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Abstract. We define a new primitive that we call a somewhere statistically binding (SSB) commitment
scheme, which is a generalization of dual-mode commitments but has similarities with SSB hash func-
tions (Hubacek and Wichs, ITCS 2015) without local opening. In (existing) SSB hash functions, one
can compute a hash of a vector v that is statistically binding in one coordinate of v. Meanwhile, in SSB
commitment schemes, a commitment of a vector v is statistically binding in some coordinates of v and
is statistically hiding in the other coordinates. The set of indices where binding holds is predetermined
but known only to the commitment key generator. We show that the primitive can be instantiated
by generalizing the succinct Extended Multi-Pedersen commitment scheme (González et al., Asiacrypt
2015). We further introduce the notion of functional SSB commitment schemes and, importantly, use it
to get an efficient quasi-adaptive NIZK for arithmetic circuits and efficient oblivious database queries.
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1 Introduction

Commitment schemes are one of the most useful primitives in cryptography. In essence, a commitment to a
value binds the value to the commitment, but hides the value from other parties. Commitment schemes are
naturally used in zero-knowledge proofs, where one often proves statements about a committed value while
keeping the value hidden. For instance, to complete a digital transaction a party may need to prove he has
available funds in his account without actually revealing his exact balance. Such proofs on committed values
are very efficient due to Bulletproofs [BBB+18], and are used in many privacy-preserving cryptocurrency
designs such as Mimblewimble [Poe16,FOS19] and Quisquis [FMMO19].

Dual-mode commitment schemes [DN02,CV05,DFL+09] are an interesting variant where the commitment
key can be set up in one of two modes: binding or hiding. In the binding mode, the commitment can only
be opened to one valid value. Meanwhile, in the hiding mode, a commitment hides the committed value
even to unbounded adversaries. For this definition to make sense, one should not be able to guess which
mode is being used based on the commitment key, i.e., the commitment key hides the mode. Dual-mode
commitments are an essential tool in Groth-Sahai proofs [GS08] which is a framework for constructing
non-interactive zero-knowledge (NIZK) proofs for algebraic relations.

In the case of committing to a vector, the two modes of a dual-mode commitment can be seen to be two
extremes: the commitment is either binding in all positions in the vector, or in none of them. A natural way
to generalize the notion would be to have multiple modes of commitment, specifying that the commitment
is binding in some positions in the vector of values. A similar generalization for hash functions is known as
somewhere statistically binding hash [HW15,OPWW15], in which one can compute a hash of a vector v such
that the computed hash is statistically binding in one coordinate of v.

A generalization of dual-mode commitments would lead to interesting applications in NIZK arguments.
In a typical zero-knowledge succinct argument of knowledge (zk-SNARK) for Circuit-SAT [Gro10, Lip12,
GGPR13,DFGK14], the prover commits to the witness (i.e., all the inputs to a circuit), and the proof of
(knowledge) soundness involves using a non-falsifiable assumption to extract the whole committed vector



which is then used to check each gate to establish where exactly the prover cheated; based on the knowledge
of the witness one then breaks a computational assumption. One can get a more efficient extraction under
falsifiable assumptions if the commitment was binding only on the values corresponding to the inputs and
outputs of a specific gate: one then only needs to check the extracted values against a randomly chosen gate.
As a caveat, the technique will lead to a security loss linear in the number of gates.

In fact, the above extraction technique has been done before [DGP+19,GR19] using a generalization of
the Pedersen commitment scheme called Extended Multi-Pedersen [GHR15,GR16] and resulting in efficient
NIZK arguments under falsifiable assumptions. However, the above results are not zk-SNARKs: they are
quasi-adaptive NIZK (QA-NIZK) arguments which means the CRS may depend on the relation, and while
the argument is succinct, the commitment is not.4 Moreover, previous work did not formalize which properties
of a commitment scheme would be required to enable efficient NIZK arguments.

In the above construction, we need a succinct somewhere statistically binding property that guarantees
that the chosen coordinate is statistically binding while the remaining coordinates can be computationally
binding. On the other hand, to get zero-knowledge, the commitment needs to be almost-everywhere statisti-
cally hiding, that is, computationally hiding at the chosen coordinate, and statistically hiding at any other
coordinates. We also need index-set hiding, which means an adversary that is given the commitment key
does not know which particular coordinate is statistically binding.

Our Contributions. Formalizing the properties of the Extended Multi-Pedersen (EMP) commitment
scheme [GHR15, GR16], we define a somewhere statistically binding (SSB) commitment scheme to n-
dimensional vectors. In the commitment key generation phase of an SSB commitment scheme one chooses
an index-set S ⊆ [1 .. n] of size at most q ≤ n and defines a commitment key ck that depends on n, q and
S. A commitment to an n-dimensional vector x will be statistically binding and extractable at coordinates
indexed by S and perfectly hiding at all other coordinates. Moreover, commitment keys corresponding to
any two index-sets S1 and S2 of size at most q must be computationally indistinguishable. Thus, an SSB
commitment scheme is required to be SSB, somewhere statistically extractable (SSE), almost everywhere
statistically hiding (AESH), and index-set hiding (ISH). An SSB commitment scheme generalizes dual-mode
commitment schemes (where n = q = 1 and |S| ∈ {0, 1} determines the mode) and the EMP commitment
scheme (where q = 1 and n is arbitrary).

In Section 4, we define algebraic commitment schemes (ACS), where the commitments keys are matrices.
We prove that the distribution of key matrices defines which properties of SSB commitments hold in each
coordinate and show that these commitments are suitable for working with QA-NIZK arguments. This is
because they behave like linear maps and the properties of SSB commitments can be expressed in terms of
membership to linear subspaces. Next, we generalize the EMP commitment scheme to work with arbitrary
values of q. Importantly, a single EMP commitment consists of q + 1 group elements and is thus succinct
given small q. We prove that EMP satisfies the mentioned security requirements under a standard Matrix
DDH assumption [EHK+13].

In Section 5, we define functional SSB commitments, which are statistically binding on some components
that are outputs of some functions S = {fi}i where |S| ≤ q. It is a generalization of SSB commitments, where
the extracted values are the result of some linear functions of the committed values, instead of the values
themselves. We show that results which hold for SSB commitments also naturally hold for functional SSB
commitments. The notion of functional SSB commitments for families of linear functions was already used
indirectly in prior work [DGP+19]; however, they were not formally defined and their security properties
were not analyzed. We also see that a minor modification of EMP works as a functional SSB commitment if
we consider only linear functions.

We provide some applications of functional SSB commitments. In Section 6.1 we propose a novel (but
natural) application that we call oblivious database queries (ODQ), where a sender has a private database
x and a receiver wants to query the database to learn f1(x), . . . , fq(x) without revealing the functions fi.
In Section 7 we present a QA-NIZK for Square Arithmetic Programs (SAP, [GM17]) that follows a similar
4 One cannot construct zk-SNARKs in a black-box way from falsifiable assumptions [GW11], hence any black-box
construction from falsifiable assumptions will not be fully succinct.
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strategy to prior work [DGP+19] but can be used for arithmetic circuit satisfiability instead of Boolean circuit
satisfiability. Our QA-NIZK has comparable efficiency and its security reduces to falsifiable assumptions.

Relation to other primitives. The SSB requirement makes the EMP commitment scheme look similar
to SSB hash functions [HW15,OPWW15], but there are obvious differences. SSB hash has the local opening
property, where the committer can efficiently open just one coordinate of the committed vector, but SSB
commitments do not5. Meanwhile, we need hiding while SSB hash does not. This is, intuitively, a natural
distinction and corresponds to the difference between collision-resistant hash families and statistically hiding
commitment schemes. Also, we allow ck to be long, but require commitments to be succinct.

SSB commitments are directly related to two-message oblivious transfer (OT) protocols as defined
in [AIR01]. Essentially, SSB commitments are non-interactive analogs of such protocols: the commitment
key corresponds to the first OT message ot1 and the commitment corresponds to the second OT message
ot2. Importantly, while in OT, the ot1 generator is always untrusted, in our applications, it is sufficient to
consider a trusted ck generator. This allows for more efficient constructions.

We discuss the relation to existing primitives in more detail in Appendix A .

1.1 Corrections

This version of the paper contains some additional details and fixes a significant error compared to the
conference version [FLPS21] and the prior eprint version.

1. Most importantly, our QA-NIZK for SAP contained an error. For our security proof to go through, it
has to be possible to verify efficiently if the adversary has broken any SAP equations. This is possible if
the prover makes a linear-length commitment to the SAP witness in both pairing groups. However, in
the earlier versions of the paper, a linear-length commitment was only made in the first pairing group.
We give more details about this issue in Section 7.

2. The ISH property of EMP has a much more detailed proof, and it is reduced to the standard DDH
assumption. In prior work, ISH property was reduced to matrix DDH assumption.

2 Preliminaries

For a set S, let P(S) denote the power set (i.e., the set of subsets) of S, and let P(S, q) denote the set of
q-size subsets of S. For an n-dimensional vector α and i ∈ [1 .. n], let αi be its ith coefficient. Let ei be
the ith unit vector of implicitly understood dimension. For a tuple S = (σ1, . . . , σq) with σi < σi+1, let
αS = (ασ1 , . . . , ασq ). Let α∅ be the empty string.

Let PPT denote probabilistic polynomial-time and let λ ∈ N be the security parameter. All adversaries
will be stateful. Let RNDλ(A) denote the random tape of the algorithm A for a fixed λ. We denote by
negl(λ) an arbitrary negligible function, and by poly(λ) an arbitrary polynomial function. Functions f, g are
negligibly close, denoted f ≈λ g, if |f − g| = negl(λ). Distribution families D0 = {D0

λ}λ and D1 = {D1
λ}λ are

computationally indistinguishable, if ∀ PPT A, Pr[x←$D0
λ : A(x) = 1] ≈λ Pr[x←$D1

λ : A(x) = 1].

2.1 Bilinear Groups

In the case of groups, we will use additive notation together with the bracket notation [EHK+13], that is,
for ι ∈ {1, 2, T} we define [a]ι := a[1]ι, where [1]ι is a fixed generator of the group Gι. A bilinear group
generator Pgen(1λ) returns (p,G1,G2,GT , ê, [1]1, [1]2), where p (a large prime) is the order of cyclic Abelian
groups G1, G2, and GT . Moreover, ê : G1 × G2 → GT is an efficient non-degenerate bilinear pairing, such
5 The properties of SSB and local opening are orthogonal: it is possible to construct efficient SSB hashes without
local opening [OPWW15] and efficient vector commitments [LY10,CF13] (which have a local opening) without the
SSB property
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that ê([a]1, [b]2) = [ab]T . Denote [a]1[b]2 := ê([a]1, [b]2), and [1]T := [1]1[1]2. We use matrix-vector notation
freely, writing say [M1]1[M2]2 = [M1M2]T for any compatible matrices M1 and M2.

We use F -extraction notation to mean extraction of the function F . E.g., if F is exponentiation then we
have [·]ι-extraction, where we extract elements in the group Gι. Several of our cryptographic primitives have
their own parameter generator Pgen. In all concrete instantiations of the primitives, we instantiate Pgen with
the bilinear group generator, which is then denoted Pgenbg.

Decisional Diffie-Hellman (DDH) Assumption. Let ι ∈ {1, 2}. DDHGι holds relative to Pgen, if ∀ PPT
A, AdvddhA,Gι,Pgen(λ) := |ε

0
A(λ)− ε1A(λ)| = negl(λ), where

εβA(λ) := Pr
[
p← Pgen(1λ);x, y, z←$Zp : A(p, [x, y, xy + βz]ι) = 1

]
.

The Matrix DDH (MDDH) assumption. Let `, k ∈ N, with ` ≥ k, be small constants. Let p be a large
prime. Following [EHK+13], we call D`k a matrix distribution if it outputs, in polynomial time, matrices A
in Z`×kp of full rank k. We denote Dk+1,k by Dk. Let U`k denote the uniform distribution over Z`×kp .

Let Pgen be as before, and let ι ∈ {1, 2}. D`k-MDDHGι [EHK+13] holds relative to Pgen, if ∀ PPT A,
Advmddh

A,D`k,ι,Pgen(λ) := |ε
0
A(λ)− ε1A(λ)| ≈λ 0, where

εβA(λ) := Pr
[
p← Pgen(1λ);A←$D`k; w←$Zkp;y0←$Z`p;y1 ← Aw : A(p, [A,yβ ]ι) = 1

]
.

Common distributions for the MDDH assumption are Uk := Uk+1,k and the linear distribution Lk over
A =

(
A′

1 ... 1

)
, where A′ ∈ Zk×kp is a diagonal matrix with a′ii←$Zp.

Rank Assumption.

Definition 1 (Rank Assumption). Let ι ∈ {1, 2}. (`, k, r0, r1)-Rank assumption for 1 ≤ r0 < r1 ≤
min(`, k) holds in Gι relative to Pgen, if ∀ PPT A, AdvrankA,`,k,r0,r1,ι,Pgen(λ) := |ε

0
A(λ)− ε1A(λ)| = negl(λ), if

εβA(λ) := Pr
[
p← Pgen(1λ);A←$U (rβ)

`,k : A(p, [A]ι) = 1
]
,

where U (rβ)
`,k is the uniform distribution over rank rβ matrices Z`×kp .

Theorem 1 ( [Vil12]). Let ι ∈ {1, 2}. For any `, k, r0, r1 ∈ Z such that 1 ≤ r0 < r1 ≤ min(`, k), any PPT
A, and any Pgen,

AdvrankA,`,k,r0,r1,ι,Pgen(λ) ≤ dlog2(r1/r0)e · Adv
ddh
A,Gι,Pgen(λ) .

We give an alternative definition of rank assumption which has β sampled randomly. This is more con-
sistent with other definitions in this paper.

Definition 2 ((Randomized) Rank Assumption). Let ι ∈ {1, 2}. (`, k, r0, r1)-(Randomized) Rank
assumption for 1 ≤ r0 < r1 ≤ min(`, k) holds in Gι relative to Pgen, if ∀ PPT A, Advr-rankA,`,k,r0,r1,ι,Pgen(λ) :=
2 · |εA(λ)− 1/2| ≈λ 0, where

εA(λ) := Pr
[
p← Pgen(1λ);β←$ {0, 1};A←$U (rβ)

`,k ;β′ ← A(p, [A]ι) : β
′ = β

]
.

If we consider adversaries A that output only 0 or 1 (which is always sufficient for decisional assumptions),
then the advantages are in fact the same.

Advr-rankA,`,k,r0,r1,ι,Pgen(λ) :=2 · |εA(λ)− 1/2| = 2 · |Pr[β′ = β]− 1/2|

=2 · |1
2
Pr[β′ = 1 | β = 1] +

1

2
Pr[β′ = 0 | β = 0]− 1

2
|

=|Pr[β′ = 1 | β = 1] + (1− Pr[β′ = 1 | β = 0])− 1|
=|ε1A − ε0A| = AdvrankA,`,k,r0,r1,ι,Pgen(λ).

In the following we will use the second definition.
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2.2 Quasi-adaptive NIZK

A quasi-adaptive non-interactive zero-knowledge (QA-NIZK) proof [JR13] enables one to prove membership
in a language defined by a relation Rρ, which is determined by some parameter ρ sampled from a distribution
Dgk. A distribution Dgk is witness-sampleable if there exists an efficient algorithm that samples (ρ, ωρ) from a
distribution Dpar

gk such that ρ is distributed according to Dgk, and membership of ρ in the parameter language
Lpar can be efficiently verified by using this witness ωρ.

A tuple of algorithms Π = (K0,K1,P,V) is called a QA-NIZK proof system for witness-relations Rgk =
{Rρ}ρ∈sup(Dgk) with parameters sampled from a distribution Dgk over associated parameter language Lpar, if
there exists a probabilistic polynomial time simulator (S1,S2), such that for all non-uniform PPT adversaries
A1, A2, A3 we have:

Quasi-Adaptive Completeness:

Pr

[
gk← K0(1

λ); ρ← Dgk; crs← K1(gk, ρ); (x,w)← A1(gk, crs);
π ← P(crs, x, w) : V(crs, x, π) = 1 if Rρ(x,w)

]
= 1.

Computational Quasi-Adaptive Soundness:

AdvsndA2,Π(λ) := Pr

gk← K0(1
λ); ρ← Dgk;

crs← K1(gk, ρ);
(x, π)← A2(gk, crs)

: V(crs, x, π) = 1 ∧ ¬(∃w : Rρ(x,w))

 ,
where AdvsndA2,Π(λ) ≈λ 0.

Computational Strong Quasi-Adaptive Soundness:

Advs-sndA2,Π(λ) := Pr

gk← K0(1
λ); (ρ, ωρ)← Dpar

gk ;

crs← K1(gk, ρ); (x, π)← A2(gk, crs, ωρ) :
V(crs, x, π) = 1 and ¬(∃w : Rρ(x,w))

 ,
where Advs-sndA2,Π(λ) ≈λ 0.

Perfect Quasi-Adaptive Zero-Knowledge:

Pr[gk← K0(1
λ); ρ← Dgk; crs← K1(gk, ρ) : AP(crs,·,·)

3 (gk, crs) = 1] =

Pr[gk← K0(1
λ); ρ← Dgk; (crs, τ)← S1(gk, ρ) : AS(crs,τ,·,·)

3 (gk, crs) = 1]

where (i) P(crs, ·, ·) emulates the actual prover. It takes input (x,w) and outputs a proof π if (x,w) ∈ Rρ.
Otherwise, it outputs ⊥. (ii) S(crs, τ, ·, ·) is an oracle that takes input (x,w). It outputs a simulated
proof S2(crs, τ, x) if (x,w) ∈ Rρ and ⊥ if (x,w) /∈ Rρ.

We assume that crs contains an encoding of ρ, which is thus available to V.

3 SSB Commitment Schemes

In an SSB commitment scheme, the commitment key (i.e., the CRS) depends on n, q, and an index-set
S ⊆ [1 .. n] of cardinality ≤ q (in the case of Groth-Sahai commitments [GS08], n = q = 1 while in the
current paper n = poly(λ) and q ≥ 1 is a small constant). At coordinates described by S, an SSB commitment
scheme must be statistically binding and F -extractable [BCKL08] for a well-chosen function F , while at all
other coordinates it must be statistically hiding and trapdoor. Moreover, it must be index-set hiding, i.e.,
commitment keys corresponding to any two index-sets S1 and S2 of size ≤ q must be computationally
indistinguishable.

The Groth-Sahai commitments correspond to a bimodal setting where either all coefficients are sta-
tistically hiding or statistically binding, and these two extremes are indistinguishable. SSB commitments
correspond to a more fine-grained multimodal setting where some ≤ q coefficients are statistically binding
and other coefficients are statistically hiding, and all possible selections of statistically binding coefficients
are mutually indistinguishable. Our terminology is inspired by [HW15,OPWW15] who defined SSB hashing;
however, the consideration of the hiding property makes the case of SSB commitments sufficiently different.
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Table 1. Properties of an SSB commitment scheme

Abbreviation Property Definition
ISH Index-set hiding The commitment key reveals nothing about

the index-set S
SSB Somewhere statistically binding A commitment to x statistically binds the

values xS
AESH Almost everywhere statistically

hiding
The commitment is statistically hiding in
the indices outside the set S

F -SSE Somewhere statistical F -
extractability

Given a commitment to x and the extraction
key, one can extract the values F (xS)

3.1 Formalization and Definitions

An F -extractable SSB commitment scheme COM = (Pgen,KC,Com, tdOpen,ExtF ) consists of the following
polynomial-time algorithms:

Parameter generation: Pgen(1λ) returns parameters p (e.g., description of a bilinear group).
Commitment key generation: for parameters p, n ∈ poly(λ), q ∈ [1 .. n], and a tuple S ⊆ [1 .. n] with
|S| ≤ q, KC(p, n, q,S) outputs a commitment key ck and a trapdoor td = (ek, tk) consisting of an
extraction key ek, and a trapdoor key tk. Also, ck implicitly specifies p, n, q, the message space MSP, the
randomizer space RSP, the extraction space ESP, and the commitment space CSP, such that F (MSP) ⊆ ESP.
For invalid input, KC outputs (ck, td) = (⊥,⊥).

Commitment: for p ∈ Pgen(1λ), ck 6= ⊥, a message x ∈ MSPn, and a randomizer r ∈ RSP, Com(ck;x; r)
outputs a commitment c ∈ CSP.

Trapdoor opening: for p ∈ Pgen(1λ), S ⊆ [1 .. n] with |S| ≤ q, (ck, (ek, tk)) ∈ KC(p, n, q,S), two messages
x0,x1 ∈ MSPn, and a randomizer r0 ∈ RSP, tdOpen(p, tk;x0, r0,x1) returns a randomizer r1 ∈ RSP.

Extraction: for p ∈ Pgen(1λ), S = (σ1, . . . , σ|S|) ⊆ [1 .. n] with 1 ≤ |S| ≤ q, (ck, (ek, tk)) ∈ KC(p, n, q,S),
F : MSP→ ESP and c ∈ CSP, ExtF (p, ek; c) returns a tuple (yσ1 , . . . , yσ|S|) ∈ ESP|S|. We allow F to depend
on p.

Note that SSB commitment schemes are non-interactive and work in the CRS model; the latter is needed
to achieve trapdoor opening and extractability. With the current definition, perfect completeness is straight-
forward: to verify that C is a commitment of x with randomizer r, one just recomputes C ′ ← Com(ck;x; r)
and checks whether C = C ′.

An F -extractable SSB commitment scheme COM is secure if it satisfies the following security require-
ments. (See Table 1 for a brief summary.)

Index-Set Hiding (ISH): ∀λ, PPT A, n ∈ poly(λ), q ∈ [1 .. n], AdvishA,COM,n,q(λ) := 2 · |εishA,COM,n,q(λ) −
1/2| ≈λ 0, where εishA,COM,n,q(λ) :=

Pr

[
p← Pgen(1λ); (S0,S1)← A(p, n, q) s.t. ∀i ∈ {0, 1},Si ⊆ [1 .. n] ∧ |Si| ≤ q;
β←$ {0, 1}; (ckβ , tdβ)← KC(p, n, q,Sβ) : A(ckβ) = β

]
.

Somewhere Statistically Binding (SSB): ∀λ, unbounded A, n ∈ poly(λ), q ∈ [1 .. n],
AdvssbA,COM,n,q(λ) ≈λ 0, where AdvssbA,COM,n,q(λ) :=

Pr

p← Pgen(1λ);S ← A(p, n, q) s.t. S ⊆ [1 .. n] ∧ |S| ≤ q;
(ck, td)← KC(p, n, q,S); (x0,x1, r0, r1)← A(ck) :
x0,S 6= x1,S ;Com(ck;x0; r0) = Com(ck;x1; r1)

 .

COM is somewhere perfectly binding (SPB) if AdvssbA,COM,n,q(λ) = 0.
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Almost Everywhere Statistically Hiding (AESH): ∀λ, unbounded adversary A, n ∈ poly(λ), q ∈ [1 .. n],
AdvaeshA,COM,n,q(λ) := 2 · |εaeshA,COM,n,q(λ)− 1/2| ≈λ 0, where εaeshA,COM,n,q(λ) :=

Pr

p← Pgen(1λ);S ← A(p, n, q) s.t. S ⊆ [1 .. n] ∧ |S| ≤ q;
(ck, td)← KC(p, n, q,S); (x0,x1)← A(ck) s.t. x0,S = x1,S ;

β←$ {0, 1}; r←$ RSP : A(Com(ck;xβ ; r)) = β

 .

COM is almost everywhere perfectly hiding (AEPH) if AdvaeshA,COM,n,q(λ) = 0. If A is PPT, COM is almost
everywhere computationally hiding (AECH).

Somewhere Statistical F -Extractability (F -SSE): ∀λ, n ∈ poly(λ), q ∈ [1 .. n], S = (σ1, . . . , σ|S|) with
|S| ≤ q, (ck, (ek, tk))← KC(p, n, q,S), and PPT A, AdvsseA,F,COM,n,q(λ) :=

Pr
[
x, r ← A(ck) : ExtF (p, ek;Com(ck;x; r)) 6= (F (xσ1

), . . . , F (xσ|S|))
]
≈λ 0 .

Additionally, an SSB commitment scheme can but does not have to be trapdoor.

Almost Everywhere Statistical Trapdoor (AEST): ∀λ, n ∈ poly(λ), q ∈ [1 .. n], and unbounded A,
AdvaestA,COM,n,q(λ) ≈λ 0, where AdvaestA,COM,n,q(λ) =

Pr

p← Pgen(1λ);S ← A(p, n, q) s.t. S ⊆ [1 .. n] ∧ |S| ≤ q;
(ck, td = (ek, tk))← KC(p, n, q,S); (x0, r0,x1)← A(ck) s.t. x0,S = x1,S ;

r1 ← tdOpen(p, tk;x0, r0,x1) : Com(ck;x0; r0) 6= Com(ck;x1; r1)

 .

It is almost everywhere perfect trapdoor (AEPT) if AdvaestCOM,n,q(λ) = 0.

It is important to consider the case |S| ≤ q instead of only |S| = q. For example, when q = n, the
perfectly binding (PB) commitment key (|S| = n) has to be indistinguishable from the perfectly hiding
(PH) commitment key (|S| = 0). Moreover, in the applications to construct QA-NIZK argument sys-
tems [GHR15,GR16,DGP+19], one should not be able to distinguish between the cases |S| = 0 and |S| = q.

F -extractability [BCKL08] allows one to model the situation where xi ∈ Zp but we can only extract the
corresponding bracketed value [xi]ι ∈ Gι; similar limited extractability is satisfied say by the Groth-Sahai
commitment scheme for scalars [GS08]. Note that in this case, F depends on p. Interestingly, extractability
implies SSB.

Lemma 1 (F -SSE & F is injective ⇒ SSB). Let COM be an SSB commitment scheme. Fix n and q.
Assume F is injective. For all PPT A, there exists a PPT B such that AdvssbA,COM,n,q(λ) ≤ 2·AdvsseB,F,COM,n,q(λ).

Proof. Assume that for given n and q, A breaks SSB with probability AdvssbA,COM,n,q(λ). This means that
for some S of cardinality ≤ q and honestly generated ck (w.r.t. S), A outputs (x0,x1, r0, r1) such that
x0S 6= x1S and C := Com(ck;x0; r0) = Com(ck;x1; r1).

Since x0,S 6= x1,S and F is injective, we get that F 0 := (F (x0σ1), . . . , F (x0σ|S|)) 6=
(F (x1σ1), . . . , F (x1σ|S|)) =: F 1. Therefore, there exists β ∈ {0, 1}, such that ExtF (p, ek;C) 6= F β . Thus,
if B outputs (xβ , rβ) for β←$ {0, 1}, Advsseβ,F,COM,n,q(λ) ≥ AdvssbA,COM,n,q(λ)/2 and hence AdvssbA,COM,n,q(λ) ≤
2 · Advsseβ,F,COM,n,q(λ). ut

If q = 0 then AESH is equal to the standard statistical hiding (SH) requirement, and AEST is equal to
the standard statistical trapdoor requirement. If q = n then SSB is equal to the standard statistical binding
(SB) requirement, and F -SSE is equal to the standard statistical F -extractability requirement. We will show
that any secure SSB commitment scheme must also be computationally hiding and binding in the following
sense.

Computational Binding (CB): ∀ PPT A, n ∈ poly(λ), q ∈ [1 .. n], where AdvcbA,COM,n,q(λ) :=

Pr

p← Pgen(1λ);S ← A(p, n, q) : S ⊆ [1 .. n] ∧ |S| ≤ q;
(ck, td)← KC(p, n, q,S); (x0,x1, r0, r1)← A(ck)
s.t. x0 6= x1;Com(ck;x0; r0) = Com(ck;x1; r1)

 ≈λ 0 .
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Computational Hiding (CH): ∀ PPT A, n ∈ poly(λ), q ∈ [1 .. n], AdvchA,COM,n,q(λ) := 2 · |εchA,COM,n,q(λ)−
1/2| ≈λ 0, where εchA,COM,n,q(λ) :=

Pr

p← Pgen(1λ);S ← A(p, n, q) s.t. S ⊆ [1 .. n] ∧ |S| ≤ q;
(ck, td)← KC(p, n, q,S); (x0,x1)← A(ck);β←$ {0, 1};
r←$ RSP : A(Com(ck;xβ ; r)) = β

 .

Theorem 2. Let COM be an SSB commitment scheme. Fix n and q.

1. (ISH + SSB ⇒ CB) For all PPT A, there exist PPT B1 and unbounded B2, such that AdvcbA,COM,n,q(λ) ≤
AdvishB1,COM,n,q(λ) + n/(q − 4 · AdvishB1,COM,n,q(λ)) · Adv

ssb
B2,COM,n,q(λ).

2. (ISH + AESH ⇒ CH) For all PPT A, there exist PPT B1 and unbounded B2, such that
AdvchA,COM,n,q(λ) ≤ AdvishB1,COM,n,q(λ) + AdvaeshB2,COM,n,q(λ).

Proof. Let Pr[Gamei(A) = 1] denote the probability A wins in Gamei.
(i: ISH + SSB ⇒ CB) We prove the theorem using a sequence of hybrid games, defined as follows,

where εi := Pr[Gamei(A) = 1].
Game1: The original computational binding game. For given n and q, by definition A can break CB with

probability ε1 = AdvcbA,COM,n,q(λ).
Game2: Game1, but instead of ck, A gets ck′ where (ck′, td′) ← KC(p, n, q,S1) for S1←$P([1 .. n], q).

Note that a distinguisher B1 for Game1 and Game2 can be used to break the ISH game with advantage
εish = AdvishB1,COM,n,q(λ). Hence |ε1 − ε2| ≤ εish, which implies that ε2 ≥ ε1 − εish.

We now require the following lemma.

Lemma 2. Assume A outputs (x0, r0,x1, r1) with x0 6= x1. Then Pr[(x0)S1 6= (x1)S1 in Game2] ≥ q/n −
4 · εish.

Proof. Assume for any S1 of size q sampled uniformly at random, A can output distinct x0,x1 such that
Pr[(x0)S1 6= (x1)S1 in Game2] = ε.

We construct an adversary B that uses A to break ISH as follows.

1. Given p, n, q, B sets S1←$P([1 .. n], q) and receives S0 ← A(p, n, q).
2. B sends (S0,S1) to the ISH challenger, and receives ck corresponding to Sβ .
3. B gets (x0, r0,x1, r1)← A(ck).

– If A does not win, abort.
– If (x0)S1 6= (x1)S1 return β′←$ {0, 1}.
– Else return 1.

Note that β = 0 corresponds to Game1, and β = 1 corresponds to Game2. Moreover, for β = 0, A’s
output (x0, r0,x1, r1) is independent of S1, in which case Pr[(x0)S1 6= (x1)S1 ] ≥ |S1|/n = q/n. Hence we get
that if A wins,

Pr[GameISH(B) = 1] = 1
2 Pr[GameISH(B) = 1|β = 0] + 1

2 Pr[GameISH(B) = 1|β = 1]

= 1
2 Pr[(x0)S1 6= (x1)S1 in Game1 ∧ β′ = 0]+
1
2 Pr[(x0)S1 = (x1)S1 in Game2]+
1
2 Pr[(x0)S1 6= (x1)S1 in Game2 ∧ β′ = 1]

≥ q
4n + 1−ε

2 + ε
4 = 1

2 + q−nε
4n .

Hence 4 · εish ≥ q/n− ε, as required. ut
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It is easy to see that an adversary that wins Game2 with (x0)S1 6= (x1)S1 also wins the SSB game. Hence
there exists an adversary B2 such that

AdvssbB2,COM,n,q(λ) ≥ ε2 · Pr[(x0)S1 6= (x1)S1 in Game2|x0 6= x1]

≥ (ε1 − εish)(q/n− 4 · εish) (due to Lemma 2).

This is equivalent to ε1 ≤ εish + n
q−4·n·εish · Adv

ssb
B2,COM,n,q(λ).

(ii: ISH + AESH ⇒ CH) Assume that for given n and q, A can break CH with probability
AdvchA,COM,n,q(λ). Consider the following sequence of games with εi := Pr[Gamei(A) = 1].

Game1: In this game, A breaks CH with probability ε1. That is, given p, A(p, n, q) outputs S0
such that |S0| ≤ q, and for (ck0, td0) ← KC(p, n, q,S0), A(ck0) outputs (x0,x1), s.t. Pr[β←$ {0, 1} :
A(Com(ck0;xβ ; r)) = β] = ε1.

Game2: In this game, instead of ck0, A obtains ck1 where (ck1, td1) ← KC(p, n, q,S1) for S1 = ∅.
Clearly, for any PPT A that tries to distinguish Game1 and Game2, there exists a PPT B1, such that
|ε2 − ε1| ≤ AdvishB1,COM,n,q(λ).

Let us consider the following AESH adversary B2 in Game2.

1. Given p, n, q, B2 sets S1 ← ∅ and receives S0 ← A(p, n, q).
2. B2 computes (ck1, td1)← KC(p, n, q,S1) and receives (x0,x1)← A(ck).
3. B2 forwards (x0,x1) to the AESH challenger, and receives c ← Com(ck1,xβ ; r) for some β←$ {0, 1},
r←$ RSP.

4. B gets and outputs β′ ← A(c).

If A returns the correct β′ then clearly also B2 returns the correct β′. For the success of B2, it is
also needed that x0,S1 = x1,S1 , which clearly holds since S1 = ∅. Thus, AdvaeshB2,COM,n,q(λ) = ε2. Hence,
AdvchA,COM,n,q(λ) ≤ |ε2 − ε1|+ ε2 ≤ AdvishB1,COM,n,q(λ) + AdvaeshB2,COM,n,q(λ). ut

4 Constructing SSB Commitment Schemes

In this section we generalize the notion of algebraic commitment schemes to general matrix distributions. We
show that they work nicely with QA-NIZK arguments and that certain matrix distributions give us an SSB
commitment scheme. We focus on the particular case of EMP in Section 4.2, where we propose a general
version of EMP and prove that it is an SSB commitment scheme.

4.1 Algebraic Commitment Schemes

Ràfols and Silva [RS20] defined the notion of algebraic commitment schemes (ACSs), where the commitment
keys are matrices, already used implicitly in other works [CGM16, CFS17]. Since they behave like linear
maps, it is very natural to work with them. We give a more general definition in the following where the
matrices are sampled from general distributions.

Definition 3. Let ι ∈ {1, 2}, and let n,m, k be small integers. Let D1 be a distribution of matrices from
Gk×nι and let D2 be a distribution of matrices from Gk×mι . A commitment scheme COM is a (D1,D2)-
algebraic commitment scheme (ACS) for vectors in Znp , if for commitment key ck = [U1,U2]ι←$D1 × D2

the commitment of a vector x ∈ Znp is computed as a linear map of x and randomness r←$Zmp , i.e.,
Comck(x, r) := [U1]ιx+ [U2]ιr ∈ Gkι .

Ràfols and Silva mention that given different commitment key matrices, their distributions are com-
putationally indistinguishable under the MDDH assumption, and each concrete distribution defines which
coordinates of the commitments are SB or SH. We prove in Appendix B.1 that it also gives a characterization
of the coordinates of the key matrices for the different SSB properties (AECH, ISH, SPB, SPE) based on
linear dependency. In Appendix B.1 we also prove that to extract n elements from an ACS we need at least
n+ 1 rows.
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4.2 The EMP Commitment Scheme

Extended Multi-Pedersen (EMP) [GHR15,GR16] is a variant of the standard vector Pedersen commitment
scheme [Ped92]. In this section, we will depict a general version of the EMP commitment scheme6 in group G.
We redefine EMP by using a division of the generator matrix g as a product of two matrices R andM ; this
representation results in very short security proofs for EMP. To simplify notation, we will write Ext instead
of Ext[·]ι . We use a distribution Dp,n,q+1,S

q+1 that outputs n+ 1 vectors g(i), such that if i ∈ S ′ = S ∪ {n+ 1}
then g(i) is distributed uniformly over Zq+1

p , and otherwise g(i) is a random scalar multiple of g(n+1).7

Definition 4. Let p = p(λ), n = poly(λ), and let r ≤ q+1, q ≤ n be a small positive integers. Let S ⊆ [1 .. n]

with |S| ≤ q. Then the distribution Dp,n,r,Sq+1 is defined as the first part of Dgen(p, n, r,S, q) in Fig. 1 (i.e.,
just g, without the associated extraction key or trapdoor).

Note that [GR16] uses a distribution Dq+1, instead of the uniform distribution Uq+1 over Zq+1
p , which

means that taking a larger k gives a weaker security assumption but with worse efficiency. Our version of
EMP also works with a general distribution, but for ease of presentation we only use Uq+1.

Mgen(p, n,S, q)

S ′ ← S ∪ {n+ 1}; // S′ = {σ1, . . . , σq+1}
M ← 0(q+1)×(n+1);Mq+1,n+1 ← 1;

for j = 1 to n do

if j 6∈ S ′ then Mq+1,j = δj ←$Zp;
else let i be such that j = σi;Mi,j ← 1;

tk← (δj)j∈[1 .. n]\S ;

return (M , tk);

Dgen(p, n, r,S, q)

R←$U (r)
q+1,q+1;

(M , tk)←Mgen(p, n,S, q);
g ← RM ; // g ∈ Z(q+1)×(n+1)

p ;

return (g,R, tk);

Fig. 1. Generating M from S (the left hand side) and Dp,n,r,Sq+1 with an associated extraction key R and trapdoor tk
(the right hand side)

Example 1. In the Groth-Sahai commitment scheme, n = q = 1, so Dgen first samplesR = ( r11 r12r21 r22 )←$Z2×2
p .

If S = {1} then M = ( 1 0
0 1 ) and g = RM = ( r11 r12r21 r22 ). On the other hand, if S = ∅ then M =

(
0 0
δ1 1

)
and

g = RM =
(
δ1r12 r12
δ1r22 r22

)
for δ1←$Zp.

Consider the case n = 3, q = 2, and S = {3}. Then

M =
(

0 0 1 0
0 0 0 0
δ1 δ2 0 1

)
, g = RM =

(
δ1r13 δ2r13 r11 r13
δ1r23 δ2r23 r21 r23
δ1r33 δ2r33 r31 r33

)
, for δ1, δ2←$Zp,R←$Z3×3

p .

We define EMP in Fig. 2. We claim that it is indeed an SSB commitment scheme in Theorem 3. However,
before that we prove a small lemma that will help us prove the ISH property.

Lemma 3. Let q ≤ n and λ ∈ N. For any (even unbounded) adversary A,∣∣∣∣Pr[p← Pgen(1λ);S ←A(p, n, q); g ← Dgen(p, n, 1,S, q) : A(g) = 1]

− Pr[p← Pgen(1λ);S ← A(p, n, q); g ← U (1)
q+1,n+1 : A(g) = 1]

∣∣∣∣ ≤ 1/p.

6 González et al. [GR16] mostly considered the case q = 1; they also did not formalize its security by using notions
like ISH

7 We add +1 to the dimension (e.g., q + 1) to accommodate the randomizer in EMP.
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KC(p, n, q,S) // S ⊆ {1, 2, . . . , n} with |S| ≤ q

Sample (g,R, tkι)←$Dgen(p, n, r,S, q) where r = q + 1;

ck← [g]ι; ek← R; // g ∈ Z(q+1)×(n+1)
p , R ∈ Z(q+1)×(q+1)

p

td← (ek, tk); return (ck, td);

tdOpen(p, tkι;x0, r0,x1)

r1 ←
∑
i∈[1 .. n]\S(x0,i − x1,i)δi + r0;

return r1;

Ext(p, ek; [c]ι)

[x′]ι ← R−1[c]ι;

return [xS ]ι ← [x′[1 .. |S|]]ι;

Com(ck;x ∈ Znp ; r ∈ Zp)

return [g]ι(
x
r ); // =

∑n
j=1 xj [g

(j)]ι + r[g(n+1)]ι ∈ Gq+1

Fig. 2. The EMP commitment scheme COM

Proof. Let R be a uniformly random rank 1 matrix over Z(q+1)×(q+1)
p . Alternatively, we can sample R in

the following way: we sample non-zero vectors a, b←$ (Z∗p)q+1 and compute R = a> ⊗ b.
Then g ← Dgen(p, n, 1,S, q) has the form

g = RM = (a> ⊗ b)M = (a>M)⊗ b,

where M is the output ofMgen(p, n,S, q). Let us denote c := a>M ∈ Zn+1
p . We have 3 cases for elements

of c:

1. If j 6∈ S and j 6= n+1, then cj =
∑q+1
i=1 aiMi,j = aq+1 · δj since by construction ofM , Mi,j = 0 for i ≤ q

and Mq+1,j = δj .
2. If j ∈ S, then cj = ai where i is such that j = σi since Mi,j = 1 and Ms,j = 0 for all s 6= j.
3. If j = n+ 1, then cn+1 = aq+1 since Mi,n+1 = 0 for i ≤ q and Mq+1,n+1 = 1.

We get that c is distributed uniformly randomly unless aq+1 = 0. The latter happens with a probability
(pq − 1)/(pq+1 − 1). Importantly, when c is uniformly random, then g = c⊗ b is a uniformly random rank 1
matrix. Thus, for any adversary A,

Pr[g ← Dgen(p, n, 1,S, q) : A(g) = 1]

=Pr[g ← Dgen(p, n, 1,S, q) : A(g) = 1 | aq+1 = 0] · Pr[aq+1 = 0]+

Pr[g ← Dgen(p, n, 1,S, q) : A(g) = 1 | aq+1 6= 0] · Pr[aq+1 6= 0]

=Pr[g ← Dgen(p, n, 1,S, q) : A(g) = 1 | aq+1 = 0] · pq − 1

pq+1 − 1
+

Pr[g ← U (1)
q+1,n+1 : A(g) = 1] ·

(
1− pq−1

pq+1−1

)
.

Then,

Pr[g ←Dgen(p, n, 1,S, q) : A(g) = 1]− Pr[g ← U (1)
q+1,n+1 : A(g) = 1] =(

Pr[g ← Dgen(p, n, 1,S, q) : A(g) = 1 | aq+1 = 0]− Pr[g ← U (1)
q+1,n+1 : A(g) = 1]

)
· pq−1
pq+1−1 .

It follows that

|Pr[g ← Dgen(p, n, 1,S, q) : A(g) = 1]− Pr[g ← U (1)
q+1,n+1 : A(g) = 1]| =∣∣∣∣Pr[g ← Dgen(p, n, 1,S, q) : A(g) = 1 | aq+1 = 0]− Pr[g ← U (1)

q+1,n+1 : A(g) = 1]

∣∣∣∣ · pq−1
pq+1−1 ≤

pq−1
pq+1−1 .
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Note that since p · (pq − 1) = pq+1 − p ≤ pq+1 − 1 for all primes p and all integers q ≥ 1, we have

pq−1
pq+1−1 ≤

pq−1
p·(pq−1) ≤

1
p .

We have proven the lemma. ut

Remark 1. Since A is unbounded, then the same result holds even if A gets as an input [g]ι and in the first
game [g]ι is computed as R←$U (r)

q+1,q+1; (M , tk)←Mgen(p, n,S, q); [g]ι ← [R]ιM . This is the variation of
the above lemma that we will use in the ISH proof.

Theorem 3. Let Pgenbg be a bilinear group generator. Fix λ, n, and q. The EMP commitment scheme in
group G = Gι is

1. ISH relative to Pgenbg under the DDHGι assumption: for each PPT A, there exists a PPT B, such that
AdvishA,COM,n,q(λ) ≤ 2dlog2(q + 1)e · AdvddhB,Gι,Pgen(λ) + 2/p.

2. F -SSE for F = [·]ι (thus, F depends on p),
3. AEPT,
4. SPB,
5. AEPH,
6. CB and CH under the DDHGι assumption.

Proof. (1: ISH) Assume A is an ISH adversary (see page 6) that succeeds with some probability εishA . We
construct the adversary C for the rank assumption in Definition 2. Let R0←$U (1)

q+1,q+1 be a random rank-1
matrix and R1←$U (q+1)

q+1,q+1 be a random full-rank (rank-(q+1)) matrix. Let βC ←$ {0, 1} and [R]ι ← [RβC ]ι.
The rank adversary C(p, [R]ι) has to guess the value of βC .

Given (p, [R]ι), C does the following:

C(p, [R]ι)

1 : (S0,S1)← A(p, n, q);
2 : βA ←$ {0, 1}; (M , tk)←Mgen(p, n,SβA , q); ckβA ← [R]ι ·M ;

3 : β′A ← A(ckβA);
4 : if β′A = βA then β′C ← 1 else β′C ← 0;

5 : return β′C ;

Note that βC = 1 iff R is a full-rank matrix and βA = 1 iff one uses R to mask a matrix M formed from
S1. For the following proof, observe that if βC = 0 then R masks M perfectly (except with probability 1/p
as shown in Lemma 3) and thus A has no advantage in guessing βA.

On the other hand, if βC = 1 then A has advantage εishA .
Then,

Pr[β′C = βC ] = (Pr[β′C = 1|βC = 1] + Pr[β′C = 0|βC = 0]) /2

= (Pr[β′A = βA|βC = 1] + Pr[β′A 6= βA|βC = 0]) /2

=
(
εishA + 1− δ

)
/2 ,

where δ := Pr[β′A = βA|βC = 0]. In particular,

εishA = 2Pr[β′C = βC ]− 1 + δ.

To finish the proof, we have to bound δ. For this, we define two games.
Let Game 1 be the game where C is defined as above and βC = 0. Thus, δ = Pr[β′A = βA|Game 1].
In Game 2, C operates as above, except in the case βC = 0, A gets as input ckβA = [g]ι a random rank-1

matrix.
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By Lemma 3, |Pr[β′A = βA|Game 1] − Pr[β′A = βA|Game 2]| ≤ 1/p. On the other hand, Pr[β′A =
βA|Game 2] = 1/2. Thus, δ ≤ 1/2 + 1/p.

Since Advr−rankC,`,k,1,q+1,ι,Pgen(λ) = |2Pr[β′C = βC ] − 1|, we get εishA = 2Pr[β′C = βC ] − 1 + δ ≤
Advr−rankC,`,k,1,q+1,ι,Pgen(λ) + δ. Next,

AdvishA,COM,n,q(λ) =|2εishA − 1| ≤ 2εishA − 1

≤ 2Advr−rankC,`,k,1,q+1,ι,Pgen(λ) + 2δ − 1

≤ 2Advr−rankC,`,k,1,q+1,ι,Pgen(λ) + 2/p .

By Theorem 1, there exists a PPT adversary B, such that AdvishA,COM,n,q(λ) ≤ 2dlog2(q + 1)e·AdvddhB,Gι,Pgen(λ)+
2/p. ut

(2: [·]ι-SSE) We have [c]ι = [g]ι(
x
r ) = [RM ]ι(

x
r ) for some ( xr ), where R has full rank. But then

[x′]ι = R
−1[c]ι = [M ]ι(

x
r ). Let S = {σi}. By the definition of M , clearly x′i =M i(

x
r ) = xσi for i ≤ |S|.

(3: AEPT) Let x0 6= x1 but x0,S = x1,S . Then Com(ck;x0; r0) − Com(ck;x1; r1) = RM
(
x0−x1
r0−r1

)
=

R
(

0q∑
i∈[1 .. n]\S(x0,i−x1,i)δi+(r0−r1)

)
= 0q+1, since from tdOpen, r1 =

∑
i∈[1 .. n]\S(x0,i − x1,i)δi + r0.

(4: SPB) Since F = [·]ι is injective (because the bilinear group has a prime order), this follows from Item 2
and Lemma 1.

(5: AEPH) Let x0,x1 be such that x0,S = x1,S . ThenM( x0
r0 ) = (x>0,S , 0, . . . , 0, r0+

∑
i∈[1 .. n]\S x0,iσi)

>

and similarly M( x1
r1 ) = ((x1,S)

>, 0, . . . , 0, r1 +
∑
i∈[1 .. n]\S x1,iσi)

>. Thus, both have first q elements
equal and the last element is uniformly random. Clearly then also Com(ck;x0; r0) = RM( x0

r0 )[1]ι and
Com(ck;x1; r1) = RM( x1

r1 )[1]ι are indistinguishable.
(6: CB and CH): Follows from Theorem 2, Item 1, SPB and AEPH. ut

Alternative constructions. One can also construct a SSB commitment from any IND-CPA secure
cryptosystem if both the message space and the randomness space are additively homomorphic, i.e.,
Encpk(m1; r1) + Encpk(m2; r2) = Encpk(m1 +m2; r1 + r2) for any public key pk, messages m1,m2 and ran-
domness r1, r2 ∈ R. For simplicity, consider the case when q = 1 and the i-th index is binding. We can
set ck = (pk, c := (Encpk(ei,1; r1), . . . ,Encpk(ei,n; rn)), tk = sk where ei is the i-th unit vector. In order to
commit to x, we compute c · x + Encpk(0; r) = Encpk(xi, r +

∑n
i=1 ri) for r←$R. Now, ISH follows directly

from the IND-CPA security, SSB and F-SSE follow from the correctness of the cryptosystem, and AESH
follows since Encpk(xi, r+

∑n
i=1 ri) only depends on xi. However, we obtain a less efficient construction than

EMP. E.g., if we instantiate with lifted Elgamal we would have a commitment size of 2q group elements,
whereas EMP has q + 1.

The above is similar to the technique of obtaining 2-message oblivious transfer (OT) from additively
homomorphic cryptosystems [AIR01] and this is no coincidence. SSB commitments can indeed be constructed
from OT, and we can conversely construct OT from SSB commitments. Hence there are various alternative
constructions of SSB, but in this paper we concentrate on EMP due to the applications we are interested in.
See Appendix A.2 for more details.

5 Functional SSB Commitments

We generalize the notion of SSB commitments from being statistically binding on an index-set S ⊆ [1 .. n] to
being statistically binding on outputs of the functions {fi}qi=1 from some function family F . We construct
a functional SSB commitment scheme for the case when F is the set of linear functions. In particular, this
covers functions fj(x) = xj and hence we also have the index-set functionality of EMP commitment.

In our definition, given a family of functions F we require that the commitment key ck will hide the
functions {fi}qi=1 ⊂ F and given a commitment Com(ck;x; r) and an extraction key ek it is possible to
F -extract fi(x) for i ∈ [1 .. q], i.e. if F is the scalar multiplication function in the group, [fi(x)]ι. The
commitment uniquely determines the outputs of the functions (due to the SSB property) and commitments

13



to messages which produce equal function outputs are statistically indistinguishable (due to the AESH
property). Our definition is similar to Döttling et al.’s [DGI+19] definition for trapdoor hash functions for a
family of predicates F .

Definition of functional SSB. An F -extractable functional SSB commitment scheme COM = (Pgen,
KC,Com, tdOpen,ExtF ) for a function family F follows the definitions of SSB commitments in Section 3.1,
but with the following changes: (i) S is now a set of functions rather than a set of indices. (ISH then becomes
function-set hiding (FSH)). (ii) For S = {fi}qi=1 ⊆ F and vector x we redefine xS := (f1(x), . . . , fq(x)).

Essentially the only difference between an SSB commitment and a functional SSB commitment is that
in the former S is a subset of [1 .. q] and in the latter S is a subset of some function-set F . For the sake of
completeness we provide the formal definition below.

Definition 5. An F -extractable functional SSB commitment scheme COM = (Pgen,KC,Com, tdOpen,ExtF )
for a function family F consists of the following polynomial-time algorithms:

Parameter generation: Pgen(1λ) returns parameters p (for example, group description). We allow F to
depend on p.

Commitment key generation: for parameters p, a positive integer n ∈ poly(λ), an integer q ∈ [1 .. n], and
a tuple S = (f1, . . . , f|S|) ⊆ F with |S| ≤ q, KC(p, n, q,S) outputs a commitment key ck and a trapdoor
td = (ek, tk). Here, ck implicitly specifies p, the message space MSP, the randomizer space RSP, and the
commitment space CSP, such that F (MSP) ⊆ CSP, ek is the extraction key, and tk is the trapdoor key.
For any other input, KC outputs (ck, td) = (⊥,⊥).

Commitment: for p ∈ Pgen(1λ), a commitment key ck 6= ⊥, a message x ∈ MSPn, and a randomizer
r ∈ RSP, Com(ck;x; r) outputs a commitment c ∈ CSP.

Trapdoor opening: for p ∈ Pgen(1λ), S ⊆ F with |S| ≤ q, (ck, (ek, tk)) ∈ KC(p, n, q,S), two messages
x0,x1 ∈ MSPn, and a randomizer r0 ∈ RSP, tdOpen(p, tk;x0, r0,x1) returns a randomizer r1 ∈ RSP.

Extraction: for p ∈ Pgen(1λ), S = (f1, . . . , f|S|) ⊆ F with 1 ≤ |S| ≤ q, (ck, (ek, tk)) ∈ KC(p, n, q,S), and
c ∈ CSP, ExtF (p, ek; c) returns a tuple

(
F (f1(x)), . . . , F (f|S|(x))

)
∈ MSP|S|;

For {fi}qi=1 ⊆ F and vector x let us denote xS = (f1(x), . . . , fq(x)).

Definition 6. An F -extractable functional SSB commitment scheme COM for function family F is secure
if it satisfies the following security requirements.

Function-Set Hiding (FSH): ∀λ, PPT A, n ∈ poly(λ), q ∈ [1 .. n], AdvfshA,COM,n,q(λ) := 2 · |εfshA,COM,n,q(λ)−
1/2| ≈λ 0, where εfshA,COM,n,q(λ) :=

Pr

[
p← Pgen(1λ); (S0,S1)← A(p, n, q) s.t. ∀i ∈ {0, 1},Si ⊆ F ∧ |Si| ≤ q;
β←$ {0, 1}; (ckβ , tdβ)← KC(p, n, q,Sβ) : A(ckβ) = β

]
.

Somewhere Statistically Binding (SSB): ∀λ, unbounded A, n ∈ poly(λ), q ∈ [1 .. n],
AdvssbA,COM,n,q(λ) ≈λ 0, where AdvssbA,COM,n,q(λ) :=

Pr

p← Pgen(1λ);S ← A(p, n, q) s.t. S ⊆ F ∧ |S| ≤ q;
(ck, td)← KC(p, n, q,S); (x0,x1, r0, r1)← A(ck) s.t. x0S 6= x1S :

Com(ck;x0; r0) = Com(ck;x1; r1)

 .

We say that COM is somewhere perfectly binding (SPB) if AdvssbA,COM,n,q(λ) = 0.
Almost Everywhere Statistically Hiding (AESH): ∀λ, unbounded A, n ∈ poly(λ), q ∈ [1 .. n],

AdvaeshA,COM,n,q(λ) := 2 · |εaeshA,COM,n,q(λ)− 1/2| ≈λ 0, where εaeshA,COM,n,q(λ) :=

Pr

p← Pgen(1λ);S ← A(p, n, q) s.t. S ⊆ F ∧ |S| ≤ q;
(ck, td)← KC(p, n, q,S); (x0,x1)← A(ck) s.t. x0S = x1S ;

β←$ {0, 1}; r←$ RSP : A(Com(ck;xβ ; r)) = β

 .
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COM is almost everywhere perfectly hiding (AEPH) if AdvaeshA,COM,n,q(λ) = 0.
Somewhere Statistical F -Extractability (F -SSE): ∀λ, p ∈ Pgen(1λ), n ∈ poly(λ), q ∈ [1 .. n], S =

(f1, . . . , f|S|) ⊆ F with |S| ≤ q, (ck, (ek, tk)) ← KC(p, n, q,S), and PPT A, AdvsseA,F,COM,n,q(λ) ≈λ 0,
where AdvsseA,F,COM,n,q(λ) :=

Pr
[
x, r ← A(ck) : ExtF (p, ek;Com(ck;x; r)) 6=

(
F (f1(x)), . . . , F (f|S|(x))

)]
.

It is somewhere perfect extractable if AdvsseA,F,COM,n,q(λ) = 0.
Almost Everywhere Statistical Trapdoor (AEST): ∀λ, n ∈ poly(λ), q ∈ [1 .. n] and unbounded A,

AdvaestA,COM,n,q(λ)(λ) ≈λ 0, where AdvaestA,COM,n,q(λ)(λ) =

Pr

p ∈ Pgen(1λ);S ← A(p, n, q) s.t. S ⊆ F ∧ |S| ≤ q;
(ck, td)← KC(p, n, q,S); (x0,x1, r0)← A(ck) s.t. x0S = x1S :

r1 ← tdOpen(p, tk;x0, r0,x1) : Com(ck;x0; r0) 6= Com(ck;x1; r1)

 .

It is AEPT (almost everywhere perfect trapdoor) if AdvaestA,COM,n,q(λ)(λ) = 1.

Computational Binding (CB): ∀ PPT A, n ∈ poly(λ), q ∈ [1 .. n], AdvcbA,COM,n,q(λ) = negl(λ), where
AdvcbA,COM,n,q(λ) :=

Pr

p← Pgen(1λ);S ← A(p, n, q) s.t. S ⊆ F ∧ |S| ≤ q;
(ck, td)← KC(p, n, q,S); (x0,x1, r0, r1)← A(ck) s.t. x0 6= x1 :

Com(ck;x0; r0) = Com(ck;x1; r1)

 .

Computational Hiding (CH): ∀ PPT A, n ∈ poly(λ), q ∈ [1 .. n], AdvchA,COM,n,q(λ) := 2 · |εchA,COM,n,q(λ)−
1/2| = negl(λ), where εchA,COM,n,q(λ) :=

Pr

p← Pgen(1λ);S ← A(p, n, q) s.t. S ⊆ F ∧ |S| ≤ q;
(ck, td)← KC(p, n, q,S); (x0,x1)← A(ck);β←$ {0, 1};
r←$ RSP : A(Com(ck;xβ ; r)) = β

 .

Relations that hold between properties of SSB commitments also hold for functional SSB commitments;
the proofs are very similar.

MFSSB
gen (p, n, q,M ∈ Zq×np )

%←$Znp ; tk← %;

Set M ′ ←
(

M 0
%ᵀ 1

)
∈ Z(q+1)×(n+1)

p ;
return (M ′, tk);

DFSSB
gen (p, n, r,S, q)

R←$U (r)
q+1,q+1;

(M ′, tk)←MFSSB
gen (p, n,S, q);

g ← RM ′; // g ∈ Z(q+1)×(n+1)
p ;

return (g,R, tk);

Fig. 3. Generating M ′ from function set S ⊆ F (the left hand side) and the discrete logarithm of the commitment
key with an associated extraction key R and trapdoor tk (the right hand side)

5.1 Linear EMP

We construct a functional SSB commitment for a family of linear functions. Our construction follows the
ideas in [DGP+19] which only dealt with some concrete functions and never formalized the ideas.

15



KCι(p, n, q,M ∈ Zq×np ):

Set implicitly MSP = RSP = Znp and CSP = Gq+1
ι ;

Set (g,R, tk)← DFSSB
gen (p, n, r,S, q) where r = q + 1;

Set ck← [g]ι ∈ G(q+1)×(n+1)
ι , td← (ek← R−1, tk);

return (ck, td);

Com(ck;x ∈ Znp ; r ∈ Zp)

return ck( x
r );

tdOpen(p, tk;x0, r0,x1) // [M ]ιx0 = [M ]ιx1

return r1 ←
∑

i∈[1 .. n]

(x0,i − x1,i)tki + r0;

Ext(p, ek; [c]ι)

return ek[c]ι without the last component;

Fig. 4. Functional SSB commitment for linear functions

We represent q linear functions by a matrix M ∈ Zq×np where each row contains coefficients of one
function. (For the FSH proof to work, M needs to be available as an integer matrix; this is fine in all our
applications.) From a commitment to vector x ∈ Znp , our construction allows to extract [Mx]ι. In particular,
if we takeM = (ei1 | . . . |eiq )> where eij ∈ Znp is the ijth unit vector, then [Mx]ι = [xi1 , . . . , xiq ]

>
ι . A detailed

construction is given in Fig. 4.
We want to note that the matrix M is extended into one row to place the randomness vector % and one

column to place the randomizer of the commitment, r, to perfectly hide the secret vector x when we extract
(see Fig. 3). Concretely, in the extraction phase we obtain

(
M 0
%ᵀ 1

)
· [ xr ]ι =

[
Mx

%ᵀx+r

]
ι
from multiplying the

commitment by the inverse matrix of R. The first q rows contain the functions of x in the group that we
want and the last component contains a combination of x with % that is completely masked by r.

Moreover, if we take an ACS (Definition 3), the commitment key is ck = [U1,U2]ι ∈ G(q+1)×n
ι ×G(q+1)×1

ι ,
which is optimal size for extraction in q coordinates, as proven in Corollary 1. The main differences with the
EMP construction in Section 4.2 is that in EMPM is a matrix in reduced row echelon form (with multiples
of the column vector (0, . . . , 0, 1)T possibly inserted in between).

5.2 Security proofs

We start by proving an analogue for Lemma 3.

Lemma 4. Let q ≤ n and λ ∈ N. For any (even unbounded) adversary A,

|Pr[p← Pgen(1λ);M ← A(p, n, q); g ← DFSSB
gen (p, n, 1,M , q) : A(g) = 1]

−Pr[p← Pgen(1λ);M ← A(p, n, q); g ← U (1)
q+1,n+1 : A(g) = 1]| ≤ 1/p.

Proof. The proof is very similar to the one in Lemma 3. We can sample uniformly random rank 1 matrix R
by sampling a, b←$Zq+1

p \ {0} and computing R = a>⊗ b. Then, g = RM ′ = (a>⊗ b)M ′ = (a>M ′)⊗ b.
Let us define c = a>M ′.

For i = 1, . . . , n, we have ci = (
∑q
j=1 ajMj,i) + aq+1ρi and cn+1 = aq+1. Thus, c is uniformly random in

(Zp \ {0})q+1 exactly when aq+1 6= 0. The probability that aq+1 = 0 is (pq − 1)/(pq+1 − 1) ≤ 1/p.
Hence, follows the claim in the lemma’s statement. ut

Theorem 4. Let Pgenbg be a bilinear group generator. Fix n and q. The commitment scheme in Fig. 4 is

1. FSH relative to Pgenbg under the DDHGι assumption: for each PPT A, there exists a PPT B, such that
AdvfshA,COM,n,q(λ) ≤ dlog2(q + 1)e · AdvddhB,Gι,Pgen(λ).
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2. F -SSE for F = [·]ι (thus, F depends on p),
3. SPB,
4. AEPH,
5. AEPT,
6. CB and CH under the DDHGι assumption.

Proof. (1: FSH) The proof is almost identical to the ISH proof in Theorem 3. The only significant difference
is that since M has a different distribution, we use Lemma 4 instead of Lemma 3.

(2: F -SSE) For any x ∈ Znp and r ∈ Zq+1
p , we have Com(ck;x; r) = [RM ′( xr )]ι = [c]ι. Then, Ext(p, ek =

R−1; [c]ι) computes R−1[c]ι = [M ′( xr )]ι =
[

Mx
%>x+r

]
ι
and outputs [Mx]ι which is exatly what we wanted

to extract.
(3: SPB) Clearly, there are no x0,x1 ∈ Znp such that Mx0 6= Mx1 and [c]ι := Com(ck;x0; r0) =

Com(ck;x1; r1) since by the F -SSE property we have that Ext(p, ek = R−1; [c]ι) = [Mx0]ι = [Mx1]ι.
(4: AEPH) Suppose that the adversary A on input (p, n, q) outputs S = M ∈ Zq×np , then gets as an

input the public key g = R ·M ′ whereM ′ =
(

M 0
%> 1

)
, R ∈ Z(q+1)(q+1)

p is some full rank matrix, and % ∈ Znp ,
and finally outputs (x0,x1) such that Mx0 =Mx1.

Let us analyze distributions of C0 = Com(ck;x0;0 ) and C1 = Com(ck;x1; r1) for a uniformly random
r0, r1. For β ∈ {0, 1}, we can define [uβ ]ι := [M ′(

xβ
rβ )]ι =

[
Mxβ

%>xβ+rβ

]
. We see that top q elements of u0

and u1 are equal and the last element is uniformly random. Thus, u0 and u1 are indistinguishable. Since
Cβ = Com(ck;xβ ; rβ) = R[uβ ]ι, then also C1 and C2 are indistinguishable.

(5: AEPT) Let r0 ∈ Zp and x0,x1 ∈ Znp such that Mx0 = Mx1. In tdOpen, we define r1 =∑
i∈[1 .. n](x0,i − x1,i)%i + r0. Then, %>x1 + r1 = %>x0 + r0. Using, the definition of ub from the previ-

ous property, we see that u0 = u1 and then also Com(ck;x0; r0) = Com(ck;x1; r1).
(6: CB and CH) Follows directly from the analog of Theorem 2. ut

6 Applications of Functional SSB Commitments

In the rest of the paper, we present three applications of functional SSB commitments. In Section 6.1 we
have two straightforward applications for FSSB: Oblivious Database Queries (ODQ) and Oblivious Linear
Function Evaluation (OLE) [DKM12,GNN17,DGN+17]. OLE allows the receiver to learn f(x) where x is
the receiver’s private vector and f is the sender’s private linear function. ODQ essentially switches the roles
of receiver and sender: the receiver wants to learn f(x) where x is the sender’s private database and f is the
receiver’s linear query function. In Section 7 we present a new QA-NIZK argument for SAP relations that
uses FSSB as a technical tool in the security proof.

6.1 ODQ & OLE

A very straight-forward application of FSSB is oblivious database queries (ODQ). We consider a scenario
where the sender knows a private database x and the receiver knows a set of private linear functions
fi(X1, . . . , Xn) = bi +

∑n
j=1 ai,jXj for i ∈ [1 .. q] that he wants to evaluate on that database.

Our ODQ protocol works as follows:

– Receiver defines matrices A = (aij) ∈ Zq×np , B = diag(b1, . . . , bq) ∈ Zq×qp , andM = (A | B) ∈ Zq×(n+q)p .
Following the KC algorithm it creates the commitment key ck, the extraction key ek, and sends ck to
the sender.

– Sender has x ∈ Znp and ck as input. It sets x′ = ( x
1q ), picks random r←$Zp and sends COM = ck

(
x′

r

)
to the receiver.

– Receiver extracts [M · x′]ι from COM using the Ext algorithm with ek.
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Privacy and Correctness. We follow privacy and correctness definitions proposed by Döttling et
al. [DGI+19] (see Section 5.1 of their paper for full definitions). From the SSE property we know that the
receiver can recover [M ( x

1q )]ι = [Ax + b]ι and thus correctness holds. Receiver’s (computational) privacy
follows directly from the FSH property, that is, any two function-sets of size at most q are indistinguishable.
Sender’s privacy is defined through simulatability of the protocol transcript given only receiver’s input M
and receiver’s output [Mx′]ι to the simulator. Simulatability is slightly stronger than the AEPH property
but still holds for FSSB. As a first message, the simulator can generate ck withM and store R. An honestly
computed second message has the form [R

(
M 0
rᵀ 1

)
]ι
(
x′

r

)
= R

[
Mx′

x′r>+r

]
ι
and therefore we can simulate it by

sampling r∗←$Zp and computing R
(

[Mx′]ι
r∗

)
. Thus sender’s privacy also holds.

Efficiency. We define download rate as the ratio between output size and sender’s message and total rate
as the ratio between output size and total transcript size. The total rate of our protocol is |[Mx′]ι|/(|ck|+
|COM|) = q/((n+ q+2)(q+1)). However, we achieve very good download rate |[Mx′]ι|/|COM| = q/(q+1)
which tends to 1. This is similar to Döttling et al. [DGI+19] where they achieve an optimal download rate
but sub-optimal total rate.

OLE. We can achieve OLE in a very similar way. Suppose that now the sender has a function
f(X1, . . . , Xn) = b +

∑n
i=1 aiXi and the receiver has x. Then the receiver can send a commitment key

with M = (x1, . . . , xn, 1) and the sender responds with a commitment to (a1, . . . , an, b). The receiver ex-
tracts to obtain [f(x)]ι. The proof is identical to the ODQ case. However, the resulting OLE is less efficient
with download rate 1/2 and total rate 1/(2n+ 4).

OT. SSB commitments can be constructed from OT, and we can conversely construct OT from SSB com-
mitments. Hence there are various alternative constructions of SSB, but in this paper we concentrate on
EMP due to the applications we are interested in. See Appendix A.2 for more details.

7 QA-NIZK Argument for Quadratic Equations

We present a QA-NIZK argument that uses FSSB commitments as a crucial technical tool in the security
proof. It is inspired by Daza et al. [DGP+19], who presented a commit-and-prove QA-NIZK argument
for Square Span Programs (SSP, [DFGK14]) that can be used to encode the Boolean circuit satisfiability
language. Their construction implicitly uses FSSB commitments without explicitly formalizing it. Our QA-
NIZK is for Square Arithmetic Programs (SAP) [GM17] which can be used to encode the arithmetic circuit
satisfiability language, has roughly the same complexity as the argument in [DGP+19] and follows a similar
overall strategy. However, we use FSSB commitments as a black-box and thus have a more compact and
clear presentation.

A rough intuition of our commit-and-prove QA-NIZK is as follows. The statement of our language LSAP,ck

contains a linear-length perfectly binding (and ([·]1, [·]2)-extractable) commitments [c]1 and [c′]2 of the SAP
witness.8 Note that the commitment is only computed once but can be reused for many different SAP
relations. For simplicity, we use ElGamal encryption in both groups (with different public keys) in this role,
and the commitment key ck = (pk, pk′) is the parameter of the language. The argument itself is succinct
and contains the following elements:

– a succinct SNARK-type argument [V,H,W ]1, [V ]2 for the SAP relation,
– a succinct FSSB commitment [c̃]2 that commits to the SAP witness and the randomness of the SNARK,

8 Daza et al. [DGP+19] needs an extractable commitment only in G1 since the constraints of an [·]1-extracted SSP
witness can be verified without pairings (e.g, [a]>1 vj + bj [1]1 ∈ [0, 2]1) whereas SAP constraints are quadratic
and require pairings for verification (e.g., ([a]>1 vj)([a]>2 vj) − ([a]>1 wj)[1]2 = [0]T ). Prior versions of this paper
incorrectly contained the commitment only in G1.
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– a succinct linear subspace argument bls [GHR15] that shows that commitments open to consistent values
(see bls argument below). I.e., it guarantees that the opening of [c]1 is also used in the SNARK-type
elements [V,H,W ]1, [V ]2 , in linear-length commitment [c′]2, and in FSSB commitment [c̃]2.

Below, we go over some of the technical background and then finally present our QA-NIZK argument for
SAP.

Perfectly binding commitment. We use ElGamal encryption in both groups (but with different
keys and randomizers) as our perfectly binding commitment. In particular, the commitment key is
ck = ([u]1, [u

′]2) = ([1, u]>1 , [1, u
′]>2 ) where u, u′←$Zp and Comck(a ∈ Znp , r, r′ ∈ Znp ) = ([c]1, [c

′]2) :=
(([r]1, [a]1 + r[u]1), ([r

′]2, [a]2 + r
′[u′]2)). In matrix form [ci]1 = ai[e2]1+ ri[u]1 and [c′i]2 = ai[e2]2+ r

′
i[u
′]2.

To [·]1-extract the message, we can simply decrypt each individual ciphertext, i.e., [ai]1 = [ci,2]1 − u[ci,1]1
where [ci]1 = [ci,1, ci,2]

>
1 . Extraction in G2 works analogously.

Square Arithmetic Program (SAP). A square arithmetic program [DFGK14,GM17] is a tuple SAP =
(p, n, d,V ∈ Zn×dp ,W ∈ Zn×dp ). We define a commit-and-prove language for SAP as the following language
with n variables and d quadratic equations

LSAP,ck =

 ([c]1, [c
′]2) ∈ G2n

1 ×G2n
2

∃a, r, r′ ∈ Znp :{
(a>vj)

2 − a>wj = 0
}d
j=1
∧

([c]1, [c
′]2) = Comck(a, r, r

′)


where Comck is a perfectly binding commitment scheme, vj is j-th column of the matrix V and wj is the
j-th column of the matrix W . Following [DGP+19], our SAP instance does not take a public input. For
public inputs one can choose the commitment randomness in corresponding positions to be 0.

SNARK for SAP. Let χ1, . . . , χd ∈ Zp be unique interpolation points. We define

v(X) =

n∑
i=1

aivi(X) , w(X) =

n∑
i=1

aiwi(X) , (1)

where vi(X), wi(X) are polynomials of degree less than d such that vi(χj) = vij and wi(χj) = −wij .
Moreover, let us define p(X) = v(X)2 −w(X) and t(X) =

∏d
j=1(X − χj). We have that p(χj) = (a>vj)

2 −
a>wj and thus the j-th SAP equation is satisfied exactly when χj is a root of p(X). In particular, when all
interpolation points are roots of p(X), then t(X) divides p(X), and all the SAP equations are satisfied.

We can use these polynomial representations to construct a SNARK. Our CRS will contain {[si]1,2}di=1

where s←$Zp is a secret point. The prover will compute [V ]1,2 = [V (s)]1,2, [W ]1 = [W (s)]1 and [H]1 =

[H(s)]1 where V (X) = v(X) + δvt(X), W (X) = w(X) + δwt(X), and H(X) = (V (X)2 − W (X))/t(X).
Elements δv and δw are picked randomly to hide the witness. The verifier checks that the equation [V ]1[V ]2−
[W ]1[1]2 = [H]1[t(s)]2 is satisfied. Intuitively, we can use this to show that t(X) divides P (X) := V (X)2 −
W (X). It is easy to see that if t(X) | P (X), then also t(X) | p(X) and thus the SAP relation is satisfied.

BLS argument. As a subargument, we use a QA-NIZK argument Πbls = (Kbls,Pbls,Vbls) for membership
in linear spaces defined in [GHR15] for the bilateral linear subspace (bls) language

L[N1]1,[N2]2 := {([x]1, [y]2) | ∃w ∈ Ztp : x =N1w ∧ y =N2w}

for N1 ∈ Zn×tp , N2 ∈ Zm×tp . We use it to prove that commitments in different groups open to the same
value. Πbls has perfect completeness, strong quasi-adaptive soundness under the SKerMDH assumption, and
perfect zero-knowledge. The proof size is 2 elements in G1 and 2 elements in G2. We refer the reader to
the original paper [GHR15] for more details. We leave it as an open question if the slightly more efficient
construction by Ràfols and Silva [RS20] can be used: it has proof size of three group elements, but it is not
known to be strongly sound.
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New target assumption. The q-target strong Diffie-Hellman (q-TSDH) assumption [BB04] says that
given {

[
si
]
1,2
}qi=1 for a random s, it is computationally output (r, [ν]T = [1/(s − r)]T ) for some r ∈ Zp.

We generalize q-TSDH by saying that it is hard to compute (r, [ν]T = [c/(s − r)]T ) where r ∈ Zp and c
is a constant independent of s. To satisfy the latter requirement, we include a challenge value [z]2 and let
the adversary additionally output [c]1 and [c′]2 such that zc = c′. Intuitively, then c cannot depend on si

since otherwise c′ should depend on zsi, which is not a part of the challenge. For technical reasons, c in our
assumption has a slightly more structured form β2

1 − β2.

Definition 7 (q-SATSDH). The q-Square Arithmetic Target Strong Diffie-Hellman assumption holds relative
to Pgen, if ∀ PPT adversaries A,

AdvsatsdhA,q (λ) := Pr

p← Pgen(1λ); s, z←$Zp;(
r, [β1, β2]1, [β̃1, β̃2]2, [ν]T

)
← A

(
p, {[si]1,2}qi=1, [z]2

)
:

β̃1 = zβ1 ∧ β̃2 = zβ2 ∧ β2
1 6= β2 ∧ ν =

β2
1−β2

s−r

 ,
where AdvsatsdhA,q (λ) ≈λ 0.

SATSDH is similar to yet different from the GSDH, STSDH, and QTSDH assumptions defined by Daza et
al. [DGP+19]. Hence, in Appendix C, we show that SATSDH is a falsifiable assumption and that assuming a
particular (previously known) knowledge assumption, SATSDH and TSDH are equivalent. Alternatively, one
can prove that SATSDH is secure in the algebraic group model.

QA-NIZK Argument scheme. Given n, d ∈ N we construct the following QA-NIZK argument ΠSAP for
LSAP,ck.

– K0(λ) returns p← Pgen(1λ).
– Dp(n, d) returns a commitment key ρ = ck = ([u]1, [u

′]2) = ([1, u]>1 , [1, u
′]>2 ) where u, u′←$Zp.

– K1(p, n, d, ck) picks s←$Zp such that t(s) 6= 0, then sets qv = 4 (the reason behind this choice becomes
clear in the soundness proof), n′ = n + 1, M = 0 ∈ Zqv×n′p (i.e., Sv = ∅) and generates a FSSB key

(c̃k ∈ G(qv+1)×(n′+1)
2 , t̃d) = ([K]2, t̃d) ← KC2(p, n

′, qv,M). Finally, it runs (crsbls, tdbls) ← Kbls([N1]1 ∈
G(2n+2)×(3n+3)

1 , [N2]2 ∈ G(2n+qv+2)×(3n+3)
2 ) for

[N1]1 =


e2

. . .
e2

u
. . .
u

02n×n 02n×3

v1(s) . . . vn(s)
w1(s) . . . wn(s)

02×n 02×n
t(s) 0 0
0 t(s) 0


1

,

[N2]2 =


e2

. . .
e2

02n×n

u′

. . .
u′

02n×3

v1(s) . . . vn(s)
K(1) . . . K(n) 02×n 02×n

t(s) 0 0
K(n+1) 0 K(n+2)


2

.

Return the CRS crs = (p, ck, c̃k, {
[
si
]
1,2
}di=1, crsbls) with the trapdoor tdbls.

– The prover P receives an input (crs, ([c]1, [c
′]2), (a, r, r

′)). Let vi(X) and wi(X) be the interpolation
polynomials at some points {χj}j for the i-th column of V and W respectively for i ∈ [1 .. n], and set
t(X) =

∏d
i=j(X − χj). The prover picks δv, δw, rv ←$Zp and defines:

V (X) :=
∑n
i=1 aivi(X) + δvt(X) W (X) :=

∑n
i=1 aiwi(X) + δwt(X)

P (X) := V (X)2 −W (X) H(X) := P (X)/t(X)
(2)
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The prover computes group elements [V ]1,2 = [V (s)]1,2, [W ]1 = [W (s)]1, [H]1 = [H(s)]1 and an FSSB

commitment [c̃]2 = Com(c̃k; (a, δv), rv). The prover also computes a bls argument ψ for the statement

xbls := ([c]1, [c
′]2, [V ]1, [W ]1, [V ]2, [c̃]2)

> ∈ Im

(
[N1]1
[N2]2

)
with witness (a, r, r′, δv, δw, rv)

> ∈ Z3n+3
p . Fi-

nally, it outputs the argument π :=
(
[H]1 , [V ]1,2 , [W ]1 , [c̃]2, ψ

)
.

– The verifier V with input (crs, ([c]1, [c′]2), π) returns 1 iff
1. [c]1, [c

′]2, π can be parsed as group elements as expected from an honest statement and proof,
2. [V ]1[V ]2 − [W ]1[1]2 = [H]1[t(s)]2, and
3. Vbls(crsbls, xbls, ψ) = 1.

Efficiency. The proof size in the original construction in [DGP+19] is 4 elements in G1 and 6 elements in
G2, while our construction’s proof size is 5 elements in G1 and 8 elements in G2. The minor loss in efficiency
is expected by directly handling a more powerful language.

SSB functionality in the security proof. The security proof ofΠSAP uses similar techniques as [DGP+19],
but it is conceptually simpler because we rely on the properties of SSB commitments. Intuitively, in the
security reduction we need to compute some elements of the form [

∑
i aiyi]2 where (a1, . . . , an) is the witness

and [y1, . . . , yn]2 are elements that can be computed from either public elements or the challenge of some
falsifiable assumption. The actual reduction requires us to extract multiple such linear combinations.

If an adversary wins the soundness game, its argument passes verification but either the commitments in
G1 and G2 open to different vectors or at least one SAP equation does not hold. In the security proof, we first
change the soundness game such that it the adversary fails if the commitments open to differenct values. This
will only negligibly change the winning advantage due to the BLS argument. In the next game we randomly
pick one of the SAP constraints

(
a>vj∗

)2 − a>wj∗ by sampling j∗←$ [1 .. d]. If the adversary cheats, then
this constraint does not hold with probability 1/d. Our aim is to break the d-SATSDH assumption when the
j∗-th constraint does not hold.

Next, we switch the EMP commitment key that is in perfectly hiding mode in the honest proof (S = ∅) to
the mode that encodes the functions of the form f(a1, . . . , an) =

∑
i ai[yi]2 that we need. Here, [y]2 depends

on the security assumption and on the j∗-th equation. For the reduction to FSH to work, we need to be
able to efficiently verify that the soundness was broken. The latter can be done by extracting [a]1 and [a′]2
respectively from [c]1 and [c′]2 and testing if [a]1[1]2 = [1]1[a

′]2 and ([a]>1 vj)([a]
>
2 vj)− ([a]>1 wj)[1]2 = [0]T

for all j = 1, . . . , d.
The FSH property guarantees that the adversary’s cheating probability in the j∗-th equation differs

only negligibly when the function f is encoded inside c̃k. That is, when the adversary cheats, the SAP
equation is still not satisfied (almost) with probability ≥ 1/d. The [·]2-SSE property9 allows us to extract
some linear combinations of the claimed witness and break the d-SATSDH assumption. Zero-knowledge is
straightforwardly guaranteed by the AEPH property.

Reduction to d-SATSDH. Let us now discuss in more detail what exactly we need to extract with FSSB
(the functions f from above) to break the d-SATSDH assumption. By the characterization of the SAP, if the
j∗-th equation does not hold, then (X − χj∗) - P (X). Let qv(X), qw(X) ∈ Zp[X] and βv, βw ∈ Zp be the
unique elements such that

V (X) = qv(X) · (X − χj∗) + βv,

W (X) = qw(X) · (X − χj∗) + βw.

Then we can express the division of P (X) = V (X)2 −W (X) by X − χj∗ as follows.

9 The security of ΠSAP relies crucially on the [·]2-SSE property, while we do not explicitly need the (weaker) SSB
property by itself.

21



Lemma 5. P (X) = (qv(X) (V (X) + βv)− qw(X)) · (X − χj∗) +
(
β2
v − βw

)
.

Proof. The proof follows straightforwardly:

P (X) =V 2(X)−W (X)

=V (X) · (qv(X) · (X − χj∗) + βv)− qw(X) · (X − χj∗)− βw
=(V (X)qv(X)− qw(X)) · (X − χj∗) + V (X)βv − βw
=(V (X)qv(X)− qw(X)) · (X − χj∗) + (qv(X) · (X − χj∗) + βv)βv − βw
=
(
qv(X) · (V (X) + βv)− qw(X)

)
· (X − χj∗) + (β2

v − βw) .

This concludes the proof. ut

Since, (X −χj∗) - P (X) we get that (β2
v − βw) 6= 0 and thus β2

v 6= βw. This is one of the requirements in the
SATSDH assumption.

Let us further define unique elements αi(X), α̂i(X) ∈ Zp[X], and βv,i, βw,i ∈ Zp, such that

vi(X) = αi(X)(X − χj∗) + βv,i, (3)

wi(X) = α̂i(X)(X − χj∗) + βw,i, (4)

for i = 1, . . . , n. Moreover, let us define αt(X) and βt such that

t(X) = αt(X)(X − χj∗) + βt, (5)

but note that βt = 0 since t(X) is divisible by (X − χj∗).

Lemma 6. The following relations hold:

qv(X) =

n∑
i=1

aiαi(X) + δvαt(X), βv =

n∑
i=1

aiβv,i, (6)

qw(X) =

n∑
i=1

aiα̂i(X) + δwβt(X), βw =

n∑
i=1

aiβw,i. (7)

Proof. On the one hand, we defined V (X) = qv(X) · (X − χj∗) + βv. If we now also consider Eq. (3) and
Eq. (5), then

V (X) =

n∑
i=1

aivi(X) + δvt(X)

=

n∑
i=1

ai
(
αi(X)(X − χj∗) + βv,i

)
+ δv

(
αt(X)(X − χj∗) + βt

)
=

(
n∑
i=1

aiαi(X) + δvαt(X)

)
· (X − χj∗) +

(
n∑
i=1

aiβv,i + δvβt

)
.

Given that βt = 0, we get qv(X) =
∑n
i=1 aiαi(X)+ δvαt(X) and βv =

∑n
i=1 aiβv,i. This proves Eq. (6). The

proof for Eq. (7) is similar. ut

The SATSDH reduction extracts the following functions of the witness a and δv, δw: [qv(s)]2 =
[
∑n
i=1 aiαi(s) + δvαt(s)]2, [qw(s)]2 = [

∑n
i=1 aiα̂i(s) + δwαt(s)]2, [βvz]2 = [

∑n
i=1 aizβv,i]2, and [βwz]2 =

[
∑n
i=1 aizβw,i]2, where z, s ∈ Zp are secrets of the SATSDH assumption. The idea is that we can break

the d-SATSDH assumption by computing [βv]1 =
∑n
i=1 βv,i[ai]1 (note that [ai]1 are extractable from the

PB commitment), [βw]1 =
∑n
i=1 βw,i[ai]1 and moreover by Lemma 5,

[
β2
v−βw
s−χj∗

]
T

=
[
P (s)
s−χj∗

]
T
− ([V ]1 +

[βv]1)[qv(s)]2 + [1]1[qw(s)]2, where [ P (s)
s−χj∗

]T = [H]1[
∏
i 6=j∗(s − χi)]2 can be computed from the verification

equation. Together with other extracted elements, this is now enough to break the SATSDH assumption. We
refer to Theorem 7 for more details.
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Proofs of security. We prove completeness, soundness, and zero-knowledge of the new QA-NIZK construc-
tion.

Theorem 5. ΠSAP has quasi-adaptive completeness.

Proof. Since the BLS argument is perfectly complete, we only need to check the last verification equation:
the left-hand side is [V ]1[V ]2 − [W ]1[1]2 =

[
V 2(s)−W (s)

]
T
= [P (s)]T according to the definition of P (X),

and the right hand side is [H]1[t(s)]2 = [H(s)]1[t(s)]2 = [P (s)/t(s)]1[t(s)]2 = [P (s)]T . ut

Theorem 6. ΠSAP has perfect quasi-adaptive zero-knowledge.

Proof. We prove it by showing that the proof can be efficiently simulated given the BLS trapdoor tdbls. Since
we set Sv = ∅, then the SSB commitments are perfectly hiding by the AEPH property. Thus, we may simulate
[c̃]2 by committing to 0n+1. Next, V and W are uniformly random and independently distributed in the
honest proof. This is the case since s is chosen such that t(s) 6= 0. Hence, the simulator can pick µ1, µ2←$Zp
and define [V ]1,2 = µ1[t(s)]1,2, [W ]1 = µ2[t(s)]1. Then, [H]1 = µ2

1[t(s)]1 − [µ2]1 and the verification equation
will be satisfied. Finally, the BLS proof ψ can be perfectly simulated (see [GHR15]) using the trapdoor
tdbls. ut

Remark 2. Note that the perfect zero-knowledge proof in [DGP+19] does not hold since t(s) = 0 is possible.
In this case we would get [V (s)]1 = [

∑n
i=1 aivi(s) + δvt(s)]1 = [

∑n
i=1 aivi(s)]1, which may leak information

about the witness. The argument of [DGP+19] still achieves statistical zero-knowledge since t(X) has only
polynomially many roots. In ΠSAP, we explicitly sample non-roots of t(X) and thus obtain perfect zero-
knowledge. A similar change would also make [DGP+19] argument perfectly zero-knowledge.

Theorem 7. Let Advsnd(A) be the advantage of any non-uniform PPT adversary A against the computa-
tional quasi-adaptive soundness of ΠSAP. Then, there exists non-uniform PPT adversaries B0 and B2 against
strong soundness of the BLS argument, B1 against the FSH, and B3 against the d-SATSDH assumption such
that,

AdvsndA,ΠSAP
(λ) ≤ AdvsndB0,Πbls

(λ) + d
(
AdvfshCOM,n′,qv,B1

(λ) + AdvsndB2,Πbls
(λ) + AdvsatsdhB3,d (λ)

)
.

Proof. In order to prove soundness, we will prove indistinguishability of the following games.

– Real: This is the original quasi-adaptive soundness game (see Section 2.2). The output is 1 if the adversary
produces a false accepting proof.
In particular, it means that if [c]1 opens to [a]1 and [c′]2 opens to [a′]2, then either
• a 6= a′, or
• (a>vi) · (a>vi)− a>wi 6= 0 for some i = 1, . . . , d.

(Since the commitments are perfectly binding, a and a′ are uniquely determined by [c]1 and [c′]2.)
– Game0: This game is identical to the previous one, except for the following differences. Instead of generat-

ing the commitment key as ck← Dp(n, d), the game samples u, u′←$Zp itself, sets ck = ([1, u]>1 , [1, u
′]>2 ),

and stores (u, u′). When A outputs x = ([c]1, [c
′]2), π accepted by the verifier, the game will extract [a]1

from [c]1 with the secret key u and [a′]2 from [c′]1 with the secret key u′. Most importantly, we also
change the winning condition of this game. In addition to the standard soundness winning condition(
V(crs, x, π) = 1 and ¬(∃w : Rρ(x,w))

)
, we require that a = a′.

– Game1: This game is identical to the previous one except that the game picks j∗←$ [1 .. d] and aborts if a
satisfies the j∗-th equation. That is, A wins if in addition to the standard soundness winning condition,
a = a′ and

(
a>vj∗

)2 − a>wj∗ 6= 0.
– Game2: This game is the same as the previous one except that we change the commitment key c̃k by

using a different matrix M 6= 0 during its generation.
For each i ∈ [1 .. n], let us express

vi(X) =αi(X)(X − χj∗) + βv,i ,

wi(X) =α̂i(X)(X − χj∗) + βw,i ,
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and t(X) = αt(X)(X − χj∗) + βt. We will pick z←$Zp, which is going to be part of the SATSDH

challenge, and change the EMP commitment key c̃k by setting

M =


α1(s) . . . αn(s) αt(s)
α̂1(s) . . . α̂n(s) αt(s)
βv,1z . . . βv,nz 0
βw,1z . . . βw,nz 0

 .

Let us now analyze the games.

Lemma 7. There exists a non-uniform PPT adversary B0, such that Pr[Real(A) = 1] ≤ Pr[Game0(A) =
1] + AdvsndB0,Πbls

(λ).

Proof. Let us start by observing that

Pr[Real(A) = 1] =Pr[(Real(A) = 1 ∧ a = a′) ∨ (Real(A) = 1 ∧ a 6= a′)]
=Pr[Game0(A) = 1] + Pr[Real(A) = 1 ∧ a 6= a′] .

The probability of the latter event can be reduced to soundness of Πbls. We will construct a Πbls soundness
adversary B0 to show this. Let ρbls = ([N1]1, [N2]2) be sampled as in the CRS of ΠSAP and let ωρbls =
(u, u′, s,K) be the parameter witness of ρbls. Recall that since Πbls is strongly quasi-adaptively sound, the
adversary is allowed to get ωρbls as an input.

Suppose that the adversary B0 gets as an input (p, crsbls, ωρbls). Since B0 knows ωρbls , it can reconstruct
the CRS of ΠSAP,

crs = (p, ck =
(
[1, u]>1 , [1, u

′]>2
)
, c̃k = [K]2, {

[
si
]
1,2
}di=1, crsbls).

Next, it runs A(p, crs) to obtain x = ([c]1, [c
′]2) and π, and extracts from it the statement xbls :=

([c]1, [c
′]2, [V ]1, [W ]1, [V ]2, [c̃]2)

> and the BLS proof ψ. It returns (xbls, ψ).

The condition Real(A) = 1 ∧ a 6= a′ implies that Vbls(crsbls, xbls, ψ) = 1 ∧ xbls 6∈ Im

(
[N1]1
[N2]2

)
. Thus, we

get that Pr[Real(A) = 1 ∧ a 6= a′] ≤ AdvsndB0,Πbls
(λ) and the result follows. ut

Lemma 8. The following holds,

Pr[Game0(A) = 1] ≤ d · Pr[Game1(A) = 1] .

Proof. The winning condition in Game1 is the winning condition of Game0 (soundness condition and a = a′)
and additionally that the j∗-th equation is invalid. Thus,

Pr[Game1(A) = 1] = Pr[Game0(A) = 1 ∧ j∗-th equation is invalid] =
Pr[Game0(A) = 1] · Pr[j∗-th equation is invalid | Game0(A) = 1] .

In order for A to win in Game0 one of the d equations has to be invalid. Given that j∗ is picked uniformly at
random and independently from A’s input, we get that Pr[j∗-th equation is invalid | Game0(A) = 1] ≥ 1/d.
Therefore,

Pr[Game1(A) = 1] ≥ Pr[Game0(A) = 1] · (1/d)

and Pr[Game0(A) = 1] ≤ d · Pr[Game1(A) = 1]. ut

Lemma 9. There exists a non-uniform PPT adversary B1 against FSH such that |Pr[Game1(A) = 1] −
Pr[Game2(A) = 1]| = AdvfshCOM,n′,qv,B1

(λ).

Proof. Game1 and Game2 differ only in the FSSB commitment key that encode different functions, but these
keys are indistinguishable due to the FSH property.
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To show this, we construct an adversary B1 that first gets as an input (p, n′, qv). It then chooses two
function sets S0 and S1. For simplicity, let us represent them as matrices S0 =M0 = 0qv×n′ and S1 =M1

is the matrix described in Game2. The values s, z, j∗ that define M1 are stored by B1.
Then the FSH game picks β←$ {0, 1} and generates a commitment key c̃kβ fromMβ . Next, B1 gets c̃kβ

as an input. Since it knows s, z, it can simulate crs of ΠSAP, and run A(p, crs) to obtain
(
x = ([c]1, [c

′]2), π
)
.

It extracts [a]1 and [a′]2 respectively from [c]1, [c′]2, and then tests the winning condition of Game1/Game2:

– V(crs, ([c]1, [c
′]2), π) = 1,

– [a]1[1]2 = [1]1[a
′]2, which implies that a = a′, and

– ([a]>1 vj∗)([a]
>
2 vj∗)− ([a]>1 wj∗)[1]2 6= [0]T (Note that is also implies the more general soundness winning

condition x 6∈ LSAP,ck).

If all of the above hold, then B1 outputs 1 and otherwise it outputs 0. Since the case β = 0 simulates Game1
and β = 1 simulates Game2, we get that

Pr[B1(c̃kβ) = β] =Pr[β = 1] · Pr[B1(c̃k1) = 1 | β = 1]

+Pr[β = 0] · Pr[B1(c̃k0) = 0 | β = 0]

=
1

2

(
Pr[B1(c̃k1) = 1 | β = 1] + (1− Pr[B1(c̃k0) = 1 | β = 0])

)
=
1

2

(
Pr[Game2(A) = 1] + (1− Pr[Game1(A) = 1])

)
.

The advantage of B1 for FSH property is defined as

AdvfshCOM,n′,qv,B1
(λ) =2 · |Pr[B1(c̃kβ) = β]− 1

2
|

=2 · |1
2

(
Pr[Game2(A) = 1] + 1− Pr[Game1(A) = 1]

)
− 1

2
|

=|Pr[Game2(A) = 1]− Pr[Game1(A) = 1]|.

Therefore, we have proven the claim. ut

Lemma 10. There exists a non-uniform PPT B2 against the strong soundness of the Πbls and a non-uniform
PPT B3 against d-SATSDH such that

Pr[Game2(A) = 1] ≤ AdvsndB2,Πbls
(λ) + AdvsatsdhB3,d (λ).

Proof. Let E be the event that ([c]1, [V ]1, [W ]1, [V ]2, [c̃]2)
> ∈ Im

(
[N1]1
[N2]2

)
and E be the complementary

event. Obviously,

Pr[Game2(A) = 1] ≤ Pr[Game2(A) = 1|E] + Pr[Game2(A) = 1|E]. (8)

For the latter event, we can easily construct from A a non-uniform PPT adversary B2 that breaks strong
quasi-adaptive soundness of Πbls. Such an adversary receives as an input

(
crsbls, ωρbls = (u, u′, s,K)

)
sampled

according to the distribution specified by Game2. This is sufficient to construct the CRS of ΠSAP in the usual
way. Now the adversary B2 can use the output of A to break the soundness of Πbls in a straightforward way.
Thus, Pr[Game2(A) = 1|E] ≤ AdvsndB2,Πbls

(λ).
In the following, we bound the first term of the sum in Eq. (8) by constructing a non-uniform adversary

B3 which breaks the d-SATSDH assumption in the case that E happens. Note that in this case there exists

a witness (a, r, r′, δv, δw, rv)
> for membership in Im

(
[N1]1
[N2]2

)
. Furthermore, if the A wins in Game2, then

the witness is unique since

– [c]1 is perfectly binding and thus uniquely fixes a and r,
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– [c′]2 is perfectly binding and thus uniquely fixes a′ and r′,
– winning condition requires that a = a′,
– [V ]1 and a uniquely fix δv,
– [W ]1 and a uniquely fix δw, and
– [a]1 and δv uniquely fix rv.

In particular, this uniquely determines the polynomial P (X) = (v(X) + δvt(X))2 − w(X) + δwt(X).
We now describe the full reduction. Adversary B3 receives the d-SATSDH assumption challenge(

p, {
[
si
]
1,2
}di=1, [z]2

)
. Let us observe that from this it is possible to construct the the CRS of ΠSAP as it

is specified in Game2:

– ck← Dp(n, d) does not depend on s or z and can be easily sampled (together with secret keys u, u′).
– (c̃k, t̃d) can be constructed but it needs some further explanation. Firstly, since M described in Game2

contains some univariate polynomials in s of degree less that d and linear functions in z, then B3 is
able to efficiently compute [M ]2 using the challenge {

[
si
]
2
}d−1i=1 , [z]2. Secondly, even though KC2 requires

M as an input, if we look at the construction in Fig. 4 it is clear that (c̃k, t̃d) can also be efficiently
computed from [M ]2.

– B3 can efficiently compute [N1]1 and [N2]2 from ck, {
[
si
]
1,2
}di=1, and c̃k. Then (crsbls, tdbls) ←

Kbls([N1]1, [N2]2).
– By composing them, we get crs = (p, ck, c̃k, {

[
si
]
1,2
}di=1, crsbls) of ΠSAP.

Then B3 sends crs to the soundness adversary A that returns ([c]1, [c′]2) and π.
The adversary B3 uses the secret key u to extract [a]1 ∈ G1 from [c]1 and uses the FSSB trapdoor t̃d to

extract from [c̃]2 the following elements:

– [qv(s)]2 = [
∑n
i=1 aiαi(s) + δvαt(s)]2,

– [qw(s)]2 = [
∑n
i=1 aiα̂i(s) + δvαt(s)]2,

– [βvz]2 = [
∑n
i=1 aizβv,i]2, and

– [βvz]2 = [
∑n
i=1 aizβw,i]2.

The above equalities hold because of Lemma 6.
Since verification succeeds, [V ]1[V ]2 − [W ]T = [H]1[t(s)]2. By the definition of P (X), we have that the

left hand side is [V 2 −W ]T = [P (s)]T .
If we divide both sides of the verification equation by s− χj∗ , then[

P (s)

s− χj∗

]
T

= [H]1 ·
[

t(s)

s− χj∗

]
2

= [H]1 ·

∏
i 6=j∗

(s− χi)


2

,

so the adversary B3 can compute
[
P (s)

s− χj∗

]
T

from [H]1 and {[si]2}di=0 in the CRS. On the other hand, based

on Lemma 5 [
P (s)

s− χj∗

]
T

=

[
(V (s) + βv)qv(s)− qw(s) +

β2
v − βw
s− χj∗

]
T

,

and we have β2
v − βw 6= 0 (otherwise the j∗-th equation is satisfied, in which case the game aborts), that is

β2
v 6= βw.
According to Eq. (6) and Eq. (7), B3 can compute [βv]1 =

∑n
i=0[ai]1βv,i, [βw]1 =

∑n
i=0[ai]1βw,i. Thus,

B3 can also compute [
β2
v − βw
s− χj∗

]
T

=

[
P (s)

s− χj∗

]
T

− ([V ]1 + [βv]1)[qv(s)]2 + [1]1[qw(s)]2.

Finally B3 returns (
χj∗ , [βv]1, [βw]1, [zβv]2, [zβw]2,

[
β2
v − βw
s− χj∗

]
T

)
.
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Since β2
v 6= βw, it breaks the d-SATSDH assumption.

Hence by the triangle inequality we have Pr[Game2(A) = 1] ≤ AdvsndB2,Πbls
(λ) + AdvsatsdhB3,d (λ). ut

Finally, we get that if there exists a non-uniform PPT soundness adversary A, then there exist non-
uniform PPT adversaries B0, B1, B2, and B3 such that

– according to Lemma 7, Pr[Real(A) = 1] ≤ Pr[Game0(A) = 1] + AdvsndB0,Πbls
(λ),

– according to Lemma 8, Pr[Game0(A) = 1] ≤ d · Pr[Game1(A) = 1],
– according to Lemma 9, |Pr[Game1(A) = 1]− Pr[Game2(A) = 1]| = AdvfshCOM,n′,qv,B1

(λ), and
– according to Lemma 10, Pr[Game2(A) = 1] ≤ AdvsndB2,Πbls

(λ) + AdvsatsdhB3,d (λ).

When combining those, we obtain

AdvsndA,ΠSAP
(λ) ≤ AdvsndB0,Πbls

(λ) + d
(
AdvfshCOM,n′,qv,B1

(λ) + AdvsndB2,Πbls
(λ) + AdvsatsdhB3,d (λ)

)
.

ut
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A Relation to Existing Primitives

A.1 Relation to SSB Hashes

The SSB requirement makes the EMP commitment scheme look similar to SSB hash functions [HW15,
OPWW15], in which one can compute a hash of a vector v such that the computed hash is statistically
binding in one coordinate of v. However, there are also obvious differences. First, to obtain zero-knowledge,
we need hiding (AESH) that is not required from hash functions. This is, intuitively, a natural distinction and
corresponds to the difference between collision-resistant hash families and statistically hiding commitment
schemes.

Second, [HW15,OPWW15] require that an SSB hash has the local opening property, meaning that the
committer can efficiently open just one coordinate of the committed vector. In the QA-NIZK application, we
do not need this property: the commitment key ck is created by a trusted third party, and there is no need
for the honest parties to ever open the commitment. Instead, in the soundness proof, we need somewhere
statistical extractability (SSE), stating that the creator of ck (e.g., the adversary B) must be able to extract
the succinct guilt witness. SSE is not needed in the case of SSB hashes. Although not needed in our concrete
applications, it is also desirable to have the almost everywhere statistical trapdoor (AEST) property, where
the creator of ck is able to replace non-SB coordinates with anything she wishes. Finally, we allow ck to be
long, but require commitments to be succinct.

The properties of SSB and local opening are orthogonal: it is possible to construct efficient SSB hashes
without local opening [OPWW15] and efficient vector commitments [LY10,CF13] (which have a local open-
ing) without the SSB property.

A.2 Relation to Oblivious Transfer (OT)

SSB commitments are directly related to two-message OT protocols as defined in [AIR01]. In an OT protocol,
the sender has an n-element database and the chooser has an index-set S with |S| ≤ q. The chooser wants to
obtain xS ; no additional information should be leaked either to the chooser or the sender. In a two-message
OT protocol (in the plain model), the chooser sends the first message otq (an encoding of S) to the sender who
replies with the second message otr (an encoding of xS). OT protocols have very wide applications in many
areas of cryptography, with two-message OT protocols in the plain model such as [NP01,AIR01,GR05,Lip05]
being of special interest because of their efficiency.

Essentially, SSB commitments are non-interactive analogs of such protocols, the commitment key corre-
sponding to the first OT message ot1, and the commitment corresponding to the second OT message ot2.
However, the connection is not completely one-to-one, since there are subtle differences in the security def-
initions between SSB commitment schemes and OT protocols. Importantly, while in OT, the ot1 generator
is always untrusted, in our applications it is sufficient to consider a trusted ck generator, which allows for
more efficient constructions. Additionally, SSB commitment schemes (such as EMP) result in a flavour of
OT where the receiver’s message ot1 is long but can be reused multiple times, while the sender’s message
ot2 is much shorter.

Thus, all secure two-message OT protocols are also secure SSB commitment schemes. Unfortunately,
none of the known efficient two-message OT protocols have the required algebraic structure to construct
QA-NIZKs, and thus they are unsuitable for our main application.

A.3 Relation to PCP-Based SNARKs

The QA-NIZK application of SSB commitments is based on the observation that the language of bit-strings
(resp., CircuitSAT) has a local verifiability property, similar to PCP [AS92,ALM+92]: one can establish, by
checking one random coordinate of the bit-string (resp., all adjacent wires of a random gate), whether an
input belongs to the language or not. Typical PCP-based zero-knowledge arguments like [Kil94] use PCPs
with small soundness error; as a drawback, such PCPs have a long proof and an inefficient reduction from
CircuitSAT. Daza et al. [DGP+19] and the current paper use a trivial PCP with a large soundness error

30



but with a trivial reduction from CircuitSAT. The use of SSB commitments means that the efficiency loss
is logarithmic in n (one needs to use ≈ 2 log n-bit longer group elements) while in the case of earlier PCP-
based arguments the efficiency loss is much larger. Nevertheless, the use of SSB commitments is not limited
to trivial PCP; one can use them together with any PCP that has a small number of queries and short proof
length.

B Details of Algebraic Commitments Schemes (ACS)

B.1 Characterisation of ACS

ACS as SSB commitment schemes. We will show that ACS defined in Section 4 are computationally
hiding under MDDH. They are also perfectly binding in those components that correspond to the linearly
independent columns ofU1. If they are also pair-wise to columns ofU2, the system of equations has maximum
rank and unique solution. We give this characterisation in Lemma 11.

Moreover, for extraction assume that span{U1} ∩ span{U2} = {0}. Intuitively, U1 defines the space of
the opening x, while U2 defines the randomness space. To extract in q positions, we hence need ek is such
that ek[U2]ι = 0 and ek · [U1]ι = (bi)

n
i=1, where bi is ei in q positions and 0 elsewhere. Then by the linearity

of ACS, ek · Comck(x, r) = ek · [U1]ιx = [x]ι.

Lemma 11. Let n ≥ 1 and q ≤ n . Let COM be an ACS with commitment key ck = [U1,U2]ι sampled from
D1 ×D2 as defined in Definition 3.

1. COM is AECH under D2-MDDHGι .
2. COM is ISH under D1,D2-MDDHGι .
3. COM is SPB if U1 has rank q and span{U1} ∩ span{U2} = {0}.
4. COM is [·]ι-SPE if U1 has rank q and span{U1} ∩ span{U2} = {0}.

Proof. Let S ⊆ [1 .. n], |S| ≤ q be the indices of x one can extract during opening.
(i: AECH) Let A be an adversary that breaks AECH with non-negligible probability, say εA. Consider

the following Gι-MDDH adversary B. B receives a challenge [A,yβ ]ι whereA←$D2, y0←$Zkp, and y1 ← Ar
for r←$Zmp . B sets [U2]ι ← [A]ι, and generates U1 from the distribution D1. B sends ck = [U1,U2]ι to A
who replies with two messages x0,x1, such that x0,S ,x1,S . B computes c0 ← [U1]ιx0+[U2]ιr, for r←$Zmp ,
and c1 ← [U1]ιx1 + [yβ ]ι. B picks β′ ← {0, 1} and sends cβ′ to A. A guesses which message was committed
by returning βA ∈ {0, 1} to B. B sends βA to the MDDH challenger. Clearly,

Pr[βA = β] =Pr[βA = 0|β = 0]/2 + Pr[βA = 1|β = 1]/2

=εA/2 + (Pr[βA = 1|β = 1, β′ = 0]/2 + Pr[βA = 1|β = 1, β′ = 1]/2)/2

=εA/2 + εA/4 + εA/8 = 7/8 · εA .

Thus if A succeeded with non-negligible probability, then so did B.
(ii: ISH) Firstly we prove that for any S0 with |S0| ≤ n, if S1 = S0 ∪ {i∗} for some i∗ /∈ S0 and S0,S1 ⊆

[1 .. n], then D0,q
1,2 := ([Dn,kS0 ]ι, [Dm,kS0 ]ι) and D1,q

1,2 := ([Dn,kS1 ]ι, [Dm,kS1 ]ι) are computationally indistinguishable
under MDDH. Let A be an adversary that can distinguish D0

1,2 and D1
1,2. We construct the following MDDH

adversary B that receives a challenge [A,yβ ]ι where A1,A2←$D0
1,2, y0←$Zkp, and y1 ← (A>1 |A>2 )r for

r←$Zmp . B sets [U1]ι ← [A1]ι, and [U2]ι ← ([A2]ι|[yβ ]ι). B computes cβ ← [U1]ιx + [U2]ιr, for r←$Zmp
and sends cβ to A who replies with βA. Thus, B has the same advantage in breaking MDDH as A has in
distinguishing D0,q

1,2 and D1,q
1,2.

Now, for any sets S0 and S1 it holds that AdvindistA,D0
1,2,D1

1,2
(λ) ≤ (|S0 ∪ S1| − |S0 ∩ S1|) · Advmddh

B,Dn,q1,2 ,Pgen
(λ).

(iii: SPB) Assume that all columns of U1 and U2 are pairwise linearly independent. Consider the matrix
system of equations defined by (U1,U2)(

x
r ) = Comck(x, r). This system has a unique solution because the

matrix has full rank. Hence, each commitment corresponds to a unique vector ( xr ). Now, if U1 has q columns
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pair-wise linear independent and columns of U2 pair-wise linear independent to all of them, consider the
system that has a matrix with those q columns of U1 and the whole U2. Its rank is maximum as well and
the result follows.

(iv: [·]-SPE) Since k > m, for any matrix U2 of size k ×m there exist matrices ek ∈ U⊥2 that define

orthogonal spaces ofU2 of size k′×k for k′ ≥ k−m such that ek·U2 =

(
0(k−m)×m

a

)
where a ∈ Z(k′−k+m)×m

p .

This space has at least dimension 1 because k > m. Moreover, there exists an appropriate change of basis

of the space such that ek ·U1 =

(
Iq
b1
b2

)
where b1 ∈ Z(k′−q)×q

p , b2 ∈ Zk
′×(n−q)
p . This is well-defined since

k−m ≥ q and if q columns of the matrices are pair-wise linear independent then k′− q ≥ k−m− q ≥ 0. ut

Corollary 1. The minimum size of the k × m matrix to guarantee [·]ι-extraction of n ≥ 1 elements is
k = n+ 1, m = 1.

Proof. Information theoretically the commitment size should be no less than the dimension of the opening
in order to extract it completely, so k ≥ n. The orthogonal space has to be at least of dimension 1 in order
to provide extraction, so the minimal difference is k − m ≥ 1. We have k ≥ n + m directly by the linear
independence of the columns in matrices U1,U2. Hence, the minimal constants are m = 1, k = n+ 1. ut

ACS and QA-NIZK arguments. Algebraic commitments are suitable to work with QA-NIZK arguments
for linear spaces because most of their properties can be expressed in terms of membership or non-membership
to certain linear subspaces. For example, the works of González et al. [GHR15,GR16,DGP+19] implicitly
use an SSB commitment scheme COM to construct efficient QA-NIZK argument systems based on falsifiable
assumptions. The soundness of their QA-NIZK system depends on the ISH, SSB, and SSE properties, while
the zero-knowledge property depends on the AESH and CH properties. On the other hand, honest parties
never need to actually open the commitment; the opening (more precisely, extraction) is only done inside
the security proof by using the SSE property10. Moreover, in our QA-NIZK argument in Section 7, as well
as [DGP+19], we use functional SSB commitments since FSSB is more straightforward to our use of it in the
soundness proof.

C Security of q-SATSDH

We prove in the following that our new assumption is falsifiable and equivalent to TSDH assumption under
a knowledge assumption.

Let us first see that q-SATSDH is falsifiable. Observe that the challenger knows z, s ∈ Zp. Thus, upon
receiving (r, [β1, β2]1, [β̃1, β̃2]2, [ν]T ) it verifies that: (a) [1]1[β̃1]2 = [β1]1[z]2, (b) [1]1[β̃2]2 = [β2]1[z]2, (c)
1
z [β1]1[β̃1]2 6= [β2]1[1]2, and (d) (s− r)[ν]T = 1

z [β1]1[β̃1]2 − [β2]1[1]2.
We prove that if the Knowledge of Exponent Assumption in bilinear groups holds, then both q-TSDH

and q-SATSDH assumptions are equivalent. We recall in the following the definition of the Bilinear Bilinear
Diffie-Hellman Knowledge of Exponent assumption.

Definition 8 (Bilinear Diffie-Hellman Knowledge of Exponent Assumption, BDH-KE
[ABLZ17]). For all non-uniform PPT adversaries A:

Pr [([α1]1 , [α2]2 ‖a)← (A‖XA)(gk) : e ([α1]1 , [1]2) = e ([1]1, [α2]2) ∧ a 6= α1] ≈ 0,

where the probability is taken over gk← Pgen(1λ) and the coin tosses of adversary A.

Lemma 12. Given a bilinear group gk = (q,G1,G2,GT ), if the q-SATSDH assumption holds then the q-
TSDH assumption holds.
10 In this sense, one could also call them trapdoor hash functions [DGI+19] with the SSB and AESH properties
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Proof. Assume that A is an adversary against the q-TSDH assumption, we construct another adversary B
against q-SATSDH assumption that receives a challenge tuple (gk, {[si]1,2}qi=1, [z]2) and sends the elements
(gk, {[si]1,2}qi=1) toA.A then returns (r, [ν]T ) that breaks q-TSDH. The adversary B chooses β1, β2 ← Zp such
that β2

1 6= β2 and returns
(
r, [β1, β2]1, β1[z]2, β2[z]2, (β

2
1 − β2)[ν]T

)
which breaks the q-SATSDH assumption.

ut

Lemma 13. Given a bilinear group gk = (q,G1,G2,GT ) where BDHKE assumption holds, if the q-TSDH
assumption holds then the q-SATSDH assumption holds.

Proof. Assume that A is an adversary against the q-SATSDH assumption, we construct an another adver-
sary B against the q-TSDH assumption that receives a challenge tuple (gk, {[si]1,2}qi=1). B chooses z ← Zp
and sends the elements (gk, {[si]1,2}qi=1, [z]2) to A. The adversary A then returns (r, [β1, β2]1, [β3, β4]2, [ν]T )
that breaks q-SATSDH. Now B computes [β̂1]2 = 1

z [β3]2 and [β̂2]2 = 1
z [β4]2 which satisfy e([βi]1, [1]2) =

e([1]1, [β̂i]2) for i = 1, 2. By the BDHKE assumption there exists and extractor of β1, β2 that solves the
q-TSDH assumption with

(
r, 1
β2
1−β2

[ν]T

)
. ut
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