the proof and the difference. At Step 11, the tumbler posts
the transaction.

The difference from TumbleBit is the adoption of the RLWE encryption instead of RSA encryption. The
RLWE encryption is probabilistic encryption, unlike the RSA encryption. One can verify the ciphertext by
its plaintext and randomness by reproducing and verifing it with the encryption algorithm. We make the
tumbler encrypt this randomness with symmetric key encryption and pass it to Bob. Let the key of the
symmetric key encryption be the plaintext itself. Even if we adopt the RLWE encryption, we can use the
only plaintext as the answer to the puzzle by this trick.

Overview of the ideal functionality. We show the ideal functionality in Fig. 12. This ideal functionality
is the same as TumbleBit. Let us outline the ideal functionality briefly. The ideal functionality plays a role as
a trusted third party. The functionality signs a transaction by calling the signature oracle. It is fairness for
Bob that he obtains a promise that contains a valid signature for at least one genuine transaction. It is fairness
for the tumbler that he has no knowledge of anything but the fake transaction signature. Upon receiving fake
and real transactions from him, the functionality stores them and sends fake transactions to the tumbler.
Upon receiving a promise from the tumbler, the functionality signs the fake transactions. The functionality
records fake transaction signatures and the promises to real transactions. Finally, the functionality sends the
promises to him. Upon receiving the signature verification from any party, the functionality tells them that
the functionality has already recorded the signatures on the fake transactions. Since the functionality does
not store real transactions, the functionality records them.

Proof sketch. Regarding corrupt Bob, we change RSA encryption in the simulator in TumbleBit into
RLWE encryption. We show the simulator in Fig. 13. The simulator in Fig. 14 is the same as TumbleBit
for corrupt the tumbler. The proof in TumbleBit holds in the same way.

Theorem 2. Let λ be a security parameter. Let nd ≥ 2λ. Assume that H,H ′ and Hshk are independent
random oracles, and the RLWE and DSPR problems are hard. Then, the protocol in Fig. 11 securely realizes
the functionality Fpromise sign in Fig. 12 with the following security guarantees. The security for T is 1−negl(λ)
and the security for B is 1− 1/

(
µ+η
η

)
− negl(λ).

Proof. We divide the proof into two cases. One is the case of corrupt Bob. The other is the case of the
corrupt the tumbler.

Case that Bob is corrupt. We confirm the indistinguishability between the real world and the ideal
world with a hybrid argument. The simulator S in Fig. 13 plays a role of the corrupt Bob B∗.

a0: This is the real world.
a0.5: When the simulator receives hR, hF and {β1, . . . , βµ+η} from B∗, the simulator checks the set of

queries QH and extracts the pair (salt||R, hR) and (salt||F, hF ). If there is no pair regarding hR, hF , the
simulator aborts. This abort is the difference between a0 and a0.5. The probability of the abort is 1/2λ2 , so
the two games are statistically close.

a1: Instead of computing ci = Hshk(εi) ⊕ σi, the simulator chooses ci
$←− {0, 1}s and stores the pair

(εi, ci ⊕ σi) in QHshk in a1. The both games a0.5 and a1 are statistically close because Hshk is unpredictable.
a2: Instead of computing zji = RLWE.Enc(pk, εji), the simulator randomly chooses zj1 , d2, . . . , dµ from

{0, 1}λ and computes zji = RLWE.Enc(pk, di)+zji−1 . Let us check for RLWE failure. According to the RLWE
assumption, the ciphertext zji cannot be distinguished from a uniformly random value. The probability that
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Public input: (pk,PKephT ). πK in pk proves validity of pk in a one time setup phase.

T chooses a fresh ephemeral ECDSA-Secp256k1 key (SKephT ,PKephT ).
Bob B the tumbler T . Secret input: sk

1. Set up Tescr(T ,B)

Sign but do not post transaction Tescr(T ,B)

timelocked for tw2 offering one coin under
the condition: ”the fulfilling transaction

Tescr(T ,B)←−−−−−−− is signed under key PKephT and key PKB”
2. Prepare µ real unsigned Tescr(T ,B).
For i ∈ 1, . . . , µ:

ρi
$←− {0, 1}λ, T i

escr(T ,B)
= CashOutFormat(ρi), hti = H′(T ifulfill).

3. Prepare fake set.
For i ∈ 1, . . . , η:

ri
$←− {0, 1}λ, fti = H′(FakeFormat||ri).

4. Mix sets.
Permute {ft1, . . . , ftη , ht1, . . . , htµ} randomly

and obtain {β1, . . . , βµ+η}
β1,...,βµ+η−−−−−−−−→

Let R be the indices of the hti
Let F be the indices of the fti

Choose salt
$←− {0, 1}λ

hR = H(salt||R), hF = H(salt||F )
hR,hF−−−−−→

5. Evaluation.
For i = 1, . . . , µ+ η:

ECDSA sign βi to get σi = Sig(SKephT , βi)

εi
$←− {0, 1}λ, vi, ei, fi

$←− χ.
Create promise ci = Hshk(εi)⊕ σi
Encrypt v̄i = Enc(vi; εi), ēi = Enc(ei; εi)

(c1, z1, v̄1, ē1, f̄1), . . . , and f̄i = Enc(fi; εi)
(cµ+η,zµ+η,v̄µ+η,ēµ+η,f̄µ+η)
←−−−−−−−−−−−−−−−−−−−−− Create puzzle zi = RLWE.Enc(pk, 0λ||εi; vi, ei, fi)

6. Identify fake set.
R,F,ri ∀i∈F,salt−−−−−−−−−−−→

7. Check fake set.
Check hR = H(salt||R) and hF = H(salt||F )
For all i ∈ F : Verify βi = H′(FakeFormat||ri)

εi ∀i∈F←−−−−−− Abort if any check fails
8. Check fake set.
For all i ∈ F :

Validate εi ∈ {0, 1}λ
Decrypt vi = Dec(v̄i; εi), ei = Dec(ēi; εi), fi = Dec(f̄i; εi)
Validate puzzle zi = RLWE.Enc(pk, 0λ||εi; vi, ei, fi)
Validate promise ci:

Decrypt σi = Hshk(εi)⊕ ci
Verify σi such that (PKephT , H′(fti), σi) = 1

Abort if any check fails
9. Prepare differences
For R = {j1, . . . , jµ}:

Set d2 = εj2 − εj1 , . . . , dµ = εjµ − εjµ−1
d2,...,dµ,π2,...,πµ←−−−−−−−−−−−− Set πj proving zj + dj ∈ C0

10. Difference test.
For R = {j1, . . . , jµ}: Verify πj
Abort if any check fails

11. Post transaction Tescr(T ,B)

12. Start Payment Phase.

Set zt = zj1 . mb
$←− {0, 1}λ.

Send ztb = zt + RLWE.Enc(pk, 0λ||mb) to Alice A.

Figure 11: Puzzle promise protocol. We model H, H ′ and Hshk as random oracles.
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Parties.

• B, T and adversary S.

Setup.

• Inform Fpromise sign if T is corrupt or honest.

Key generation.

• Receive message (Keygen,B) from B.

• Send (Keygen,B) to S.

• Receive response (PKephT ,Sig) from S.

• Send (Setup,PKephT ) to B.

• Record (PKephT ,Sig).

Signature request.

• Receive message (sign request,PKeph
′

T , {FkTxni}i∈[η], {mi}i∈[µ]) from B.

• If PKeph
′

T 6= PKephT , then do nothing.

• If ∀i,FkTxni compiles with FakeFormat, then send (sign request,B,PKephT , {FkTxni}i∈[η]) to T .

• Else, do nothing.

Promise.

• Receive (promise,B, ans,Set) from T .

• If ans = no, then set all signatures to ⊥.

• Else, if Set 6= ∅, compute signatures as follows:

– If T is honest, Set FkSigni = Sig(FkTxni,PK
eph
T ) for i ∈ [η].

– Else T is corrupt, Send (Sign,FkTxni,B) to adversary S, and obtain respective signatures.

– Abort if there is a recorded entry (FkTxni,FkSigni,PK
eph
T , 0).

– Record entries (FkTxni,FkSigni,PK
eph
T , 1) and (mj ,PK

eph
T , promise).

• Send (sign promise, ans) to B.

Signature verification.

• Receive (Verify, sid,m, σ,PKeph
′

T ) from any party P:

– If PKeph
′

T 6= PKephT , then do nothing.

– Else, if T is honest:

∗ If there is a recorded entry (m,σ,PKephT , 1), then set ver = 1. (completeness condition)

∗ If there is no recorded entry (m,σ,PKephT , 1), then set ver = 0 and set the entry (m,σ,PKephT , 0).
(unforgeability condition)

– Else, if T is corrupt, then let ver be set by S. (corrupt signer case)

• Send (Verify, sid,m, σ, ver) from party P.

Figure 12: Ideal functionality Fpromise sign (Fig. 8 in [HAB+16])
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• Simulator S simulates the messages that Adversary B∗ expects from T as follows.

1. Inform Fpromise sign that T is honest.

2. Compute (PKephT ,SKephT ) = Keygen(1λ).

3. Send PKephT to B∗ and Fpromise sign.

• Receive hR, hF and {β1, . . . , βµ+η} from B∗, runs as follows:

1. Extracts the sets F,R from the random oracle, checking the set of queries QH and extracting the
pair (salt||R, hR) and (salt||F, hF ). If there is no pair regarding hR, hF , then set R = F = ⊥.

2. Send B∗ the pair (ci, zi) which is made as:

(a) For all i, ci
$←− {0, 1}s.

(b) For i ∈ F, εi
$←− {0, 1}λ and zi = RLWE.Enc(pk, 0λ||εi).

(c) For R = {j1, . . . , jµ}, zj1 , d2, . . . , dµ
$←− {0, 1}λ and zji = RLWE.Enc(pk, 0λ||di) + (0λ||zji−1

)

• Receive (F ′, R′, ri) from B∗, runs as follows:

1. If F ′ 6= F or R′ 6= R, then abort.

2. If any (FakeFortmat||ri, βi) 6∈ QH′ for i ∈ F , then abort.

3. For j ∈ R, set mj = γ if (γ, βi) ∈ QH′ . Else set mj = ⊥.

4. Send to Fpromise sign the message (sign request,PKephT , {FakeFormat||ri}i∈F , {mj}j∈R).

5. Obtain response (promise,B∗, ans, {FkSign}i∈[η]).

6. If ans = no, then halt and output whatever B∗ outputs.

7. Compute hjl = cjl ⊕ FkSignl.

8. Store the pair (εjl , hjl) in QHshk .

9. Send εi for i ∈ F and the differences d2, . . . , dµ.

• Finally, output whatever B∗ outputs and halt.

Procedure RO1, which is the random oracle simulation for H is as follows:

1. Receive query q for H.

2. If q ∈ QH , retrieve (γ, a) for QH .

3. Else a
$←− {0, 1}λ2 .

4. Append (γ, a) to QH .

5. Output a.

Procedure RO2, which is the random oracle simulation for Hshk is as follows:

1. Receive query q for Hshk.

2. If q ∈ QHshk , retrieve (γ, a) for QHshk .

3. If γ = RLWE.Dec(sk, zi) for some i ∈ R and (γ, a) 6∈ QHshk , then output RLWE failure.

4. Else a
$←− {0, 1}λ2 .

5. Append (γ, a) to QHshk .

6. Output a.

Figure 13: Simulator for the puzzle promise protocol in the case that Bob is corrupt
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The simulator S executes T ∗ internally.
First, we introduce the algorithm Sig(mi,PK

eph
T ) as follows.

• Lfake, Lreal are internal variables.

• If (mi, βi, σi) ∈ Lfake, output signature (βi, σi).

• Else if (mi, βi, σi) ∈ Lreal, then append (mi, βi) to QH′ , and output signature (βi, σi).

• Else, abort.

Receive (Keygen,B). Send request to T ∗. Obtain PKephT . Send (PKephT ,Sig) to Fpromise sign.

Receive (sign request,B,PKephT , {FkTxni}i∈[η]).
Pick randomly F,R with F ∩R = ∅. Compute the RO outputs hF , hR and β1, . . . , βµ+η. Send them to T ∗.
Receive a pair (ci, zi) from T ∗:

1. Extract εi by queries to Hshk

2. Let σi be the signature decrypted from ci with εi

3. If ci, zi, εi, βi, σi for i ∈ F are valid, store (FkTxni, βi, σi) in Lfake.

4. If ci, zi, εi, βi, σi for i ∈ F are valid, append i to set Set and append (βi, σi) to Lreal. If such i does not
exist, set real = no.

For all i ∈ F , ri
$←−. Send ri to T ∗. Append the pair (FkTxni||ri, βi) to QH′ .

Receive the openings ε′i to fake messages i ∈ F . Obtain σ′i with ε′i, ci. If any (i, ci, zi, ε
′
i, βi, σ

′
i) is invalid, send

(promise,B, no,⊥) to Fpromise sign. Else, send (promise,B, yes,Set) to Fpromise sign.
Now let us confirm the below two cases:
Case 1: If any i ∈ F such that (i, ε′i, βi, σ

′
i) is valid but (·, βi, σ′i) 6∈ Lfake, then abort and output binding fail.

Case 2: Suppose that all i ∈ F such that (i, ε′i, βi, σ
′
i) is valid and (·, βi, σ′i) ∈ Lfake.

1. If real = no, abort and output cut and choose fail.

2. Else, set variables Lfake, Lreal for the algorithm Sig.

Figure 14: Simulator for the puzzle promise protocol in the case that the tumbler is corrupt (Appendix F
in [HAB+16])
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the plaintext presented will match is 1/2λ. It is negligible. Note that a2 computes neither εi nor σi for real
messages mi with i ∈ R.

a3: Instead of the actual signature, the simulator sends the message

(sign request,PKephT , {FakeFormat||ri}i∈F , {mj}j∈R)

to Fpromise sign. Then, S obtains the response (promise,B∗, ans, {FkSign}i∈[η]) and uses σi = FkSigni. a2 and
a3 is identical from the view of B∗. a3 is the simulator S in Fig. 13 itself. We conclude that the transcript
by the simulator S in Fig. 13 is indistinguishable from the one in the real world.

Remark 6. The below lemma shows that B∗ cannot forge a valid signature σ for a valid message Tcash(T ,B).

Lemma 7 ( Lemma 3 in [HAB+16] ). If ECDSA is an existentially unforgeable signature scheme, then
Pr[Eforge] is negligible.

Case that the tumbler is corrupt. The simulator S in Fig. 14 plays a role of the corrupt the tumbler
T ∗. The difference between the real world and the ideal world is whether the simulator S in Fig. 14 stops.
Let us confirm the probability that the simulator will stop for each event.

• Event cut and choose fail:

Pr[cut and choose fail] =
1(
µ+η
η

) +
1

2λ1

• Event binding fail:

Pr[binding fail] =
1

2λ2

We conclude that the protocol in Fig. 11 securely realizes the functionality Fpromise sign in Fig. 12.

5 Conclusion

Scalability and privacy protection are significant problems with blockchain. In this work, we have proposed
an anonymous probabilistic payment to solve these simultaneously. Our proposal is not restricted to any
particular cryptocurrency. We have mediated the tumbler of the payment channel hub between a payer and a
payee. A cryptographic puzzle plays a role in controlling the intermediation and the execution of transactions.
Masking the puzzle enables the payer and payee to unlink their payments. The proposed protocol realizes
the ideal functionalities discussed in TumbleBit (NDSS 2017). Besides, we have introduced a novel fractional
oblivious transfer based on the RLWE encryption. We confirm that RFOT holds the properties of fractional
hiding and binding presented in the DAM scheme (Eurocrypt 2017). We have adopted it for a probabilistic
payment.
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A Zero-knowledge proof

In this section, we present the zero-knowledge proofs of knowledge for RLWE encryption.

A.1 Pedersen commitments

Let us introduce Pedersen commitments [Ped92]. Given a family of prime order groups {G(λ)}λ∈N such
that the discrete logarithm problem is hard in G(λ) with security parameter λ, let q̃ = q̃(λ) be the order
of G = G(λ). We denote all elements with order q̃ with a tilde in the following. We write the group G(λ)
additively.

• CSetup: This algorithm chooses g̃, h̃
$←− G and outputs cpars = (g̃, h̃).

• Commit: To commit to a message m ∈ Zq̃, it first chooses r
$←− Zq̃. It then outputs a pair (c̃mt, o) =

(mg̃ + rh̃, r).

• COpen: Given a commitment c̃mt, an opening o, a public key cpars and a message m, it outputs accept

if and only if (c̃mt, o)
?
= (mg̃ + rh̃, r).

Lemma 8 (Theorem 2.1. in [BCK+14]). Under the discrete logarithm assumption for G, the given commit-
ment scheme is perfectly hiding and is computationally binding.

In the protocols of this chapter, we make use of the above scheme as an auxiliary commitment scheme.
We denote it as (aCSetup, aCCommit, aCOpen).

A.2 Rejection sampling

To realize zero-knowledge proof, the technique of rejection sampling is useful [Lyu09,Lyu12]. The technique
can conceal the information of the witness. Therefore, we apply the technique when the prover sends the
response to the verifier.

Lemma 9 (Theorem 4.6 in [Lyu12]). Let V be a subset of Zm in which all elements have norms less than
T , σ be some element in R such that σ = ω(T

√
logm), and h : V → R be a probability distribution. Then,

there exists a constant M = Õ(1) such that the distribution of the following algorithm A:

1. v
$←− h

2. z
$←− Dm

v,σ

3. output (z, v) with probability min(
Dmσ (z)

MDmv,σ(z) , 1)

is within statistical distance 2−ω(logm)

M of the distribution of the following algorithm F :

1. v
$←− h
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2. z
$←− Dm

σ

3. output (z, v) with probability 1/M

Moreover, the probability that A outputs something is at least 1−2−ω(logm)

M .

More concretely, if σ = αT for any positive α, then M = e12/α+1/(2α2), the output of algorithm A is

within statistical distance 2−100

M of the output of F , and the probability that A outputs something is at least
1−2−100

M .

A.3 Definition

We describe the formal definition of the Σ′-protocol, the protocol and its theorem proving this relationship.

Definition 9 (Definition 2.5. in [BCK+14] ). Let (P, V ) be a two-party protocol, where V is a probabilistic
polynomial time algorithim, and let L,L′ ⊆ {0, 1}∗ be languages with witness relations R,R′ such that R ⊆ R′.
Then, (P, V ) is called a Σ′-protocol for L,L′ with completeness error α, a challenge set C, a public input x
and a private input w, if and only if it satisfies the following conditions:

• Three-move form: The prover P , on input (x,w), computes a commitment t and sends it to V . The

verifier V , on input x, then draws a challenge c
$←− C and sends it to P . The prover sends a response

s to the verifier. Depending on the protocol transcript (t, c, s), the verifier finally accepts or rejects the
proof. The protocol transcript (t, c, s) is called accepting, if the verifier accepts the protocol run.

• Completeness: Whenever (x,w) ∈ R, the verifier V accepts with probability at least 1 − α. α is the
completeness error.

• Special soundness: There exists a PPT algorithm E (the knowledge extractor) that takes two accepting
transcripts (t, c′, s′), (t, c′′, s′′) satisfying c′ 6= c′′ as inputs, and outputs w′ such that (x,w′) ∈ R′. The
knowledge error denotes the probability that the verifier accepts the proof even if the prover does not
know a witness.

• Special honest verifier zero-knowledge (HVZK): There exists a PPT algorithm S (the simulator) tak-
ing x ∈ L and c ∈ C as inputs. Moreover, the simulator outputs (t, s) so that the triple (t, c, s) is
indistinguishable from an accepting protocol transcript generated by a real protocol run.

Moreover, let us present the following useful property.

• High-entropy commitments: For all (y, w) ∈ R and for all t, the probability that an honestly generated
commitment by P takes on the value t is negligible.

A.4 Relation for the key generation

We want to show that we know a private key of a public key without revealing the private key itself.
We introduce the zero-knowledge proof for the purpose in this subsection. Let us confirm Theorem 3.3.
in [BCK+14].

Lemma 10 (Theorem 3.3. in [BCK+14]). The protocol in Fig. 15 is an HVZK Σ′-protocol for the following
relations:

R = {((a, y), (s, e)) : y = as+ e ∧ |s|, |e| ≤ Õ(
√
ndα)}

R′ = {((a, y), (s, e)) : 2y = 2as+ 2e ∧ |2s|, |2e| ≤ Õ(n2
dα)}

where 2s and 2e are reduced modulo q. The protocol has a knowledge error of 1/(2nd), a completeness error
of 1− 1/M , and high-entropy commitments.
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Common input: the open value (a, y)

Relation: R = {((a, y), (s, e)) : y = as+ e ∧ |s|, |e| ≤ Õ(
√
ndα)}

Prover Verifier

rs, re
$←− DÕ(

√
ndα)

t = ars + re
(caux, daux) = aCommit(t)

caux−−−→
c

$←− C = {0, . . . , 2nd − 1}
c←−−

ss = rs +Xcs
se = re +Xce
accept with probability

DÕ(
√

2ndα)((se,ss))

MD(Xce,Xcs),Õ(
√

2ndα)((se,ss))

t,daux,(ss,se)−−−−−−−−→
Xcy + t

?
= ass + se

aCOpen(t, caux, daux)
?
= accept

|ss|, |se| ≤ Õ(ndα)

Figure 15: Zero-knowledge proof of knowledge of RLWE secrets s, e such that y = as + e (Protocol 3.2.
in [BCK+14])

We can use Lemma 10 for the below relation RK by replacing y → y/p, a→ a/p.

RK = {((a, y), (s, e)) | y = as+ 2e ∧ |s|, |e| ≤ Õ(
√
ndα)}

Let us describe the non-interactive zero-knowledge proof for the relation RK . The protocol in Fig. 15
realizes the zero-knowledge proof for the relation RK . Moreover, we can obtain the non-interactive zero-
knowledge proof by using Fiat-Shamir transform [FS87] and running the protocol in parallel. Let us confirm
the simulator for the relation RK . The technique of the rejection sampling is used for zero-knowledge in the
protocol. According to Lemma 9, the algorithm F includes no witness and is statistically indistinguishable
from the algorithm A. We can implement the simulator for RK by replacing the algorithm A with the
algorithm F .

A.5 Relation for the ciphertext of zero

We want to show that we know that the plaintext of a given ciphertext is zero without decryption or revealing
randomness of the ciphertext. We introduce the zero-knowledge proof for the purpose in this subsection. We
show a non-interactive zero-knowledge proof for ciphertext of zero in Fig. 16. h is a cryptographic hash
function. We make the interactive proof non-interactive by using the Fiat-Shamir heuristic [FS87]. This
protocol satisfies Lemma 11. The parallel protocol satisfies Theorem 3.

Lemma 11 (Lemma 5 in [MO20]). The protocol in Fig. 16 is an HVZK Σ′-protocol for the following
relations:

R0 = {((c1, c2), (v, e, f)) : (c1, c2) = (bv + pe, av + pf) ∧ |v|, |e|, |f | ≤ Õ(
√
ndα)}

R′0 = {((c1, c2), (v, e, f)) : (2c1, 2c2) = (2bv + 2pe, 2av + 2pf)

∧ |2v|, |2e|, |2f | ≤ Õ(n2
dα)}

where 2v, 2e and 2f are reduced modulo q. The protocol has a knowledge error of 1/(2nd), a completeness
error of 1− 1/M , and high-entropy commitments.
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Common input: the public key (a, b), the ciphertext (c1, c2)
Relation: R0 = {((c1, c2), (v, e, f)) : (c1, c2) = (bv + pe, av + pf)

∧|v|, |e|, |f | ≤ Õ(
√
ndα)}

Prover Verifier

rv, re, rf
$←− DÕ(

√
ndα)

t1 = brv + re
t2 = arv + rf

(c
(1)
aux, d

(1)
aux) = aCommit(t1)

(c
(2)
aux, d

(2)
aux) = aCommit(t2)

c(1)aux,c
(2)
aux−−−−−−→

c = h(t1, t2, c
(1)
aux, d

(1)
aux, c

(2)
aux, d

(2)
aux)

sv = rv +Xcv
se = re +Xcpe
sf = rf +Xcpf
accept with probability

DÕ(
√

3ndα)((sv,se,sf ))

MD(Xcv,Xce,Xcf),Õ(
√

3ndα)((sv,se,sf ))

t1,t2,d
(1)
aux,d

(2)
aux,(sv,se,sf )−−−−−−−−−−−−−−−−→
c = h(t1, t2, c

(1)
aux, d

(1)
aux, c

(2)
aux, d

(2)
aux)

Xcc1 + t1
?
= bsv + se

Xcc2 + t2
?
= asv + sf

aCOpen(t1, c
(1)
aux, d

(1)
aux)

?
= accept

aCOpen(t2, c
(2)
aux, d

(2)
aux)

?
= accept

|sv|, |se|, |sf | ≤ Õ(ndα)

Figure 16: Non-interactive zero-knowledge proof of a ciphertext of zero regarding RLWE encryption (Figure
3 in [MO20])
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Theorem 3 (Theorem 6 in [MO20]). Let us apply the protocol in Fig. 16 for λ times in parallel (the parallel
protocol). Let the parallel protocol be accepting if and only if at least λ/2M out of λ proofs were valid under
the condition that an honest verifier rejects no proofs. Then, the parallel protocol has both a completeness
error and knowledge error of negl(λ) under the condition nd ≥ 2M .

A.6 Relation for valid ciphertext

We want to show that we know that a given ciphetext is valid without decryption or revealing a message and
randomness of the ciphertext. We introduce the zero-knowledge proof for the purpose in this subsection.

We introduce the following technical lemmas.

Lemma 12 (Lemma 3.1 in [BCK+14]). Let nd be a power of 2 and let 0 < i, j < 2nd−1. Then, 2(Xi −Xj)
−1

mod (Xnd + 1) only has coefficients in {−1, 0, 1}.

Lemma 13 (Lemma 2 in [ZZD+15]). For any s, t ∈ R, we have |s·t| ≤ √nd ·|s|·|t| and |s·t|∞ ≤ nd ·|s|∞ ·|t|∞.

Let us introduce the relation RE as follows. In the relation RE , let a message space M = R2.

RE = {((c1, c2, a, y), (m, v, e, f)) | c1 = yv + 2e+m ∧ c2 = av + 2f

∧ |m|∞ ≤ 1 ∧ |v|, |e|, |f | ≤ Õ(
√
ndα)}

We construct a non-interactive zero-knowledge proof for the RLWE ciphertext, referring to Protocol 4.1 and
Theorem 4.2 in [BCK+14]. We present the protocol in Fig. 17. This protocol in Fig. 17 satisfies Lemma 14.
We can make the completeness error and knowledge error in Lemma 14 negligible, by the parallelization as
Theorem 3. Let us explain the notation a�l. One obtains a� by an anti-cyclic shift a vector a by l. That
is, a�l = aX l in R. If we write the elements of the vector explicitly, we have

a�l = (a0, . . . , and−1)�l = (−and−l, . . . ,−and−1, a0, . . . , and−l−1).

Lemma 14. The protocol in Fig. 17 is an honest verifier zero-knowledge Σ′-protocol for the following
relations:

R = {((c1, c2, g̃, h̃, (c̃mti)nd−1
i=0 , p, a, b), (m, v, e, f, (ri)

nd−1
i=0 )) :

(c1, c2) = (bv + pe+m, av + pf) ∧
nd−1∧
i=0

c̃mti = rm,ig̃ + rr,ih̃

∧ |m|∞ ≤ 1 ∧ |v|, |e|, |f | ≤ Õ(
√
ndα)}

R′ = {((c1, c2, g̃, h̃, (c̃mti)nd−1
i=0 , p, a, b), (m, v, e, f, (ri)

nd−1
i=0 )) :

(2c1, 2c2) = (2bv + 2pe+ 2m, 2av + 2pf) ∧
nd−1∧
i=0

2c̃mti = (2m mod q)ig̃ + 2rr,ih̃

∧ |2m| ≤ 2n2
d ∧ |2v|, |2e|, |2f | ≤ Õ(n2

dα)}

where 2v, 2e and 2f are reduced modulo q and (2m mod q)i is the i-coefficient of 2m ∈ Rq. The protocol
has a knowledge error of 1/(2nd), a completeness error of 1− 1/M , and high-entropy commitments.

Proof. Let us confirm the proof from the following points: completeness, honest verifier zero-knowledge,
special soundness, and high-entropy commitments.

Completeness From Lemma 9 of the rejection sampling, a prover responds with a probability 1/M . If the
prover does not abort, then

bsv + pse + sm = b(rv +Xcv) + p(re +Xce) + (rm +Xcm)

= Xc(bv + pe+m) + (brv + pre + rm)

= Xcc1 + t1
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Common input: the ciphertext (c1, c2), the integer p, the public key (a, b),

the public key of commitment (g̃, h̃), the commitment (c̃mti)
nd−1
i=0

Relation R = {((c1, c2, g̃, h̃, (c̃mti)nd−1
i=0 , p, a, b), (m, v, e, f, (ri)

nd−1
i=0 )) :

(c1, c2) = (bv + pe+m, av + pf) ∧
∧nd−1
i=0 c̃mti = rm,ig̃ + rr,ih̃

∧|m|∞ ≤ 1 ∧ |v|, |e|, |f | ≤ Õ(
√
ndα)}

Prover Verifier

rv, re, rf
$←− DÕ(

√
ndα)

rm
$←− DÕ(

√
nd)

rr,i
$←− Zq̃ for i = 0, . . . , nd − 1

t1 = brv + pre + rm
t2 = arv + prf
t̃i = rm,ig̃ + rr,ih̃ for i = 0, . . . , nd − 1

(caux, daux) = aCommit(t1, t2, (t̃i)
nd−1
i=0 )

caux−−−−−−→

c = h(t1, t2, (t̃i)
nd−1
i=0 , caux, daux)

sv = rv +Xcv
se = re +Xce
sf = rf +Xcf
sm = rm +Xcm
sr = rr +Xcr
accept with probability

DÕ(2
√
ndα)((sv,se,sf ,sm))

MD(Xcv,Xce,Xcf,Xcm),Õ(2
√
ndα)((sv,se,sf ,sm))

t1,t2,(t̃i)
nd−1

i=0 ,daux,(sv,se,sf ,sm,sr)
−−−−−−−−−−−−−−−−−−−−−−−→

c = h(t1, t2, (t̃i)
nd−1
i=0 , caux, daux)

Xcc1 + t1
?
= bsv + pse + sm

Xcc2 + t2
?
= asv + psf

(c̃mt0, . . . , c̃mtnd−1)�c + (t̃0, . . . , t̃nd−1)
?
= smg̃ + srh̃

aCOpen((t1, t2, (t̃i)
nd−1
i=0 ), caux, daux)

?
= accept

|sv|, |se|, |sf | ≤ Õ(ndα)

|sm| ≤ Õ(nd)

Figure 17: Non-interactive zero-knowledge proof of plaintext knowledge regarding RLWE encryption



A ZERO-KNOWLEDGE PROOF 34

and

asv + psf = a(rv +Xcv) + p(rf +Xcf)

= Xc(av + pf) + (arv + prf )

= Xcc2 + t2.

Let us confirm the equation of the commitment

(c̃mt0, . . . , c̃mtnd−1)�c + (t̃0, . . . , t̃nd−1)
?
= smg̃ + srh̃.

Let us expand the first term of the left hand side.

(c̃mt0, . . . , c̃mtnd−1)�c = (m0g̃ + r0h̃, . . . ,mnd−1g̃ + rnd−1h̃)�c

= (m0, . . . ,mnd−1)�cg̃ + (r0, . . . , rnd−1)�ch̃

= Xcmg̃ +Xcrh̃

We also expand the second term of the left hand side.

(t̃0, . . . , t̃nd−1) = (rm,0g̃ + rr,0h̃, . . . , rm,nd−1g̃ + rr,nd−1h̃)

= (rm,0, . . . , rm,nd−1)g̃ + (rr,0, . . . , rr,nd−1)h̃

= rmg̃ + rrh̃

Therefore we have

(c̃mt0, . . . , c̃mtnd−1)�c + (t̃0, . . . , t̃nd−1) = (Xcmg̃ +Xcrh̃) + (rmg̃ + rrh̃)

= (rm +Xcm)g̃ + (rr +Xcr)h̃

= smg̃ + srh̃.

Let us confirm the norms of sv, se, sf and sm. The standard deviations of rv, re, rf are Õ(
√
ndα). Also,

the standard deviations of rm is Õ(
√
nd). We have

|sv| ≤ |rv|+ |v| ≤ Õ(ndα)

|se| ≤ |re|+ |e| ≤ Õ(ndα)

|sf | ≤ |rf |+ |f | ≤ Õ(ndα)

|sm| ≤ |rm|+ |m| ≤ Õ(nd)

with the overwhelming probability.

Honest verifier zero-knowledge A challenge value c is randomly chosen from the set C = {0, . . . , 2nd−1}.
A simulator outputs the tuple (aCommit(0), c,⊥) with the probability 1− 1/M . With the probability 1/M ,
the simulator runs as follows.

rv, re, rf
$←− DÕ(

√
ndα)

rm
$←− DÕ(

√
nd)

t1 = brv + pre + rm −Xcc1

t2 = arv + prf −Xcc2

t̃i = rm,ig̃ + rr,ih̃ for i = 0, . . . , nd − 1

(caux, daux) = aCommit(t1, t2, (t̃i)
nd−1
i=0 )
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Finally, the simulator outputs

(caux, daux, c, t1, t2, (t̃i)
nd−1
i=0 , (sv, se, sf , sm)).

From Lemma 9, the outputs sv, se, sf and sm without abort do not depend on v, e, f and m as the witness.
Therefore, the simulator and the actual protocol are indistinguishable. If the protocol aborts, then it is
indistinguishable because of the hiding property of aCommit. For any c, the abort occurs in the same way.

Special soundness Let us consider knowledge extractor and suppose that both

(caux, d
′
aux, c

′, t′1, t
′
2, (t̃

′
i)
nd−1
i=0 , (s′v, s

′
e, s
′
f , s
′
m, s

′
r))

and
(caux, d

′′
aux, c

′′, t′′1 , t
′′
2 , (t̃

′′
i )nd−1
i=0 , (s′′v , s

′′
e , s
′′
f , s
′′
m, s

′′
r ))

pass the verification by the verifier. From the binding property of aCommit, we have

t1 := t′1 = t′′1 , t2 := t′2 = t′′2 , (t̃i)
nd−1
i=0 := (t̃′i)

nd−1
i=0 = (t̃′′i )nd−1

i=0 .

Let us confirm (t̃i)
nd−1
i=0 . From the verification, we have

(c̃mt0, . . . , c̃mtnd−1)�c′ + (t̃0, . . . , t̃nd−1) = s′mg̃ + s′rh̃

(c̃mt0, . . . , c̃mtnd−1)�c′′ + (t̃0, . . . , t̃nd−1) = s′′mg̃ + s′′r h̃.

From the subtraction between these two equations, we have

(c̃mt0, . . . , c̃mtnd−1)(Xc′ −Xc′′) = (s′m − s′′m)g̃ + (s′r − s′′r )h̃.

Multiplying by 2(Xc′ −Xc′′)−1 to this equation, we have

(c̃mt0, . . . , c̃mtnd−1) =
2(s′m − s′′m)

Xc′ −Xc′′
g̃ +

2(s′r − s′′r )

Xc′ −Xc′′
h̃ =: 2m̂g̃ + 2r̂h̃.

Then, let us confirm the upper bound of the norm |2m̂|. By adopting Lemma 12 and 13, and the triangle
inequality |a± b| ≤ |a|+ |b|, we have

|2m̂| ≤
√
nd · |s′m − s′′m| ·

∣∣∣∣ 2

Xc′ −Xc′′

∣∣∣∣
≤
√
nd · |s′m − s′′m| ·

√
nd

≤ nd(|s′m|+ |s′′m|) = 2n2
d.

We can have a similar discussion with regard to t1 and t2. Let us confirm t1. From the verification
equation, we have

Xc′c1 + t1 = bs′v + ps′e +m′

Xc′′c1 + t1 = bs′′v + ps′′e +m′′.

From the subtraction between these two equations, we obtain

(Xc′ −Xc′′)c1 = b(s′v − s′′v) + p(s′e − s′′e ) + (m′ −m′′).

Multiplying by 2(Xc′ −Xc′′)−1 to the equation,

2c1 = b
2(s′v − s′′v)

Xc′ −Xc′′
+ p

2(s′e − s′′e )

Xc′ −Xc′′
+

2(s′m − s′′m)

Xc′ −Xc′′
=: 2bv̂ + 2pê+ 2m̂.
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From the similar discussion in the upper bound of |2m̂|, we obtain

|2v̂| ≤
√
nd · |s′v − s′′v | ·

∣∣∣∣ 2

Xc′ −Xc′′

∣∣∣∣
≤ nd(|s′v|+ |s′′v |)
≤ Õ(n2

dα).

Since a similar discussion also holds for ê, we have |2ê| ≤ Õ(n2
dα).

In addition, dealing with the verification equation regarding t2 in a similar way of t1, we obtain

2c2 = a
2(s′v − s′′v)

Xc′ −Xc′′
+ p

2(s′f − s′′f )

Xc′ −Xc′′
=: 2av̂ + 2pf̂ .

In the same way, we obtain |2f̂ | ≤ Õ(n2
dα).

High-entropy commitments This property directly follows from the security of the auxiliary commitment
scheme.
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