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Abstract. Recent years have seen various side-channel timing attacks
demonstrated on both CPUs and GPUs, in diverse settings such as desk-
tops, clouds, and mobile systems. These attacks observe events on dif-
ferent shared resources on the memory hierarchy from timing informa-
tion, and then infer secret-dependent memory access pattern to retrieve
the secret through statistical analysis. We generalize these attacks as
memory-based side-channel attacks.
In this paper, we propose a novel software countermeasure, MemPoline,
against memory-based side-channel attacks. MemPoline hides the secret-
dependent memory access pattern by moving sensitive data around ran-
domly within a memory space. Compared to the prior oblivious RAM
technology, MemPoline employs parameter-directed permutations to achieve
randomness, which are significantly more efficient and yet provide similar
security. Our countermeasure only requires modifying the source code,
and has great advantages of being general - algorithm-agnostic, portable
- independent of the underlying architecture, and compatible - a user-
space approach that works for any operating system or hypervisor.
We run a thorough evaluation of our countermeasure. We apply it to
both AES, a symmetric cipher, and RSA, an asymmetric cipher. Both
empirical results and theoretical analysis show that our countermeasure
resists a series of existing memory-based side-channel attacks on CPUs
and GPUs.

Keywords: memory-based side-channel countermeasure, security, side-channel,
timing, microarchitecture, cache

1 Introduction

Side-channel attacks have changed the notion of “security” for cryptographic
algorithms despite their mathematically proven security. Memory-based side-
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channel attacks, which exploit the memory access footprint inferred from ob-
servable microarchitectural events, have become a serious cyber threat to not
only cryptographic implementations but also general software bearing secrets.
The same algorithm implemented on different architectures can be vulnerable to
different side-channel attacks. For example, the T-table implementation of Ad-
vanced Encryption Standard (AES) is vulnerable to Flush+Reload cache timing
attack [8] on Intel CPUs, and also vulnerable to GPU memory coalescing at-
tack [12]. Protecting them against different memory-based side-channel attacks
on different architectures is challenging and can be costly in hardware augmen-
tation, thus calling for more general countermeasures that address the root cause
of information leakage and can work across architectures against various attacks.

Hardware countermeasures that modify the cache architecture and policies
can be efficient [4, 15, 20, 21, 28], but they are invasive and require hardware
redesign, and often times only address a specific attack. Software countermea-
sures [1, 17, 24, 31] require no hardware modification and make changes at dif-
ferent levels of the software stack, e.g., the source code, binary code, compiler,
or the operating system. They are favorable for existing computer systems with
the potential to be general, portable, and compatible.

The software implementation of Oblivious RAM (ORAM) scheme shown in
the prior work [25] has been demonstrated to be successful in mitigating cache
side-channel attacks. The ORAM scheme [5, 26] was originally designed to hide a
client’s data access pattern in the remote storage from an untrusted server by re-
peatedly shuffling and encrypting data blocks. Raccoon [25] re-purposes ORAM
to prevent memory access pattern from leaking through cache side-channel.

The Path-ORAM scheme [26] uses a small client-side private storage to store
a position map for tracking real locations of the data-in-move, and assumes
the server cannot monitor the access pattern in the position map. However, in
side-channel attacks, all access patterns can be monitored, and indexing to a
position map is considered insecure against memory-based side-channel attacks.
Instead of indexing, Raccoon [25], which focuses on control flow obfuscation,
uses ORAM for storing data and streams in the position map to look for the
real data location, and therefore provides a strong security guarantee. However,
since it relies on ORAM for storing data, its memory access runtime is O(N)
given N data elements, and the ORAM related operations can incur more than
100x performance overhead.

We propose a software countermeasure, MemPoline, against memory-based
side-channel attacks with much less performance degradation than the prior
work [25, 26]. MemPoline adopts the ORAM idea of sensitive data shuffling, but
implements a much more efficient permutation scheme to provide just-in-need
security level to defend against memory-based side-channel attacks. Specifically,
we use a parameter-directed permutation function to shuffle the memory space
progressively. Only the parameter value (instead of a position map) needs to be
kept private to track the real dynamic locations of data. Thus, in our scheme,
the memory access runtime is O(1), significantly lower than O(log(N)) of Path-
ORAM [26] and O(N) of Raccoon [25].
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The contributions of this paper include:

– We propose a novel efficient and effective technique to randomize a protected
memory space at run-time.

– Based on the technique, we propose a software countermeasure against memory-
based side-channel attacks to obfuscate a program’s memory access pattern.

– We apply our countermeasure to multiple ciphers on different platforms
(CPUs and GPUs) and evaluate the resilience against many known memory-
based side-channel attacks, both empirically and theoretically.

2 Background and Related Work

When the memory access footprint of an application is dependent on the secret
(e.g., key), side-channel leakage of the footprint can be exploited to retrieve the
secret. In this section, we give background on microarchitecture of the memory
hierarchy. We discuss existing memory-based side-channel attacks and how they
infer the memory access pattern from various side-channels exploiting different
resources. We classify countermeasures into different categories. We describe two
well-known cryptographic algorithms, AES and RSA, which will be our targets
for applying the countermeasure.

2.1 Microarchitecture of the Memory Hierarchy

Cache, a critical on-chip fast memory storage, is deployed for performance, to
reduce the speed gap between the fast computation engines such as CPU and
GPU cores and the slow off-chip main memory. As caches store only a portion of
memory content, a memory request can be served directly by the cache hierarchy
in case of cache hits, otherwise by the off-chip memory (cache misses). The
timing difference between a cache hit and miss forms a timing channel that can
be exploited by the adversary to leak secret.

The typical structure of a cache is a 2-dimensional table, with multiple sets
(rows) and each set consisting of multiple ways (columns). A cache line (a table
cell) is the basic unit with a fixed size for data transfer between memory and
cache. Each cache line corresponds to one memory block. When the CPU re-
quests a data (with the memory address given), the cache is looked up for the
corresponding memory block. The middle field of a memory address is used to
locate the cache set (row) first, and the upper field of the memory address is
used as a tag to compare with all the cache lines in the set to identify a cache
hit or miss.

With highly parallel computing resources such as GPUs and multi-thread
CPUs, modern computer architecture splits on-chip caches into multiple banks,
allowing concurrent accesses to these banks so as to increase the data access
bandwidth. For example, in modern Intel processors, the L1 cache becomes 3-D
- it includes multiple banks and each cache line is distributed into multiple equal-
sized parts on different banks. On-chip shared memory of many GPUs is also
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banked. Such banked caches and shared memory are susceptible to a different
cache-bank side-channel attack [13, 14, 30].

Another microarchitecture, memory coalescing unit (commonly found on var-
ious GPUs), can group concurrent global memory access requests (e.g., in a
warp of 32 threads under the single-instruction-multiple-thread execution model
on Nvidia Kepler) into distinct memory block transactions, so as to reduce the
memory traffic and improve the performance. However, recent coalescing attack
[12] has shown that it can also leak memory access pattern of a running appli-
cation.

2.2 Data Memory Access Footprint

Program data is stored in memory, and we use memory addresses to reference
them. If the content-to-memory mapping is fixed, when a secret determines
which data to use, by learning the memory access footprint through various side
channels, the adversary can infer the secret.

Different microarchitectural resources on the memory hierarchy use a dif-
ferent portion/field of the memory address to index themselves, for example,
different levels of caches (L1, L2, and LLC), and cache banks. When observ-
ing victim’s access events on the different resources to infer memory access, the
memory access footprint retrieved also has different levels of granularity.

Memory-based side-channel attacks that exploit sensitive data memory access
footprint to retrieve the secret. For example, sensitive data includes the SBox
tables of block ciphers such as AES, DES, and Blowfish, and the lookup table
of multipliers in RSA. As many microarchitectural resources are shared, the
adversary does not need root privilege to access them and can infer the victim
memory access footprint by creating contention on the resources. In view of this
attack fundamental, countermeasures are proposed to prevent the adversary from
learning the memory access footprint. In Figure 1, we classify typical existing
memory-based side-channel attacks and countermeasures according to the level
of mapping they are leveraging and addressing, respectively.
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Fig. 1: Overview of memory-based side-channel attacks and countermeasures
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Attack. Memory-based side-channel attacks can be classified into access-
driven and time-driven. For a time-driven attack, the adversary observes the
total execution time of the victim under different inputs and uses statistical
methods with a large number of samples to infer the secret. For an access-
driven attack, the adversary intentionally creates contentions on certain shared
resources with the victim to infer the memory access footprint of the victim.
It consists of three steps: 1. preset - the adversary sets the shared resource to
a certain state; 2. execution - the victim runs; 3. measurement - the adversary
checks the state of the resource using timing information.

Figure 1 lists five microarchitectural resources, three of CPUs - L1 cache
line, L3 cache line, and L1 cache bank, and two of GPUs - memory coalesc-
ing unit and shared memory, and various attacks utilizing these vulnerable re-
sources. The GPU memory coalescing attack [12] and shared memory attack [13],
Evict+Time [27], CacheCollision [2] are time-driven. All other attacks, including
Flush+Reload [29], Flush+Flush [7], Prime+Probe [22, 27], CacheBleed [30], are
access-driven. They differ in the way of presetting the shared resource, and how
to use the timing information to infer victim’s data access.

Countermeasure. Existing countermeasures are built on top of three prin-
ciples to prevent information leakage: partitioning, pinning, and randomization.
Partitioning techniques [4, 17, 24, 28, 31], including StealMem [17] and NoMo [4],
split a resource among multiple software entities (processes), so that one process
does not share the same microarchitectural resource with another, and there-
fore no side-channel can be formed. Pinning techniques [3, 6, 19, 28], including
CATlysts [19] and Cloak [6], preload and lock one entity’s security sensitive data
in the resource prior to computations, so that any key-dependent memory access
to the locked data will result in a constant access time. Randomization tech-
niques, such as RFill [20], RCoal [15], and Raccoon [25], randomize the behavior
of the memory subsystem resources so that the adversary cannot correlate the
memory access footprint to content used in the computation. Hardware coun-
termeasures [15, 20] randomize the mapping between the memory address and
on-chip microarchitectural resources. For example, RFill [20] targets the L1 cache
and RCoal [15] targets the memory coalescing unit and randomizes its group-
ing behavior. Our approach, MemPoline, is in the same category of software
ORAM [25, 26], which randomizes the content to memory address mapping.

2.3 Vulnerable Ciphers

AES is the standard encryption algorithm. We evaluate the 128-bit Electronic
Code Book (ECB) mode T-table implementation of AES encryption commonly
used in prior work [2, 12, 13, 27]. The encryption algorithm consists of nine
rounds of SubByte, ShiftRow, MixColumn, and AddRoundKey operations, and
one last round of three operations without the MixColumn one. In the T-table-
based implementation, the last round function can be described by ci = Tk[sj ]⊕
rki, where ci is the ith byte of the output ciphertext, rki is ith byte of the last
round key, sj is the jth byte of the last round input state (j is different from i
due to the ShiftRow operation), and Tk is the corresponding T-table (publicly
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known) for ci. Memory-based side-channel attacks can retrieve the last round key
by inferring the victim’s memory access pattern to the public-known T-tables,
with sj inferred and ci known as the output.

RSA is an asymmetric cipher with two keys, one public and one private.
The major computation operation is modular exponentiation, r = bemod m. In
decryption, the exponent e is the private key and is the target of side-channel
attacks. For the sliding-window implementation of the RSA algorithm, the expo-
nent is broken down into a series of zero and non-zero windows. The algorithm
processes these windows one by one from the most significant one. For each ex-
ponent window, a squaring operation is performed first. If the window exponent
is non-zero, another multiplication routine is executed with a pre-calculated mul-
tiplier selected using the value of the current window. For a window of n-bit,
there are 2n−1 pre-calculated multiplier values stored in a table for conditional
multiplications (only odd numbers for non-zero windows). Tracking which mul-
tiplier in the sensitive multiplier table has been used leads to the recovery of the
window exponent value.

3 Threat Model

Our threat model includes co-residence of the adversary and victim on one phys-
ical machine. We use this threat model for both attack implementations and
evaluation of our countermeasure. However, we do not anticipate any issue for
our countermeasure to work in a cloud environment. The adversarial goal is to
recover the secret key of a cryptographic algorithm using memory-based side-
channel attacks.

The threat model assumes the adversary is a regular user without the root
privilege, and the underlying operating system is not compromised. The adver-
sary cannot read or modify the victim’s memory, but the victim’s binary code
is publicly known (the common case for ciphers). The adversary can interact
with the victim application. For example, the adversary can provide messages
for the victim to encrypt/decrypt, receive the output, and also time the victim
execution. In this work, we focus on protecting secret-dependent data memory
access, and will consider protecting instruction memory access in future work.
We also assume the granularity of information the adversary can observe is at
cache line or bank level, and the adversary can statistically recover secret using
at least 100 observations. Currently, the most efficient and accurate memory-
based side-channel can monitor the memory access at the cache line granularity
and need a few thousands observations to recover the AES key as shown in prior
work [9].

4 Our Countermeasure - MemPoline

4.1 Design Overview

The high-level idea of our countermeasure, MemPoline, is to progressively change
the organization of sensitive data in memory from one state to another directed
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by an efficient parameter-based permutation function, so that it decorrelates the
microarchitectural events the adversary observes and the actual data used by
the program. Here the sensitive data refers to data whose access patterns should
be protected, instead of data itself.

To obfuscate memory accesses, the data layout in memory should undergo
randomization through permutation. However, the frequency of permuting and
the implementation method have a significant impact on both the security and
performance of the countermeasure. We implement permutation gradually through
subsequent swappings instead of at once - only bouncing the data to be accessed
around before the access (load or store). Once the layout of the data reaches a
permuted state, we update the parameter and continue migrating the data lay-
out to the next permuted state. This procedure allows us to slowly de-associate
any memory address from actual data content. Thus, the countermeasure can
provide the security level to defend memory-based side-channel attacks with
a significant performance gain over the ORAM-based countermeasure. The in-
sight for such efficient permutation is that the granularity of cache data that a
memory-based side-channel attack can observe is limited and therefore can be
leveraged to reduce the frequency of permuting to be just-in-need, lowering the
performance degradation.

The countermeasure consists of two major actions at the user level: one-
time initialization and subsequent swapping for each data access (between the
accessed data and another data unit selected by the random parameter). During
initialization, the original data is permuted and copied to a dynamically allocated
memory (SMem). Such a permuted state is labeled by one parameter, a random
number r, which is used for bookkeeping and tracking the real memory address
for data access. For example, the data element pointed to by index i in the
original data structure is now referred by a different index in the permuted
state, j = fperm(i, r) in SMem, where r is a random value and fperm is an explicit
permutation function. The memory access pattern in SMem can be obfuscated
through changing the value of r.

The updating rate of r is critical for both side-channel security and perfor-
mance. If the value of r were fixed, the memory access pattern would be fixed.
This would only increase the attack complexity as the adversary needs to recover
the combination of r and the key value instead of just the key value. The side-
channel information leakage may be the same. On the other hand, if the value of
r were constantly updated every time one data element is accessed, the memory
access pattern would be truly random. Such updating frequency could provide
the same level of security guarantee as the ORAM [5, 26], while also inheriting
excessive performance degradation.

Our countermeasure sets the frequency of changing the value of r to a
level that balances the security and performance, and implements permutation
through subsequent swappings rather than one-time action. This way, the secu-
rity level for defending against memory-based side-channel attacks is attained
with much better performance compared to ORAM.
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Next, we define the data structures of SMem in view of the memory hierarchy
structure and set up auxiliary data structures. Then we illustrate the two actions
of our countermeasure.

4.2 Define the Data Structures

SMem is a continuous memory space allocated dynamically. We define the basic
element of it for permutation as limb, with its size equal to that of a cache
bank, which is commonly 4 bytes in modern processors. We now assume SMem
is 4-byte addressable memory space.

Considering the cache mapping of SMem, we can view SMem as a two-
dimensional table, where rows are cache lines, columns are banks, and each cell
is a limb. Note we do not need to consider ways (as in cache) because ways are
not addressable. As the observation granularity of memory-based side-channel
timing attacks is either cache line or cache bank, when we move a limb around,
both the row index and column index should be changed to increase the en-
tropy of memory access obfuscation. We divide limbs into multiple equal-sized
groups, and permutations take place within each group independently. To pre-
vent information leakage through monitoring cache lines or cache banks, groups
should be uniformly distributed in rows and columns, i.e., considering each row
(or column), there should be equal number of limbs from each group. Figure 2
shows an example SMem, where the number of groups is equal to the number
of columns, groups are formed diagonally, and the number of limbs in a group
equals to the number of rows. With this well-balanced grouping, when a limb
moves around within its group directed by the parameter-based permutation
function, it can appear in any cache line or cache bank, obfuscating the mem-
ory access and therefore mitigating information leakage. Note that in modern
computer systems, the cache line size is the same throughout memory hierarchy:
Last-Level-Cache (LLC), L2, L1, and even memory coalescing unit. Therefore,
we can mitigate information leakage of different memory hierarchy level simul-
taneously.

Fig. 2: Data Structures of MemPoline and Actions

In SMem, for each group, the initialization sets it in a permuted state, de-
scribed by r1. During program execution, as the permuted state gradually up-
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dates to r2, at any time, the group is in a mixed state as some limbs are in r1
and others are in r2. Once the entire group reaches r2 state, r1 is obsolete and is
updated with r2, and a new random number will be generated for r2. Along the
temporary horizon, we define the progression from a starting permuted state r1
to another permuted state r2 as an epoch. For a limb originally indexed by i, the
new location in SMem can be found by fperm(i, r1) if it is in r1 state, otherwise,
the new location is fperm(i, r2).

To keep track of which permuted state the limb, i, is located in, a bitmap is
allocated during the initialization and keeps updating. When bitmap[fperm(i, r1)]
is 1, the i is in the r1 permuted state; otherwise, it is in the r2 permuted state.
Note that the bitmap does not need to be kept private since it is indexed using
the permutation function.

4.3 Initialization - Loading Original Sensitive Data

We load the original sensitive data to SMem for two reasons: compatibility and
security. The original sensitive data in a vulnerable program may be statically
or dynamically allocated. To make our countermeasure compatible to both sit-
uations, we load original data to a dynamically allocated region SMem. It will
only incur overhead for statically allocated data.

The original sensitive data in memory is byte addressable. For program data
access, the unit can be multi-byte, which should be aligned with the limb size
(determined by the cache bank size). For example, for T-table based AES, the
data unit size is four bytes, fitting in one limb; for SBox-based implementation,
the unit is one byte, and three bytes are padded to make one limb. Therefore,
each data unit occupies one or multiple continuous limbs.

To map a data unit indexed by i to a location in SMem, we need to figure out
its coordinate in SMem, i.e., the row and column, and then the group ID can be
derived correspondingly. Note that, different from previous ORAM approaches,
our MemPoline does not rely on an auxiliary mapping table to determine a
location for i as the mapping table is also side-channel vulnerable. Instead, we
develop functions to associate i with a memory address through private random
numbers. For simplicity, we assume each data unit occupies one limb in SMem,
and we will extend the approach to general cases where a data unit occupies two
or more limbs, e.g., the table of multipliers in the sliding window implementation
of RSA.

We start by filling SMem row by row in the same manner as how a consecutive
data structure is mapped to memory, as shown as the white table in Figure 2,
where the data unit index i directly translates to the limb memory address. In
each cell, the number in the middle is the original data index and the number at
the top-right corner is the SMem address. When permuting, the content moves
around in SMem. For the given example in Figure 2, the 32 limbs (eight rows
and four columns) are divided into four diagonal groups. In each group, a specific
random number, r1, is chosen to perform permutation. The permutation function
is exclusive OR, satisfying i1 ⊕ r1 = j1. The content in address j1 and i1will
swap. For each group of eight limbs as shown in Figure 2, four swapping are
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performed directly by its corresponding initial r1. The entire SMem is now in
the r1 permuted state.

To handle the case when a data unit occupies multiple limbs, we treat the
data unit i as a structure consisting of multiple limbs (assuming n is the number
of limbs in one data unit). The loading and initial permutation operations are
still performed at the granularity of limb, and one data access now translates
to n limb accesses. After permutation, these limbs are scattered in SMem and
are not necessarily consecutive. Upon data access, the individual limbs will be
located and gathered to form the data unit requested by the program execution.

4.4 Epochs of Permuting

After initialization, the program execution is accompanied by epochs of permu-
tations of SMem, distributed across data accesses. For each data access, given
the index in the original data structure, we locate the limbs in SMem, and move
data units in the permuted state of r1 to r2. The procedure is described in
Listing 1.1.

Listing 1.1: Locating data unit i in SMem

1 mp locate and swap(i):
2 j1 = r1 index(i)
3 j2 = r2 index(i)
4 // 3rd argument: false = fake swap, true = real swap
5 oblivious swap(j1, j2, bitmap[j1] == 1)
6 random perm(group index(i))
7 j2 = r2 index(i)
8 re turn address at j 2

Locating Data Element. The data unit indexed by i in the original data
structure exists in SMem with two possible states, either in the r1 permuted
state at j1 = i⊕ r1 or in the r2 permuted state at j2 = i⊕ r2, depending on the
value of bitmap[j1], where bitmap[j1] = 1 indicates i in the r1 permuted state
and bitmap[j1] = 0 indicates i in the r2 permuted state.

Permuting. Once the data element is located, we perform an oblivious
swap depending on which permuted state the element is in. If it is in state
r1 (bitmap[j1] is 1), we swap the data element with the content at j2 in SMem.
If bitmap[j1] is 0, we perform a fake swap procedure (memory access to both
locations, without changing data content in them) to disguise the fact that i is
in j2.

To guarantee that there is at least one data unit will be moved to r2 permuted
state per memory access, we perform an additional random pair of permutation
by swapping j3 and j4 in the same group as shown in Figure 2. This proce-
dure, random perm shown Listing 1.1, will also add noise to the memory access
pattern.
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As mentioned in Section 4.5, how frequent the paramter is being updated de-
termines the security level. The number of additional random swaps per memory
access can be used to adjust the parameter updating frequency. The higher num-
ber of additional random swaps the fewer number of memory accesses are needed
to migrate all elements into r2 permuted state. To determine the updating rate
of the random parameter to balance the security and the performance for an im-
plementation, developers need to consider the strength of the side-channel signal
(e.g. how many samples attackers need to statistically differentiate two memory
access locations) and the application memory access pattern (e.g. the distribu-
tion of the secure data accesses by the application). For example, if the attacker
can statistically determine the accessed memory location using 100 samples, we
need to update the paramter with less than 100 memory accesses. If the distri-
bution is uniform, we do not need any additional random swap. However, if the
distribution is not uniform, we would need to have at least one additional random
swap to ensure the parameter is updated within every 100 memory accesses.

Parameter-Based Permutation Function. We use the xor function (⊕) as
the parameter-based permutation function to move two data elements in the
r1 permuted state to the r2 permuted state at a time while leaving other data
elements untouched.

At the beginning of an epoch, all the data units are in permuted state r1. If
an access requests for data unit i1 comes up, we first identify the location of it
in SMem is j1 = i1 ⊕ r1. As it is requested now, it is time for it to be updated
to r2 permuted state and relocated to j2 = i1 ⊕ r2. The data unit that stays in
j2 is still in r1 state and its original index should satisfy i2 ⊕ r1 = j2 = i1 ⊕ r2.
By swapping the content at j1 and j2 in SMem, both data units i1 and i2 are
moved to r2 permuted state and located at i1⊕r2 and i2⊕r2, respectively. In the
following, we prove why this swapping implements permuting without affecting
other data units.

Given r1, r2 as random numbers with the same in size (bit length), i1, i2 as
indices in the original data structure (d). i1 and i2 are located at j1 = i1 ⊕ r1
and j2 = i2 ⊕ r1 in SMem (D) respectively. That is

D[i1 ⊕ r1] == d[i1]

D[i2 ⊕ r1] == d[i2]

With the swap operation, we will move i1 to j2 = i1⊕r2 and i2 to j1 = i1⊕r1.
Therefore,

i1 ⊕ r2 == i2 ⊕ r1 (1)

By xoring both sides of Equation 1 by (r1 ⊕ r2), we have

i1 ⊕ r2 ⊕ (r1 ⊕ r2) == i2 ⊕ r1 ⊕ (r1 ⊕ r2) (2)

i1 ⊕ r1 == i2 ⊕ r2 (3)
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After the swap operation,

D[i1 ⊕ r1] == d[i2]

D[i2 ⊕ r1] == D[i1 ⊕ r2] == d[i1]

By Equation 3, we have

D[i1 ⊕ r1] == D[i2 ⊕ r2] == d[i2]

4.5 Security Analysis

In SMem, when a victim performs a load/store operation on a data element
indexed by i, an adversary can observe the corresponding cache line (or bank),
linej , being accessed. However, if the data element is remapped to a new random
cache line linek, observing linek is statistically independent of observing linej .
linek can be any one of cache lines with a uniform probability of 1/L, where L
is the number of cache lines, guaranteed by our balanced grouping. Thus, the
adversary cannot associate the observed cache line linek with the data element.

Since our countermeasure uses a parameter-based permutation function, the
adversary can associate linek to the combination of the data element and the pa-
rameter value. Therefore, what matters the most is the frequency the paramter
value is being changed. If we change the parameter value for every memory ac-
cess, the security of SMem is as strong as Path-ORAM proposed in the prior
work [26] for defending against memory-based side-channel attacks. All data
elements are shuffled even though most of them are not used by this data ac-
cess. This operation would take a O(N) runtime. However, given the limited
granularity of side-channel information observed by the adversary, we can relax
the security requirement to achieve a better performance while maintaining the
ability to defend against memory-based side-channel attacks. For example, when
one cache line contains multiple data elements, access to any of data elements in
the cache line will let the adversary observe an access to the cache line, but the
adversary cannot determine which data element. Thus, for memory-based side-
channel attacks, they require multiple observations to statistically identify the
accessed data element. For example, Flush+Reload technique, the most accurate
implementation needs more than a few thousands observations to statistically
identify accessed 16 T-table elements in AES.

As long as we can change all data elements from one permuted state to the
next one before they can be statistically identified, we are able to hide the access
pattern from leaking through the side-channel. As shown in the empirical result,
no data element is identifiable by all memory-based side-channel attacks that we
evaluated when our countermeasure is applied.

4.6 Operations Analysis

Table 1 gives an overview of all major operations happening in MemPoline. For
the initialization step, a memory space will be allocated, and original data is
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Table 1: Operations in MemPoline
User Actions Operations De-

scription
Calling Frequency Memory Access

Initialization
1. Allocate memory

One Time
n Writes

2. Move data to
SMem with initial
permutation

n Reads + n Writes

Memory Read/Write
1. Locating element Per access 2 Reads
2. Permute Per access 3 Writes
3. Generate new ran-
dom value

Per (group size)/2
accesses

(group size)/2 Writes

loaded to it. The data layout progressively migrates from one permuted state to
the next one upon every memory access, and this step incurs the major overhead.
For locating a limb, it would require extra two memory reads to the bitmap. For
every permuting/swap operation, it requires extra three memory writes: 2 writes
to update the data in SMem and one write to update the bitmap. For all limbs
within the group to migrate to the new permuted state, it requires a number
of writes that equals to the half of the group size to update the bitmap. The
bitmap access complexity is O(1), and the data index i is protected, there is no
information leakage when the bitmap is looked up.

4.7 Implementation - API

Application source code has to be changed to store data in SMem. MemPoline
provides developers four simple APIs for initializing, loading, accessing (locating
and swapping), and releasing SMem. First, developers define and allocate SMem
using mp init. Second, developers copy sensitive data structure to be protected,
such as the AES SBox and the RSA multiplier lookup table, to the allocated
memory space using mp save. Developers can locate data elements and perform
swapping by using mp locate and swap. Finally, developers can release the allo-
cated memory space using mp free. In this work, we apply these APIs to AES
and RSA to protect their respective sensitive data, and also evaluate the security
and performance impact of our approach.

Source Code Transformation for AES. We add constructor and destructor
to allocate and deallocate SMem using mp init and mp free respectively. Be-
cause T-tables are of static type, we need to copy its data to the SMem inside
the constructor function call. Every T-table lookup operation is replaced by a
mp locate and swap function call as shown in Listing 1.2, where Te0 is the orig-
inal T-table, and STe0 is of type struct mp and contains all data in Te0. With
the modified code, the assembly code size increases by 11.6%.

Listing 1.2: Transforming AES T-table lookup operation to secure one
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1 Te0[(s0 >> 24)]
2 *mp locate and swap((s0 >> 24), STe0)

Source Code Transformation for RSA - Sliding Window Implementa-
tion. Unlike AES, the multiplier lookup table is dynamically created, so we do
not need to add constructor and destructor. Instead, we replace the allocation
and initialization with mp init, loading pre-computed multipliers with mp save,
multipliers lookup operation with mp locate and swap, and deallocation with
mp free as shown in Listing 1.3. With the modified code, the assembly code size
only increases by 0.4%.

Listing 1.3: Transforming RSA to secure one

1 mpi ptr t b 2i3[SIZE B 2I3];
2 pdata *b2i3s = mp init(sizeof(mpi limb t)*n limbs, n elems);
3
4 MPN COPY (b 2i3[i], rp, rsize);
5 mp save(i, rp, sizeof(mpi limb t)*rsize, b2i3s);
6
7 base u = b 2i3[e0 - 1];
8 base u = mp locate and swap(e0 - 1, b2i3s);
9

10 mpi free limb space (b 2i3[i]);
11 mp free(b2i3s);

5 Evaluation

In this section, we will first perform a case study on AES with the countermeasure
MemPoline applied. We evaluate the security of the countermeasure against
a series of known memory-based side-channel timing attacks (Flush+Reload,
Evict+Time, Cache Collision, L1 Cache Bank, Memory Coalescing Unit Attack,
Shared Memory Attack). The attacks differ in the type (access-driven vs. time-
driven), the observing granularity (cache line vs. cache bank), the platform (CPU
vs. GPU), and also the distributions of timing observations. We then study
applying the countermeasure to RSA, and evaluate its performance impact.

5.1 Experimental Setup

As our countermeasure is general, against various attacks on different platforms,
we conduct experiments on both CPUs and GPUs.

The CPU system is a workstation computer equipped with an Intel i7 Sandy
Bridge CPU, with three levels of caches, L1, L2, and L3 with sizes of 64KB,
256KB, 8MB, respectively, and a DRAM of 16GB. Hyperthreading technology
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is enabled. We evaluate standard cipher implementations of two crypto-libraries,
namely AES of OpenSSL 1.0.2n and RSA of GnuPG-1.4.18. These two libraries
have been actively used in prior work [10, 11, 22, 29].

The GPU platform we chose is a server equipped with an Nvidia Kepler K40
GPU. We adopt the standard CUDA porting of OpenSSL AES implementation
as the one used in [12, 16].

5.2 Security Evaluation

We evaluate the security of our countermeasure by applying it to T-table based
AES on both CPU and GPU platforms. Here, security refers to the side-channel
resilience of MemPoline against various attacks, compared to the original un-
protected ciphers. We anticipate our MemPoline addresses information leak-
age of different microarchitectural resources. Specifically, we have evaluated six
memory-based side-channel attacks, targeting L1 cache line, L3 cache line, and
L1 cache bank of CPUs, and memory coalescing and shared memory units on
GPUs.

First, we use the Kolmogorov–Smirnov null-test [18] to quantify the side-
channel information leakage that can be observed using attack techniques, from
the evaluator point of view - assuming the correct key is know. Second, we per-
form empirical security evaluation by launching all these attacks and analyzing
with a large number of samples, from the attacker point of view - to retrieve the
key and quantify the complexity of the attack.

Information Leakage Quantification. Memory-based side-channel attacks
on AES monitor the access pattern to a portion (one cache line/bank) of T-
tables during the last round. For the original implementation where the mapping
of the T-table to memory address and cache is fixed, adversaries know what val-
ues the monitored cache line/bank contains. When adversaries detect an access
by the victim to the monitored cache line/bank in the last round, the result-
ing ciphertext must have used the values, a set of sj , in the monitored cache
line/bank. With the ciphertext bytes {ci|0 ≤ i ≤ 15} known to the adversary,
there is information leakage about the last round key, {rki|0 ≤ i ≤ 15}, with the
relationship: rki = ci ⊕ sbox[sj ].

Flush+Reload (F+R) is an access-driven attack, which consists of three
steps. The state of the shared cache is first set by flushing one cache line from the
cache. The victim, AES, then runs. At last the spy process reloads the flushed
cache line and times it. A shorter reload time indicates AES has accessed the
cache line. If there is information leakage in L3 cache line, the attack can cor-
rectly classify ciphertexts/samples as whether they have accessed the monitored
cache line or not based on the observed reload timing. If these two timing distri-
butions are distinguishable, the attack can observe the information leakage. We
collect 100K samples and show the result in Figure 3, where the x-axis is the
observed reload timing in CPU cycles, and the y-axis is the cumulative density
function (CDF). For the original implementation shown in Figure 3(a), the ac-
cess and non-access distributions are visually distinguishable. However, for the
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secure implementation with MemPoline applied, these two distributions are not
distinguishable as shown in Figure 3(b), which means there is no information
leakage observed by Flush+Reload attack when our countermeasure is applied.
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Fig. 3: Information Leakage: Flush+Reload

This distinguishability between two distributions can be measured by the
Kolmogorov–Smirnov (KS) null-test [18]. If the null hypothesis test result, p-
value, is less than a significance level (e.g., 0.05), the distributions are distin-
guishable. Using the stats package in Python, we compute the p-value for both
non-secure and secure implementations against an F+R attack, which are 0 and
0.27, respectively, indicating there is no leakage of the secure implementation.

We analyze the rest of known memory-based side-channel timing attacks and
also use the KS null test for them. The p-values for non-secure implementations
are all close to zero (lower than the significance level) while the p-values for secure
implementations are larger than the significance level. The result demonstrates
that our countermeasure MemPoline successfully obfuscates memory accesses
without information leakage.

Empirical Attacks. We perform attacks to recover the key. Given the result
of leakage quantification in Section 5.2, we expect that we cannot recover the
key from the secure implementations, while the original implementations are all
vulnerable.

For all the attacks on the secure implementations, we cannot recover the
key even with 232 samples (about 256GB data of timing and ciphertexts). At-
tack failure with these many samples demonstrate the implementations with the
countermeasures on are secure. For the F+R attack on the original non-secure
implementation, we can reliably recover the key using less than 10K samples,
as shown in Figure 4(a), which uses the appearing frequency of the correct key
value as the distinguisher. For comparison across attack trials that use differ-
ent number of samples, we normalize the appearing frequency of each key value
based on its mean value. Figure 4(b) shows that the attack does not work even



Title Suppressed Due to Excessive Length 17

with 4 billion samples on the secure implementation. This is the same situation
for other attacks.
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Fig. 4: Flush+Reload attack result

Application to other algorithms. We also evaluate a patched sliding-window
implementation of RSA algorithm against F+R attack. For the purpose of secu-
rity evaluation (rather than attack), we share the dynamically allocated memory
used by the multipliers with the adversary and use F+R technique to monitor
the usage of one multiplier (Multiplier 1).

We follow the similar victim model presented in the prior work [22, 30].
We repeatedly run the RSA decryption of a message encrypted with a 3,072
bit ElGamal public key. The attack records the reload time of the monitored
multiplier and the actual multiplier (calculated from the algorithm) accessed by
every multiplication operation. If the attack can observe any leakage, the attack
should be able to differentiate samples that access the monitored multiplier (one
distribution) from ones that do not (the other distribution) based on the observed
reload time. We use the KS null-test [18] to verify the leakage. The p-values
for the original implementation and the secure implementation are 0 and 0.77,
respectively, indicating the two timing distributions are indistinguishable when
the countermeasure is applied.

5.3 Performance Evaluation

Table 2: Summary of operations overhead for AES and RSA.
Algorithmic Mem
Accesses

Permuting Generating Random
Value

RSA (1 Decryption) 6048 8754 265

AES (100 Encryptions)
(per T-table)

4000 4000 456

Our countermeasure is at the software level and involves an initialization and
run-time shuffling, incurring performance degradation. However, unlike other
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software-based countermeasures [17, 24, 31], which affect the performance system-
wide, the impact of our approach is limited to the patched application. The
computation overhead strongly depends on the memory access pattern of the
program.

The source of runtime overhead is the mp locate and swap function call. This
function contains two actions: Permuting limbs and Generating new random
value. Table 2 gives a summary of how frequent these two actions are performed
in AES and RSA. The calling frequency is determined by the number of algo-
rithmic access requests to the sensitive data (T-table for AES and multipliers
for RSA), which translates to additional execution time.

Function Runtime. We repeatedly run the mp locate and swap function
call with a random input and the function takes 669 CPU cycles on average. Lo-
cating the limb action takes 22 CPU cycles, and generating a new random value
action takes 78 CPU cycles. The permuting action consists of two operations:
swap and random permute. The swap operation takes 22 cycles, and the random
permute operation takes 567 cycles. Considering the Amdahl’s law with other
computation (without data access) and cache hits, the overall slowdown of the
program can be much less significant.

AES Runtime. We also measure the runtime overhead for AES by encrypt-
ing one 16M file for 10,000 times. Note that we use a larger file size because AES
is so much faster than RSA in encryption. The mean execution time for the
original code is 0.132 seconds and for the patched code is 1.584 seconds. This is
a 12x performance slowdown.

RSA Runtime. RSA algorithm consists of fewer memory accesses but heavy
logical computation. We run the RSA decryption of one 1K file for 10,000 times.
The mean execution time for the original code is 0.0190 seconds and for the
patched code is 0.0197 seconds, which is only a 4% performance degradation.
The sliding-window implementation of the RSA algorithm has an insignificant
number of accesses to the protected memory in comparison to other computa-
tions.

In AES, memory accesses to the sensitive data are a major portion. Any
additional operation depending on such inherent memory accesses will introduce
a significant amount of penalty, especially when the T-table implementation of
AES is very efficient.

Comparison to other work. Our performance is significantly better than
any other ORAM-based countermeasures. In [23], the countermeasure, used a
hardware implementation of ORAM, imposes 14.7x performance overhead. Rac-
coon [25] is a software-level countermeasure that adopts the software implemen-
tation of ORAM for storing the data. In some of its benchmark, it experiences
more than 100x overhead just due to the impact of ORAM operations. For ex-
ample, Histogram program shows 144x slowdown when it runs on 1K input data
elements. We apply our countermeasure to the same Histogram program and
observe only 1.4% slowdown.
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6 Conclusion

Any application with secret-dependent memory accesses can be vulnerable to
memory-based side-channel attacks. Using ORAM scheme can completely hide
the memory access footprint as shown in the software ORAM-based counter-
measure [25]. However, there can be more than 100x performance overhead due
to ORAM related operations. Our countermeasure pursues just-in-need security
for defending against memory-based side-channel attacks with a significantly
better performance than other ORAM-based countermeasures. Our software-
based countermeasure progressively shuffles data within a memory region and
randomizes the secret-dependent data memory access footprint. We apply the
countermeasure to AES and RSA algorithms on both CPUs and GPUs. Both
empirical and theoretical results show no information leakage when the counter-
measure is enabled under all known memory-based side-channel attacks. We see
a 12x performance slowdown in AES and 4% performance slowdown in RSA.

For future work, we plan to expand our countermeasure to hide key-dependent
instruction memory access footprint and general secret-bearing programs.
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