
On the Security of Time-Lock Puzzles and
Timed Commitments

Jonathan Katz1?, Julian Loss1, and Jiayu Xu2

1 University of Maryland
2 George Mason University

Abstract. Time-lock puzzles—problems whose solution requires some
amount of sequential effort—have recently received increased interest
(e.g., in the context of verifiable delay functions). Most constructions

rely on the sequential-squaring conjecture that computing g2
T

mod N
for a uniform g requires at least T (sequential) steps. We study the
security of time-lock primitives from two perspectives:

1. We give the first hardness result about the sequential-squaring con-
jecture in a non-generic model. Namely, in a quantitative version of
the algebraic group model (AGM) that we call the strong AGM, we
show that speeding up sequential squaring is as hard as factoring N .

2. We then focus on timed commitments, one of the most important
primitives that can be obtained from time-lock puzzles. We extend
existing security definitions to settings that may arise when using
timed commitments in higher-level protocols, and give the first con-
struction of non-malleable timed commitments. As a building block
of independent interest, we also define (and give constructions for)
a related primitive called timed public-key encryption.

1 Introduction

Time-lock puzzles, introduced by Rivest, Shamir, and Wagner [29], refer to a
fascinating type of computational problem that requires a certain amount of
sequential effort to solve. Time-lock puzzles can be used to construct timed
commitments [7], which “send a message m into the future” in the sense that m
remains computationally hidden for some time T , but can be recovered once time
T has passed. Time-lock puzzles can be used to build various other primitives, in-
cluding verifiable delay functions (VDFs) [5,6,28,33], zero-knowledge proofs [14],
and non-malleable (standard) commitments [19], and have applications to fair
coin tossing, e-voting, auctions, and contract signing [7, 23]. In this work, we
(1) provide formal evidence, in a non-generic model, in support of the hardness
of the most widely used time-lock puzzle and (2) give new, stronger security
definitions (and constructions) for timed commitments and related primitives.
These contributions are explained in more detail next.

? Portions of this work were done while at George Mason University.

Hardness in the (strong) AGM. The hardness assumption underlying the
most popular time-lock puzzle [29] is that, given a uniform generator g in the
group of quadratic residues1 QRN (where N is the product of two safe primes),

it is hard to compute g2
T

mod N in fewer than T sequential steps. We study
this assumption in a new, strengthened version of the algebraic group model
(AGM) [16] that we call the strong AGM (SAGM), which lies between the generic
group model (GGM) [24, 32] and the AGM. Roughly, an algorithm A in the
AGM is allowed to utilize the actual bitstrings representing group elements in
the course of its computation (something that is not allowed in the GGM), but
is constrained in the sense that for any group element h that A outputs, A
must also output coefficients showing how h was computed from group elements
previously given to A as input. The SAGM imposes the stronger constraint
that A output the entire path of its computation (i.e., all intermediate group
operations) that resulted in h. We show that for strongly algebraic algorithms,

computing g2
T

mod N from g using fewer than T group operations is as hard
as factoring N . We also show that it is not possible to reduce the hardness of
sequential squaring to factoring in the AGM (assuming factoring is hard in the
first place). Our result is the first formal argument for the sequential hardness
of squaring in a non-generic model, and immediately implies the security of
Pietrzak’s VDF [28] in the SAGM (assuming the hardness of factoring).

Rotem and Segev [30] recently analyzed the hardness of sequential squaring
and related functions over ZN in the generic ring model [1], where an algorithm
can perform generic ring additions and multiplications but does not get access
to the actual bitstrings representing ring elements. This makes their analysis
incomparable to our analysis in the strong AGM.

Non-malleable timed commitments. The second part of our paper is con-
cerned with the security of non-interactive timed commitments (NITCs). A timed
commitment differs from a regular one in that it additionally has a “forced de-
commit” routine that can be used to force open the commitment after a certain
amount of time in case the committer refuses to open it. Moreover, a commit-
ment comes with a proof that it can be forced open if needed. We introduce a
strong notion of non-malleability for such schemes. To construct a non-malleable
NITC, we formalize as a stepping stone a timed public-key analogue that we call
timed public-key encryption (TPKE). We then show how to achieve an appropri-
ate notion of CCA-security for TPKE. Finally, we show a generic transformation
from CCA-secure TPKE to non-malleable NITC. Although our main purpose
for introducing TPKE is to obtain a non-malleable NITC, we believe that TPKE
is an independently interesting primitive worthy of further study.

1.1 Related Work

We highlight here additional work not already cited earlier. Mahmoody et al. [22]
show constructions of time-lock puzzles in the random-oracle model, and Bitan-

1 The problem was originally stated over the ring ZN . Subsequent works have studied
it both over QRN [28] and JN (elements of Z∗N with Jacobi symbol +1) [23].

sky et al. [4] give constructions based on randomized encodings. In recent work,
Malavolta and Thyagarajan [23] study a homomorphic variant of time-lock puz-
zles. Another line of work initiated by May [25] and later formalized by Rivest
et al. [29] studies a model for timed message transmission between a sender and
receiver in the presence of a trusted server. Bellare and Goldwasser [3] considered
a notion of “partial key escrow” in which a server can store keys in escrow and
learn only some of them unless it expends significant computational effort; this
model was subsequently studied by others [11,13] as well. Liu et al. [21] propose
a time-lock encryption scheme based on witness encryption in a model with a
global clock.

Concurrent work. In work concurrent with our own, Baum et al. [2] formalize
time-lock puzzles and timed commitments in the framework of universal com-
posability (UC) [9]; UC timed commitments are presumably also non-malleable.
Baum et al. present constructions in the (programmable) random-oracle model
that achieve their definitions, and show that their definitions are impossible to
realize in the plain model. Ephraim et al. [15] recently formalized a notion of non-
malleable timed commitments that is somewhat different from our own: they do
not distinguish between time-lock puzzles and timed commitments, which makes
a direct comparison somewhat difficult. They give a generic construction of a
time-lock puzzle from a VDF in the random-oracle model.

1.2 Overview of the Paper

We introduce notation and basic definitions in Section 2. In Section 3 we intro-
duce the SAGM and state our hardness result about sequential squaring. We
give definitions for NTIC and TPKE in Section 4.1, and give a construction of
CCA-secure TPKE in Section 4.2. In Section 4.3, we then show a simple, generic
conversion from CCA-secure TPKE to non-malleable NITC.

2 Notation and Preliminaries

Notation. We use “:=” to denote a deterministic assignment and “←” to denote
assignment via a randomized process. In particular, “x← S” denotes sampling
a uniform element x from a set S. We denote the length of a bitstring x by |x|,
and the length of the binary representation of an integer n by ||n||. We denote
the security parameter by κ. We write ExptA for the output of experiment Expt
involving adversary A.

Running time. We consider running times of algorithms in some unspecified
(but fixed) computational model, e.g., the Turing machine model. This is done
both for simplicity of exposition and generality of our results. To simplify things
further, we omit from our running-time analyses additive terms resulting from
bitstring operations or passing arguments between algorithms, and we scale units
so that multiplication in the group QRN under consideration takes unit time.
All algorithms are assumed to have arbitrary parallel computing resources.

2.1 Repeated Squaring and the RSW Problem

Let GenMod be an algorithm that, on input 1κ, outputs (N, p, q) where N = pq
and p 6= q are two safe primes (i.e., such that p−1

2 and q−1
2 are also prime) with

||p|| = ||q|| = τ(κ); here, τ(κ) is defined such that the fastest factoring algorithm
takes time 2κ to factor N with probability 1

2 . GenMod may fail with negligible
probability, but we ignore this from now on. It is well known that QRN is cyclic

with |QRN | =
φ(N)

4 = (p−1)(q−1)
4 .

For completeness, we define the factoring problem.

Definition 1. For an algorithm A, define experiment FACAGenMod as follows:

1. Compute (N, p, q)← GenMod(1κ), and then run A on input N .
2. A outputs p′, q′ /∈ {1, N}, and the experiment evaluates to 1 iff N = p′q′.

The factoring problem is (t, ε)-hard relative to GenMod if for all A running in
time t,

Pr
[
FACAGenMod = 1

]
≤ ε.

The repeated squaring algorithm. Given an element g ∈ QRN , it is possible

to compute g1, g2, g3, . . . , g2
i

(all modulo N) in i steps: in step i, simply multiply

each value g1, . . . , g2
i−1

by g2
i−1

. (Recall that we allow unbounded parallelism.)
In particular, it is possible to compute gx for any positive integer x in dlog xe
steps. We denote by RepSqr the algorithm that on input (g,N, x) computes gx

in this manner.
Given a generator g of QRN , it is possible to sample a uniform element of

QRN by sampling x ← {0, . . . , |QRN | − 1} and running RepSqr(g,N, x). This
assumes that |QRN | (and hence factorization of N) is known; if this is not the
case, one can instead sample x ← ZN2 , which results in a negligible statistical
difference that we ignore for simplicity. Sampling a uniform element of QRN in
this way takes at most

dlog xe ≤ dlogN2e ≤ 4τ(κ)

steps. We denote by θ(κ) = 4τ(κ) the time to sample a uniform element of QRN .

The RSW problem. We next formally define the repeated squaring problem
with preprocessing. This problem was first proposed by Rivest, Shamir, and
Wagner [29] and hence we refer to it as the RSW problem. We write elements
of G (except for the fixed generator g) using bold, upper-case letters.

Definition 2. For a stateful algorithm A, define experiment T -RSWA
GenMod as

follows:

1. Compute (N, p, q)← GenMod(1κ).
2. Run A on input N in a preprocessing phase to obtain intermediate state.
3. Sample g ← QRN and run A on input g in the online phase.

4. A outputs X ∈ QRN , and the experiment evaluates to 1 iff X = g2
T

mod N .

The T -RSW problem is (tp, to, ε)-hard relative to GenMod if for all algorithms
A running in time tp in the preprocessing phase and to in the online phase,

Pr
[
T -RSWA

GenMod = 1
]
≤ ε.

Clearly, an adversary A can run RepSqr(g,N, 2T) to compute g2
T

mod N in
T steps. This means the T -RSW problem is easy when to ≥ T . In Section 3.1
we show that in the strong algebraic group model, when to < T the T -RSW
problem is (tp, to, ε)-hard (for negligible ε) unless N can be factored in time
roughly tp + to. To put it another way, the fastest stringly algebraic algorithm

for computing g2
T

mod N (short of factoring N) is to run RepSqr(g,N, 2T).
We also introduce a decisional variant of the RSW assumption where, roughly

speaking, the problem is to distinguish g2
T

mod N from a uniform element
of QRN in fewer than T steps.

Definition 3. For a stateful algorithm A, define experiment T -DRSWA
GenMod

as follows:

1. Compute (N, p, q)← GenMod(1κ).
2. Run A on input N in a preprocessing phase to obtain intermediate state.
3. Sample g,X← QRN and a uniform bit b← {0, 1}. If b = 0, run A on inputs

g,X; if b = 1, run A on inputs g, g2
T

mod N in the online phase.
4. A outputs a bit b′, and the experiment evaluates to 1 iff b′ = b.

The decisional T -RSW problem is (tp, to, ε)-hard relative to GenMod if for all A
running in time tp in the preprocessing phase and to in the online phase,

∣∣∣ Pr
[
T -DRSWA

GenMod = 1
]
−

1

2

∣∣∣ ≤ ε.
The decisional T -RSW problem is related to the generalized BBS (GBBS)

assumption introduced by Boneh and Naor [7]; however, there are several differ-
ences. First, the adversary in the GBBS assumption is given the group elements

g, g2, g4, g16, g256, . . . , g2
2k

and then asked to distinguish g2
2k+1

from uniform.
Second, the GBBS assumption does not account for any preprocessing. Our def-
inition is also similar to the strong sequential squaring assumption [23] except
that we do not give g to A in the preprocessing phase.

2.2 Simulation-Sound NIZK

We recall the notion of simulation-sound non-interactive zero-knowledge (NIZK)
proofs [12]. Our definitions are standard except that we explicitly consider the
running times of various algorithms involved.

Let LR be a NP language defined by relation R. Let NIZK = (GenZK, Prove,
Vrfy, SimGen, SimProve) be a tuple of algorithms where

– The parameter-generation algorithm GenZK takes as input the security pa-
rameter 1κ and outputs a common reference string crs.

– The prover algorithm Prove takes as input a string crs and (x,w) ∈ R, and
outputs a proof π.

– The deterministic verifier algorithm Vrfy takes as input crs, a string x, and
a proof π, and outputs a bit indicating acceptance or rejection.

– The simulated parameter-generation algorithm SimGen takes as input the
security parameter 1κ and outputs a common reference string crs and a
trapdoor td.

– The simulated prover algorithm SimProve takes as input an instance x and
a trapdoor td, and outputs a proof π.

We require perfect completeness: For all κ, all crs output by GenZK(1κ), all
(x,w) ∈ R, and all π output by Prove(crs, x, w), it holds that Vrfy(crs, x, π) = 1.

NIZK is a non-interactive proof system if it satisfies soundness:

Definition 4. For a tuple of algorithms NIZK as above and an algorithm A,
define experiment SNDANIZK as follows:

1. Compute crs← GenZK(1κ).
2. Run A on input crs to obtain (x, π). The experiment evaluates to 1 iff

Vrfy(crs, x, π) = 1 and x 6∈ LR.

NIZK is (t, ε)-sound if for all adversaries A running in time at most t,

Pr
[
SNDANIZK = 1

]
≤ ε.

We say that NIZK is a (tp, tv, tsgen, tsp) non-interactive proof system (for re-
lation R) if Prove runs in time tp, Vrfy runs in time tv, SimGen runs in time tsgen,
and SimProve runs in time tsp.

We next define zero-knowledge and simulation soundness.

Definition 5. For a tuple of algorithms NIZK as above and an algorithm A,
define experiment ZKANIZK as follows:

1. Choose a uniform bit b← {0, 1}.
2. Compute crs0 ← GenZK(1κ) and (crs1, td)← SimGen(1κ).
3. Run A on input crsb with access to a prover oracle PROVE that behaves

as follows: on input (x,w), PROVE returns ⊥ if (x,w) 6∈ R; otherwise it
computes π0 ← Prove(crs0, x, w) and π1 ← SimProve(x, td), and returns πb.

4. When A outputs a bit b′, the experiment evaluates to 1 iff b′ = b.

NIZK is (t, ε)-zero-knowledge if for all adversaries A running in time at most t,

Pr
[
ZKANIZK = 1

]
≤

1

2
+ ε.

Simulation soundness says that an adversary cannot produce a fake proof
even if it has oracle access to the simulated prover algorithm.

Definition 6. For a tuple of algorithms NIZK as above and an algorithm A,
define experiment SIMSNDANIZK as follows:

1. Compute (crs, td)← SimGen(1κ).
2. Run A on input crs with access to SimProve(·, t). Let Q denote the set of

queries A makes to this oracle.
3. A outputs (x, π), and the experiment evaluates to 1 iff Vrfy(crs, x, π) = 1,

x 6∈ LR, and x 6∈ Q.

NIZK is (t, ε)-simulation sound if for all A running in time at most t,

Pr
[
SIMSNDANIZK = 1

]
≤ ε.

3 Algebraic Hardness of the RSW Problem

We briefly recall the AGM, and then introduce a refinement that we call the
strong AGM (SAGM), which lies in between the GGM and the AGM. As the
main result of this section, we show that the RSW assumption can be reduced
to the factoring assumption in the strong AGM. For completeness, we also show
that it is not possible to reduce hardness of RSW to hardness of factoring in the
AGM (unless factoring is easy).

3.1 The Strong Algebraic Group Model

The algebraic group model (AGM), introduced by Fuchsbauer, Kiltz, and Loss [16],
lies between the GGM and the standard model. As in the standard model, al-
gorithms are given actual (bit-strings representing) group elements, rather than
abstract handles for (or random encodings of) those elements, as in the GGM.
This means that AGM algorithms are strictly more powerful than GGM al-
gorithms (e.g., when working in Z∗N an AGM algorithm can compute Jacobi
symbols), and in particular means that the computational difficulty of problems
in the AGM depends on the group representation used. (In contrast, in the GGM
all cyclic groups of the same order are not only isomorphic, but are identical.)
On the other hand, an algorithm in the AGM that outputs group elements must
also output representations of those elements with respect to any inputs the al-
gorithm has received; this restricts the algorithm in comparison to the standard
model (which imposes no such restriction).

More formally, we define the notion of an algebraic algorithm [8,27]:

Definition 7 (Algebraic algorithm). An algorithm A is called algebraic (over
group G) if whenever A outputs a group element X ∈ G, it also outputs an in-

teger vector ~λ with X =
∏
i L

λi
i , where ~L denotes the (ordered) list of group

elements that A has received as input up to that point. We refer to ~λ as an
algebraic representation of X.

The original formulation of the AGM assumes that G is a group of (known)
prime order but this is not essential and we do not make that assumption here.

The strong AGM. The AGM does not directly provide a way to measure the
number of (algebraic) steps taken by an algorithm. This makes it unsuitable for
dealing with “fine-grained” assumptions like the hardness of the RSW problem.
(This point is made more formal in Section 3.3. On the other hand, as we will
see, from a “coarse” perspective any algebraic algorithm can be implemented
using polylogarithmically many algebraic steps.) This motivates us to consider a
refinement of the AGM that we call the strong AGM (SAGM), which provides a
way to directly measure the number of group operations an algorithm performs.

In the AGM, whenever an algorithm outputs a group element X it is re-
quired to also provide an algebraic representation of X with respect to all the
group elements the algorithm has received as input so far. In the SAGM we
strengthen this and require an algorithm to express any group element as either
(1) a product of two previous group elements that it has either received as input
or already computed in some intermediate step, or (2) an inverse of a previous
group element that it has either received as input or already computed in some
intermediate step. That is, we require algorithms to be strongly algebraic:

Definition 8 (Strongly algebraic algorithm). An algorithm A over G is
called strongly algebraic if in each (algebraic) step A does arbitrary local com-
putation and then outputs2 one or more tuples of the following form:

1. (X,X1,X2) ∈ G3, where X = X1 ·X2 and X1,X2 were either provided as
input to A or were output by A in some previous step(s);

2. (X,X1) ∈ G2, where X = X−11 and X1 was either provided as input to A or
was output by A in some previous step.

The running time of A is the number of algebraic steps it takes.

Note that we allow arbitrary parallelism, since we allow strongly algebraic
algorithms to output multiple tuples per step.

As an example of a strongly algebraic algorithm, consider the following algo-

rithm3 M̃ult computing the product of n input elements X1, . . . ,Xn in dlog ne
steps: If n = 1 then M̃ult(X1) outputs X1; otherwise, M̃ult(X1, . . . ,Xn) runs

Y := M̃ult(X1, . . . ,Xdn/2e) and Z := M̃ult(Xdn/2e+1, . . . ,Xn) in parallel, and
outputs (YZ,Y,Z). It is also easy to see that the repeated squaring algorithm

RepSqr described previously can be cast as a strongly algebraic algorithm R̃epSqr

such that R̃epSqr(g, x) computes gx in dlog xe steps.
Any algebraic algorithm with polynomial-length output can be turned into

a strongly algebraic algorithm that uses polylogarithmically many steps:

2 Here we require A to output group elements at intermediate steps of its computation.
Technically, we can distinguish the final output of A by requiring A to output a
special indicator when generating its final output.

3 In general we use ·̃ to indicate that an algorithm is strongly algebraic.

Theorem 1. Let A be an algebraic algorithm over G taking as input n group
elements X1, . . . ,Xn and outputting a group element X along with its algebraic
representation (λ1, . . . , λn) (so X = Xλ1

1 · · ·Xλn
n), where |λi| ≤ 2κ. Then there

is a strongly algebraic algorithm Ã over G running in 1+κ+dlog ne steps whose
final output is identically distributed.

Proof. Consider the following strongly algebraic algorithm Ã(X1, . . . ,Xn):

1. Run A(X1, . . . ,Xn) and receive A’s output X together with (λ1, . . . , λn).
(Note that this is an internal computation step, not not an algebraic step;
in particular, no group element is being output by Ã here.)

2. For all i, let X′i = X−1i . (Formally, Ã outputs (X′i,Xi) for all i. This can all
be done in one algebraic step.)

3. For all i, if λi ≥ 0 compute Xλi
1 := R̃epSqr(Xi, λi); if λi < 0 compute Xλi

1 :=

R̃epSqr(X′i, |λi|). All these (algebraic) computations are done in parallel.

4. Run M̃ult(Xλ1
1 , . . . ,Xλn

n).

Running time in the SAGM. Definition 8 only accounts for the number of
algebraic steps used by an algorithm. In some cases, we may also wish to account
for other (non-algebraic) computation that an algorithm does, measured in some
underlying computational model (e.g., the Turing machine model). In this case
we will express the running time of algorithms as a pair and say that a strongly
algebraic algorithm runs in time (t1, t2) if it uses t1 algebraic steps, and has
running time t2 in the underlying computational model.

3.2 Hardness of the RSW Problem in the Strong AGM

If the factorization of N (and hence φ(N)) is known, then g2
T

mod N can
be computed in at most dlog φ(N)/4e algebraic steps by first computing z :=

2T mod φ(N)/4 and then computing R̃epSqr(g, z). Thus, informally, if the RSW
problem is hard then factoring must be hard as well. Here we prove a converse
in the SAGM, showing that the hardness of factoring implies the hardness of
solving the T -RSW problem in fewer than T sequential steps for a strongly alge-
braic algorithm. We rely on a concrete version of the well-known result that N
can be factored efficiently given any positive multiple of φ(N) (a proof follows
from a quantitative analysis of the proof of [18, Theorem 8.50]):

Lemma 1. There is an algorithm Factor running in time 4dlogα · τ(κ) + τ(κ)2e
that takes as input a modulus N (that is the product of two κ-bit safe primes)
along with m = α · φ(N) for α ∈ Z+, and outputs the factorization of N with
probability at least 1

2 .

We now show:

Theorem 2. Assume factoring is
(
tp + to +Θ(κ) + 4dlog T · τ(κ) + τ(κ)2e, ε

)
-

hard relative to GenMod. Then the T -RSW problem is
(
(0, tp), (T − 1, to) , 2ε

)
-

hard relative to GenMod in the SAGM.

Proof. Let A be a strongly algebraic algorithm that uses no algebraic steps and
runs in time tp in the preprocessing phase, and uses at most T−1 algebraic steps
and runs in time to in the online phase. Let g be the generator given to A at
the beginning of the online phase of T -RSWA

GenMod. For any X ∈ QRN output
by A as part of an algebraic step during the online phase of T -RSWGenMod, we
recursively define DLA(g,X) ∈ Z+ as:

– DLA(g, g) = 1;
– If A outputs (X,X1,X2) in an algebraic step, then

DLA(g,X) = DLA(g,X1) + DLA(g,X2);

– If A outputs (X,X1) in an algebraic step, then DLA(g,X) = −DLA(g,X1).

Obviously, gDLA(g,X) = X for any X ∈ QRN output by A.

Claim. For any strongly algebraic algorithm A given only g as input and running
in s ≥ 1 algebraic steps, every X ∈ QRN output by A satisfies |DLA(g,X)| ≤ 2s.

Proof. The proof is by induction on s. If s = 1, the only group elements A can
output are g−1 or g2, so the claim holds. Suppose the claim holds for s − 1.
If A outputs (X,X1,X2) in step s, then X1,X2 must either be equal to g or
have been output in a previous step. So the induction hypothesis tells us that
|DLA(g,X1)|, |DLA(g,X2)| ≤ 2s−1. It follows that

|DLA(g,X)| = |DLA(g,X1) + DLA(g,X2)| ≤ |DLA(g,X1)|+ |DLA(g,X2)| ≤ 2s.

Similarly, if A outputs (X,X1) in step s, then |DLA(g,X)| = |DLA(g,X1)| ≤
2s−1. In either case, the claim holds for s as well.

We construct an algorithm R that factors N as follows. R, on input N , runs
the preprocessing phase of A(N), and then samples g ← QRN and runs the
online phase of A(g). When A produces its final output X, then R computes
x = DLA(g,X). Finally, R sets m := 4 · (2T − x) and outputs Factor(N,m).

When X = g2
T

mod N we have x = 2T mod φ(N)/4, i.e., φ(N) divides
m = 4 · (2T − x). By the previous claim, |x| < 2T and so m is a nontrivial
(integer) multiple of φ(N). We thus see that R factors N with probability at

least 1
2 · Pr

[
T -RSWA

GenMod = 1
]
. The running time of R is at most tp + to +

Θ(κ) + 4dlog T · τ(κ) + τ(κ)2e. This completes the proof.

3.3 The RSW Problem in the AGM

In the previous section we showed that the hardness of the RSW problem can
be reduced to the hardness of factoring in the strong AGM. Here, we show that
a similar reduction in the (plain) AGM is impossible, unless factoring is easy.
Specifically, we give a “meta-reduction” M that converts any such reduction R
into an efficient algorithm for factoring. In the theorem that follows, we writeRA
to denote execution of R given (black-box) oracle access to another algorithm A.
When we speak of the running time of R we assign unit cost to its oracle calls.

Theorem 3. Let R be a reduction running in time tR and such that for any

algebraic algorithm A with Pr
[
T -RSWA

GenMod = 1
]

= 1, algorithm B = RA

satisfies Pr
[
FACBGenMod = 1

]
> ε. Then there is an algorithm M running in

time poly(tR) with Pr
[
FACMGenMod = 1

]
> ε.

Proof. Let R be as described in the theorem statement. M simply runs R,
handling its oracle calls by simulating the behavior of an (algebraic) algorithm A
that solves the RSW problem with probability 1. (Note that the running time
of doing so is irrelevant as far as the behavior of R is concerned, since R cannot
observe the running time of A. For this reason, we also ignore the fact that A
is allowed preprocessing, and simply consider an algorithm A for which A(N, g)

outputs (g2
T

mod N, 2T).) Formally,M(N) runsR(N); whenRmakes an oracle

query A(N ′, g), algorithmM answers the query by computing X = g2
T

mod N ′

(using RepSqr) and returning (X, 2T) to R. Finally,M outputs the factors that
are output by R.

The assumptions of the theorem imply that M factors N with probability
at least ε. The running time ofM is the running time of R plus the time to run
RepSqr each time R calls A.

4 Non-Malleable Timed Commitments

Here we provide appropriate definitions for non-interactive (non-malleable) timed
commitments (NITCs). As a building block toward our construction of NITCs,
we introduce the notion of timed public-key encryption (TPKE) and show how
to construct CCA-secure TPKE.

4.1 Definitions

Timed commitments allow a committer to commit to a message m such that
binding holds as usual, but hiding holds only until some designated time T ; the
receiver can “force open” the commitment by that time. Boneh and Naor [7]
gave a (somewhat informal) description of the syntax of interactive timed com-
mitments along with some specific constructions. We introduce the syntax of
non-interactive timed commitments and give appropriate security definitions.

Definition 9. A (tcom, tcv, tdv, tfo)-non-interactive timed commitment scheme
(NITC) is a tuple of algorithms TC = (PGen,Com,ComVrfy,DecVrfy,FDecom)
with the following behavior:

– The randomized parameter generation algorithm PGen takes as input the
security parameter 1κ and outputs a common reference string crs.

– The randomized commit algorithm Com takes as input a string crs and a
message m. It outputs a commitment C and proofs πCom, πDec in time at
most tcom.

– The deterministic commitment verification algorithm ComVrfy takes as input
a string crs, a commitment C, and a proof πCom. It outputs 1 (accept) or 0
(reject) in time at most tcv.

– The deterministic decommitment verification algorithm DecVrfy takes as in-
put a string crs, a commitment C, a message m, and a proof πDec. It outputs
1 (accept) or 0 (reject) in time at most tdv.

– The deterministic forced decommit algorithm FDecom takes as input a string
crs and a commitment C. It outputs a message m or ⊥ in time at least tfo.

We require that for all κ, all crs output by PGen(1κ), all m, and all C, πCom, πDec

output by Com(crs,m), it holds that

ComVrfy(crs, C, πCom) = DecVrfy(crs, C,m, πDec) = 1

and FDecom(crs, C) = m.

To commit to message m, the committer runs Com to get C, πCom, and πDec, and
sends C and πCom to a receiver. The receiver can run ComVrfy to check that C
can be forcibly decommitted (if need be). To decommit, the committer sends m
and πDec to the receiver, who can then run DecVrfy to verify the claimed opening.
If the committer refuses to decommit, C be opened using FDecom. NITCs are
generally only interesting when tcv, tdv � tfo, i.e., when forced opening of a
commitment takes longer than verification.

NITCs must satisfy appropriate notions of hiding and binding. For hiding,
we use a strong definition based on non-malleability that is modeled on the
CCA-security notion for (standard) commitments given by Canetti et al. [10].
Specifically, we require hiding to hold even when the adversary is given access to
an oracle that provides the forced openings of commitments of the adversary’s
choice. In the timed setting that we are considering, the motivation behind
providing the adversary with such an oracle is that (honest) parties may be
running machines that can force open commitments at different speeds. As such,
the adversary (as part of some higher-level protocol) could trick a party into
opening commitments of the attacker’s choice. Note that although the adversary
could run the forced opening algorithm itself, doing so would incur a significant
computational cost; in contrast, each of the adversary’s queries to the forced-
opening oracle incurs only unit cost.

Definition 10. For an NITC scheme TC and algorithm A, define experiment
IND-CCAATC as follows:

1. Compute crs← PGen(1κ).

2. Run A(crs) in a preprocessing phase with access to FDecom(crs, ·).

3. When A outputs (m0,m1), choose a uniform bit b← {0, 1} and then compute
(C, πCom, πDec)← Com(crs,mb). Give (C, πCom) to A, who continues to have
access to FDecom(crs, ·) except that it may not query the oracle on C.

4. When A outputs a bit b′, the experiment evaluates to 1 iff b′ = b.

TC is (tp, to, ε)-CCA-secure if for all adversaries A running in time at most tp
in the preprocessing phase and time at most to in the subsequent online phase,

Pr
[
IND-CCAATC = 1

]
≤ 1

2
+ ε.

Binding. The binding property states that a valid commitment cannot be
opened to two different messages, and will be forced open to the correct message.
We require this to hold even in the presence of a forced-opening oracle as before.

Definition 11. For an NITC scheme TC and algorithm A, define experiment
BND-CCAATC as follows:

1. Compute crs← PGen(1κ).
2. Run A(crs) with access to FDecom(crs, ·).
3. A outputs (m,C, πCom, πDec,m

′, π′Dec), and the experiment evaluates to 1 iff
ComVrfy(crs, C, πCom) = 1 and either:

– m′ 6= m, yet DecVrfy(crs, C,m, πDec) = DecVrfy(crs, C,m′, π′Dec) = 1;
– DecVrfy(crs, C,m, πDec) = 1 but FDecom(crs, C) 6= m.

TC is (t, ε)-BND-CCA-secure if for all adversaries A running in time t,

Pr
[
BND-CCAATC = 1

]
≤ ε.

Timed public-key encryption. TPKE can be viewed as the counterpart of
timed commitments for public-key encryption. As in the case of standard public-
key encryption (PKE), a sender encrypts a message for a designated recipient
using the recipient’s public key; that recipient can decrypt and recover the mes-
sage. Timed PKE additionally allows anyone (and not just the sender) to recover
the message, but only by investing more computational effort.

Definition 12. A (te , tfd , tsd)-timed public-key encryption (TPKE) scheme is
a tuple of algorithms TPKE = (KGen,Enc,Decf ,Decs) such that:

– The randomized key-generation algorithm KGen takes as input the security
parameter 1κ and outputs a pair of keys (pk , sk). We assume, for simplicity,
that sk includes pk.

– The randomized encryption algorithm Enc takes as input a public key pk
and a message m, and outputs a ciphertext c. It runs in time at most te .

– The fast decryption algorithm Decf takes as input a secret key sk and a
ciphertext c, and outputs a message m or ⊥. It runs in time at most tfd .

– The deterministic slow decryption algorithm Decs takes as input a public
key pk and a ciphertext c, and outputs a message m or ⊥. It runs in time
at least tsd .

We require that for all κ, all (pk , sk) output by KGen(1κ), all m, and all c output
by Enc(pk ,m), it holds that Decf (sk , c) = Decs(pk , c) = m.

TPKE schemes are only interesting when tfd � tsd , i.e., when fast decryption is
much faster than slow decryption.

We consider security of TPKE against chosen-ciphertext attacks.

Definition 13. For a TPKE scheme TPKE and algorithm A, define experiment
IND-CCAATPKE as follows:

1. Compute (pk , sk)← KGen(1κ).
2. Run A(pk) with access to Decf (sk , ·) in a preprocessing phase.
3. When A outputs (m0,m1), choose b ← {0, 1}, compute c ← Enc(pk ,mb),

and run A(c) in the online phase. A continues to have access to Decf (sk , ·),
except that A may not query this oracle on c.

4. When A outputs a bit b′, the experiment evaluates to 1 iff b′ = b.

TPKE is (tp, to, ε)-CCA-secure iff for all A running in time at most tp in the
preprocessing phase and running in time at most to in the online phase,

Pr
[
IND-CCAATPKE = 1

]
≤

1

2
+ ε.

We remark that for some applications of TPKE, one might also want to
consider a “binding” property requiring that fast and slow decryption return
the same result even for maliciously generated cpihertexts; one can verify that
this property is satisfied by our TPKE scheme in the next section. However, since
our primary motivation for introducing TPKE is to construct NTICs, we do not
require this notion here.

4.2 CCA-Secure TPKE

We describe a construction of a TPKE scheme that is CCA-secure under the
decisional RSW assumption. While our construction is in the standard model,
it suffers from a slow encryption algorithm. In the full version of our paper,
we describe a CCA-secure TPKE scheme in the random-oracle model where
encryption can be done more quickly with knowledge of the secret key.

The starting point of our construction is a CPA-secure TPKE scheme based
on the decisional RSW assumption. In this scheme, the public key is a modulus N
and a generator g ∈ QRN ; the secret key includes φ(N). To encrypt a message4

M ∈ QRN , the sender chooses a random generator R (by raising g to a random

power modulo N), and computes the ciphertext (R, R2T ·M mod N). This
ciphertext can be decrypted quickly using φ(N), but can also be decrypted
slowly without knowledge of φ(N).

We can obtain a CCA-secure TPKE scheme by suitably adapting the Naor-
Yung paradigm [26, 31] to the setting of timed encryption. The Naor-Yung ap-
proach constructs a CCA-secure encryption scheme by encrypting a message

4 This can be extended to encryption of a message m <
√
N by encoding m as

M := m2 ∈ QRN ; note that m can be recovered from M by computing the square
root of M over the integers.

For fixed integer T , define the relation

R =

{
((R1,R2,X1,X2, N1, N2),M) |

∧
i=1,2

Xi = R2T

i ·M mod Ni

}
.

(We drop N1, N2 from the instance when they are clear from context.) Let NIZK =
(GenZK,Prove,Vrfy, SimGen, SimProve) be an NIZK proof system for R. Define a
TPKE scheme (parameterized by T) as follows:

– KGen(1κ): For i ∈ {1, 2} compute (Ni, pi, qi)← GenMod(1κ), set φi := φ(Ni),
set zi := 2T mod φi, and choose gi ← QRNi

. Run crs ← GenZK(1κ). Output
pk := (crs, N1, N2, g1, g2) and sk := (crs, N1, z1).

– Enc((crs, N1, N2, g1, g2),M): For i = 1, 2, choose ri ← ZN2
i

and compute

Ri := grii mod Ni, Zi := R2T

i mod Ni, Ci := Zi ·M mod Ni,

using RepSqr. Also compute π ← Prove(crs, (R1,R2,C1,C2),M). Output the
ciphertext (R1,R2,C1,C2, π).

– Decf (sk, (R1,R2,C1,C2, π)): If Vrfy(crs, (R1,R2,C1,C2), π) = 0, output ⊥.
Else compute Z1 := Rz1

1 mod N1 (using RepSqr) and then output M :=
C1Z

−1
1 mod N1.

– Decs(pk, (R1,R2,C1,C2, π)): If Vrfy(crs, (R1,R2,C1,C2), π) = 0, output ⊥.

Else compute Z1 := R2T

1 mod N1 (using RepSqr) and then output M :=
C1Z

−1
1 mod N1.

Fig. 1. A CCA-secure TPKE scheme.

twice using independent instances of a CPA-secure encryption scheme accompa-
nied by a simulation-sound NIZK proof showing that the two messages encrypted
are the same. In our setting, we need the NIZK proof system to also have “fast”
verification and simulation (specifically, linear in the size of the input instance).
We present the details of our construction in Figure 1.

The proof of security in our context requires the ability to simulate the de-
cryption oracle using a “fast” decryption algorithm. The reason is that if it were
not possible to simulate decryption quickly, then the reduction to the decisional
RSW assumption would take too much time. Fast simulation for our scheme is
possible since in the proof of security for the Naor-Yung construction, the simu-
lator knows (at least) one of the secret keys at any time; the corresponding key
can be used to decrypt quickly.

Theorem 4. Fix tp, to, and t = tp + to, and let NIZK be a (tpr, tv, tsgen, tsp)-
proof system. If NIZK is (t · (tv +Θ(κ)), εZK)-zero-knowledge and (Θ(t ·κ), εSS)-
simulation sound, and the decisional T -RSW problem is

(tsgen + tp · (tv +Θ(κ)), tsp + to · (tv +Θ(κ)), ε)-hard

relative to GenMod, then the TPKE scheme in Figure 1 is (tp, to, εZK+εSS+2ε)-
CCA-secure.

Proof. Let A be an adversary with preprocessing time tp and online time to,
and note that the total number of decryption-oracle queries made by A is at
most t = tp + to. We define a sequence of experiments as follows.

Expt0: This is the original CCA-security experiment IND-CCATPKE. Denote
A’s challenge ciphertext by (R∗1,R

∗
2,C

∗
1,C

∗
2, π
∗).

Expt1: Expt1 is identical to Expt0, except that crs and π∗ are simulated. That is,
(crs, td)← SimGen(1κ) is computed as part of key generation and crs is included
in the public key; the challenge ciphertext is computed as before, except that
the proof is now computed as π∗ ← SimProve((R∗1,R

∗
2,C

∗
1,C

∗
2), td).

We upper bound |Pr[ExptA1 = 1]−Pr[ExptA0 = 1]| by constructing a reduction
RZK to the zero-knowledge property of NIZK. ReductionRZK is given crs, which
it includes as part of the public key. (The rest of the key is generated as in Expt0
and Expt1.) When RZK computes the challenge ciphertext, it uses its PROVE
oracle to generate π∗. RZK runs in time t · (tv +Θ(κ)), and thus

|Pr[ExptA1 = 1]− Pr[ExptA0 = 1]| ≤ εZK .

Expt2: In Expt2 component C∗2 of the challenge ciphertext is computed by choos-
ing u2 ← ZN2

2
, computing U2 := RepSqr(g2, N2, u2), and then setting C∗2 :=

U2 ·Mb mod N2. We bound |Pr[ExptA2 = 1]− Pr[ExptA1 = 1]| by constructing a
reduction RDRSW to the decisional T -RSW problem that works as follows:

– Preprocessing phase:RDRSW , on input N2, runs (N1, p1, q1)← GenMod(1κ),
computes φ1 := φ(N1) = (p1− 1)(q1− 1), sets z1 := 2T mod φ1, and chooses
g1 ← QRN1

, g2 ← QRN2
; it also runs (crs, td)← SimGen(1κ). Then RDRSW

runs A(crs, N1, N, g1, g2), answering the decryption-oracle queries of A using
the fast decryption algorithm (note RDRSW knows z1) until A makes its
challenge query (M0,M1).

– Online phase: RDRSW is given (R∗2,X
∗). It then chooses b ← {0, 1} and

r1 ← ZN2
1
, and computes

R∗1 := RepSqr(g1, N1, r1), Z∗1 := RepSqr(R∗1, N1, z1), C∗1 := Z∗1·Mb mod N1,

and
π∗ ← SimProve((R∗1,R

∗
2,C

∗
1,X

∗ ·Mb), td).

It returns (R∗1,R
∗
2,C

∗
1,X

∗ ·Mb, π
∗) to A. It continues to answer decryption-

oracle queries as before.
– When A outputs b′, then RDRSW outputs 1 iff b′ = b.

RDRSW runs in time tsgen+ tp · (tv +Θ(κ)) in the preprocessing phase and time
tsp + to · (tv +Θ(κ)) in the online phase; thus,

|Pr[ExptA2 = 1]− Pr[ExptA1 = 1]| ≤ ε.

Expt3: Expt3 is identical to Expt2, except that C∗2 is computed as U2 (instead of
U2 ·Mb). Since the distributions of U2 and U2 ·Mb are both uniform, this is
merely a syntactic change and Pr[ExptA3 = 1] = Pr[ExptA2 = 1].

Expt4: Expt4 is identical to Expt3, except that decryption-oracle queries are an-
swered using R2 (instead of R1) to decrypt. That is, when A queries the decryp-
tion oracle on a ciphertext (R1,R2,C1,C2, π), then (assuming the proof verifies)
we compute Z2 := RepSqr(R2, N2, z2) and return M := C2 · Z−12 mod N2.

Expt4 and Expt3 are identical unless A makes a decryption-oracle query

(R1,R2,C1,C2, π) for which the proof verifies yet
C1

R2T
1

mod N1 6=
C2

R2T
2

mod N2.

Denote this event Fake. We upper bound Pr[Fake] by constructing a reduction
RSS to the simulation soundness of NIZK:

– RSS(crs) does as follows: for i = 1, 2, it runs (Ni, pi, qi) ← GenMod(1κ),
computes φi := φ(Ni) = (pi − 1)(qi − 1), sets zi := 2T mod φi, and chooses
gi ← QRNi

. Then RSS runs A(N, g, crs).
– When A queries the decryption oracle on ciphertext (R1,R2,C1,C2, π),

then RSS returns ⊥ if Vrfy(R1,R2,C1,C2, π) = 0. Otherwise, RSS checks

if
C1

Rz1
1

mod N1 =
C2

Rz2
2

mod N2 and, if so, returns
C1

Rz1
1

mod N1, otherwise it

outputs ((R1,R2,C1,C2), π) (and halts).
– When A makes its challenge query (M0,M1), then RSS chooses b← {0, 1}

and computes

R∗1 := RepSqr(g1, N1, r1), Z∗1 := RepSqr(R∗1, N1, z1), C∗1 := Z∗1·Mb mod N1,

u2 ← ZN2
2
,C∗2 := RepSqr(g2, N2, u2);

it then obtains a (simulated) proof π∗ using its oracle access to SimProve.
Finally, it gives the challenge ciphertext (R∗1,R

∗
2,C

∗
1,C

∗
2, π
∗) to A.

Subsequent decryption-oracle queries by A are answered as before.

RSS runs in time Θ(t · κ), succeeds exactly when Fake occurs, and simulates
Expt4 perfectly until Fake occurs. It follows that

|Pr[ExptA4 = 1]− Pr[ExptA3 = 1]| ≤ Pr[Fake] ≤ εSS .

Expt5: Expt5 is identical to Expt4, except that C∗1 is set to a uniform value in
ZN1 . The change here is symmetric to the one from Expt1 to Expt3, and so

|Pr[ExptA5 = 1]− Pr[ExptA4 = 1]| ≤ ε.

Since b is independent of A’s view in Expt5, the probability that the CCA-
experiment evaluates to 1 in this case is 1/2. We thus conclude that

Pr
[
IND-CCAATPKE = 1

]
≤ 1

2
+ εZK + εSS + 2ε,

which completes the proof.

We remark that for the preceding theorem to be meaningful, the decisional
T -RSW problem should plausibly be hard for the concrete parameters stated; at
a minimum, we require tsp + to · (tv +Θ(κ)) < T . This can be achieved by using
a simulation-sound NIZK proof system for which verification and simulation
can be done in time polynomial in the length of the witness, independent of
the size of the circuit for the corresponding NP relation. In particular, suitable
schemes [17,20] with running times linear in the size of the witness can be used.

4.3 Constructing Non-Malleable Timed Commitments

In this section, we show how CCA-secure TPKE can be used to construct
non-malleable timed commitments. The idea is very simple. The parameter-
generation algorithm generates the keys for a timed public-key encryption scheme
TPKE along with a common reference string for non-interactive zero-knowledge
proof systems NIZK and NIZK′. To commit to a message m, the committer com-
putes c := Enc(pk ,m; r) (for some random coins r) and then (1) uses NIZK to
prove that it knows (m, r) such that c = Enc(pk ,m; r), and (2) uses NIZK′ to
prove that it knows r such that c = Enc(pk ,m; r). The first of these proofs will
be used as πCom, i.e., to prove that the commitment is well-formed; the second
proof will be used as πDec, i.e., to prove that m is the committed value. Details
of our construction are presented in Figure 2. Note that for the construction to
be meaningful we require the time needed for forced decommitment (i.e., the
time for slow decryption in the underlying TPKE scheme) to be larger than the
time required for proof verification. This can be satisfied when instantiating the
NIZK proofs as discussed in the previous section.

Correctness of the scheme in Figure 2 follows immediately; we next show its
CCA-security.

Theorem 5. Fix tp.to, and suppose TPKE is (tp+tsgen, tsp, ε)-CCA-secure, and
NIZK,NIZK′ are (tp + to + te, εZK)-zero-knowledge. Then the NITC scheme in
Figure 2 is (tp, to, εZK + ε)-CCA-secure.

Proof. Let A be an adversary with preprocessing time tp and online time to.
SupposeA’s challenge is (c∗, π∗). We define a sequence of experiments as follows.

Expt0: This is the original CCA-security experiment IND-CCATC.

Expt1: Expt1 is identical to Expt0, except that crs and π∗ are simulated. That is,
in the setup phase run (crs, td)← SimGen(1κ), and in the online phase compute
π∗ ← SimProve(c∗, td).

We upper bound |Pr[ExptA1 = 1] − Pr[ExptA0 = 1]| by constructing a reduc-
tion RZK to the zero-knowledge property of NIZK. RZK runs the code of Expt1,
except that it publishes the CRS from the zero-knowledge challenger, and uses
the zero-knowledge proof from the zero-knowledge challenger as part of the chal-
lenge ciphertext; also, RZK simulates the decommit oracle DEC by running the
fast decryption algorithm. Concretely, RZK works as follows:

Let TPKE = (KGen,Enc,Decf ,Decs) be a (te , tfd , tsd)-TPKE scheme, NIZK =
(GenZK,Prove,Vrfy, SimGen, SimProve) be a (tp, tv, tsgen, tsp)-NIZK for relation

R = {(c, (m, r)) | c = Enc(pk ,m; r)},

and NIZK′ = (GenZK′,Prove′,Vrfy′, SimGen′, SimProve′) be a (t′p, t
′
v, t
′
sgen, t

′
sp)-

NIZK for relation

R′ = {((c,m), r) | c = Enc(pk ,m; r)}.

Define an NITC scheme as follows:

– PGen(1κ): Run (pk , sk) ← KGen(1κ), crs ← GenZK(1κ), crs′ ← GenZK′(1κ),
and output (pk , crs, crs′).

– Com((pk , crs, crs′),m): Choose random coins r; compute c := Enc(pk ,m; r),
πCom ← Prove(crs, c, (m, r)), and πDec ← Prove′(crs′, (c,m), r). Output
(c, πCom, πDec).

– ComVrfy((pk , crs, crs′), c, πCom): Output Vrfy(crs, c, πCom).
– DecVrfy((pk , crs, crs′), c,m, πDec): Output Vrfy′(crs′, (c,m), πDec).
– FDecom((pk , crs, crs′), c): Output Decs(pk , c).

Fig. 2. An (te + max{tp, t′p}, tv, t′v, tsd)-NITC scheme.

– Setup: RZK , on input crs∗, runs P ← PGen(1κ), (sk , pk) ← KGen(P) and
crs′ ← GenZK′(1κ), and runs A(pk , crs∗, crs′). When A’s makes a decryption-
oracle query, RZK answers it using Decs(sk , ·).

– Online phase: WhenAmakes its challenge query (m0,m1),RZK chooses b←
{0, 1}, computes c∗ ← Enc(pk ,mb) and π∗ ← PROVE(c∗,mb), and outputs
(c, π∗). After that, R answers A’s decryption-oracle queries as before.

– Output: When A outputs b′, RZK outputs 1 iff b′ = b.

RZK runs in time tp + to + te, and hence

|Pr[ExptA1 = 1]− Pr[ExptA0 = 1]| ≤ εZK .

Next we analyze A’s advantage in Expt1. Since the challenge is (c, π) where
c = Enc(pk ,m; r) and π is simulated without knowledge of m or r, A’s advantage
can be upper bounded directly by the CCA-security of TPKE. Formally, we upper
bound A’s advantage by constructing a reduction RCCA to the CCA-security of
TPKE (where RCCA’s decryption oracle is denoted DECTPKE):

– Preprocessing phase: RCCA, on input pk , computes (crs, td)← SimGen(1κ),
and runs A(crs). When A makes a decryption-oracle query, RCCA answers
it using its own decryption oracle.

– Challenge query: When A outputs (m0,m1), RCCA outputs the same mes-
sages. Given challenge ciphertext c∗, RCCA computes π∗ ← SimProve(c∗, td)

and sends (c∗, π∗) to A. After that, R answers A’s decryption-oracle queries
as before.

– Output: When A outputs a bit b′, RCCA also outputs b′.

RCCA runs in time at most tp + tsgen in the preprocessing phase, and time
at most to + tsp in the online phase. RCCA simulates Expt1 perfectly, and wins
if A wins. It follows that

Pr[ExptA1 = 1] = Pr[RCCA wins] ≤ 1

2
+ ε.

We conclude that

Pr
[
IND-CCAATC = 1

]
≤ 1

2
+ εZK + ε,

which completes the proof.

We briefly sketch why our scheme satisfies our notion of binding. Recall that
if A can win BND-CCATC, then it can produce a commitment c along with
messages m,m′ and proofs πCom, πDec such that ComVrfy((pk , crs, crs′), c, πCom) =
DecVrfy((pk , crs, crs′), c,m, πDec) = 1, m′ 6= m, and either

(1) : FDecom((pk , crs, crs′), c) = m′

or
(2) : DecVrfy((pk , crs, crs′), c,m′, π′Dec) = 1.

Soundness of NIZK and NIZK′ implies that this is not possible.

References

1. D. Aggarwal and U. Maurer. Breaking RSA generically is equivalent to factoring.
In Advances in Cryptology—Eurocrypt 2009, LNCS, pages 36–53. Springer, 2009.

2. C. Baum, B. David, R. Dowsley, J. B. Nielsen, and S. Oechsner. Tardis: Time and
relative delays in simulation. Cryptology ePrint Archive: Report 2020/537, 2020.

3. M. Bellare and S. Goldwasser. Verifiable partial key escrow. In ACM Conf. on
Computer and Communications Security (CCS) 1997, pages 78–91. ACM Press,
1997.

4. N. Bitansky, S. Goldwasser, A. Jain, O. Paneth, V. Vaikuntanathan, and B. Waters.
Time-lock puzzles from randomized encodings. In ITCS 2016: 7th Conference on
Innovations in Theoretical Computer Science, pages 345–356. ACM, 2016.

5. D. Boneh, J. Bonneau, B. Bünz, and B. Fisch. Verifiable delay functions. In
Advances in Cryptology—Crypto 2018, Part I, volume 10991 of LNCS, pages 757–
788. Springer, 2018.

6. D. Boneh, B. Bünz, and B. Fisch. A survey of two verifiable delay functions.
Cryptology ePrint Archive, Report 2018/712, 2018. https://eprint.iacr.org/

2018/712.
7. D. Boneh and M. Naor. Timed commitments. In Advances in Cryptology—

Crypto 2000, volume 1880 of LNCS, pages 236–254. Springer, 2000.

https://eprint.iacr.org/2018/712
https://eprint.iacr.org/2018/712

8. D. Boneh and R. Venkatesan. Breaking RSA may not be equivalent to factoring.
In Advances in Cryptology—Eurocrypt 1998, LNCS, pages 59–71. Springer, 1998.

9. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd Annual Symposium on Foundations of Computer Science
(FOCS), pages 136–145. IEEE, 2001.

10. R. Canetti, H. Lin, and R. Pass. Adaptive hardness and composable security
in the plain model from standard assumptions. In 51st Annual Symposium on
Foundations of Computer Science (FOCS), pages 541–550. IEEE, 2010.

11. J. Cathalo, B. Libert, and J.-J. Quisquater. Efficient and non-interactive timed-
release encryption. In 7th Intl. Conf. on Information and Communication Security
(ICICS), LNCS, pages 291–303. Springer, 2005.

12. A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust
non-interactive zero knowledge. In Advances in Cryptology—Crypto 2001, volume
2139 of LNCS, pages 566–598. Springer, 2001.

13. G. Di Crescenzo, R. Ostrovsky, and S. Rajagopalan. Conditional oblivious transfer
and timed-release encryption. In Advances in Cryptology—Eurocrypt 1999, LNCS,
pages 74–89. Springer, 1999.

14. C. Dwork and M. Naor. Zaps and their applications. In 41st Annual Symposium
on Foundations of Computer Science (FOCS), pages 283–293. IEEE, 2000.

15. N. Ephraim, C. Freitag, I. Komargodski, and R. Pass. Non-malleable time-lock
puzzles and applications. Cryptology ePrint Archive: Report 2020/779, 2020.

16. G. Fuchsbauer, E. Kiltz, and J. Loss. The algebraic group model and its applica-
tions. In Advances in Cryptology—Crypto 2018, Part II, volume 10992 of LNCS,
pages 33–62. Springer, 2018.

17. J. Groth and M. Maller. Snarky signatures: Minimal signatures of knowledge
from simulation-extractable SNARKs. In Advances in Cryptology—Crypto 2017,
Part II, volume 10402 of LNCS, pages 581–612. Springer, 2017.

18. J. Katz and Y. Lindell. Introduction to Modern Cryptography (2nd edition). Chap-
man & Hall/CRC Press, 2014.

19. H. Lin, R. Pass, and P. Soni. Two-round and non-interactive concurrent non-
malleable commitments from time-lock puzzles. In 58th Annual Symposium on
Foundations of Computer Science (FOCS), pages 576–587. IEEE, 2017.

20. H. Lipmaa. Simulation-extractable SNARKs revisited. Cryptology ePrint Archive,
Report 2019/612, 2019. https://eprint.iacr.org/2019/612.

21. J. Liu, T. Jager, S. A. Kakvi, and B. Warinschi. How to build time-lock encryption.
Designs, Codes and Cryptography, 86:2549–2586, 2018.

22. M. Mahmoody, T. Moran, and S. P. Vadhan. Time-lock puzzles in the random
oracle model. In Advances in Cryptology—Crypto 2011, volume 6841 of LNCS,
pages 39–50. Springer, 2011.

23. G. Malavolta and S. A. K. Thyagarajan. Homomorphic time-lock puzzles and
applications. In Advances in Cryptology—Crypto 2019, Part I, volume 11692 of
LNCS, pages 620–649. Springer, 2019.

24. U. M. Maurer. Abstract models of computation in cryptography. In 10th IMA In-
ternational Conference on Cryptography and Coding, volume 3796 of LNCS, pages
1–12. Springer, 2005.

25. T. May. Timed-release crypto. http://cypherpunks.venona.com/date/1993/02/
msg00129.html, 1993.

26. M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In 22nd Annual ACM Symposium on Theory of Computing
(STOC), pages 427–437. ACM Press, 1990.

https://eprint.iacr.org/2019/612
http://cypherpunks.venona.com/date/1993/02/msg00129.html
http://cypherpunks.venona.com/date/1993/02/msg00129.html

27. P. Paillier and D. Vergnaud. Discrete-log-based signatures may not be equivalent
to discrete log. In Advances in Cryptology—Asiacrypt 2005, LNCS, pages 1–20.
Springer, 2005.

28. K. Pietrzak. Simple verifiable delay functions. In ITCS 2019: 10th Innovations in
Theoretical Computer Science Conference, volume 124, pages 60:1–60:15. Leibniz
International Proceedings in Informatics (LIPIcs), 2019.

29. R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release
crypto. Technical report, MIT Laboratory for Computer Science, 1996.

30. L. Rotem and G. Segev. Generically speeding-up repeated squaring is equivalent
to factoring: Sharp thresholds for all generic-ring delay functions. In Advances
in Cryptology—Crypto 2020, Part III, volume 12172 of LNCS, pages 481–509.
Springer, 2020.

31. A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In 40th Annual Symposium on Foundations of Computer Sci-
ence (FOCS), pages 543–553. IEEE, 1999.

32. V. Shoup. Lower bounds for discrete logarithms and related problems. In Advances
in Cryptology—Eurocrypt 1997, LNCS, pages 256–266. Springer, 1997.

33. B. Wesolowski. Efficient verifiable delay functions. In Advances in Cryptology—
Eurocrypt 2019, Part III, volume 11478 of LNCS, pages 379–407. Springer, 2019.

	On the Security of Time-Lock Puzzles and Timed Commitments

