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Abstract. Private set intersection and related functionalities are among the most prominent real-world applications
of secure multiparty computation. While such protocols have attracted significant attention from the research com-
munity, other functionalities are often required to support a PSI application in practice. For example, in order for
two parties to run a PSI over the unique users contained in their databases, they might first invoke on a support
functionality to agree on the primary keys to represent their users.
This paper studies a secure approach to agreeing on primary keys. We introduce and realize a functionality that
computes a common set of identifiers based on incomplete information held by two parties, which we refer to as
private identity agreement. We explain the subtleties in designing such a functionality that arise from privacy re-
quirements when intending to compose securely with PSI protocols. We also argue that the cost of invoking this
functionality can be amortized over a large number of PSI sessions, and that for applications that require many
repeated PSI executions, this represents an improvement over a PSI protocol that directly uses incomplete or fuzzy
matches.
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1 Introduction

In recent years Private Set Intersection (PSI) and related two-party protocols have been deployed in real-
world applications [IKN+17]. In the simplest setting of PSI, each party has a set Xi as its input, and the
output will be the intersection

⋂
Xi. More generally the parties may wish to compute some function f over

the intersection and obtain output f (
⋂

Xi) [IKN+17,CO18,PSWW18,FNO18,PSTY19].
Owing to its importance in real-world applications, PSI has been the topic of a significant body of re-

search. Common PSI paradigms include DDH-style protocols [HFH99,AES03,DCKT10,Lam16,SFF14],
approaches based on oblivious transfer [PSZ14,PSSZ15,DCW13,RR16] or oblivious polynomial evalu-
ation [FNP04,DSMRY09], and approaches based on garbled circuits [HEK12,PSSZ15,PSTY19]. Perfor-
mance improvements have been dramatic, especially the computational overhead of PSI.

State-of-the-art PSI protocols require exact matches to compute the intersection; in other words, the
intersection is based on bitwise equality. In real-world application scenarios the parties may not have inputs
that match exactly. As an example, consider the case of two centralized electronic medical record (EMR)
providers, which supply and aggregate medical records for medical practitioners, who wish to conduct a
study about the number of patients who develop a particular disease after their recent medical histories
indicate at-risk status. The EMR providers could use a PSI protocol to count the total number of unique
diagnoses among their collective patients. Unfortunately, the EMR providers may not have the same set of
information about each patient in their databases; for example, one might identify Alice by her street address
and phone number, while the other might use her phone number and email address. Further complicating
matters, Bob could use “bob@email.com” for one provider, but “BobDoe123@university.edu” for another.

It may appear that naively applying PSI to each column in two parties’ databases would allow them
to realize their desired functionality, but such an approach has many flaws. For example, in the case that
individuals use different identifying information for the different services, this approach could incur false
negatives. To remedy this issue, there has been previous research on the private record linkage problem,
in which “fuzzy matches” between records are permitted [WD14,HMFS17]. In this problem, two rows
from different parties’ databases can be said to match if they satisfy some closeness relation, for example by
matching approximately on t out of n columns. However, fuzzy matching PSI protocols are not as performant
as exact-matching protocols.

As a design goal, we consider applications in which two parties would like to run PSI many times over
respective databases. In our EMR example, the rows comprising users change slowly as new patients enter
the system and some are expunged. However, auxiliary medical data could change frequently, at least daily.
If the EMR providers wish to continuously update their medical models or run multiple analyses, they may
run many PSI instances with auxiliary data [IKN+17].

In general, for many applications it is desirable for two parties to run PSI-style protocols many times
over their respective data sets, and in this work we assume the parties will perform many joint queries. It
is therefore advantageous for the parties to first to establish a new column for their databases, containing a
single key for each row that can be used for the most performant exact-match PSI protocols.

As a second design goal, we relax an assumption that is standard for the private record linkage problem.
We believe that it is not always realistic in practice to assume or to ensure that each participant’s database
uniquely maps its rows to identities. For example, one EMR provider may unknowingly have multiple
records about the same person in its database, as a result of that person providing different identifying infor-
mation to different medical providers. As part of a correct protocol, some preprocessing phase must identify
records that belong to the same individual – using both parties’ records – and group them accordingly. This
is especially important for PSI applications that compute aggregate statistics.
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This correctness requirement introduces an additional privacy concern. Consider the case in which party
A has a single row in its database that matches more than one row in party B’s database. Naively running
a protocol to produce primary keys which link records would inevitably reveal some information to one of
the parties. Either party A would learn that the party B is unaware that its rows could be merged, or party B
would learn that it has several rows that correspond to a single person. Either way, one party will learn more
about the other party’s input than it should.

This work focuses on resolving the apparent trade-offs in privacy and performance between state-of-the-
art exact-matching and fuzzy-matching PSI protocols. Our approach is to design a new two-party protocol
that computes a new identifier for every row in both databases that will give exact matches. To avoid the
additional leakage problem described above, our protocol outputs either (a) shares of the new identifiers,
or (b) encryptions of the new identifiers for a generic CPA-secure encryption scheme with XOR homo-
morphism, which can be decrypted with a key held by the other party. (Our protocol can also output both
share and encryptions, and we in fact prove security in the case that it outputs both.) The regime of PSI
protocols that can be composed with our protocol is limited to those that can combine shares or decrypt on-
line without revealing the plaintext to either party. However, the flexibility we provide in producing outputs
offers flexibility to the design of PSI protocols which can be composed with ours. Additionally, although
our identifier-agreement protocol is computationally intensive compared to the subsequent PSI protocol, we
argue that this is a one-time cost that can be amortized over many PSI computations.

1.1 Our Contributions

This work addresses two problems: (1) The performance and accuracy tradeoffs between exact matching
PSI and fuzzy matching PSI protocols. (2) The correctness and privacy problems introduced to PSI by the
possibility of poorly defined rows. We address both of these problems in one shot by defining a functionality
that computes shared primary keys for two parties’ databases, such that the keys can be used multiple times
as inputs to successive efficient PSI protocols, without revealing the keys to the parties. We refer to our stated
problem as the private identity agreement functionality, and define it formally. We additionally discuss the
security implications of composing our identity agreement functionality and subsequent PSI functionalities.
We note that identity agreement is substantially more complex than private set intersection and private record
linkage because of the concerns introduced by producing an intermediate output of a larger functionality.

After defining the identity agreement problem, we present a novel two-party protocol that solves the
problem. We additionally describe a modification to our generic protocol that allows the outputs to naturally
compose with DDH-style PSI protocols. Finally we present performance of our prototype implementation.

2 Problem Definition

Our setting assumes two parties, each holding some database, that wish to engage in inner-join style queries
on their two databases, which we refer to as the private joint-database query functionality F Query. The
join will be over some subset of columns, and will be a disjunction i.e. two rows are matched if any of the
columns in the join match. In Figure 1 we present the ideal private joint-database query functionality.

We consider a scenario in which it is advantageous for the parties to first establish a new database
column containing keys for each record, so that this key can be used for many exact-match PSI protocols.
We refer to this as the private identity agreement functionality, denoted F ID and described in Figure 2.
As we have explained, establishing these keys is a setup phase in a general protocol that realizes F Query.
Importantly, the newly established identities should not be revealed to either party, as this could also reveal
information about the other party’s input. This makes it impossible to separate the protocol for F ID from the
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subsequence PSI-style protocols that the parties will use for their joint queries. We must instead modify the
PSI-style protocols as well to ensure a secure composition with F ID. Our security analysis must therefore
consider the entire F Query as a single system.

2.1 The Identity Agreement Functionality

We denote the set of possible identifiers that either party may hold by I =
⊗

Ii, with each set Ii being one
column and having ⊥ ∈ Ii. To define a “match” we define an equivalence relation S1

user∼ S2 as follows: if
there exists component of s1, j 6=⊥ of S1 and a component s2,k 6=⊥ of S2 such that s1, j = s2,k then S1

user∼ S2.
In other words, we consider two rows to be equivalent if any of their non-empty columns are equal. 3

For each party pi with database Dpi , we assume for simplicity of exposition that every pair of rows S1

and S2 satisfies S1
user
6∼ S2. (This means that the party does not have sufficient information to conclude that

the two rows represent the same element.) Note, however, that it is possible for p1 to have rows S1,1,S1,2,
and for p2 to have a row S2 such that S1,1

user∼ S2
user∼ S1,2. In such a situation, p1 is not aware that its database

contains two rows that represent the same element.
The goal of the identity agreement functionality F ID is to compute a map Λ : Dp1 ∪Dp2 →U such that

for any S1
user∼ S2, Λ(S1) = Λ(S2), and for all S1

user
6∼ S2, Λ(S1) 6= Λ(S2). As we explain below, the parties

will not learn Λ(Si) for their respective databases; they will only see encryptions of the map.
We define the privacy goals of F ID in relation to the overall query functionality F Query: to compute some

PSI functionality where the intersection is determined by the user∼ relation. Importantly, if F ID is composed
with other protocols to realize F Query, then F ID may not reveal any information about user∼ to either party.
Consider, for example, a situation where p1 has in its input S1 and S2, and in p2’s input there is a S∗ such
that S1

user∼ S∗
user∼ S2. It should not be the case that p1 will learn S1

user∼ S2, beyond what can be infered from
the output of the PSI functionality. Likewise, p2 should not learn that p1 has such elements in its input. If
F ID revealed such information, then some party could learn more from the composition of F ID with another
functionality than it would learn from querying only F Query.

Private Query Functionality F Query

1. Setup: Upon receiving messages of the form (setup,sid,Dpi ) from pi, store (sid,Dpi , i). After receiving setup from both
parties with matching sid, ignore all future setup messages with sid.

2. Queries: Upon receiving messages of the form (query,sid, f ) from party pi, where f = ( f1, f2) is the description of a
two-party functionality over two databases:
(a) If both parties have not sent setup messages for sid, ignore the message. Otherwise proceed as follows.
(b) Record the message (query,sid, ( f1, f2), i). If have already recorded (query,sid, ( f1, f2),3 − i), then send

(response,sid, f1(Dp1 ,Dp2 )) to p1 and (response,sid, f2(Dp1 ,Dp2 )) to p2.

Fig. 1: Query functionality F Query, which receives two parties’ databases and responds to queries over functions of the databases.

3 It is possible to establish user∼ for S1 and S2 for any binary relation that s1, j and s2,k may satisfy; however, we feel that equality is
the most natural, and consider only equality in this work. We remark later to indicate when one could substitute another relation
for equality in the construction.
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ID Agreement Functionality F ID

1. Inputs: Each party pi has a tuple inputpi
= (Dpi ,k

enc
pi

), where Dpi is the party’s database and kencpi
is an encryption key

for a CPA-secure encryption scheme (referred to as CPA).
2. Generate Identifiers: Upon receiving (submit,sid, inputpi

) from each pi for session sid, F ID computes a map Λ : Dp1 ∪
Dp2 →U, where U = {0,1}` is a universe of user identities, such that for any two rows S1 and S2 for which S1

user∼ S2,

Λ(S1) = Λ(S2), and for all two rows for which S1
user
6∼ S2, Λ(S1) 6= Λ(S2).

Let Λ(S) be the identifier assigned to a row S. For each row S ∈Dpi , F ID returns (sid,S,CPA.enc(kencp3−i
,Λ(S))) to pi.

Fig. 2: ID Agreement functionality F ID

Two-Party Component Labeling Functionality F lbl

1. Inputs: Each party pi has a tuple inputpi
= (Gpi ,k

enc
pi

,ρpi ), where Gpi = (Vpi ,Epi ) is a graph, kencpi
is an encryption key

for a CPA-secure encryption scheme (referred to as CPA), and ρpi = {ρpi, j} j∈[N] is a list of N `-bit one-time pads.
2. Generate Labels: Upon receiving (submit,sid, inputpi

) from each pi for session sid, F lbl samples random elements
from a universe U = {0,1}` and computes a map Λ : Vp1 ∪Vp2 →{0,1}` such that for any two vertices v1,v2 ∈Vp1 ∪Vp2 ,
Λ(v1) = Λ(v2) if and only if v1 and v2 are in the same connected component in G1∪G2.
For i ∈ {1,2} and j ∈ [|Vpi |], let vpi, j be the jth vertex in Vpi . F lbl computes f encpi

= {CPA.enc(kencpi
,Λ(vpi, j)} j∈[|Vpi |]

and fmask
pi

= {ρpi, j⊕Λ(vpi, j)} j∈[|Vpi |]
F lbl sends (labeling,sid, f encp1

, fmask
p2

) to p1 and (labeling,sid, f encp2
, fmask

p1
) to p2.

Fig. 3: Two-Party Component Labeling Functionality F lbl

3 Security Primitives and Cryptographic Assumptions

3.1 Garbled Circuits

Garbled circuits were proposed by Andrew Yao [Yao82] as a means to a generic two-party computation
protocol. Yao’s protocol consists of two subprotocols: a garbling scheme [BHR12] and an oblivious trans-
fer. Garbled circuit constructions have promising performance characteristics. Most of the CPU work of a
garbled circuit protocol involves symmetric primitives, and as Bellare et al. show, garbling schemes can use
a block cipher with a fixed key, further improving performance [BHR12]. A drawback of garbled circuits is
that they require as much communication as computation, but this can be mitigated by using garbled circuits
to implement efficient subprotocols of a larger protocol.

3.2 ElGamal Encryption

The ElGamal encryption scheme is CPA-secure under the DDH assumption, and supports homomorphic
group operations (denoted ElGl.Mul below). If the plaintext space is small, addition in the exponent can also
be supported, but decryption in this case requires computing a discrete logarithm. Using the identity element
of the group, ElGl.Mul can be used to re-randomize a ciphertext.

Definition 1 (ElGamal Encryption) The ElGamal encryption scheme [ElG85] is an additively homomor-
phic encryption scheme, consisting of the following probabilistic polynomial-time algorithms:

ElGl.Gen Given a security parameter λ, ElGl.Gen(λ) returns a public-private key pair (pk,sk), and speci-
fies a message space M .
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ElGl.Enc Given the public key pk and a plaintext message m ∈ M , one can compute a ciphertext
ElGl.Enc(pk,m), an El Gamal encryption of m under pk.

ElGl.Dec Given the secret key sk and a ciphertext ElGl.Enc(pk,m), one can run ElGl.Dec to recover the
plaintext m.

ElGl.Mul Given the public key pk and a set of ciphertexts {ElGl.Enc(pk,mi)} encrypting messages {mi},
one can homomorphically compute a ciphertext encrypting the product of the underlying messages:

ElGl.Enc(pk,∏
i

mi) = ElGl.Mul({ElGl.Enc(pk,mi)}i)

As described in Section 4.4, we will use ElGl.Mul to induce an XOR homomorphism by encrypting
bit-by-bit. This allows us to avoid performing group operations in the garbled circuit part of our protocol
and reduces our communication cost, at the cost of CPU effort.

4 Secure ID Agreement as Secure Two-Party Component Labeling

In this section, we define a graph problem that we call Two-Party Component Labeling, and provide a
reduction between ID agreement and Two-Party Component Labeling. We then describe an algorithm to
compute component labeling and a two-party protocol that securely implements it.

4.1 Two-Party Component Labeling

In the two-party component labeling problem, each party pi ∈ {p1, p2} has a graph Gpi = (Vpi ,Epi), where
there exists some universe of vertices V for which Vp1 ⊂ V and Vp2 ⊂ V . Each party’s graph contains at
most N vertices, which are distributed among connected components of size at most m. Both N and m are
parameters of the problem. As shorthand, we refer to a connected component as a component. As output,
each party assigns a label to every component in its graph. If there are two components C1 ∈ Gp1 and
C2 ∈ Gp2 for which C1 and C2 have a non-empty intersection, then p1 and p2 must assign the same label
to C1 and C2. Just as we explained with ID Agreement, this property induces a transitive relation. If two
vertices v ∈ Gp1 and u ∈ Gp2 are in the same component of G = Gp1 ∪Gp2 , then their components in Gp1

and Gp2 , respectively, must be assigned the same label.
More precisely, consider parties p1 and p2 with graphs Gp1 and Gp2 , respectively, and let Cpi represent

the set of components that constitute Gpi . Moreover, assume the vertices in Gp1 and Gp2 are drawn from some
universe of vertices V . The two-party component labeling problem is to construct a map Λ : Cp1 ∪Cp2 →U,
where U is a universe of labels. For any two components C1,Cn ∈ Cp1 ∪Cp2 , Λ(C1) = Λ(Cn) if and only if
there is some series of components C2, . . . ,Cn−1 ∈ Cp1 ∪Cp2 such that Ci∩Ci+1 6= /0 for i ∈ {1 . . .n−1}.

4.2 Reducing ID Agreement to Two-Party Component Labeling

We reduce the two-party identity agreement problem to two-party component labeling. Each party p rep-
resents its database as a graph Gp = (Vp ,Ep) as follows. Each piece of identifying information in party
p’s database is represented by a vertex in p’s graph. (Empty entries in a database are simply left out of
the graph.) Edges in the graph connect vertices which represent identifying information of the same user.
Therefore, each set in a party’s database is represented as a component in the party’s graph.

The component labeling of two graphs Gp1 and Gp2 can be trivially used to assign user identities. The
identifier of a user represented by a component C in Gp is directly copied from the label assigned to C during
component labeling.
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Intuitively, the reduction works because the two parties compute ID agreement over their databases
by computing a union of their graphs. If the two parties’ graphs contain the same vertex v (meaning both
databases contain the same piece of identifying information), then the components containing v in Gp1 and
Gp2 are the same component in the union graph G = Gp1 ∪Gp2 .

4.3 An Algorithm for Two-Party Component Labeling

In this section, we present a component labeling algorithm without explicitly addressing privacy concerns.
In Section 4.4, we present a protocol to implement the algorithm while preserving privacy. We illustrate an
execution of our percolate-and-match algorithm in Figure 5 and provide pseudo-code in Figure 7.

Our component labeling algorithm is an iterative procedure in which the two parties assign labels to
every vertex in their respective graphs and then progressively update their vertices’ labels. To initialize the
procedure, each party p constructs an initial labeling for its graph by assiging a unique label to every vertex
in its graph Gp . Specifically, every vertex v in Gp is assigned the label v, the encoding of the vertex itself.
4 Notice that in the initial labeling, no two vertices within a party’s graph are assigned the same label.
However, any vertex that is included in both graphs is assigned the same label by both parties.

By the end of the iterative procedure, two properties of the labelings must be met. First, within each
component of a party’s graph, all vertices must have the same label. Second, if any vertex is in both parties’
graphs, then the vertex has the same label in both parties’ labelings. Together, these two requirements enforce
that every two vertices within a component of C ⊂ G have the same label. This common label can then be
taken as the component’s label.

Each step in our iterative procedure is a two phase process. The first phase operates on each party’s
graph independently. It enforces the property that for each component in a party’s graph, every vertex in the
component has the same label. In this phase, the algorithm assigns to every vertex v∈Gp the (lexicographic)
minimum of all labels in its component in Gp . We call this a percolation phase because common labels are
percolated to every vertex in a component.

In the second phase, the algorithm operates on the vertices which are common to both parties’ graphs. It
ensures that every vertex v which is common to both parties’ graphs has been assigned the same label in the
two parties’ labelings. If one party’s label for v differs from the other party’s label for v, then both labels are
updated to the minimum of two labels that have been assigned to v. We call this a matching phase because
vertices which are common to both graphs are assigned matching labels in the two labelings.

If some vertex’s label is updated in a matching phase, then its label may differ from the labels of the
other vertices in its component. Therefore, the iterative procedure repeats until labelings stabilize. During
percolation, each vertex’s label is set to the minimum label of all vertices in its component. If some vertex’s
label changes during a matching phase, its new label must be “smaller” than its previous label. During the
next percolation phase, the change is propagated by again updating the label of each vertex in the component
is to the minimum label in the component. In Appendix B, we prove that if m denotes the maximum size of
a component in Gp1 ∪Gp2 , then at most m−1 iterations are necessary for vertex labels to stabilize.

4.4 Private Component Labeling

We now provide a protocol which implements the component labeling algorithm described in Section 4.3
while preserving privacy. The ideal functionality F lbl for private two-party component labeling is given in
Figure 3.

4 In an application, the label would be the data that the vertex represents. Additionally, if the parties agree on an encoding scheme
beforehand, types (address, zip, phone) can be encoded as part of a label at the cost of only a few bits.
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4a: Initial Labeling

Gp1 Gp2

v1

v2

v3

v1

v2

v3

v1

v2

v2

v1

v1

v3

4b: Labelings after first percolation
phase.
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4c: Labelings after first matching
phase.
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4d: Labelings after second percolation phase.
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4e: Labelings after second matching phase.
Fig. 5: Depiction of the percolate-and-match algorithm for component labeling. v1, v2, and v3 are common to both Gp1 an Gp2 .
Each vertex’s label is drawn inside the vertex, and its identity is on the side. p1’s graph has an edge between v2 and v3, while p2’s
graph has an edge between v1 and v2. Solid lines depict edges in each party’s graph. Dotted lines depict matches that occur during
matching phases. The figures show the evolution of the algorithm over 2 iterations.

Approach The challenge of securely implementing the percolate-and-match algorithm arises from the fact
that percolate-and-match performs two operations: (1) comparisons on vertices, and (2) updates on vertex
labels. However, if either party knew the output of any such operation on its vertices, then it would learn
information about the other party’s graph. Consider that if a participant learns that its vertex’s label changed
during the any matching phase or during a percolation phase, it learns that one of the vertices in its graph has
a matching vertex in the other party’s graph. Similarly, it a party learns that its vertex’s label isn’t updated
during the first matching or percolation phase, it learns its vertex isn’t in the other party’s graph.

Our approach is to perform both vertex comparisons and label updates without revealing the output of
any comparison or update, and to encrypt all intermediate and output labels so that no information is leaked
about the computation. Naively adapting state-of-the-art PSI protocols in order to perform our matching
phase does not work for this approach, because in addition to finding the common vertices in the two parties’
graphs, we also must perform updates on matching labels, and state of the art PSI protocols do not provide
easy ways to modify auxiliary data without revealing additional information.

To implement comparisons and updates, we use garbled circuits. Importantly, garbled circuits must
implement oblivious algorithms, whose operation is independent of the input data. Notably, for any branch
in the execution tree of an oblivious algorithm, we must perform operations for both possible paths, replacing
the untaken path with dummy operations. Additionally, random accesses to an array (i.e. those for which the
index being read is input-dependent) must either scan over the entire array, incurring a O(N) cost, or use
Oblivious RAM techniques, which incurs log(N) communication overhead per access [LN18,AKL+18].

Matching via Garbled Circuits To perform our matching phase obliviously, we adapt a technique described
by Huang, Evans, and Katz for PSI [HEK12]. In their scheme, called Sort-Compare-Shuffle, each party sorts
its elements, then provides its sorted list to a garbled circuit which merges the two lists. If two parties submit
the same element, then the two copies of the element land in adjacent indices in the merged list. The circuit
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procedure COMPONENTLABELING(G1,G2,m)
L1← SETUP(G1)
L2← SETUP(G2)
for m−1 times do

L1←PERCOLATE(G1,L1)
L2←PERCOLATE(G2,L2)
L1,L2←MATCH(L1,L2)

end for
return L1,L2

end procedure
function SETUP(G)

L ← []N
for all vertex v ∈ G do

L .append((vrt : v, lbl : v) )
end for
return L

end function
function UPDATELABEL(L ,v, lbl∗)

FINDVERT(L ,v).lbl← lbl∗ . updates v’s label in L
end function

function PERCOLATE(G,L)
for all component C ∈ G do

lbl∗←minu∈C FINDVERT(L ,u).lbl
for all vertex v ∈C do

UPDATELABEL(L ,v, lbl∗)
end for

end for
return L

end function
function MATCH(L1,L2)

for all vertex v in L1 and in L2 do
a← FINDVERT(L1,v).lbl
b← FINDVERT(L2,v).lbl
UPDATELABEL(L1,v,min(a,b) )
UPDATELABEL(L2,v,min(a,b) )

end for
return L1,L2

end function
function FINDVERT(L ,v)

return (vrt, lbl) ∈ L for which vrt= v
end function

Fig. 7: Pseudocode for Component Labeling algorithm.

iterates through the list, comparing elements at adjacent indices in order to identify common elements. After
comparing, their circuit shuffles thesorted list before revealing elements in the intersection.

Our construction adapts the sort-compare-shuffle technique to efficiently perform our matching phase
with label updates as follows. Each party submits a sorted list of vertices to a garbled circuit, including aux-
iliary information for each vertex that represents the vertex’s currently assigned label. To perform matching,
we merge the two parties’ lists of vertices into one sorted list L and iterate through L . At each pair of ad-
jacent indices in L , we conditionally assign both elements’ current labels to the minimum of the two labels
only if the vertices match. Matching in this way via garbled circuit hides from both parties all of the matches
that are made between the two parties’ graphs and their respective label updates.

Percolation via Garbled Circuits To percolate labels within a component, a party can submit all of the
vertices in one of its components to a garbled circuit along with each vertex’s current label. The circuit
computes the minimum of the labels and assigns the minimum label to each vertex in the component.

Stitching Percolation and Matching Together The remaining question is how to efficiently stitch together
percolation phases and matching phases without revealing intermediate labels of any vertices.We perform
percolation and matching in the same circuit. To transition between percolation and matching phases, we
permute the list of vertices. We define a permutation π which is hidden from both parties, and apply π and
π−1 to L to transition from matching phase to percolation phase and back.

Our garbled circuit begins by merging the two parties’ sorted lists into one large list L . We then apply
π to the list to shuffle the list, hiding all information about the sorted order of L . Next, we reveal indices
of each party’s components in π(L). For the graph Gpi of each party i, and for each component C ⊂ Gpi ,
both parties learn the indices of C’s vertices in π(L). We use these indices to hard-wire the min-circuit that
percolates labels within C. After percolating, we apply the inverse permutation π−1 to π(L) and can again
iterate through L to merge. The circuit repeatedly applies π and π−1 to L to transition from matching phase
to percolation phase and back. After m−1 iterations, the circuit outputs encrypted labels to the two parties.

We remark that permuting L and revealing indices of each party’s components avoids in-circuit random
access to look up current vertex labels for each percolation circuit, and hence the overhead of ORAM.
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Fig. 8: Illustration of the percolate-and-match garbled circuit approach.

Revealing indices allows our circuit to hard-wire the indices of the min-circuits that perform percolation,
achieving O(1) cost per label lookup at the expense of an O(n logn) shuffle between phases. We can consider
that this technique allows us to amortize the expense of two permutations with cost n logn over the n memory
accesses we do for each iteration, which yields the same asymptotic complexity as ORAM [LN18,AKL+18].

Graph Structure There is one additional caveat. Revealing the indices of the vertices of each component in
L reveals the structure of the parties’ graphs. To prevent this, we require that both parties pad their graphs
to uniform structure. If the two parties do not have uniformly structured graphs, then they must agree on a
graph structure, and then pad their graphs using randomly selected vertices. To simplify the presentation,
we set a number of components C and a maximum size of each component m, and then have each party pad
its graphs using randomly selected vertices until each graph contains N =Cm vertices.

Outputs We remark that in the protocol we present, each party receives as output XOR-shares of both
parties’ labels and their own labels encrypted under a key held by the other party.

Protocol in Depth We now describe how to privately implement our percolate-and-match algorithm. Figure
8 illustrates our approach, Figure 9 contains the full protocol, and Figure 10 describes our garbled circuits.

Protocol Inputs As input, each party p has a graph Gp = (Vp ,Ep). If some party has fewer than m vertices in
some component(s) of its graph, it pads its graph by randomly sampling vertices to add to its component(s).
The two parties must agree on a number of components C and the maximum size of a component m, and
each must pad its graph until it has N =Cm vertices.

In addition, each party pi has a key kencpi
for a CPA-Secure encryption scheme with XOR homomorphism.

Third, it has a list of N `-bit random strings ρp . The key and random strings are used for the output; the key
will encrypt the other party’s output labels, and random strings will hide p’s own labels from the other party.

Initial Labelings Each party represents the current labeling of its graph as a list of vertex descriptors. A
descriptor L(v) of a vertex v is a triple (imgv, lblv,partyv), where imgv is the image of vertex v under a
shared function H : {0,1}∗ → {0,1}`, lblv is the label assigned to v, and partyv is the party’s identifier (1
or 2). We note that we use H to hash each vertex descriptor to a uniform length. In the description of the
protocol and the proof, we treat H as a random oracle.

We refer to p’s labeling as L p = {L(v)}v∈Gp . In the initial labeling that each party constructs, each
vertex’s label is initially set to its image under H (meaning imgv = lblv). After constructing its labeling L pi ,
each party sorts its labeling L pi on the images of its vertices under H.
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Garbled Circuit Part 1: Merge, Permute, and Reveal Order After the parties set up their inputs, they invoke
a garbled circuit that merges their descriptors into a combined labeling L and reveals the indices of their
descriptors under a random permutation. First, each party pi submits its sorted labeling L pi to a garbled
circuit. The garbled circuit merges L p1 and L p into one list L using a Batcher Merge [Bat68]. Second, the
circuit shuffles L using a permutation π unknown to either party using Waksman networks [Wak68,BD02].
Each party pi randomly samples a permutation πpi on 2N elements and inputs its selection bits spi to the
circuit. We define π = πp1 ◦πp2 ; the circuit permutes L as π(L).

Next, the circuit reveals to each party the indices of its own vertices in π(L). First, each party samples
2N one-time pads σpi and submits them to the circuit. The garbled circuit then iterates through π(L), and
at each index, the descriptor’s third element (which is the party identity) determines what to output to each
party. If the vertex at index j was submitted by pi, then pi receives from the garbled circuit π(L)[ j].img, the
image of the vertex at index j in the permuted list, and p3−i receives π(L)[ j].img⊕σpi, j, which is the same
image but masked by p1’s jth one-time pad.

Given the indices of each of its vertices in π(L), each party computes the indices composing each of
its components. Let idx(v) denote the index of vertex v in π(L). For each component C ⊂ Gpi , pi computes
idx(C) = {idx(v)}v∈C. For each component C in Gpi , pi shares idx(C) with p3−i. Note that each party pi

learns the indices of its own vertices in π(L) and it learns the indices corresponding to each of p3−i’s
components in π(L). However, neither party learns the original positions of either party’s vertices in L . In
the proof, we show that revealing these indices in π(L) reveals no information about the other party’s inputs.

Garbled Circuit Part 2: Percolate and Match In the second subcircuit, the parties perform percolation
and matching. The parties use the information revealed about their components’ indices in π(L) to hard-
wire the indices of each component in order to perform percolation. Percolation happens via independent
subcircuit for each component in both parties’ graphs. For each component C, let idx(C) be the indices
of the component’s vertices in π(L). The circuit computes lbl∗← min j∈idx(C) π(L)[ j].lbl, and then assigns
π(L)[ j].lbl← lbl∗ for each j ∈ idx(C).

Given a circuit with the parties’ descriptors arranged as π(L), the circuit applies π−1 = π−1
p2
◦π−1

p1
to π(L)

to retrieve L . It then performs matching by iterating through L and obliviously comparing the descriptors
at each pair of adjacent indices in L . 5 Let L [i] = (imgi, lbli,partyi) be the descriptor at index i in L , and
let L [i+ 1] = (imgi+1, lbli+1,partyi+1) be the descriptor at index i+ 1. If imgi = imgi+1, then both lbli and
lbli+1 are set to be the minimum among lbli and lbli+1.

The circuit iterates between percolation and matching m−1 times, applying π to transition from match-
ing to percolation, and π−1 to transition from percolation to matching. After the final matching phase, the
circuit again applies π to transition to the output phase.

Encrypting Vertex Labels At the end of the protocol, each party must receive its vertex labels encrypted
under a key known only to the other party. We show how to move encryption outside of the garbled circuit
in order to save the cost of online encryption at the expense of a few extra rounds of communication.

For a generic CPA-secure encryption scheme, we use the following technique. Consider a message
m, computed within a circuit, that needs to be encrypted under a key k known only to p1 without either
party learning m. At the end, p2 should learn c = enc(k,m). We can encrypt m under k as follows. p2
samples a one-time pad υ and submits it to the circuit. The circuit outputs m⊕υ to p1. p1 computes c′ =
enc(key,m⊕υ). Then, p1 sends c′ to p2, and p2 computes c = c′⊕υ = enc(k,m).

5 If not using equality to compare the descriptors, then one could substitute any other comparison circuit to evaluate matching
between two elements.
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The garbled circuit produces outputs to the parties as follows. Let outi be the set of indices of pi’s
vertices in π(L). For the jth index in outi, p3−i receives π(L)[outi[ j]].lbl⊕ρpi [ j], which is pi’s jth label
masked by pi’s jth random pad. The parties use the technique above to recover their encrypted labels.

Interfacing with DDH-Style PSI Protocols We present our technique for ElGamal encrypting vertex labels.
As we show below, DDH-style PSI protocols can be modified to accept ElGamal-encrypted inputs.

First, the parties agree on ` group elements {h j,0} j∈[`]. They then compute h j,1 = h−1
i,0 as the inverse

of each element. Neither party should know the discrete logarithm of these group elements; this can be
accomplished, for example, by using the Diffie-Hellman key exchange to agree on h j,0 for each j.

We represent a label m using these group elements by letting each pair of group elements (h j,0,h j,1)
corresponds to the possible values of the bit at position j of the label (the same group elements are used
for all labels). Let m j be the jth bit of m. m can be represented as {h j,m j} j∈[|m|]. Notice that each bit can be
inverted by computing hq−2

i,b where q is the order of the group. Therefore, to compute m⊕ p, it is sufficient
to invert the elements representing m where the bits of p are 1.

Suppose m is the label of one of p′is vertices. As we described above, pi submits a mask υ to the circuit,
and the circuit outputs m′ = m⊕υ to p3−i. For each bit m′j in m′, p3−i will encrypt h j,m′j under its public key,
and will send the ` ciphertexts for m′ to pi. When pi receives its ciphertexts, it removes υ as follows. For
each bit υ j of υ where υ j = 1, pi uses ElGl.Mul to invert the plaintext of the corresponding bit ciphertext.
Finally, pi uses ElGl.Mul to combine the bit-ciphertexts into a single label.

Recall that DDH-style PSI protocols proceed as follows:

1. p1 chooses a random exponent R1 and, for each element S1,i in its set, sends SR1
1,i to p2.

2. p2 chooses a random exponent R2 and, for each element S2, j in its set, computes SR2
2, j. It then computes

(SR1
1,i)

R2 , and sends {SR1R2
1,i } and {SR2

2, j} to p1.

3. p1 computes (SR2
2, j)

R1 and the intersection.

We note that the exponentiations of each party’s input elements can actually be performed using
ElGl.Mul. Since the other party has the key to decrypt these ciphertexts, the protocol proceeds as follows:

1. p1 samples a random exponent R1 and, for each element encpk2(S1,i) in its set, sends encpk2(S
R1
1,i) to p2.

2. p2 samples a random exponent R2 and, for each element encpk1(S2, j) in its set, computes encpk1(S
R2
2, j).

p2 computes SR1
1,i← decsk2(encpk2(S

R1
1,i)) and then (SR1

1,i)
R2 , and sends {SR1R2

1,i } and {encpk1(S
R2
2, j)} to p1.

3. p1 decrypts, computes (SR2
2, j)

R1 , and computes the intersection.

Protocol Outputs Each party outputs two sets of encrypted labels. First, each party outputs the other party’s
masked labels, which it receives from the garbled circuit. Second it output its own vertices’ encrypted labels.

Parties associate their encrypted labels with their vertices based on the order in which they receive their
encrypted labels. In the earlier reveal phase, the parties learn the indices of their own vertices in the permuted
list. They sort their vertices based on their indices in that list, and then associate the sorted vertices in order
with the encrypted labels they receive.

To choose a component label, a party arbitrarily selects any label assigned to a vertex in the component.
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Secure Two-Party Component Labeling Protocol

– Shared Inputs The two parties share a security parameter λ and a random oracle H : {0,1}∗→{0,1}`
– Local Input Each party pi ∈ {p1, p2} has the following inputs:
• Gpi = (Vpi ,Epi ) is a party’s graph. For each party, Vpi is a subset of a universal set V . Moreover, |Vpi | = N. Each

graph Gpi is composed of components containing at most m vertices.
• kencpi

is an encryption key for a CPA-secure encryption scheme with XOR homomorphism
• ρpi = {ρpi, j} j∈N is a set of N `-bit strings.

– Setup: Each party pi
• Randomly selects a permutation on 2N elements πpi and generates its Waksman select bits spi .
• Samples 2N `-bit masks σpi = {σpi, j} j∈[2N] uniformly at random.
• Computes V H

pi
← sort(map(Vpi ,λ(x) : H(x)),λ(x,y) : x < y), which applies H to each of pi’s vertices and then sorts

the images lexicographically.
• Computes L pi = {(img : V H

pi, j, lbl : V H
pi, j,party : i)} j∈[N]

– Revealing order under permutation. Each party pi:
• Submits L pi , σpi , and si to the garbled circuit GCRevealOrder, which merges L p1 and L p2 as L , and permutes L as

π(L). Each party receives 2N `-bit outputs from GCRevealOrder. Let oorderpi
= {oorderpi, j } j∈[2N] be the set of outputs

received by party pi.
• Computes the indices of both parties’ labels in the list π(L) computed by GCRevealOrder. pi sets outpi ←{ j : oorderpi, j ∈

V H
pi
}, and sets outp3−i ←{ j : oorderpi, j 6∈V H

pi
}, where outpi is the set of indices of pi’s vertices in π(L).

• Records the index of each of its vertices in π(L). For all v ∈Vpi , assigns idx(v)← j : oorderpi, j = H(v).
• Groups the indices in oorderpi

by component. For each component C ∈ Gpi , assign idx(C)←{idx(v)}v∈C.
• Sends Ipi = {idx(C)}C∈Gpi

to p3−i.
– Percolate and Match
• The parties use and Ip1 , Ip2 , outp1 , and outp2 to hard-wire GCPerc&Match

Ip1 ,Ip2 ,outp1 ,outp2
. Each party pi submits ρpi to the

circuit and receives the other party’s masked labels. Let {opmpi, j} j∈[N] be pi’s final output from the garbled circuit.
– Encrypting Labels. Each party pi:
• Encrypts the other party’s masked labels using kencpi

and sends them to p3−i. For all j ∈ [N], pi computes φp3−i, j =

CPA.enc(kencpi,ι ,opmpi, j) and sends {φp3−i, j} j∈[N] to p3−i.
– PostProcessing. Each party pi:
• Removes the masks from the encrypted labels it receives. pi receives {φpi, j} j∈[N] from p3−i, and computes γpi, j ←

φpi, j⊕ρpi, j.
• Maps its vertices to its encrypted output labels. pi computes Y ← sort(Vpi ,λ(x,y) : idx(x) < idx(y)). Then pi con-

structs Λpi = {(Y j,γpi, j)} j∈[N] .
– Outputs Each party pi outputs {opmpi, j} j∈[N] and Λpi .

Fig. 9: Full Protocol for Secure Component Labeling.

5 Evaluation

5.1 Asymptotic Analysis

The offline cost of the protocol is dominated by setup and encryption phases. In the setup, sorting a list
of N of vertices offline requires O(N logN) offline comparisons. During the encryption phase, each party
encrypts the other party’s N labels and performs N XOR operations to retrieve its own encrypted labels.

The garbled circuit performs the following computations for the percolate-and-match algorithm. Merg-
ing two sorted lists of size N requires O(N logN) oblivious comparisons using a Batcher merge. For each
iteration of the loop, it computes C (the number of components) min-circuits over m-sized lists to perform
the percolation phase. We can find the minimum of a list with m elements using m comparisons; therefore,
in total the min circuits require N = Cm comparisons per iteration. To perform matching in each iteration,
we require O(N) pairwise comparisons. In addition, each Waksman network requires O(N logN) oblivi-
ous swaps, and two permutation networks are computed per iteration. Therefore, each iteration of the loop
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procedure REVEALORDER(L p1 ,L p2 ,σp1 ,σp2 ,sp1 ,sp2 )
// Merge, Permute, and Reveal the permuted index of each

vertex to the vertex’s owner
L ← BATCHERMERGE(L p1 ,L p2 ,CmpImg )
L ← PERMUTE(L ,sp1 ,sp2 )
op1 ← []2N , op2 ← []2N
for all j ∈ [2N] do

if L [ j].party = p1 then
op1 [ j]← L [ j].img
op2 [ j]← L [ j].img⊕σp1, j

else
op1 [ j]← L [ j].img⊕σp2, j
op2 [ j]← L [ j].img

end if
end for
Output op1 to p1 and op2 to p2

end procedure
procedure PERC&MATCH( L ,ρp1 ,ρp2 ,sp1 ,sp2 )

// Ip1 ,Ip2 ,outp1 ,outp2 must be hard-coded
// L is passed to this subcircuit already permuted
for all i ∈ [m−1] do

L ← PERCOLATE(L ,Ip1 )
L ← PERCOLATE(L ,Ip2 )
L ← INVERTPERMUTE(L ,sp1 ,sp2 )
L ← MATCH(L)
L ← PERMUTE(L ,sp1 ,sp2 )

end for
op1 ←MASKFIXEDOUTPUTS(L ,ρp2 ,outp2 )
op2 ←MASKFIXEDOUTPUTS(L ,ρp1 ,outp1 )
Output op1 to p1 and op2 to p2

end procedure
function PERMUTE(L,s1,s2)

return Waksman(Waksman(L,s1),s2)
end function
function INVERTPERMUTE(L,s1,s2)

return Waksman−1(Waksman−1(L,s2),s1)
end function

function PERCOLATE(L ,I )
// I provides the indices in L that compose each component

C in some party’s graph.
for all idx(C) ∈ I do

ψ← []m
for all j ∈ [m] do

ψ[ j]← L [idx(C)[ j]].lbl
end for
minlbl←min j∈[m] ψ[ j]
for all j ∈ [m] do

L [idx(C)[ j]].lbl←minlbl
end for

end for
return L

end function
function MATCH(L)

for all i ∈ [2N−1] do
lbl∗←min(L [i].lbl,L [i+ 1].lbl)
if L [i].img = L [i+ 1].img then

L [i].lbl← lbl∗

L [i+ 1].lbl← lbl∗

end if
end for
return L

end function
function MASKFIXEDOUTPUTS(L ,ρ,out)

j← 0
o← []N
for all i ∈ out do

o[ j]← L [i]⊕ρ[ j]
j← j+ 1

end for
return o

end function
function CMPIMG(l1, l2)

return l1.img ≤ l2.img
end function

Fig. 10: Garbled Circuit for Secure Component Labeling. The subcircuits GCRevealOrder and GCPerc&Match are defined by the
procedures RevealOrder and PercAndMatch. In GCPerc&Match, variables outpi and Ipi are public and must be hard-coded.

requires O(N logN) operations, and the iterative procedure loops m− 1 times. In total, the garbled circuit
performs O(Nm logN) comparisons and swaps. The circuit must also compute 2N conditional XOR opera-
tions for the first output to the two parties, and an addition N XORs for the final output.

The total cost of the protocol is dominated by the garbled circuit implementation of the percolate-and-
match algorithm. The number of Yao gates depends on the output length ` of the hash function H because
each comparison is performed over `-bit values. The total cost of the circuit is therefore O(Nm` logN)
gates. In Appendix D, we show how ` is set as a function of the input size N and the tolerable correctness
error ε. Specifically, we set show that ` ≥ d2log(2N)− log(ε)− 1e, making the total size of the circuit
O(Nm log(N)(log(N)+ log( 1

ε
))) gates.
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5.2 Experiments

We implemented our protocol using Obliv-C [ZE15] and Absentminded Crypto Kit [Doe17], adding our own
optimizations to Obliv-C. Our tests were performed in parallel on Google Compute Platform (GCP) on n1-
highmem-32 (32 vCPUs with 208GB memory) machines between pairs of machines in the same datacenter.
El-Gamal operations were performed over elliptic curve secp256r1. We present our experimental results in
Appendix A.

5.3 Security Analysis

We prove our protocol secure in the honest-but-curious model. The proof is presented in Appendix C. Al-
though the honest-but-curious model is admittedly weak, we believe it is a realistic model for our desired
application. Adaptation to malicious security is future work.

6 Related Work

Private set intersection with “fuzzy” matches has been considered in previous research. An early work
by Freedman, Nissim, and Pinkas on PSI included a proposed fuzzy matching protocol based on oblivious
polynomial evaluation [FNP04]. Unfortunately that protocol had a subtle flaw identified by Chmielewski and
Hoepman, who proposed solutions based on OPE, secret sharing, and private Hamming distance [CH08].

Wen and Dong presented a protocol solving the private record linkage problem, which is similar to the
common identifiers problem in this work [WD14]. In that setting the goal is to determine which records in
several databases correspond to the same person, and to then reveal those records. Wen and Dong present
two approaches, one for exact matches using the garbled bloom filter technique from previous work on
PSI [DCW13] and one for fuzzy matches that uses locality-sensitive hash functions [IM98] to build the
bloom filter. One important difference between the PRL setting and ours is that our privacy goal requires the
matches and non-matches to remain secret from both parties. We also assign a label to each record, with the
property that when two records match they are assigned the same label.

Huang, Evans, and Katz compared the performance of custom PSI protocols to approaches based on
garbled circuits [HEK12]. One of their constructions, which they call sort-compare-shuffle, is familiar to
our approach. Our protocol uses the sort-compare-shuffle technique as a repeated subroutine. Unlike their
constructions, our output is not a set intersection.

7 Conclusion and Future Work

We have presented a two-party protocol that can be used as a setup for subsequent PSI-style computations.
Although we work in the honest-but-curious model, only small modifications would be needed to adapt the
ID agreement protocol to the malicious model. That said, modifying a PSI protocol to securely compose
with the ID agreement protocol in the malicious model appears challenging, and we leave it for future work.

Our ID-agreement protocol was designed for use with DDH-style PSI protocols. In particular, we rely
on the fact that in DDH-style protocols it is straightforward to work with ElGamal encryptions by taking
advantage of the homomorphism over the group operation. We believe similar techniques can be applied to
other PSI paradigms, which we leave for future work.

In a real-world application it is possible that the parties will update their respective databases and require
new encrypted labels for their modified rows. One approach to computing the updated labels would be to
run the entire protocol again, but this would be expensive if the updates occur frequently. More efficiently
updating labels without scaning over bother parties’ entire inputs is an interesting future direction.
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A Experimental Results

For each problem size, we ran our tests for three label lengths, each length corresponding to a parameter-
ization of the correctness error, as explained in Appendix D; specifically, we ran tests for parameters that
bound the correctness error probability at 2−40, 2−60, and 2−80. For each problem size N and correctness
parameter ε, we computed the requisite bit length ` = `(N,ε) and then rounded up the label length to the
next full byte. We then instantiated the function H by truncating SHA256 outputs to the first ` bits.

We summarize our experimental results in Figures 11a, 11b, 11c and 11d. We evaluated the performance
of our generic the garbled circuit protocol (including outputting of masked labels), and present the results in
Figures 11a, Figure 11b, and Figure 11c. In the generic protocol, encryptions of output labels were computed
using AES in CTR mode. Each test was performed with m = 4 (maximum component size); Figure 11c
contains the time per iteration of each percolate-and-match subcomponent, which can be used to roughly
extrapolate to other values of m. All circuit sizes were run 5 times. In Figure 11d, we evaluate our El Gamal
interface for composing with DDH-style PSI protocols. We benchmarked El-Gamal encryption for only
three (smaller) problem sizes.

Importantly, our prototype implementation was not parallelized. We believe performance could be im-
proved substantially by parallelizing, in particular because parts of the garbled circuit and the vast majority
of the El-Gamal phase are embarrassingly parallel.

B Termination of Percolate-and-Match

Theorem 1 (Termination of Percolate-and-Match). Let V be a set of vertices, let Gp1 = (V1,E1), Gp2 =
(V2,E2) such that V1 ⊂ V and V2 ⊂ V , and let G = G1 ∪G2. If the maximum size (by number of vertices)
of a connected component in G is m, then in the worst case, m− 1 iterations of the percolate-and-match
algorithm are both necessary and sufficient for vertex labels to stabilize.

Proof. We show that vertex labels stabilize after m−1 iterations, where m is a parameter denoting the largest
component (by number of vertices) in G = Gp1 ∪Gp2 . We do so by analyzing how labels percolate between
vertices during each iteration. If in the beginning an iteration, the label of some vertex u ∈ Vp is lbl, and at
the end of the iteration, the label of u is lbl′, then we say lbl′ reaches u during the iteration.

6 We measured the iteration time twice per experiment and take the average as the iteration time for that experiment.
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Input Size Label
Length
(bits)

Non-Free
Gates
(billions)

Time
(minutes)

4,096
72 0.21 1.53 ± 0.2

88 0.26 1.76 ± 0.2

112 0.33 2.4 ± 0.4

16,384
72 0.98 6.7 ± 0.8

96 1.30 8.5 ± 1.0

112 1.51 10.1 ± 0.8

65,536
80 4.88 29.8 ± 0.5

96 5.85 39.2 ± 3.1

120 7.29 49.0 ± 1.5

262,144
80 21.74 123.9 ± 3.9

104 28.18 161.5 ± 8.4

120 32.48 173.9 ± 3.3

1,048,576
88 105.25 590.5 ± 31.2

104 124.18 740.5 ± 22.7

128 152.58 824.8 ± 7.1

2,097,152
88 220.20 1280.8 ± 21.1

104 259.82 1563.2 ± 140.8

128 319.25 1928.8 ± 43.4

11a: Runtime evaluation of our generic protocol. For each exper-
iment, we provide the number of non-free gates and time to eval-
uate with 95% confidence interval.

Proportion of Execution Time
Input Size 4,096 65,536 1,048,576

Merge 0.15±1.6E−2 0.15±1.0E−2 0.15±2.0E−3

Permute 0.55±3.6E−2 0.58±1.9E−2 0.61±1.5E−3

Percolate 0.01±5.1E−3 0.01±1.2E−3 0.01±1.0E−4

Match 0.06±2.7E−3 0.05±3.3E−3 0.04±4.8E−4

11b: Proportion of total execution time spent performing each
component of our garbled circuit, with 95% confidence interval.

Per-Iteration Time (minutes)
Input Size 4,096 65,536 1,048,576
Minutes 0.60±5.30E−2 12.3±6.00E−1 217.4±1.97

11c: Time spent 6per iteration of percolate and match, with 95%
confidence interval.

Input Size Label
Length
(bits)

El Gamal Time
(minutes)

4,096 112 32.7 ±7.7

16,384 112 121.4 ±26.2

65,536 120 448.2 ±13.8

11d: Runtime evaluation, with 95% confidence interval, of the El
Gamal interface for Diffie-Hellman Style PSI Protocols.

Fig. 12: Evaluation of our prototype implementation. We tested three different label lengths per input size; with lengths correspond-
ing to correctness parameters (which upperbound the error probability) of 2−40, 2−60, and 2−80. In Figure 11a, we present results
for all three lengths. In Figures 11b, 11c, and 11d, we present results only for error probability of 2−80.

Gp1 Gp2

v1

v2

v3

v4

v1

v2

v3

v4

Fig. 13: Worst case example for the number of iterations until labels stabilize. v1, v2, v3, and v4 are in both Gp1 and Gp2 . Solid lines
represent edges in Gp1 or Gp2 . Dotted lines represent matches during the matching phase. Three iterations are required to percolate
a label from v1 to v4 in p1’s graph.
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Consider any component C⊂G. Let v be the vertex in C with the minimum label in either party’s initial
labeling, and let its label be lbl∗. We show that in each iteration until labels stabilize, lbl∗ must reach at least
one new vertex in both Gp1 and Gp2 . As m denotes the maximum number of vertices in a component, lbl∗

reaches every vertex in C in at most m−1 iterations.
If in any percolation phase, lbl∗ does not reach a new vertex in either party’s graph (meaning it does not

reach a new vertex in Gp1 and it does not reach a new vertex in Gp2), then the label has finished percolating
because it cannot match to a new vertex in the following matching phase. Similarly, if during any matching
phase, lbl∗ does not match from a vertex in one party’s graph to a vertex in the other party’s graph which
is not yet labeled lbl∗, then the label has finished percolating because it reaches no new components in the
phase. Therefore, if there is ever an iteration of the algorithm in which lbl∗ does not reach a new vertex in
either party’s graph, then iteration is complete. By contrapositive, while iteration is not complete, lbl∗ must
reach at least one new vertex in some party’s graph during each percolation phase, and in each matching
phase it must match to the same vertex in the other party’s graph.

In Figure 13, we provide an example of a graph in which lbl∗ reaches only one new vertex in each
iteration. This completes the proof, as it shows that m−1 iterations are required for some graphs in which
the maximum component size is m. One could analogously construct an example for any value of m. At each
percolation phase, lbl∗ reaches one new vertex, and in the following matching phase the label matches to a
new sub-component in the other party’s graph. The algorithm therefore takes m−1 iterations to percolate a
label to all m vertices in C.

C Security Proof

Our protocol for component labeling achieves security in the honest-but-curious model with random oracles.
We write the proof in a hybrid model in which the parties have access to a functionality F GC that takes the
place of their garbled circuit evaluations. F GC takes the description of a circuit c and two parties’ inputs
and it returns the evaluation of c on those inputs to the parties, revealing the order of c’s output gates. The
parties invoke F GC to evaluate their garbled circuits.

We denote by F lbl = (F lbl
1 ,F lbl

2 ) the two-party component labeling functionality. Recall that F lbl
i is

a pair ( fmask
p3−i

(x,y), f encpi
(x,y)). We denote by Π our component labeling protocol. Denote by outputΠ =

(outputΠ
1 ,outputΠ

2 ) the pair of random variables describing each party’s output of a real execution of Π.
Let VIEWΠ

p (x,y,λ) be the view of party p in a real execution of Π when p1 has input x, p2 has input
y, and λ is the security parameter. Recall that x = (Gp1 ,kencp1

,ρp1) and y = (Gp2 ,kencp2
,ρp2). pi’s view in an

execution of Π is composed of its input, its internal randomness rpi , and the messages it receives during the
protocol.

Theorem 2 (Security with respect to honest-but-curious adversaries). In the F GC-hybrid model with
random oracles, there exist PPT simulators S1 and S2 such that for all inputs x,y and security parameter λ:

{(VIEWΠ
p1
(x,y,λ),outputΠ(x,y,λ))}x,y,λ ≈

{(S1(1λ,x,F lbl
1 (x,y)),F lbl(x,y))}x,y,λ

{(VIEWΠ
p2
(x,y,λ),outputΠ(x,y,λ))}x,y,λ ≈

{(S2(1λ,y,F lbl
2 (x,y)),F lbl(x,y))}x,y,λ

Proof. We describe how S1 simulates the view of p1; S2 is analogous. At a high level, S1 generates a view
by randomly sampling an input graph for p2, and then faithfully simulating the interaction until the last step.
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For the last step S1 uses its knowledge of p1’s ideal-functionality outputs to ensure that p1’s simulated view
implies the correct outputs, and that the final messages sent by p1 are consistent with the honest p2’s outputs.

Intuitively, the strategy works for S1 for the following reason. p1 learns two kinds of information from
the messages it receives. First, it learns encryptions of its own and the other party’s vertex labels. For these
messages, S1 generates encryptions of junk which are indistinguishable from p1’s real messages. Second,
p1 learns information about the ordering of the images of p1 and p2’s vertices under a permutation π, which
is defined by composing πp1 and πp2 , the permutations selected by the honest parties. Because each honest
party randomly selects its permutation πpi , π is a random permutation as long as one participant is honest.
Therefore, the permuted ordering is distributed identically to the ordering of the images of p1’s vertices
and S1’s dummy vertices when S selects its own random permutation πS and the images are permuted by
π′ = πp1 ◦πS .

The description of S1 follows:

1. Random Tapes: S1 uniformly samples rp1 as its random tape for the simulation of p1 and rp2 as its
random tape for the emulation of p2. (Each party’s tape must be long enough to provide randomness for
every encryption that it must compute, all of the one-time pads it must generate.)

2. Simulated inputs for p2: S1 randomly samples an input graph GS that it uses as input for p2. It samples
GS by sampling N vertices VS ←V , and then randomly partitioning VS into components of size m subject
to the constraint that in the graph G = Gp1 ∪GS , there are no components of size larger than m. S1 does
not randomly sample an encryption key to serve as kencp2

and it does not sample one time pads to serve as
replacements for ρp2 .

3. Honest Execution: For every step of the protocol except for those in which p1 receives its protocol
outputs, S1 faithfully emulates the behavior of p1 and p2 in interaction with each other using inputs x
for p1, GS as p2’s graph, and rp1 and rp2 as the parties’ internal random tapes.

4. Fixing p1’s outputs: S1 deviates from its strategy of faithfully emulating the execution of p1 and p2
order to ensure that the view constructed for p1 is consistent with the ideal-functionality output of p1.
Recall that F lbl

1 (x,y) = ( fmask
p2

(x,y), f encp1
(x,y)). S1 fixes the messages received by p1 as follows:

(a) fmask
p2

(x,y): S1 provides p1 with fmask
p2

, which is p2’s ideal-functionality labels masked with random
strings in p2’s input y.

(b) f encp1
(x,y): S1 masks the encrypted labels given by F lbl

1 with ρp1 , which are the random strings in
p1’s input designated for masking its final labels. (Recall that in a real execution, p1 submits these to
the garbled circuit.) Let e j for j ∈ [N] be the jth encrypted label given by f encp1

. S1 provides e j⊕ρp1, j

for each masked-and-encrypted label in p1’s output.

We proceed to compare the distributions of messages that p1 receives in a real execution with the distri-
butions of messages that S1 constructs for p1.

1. p1’s first message: In a real execution, p1 receives {oorderpi, j } j∈[2N]. We divide these 2N strings into two
sets of N strings. In the first set, the garbled circuit returns the images of p1’s vertices, randomly per-
muted. In the other set, p1 receives the images of p2’s vertices under H, randomly permuted and masked
by one-time pads generated by p2. The first set in {oorderpi, j } j∈[2N] reveal the indices of p1’s vertex images
when sorted with p2 vertex images and permuted by π.
In S ’s generated view, the message received by p1 is different in two ways. First, its vertices are permuted
by some other random permutation π′; second, the messages it receives for p2’s vertices are the images
of VS , masked by one-time pads generated by S1, rather than the images of Vp2 masked by pads generated
by p2.
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2. p1’s second message: In a real execution, for each component C ∈ Gp2 , p1 receives the indices of C in
the permuted image of Vp1 ||Vp2 . (Recall that each component is size m, so for each C ∈ Gp2 , p1 receives
m unique indices in [2N].) In the view generated by S , for each component C ∈ GS , p1 receives the
indices of C in the permuted form of Vp1 ||VS .

3. p1’s third message: In a real execution, p1 invokes F GC to evaluate GCPerc&Match and receives the set of
p2’s output labels, masked by p2’s one-time pads. S1 does not invoke F GC, but simply provides p1 with
fmask
p2

(x,y), which it learns from p1’s ideal-functionality output. The difference between the messages
in the real and simulated execution is that in a real execution, these labels are images of the vertices in
Vp1 under H and masked with ρp2 , while in the view generated by S1, the labels are sampled randomly
by F lbl and masked with ρp2 .

4. p1’s fourth message: In a real execution, p1 receives {φp1, j} j∈[N] from p2, where each φp1, j =
enc(kencp2

,o j) = enc(kencp2
, lbl j⊕ρp1, j) = enc(kencp2

, lbl j)⊕ρp1, j. p1 removes its masks, after which it has
N labels encrypted under kencp2

.
S1 fixes this message to ensure that p1’s simulated view is consistent with f encp1

, which it learns from
F lbl. For j ∈ [N], S1 provides p1 with e j⊕ρp1, j. (In a real execution, an honest p1 would remove the
masks ρp1, j to derive its encrypted labels.)

To satisfy the definition of security, we must also show that the view generated by S1 is consistent with
the ideal functionality outputs of p2. Recall that F lbl

2 (x,y) = ( fmask
p1

(x,y), f encp2
(x,y)).

1. f encp2
(x,y): The consistency of this output of p2 with the view output by S1 is implied by the fact that S1

fixes p1’s penultimate message to be exactly fmask
p2

, which it receives from the ideal functionality. Recall
that in a real execution, p1 encrypts the padded outputs it receives from the final garbled circuit using
its encryption key kencp1

, and then p2 removes the pads ρp2 from these encryptions after receiving them
from p1. p2’s output f encp2

is precisely the set of encryptions yielded by removing the pads ρp2 from the
encryptions sent by p1.
Therefore, in the simulated view, S1 provides p1 with precisely the masked pads that p1 would then
encrypt and send back to p2; this is the message fmask

p2
(x,y) which S receives from F lbl as part of p1’s

output and forwards to p1. The consistency of p2’s ideal functionality output with the message sent by
p1 follows directly from the fact that the output of p2 is a set of encryptions of the messages that S
forwards to p1 from the ideal functionality.

2. fmask
p1

(x,y): This is the set of labels of p1’s vertices, masked with p1’s one-time pads, which p2 outputs.
Recall that in a real execution, p2 receives these masked labels from GCPerc&Match, encrypts them using
its encryption key, and sends the encryptions to p1, who removes the masks and outputs the encryptions.
This output must be consistent with
(a) the message that p2 computes as a function of fmask

p1
(x,y) and sends to p1 as p1’s final message.

(Specifically, this is the set of encryptions that p2 computes and sends to p1 in order to unmask and
output.)

(b) the garbled circuit inputs that are in p1’s view.
Consistency with p1’s final message: In order for fmask

p1
(x,y) to be consistent with p1’s final message

in the view generated by S1, it must be the case that the message p1 receives is composed of encryptions
of fmask

p1
(x,y) under p2’s encryption key.

This is the case, since S1 fixes p1’s final message to be the pairwise XOR of f encp1
with ρp1 , where f encp1

is given to S by F lbl, and f encp1
is defined to be the result of encrypting fmask

p1
and then homomorphically

removing the pads ρp1 .
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Consistency with GC Inputs: All of p2’s inputs to GCPerc&Match are outside of p1’s view. Therefore,
fmask
p1

(x,y) must be consistent with the inputs to the garbled circuit which are in p1’s simulated view.
p1 has two inputs to GCPerc&Match: L p1 and ρp1 . ρp1 is specified by p1’s input, and L p1 is a function of
p1’s input vertices and the random oracle H.
Consider that from p1’s inputs (specifically its one-time pads ρp1) and fmask

p1
(x,y), it is possible to learn

p1’s true vertex labels and to map p1’s vertices to their final labels. Therefore, fmask
p1

and the mapping
of p1’s vertices to their final labels must be consistent with p1’s inputs. This follows directly from the
correctness of fmask

p1
provided by F lbl, and the fact that S can program the random oracle so that queries

on p1’s vertices give images that correspond to the output prescribed by fmask
p1

.

We proceed with the full proof of security in presence of a corrupt p1; specifically, in the F GC-hybrid
model, there exists a PPT simulator S1 such that for all inputs x,y and security parameters λ:

{(VIEWΠ
p1
(x,y,λ),outputΠ(x,y,λ))}x,y,λ ≈

{(S1(1λ,x,F lbl
1 (x,y)),F lbl(x,y))}x,y,λ

The proof follows from a hybrid argument. In each hybrid we give a simulator that produces a random
variable describing the view of p1 in either a real or simulated execution.

Hyb0 This is the viewproduced by a simulator S that knows p1’s and p2’s inputs and faithfully executes the
protocol on their behalves using their inputs. It is distributed identically to (VIEWΠ

p1
(x,y,λ)

Hyb1 This identical to Hyb0, except for the order in which p1 receives its outputs from F GC on the evaluation
of GCRevealOrder and for the indices that it receives in its second message.
Order in first message: Recall that in a real execution, p1 and p2 each select 2N one-time pads
σpi and Waksman selection bits spi and submit these along with their vertices to F GC in order
to evalaute GCRevealOrder. In this hybrid, instead of delivering p1’s output in the order correspond-
ing to F GC(GCRevealOrder,L p1 ,L p2 ,sp1 ,sp2 ,σp1 ,σp2) (as in a real execution), S randomly samples a
graph GS , Waksman select bits sS , and one-time pads σS that it uses as input for p2, and addi-
tionally invokes F GC(GCRevealOrder,L p1 ,LS ,sp1 ,sS ,σp1 ,σS )). S then changes the indices in which
p1 receives its own labels as if receiving output from F GC(GCRevealOrder,L p1 ,LS ,sp1 ,sS ,σp1 ,σS ).
(Note that S does not actually use the outputs of F GC(GCRevealOrder,L p1 ,LS ,sp1 ,sS ,σp1 ,σS ), but
it delivers p1’s outputs from F GC(GCRevealOrder,L p1 ,L p2 ,sp1 ,sp2 ,σp1 ,σp2) in the order defined by
F GC(GCRevealOrder,L p1 ,LS ,sp1 ,sS ,σp1 ,σS ).)
To better discuss the order in which labels are output, we define an n-ordering to be a list containing an
n-sized subset of {1, . . .2n}. We define a procedure O(π, l1, l2) which takes a permutation π and two lists
l1 and l2 such that |l1| = |l2| = n and no list li contains duplicate elements (although the two lists have
elements in common with each other). O constructs l3 = l1||l2, and then sorts l3. Finally, it applies π to
l3. O returns an n-ordering which for each element of l1 gives its index in l3.
Observe that the indices of p1’s outputs of F GC in Hyb0 correspond to O(π,V1,V2) and that the indices
of p1’s outputs of F GC in Hyb1 correspond to O(π′,V1,VS ), where π = π1 ◦π2 and π′ = π1 ◦πS . Because
both π and π′ are random, the n-orderings describing p1’s indices in Hyb0 and Hyb1 are independent of
both the third argument to O and the contents of l1 and l2. It follows that p1’s first message is identically
distributed in Hyb0 and Hyb1.
Indices in second message: p1’s second message contains random assignments of p2’s indices into
k-sized components. As we argued for p1’s first message, the division of p2’s indices into components
is independent of p2’s vertices because the permutation on Vp1 ||Vp2 (or Vp1 ||VS ) induced by π (or π′) is
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random. It follows that the message p1 receives in Hyb0 is distributed identically to the message that it
receives in Hyb1. Thus, p2’s second message is identically distributed in Hyb0 and Hyb1, and Hyb0 is
distributed identically to Hyb1.

Hyb2 This is identical to Hyb1, except for the outputs that p1 receives from invoking F GC on GCRevealOrder.
S invokes F GC on GCRevealOrder with p1’s inputs and the dummy inputs that it generates for p2. In
contrast to Hyb1, S no longer discards the output of F GC(GCRevealOrder,L p1 ,LS ,sp1 ,sS ,σp1 ,σS ) but
uses it in place of the output of F GC(GCRevealOrder,L p1 ,L p2 ,sp1 ,sp2 ,σp1 ,σp2)
We divide our analysis of p1’s first message in Hyb1 and Hyb2 into two parts. First we consider only
those indices for which p1 receives one of p2’s masked labels. Second we consider only those indices
for which p1 receives its own labels.
The set of strings corresponding to p2’s indices in Hyb1 and in Hyb2 are identically distributed, since
both σp2 and σS are one-time pads sampled uniformly at random, and mask the labels output to p1 which
are not its own. The distributions of these masked strings that p1 receives at p2’s indices in Hyb1 and
Hyb2 are both identical to the uniform random distribution.
For all the indices for which p1 receives one of its own labels, the set of strings it receives in Hyb2 is
distributed identically to the set that p1 receives in Hyb1. In both cases it receives precisely the images
of its own vertex labels under the random oracle H. We conclude that Hyb2 is distributed identically to
Hyb1.

Hyb3 This is identical to Hyb2, except that the third message received by p1 is replaced by fmask
p2

, which S
learns from p1’s ideal-functionality output. This takes the place of the output of F GC(GCPerc&Match, · · · ),
which S does not invoke in this Hybrid. Because in both Hyb2 and Hyb3, p1 receives the other party’s
vertex labels masked by ρp2 , this message in Hyb3 is identically distributed to Hyb2 if the labels gener-
ated by F lbl are identically distributed to the vertex labels constructed in a real execution. Because in a
real execution, the parties invoke a random oracle to compute the images of their vertices, the images of
their vertices in a real execution are uniformly randomly distributed. However, this is not identical to an
interaction with F lbl, since F lbl samples random labels subject to the constraint that if two vertices are
not in the same component, they are assigned different labels, while the hash function is subject to the
birthday bound. However, the output space of the random oracle can be chosen to be large enough that
the probability of a collision is negligible. Therefore, for appropriately chosen parameters, Hyb2 and
Hyb3 are computationally indistinguishable.

Hyb4 This is identical to Hyb3, except that the fourth message received by p1 is replaced by the element-wise
xor of f encp1

and ρp1 . In both Hyb3 and Hyb4, p1 receives encryptions of its output labels, masked with
ρp1 . Remove the pad from each using ρp1 , and p1 has N encryptions of plaintext labels under kencp2

. By
the semantic security of the encryption scheme, these are computationally indistinguishable.

Hyb4 is identical to S1(1λ,x,F lbl
1 (x,y)); therefore, as we have already shown that the view output by S1

is consistent with the ideal functionality output, we conclude that {(S1(1λ,x,F lbl
1 (x,y)),F lbl(x,y))}x,y ≈c

{(VIEWΠ
p1
(x,y,λ),outputΠ(x,y))}x,y. The simulator and analysis for a corrupt p2 is analogous. This con-

cludes the proof.

D Fine-Grained Correctness

We observe that if an application does not require that correctness holds except with negligible probability,
then it is possible to tune the protocol to allow error with some tolerable probability ε in order to improve
efficiency. Specifically, we show that we can set the bit length ` of the labels assigned to vertices as a function
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Modified Two-Party Component Labeling Functionality F lbl
ε

1. Inputs: Each party pi has a tuple inputpi
= (Gpi ,k

enc
pi

,ρpi ), where Gpi = (Vpi ,Epi ) is a graph, kencpi
is an encryption key

for a CPA-secure encryption scheme (referred to as CPA), and ρpi = {ρpi, j} j∈[N] is a list of N `-bit one-time pads.
2. Generate Labels: Upon receiving (submit,sid, inputpi

) from each pi for session sid, F lbl
ε samples elements from a

universe U = {0,1}` and computes a map Λ : Vp1 ∪Vp2 →U such that with probability 1−ε, it is the case that for every
two vertices v1,v2 ∈Vp1 ∪Vp2 , Λ(v1) = Λ(v2) if and only if v1 and v2 are in the same connected component in G1∪G2.
For i ∈ {1,2} and j ∈ [|Vpi |], let vpi, j be the jth vertex in Vpi . F lbl computes f encpi

= {CPA.enc(kencpi
,Λ(vpi, j)} j∈[|Vpi |]

and fmask
pi

= {ρpi, j⊕Λ(vpi, j)} j∈[|Vpi |]
F lbl sends (labeling,sid, f encp1

, fmask
p2

) to p1 and (labeling,sid, f encp2
, fmask

p1
) to p2.

Fig. 14: Modified Two-Party Component Labeling Functionality F lbl
ε

of ε. Reducing bit length of the labels directly improves the cost of the protocol, as the number of gates in
the garbled circuit is linear in the bit length of the labels.

Recall that correctness of our protocol requires that for every pair of vertices u,v in G = Gp1 ∪Gp2 , u
and v assigned the same label if and only if they are in the same component in G. In our protocol, if u and
v are in the same component in G, then they are assigned the same label by construction. If they are not in
the same component, then they may be assigned the same label only if there is a spurious collision in the
images of two unconnected vertices under H.

Our analysis is an application of the birthday bound. Recall that each party has a graph of size N, and
consider that H is a random oracle. Let collision be the event that any two distinct vertices in G are mapped
to the same image under H. By the birthday bound, it follows that

Pr[collision] ≤ (2N)2

2∗2`
(1)

where N is the number of vertices in each participant’s graph, and ` is the output length of H.
Therefore, it is possible to achieve correctness with probability 1− ε by upperbounding the probability

of a spurious collision by ε. To do so, we set ` = d2log(2N)− log(ε)− 1e. In our experiments, we addi-
tionally round ` up to the next full byte, guaranteeing that the probability of collision is less than the desired
parameter.

The Ideal Functionality
In Figure 14, we present a new ideal functionality parameterized by ε, which represents the probability of
correctness error. The proof needs to be modified only in the transition from Hybrid 2 to Hybrid 3. In partic-
ular, the probability of a spurious collision in the real game is precisely the ε that we use to parameterize the
error probability of the ideal functionality. In the real game, a spurious collision is the only way that vertices
which are not members of the same component are assigned the same label; therefore, the probability of
error in the real game and the consequences of such an error are identical to the probability of error by the
ideal functionality and the consequences of such an error by the ideal functionality.
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